Science.gov

Sample records for reference flow injection

  1. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  2. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  3. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  4. Tracer injection techniques in flowing surface water

    NASA Astrophysics Data System (ADS)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  5. Operator-free flow injection analyser

    PubMed Central

    de Faria, Lourival C.

    1991-01-01

    A flow injection analyser has been constructed to allow an operator-free determination of up to 40 samples. Besides the usual FIA apparatus, the analyser includes a home-made sample introduction device made with three electromechanical three-way valves and an auto-sampler from Technicon which has been adapted to be commanded by an external digital signal. The analyser is controlled by a single board SDK-8085 microcomputer. The necessary interface to couple the analyser components to the microcomputer is also described. The analyser was evaluated for a Cr(VI)-FIA determination showing a very good performance with a relative standard deviation for 15 signals from the injection of 100 μl of a 1.0 mg.ml-1 standard Cr(VI) solution being equal to 0.5%. PMID:18924899

  6. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  7. Immobilized Bioluminescent Reagents in Flow Injection Analysis.

    NASA Astrophysics Data System (ADS)

    Nabi, Abdul

    Available from UMI in association with The British Library. Bioluminescent reactions exhibits two important characteristics from an analytical viewpoint; they are selective and highly sensitive. Furthermore, bioluminescent emissions are easily measured with a simple flow-through detector based on a photomultiplier tube and the rapid and reproducible mixing of sample and expensive reagent is best achieved by a flow injection manifold. The two most important bioluminescent systems are the enzyme (luciferase)/substrate (luciferin) combinations extracted from fireflies (Photinus pyralis) and marine bacteria (Virio harveyi) which requires ATP and NAD(P)H respectively as cofactors. Reactions that generate or consume these cofactors can also be coupled to the bioluminescent reaction to provide assays for a wide range of clinically important species. A flow injection manifold for the study of bioluminescent reactions is described, as are procedures for the extraction, purification and immobilization of firefly and bacterial luciferase and oxidoreductase. Results are presented for the determination of ATP using firefly system and the determination of other enzymes and substrates participating in ATP-converting reactions e.g. creatine kinase, ATP-sulphurylase, pyruvate kinase, creatine phosphate, pyrophosphate and phophoenolypyruvate. Similarly results are presented for the determination of NAD(P)H, FMN, FMNH_2 and several dehydrogenases which produce NAD(P)H and their substrates, e.g. alcohol, L-lactate, L-malate, L-glutamate, Glucose-6-phosphate and primary bile acid.

  8. Electroosmotic flow and injection: application to conductimetry.

    PubMed

    Tang, L; Huber, C O

    1994-10-01

    Electroosmotic solution propulsion and sample injection using fused silica tube was investigated. Capillary tube dimensions were 50-100 microm i.d. by 4-7 cm length with a break in the capillary wall near one end through which electrolytic contact with the capillary solution was established. The applied field was typically 150 V/cm. The voltage at the break in the column was monitored by potentiometry with a bridge configuration. Concentrations ranging from 10 microM to 100 mM were accommodated. The basis for high sensitivity, e.g. 70 mV/microM, together with low cell volume, e.g. 20 nl, was established. Tap water conductivity measurements were made using CaCl(2) reference solution.

  9. Gas and liquid fuel injection into an enclosed swirling flow

    NASA Astrophysics Data System (ADS)

    Ahmad, N. T.; Andrews, G. E.

    1984-06-01

    The use of swirler air for atomization has been tested with direct central propane injection and with direct central kerosene and gas oil injection, and its results have been compared with those for nonswirling flow systems under the same conditions. Direct propane injection results in a major extension of stability limits, by comparison to results for premixing, while with liquid fuel injection the stability limits are generally worse than for premixed fuel and air. This may be due to the action of the centrifugal forces on the liquid droplets in the swirl flow, which results in outer swirl flow vaporization and weaker mixtures in the core recirculation region than would be the case for propane injection. A comparison with nonswirling system performance indicated that all emission levels were higher with swirl for propane.

  10. Longitudinal cross sectional mixing images of the pipe flow with periodical branching flow injections

    NASA Astrophysics Data System (ADS)

    Ueda, Toshihisa; Sunho, You; Higuchi, Naotaka

    2008-11-01

    Effect of periodical injection of branching flows on the mixing in a pipe flow is experimentally investigated. Glycerin is used as a working fluid. The glycerin flows in a steady state condition in the main flow pipe while the branching flow is injected periodically from three pipes equipped normal to the main flow pipe. The longitudinal cross sectional image of the mixing of main flow and branching flows is visualized by LIF method, inserting the Rodamine B in the first branching flow. When only one branching flow is periodically injected, the fluid injected from the side flow pipe is stretched and folded by the parabolic laminar flow velocity profile and then the length of the boundary increases linearly. When branching flow is injected from multiple side flow pipe, the mixing pattern becomes more complicated. As a result, the length of the boundary increases more rapidly compared to the linear increase. The results suggest that the multiple branching flow injection enhances the mixing although no element is inserted in the pipe.

  11. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  12. The painful shoulder: when to inject and when to refer.

    PubMed

    Codsi, Michael J

    2007-07-01

    Physicians can usually diagnose the cause of shoulder pain by performing a focused history and physical examination and ordering anteroposterior and lateral radiographs. Treatment depends on the cause and can include physical therapy, injections of corticosteroids into the joint space or bursa, and surgery. This paper reviews the diagnosis and treatment of impingement syndrome, adhesive capsulitis, rotator cuff tears, and arthritis of the glenohumeral joint and acromioclavicular (AC) joint.

  13. Liquid injection in confined co-flow: Application to portal vein embolization by glue injection

    NASA Astrophysics Data System (ADS)

    Sandulache, M.-C.; Paullier, P.; Bouzerar, R.; Yzet, T.; Balédent, O.; Salsac, A.-V.

    2012-08-01

    Drop formation in liquid-liquid systems has received considerable attention over the last century owing to its many industrial applications. More recent applications may be found in the field of endovascular/percutaneous treatments. The present study focuses on portal vein embolization (PVE), which consists in the blockage of part of the portal trunk though the injection of surgical glue. The short-time injection is dominated by fluid dynamic effects: the influence of polymerization is secondary owing to the presence of ethiodized oil in the injected mixture. If the mechanism of liquid injection is well understood for injections in unconfined fluids at rest, fewer studies have so far considered the case of outer liquids flowing in confined environments. The objective is therefore to conduct a large range parametric study of liquid injections in confined co-flows. An experimental setup has been designed to simulate in vitro the injection in an immiscible liquid flowing in a cylindrical tube. The transition from the dripping to the jetting regimes is found to be independent of confinement, but to depend on the ratio of the inertial forces of the injected liquid to the surface tension, i.e., the Weber number of the inner flow Wei. The confinement, however, has an influence on the drop size in the dripping regime. Its influence diminishes in the first phase of the jetting regime, as the drop size largely decreases. In the fully established jetting regime, the drop size is finally only a function of the ejection tube diameter. To predict the size of the drops in the dripping regime, we have developed a semiempirical model that takes into account the effects of both the tube confinement and outer flow. It will help the interventional radiologists predict the drop size depending on the geometrical and velocimetric conditions at the site of embolization. All these results can then serve as a base to optimize the PVE technique during clinical practice.

  14. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  15. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  16. Axisymmetric flows from fluid injection into a confined porous medium

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime

  17. Flow in a porous nozzle with massive wall injection

    NASA Technical Reports Server (NTRS)

    Kinney, R. B.

    1973-01-01

    An analytical and experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a nozzle. The experiments were performed on a water table with a porous-nozzle test section. This had 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. An analysis of the water table flow was made using a one-dimensional flow assumption in the continuity and momentum equations. An analysis of a compressible flow in a nozzle was made in a manner analogous to that for the water flow. It is shown that the effect of blowing is to move the sonic position downstream of the geometric throat. Similar results were determined for the incompressible water table flow. Limited photographic results are presented for an injection of air, CO2, and Freon-12 into a main-stream air flow in a convergent-divergent nozzle. Schlieren photographs were used to visualize the flow.

  18. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  19. Flow regimes for fluid injection into a confined porous medium

    DOE PAGES

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  20. Determination of Acidity Constants by Gradient Flow-Injection Titration

    ERIC Educational Resources Information Center

    Conceicao, Antonio C. L.; Minas da Piedade, Manuel E.

    2006-01-01

    A three-hour laboratory experiment, designed for an advanced undergraduate course in instrumental analysis that illustrates the application of the gradient chamber flow-injection titration (GCFIT) method with spectrophotometric detection to determine acidity constants is presented. The procedure involves the use of an acid-base indicator to obtain…

  1. Determination of Reaction Stoichiometries by Flow Injection Analysis.

    ERIC Educational Resources Information Center

    Rios, Angel; And Others

    1986-01-01

    Describes a method of flow injection analysis intended for calculation of complex-formation and redox reaction stoichiometries based on a closed-loop configuration. The technique is suitable for use in undergraduate laboratories. Information is provided for equipment, materials, procedures, and sample results. (JM)

  2. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  3. Immobilized enzymes in flow-injection analysis: present and trends

    PubMed Central

    Ruz, J.; Lázaro, F.; de Castro, M. D. Luque

    1988-01-01

    An overview of the use of immobilized enzymes in flow-injection analysis (FIA) is presented. The joint use of FIA and immobilized enzymes means that analytical procedures are easily automated, analytical costs are reduced and methods are faster. The future possibilities for this combination are discussed. PMID:18925183

  4. Flow injection determinations of artificial sweeteners: a review.

    PubMed

    Yebra-Biurrun, M C

    2000-09-01

    A review is presented to show the advantages involved in the use of Flow Injection Analysis (FIA) for the determination of artificial sweeteners. The FI methods proposed for the determination of artificial sweeteners are described and compared on the basis of the detection technique used. Analytical data of interest and interferences are discussed for each sweetener.

  5. Enhancing resolution of free-flow zone electrophoresis via a simple sheath-flow sample injection.

    PubMed

    Yang, Ying; Kong, Fan-Zhi; Liu, Ji; Li, Jun-Min; Liu, Xiao-Ping; Li, Guo-Qing; Wang, Ju-Fang; Xiao, Hua; Fan, Liu-Yin; Cao, Cheng-Xi; Li, Shan

    2016-07-01

    In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method. PMID:27121853

  6. Flow-injection chemiluminescence determination of chlorinated isocyanuric acids.

    PubMed

    Safavi, Afsaneh; Karimi, Mohammad Ali

    2003-02-01

    A rapid and sensitive flow-injection chemiluminescence method is described for the determination of dichloro- and trichloroisocyanuric acids based on the chemiluminescence produced during their reaction with luminol in alkaline medium. The effects of analytical and flow-injection variables on these chemiluminescence systems and determination of both oxidants are discussed. The optimized method yielded 3sigma detection limits of 8x10(-8) and 5x10(-8) mol L(-1) for the sodium dichloroisocyanurate and trichloroisocyanuric acid, respectively. The optimum conditions were found to be as follows: NaOH, 1x10(-1) mol L(-1); luminol, 5x10(-3) mol L(-1); KI, 2x10(-3) mol L(-1) and flow rate, 3.5 mL min(-1). PMID:12589508

  7. A gravity-induced flow injection system for surface plasmon resonance biosensor.

    PubMed

    Zhou, Chao; Mu, Ying; Yang, Mengchao; Song, Qi; Zhang, Ying; Wu, Zhongyu; Xiang, Liancheng; Jin, Wei; Jin, Qinhan

    2013-08-15

    A number of portable surface plasmon resonance (SPR) devices have been developed for point-of-care (POC) testing. Meanwhile, micropumps have been fabricated to be integrated into these devices for flow injection analysis (FIA). However, the (micro) pumps, the tubes and their external control units were space-consuming. Here we developed a power-free flow injection analysis (FIA) method for SPR detection based on a gravity-induced flow injection (gFI) system. The gFI system was tubeless and did not need to be controlled. The fluid was driven into the detection areas by its own gravitational force. A transition channel was used to increase the liquid-level difference between the inlet reservoir and the outlet reservoir. After a liquid sample was placed in the inlet reservoir, the flow rate of the liquid sample was increased in the transition channel. Before it arrived at the sensing surface, the flow rate of the sample was steady (with an error of less than 10%). The fluctuation of the flow rate had an influence on the SPR response signal, which was successfully denoised using an internal reference. With the gFI system, the SPR imaging biosensor was able to perform real-time detection manually. The SPR responses of DNA hybridization and protein immobilization were successfully obtained.

  8. Theory of Gas Injection: Interaction of Phase Behavior and Flow

    NASA Astrophysics Data System (ADS)

    Dindoruk, B.

    2015-12-01

    The theory of gas injection processes is a central element required to understand how components move and partition in the reservoir as one fluid is displacing another (i.e., gas is displacing oil). There is significant amount of work done in the area of interaction of phase-behavior and flow in multiphase flow conditions. We would like to present how the theory of gas injection is used in the industry to understand/design reservoir processes in various ways. The tools that are developed for the theory of gas injection originates from the fractional flow theory, as the first solution proposed by Buckley-Leveret in 1940's, for water displacing oil in porous media. After 1960's more and more complex/coupled equations were solved using the initial concept(s) developed by Buckley-Leverett, and then Welge et al. and others. However, the systematic use of the fractional flow theory for coupled set of equations that involves phase relationships (EOS) and phase appearance and disappearance was mainly due to the theory developed by Helfferich in early 80's (in petroleum literature) using method of characteristics primarily for gas injection process and later on by the systematic work done by Orr and his co-researchers during the last two decades. In this talk, we will present various cases that use and extend the theory developed by Helfferich and others (Orr et al., Lake et al. etc.). The review of various injection systems reveals that displacement in porous media has commonalities that can be represented with a unified theory for a class of problems originating from the theory of gas injection (which is in a way generalized Buckley-Leverett problem). The outcome of these solutions can be used for (and are not limited to): 1) Benchmark solutions for reservoir simulators (to quantify numerical dispersion, test numerical algorithms) 2) Streamline simulators 3) Design of laboratory experiments and their use (to invert the results) 4) Conceptual learning and to investigate

  9. Injection Induced Mixing in Flows Separating From Smooth Surfaces

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J. (Technical Monitor); Wundrow, David W.

    2004-01-01

    An analytic model for predicting the effect of unsteady local surface injection on the flow separating from a streamlined body at angle of attack is proposed. The model uses the premise that separation control results from enhanced mixing along the shear layer that develops between the main stream and the fluid in the underlying recirculation zone. High-Reynolds-number asymptotic methods are used to connect the unsteady surface injection to an instability wave propagating on the separating shear layer and then to the large-scale coherent structures that produce the increased mixing. The results is a tool that can guide the choice of fluid-actuator parameters to maximize flow-control effectiveness and may also facilitate computer-based numerical experiments.

  10. Flow Injection as a Teaching Tool for Gravimetric Analysis

    NASA Astrophysics Data System (ADS)

    Sartini, Raquel P.; Zagatto, Elias A. G.; Oliveira, Cláudio C.

    2000-06-01

    A flow-injection system to carry out gravimetric analysis is presented. Students are faced with an instrumental approach for gravimetric procedures. Crucibles, muffle furnaces, and desiccators are not required. A flowing suspension is established by simultaneously injecting an aqueous sample and a precipitating reagent into two merging carrier streams. The precipitate is accumulated on a minifilter hanging under the plate of an analytical balance and is weighed inside the main stream. Since Archimedes' principle holds, a drying step is not needed. After measurement, the precipitate is dissolved and disposed of. As an application, the determination of phosphate based on precipitation with ammonium and magnesium ions in slightly alkaline medium is chosen. The proposed system is very stable and well suited for demonstration. When applied to analysis of fertilizer extracts with 0.10-1.00% w/v P, it yields precise results (RSD < 0.042) in agreement with an official spectrophotometric method.

  11. Method and apparatus for continuous flow injection extraction analysis

    DOEpatents

    Hartenstein, Steven D.; Siemer, Darryl D.

    1992-01-01

    A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.

  12. Flow Simulation of Solid Rocket Motors. 1; Injection Induced Water-Flow Tests from Porous Media

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Yeh, Y. P.; Smith, A. W.; Heaman, J. P.

    1999-01-01

    Prior to selecting a proper porous material for use in simulating the internal port flow of a solid rocket motor (SRM), in cold-flow testing, the flow emerging from porous materials is experimentally investigated. The injection-flow emerging from a porous matrix always exhibits a lumpy velocity profile that is spatially stable and affects the development of the longitudinal port flow. This flow instability, termed pseudoturbulence, is an inherent signature of the porous matrix and is found to generally increase with the wall porosity and with the injection flow rate. Visualization studies further show that the flow from porous walls made from shaving-type material (sintered stainless-steel) exhibits strong recirculation zones that are conspicuously absent in walls made from nodular or spherical material (sintered bronze). Detailed flow visualization observations and hot-film measurements are reported from tests of injection-flow and a coupled cross-flow from different porous wall materials. Based on the experimental data, discussion is provided on the choice of suitable material for SRM model testing while addressing the consequences and shortcomings from such a test.

  13. Quantitation of glycerophosphorylcholine by flow injection analysis using immobilized enzymes.

    PubMed

    Mancini, A; Del Rosso, F; Roberti, R; Caligiana, P; Vecchini, A; Binaglia, L

    1996-09-20

    A method for quantitating glycerophosphorylcholine by flow injection analysis is reported in the present paper. Glycerophosphorylcholine phosphodiesterase and choline oxidase, immobilized on controlled porosity glass beads, are packed in a small reactor inserted in a flow injection manifold. When samples containing glycerophosphorylcholine are injected, glycerophosphorylcholine is hydrolyzed into choline and sn-glycerol-3-phosphate. The free choline produced in this reaction is oxidized to betain and hydrogen peroxide. Hydrogen peroxide is detected amperometrically. Quantitation of glycerophosphorylcholine in samples containing choline and phosphorylcholine is obtained inserting ahead of the reactor a small column packed with a mixed bed ion exchange resin. The time needed for each determination does not exceed one minute. The present method, applied to quantitate glycerophosphorylcholine in samples of seminal plasma, gave results comparable with those obtained using the standard enzymatic-spectrophotometric procedure. An alternative procedure, making use of co-immobilized glycerophosphorylcholine phosphodiesterase and glycerol-3-phosphate oxidase for quantitating glycerophosphorylcholine, glycerophosphorylethanolamine and glycerophosphorylserine is also described. PMID:8905629

  14. Rapid, fully automated flow injection antioxidant capacity assay.

    PubMed

    Labrinea, Eleni P; Georgiou, Constantinos A

    2005-06-01

    A flow injection method for antioxidant capacity assessment based on a low-cost laboratory-made analyzer is reported. A sample of 30 microL is injected in acetate buffer stream, pH 4.6, that converges with ABTS*(+) reagent stream. Detection is achieved by monitoring absorbance at 414 nm. The proposed method achieves a sample throughput of up to 120 samples h(-1), the detection limit being 1.3 microM trolox. Precision was better than 5% relative standard deviation (n = 4) and the linear range was 4-100 microM, expanded to 250 microM trolox utilizing concentration gradients formed along the injected sample bolus. Information on reaction kinetics is obtained through a single injection. The method was applied to pure compounds and wine and honey samples. Good correlation was found between antioxidant capacity assessed through the proposed method and phenolic content: r = 0.94 for red wines, r = 0.96 for white and rose wines, and r = 0.89 for honeys. PMID:15913292

  15. Sonic injection through diamond orifices into a hypersonic flow

    NASA Astrophysics Data System (ADS)

    Fan, Huaiguo

    The objective for the present study was to experimentally characterize the performance of diamond shaped injectors for hypersonic flow applications. First, an extensive literature review was performed. Second, a small scale Mach 5.0 wind tunnel facility was installed. Third, a detailed experimental parametric investigation of sonic injection through a diamond orifice (five incidence angles and three momentum ratios) and a circular injector (three momentum ratios) into the Mach 5.0 freestream was performed. Also, the use of downstream plume vorticity control ramps was investigated. Fourth, a detailed analysis of the experimental data to characterize and model the flow for the present range of conditions was achieved. The experimental techniques include surface oil flow visualization, Mie-Scattering flow visualization, particle image velocimetry (PIV), shadowgraph photograph, and a five-hole mean flow probe. The results show that the diamond injectors have the potential to produce attached shock depending on the incidence angle and jet momentum ratio. For example, the incidence angles less than or equal to 45° at J = 0.43 generated attached interaction shocks. The attached shock produced reduced total pressure loss (drag for scramjet) and eliminated potential hot spots, associated with the upstream flow separation. The jet interaction shock angle increased with jet incidence angle and momentum ratio due to increased penetration and flow disturbances. The plume penetration and cross-sectional area increased with incidence angle and momentum ratio. The increased jet interaction shock angle and strength produced increased total pressure loss, jet interaction force and total normal force. The characteristic kidney bean shaped plume was not discernable from the diamond injectors indicating increased effectiveness for film cooling applications. A vorticity generation ramp increased the penetration of the plume and the plume shape was indicative of higher levels of

  16. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    PubMed Central

    Ojeda, Catalina Bosch; Rojas, Fuensanta Sánchez

    2006-01-01

    Optical techniques for chemical analysis are well established and sensors based on these techniques are now attracting considerable attention because of their importance in applications such as environmental monitoring, biomedical sensing, and industrial process control. On the other hand, flow injection analysis (FIA) is advisable for the rapid analysis of microliter volume samples and can be interfaced directly to the chemical process. The FIA has become a widespread automatic analytical method for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, and ease of assembling. In this paper, an overview of flow injection determinations by using optical chemical sensors is provided, and instrumentation, sensor design, and applications are discussed. This work summarizes the most relevant manuscripts from 1980 to date referred to analysis using optical chemical sensors in FIA.

  17. A continuous flow cold vapour procedure for mercury determination by atomic emission using the reverse flow injection approach

    NASA Astrophysics Data System (ADS)

    De Andrade, João Carlos; Bueno, Maria Izabel M. S.

    1994-07-01

    An experimental set-up for on-line Hg 2+ reduction and determination was devised using the reverse flow injection analysis (r-FIA) concept and the cold vapour (CV) technique, injecting an acidic Sn 2+ solution into the mercury sample line. The elemental mercury generated is separated from the reacting mixture by a 100 ml min -1 helium stream, which passes through a gas-liquid separator connected to a permeation cell. This gas stream is used as the plasma medium. The permeated Hg° is then concentrated on a 0.3 g gold foil placed inside a quartz tube connected to an 11 W He de discharge plasma chamber. The mercury retained on the gold surface is released by resistive heating and the emission intensity is observed at the 253.7 nm mercury line. For an injection cycle of 30 s, the calibration graphs are linear up to 50 ng ml -1(itr 2 = 0.999). An injection frequency of 120 h -1 is achieved, with negligible carry-over. The calculated relative standard deviation of the transient peaks is 1.6%. Higher sensitivities can be achieved using longer injection cycles. Samples of Human Hair Certified Reference Material were used to determine the accuracy of the method.

  18. Reference Solutions for Benchmark Turbulent Flows in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.

    2016-01-01

    A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.

  19. Tetracycline, oxytetracycline and chlortetracycline determination by flow injection potentiometry.

    PubMed

    Couto, C M; Lima, J L; Conceição, M; Montenegro, B S; Reis, S

    1998-12-01

    This paper describes tetracycline (TCH), oxytetracycline (OTCH) and chlortetracycline (CTCH) determination by flow injection potentiometry. In the flow system proposed TC samples are inserted in a carrier solution and converged with a Cu(II) solution of known concentration; the Cu(II) decrease due to its complexation with tetracyclines (TC) was monitored. The detector used was a homogeneous crystalline CuS/Ag2S double membrane tubular electrode with increased sensitivity. The present system allows tetracyclines determinations within a 48.1-4.8 x 10(3) ppm for TCH, 49.1-4.9 x 10(3) ppm for OTCH and 51.5-5.1 x 10(3) ppm for CTCH and a precision better than 0.4% for the three TC species. This procedure accomplishes 150-200 samples h(-1) with a Cu(II) consumption of about 13 microg determination(-1).

  20. Sensitive flow-injection spectrophotometric analysis of bromopride

    NASA Astrophysics Data System (ADS)

    Lima, Liliane Spazzapam; Weinert, Patrícia Los; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-01

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax = 565 nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63 × 10-7 to 2.90 × 10-5 mol L-1, with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07 × 10-7 and 3.57 × 10-7 mol L-1, respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps.

  1. Sensitive flow-injection spectrophotometric analysis of bromopride.

    PubMed

    Lima, Liliane Spazzapam; Los Weinert, Patrícia; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-10

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax=565nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63×10(-7) to 2.90×10(-5)molL(-1), with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07×10(-7) and 3.57×10(-7)molL(-1), respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps. PMID:24992919

  2. Simple and clean determination of tetracyclines by flow injection analysis

    NASA Astrophysics Data System (ADS)

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-01-01

    An environmentally reliable analytical methodology was developed for direct quantification of tetracycline (TC) and oxytetracycline (OTC) using continuous flow injection analysis with spectrophotometric detection. The method is based on the diazo coupling reaction between the tetracyclines and diazotized sulfanilic acid in a basic medium, resulting in the formation of an intense orange azo compound that presents maximum absorption at 434 nm. Experimental design was used to optimize the analytical conditions. The proposed technique was validated over the concentration range of 1 to 40 μg mL- 1, and was successfully applied to samples of commercial veterinary pharmaceuticals. The detection (LOD) and quantification (LOQ) limits were 0.40 and 1.35 μg mL- 1, respectively. The samples were also analyzed by an HPLC method, and the results showed agreement with the proposed technique. The new flow injection method can be immediately used for quality control purposes in the pharmaceutical industry, facilitating monitoring in real time during the production processes of tetracycline formulations for veterinary use.

  3. Simple and clean determination of tetracyclines by flow injection analysis.

    PubMed

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-01-15

    An environmentally reliable analytical methodology was developed for direct quantification of tetracycline (TC) and oxytetracycline (OTC) using continuous flow injection analysis with spectrophotometric detection. The method is based on the diazo coupling reaction between the tetracyclines and diazotized sulfanilic acid in a basic medium, resulting in the formation of an intense orange azo compound that presents maximum absorption at 434 nm. Experimental design was used to optimize the analytical conditions. The proposed technique was validated over the concentration range of 1 to 40 μg mL(-1), and was successfully applied to samples of commercial veterinary pharmaceuticals. The detection (LOD) and quantification (LOQ) limits were 0.40 and 1.35 μg mL(-1), respectively. The samples were also analyzed by an HPLC method, and the results showed agreement with the proposed technique. The new flow injection method can be immediately used for quality control purposes in the pharmaceutical industry, facilitating monitoring in real time during the production processes of tetracycline formulations for veterinary use.

  4. Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1989-01-01

    The performance of twin injection seeded Nd:YAG lasers is compared with the performance of an argon-ion laser for recording dual-reference-beam holograms in AGFA 8E56 emulsion. Optical heterodyning is used to measure interference, and the results are expressed in terms of heterodyning signal level and intensity signal-to-noise. The Nd:YAG laser system is to be used for optical inspections of structures for cracks, defects, gas leaks, and structural changes.

  5. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.

    PubMed

    Karuwan, Chanpen; Wisitsoraat, Anurat; Maturos, Thitima; Phokharatkul, Disayut; Sappat, Assawapong; Jaruwongrungsee, Kata; Lomas, Tanom; Tuantranont, Adisorn

    2009-09-15

    A microfabicated flow injection device has been developed for in-channel electrochemical detection (ECD) of a beta-agonist, namely salbutamol. The microfluidic system consists of PDMS (polydimethylsiloxane) microchannel and electrochemical electrodes formed on glass substrate. The carbon nanotube (CNT) on gold layer as working electrode, silver as reference electrode and platinum as auxiliary electrode were deposited on a glass substrate. Silver, platinum, gold and stainless steel catalyst layers were coated by DC-sputtering. CNTs were then grown on the glass substance by thermal chemical vapor deposition (CVD) with gravity effect and water-assisted etching. 100-microm-deep and 500-microm-wide PDMS microchannels fabricated by SU-8 molding and casting were then bonded on glass substrate by oxygen plasma treatment. Flow injection and ECD of salbutamol was performed with the amperometric detection mode for in-channel detection of salbutamol. The influences of flow rate, injection volume, and detection potential on the response of current signal were optimized. Analytical characteristics, such as sensitivity, repeatability and dynamic range have been evaluated. Fast and highly sensitive detection of salbutamol have been achieved. Thus, the proposed combination of the efficient CNT electrode and miniaturized lab-on-a-chip is a powerful platform for beta-agonists detection.

  6. Three-dimensional computations of cross-flow injection and combustion in a supersonic flow

    NASA Technical Reports Server (NTRS)

    Carpenter, M. H.

    1989-01-01

    A low-storage version of the SPARK3D code which is based on the temporally second-order accurate MacCormack (1969) explicit scheme is used to solve the governing equations for three-dimensional chemically reacting flows with finite-rate chemistry. The code includes a fourth-order compact spatial scheme capable of providing higher order spatial accuracy, and it is used to study two-dimensional linear advection, two-dimensional Euler flow, and three-dimensional viscous flow. Also considered are the injection, mixing, and combustion of hydrogen in a supersonic cross stream.

  7. Novel approaches to analysis by flow injection gradient titration.

    PubMed

    Wójtowicz, Marzena; Kozak, Joanna; Kościelniak, Paweł

    2007-09-26

    Two novel procedures for flow injection gradient titration with the use of a single stock standard solution are proposed. In the multi-point single-line (MP-SL) method the calibration graph is constructed on the basis of a set of standard solutions, which are generated in a standard reservoir and subsequently injected into the titrant. According to the single-point multi-line (SP-ML) procedure the standard solution and a sample are injected into the titrant stream from four loops of different capacities, hence four calibration graphs are able to be constructed and the analytical result is calculated on the basis of a generalized slope of these graphs. Both approaches have been tested on the example of spectrophotometric acid-base titration of hydrochloric and acetic acids with using bromothymol blue and phenolphthalein as indicators, respectively, and sodium hydroxide as a titrant. Under optimized experimental conditions the analytical results of precision less than 1.8 and 2.5% (RSD) and of accuracy less than 3.0 and 5.4% (relative error (RE)) were obtained for MP-SL and SP-ML procedures, respectively, in ranges of 0.0031-0.0631 mol L(-1) for samples of hydrochloric acid and of 0.1680-1.7600 mol L(-1) for samples of acetic acid. The feasibility of both methods was illustrated by applying them to the total acidity determination in vinegar samples with precision lower than 0.5 and 2.9% (RSD) for MP-SL and SP-ML procedures, respectively.

  8. Flow injection spectrophotometric determination of aspartame in dietary products.

    PubMed

    Nóbrega, J de A; Fatibello-Filho, O; Vieira, I da C

    1994-09-01

    A flow injection spectrophotometric method has been developed for the determination of aspartame in dietary products using ninhydrin as a colorimetric reagent. The reaction was conducted in a 1 + 1 v/v methanol-isopropanol medium also containing potassium hydroxide. The absorbance measurements were made at 603 nm. The results obtained for the determination of aspartame in table sweetener, pudding, gelatin, and refreshment (i.e., a powder dissolved in water for drinking) are in good agreement with the results obtained using a conventional manual procedure (correlation coefficient, r = 0.9984). Thirty-six results were obtained per hour, and the relative standard deviation was less than 3.5% (n = 6) for all samples. The detection limit (three times the signal blank/slope) was 3.8 x 10(-5) mol l-1 of aspartame.

  9. Canine bone blood flow measurements using serial microsphere injections.

    PubMed

    McGrory, B J; Moran, C G; Bronk, J; Weaver, A L; Wood, M B

    1994-06-01

    The objective of this study was to determine the reproducibility of serial bone blood flow (BBF) quantitation using multiple microsphere injections. Three consecutive estimates of BBF were obtained, using 15-mu radionuclide-labeled microspheres from 21 anesthetized adult dogs. A dose of 3 million spheres/kg was used in seven dogs (Cohort 1); a dose of 0.5 million spheres/kg was used in the remaining 14 dogs (Cohorts 2 and 3). Estimates of BBF were made at an average of 129, 153, and 175 minutes after the animals had been anesthetized in the first two cohorts and 179, 203, and 225 minutes in Cohort 3. The dogs in Cohort 1 had no surgical intervention; the dogs in Cohorts 2 and 3 had increasingly complex surgical interventions. Despite stabilization of cardiovascular status, BBF was found to vary by 33.4% in Cohort 1, 25.7% in Cohort 2, and 42.5% in Cohort 3 over the three injections. Cortical BBF fell by 13.9%, 12.1%, and 12.4% between the first and second, and by 31.0%, 11.2%, and 29.9% between the second and third estimates for Cohorts 1, 2, and 3, respectively. Variation in right to left blood flow was used as an overall measure of error caused by technique and did not consistently increase between the first, second, or third BBF estimates in any cohort. Cortical BBF data were found to be significantly more reliable than cancellous data (p < 0.01); error caused by technique was least in the midshaft femoral or midshaft humeral cortical samples. Increasing the dose of spheres administered from 0.5 to 3 million/kg for three serial microsphere injections increased the number of reliable samples and did not lead to increased technical error or shunting. This study demonstrates that there is a significant decrease in BBF over time in the anesthetized dog; therefore, serial estimates of BBF can only be interpreted if the results are normalized or if a control group of animals is included.

  10. Flow injection chemiluminescence determination of naphazoline hydrochloride in pharmaceuticals.

    PubMed

    Iranifam, Mortaza; Sorouraddin, Mohammad H

    2014-02-01

    A simple and sensitive flow injection chemiluminescence (FI-CL) method was developed for the determination of naphazoline hydrochloride (NPZ). The method is based on the enhancing effect of NPZ on the weak CL signal from the reaction of KIO4 with H2 O2 . Experimental parameters that affected the CL signal, including the pH of the KIO4 solution, concentrations of KIO4 , H2 O2 and disodium-EDTA and flow rate were optimized. Under the optimum conditions, the increment of CL intensity was linearly proportional to the concentration of NPZ in the range 5.0 × 10(-6) to 70 × 10(-6) mol/L. The detection limit was 1.0 × 10(-6) mol/L and the relative standard deviation for 50 × 10(-6) mol/L NPZ solution was 2.8% (n = 11). In addition, a high throughput of 120 samples/h was achieved. The utility of this method was demonstrated by determining NPZ in pharmaceuticals.

  11. Remote calorimetric detection of urea via flow injection analysis.

    PubMed

    Gaddes, David E; Demirel, Melik C; Reeves, W Brian; Tadigadapa, Srinivas

    2015-12-01

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time. PMID:26479269

  12. Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds

    NASA Astrophysics Data System (ADS)

    Kanwal, Shamsa; Fu, Xiaohong; Su, Xingguang

    2009-12-01

    A highly sensitive flow-injection chemiluminescent method for the direct determination of pyrogallol compounds has been developed. Proposed method is based on the enhanced effect of pyrogallol compounds on the chemiluminescence signals of KMnO 4-H 2O 2 system in slightly alkaline medium. Three important pyrogallol compounds, pyrogallic acid, gallic acid and tannic acid, have been detected by this method, and the possible mechanism of the CL reaction is also discussed. The proposed method is simple, convenient, rapid (60 samples h -1), and sensitive, has a linear range of 8 × 10 -10 mol L -1 to 1 × 10 -5 mol L -1, for pyrogallic acid, with a detection limit of 6 × 10 -11 mol L -1, 4 × 10 -8 mol L -1 to 5 × 10 -3 mol L -1 for gallic acid with a detection limit of 9 × 10 -10 mol L -1, and 8 × 10 -8 mol L -1 to 5 × 10 -2 mol L -1 for tannic acid, with a detection limit of 2 × 10 -9 mol L -1, respectively. The relative standard deviation (RSD, n = 15) was 0.8, 1.1 and 1.3% for 5 × 10 -6 mol L -1 pyrogallic acid, gallic acid and tannic acid, respectively. The proposed method was successfully applied to the determination of pyrogallol compounds in tea and coffee samples.

  13. Application of flow injection on-line electrothermal atomic absorption spectrometry to the determination of rhodium.

    PubMed

    Sanchez Rojas, Fuensanta; Bosch Ojeda, Catalina; Cano Pavón, José Manuel

    2005-06-01

    A fully automated procedure for the determination of rhodium has been developed using flow injection (FI) on-line microcolumn preconcentration coupled with electrothermal atomic absorption spectrometry (ETAAS). The proposed FI manifold and its operation make possible the introduction of the total eluate volume into the graphite atomizer, avoiding the necessity for optimisation of subsampling the eluate. Rhodium is adsorbed on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). Under the optimum conditions, using a 60 s preconcentration time, a sample flow rate of 3.5 mL min(-1) and an injection volume of eluent of 50 microL, a linear calibration graph was obtained from 1 to at least 40 ng mL(-1) and the detection limit was 1 ng mL(-1). The proposed method has been successfully applied to the analysis of samples. Its performance was investigated against certified reference catalyst sample SRM-2557 and by recovery measurements on spiked samples (soil, foods and beverages).

  14. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry.

    PubMed

    Zhang, Yanlin; Adeloju, Samuel B

    2012-04-01

    A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH(4) were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe(3+), Cu(2+) and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu(2+) and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe(3+) gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg(2+). Due to similarity of resulting sensitivity, Hg(2+) was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h(-1).

  15. Flow-injection-type biosensor system for salivary amylase activity.

    PubMed

    Yamaguchi, Masaki; Kanemaru, Masashi; Kanemori, Takahiro; Mizuno, Yasufumi

    2003-05-01

    The authors aim to establish a method that can quantitatively evaluate vital reactions to stress. We have been examining the correlation between stress and salivary amylase activity in order to verify its validity as a stress index. In order to quantify human stress, which changes over time, the relationship between stress and salivary amylase activity must be verified by fast and repeated analysis of salivary amylase activity. Standard biosensors are designed such that the enzyme immobilized on an electrode (enzyme electrode) and the substrate-dependent activity is measured. The reverse approach of measuring the alpha-amylase-dependent activity was adopted. We fabricated an amylase activity analytical system. Maltopentaose was selected as a substrate for alpha-amylase and a flow-injection-type device was used to supply maltopentaose continuously. alpha-Glucosidase, having relatively low enzyme activity, was immobilized on a pre-activated membrane so that it could be enclosed in a pre-column, Glucose oxidase, having higher enzyme activity, was immobilized on a working electrode so that it could function as an amperometric biosensor. A saliva-collecting device was fabricated to make saliva pretreatment unnecessary. As a result, an amylase activity analytical system was fabricated that enabled us to measure salivary amylase activity from 0 to 30 kU/l, with an R(2) value of 0.97. The time-course changes in the salivary amylase activities for 1 week were 5.1%, and the initial sensitivity remained nearly constant. Through this study, we were able to verify the possible development of the amylase activity analytical system.

  16. Active control of asymmetric vortical flows around cones using injection and heating

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Sharaf, Hazem H.; Liu, C. H.

    1992-01-01

    The effectiveness of certain active-control methods for asymmetric flows around circular cones is investigated by using computational solution of the unsteady, compressible full Navier-Stokes equations. Two main methods of active control which include flow injection and surface heating are used. For the flow-injection-control method, flow injection is used either in the normal direction to the surface or in the tangential direction to the surface. For the surface-heating-control method, the temperature of the cone surface is increased. The effectiveness of a hybrid method of flow control which combines normal injection with surface heating has also been studied. The Navier-Stokes equations, subjected to various surface boundary conditions, are solved by using an implicit, upwind, flux-difference splitting, finite-volume scheme for locally-conical flow solutions.

  17. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  18. Micro-flow injection analysis system: on-chip sample preconcentration, injection and delivery using coupled monolithic electroosmotic pumps.

    PubMed

    Nie, Fu-Qiang; Macka, Mirek; Paull, Brett

    2007-11-01

    A micro-fluidic chip, within which two monolithic electroosmotic pumps are utilised for sample preconcentration, injection and delivery is presented. The monolithic pumps were capable of producing stable and bubble free flow rates at applied voltages below 2 kV, with a current <10 microA. Electrokinetic (EK) sample injection, down to low nano-litre volumes, was quantitatively controlled through applied voltage and injection times, whilst the sample pump delivered a carrier solution to indirectly dispense the sample. A nano-flow sensor (NFS) was used to continuously monitor the flow rate stability of each pump, showing response times of <5-10 s for changes in applied voltage. A capacitively coupled contactless conductivity detector (C(4)D), as an off-chip on-capillary detector, was used to complete the micro-flow injection analysis (FIA) system. A monolithic electroosmotic pump (EOP), modified with an anionic surfactant, was used to demonstrate a novel approach to on-chip cation preconcentration and elution.

  19. Complex fluid flow revealed by monitoring CO2 injection in a fluvial formation

    NASA Astrophysics Data System (ADS)

    Lu, Jiemin; Cook, Paul J.; Hosseini, Seyyed A.; Yang, Changbing; Romanak, Katherine D.; Zhang, Tongwei; Freifeld, Barry M.; Smyth, Rebecca C.; Zeng, Hongliu; Hovorka, Susan D.

    2012-03-01

    At Cranfield, Mississippi, United States, a large-scale carbon dioxide (CO2) injection through an injection well (˜3,080 m deep) was continuously monitored using U-tube samplers in two observation wells located 68 and 112 m east of the injector. The Lower Tuscaloosa Formation injection zone, which consists of amalgamated fluvial point-bar and channel-fill deposits, presents an interesting environment for studying fluid flow in heterogeneous formations. Continual fluid sampling was carried out during the first month of CO2 injection. Two subsequent tracer tests using sulfur hexafluoride (SF6) and krypton were conducted at different injection rates to measure flow velocity change. The field observations showed significant heterogeneity of fluid flow and for the first time clearly demonstrated that fluid flow evolved with time and injection rate. It was found the wells were connected through numerous, separate flow pathways. CO2 flowed through an increasing fraction of the reservoir and sweep efficiency improved with time. The field study also first documented in situ component exchange between brine and gas phases during CO2 injection. It was found that CH4 degassed from brine and is enriched along the gas-water contact. Multiple injectate flow fronts with high CH4 concentration arrived at different times and led to gas composition fluctuations in the observation wells. The findings provide valuable insights into heterogeneous multiphase flow in rock formations and show that conventional geological models and static fluid flow simulations are unable to fully describe the heterogeneous and dynamic flow during fluid injection.

  20. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  1. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  2. Determination of arsenic in a nickel alloy by flow injection hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hanna, C. P.; Tyson, J. F.; Offley, S. G.

    1992-08-01

    The development of a method for the direct determination of trace arsenic quantities in nickel alloy digests, by flow injection hydride generation atomic absorption spectrometry, is described. An optimization study of the manifold and chemical parameters produced system performance, in terms of tolerance of the nickel matrix and sensitivity, such that matrix removal and pre-reduction of As(V) to As (III) prior to arsine generation were eliminated. Full recovery of the As(V) signal from a solution containing 5 ng ml -1 in the presence of 60 μg ml -1 nickel was obtained. Validation of the method was achieved by analyzing a British Chemical Standard (BCS) Certified Reference Material (CRM) #346 IN nickel alloy containing arsenic at a concentration of 50 μg g -1. Following dissolution in nitric and hydrofluoric acids by a microwave assisted procedure, the only subsequent preparation required was dilution by the appropriate factor. Up to 60 injections h -1 may be made, with a detection limit of 0.5 ng ml -1 arsenic (250 pg absolute) as As(V) in a 500 μl sample. The peak height characteristic concentration is 0.46 ng ml -1, with a relative standard deviation of 3.5% for a 10 ng ml -1 As(V) standard ( n = 6).

  3. Differentiating organic and conventional sage by chromatographic and mass spectrometry flow-injection fingerprints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...

  4. ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE

    EPA Science Inventory

    The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...

  5. Pulsed-injection method for blood flow velocity measurement in intraarterial digital subtraction angiography.

    PubMed

    Shaw, C G; Plewes, D B

    1986-08-01

    The pulsed-injection method for measuring the velocity of blood flow in intraarterial digital subtraction angiography is described. With this technique, contrast material is injected at a pulsing frequency as high as 15 Hz, so that two or more boluses can be imaged simultaneously. The velocity of flow is determined by measuring the spacing between the boluses and multiplying it by the pulsing frequency. Results of tests with phantoms correlate well with flow measurements obtained with a graduated cylinder for velocities ranging from 8 to 60 cm/sec. The potential of the method for time-dependent velocity measurement has been demonstrated with simulated pulsatile flows. PMID:3523598

  6. Flow Injection/Sequential Injection Analysis Systems: Potential Use as Tools for Rapid Liver Diseases Biomarker Study

    PubMed Central

    Kradtap Hartwell, Supaporn

    2012-01-01

    Flow injection/sequential injection analysis (FIA/SIA) systems are suitable for carrying out automatic wet chemical/biochemical reactions with reduced volume and time consumption. Various parts of the system such as pump, valve, and reactor may be built or adapted from available materials. Therefore the systems can be at lower cost as compared to other instrumentation-based analysis systems. Their applications for determination of biomarkers for liver diseases have been demonstrated in various formats of operation but only a few and limited types of biomarkers have been used as model analytes. This paper summarizes these applications for different types of reactions as a guide for using flow-based systems in more biomarker and/or multibiomarker studies. PMID:22518319

  7. A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes

    NASA Astrophysics Data System (ADS)

    Mustafa, Ibrahim

    1998-12-01

    Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.

  8. Flow visualization of lateral jet injection into swirling crossflow

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Aoki, K.; Lilley, D. G.

    1985-01-01

    Flow visualization experiments have been conducted to characterize the time-mean flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally-buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the trajectory and spread pattern of the jet. Gross flowfield characterization was obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow. The flow visualization results agree well with the measurements obtained elsewhere with the six-orientation single hot-wire method.

  9. Insights into Cold Water Injection Stimulation Effects through Analytical Solutions to Flow and Heat Transport

    SciTech Connect

    M.A. Plummer

    2013-09-01

    Wells in traditional hydrothermal reservoirs are used to extract heat and to dispose of cooled water. In the first case, high productivity (the ratio of production flow rate to the pressure differential required to produce that rate) to is preferred in order to maximize power generation, while minimizing the parasitic energy loss of pumping. In the second case, high injectivity (the ratio of injection flow rate to the pressure differential required to produce that rate) is preferred, in order to reduce pumping costs. In order to improve productivity or injectivity, cold water is sometimes injected into the reservoir in an attempt to cool and contract the surrounding rock matrix and thereby induce dilation and/or extension of existing fractures or to generate new fractures. Though the increases in permeability associated with these changes are likely localized, by improving connectivity to more extensive high-permeability fractures they can at least temporarily provide substantially improved productivity or injectivity.

  10. The aerodynamic effects of wheelspace coolant injection into the mainstream flow of a high pressure gas turbine

    NASA Astrophysics Data System (ADS)

    McLean, Christopher Elliot

    Modern gas turbine engines operate with mainstream gas temperatures exceeding 1450°C in the high-pressure turbine stage. Unlike turbine blades, rotor disks and other internal components are not designed to withstand the extreme temperatures found in mainstream flow. In modern gas turbines, cooling air is pumped into the wheelspace cavities to prevent mainstream gas ingestion and then exits through a seal between the rotor and the nozzle guide vane (NGV) thereby mixing with the mainstream flow. The primary purpose for the wheelspace cooling air is the cooling of the turbine wheelspace. However, secondary effects arise from the mixing of the spent cooling air with the mainstream flow. The exiting cooling air is mixed with the hot mainstream flow effecting the aerodynamic and performance characteristics of the turbine stage. The physics underlying this mixing process and its effects on stage performance are not yet fully understood. The relative aerodynamic and performance effects associated with rotor - NGV gap coolant injections were investigated in the Axial Flow Turbine Research Facility (AFTRF) of the Center for Gas Turbines and Power of The Pennsylvania State University. This study quantifies the secondary effects of the coolant injection on the aerodynamic and performance character of the turbines main stream flow for root injection, radial cooling, and impingement cooling. Measurement and analysis of the cooling effects were performed in both stationary and rotational frames of reference. The AFTRF is unique in its ability to perform long duration cooling measurements in the stationary and rotating frames. The effects of wheelspace coolant mixing with the mainstream flow on total-to-total efficiency, energy transport, three dimensional velocity field, and loading coefficient were investigated. Overall, it was found that a small quantity (1%) of cooling air can have significant effects on the performance character and exit conditions of the high pressure stage

  11. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  12. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low

  13. An Ion-Selective Electrode/Flow-Injection Analysis Experiment: Determination of Potassium in Serum.

    ERIC Educational Resources Information Center

    Meyerhoff, Mark E.; Kovach, Paul M.

    1983-01-01

    Describes a low-cost, senior-level, instrumental analysis experiment in which a home-made potassium tubular flow-through electrode is constructed and incorporated into a flow injection analysis system (FIA). Also describes experiments for evaluating the electrode's response properties, examining basic FIA concepts, and determining potassium in…

  14. Flow visualization of film cooling with spanwise injection from a small array of holes and compound-angle injection from a large array

    NASA Technical Reports Server (NTRS)

    Russell, L. M.

    1978-01-01

    Film injection from discrete holes in a smooth, flat plate was studied for two configurations: (1) spanwise injection through a four hole staggered array; and (2) compound angle injection through a 49 hole staggered array. The ratio of boundary layer thicknesses to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Streaklines showing the motion of the injected air were obtained by photographing small, neutrally buoyant, helium-filled soap bubbles that followed the flow field.

  15. Flow in a discrete slotted nozzle with massive injection. [water table tests

    NASA Technical Reports Server (NTRS)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  16. Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere

    SciTech Connect

    Chen, C.W.

    2005-09-01

    The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.

  17. Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection.

    PubMed

    Yaqoob, Mohammad; Folgado Biot, Beatriz; Nabi, Abdul; Worsfold, Paul J

    2012-01-01

    A simple and sensitive flow-injection (FI) method for the determination of nitrate and nitrite in natural waters, based on luminol chemiluminescence (CL) detection, is reported. Nitrate was reduced online to nitrite via a copperized cadmium (Cu-Cd) column and then reacted with acidic hydrogen peroxide to form peroxynitrous acid. CL emission was observed from the oxidation of luminol in an alkaline medium in the presence of the peroxynitrite anion. The limits of detection (S:N = 3) were 0.02 and 0.01 µg N/L, with sample throughputs of 40 and 90 /h for nitrate and nitrite, respectively. Calibration graphs were linear over the range 0.02-50 and 0.01-50 µg N/L [R2  = 0.9984 (n = 8) and R2  = 0.9965 (n = 7)] for nitrate and nitrite, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.8-4.6%. The key chemical and physical variables (reagent concentrations, buffer pH, flow rates, sample volume, Cu-Cd reductor column length) were optimized and potential interferences investigated. The effect of cations [Ca(II), Mg(II), Co(II), Fe(II) and Cu(II)] was masked online with EDTA. Common anions (PO4(3-) , SO4(2-) and HCO3-) did not interfere at their maximum admissible concentrations in freshwaters. The effect of salinity on the luminol CL reaction with and without nitrate and nitrite (2 and 0.5 µg N/L, respectively) was also investigated. The method was successfully applied to freshwaters and the results obtained were in good agreement with those obtained by an automated segmented flow analyser reference method. PMID:23044772

  18. Study of argon flowing afterglow with nitrogen injection

    SciTech Connect

    Mazánková, V.; Krčma, F.; Trunec, D.

    2013-10-28

    In this work, the reaction kinetics in argon flowing afterglow with nitrogen addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure argon was created in quartz tube at the total gas pressure of 1000 Pa and discharge power of 60 W. The nitrogen was added into the afterglow at the distance of 9 cm behind the active discharge. The optical emission spectra were measured along the flow tube. The argon spectral lines and after nitrogen addition also nitrogen second positive system (SPS) were identified in the spectra. The measurement of spatial dependence of SPS intensity showed a very slow decay of the intensity and the decay rate did not depend on the nitrogen concentration. In order to explain this behavior a kinetic model for reaction in afterglow was developed. This model showed that C {sup 3}Π{sub u} state of molecular nitrogen, which is the upper state of SPS emission, is produced by excitation transfer from argon metastables to nitrogen molecules. However, the argon metastables are also produced at Ar{sub 2}{sup +} ion recombination with electrons and this limits the decay of argon metastable concentration and it results in very slow decay of SPS intensity.

  19. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    SciTech Connect

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  20. Phase Change Effects on Immiscible Flow Displacements in Radial Injection

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report a systematic simulation of immiscible fluid-fluid displacements in radial injection in the presence of phase change. Due to the presence of two fluid-fluid interfaces in the system, a special treatment has been adopted. To track the leading interface position, two highly accurate methods including Level Set and Immersed Interface Method were used, while for locating the trailing interface an energy equation was adopted assuming the existence of a constant thin condensate layer. Dimensional analysis led to three important dimensionless groups including capillary number (Ca), Jacob number (Ja) and viscosity ratios (M) of the three fluids. Simulation results indicate significant influences of these parameters on the development of the instability and the interfacial morphology of fingers. Increasing Ca or M tends to amplify the interfacial instability, fingertip splitting, and results in longer fingers. In contrast, increasing Ja has stabilizing effects due to an increase of the thickness of the condensate layer. On the other hand at lower viscosity ratios as well as lower Ca, because of compensation effects of the phase change, both leading and trailing interfaces are found to be less unstable. Moreover accumulated condensate and oil saturation depletion curves show increasing and decreasing trends, respectively, when the Ca increases. Although viscosity ratio and Ja have similar effects on the accumulated condensate, they do not show any effect on the oil depletion saturation.

  1. Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira

    2010-11-01

    As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.

  2. An automatic system for acidity determination based on sequential injection titration and the monosegmented flow approach.

    PubMed

    Kozak, Joanna; Wójtowicz, Marzena; Gawenda, Nadzieja; Kościelniak, Paweł

    2011-06-15

    An automatic sequential injection system, combining monosegmented flow analysis, sequential injection analysis and sequential injection titration is proposed for acidity determination. The system enables controllable sample dilution and generation of standards of required concentration in a monosegmented sequential injection manner, sequential injection titration of the prepared solutions, data collecting, and handling. It has been tested on spectrophotometric determination of acetic, citric and phosphoric acids with sodium hydroxide used as a titrant and phenolphthalein or thymolphthalein (in the case of phosphoric acid determination) as indicators. Accuracy better than |4.4|% (RE) and repeatability better than 2.9% (RSD) have been obtained. It has been applied to the determination of total acidity in vinegars and various soft drinks. The system provides low sample (less than 0.3 mL) consumption. On average, analysis of a sample takes several minutes. PMID:21641455

  3. Enhancement of critical heat flux in tubes using staged tangential flow injection: (Progress report)

    SciTech Connect

    Dhir, V.K.

    1987-01-01

    Experimental studies of the enhancement in single and two phase heat transfer from tubes subjected to tangential flow injection have been continuing. Investigations using water as the test liquid have been focused on: single phase heat transfer coefficients; two phase heat transfer coefficients under subcooled boiling conditions; subcooled critical heat fluxes; and modeling of the enhancement under swirl flow conditions. With tangential injection up to four fold increase in the average heat transfer coefficient has been observed. During subcooled boiling the enhancement is relatively small. However swirl induced centripetal force increases vapor escape velocity and as a result higher critical heat fluxes can be accommodated. In the range of flow parameters studied up to 40% enhancement in critical heat flux has been observed with single stage injection. This enhancement is slightly less than that obtained with Freon-113. The mechanistic reasons for this observation are currently being investigated.

  4. High-throughput pesticide residue quantitative analysis achieved by tandem mass spectrometry with automated flow injection.

    PubMed

    Nanita, Sergio C; Pentz, Anne M; Bramble, Frederick Q

    2009-04-15

    The use of automated flow injection with MS/MS detection for fast quantitation of agrochemicals in food and water samples was demonstrated in this study. Active ingredients from the sulfonylurea herbicide and carbamate insecticide classes were selected as model systems. Samples were prepared using typical procedures from residue methods, placed in an autosampler, and injected directly into a triple quadrupole instrument without chromatographic separation. The technique allows data acquisition in 15 s per injection, with samples being injected every 65 s, representing a significant improvement from the 15-30 min needed in typical HPLC/MS/MS methods. The availability of HPLC systems is an advantage since they can be used in flow-injection mode (bypassing the column compartment). Adequate accuracy, linearity, and precision (R(2) > 0.99 and RSD < 20%) were obtained using external standards prepared in each control matrix. The limit of quantitation (LOQ) achieved for all analytes was 0.01 mg/kg in food samples and 0.1 ng/mL in water; while limits of detection (LOD) were estimated to be about 0.003 mg/kg and 0.03 ng/mL in food and water, respectively. The advantages and limitations of flow injection MS/MS for ultratrace-level quantitative analysis in complex matrixes are discussed.

  5. High-throughput pesticide residue quantitative analysis achieved by tandem mass spectrometry with automated flow injection.

    PubMed

    Nanita, Sergio C; Pentz, Anne M; Bramble, Frederick Q

    2009-04-15

    The use of automated flow injection with MS/MS detection for fast quantitation of agrochemicals in food and water samples was demonstrated in this study. Active ingredients from the sulfonylurea herbicide and carbamate insecticide classes were selected as model systems. Samples were prepared using typical procedures from residue methods, placed in an autosampler, and injected directly into a triple quadrupole instrument without chromatographic separation. The technique allows data acquisition in 15 s per injection, with samples being injected every 65 s, representing a significant improvement from the 15-30 min needed in typical HPLC/MS/MS methods. The availability of HPLC systems is an advantage since they can be used in flow-injection mode (bypassing the column compartment). Adequate accuracy, linearity, and precision (R(2) > 0.99 and RSD < 20%) were obtained using external standards prepared in each control matrix. The limit of quantitation (LOQ) achieved for all analytes was 0.01 mg/kg in food samples and 0.1 ng/mL in water; while limits of detection (LOD) were estimated to be about 0.003 mg/kg and 0.03 ng/mL in food and water, respectively. The advantages and limitations of flow injection MS/MS for ultratrace-level quantitative analysis in complex matrixes are discussed. PMID:19296591

  6. Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seaholtz, Richard G.; Buggele, Alvin E.

    1997-01-01

    A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.

  7. Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow

    NASA Technical Reports Server (NTRS)

    Bakirov, F. G.; Shaykhutdinov, Z. G.

    1985-01-01

    An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.

  8. Flow-injection chemiluminescence method for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride.

    PubMed

    Wang, Nan-Nan; Shao, Yan-Qing; Tang, Yu-Hai; Yin, He-Ping; Wu, Xiao-Zhong

    2009-01-01

    A sensitive and simple flow-injection chemiluminescence (FI-CL) method, which was based on the CL intensity generated from the redoxreaction of potassium permanganate (KMnO4)-formaldehyde in vitriol (H2SO4) medium, has been developed, validated and applied for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride. Besides oxidants and sensitizers, the effect of the concentration of H(2)SO(4), KMnO4 and formaldehyde was investigated. Under the optimum conditions, the linear range was 1.0 x 10(-2)-7.0 mg/L for naphazoline hydrochloride and 5.0 x 10(-2)-10.0 mg/L for oxymetazoline hydrochloride. During seven repeated inter-day and intra-day precision tests of 0.1, 1.0 and 10.0 mg/L samples, the relative standard deviations all corresponded to reference values. The detection limit was 8.69 x 10(-3) mg/L for naphazoline hydrochloride and 3.47 x 10(-2) mg/L for oxymetazoline hydrochloride (signal-to-noise ratio < or = 3). This method has been successfully implemented for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride in pharmaceuticals.

  9. Single-Channel Flow Injection Spectrophotometric Determination of Nickel Using Furildioxime in Micellar Solution

    PubMed Central

    Memon, Najma; Memon, Saima; Solangi, Amber R.; Soomro, Rubina; Soomro, Rabel

    2012-01-01

    A very simple, selective, and fast flow injection spectrophotometeric method is developed for determination of nickel using furildioxime as complexing agent. Micellar solution of brij-35 is employed to solubilize the sparingly soluble complex of Ni-furildioxime in buffered aqueous system (pH-9.00). Under optimized conditions, absorbance is linear from 0.02 to 10 μg mL−1 using 500 μL sample volume and from 10 to 30 μg mL−1 using 50 μL sample volume of nickel at 480 nm, with R2 = 0.9971 and 0.9916, respectively. The molar absorption coefficient and Sandell's sensitivity were 6.0 × 103 L mol−1 cm−1 and 0.01 ng cm−2, respectively. The sample throughput of the method is 120 samples per hour with RSD of 0.01–0.2% for 0.02 to 10 μg mL−1 nickel (n = 5), indicating that the method is highly precise and reproducible. Interference from cobalt is removed by Nitroso R-salt-modified XAD-16. The developed method is validated by analysing certified reference materials and is applied to assess nickel content of commercially available cigarettes. PMID:22654605

  10. Novel PVC-membrane electrode for flow injection potentiometric determination of Biperiden in pharmaceutical preparations.

    PubMed

    Khaled, Elmorsy; El-Sabbagh, Inas A; El-Kholy, N G; Ghahni, E Y Abdel

    2011-12-15

    The construction and performance characteristics of Biperiden (BP) polyvinyl chloride (PVC) electrodes are described. Different methods for electrode fabrication are tested including; incorporation of BP-ion pairs (BP-IPs), incorporation of ion pairing agents, or soaking the plain electrode in BP-ion pairs suspension solution. Electrode matrices were optimized referring to the effect of modifier content and nature, plasticizer and the method of modification. The proposed electrodes work satisfactorily in the BP concentration range from 10(-5) to 10(-2)mol L(-1), with fast response time (7s) and adequate operational lifetime (28 days). The electrode potential is pH independent within the range 2.0-7.0, with good selectivity towards BP in presence of various interfering species. The developed electrodes have been applied for potentiometric determination of BP in pharmaceutical formulation under batch and flow injection analysis (FIA) conditions. FIA offers the advantages of accuracy and automation feasibility with high sampling frequency. The dissolution profile for Akineton tablets (2mg BP/tablet) was studied using the proposed electrode in comparison with the official methods.

  11. The determination of trace lead in Chinese medicinal herbs by flow injection analysis in polyethyleneglycol medium

    NASA Astrophysics Data System (ADS)

    Gong, Aiqin; Zhu, Xiashi; Huang, Xiaoyan; Zhang, Yaqin

    2008-01-01

    In this work, a new flow injection analysis (FIA) for the determination of Pb 2+ in Chinese medicinal herbs was developed. In the buffer solution of borax-NaOH (pH 10.5), Pb 2+ reacted with 2-[(5-bromo-2-pyridyl)-azo]-5-(diethyl-amino)phenol (5-Br-PADAP) to form a complex. The experimental results showed that the sensitivity was enhanced in the presence of polyethyleneglycol-800 (PG-800). The main factors affecting the determination were investigated in detail. Under the optimum conditions, the linear range and detection limit is 0.0-0.3 μg/mL and 1.5 ng/mL (correlation coefficient r = 0.9996), respectively. The linear regression equation is A = -0.005 + 0.60 c (μg/mL). The sample throughout is 10 h -1. Foreign substrates effects were also investigated. The proposed method has been successfully applied to the determination of lead in reference material, goldthread and lepidium seed.

  12. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.

    2003-01-01

    Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.

  13. Study of nitrogen flowing afterglow with mercury vapor injection

    SciTech Connect

    Mazánková, V. Krčma, F.; Trunec, D.

    2014-10-21

    The reaction kinetics in nitrogen flowing afterglow with mercury vapor addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure nitrogen was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 130 W. The mercury vapors were added into the afterglow at the distance of 30 cm behind the active discharge. The optical emission spectra were measured along the flow tube. Three nitrogen spectral systems – the first positive, the second positive, and the first negative, and after the mercury vapor addition also the mercury resonance line at 254 nm in the spectrum of the second order were identified. The measurement of the spatial dependence of mercury line intensity showed very slow decay of its intensity and the decay rate did not depend on the mercury concentration. In order to explain this behavior, a kinetic model for the reaction in afterglow was developed. This model showed that the state Hg(6 {sup 3}P{sub 1}), which is the upper state of mercury UV resonance line at 254 nm, is produced by the excitation transfer from nitrogen N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables to mercury atoms. However, the N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables are also produced by the reactions following the N atom recombination, and this limits the decay of N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastable concentration and results in very slow decay of mercury resonance line intensity. It was found that N atoms are the most important particles in this late nitrogen afterglow, their volume recombination starts a chain of reactions which produce excited states of molecular nitrogen. In order to explain the decrease of N atom concentration, it was also necessary to include the surface recombination of N atoms to the model. The surface recombination was considered as a first order reaction and wall recombination probability γ = (1.35 ± 0.04) × 10{sup −6} was determined from the experimental data. Also

  14. An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron.

    PubMed

    Alexovič, Michal; Wieczorek, Marcin; Kozak, Joanna; Kościelniak, Paweł; Balogh, Ioseph S; Andruch, Vasil

    2015-02-01

    A novel automatic vigorous-injection assisted dispersive liquid-liquid microextraction procedure based on the use of a modified single-valve sequential injection manifold (SV-SIA) was developed and applied for determination of boron in water samples. The major novelties in the procedure are the achieving of efficient dispersive liquid-liquid microextraction by means of single vigorous-injection (250 µL, 900 µL s(-1)) of the extraction solvent (n-amylacetate) into aqueous phase resulting in the effective dispersive mixing without using dispersive solvent and after self-separation of the phases, as well as forwarding of the extraction phase directly to a Z-flow cell (10 mm) without the use of a holding coil for stopped-flow spectrophotometric detection. The calibration working range was linear up to 2.43 mg L(-1) of boron at 426nm wavelength. The limit of detection, calculated as 3s of a blank test (n=10), was found to be 0.003 mg L(-1), and the relative standard deviation, measured as ten replicable concentrations at 0.41 mg L(-1) of boron was determined to be 5.6%. The validation of the method was tested using certified reference material.

  15. Automatic simultaneous determination of copper and lead in biological samples by flow injection/stripping voltammetric analysis

    PubMed Central

    Izquierdo, Andrés; de Castro, M. D. Luque; Valcárcel, Miguel

    1993-01-01

    An automatic-continuous method for the simultaneous determination of copper and lead based on flow injection analysis (FIA) and stripping voltammetry (SV) is proposed. The method affords the determination of the analytes at the ng/ml level (linear ranges 0.64 to 64.0 ng/ml and 2.1 to 62.2 ng/ml for copper and lead, respectively) with good precision (r.s.d. values smaller than 4%). The selectivity of SV allows the method to be applied to the determination of these analytes in bovine liver fresh samples and certified reference materials from the National Institute for Standards and Technology and the Community Bureau of Reference. The performance of the method was assessed by repeatability and validation statistical studies. PMID:18924966

  16. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  17. Oxidation of automotive primary reference fuels in a high pressure flow reactor

    SciTech Connect

    Curran, H.J.; Pitz, W.J.; Westbrook, C.K.; Callahan, C.V.; Dryer, F.L.

    1998-01-01

    Automotive engine knock limits the maximum operating compression ratio and ultimate thermodynamic efficiency of spark-ignition (SI) engines. In compression-ignition (CI) or diesel cycle engines the premixed urn phase, which occurs shortly after injection, determines the time it takes for autoignition to occur. In order to improve engine efficiency and to recommend more efficient, cleaner-burning alternative fuels, we must understand the chemical kinetic processes which lead to autoignition in both SI and CI engines. These engines burn large molecular-weight blended fuels, a class to which the primary reference fuels (PRF), n-heptane and isooctane belong. In this study, experiments were performed under engine-like conditions in a high pressure flow reactor using both the pure PRF fuels and their mixtures in the temperature range 550-880 K and at 12.5 atm pressure. These experiments not only provide information on the reactivity of each fuel but also identify the major intermediate products formed during the oxidation process. A detailed chemical kinetic mechanism is used to simulate these experiments and comparisons of experimentally measures and model predicted profiles for O{sub 2}, CO, CO{sub 2}, H{sub 2}O and temperature rise are presented. Intermediates identified in the flow reactor are compared with those present in the computations, and the kinetic pathways leading to their formation are discussed. In addition, autoignition delay times measured in a shock tube over the temperature range 690- 1220 K and at 40 atm pressure were simulated. Good agreement between experiment and simulation was obtained for both the pure fuels and their mixtures. Finally, quantitative values of major intermediates measured in the exhaust gas of a cooperative fuels research engine operating under motored engine conditions are presented together with those predicted by the detailed method.

  18. An oil flow study of the reference Shuttle-C configuration

    NASA Technical Reports Server (NTRS)

    Pokora, Darlene C.; Springer, Anthony M.

    1994-01-01

    An oil flow study of the reference Shuttle-C configuration is presented. The Shuttle-C vehicle was a proposed shuttle derived vehicle where the orbiter was to be replaced by an unmanned cargo carrier element. Oil flows are shown for the range of Mach numbers from Mach 1.10 to 3.48 at various angles-of-attack and roll angles. The major flow field phenomena over the Shuttle-C reference configuration are shown in these oil flows. Using the oil flows, a qualitative understanding of the flow around the vehicle can be determined, aiding the quantitative definition of aerodynamic data from theoretical analyses and test results. The oil flows presented in this study were obtained from configurations tested in the NASA Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel from October 1988 through February 1989.

  19. Flow-injection stopped-flow kinetic spectrophotometric determination of drugs, based on micellar-catalysed reaction with 1-fluoro-2,4-dinitrobenzene.

    PubMed

    Georgiou, C A; Koupparis, M A; Hadjiioannou, T P

    1991-07-01

    A flow-injection stopped-flow kinetic spectrophotometric method for the determination of hydrazines, hydrazides, amines and amino-acids, based on the cetyltrimethylammonium bromide catalysed reaction with 1-fluoro-2,4-dinitrobenzene is described. With the proposed method dihydralazine, isoniazid, levodopa and aspartame can be determined at concentrations of 0.1-6 x 10(-4)M. The calibration ranges can be varied by adjusting the pH and surfactant concentration. The determination of amphetamine, cysteine, s-carboxymethylcysteine, cephalexin, tobramycin and gentamicin is also feasible. The method has been applied to the determination of levodopa, isoniazid and aspartame in commercial pharmaceutical formulations. The determination of isoniazid in formulations containing the highly coloured antibiotic rifamycin, and of aspartame in coloured beverages was also accomplished. The results were in good agreement with those obtained by reference methods and the throughput was 40 measurements per hour with 0.4-3.9% RSD.

  20. Chemically prepared silver electrode for determination of N-acetyl-L-cysteine by flow-injection potentiometry.

    PubMed

    Kolar, M; Dobcnik, D

    2003-01-01

    This paper describes the use of the silver electrode by means of chemical pretreatment of the electrode surface with mercuric(II) chloride solution and potassium iodide solution in flow injection analysis (FIA). The electrode is used as a potentiometric sensor for the indirect determination of NAC in a carrier stream containing iodine. A one-channel flow system that consists of a peristaltic pump, injection valve, a silver wire electrode and a saturated calomel reference electrode (SCE) was used. Some typical FIA parameters such as flow rate, tube length and composition of the carrier stream were varied. The electrode is further characterised by a constant linear response within the concentration range for NAC between 4.0 x 10(-6) and 1.0 x 10(-3) M at the slope of 60.6 +/- 1.0 mV/p(NAC). Some pharmaceutical products containing NAC were also tested. These results can be compared to the results obtained by the direct potentiometric titrations with silver nitrate and are also in good agreement with values declared by pharmaceutical manufacturers.

  1. Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection

    NASA Astrophysics Data System (ADS)

    Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.

    2012-12-01

    CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the

  2. Detecting total toxicity in water using a mediated biosensor system with flow injection.

    PubMed

    Yong, Daming; Liu, Changyu; Zhu, Chengzhou; Yu, Dengbin; Liu, Ling; Zhai, Junfeng; Dong, Shaojun

    2015-11-01

    A novel total toxicity detection method based on a mediated biosensor system with flow injection (MB-FI) was developed to rapidly and reliably detect respiration inhibitors (i.e., As2O3, KCN, salicylic acid (SA), 2,4-dintirophenol (DNP)) in water. The mediated biosensor toxicity assessment using microorganisms immobilized in calcium alginate filaments can greatly simplify the testing process and save time. In the MB-FI system, ferricyanide together with a respiration inhibitor was injected into the bioreactor, inhibiting the respiration of the immobilized microorganisms. The degree of inhibition was measured by determining the ferrocyanide generated in the effluent, expressed as the 50% inhibition concentration (IC50). The IC50 values for the four respiration inhibitors obtained using this method were comparable to those obtained using the classic method, confirming that this approach is an alternative alert method. More importantly, this constructed biosensor system with flow injection will facilitate the application and commercialization of this toxicity monitoring technology.

  3. Staged treatment of thoracic and lumbar spinal tuberculosis with flow injection abscess.

    PubMed

    Zeng, Hao; Zhang, Yupeng; Shen, Xiongjie; Luo, Chengke; Xu, Zhengquan; Liu, Zheng; Liu, Xiangyang; Wang, Xiyang

    2015-01-01

    The study was to investigate the feasibility and effectiveness of posterior-only approach combining with puncture drainage under CT-guide in staged treatment of thoracic and lumbar spinal tuberculosis with flow injection abscess. We retrospectively analyzed 15 patients (came from 72 cases with thoracic and lumbar spinal tuberculosis) with flow injection abscesses underwent surgery from January 2007 to February 2009, and evaluated the American Spinal Injury Association (ASIA) scoring system of nerve function, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), abscess absorption time and the Oswestry Disability Index (ODI), preoperatively and postoperatively. 15 patients were followed up for 13-37 months, no recurrence of tuberculosis, no fixation loosening and neurologic symptoms aggravated. The flow injection abscesses are absorbed within 3-6 months postoperative operation. In final follow-up, ESR went down to 5.2±2.1 mm/h from preoperative 79.6±14.8 mm/h, CRP decreased from preoperative 49.3±7.5 mg/L to 1.8±0.7 mg/L, ODI changed from 75.13±20.15 to 16.72±8.62, all of them changed significantly (P<0.05). In conclusions, one-stage posterior debridement, interbody fusion, pedicle screw fixation and two-stage CT-guided interventional therapy were safe and effective in treatment of the thoracic and lumbar spinal tuberculosis with flow injection abscess. PMID:26770442

  4. Detection of Catechol by Potentiometric-Flow Injection Analysis in the Presence of Interferents

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Widera, Justyna; Zhang, Hong

    2007-01-01

    This article describes an undergraduate analytical chemistry experiment developed to teach instrumental lab skills while incorporating common interferents encountered in the real-world analysis of catechol. The lab technique incorporates potentiometric-flow injection analysis on a dibenzo-18-crown-6 dual platinum electrode to detect catechol in…

  5. Staged treatment of thoracic and lumbar spinal tuberculosis with flow injection abscess

    PubMed Central

    Zeng, Hao; Zhang, Yupeng; Shen, Xiongjie; Luo, Chengke; Xu, Zhengquan; Liu, Zheng; Liu, Xiangyang; Wang, Xiyang

    2015-01-01

    The study was to investigate the feasibility and effectiveness of posterior-only approach combining with puncture drainage under CT-guide in staged treatment of thoracic and lumbar spinal tuberculosis with flow injection abscess. We retrospectively analyzed 15 patients (came from 72 cases with thoracic and lumbar spinal tuberculosis) with flow injection abscesses underwent surgery from January 2007 to February 2009, and evaluated the American Spinal Injury Association (ASIA) scoring system of nerve function, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), abscess absorption time and the Oswestry Disability Index (ODI), preoperatively and postoperatively. 15 patients were followed up for 13-37 months, no recurrence of tuberculosis, no fixation loosening and neurologic symptoms aggravated. The flow injection abscesses are absorbed within 3-6 months postoperative operation. In final follow-up, ESR went down to 5.2±2.1 mm/h from preoperative 79.6±14.8 mm/h, CRP decreased from preoperative 49.3±7.5 mg/L to 1.8±0.7 mg/L, ODI changed from 75.13±20.15 to 16.72±8.62, all of them changed significantly (P<0.05). In conclusions, one-stage posterior debridement, interbody fusion, pedicle screw fixation and two-stage CT-guided interventional therapy were safe and effective in treatment of the thoracic and lumbar spinal tuberculosis with flow injection abscess. PMID:26770442

  6. Differentiating organic from conventional peppermints using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...

  7. Assessing cement injection behaviour in cancellous bone: an in vitro study using flow models.

    PubMed

    Bou-Francis, Antony; López, Alejandro; Persson, Cecilia; Hall, Richard M; Kapur, Nikil

    2014-10-01

    Understanding the cement injection behaviour during vertebroplasty and accurately predicting the cement placement within the vertebral body is extremely challenging. As there is no standardized methodology, we propose a novel method using reproducible and pathologically representative flow models to study the influence of cement properties on injection behaviour. The models, confined between an upper glass window and a lower aluminium plate, were filled with bone marrow substitute and then injected (4, 6 and 8 min after cement mixing) with commercially available bone cements (SimplexP, Opacity+, OsteopalV and Parallax) at a constant flow rate (3 mL/min). A load cell was used to measure the force applied on the syringe plunger and calculate the peak pressure. A camera was used to monitor the cement flow during injection and calculate the following parameters when the cement had reached the boundary of the models: the time to reach the boundary, the filled area and the roundness. The peak pressure was comparable to that reported during clinical vertebroplasty and showed a similar increase with injection time. The study highlighted the influence of cement formulations and model structure on the injection behaviour and showed that cements with similar composition/particle size had similar flow behaviour, while the introduction of defects reduced the time to reach the boundary, the filled area and the roundness. The proposed method provides a novel tool for quick, robust differentiation between various cement formulations through the visualization and quantitative analysis of the cement spreading at various time intervals. PMID:24913614

  8. On spurious water flow during numerical simulation of steam injection into water-saturated soil.

    PubMed

    Gudbjerg, J; Trötschler, O; Färber, A; Sonnenborg, T O; Jensen, K H

    2004-12-01

    Numerical simulation of steam injection into a water-saturated porous medium may be hindered by unphysical behavior causing the model to slow down. We show how spurious water flow may arise on the boundary between a steam zone and a saturated zone, giving rise to dramatic pressure drops. This is caused by the discretization of the temperature gradient coupled with the direct relation between pressure and temperature in the steam zone. The problem may be a severe limitation to numerical modeling. A solution is presented where the spurious water flow is blocked and this widely enhances the performance of the model. This new method is applied to a previously reported example exhibiting numerical problems. Furthermore, it is applied to the simulation of 2-D sandbox experiments where LNAPL is remediated from a smearing zone by steam injection. These experiments would have been difficult to analyze numerically without the adjustment to prevent spurious flow.

  9. Flow rate dependent extra-column variance from injection in capillary liquid chromatography.

    PubMed

    Aggarwal, Pankaj; Liu, Kun; Sharma, Sonika; Lawson, John S; Dennis Tolley, H; Lee, Milton L

    2015-02-01

    Efficiency and resolution in capillary liquid chromatography (LC) can be significantly affected by extra-column band broadening, especially for isocratic separations. This is particularly a concern in evaluating column bed structure using non-retained test compounds. The band broadening due to an injector supplied with a commercially available capillary LC system was characterized from experimental measurements. The extra-column variance from the injection valve was found to have an extra-column contribution independent of the injection volume, showing an exponential dependence on flow rate. The overall extra-column variance from the injection valve was found to vary from 34 to 23 nL. A new mathematical model was derived that explains this exponential contribution of extra-column variance on chromatographic performance. The chromatographic efficiency was compromised by ∼130% for a non-retained analyte because of injection valve dead volume. The measured chromatographic efficiency was greatly improved when a new nano-flow pumping system with integrated injection valve was used.

  10. The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells

    NASA Astrophysics Data System (ADS)

    Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer

    2013-03-01

    Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.

  11. Flow dynamics of multi-lateral jets injection into a round pipe flow

    NASA Astrophysics Data System (ADS)

    Thong, Chia X.; Kalt, Peter A. M.; Dally, Bassam B.; Birzer, Cristian H.

    2015-01-01

    Controlling the mixing field of turbulent jets is an important approach in optimizing practical combustion systems. The use of multi-lateral jets upstream from the nozzle exit to control mixing fields is one particular method. Existing studies have investigated jets into a confined cross-flow (JICCF) for dilution mixing, but there is a paucity of data available on the fundamentals for turbulent mixing capabilities of JICCF. The current study investigates the flow structures and Primary Reynolds number mixing characteristics within a round pipe flow modified by four equi-spaced, lateral side injectors. Experiments are conducted in a primary water jet flow that is modified with smaller jets located one central (axial) jet diameter upstream of the nozzle exit. Flow structures and mixing within the nozzle are non-intrusively characterized using simultaneous planar optical techniques. Planar laser-induced fluorescence is used to measure the scalar mixing of the side and axial jet streams, and particle imaging velocimetry is used to measure the planar velocities. Several cases are investigated with variable primary flow to explore the influence of cross-flow velocity on the induced mixing structures within the nozzle. By varying the momentum ratio, three characteristic flow modes are identified within the primary flow, namely streaming mode, impinging mode, and backflow mode. The impact of these modes on the flow and scalar fields is presented and discussed.

  12. Streakline flow visualization of discrete-hole film cooling with normal, slanted, and compound angle injection

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1976-01-01

    Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field.

  13. Using regional flow classes as references to analyse flow regime anomalies across a set of regulated Canadian rivers

    NASA Astrophysics Data System (ADS)

    McLaughlin, Fraser; Lapointe, Michel; Bourque, Guillaume; Boisclair, Daniel

    2014-11-01

    It is well established that a river's natural flow regime is a key determinant of ecological integrity and that dam regulated-flow releases can be detrimental to biotic communities and even affect river ecosystem structure (e.g. Poff and Zimmerman, 2010). Regional flow classes, groups of rivers that share similar natural flow regimes (called ‘river types' by Poff and Zimmerman (2010)) and to which regional fish communities are ‘adapted', have been proposed as units of analysis to identify significant damming related flow alteration (e.g. Poff, 1996; Poff and Zimmerman, 2010; McManamay et al., 2012a). Specifically, the natural range of flow behaviour within regional classes can be used to identify clearly anomalous flow features in rivers regulated by dams. Through ordination analysis on 70 ecologically important flow indices, we isolated five distinctive regional groupings of natural flow regimes among the 96 unregulated rivers located in study regions of South Eastern and South Western Canada, selected based on watershed characteristics as possible references for the 13 hydro-regulated, NSERC-HydroNet study rivers in British Columbia, Alberta, Ontario, Quebec and New Brunswick. The distinguishing characteristics of natural flow regimes within each flow class are explored through visualization in principal component space. The 16 regulated HydroNet sites were assigned to appropriate regional flow classes through discriminant function analysis based on shared geographic location and watershed characteristics. Anomalous flow features in the regulated rivers are then characterized by type and strength, based on identification of flow indices that are significantly different from observed natural variability in the relevant regional class. The magnitude distributions and the main axes of variability in index anomalies are analysed, across regions and regulation types (storage, peaking and run-of-the-river (RoR)). We also discuss the potential biological

  14. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay.

  15. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Ciancone, M. L.

    1985-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configutations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  16. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Ciancone, Michael L.

    1987-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configurations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  17. Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.

    2002-01-01

    The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha=0. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C(sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.

  18. Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.

    2002-01-01

    The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha = 0 degrees. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C (sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.

  19. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. PMID:22817944

  20. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  1. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater.

    PubMed

    Oota, Shinichi; Hatae, Yuta; Amada, Kei; Koya, Hidekazu; Kawakami, Mitsuyasu

    2010-09-15

    Although microbial biochemical oxygen demand (BOD) sensors utilizing redox mediators have attracted much attention as a rapid BOD measurement method, little attempts have been made to apply the mediated BOD biosensors to the flow injection analysis system. In this work, a mediated BOD sensor system of flow injection mode, constructed by combining an immobilized microbial reactor with an electrochemical flow cell of three electrodes configuration, has been developed to estimate BOD of shochu distillery wastewater (SDW). It was demonstrated consequently that the mediated sensing was realized by employing phosphate buffer containing potassium hexacyanoferrate as the carrier. The output current was found to yield a peak with a sample injection, and to result from reoxidation of reduced mediator at the electrode. By employing the peak area as the sensor response, the effects of flow rate and pH of the carrier on the sensitivity were investigated. The sensor system using a microorganism of high SDW-assimilation capacity showed good performance and proved to be available for estimation of BOD of SDW.

  2. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater.

    PubMed

    Oota, Shinichi; Hatae, Yuta; Amada, Kei; Koya, Hidekazu; Kawakami, Mitsuyasu

    2010-09-15

    Although microbial biochemical oxygen demand (BOD) sensors utilizing redox mediators have attracted much attention as a rapid BOD measurement method, little attempts have been made to apply the mediated BOD biosensors to the flow injection analysis system. In this work, a mediated BOD sensor system of flow injection mode, constructed by combining an immobilized microbial reactor with an electrochemical flow cell of three electrodes configuration, has been developed to estimate BOD of shochu distillery wastewater (SDW). It was demonstrated consequently that the mediated sensing was realized by employing phosphate buffer containing potassium hexacyanoferrate as the carrier. The output current was found to yield a peak with a sample injection, and to result from reoxidation of reduced mediator at the electrode. By employing the peak area as the sensor response, the effects of flow rate and pH of the carrier on the sensitivity were investigated. The sensor system using a microorganism of high SDW-assimilation capacity showed good performance and proved to be available for estimation of BOD of SDW. PMID:20638832

  3. Development of a flow-injection analysis system with fluorescence detection for gatifloxacin determination in organized medium.

    PubMed

    Lima Vaz, Monica F; de Oliveira, João Vitor F; Cassella, Ricardo J; Pacheco, Wagner F

    2015-05-01

    This work reports the development and optimization of a flow injection analysis system with fluorescence detection (FIA-FLUO) for gatifloxacin (GFX) determination in organized medium. The analytical system was based on the enhanced fluorescence of gatifloxacin in micellar medium containing sodium dodecyl sulfate (SDS) at pH 6.0. The influence of physical (carrier flow rate, sample volume and volume of reaction coil) and chemical (pH, concentration of buffer and concentration of SDS) parameters that could affect the performance of the FIA system was evaluated in order to reach optimum conditions in terms of sensitivity and analytical throughput. Under optimized conditions, the FIA-FLUO system allowed the injection of 40 samples per hour with a limit of quantification of 72 µg/L and a RSD of 3.5% at 0.20 mg/L. Real samples of commercial pharmaceutical formulations containing GFX were analyzed, and no statistical difference was observed between the results obtained using the developed system and those obtained using the reference method based on high-performance liquid chromatography with UV detection.

  4. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. PMID:27401813

  5. Testing and comparison of four ionic tracers to measure stream flow loss by multiple tracer injection

    USGS Publications Warehouse

    Zellweger, G.W.

    1994-01-01

    An injectate containing lithium, sodium, chloride and bromide was added continuously at five sites along a 507 m study reach of St Kevin Gulch, Lake County, Colorado to determine which sections of the stream were losing water to the stream bed and to ascertain how well the four tracers performed. The acidity of the stream (pH 3.6) made it possible for lithium and sodium, which are normally absorbed by ion exchange with stream bed sediment, to be used as conservative tracers. Net flow losses as low as 0.81 s-1, or 8% of flow, were calculated between measuring sites. By comparing the results of simultaneous injection it was determined whether subsections of the study reach were influent or effluent. Evaluation of tracer concentrations along 116 m of stream indicated that all four tracers behaved conservatively. Discharges measured by Parshall flumes were 4-18% greater than discharges measured by tracer dilution. -from Author

  6. Curing rate and flowing properties of silicone rubber at injection molding

    SciTech Connect

    Yoshino, M.; Nakamura, T. )

    1992-04-01

    Generally, silicone rubbers are mold-cured after mixing the rubber and peroxide curing agent with a two-roll mill or a kneader. Typically this is done at pressures of 5 MPa to 10 MPa and at temperatures between 120 to 200 C. Compression molding, transfer molding and injection molding are common molding ways for silicone rubbers. Recently, injection molding techniques are developing rapidly that have the advantages of molding automatically with high cycle mechanisms. To reduce the molding time and to make a precision part, both the flowing and curing properties of a particular rubber compound will be important. In this article, correlations between the curing and the flowing properties of silicone rubber are investigated by using the Rheovulkameter device.

  7. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  8. Enzyme-based flow injection analysis system for glutamine and glutamate in mammalian cell culture media.

    PubMed

    Mayer, C; Frauer, A; Schalkhammer, T; Pittner, F

    1999-03-01

    We present the setup of a flow injection analysis system designed for on-line monitoring of glutamate and glutamine. These amino acids represent a major energy source in mammalian cell culture. A cycling assay consisting of glutamate dehydrogenase and aspartate aminotransferase produces NADH proportional to the glutamate concentration in the sample. NADH is then measured spectrophotometrically. Glutamine is determined by conversion to glutamate which is fed into the cycling assay. The conversion of glutamine to glutamate is catalyzed by asparaginase. Asparaginase was used in place of glutaminase due to its relatively high reactivity with glutamine and a pH optimum similar to that of glutamate dehydrogenase. The enzymes were immobilized covalently to activated controlled pore glass beads and integrated into the flow injection analysis system. The application of the immobilized enzymes and the technical setup are presented in this paper.

  9. Non-linear flow transients in fractured rock masses - the 1995 injection experiment in Soultz

    SciTech Connect

    Kohl, T.; Jung, R.; Hopkirk, R.J.; Rybach, L.

    1996-01-24

    In July 1995 in the course of the Hot Dry Rock (HDR) site investigation studies in Soultz s.F. (France) multi rate hydraulic injection tests were conducted in the borehole GPK2. The downhole pressure records obtained from the lowermost depth domain between 3211 m and 3876 m demonstrate non-laminar hydraulic behavior. Such behavior was also observed earlier during a similar set of flow step tests in the GPKl borehole Soultz. Like the analysis of these earlier data sets, it could be shown that the pressure records from July 1995 are corresponding to empirical flow laws established for non-laminar hydraulic regimes. In this study a numerical model is described which is being developed for the analysis of non-laminar flow in fractures. Similar models have already been applied to production and injection tests at GPK1. The results show that the observed transient pressure record is well predicted by such a non-linear flow law. Conventional laminar flow models cannot reproduce these curves. An evaluation of the parameters resulting from both, steady state and transient analysis leads to assumptions on the geometry of the main fracture system. Our calculations show that surface areas above 0.05 km² and apertures in the order of 0.4 mm results in an excellent fit of the data.

  10. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  11. Uranium isotopic ratio determination in urine using flow-injection ICP-MS: a tool for emergency monitoring.

    PubMed

    Godoy, Maria Luiza D P; Julião, Ligia M Q C; Godoy, José Marcus

    2009-02-01

    An inductively coupled plasma mass spectrometry-based method is presented aimed at total uranium concentration and atomic ratio determination. The method includes flow-injection uranium separation based on TRU Eichrom extraction chromatographic cartridges. The method was tested with urine interlaboratorial exercise samples and certified reference materials (NBL-CRM-U020A and NBL-CRM-U050) providing reliable results. The proposed methodology was also applied to urine samples obtained after an incident at a nuclear facility. The obtained (235)U/(238)U and (234)U/(238)U atomic ratios in the urine of an exposed worker were equal to those observed for an enriched uranium solution from the same origin.

  12. Potentiometric electronic tongue-flow injection analysis system for the monitoring of heavy metal biosorption processes.

    PubMed

    Wilson, D; del Valle, M; Alegret, S; Valderrama, C; Florido, A

    2012-05-15

    An automated flow injection potentiometric (FIP) system with electronic tongue detection (ET) is used for the monitoring of biosorption processes of heavy metals on vegetable wastes. Grape stalk wastes are used as biosorbent to remove Cu(2+) ions in a fixed-bed column configuration. The ET is formed by a 5-sensor array with Cu(2+) and Ca(2+)-selective electrodes and electrodes with generic response to heavy-metals, plus an artificial neural network response model of the sensor's cross-response. The real-time monitoring of both the Cu(2+) and the cation exchanged and released (Ca(2+)) in the effluent solution is performed by using flow-injection potentiometric electronic tongue system. The coupling of the electronic tongue with automation features of the flow-injection system allows us to accurately characterize the Cu(2+) ion-biosorption process, through obtaining its breakthrough curves, and the profile of the Ca(2+) ion release. In parallel, fractions of the extract solution are analysed by spectroscopic techniques in order to validate the results obtained with the reported methodology. The sorption performance of grape stalks is also evaluated by means of well-established sorption models.

  13. Free flow isotachophoresis in an injection moulded miniaturised separation chamber with integrated electrodes.

    PubMed

    Stone, Victoria N; Baldock, Sara J; Croasdell, Laura A; Dillon, Leonard A; Fielden, Peter R; Goddard, Nick J; Thomas, C L Paul; Treves Brown, Bernard J

    2007-07-01

    An injection moulded free flow isotachophoresis (FFITP) microdevice with integrated carbon fibre loaded electrodes with a separation chamber of 36.4mm wide, 28.7 mm long and 100 microm deep is presented. The microdevice was completely fabricated by injection moulding in carbon fibre loaded polystyrene for the electrodes and crystal polystyrene for the remainder of the chip and was bonded together using ultrasonic welding. Two injection moulded electrode designs were compared, one with the electrode surface level with the separation chamber and one with a recessed electrode. Separations of two anionic dyes, 0.2mM each of amaranth and acid green and separations of 0.2mM each of amaranth, bromophenol blue and glutamate were performed on the microdevice. Flow rates of 1.25 ml min(-1) for the leading and terminating electrolytes were used and a flow rate of 0.63 ml min(-1) for the sample. Electric fields of up to 370 V cm(-1) were applied across the separation chamber. Joule heating was not found to be significant although out-gassing was observed at drive currents greater than 3 mA.

  14. An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.

    PubMed

    K, Manasa; Channappayya, Sumohana S

    2016-06-01

    We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index. PMID:27093720

  15. A large-eddy simulation study of transition and flow instability in a porous-walled chamber with mass injection

    NASA Astrophysics Data System (ADS)

    Apte, S. V.; Yang, V.

    2003-02-01

    The unsteady flow evolution in a porous chamber with surface mass injection simulating propellant burning in a nozzleless solid rocket motor has been investigated by means of a large-eddy simulation (LES) technique. Of particular importance is the turbulence-transition mechanism in injection-driven compressible flows with high injection rates in a chamber closed at one end and connected to a divergent nozzle at the exit. The spatially filtered and Favre-averaged conservation equations of mass, momentum and energy are solved for resolved scales. The effect of unresolved subgrid scales is treated by using a dynamic Smagorinsky model extended to compressible flows. Three successive regimes of flow development are observed: laminar, transitional, and fully developed turbulent flow. Surface transpiration facilitates the formation of roller-like vortical structures close to the injection surface. The flow is essentially two-dimensional up to the mid-section of the chamber, with the dominant frequencies of vortex shedding governed by two-dimensional hydrodynamic instability waves. These two-dimensional structures are convected downstream and break into complex three-dimensional eddies. Transition to turbulence occurs further away from the wall than in standard channel flows without mass injection. The peak in turbulence intensity moves closer to the wall in the downstream direction until the surface injection prohibits further penetration of turbulence. The temporal and spatial evolution of the vorticity field obtained herein is significantly different from that of channel flow without transpiration.

  16. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  17. Sensitive competitive flow injection chemiluminescence immunoassay for IgG using gold nanoparticle as label

    NASA Astrophysics Data System (ADS)

    Qi, Honglan; Shangguan, Li; Liang, Lin; Ling, Chen; Gao, Qiang; Zhang, Chengxiao

    2011-11-01

    A sensitive competitive flow injection chemiluminescence (CL-FIA) immunoassay for immunoglobulin G (IgG) was developed using gold nanoparticle as CL label. In the configuration, anti-IgG antibody was immobilized on a glass capillary column surface by 3-(aminopropyl)-triethoxysilane and glutaraldehyde to form immunoaffinity column. Analyte IgG and gold nanoparticle labeled IgG were passed through the immunoaffinity column mounted in a flow system and competed for the surface-confined anti-IgG antibody. CL emission was generated from the reaction between luminol and hydrogen peroxide in the presence of Au (III), generated from chemically oxidative dissolution of gold nanoparticle by an injection of 0.10 mol L -1 HCl-0.10 mol L -1 NaCl solution containing 0.10 mmol L -1 Br 2. The concentration of analyte IgG was inversely related to the amount of bound gold nanoparticle labeled IgG and the CL intensity was linear with the concentration of analyte IgG from 1.0 ng mL -1 to 40 ng mL -1 with a detection limit of 5.2 × 10 -10 g mL -1. The whole assay time including the injections and washing steps was only 30 min for one sample, which was competitive with CL immunoassays based on a gold nanoparticle label and magnetic separation. This work demonstrates that the CL immunoassay incorporation of nanoparticle label and flow injection is promising for clinical assay with sensitivity and high-speed.

  18. Hybrid LES/RANS Simulation of Transverse Sonic Injection into a Mach 2 Flow

    NASA Technical Reports Server (NTRS)

    Boles, John A.; Edwards, Jack R.; Baurle, Robert A.

    2008-01-01

    A computational study of transverse sonic injection of air and helium into a Mach 1.98 cross-flow is presented. A hybrid large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) turbulence model is used, with the two-equation Menter baseline (Menter-BSL) closure for the RANS part of the flow and a Smagorinsky-type model for the LES part of the flow. A time-dependent blending function, dependent on modeled turbulence variables, is used to shift the closure from RANS to LES. Turbulent structures are initiated and sustained through the use of a recycling / rescaling technique. Two higher-order discretizations, the Piecewise Parabolic Method (PPM) of Colella and Woodward, and the SONIC-A ENO scheme of Suresh and Huyhn are used in the study. The results using the hybrid model show reasonably good agreement with time-averaged Mie scattering data and with experimental surface pressure distributions, even though the penetration of the jet into the cross-flow is slightly over-predicted. The LES/RANS results are used to examine the validity of commonly-used assumptions of constant Schmidt and Prandtl numbers in the intense mixing zone downstream of the injection location.

  19. Effect of Transpiration Injection on Skin Friction in an Internal Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Castiglone, L. A.; Northam, G. B.; Baker, N. R.; Roe, L. A.

    1996-01-01

    An experimental program was conducted at NASA Langley Research Center that included development and evaluation of an operational facility for wall drag measurement of potential scramjet fuel injection or wall cooling configurations. The facility consisted of a supersonic tunnel, with one wall composed of a series of interchangeable aluminum plates attached to an air bearing suspension system. The system was equipped with load cells that measured drag forces of 115 psia (793 kPa). This flow field contained a train of weak, unsteady, reflecting shock waves that were produced in the Mach 2 nozzle flows, the effect of reflecting shocks (which are to be expected in scramjet combustors) in internal flows has not previously been documented.

  20. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    NASA Astrophysics Data System (ADS)

    Angeli, Valeria; Biagi, Simona; Ghimenti, Silvia; Onor, Massimo; D'Ulivo, Alessandro; Bramanti, Emilia

    2011-11-01

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H 2 miniaturized flame after sodium borohydride reduction to Hg 0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H 2 microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10 - 5 mol L - 1 ), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L - 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L - 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection

  1. Flow injection determination of bromide ion in a developer using bromide ion-selective electrode detector.

    PubMed

    Masadome, T; Asano, Y; Nakamura, T

    1999-10-01

    A potentiometric flow injection determination method for bromide ion in a developer was proposed, by utilizing a flow-through type bromide ion-selective electrode detector. The sensing membrane of the electrode was Ag(2)S-AgBr membrane. The response of the electrode detector as a peak-shape signal was obtained for injected bromide ion in a developer. A linear relationship was found to exist between peak height and the concentration of the bromide ion in a developer in a concentration range from 1.0x10(-3) to 1.0x10(-2) mol l(-1). The relative standard deviation for 10 injections of a 6x10(-3) mol l(-1) bromide ion in a developer was 1.3% and the sampling rate was ca 17-20 samples h(-1). The present method was free from the interference of an organic reducing reagent, an organic substance in a developer sample solution for the determination of bromide ion in a developer.

  2. Approximate solutions for Forchheimer flow during water injection and water production in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Moutsopoulos, Konstantinos N.

    2016-07-01

    Understanding the hydraulics around injection and production wells in unconfined aquifers associated with rainwater and reclaimed water aquifer storage schemes is an issue of increasing importance. Much work has been done previously to understand the mathematics associated with Darcy's law in this context. However, groundwater flow velocities around injection and production wells are likely to be sufficiently large such as to induce significant non-Darcy effects. This article presents a mathematical analysis to look at Forchheimer's equation in the context of water injection and water production in unconfined aquifers. Three different approximate solutions are derived using quasi-steady-state assumptions and the method of matched asymptotic expansion. The resulting approximate solutions are shown to be accurate for a wide range of practical scenarios by comparison with a finite difference solution to the full problem of concern. The approximate solutions have led to an improved understanding of the flow dynamics. They can also be used as verification tools for future numerical models in this context.

  3. Flow and dynamo measurements during the coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Ando, K.; Higashi, T.; Nakatsuka, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    The current drive by Coaxial Helicity Injection (CHI-CD) was performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms, it is needed to manifest a role of plasma flows in the CHI-CD. For this purpose, we have measured the ion flow and the dynamo electric field using an ion Doppler spectrometer (IDS) system, a Mach probe and a dynamo probe. The new dynamo probe consists of 3-axis Mach probes and magnetic pick-up coils. The flow measurements have shown that the intermittent generation of the flow is correlated to the fluctuation seen on the electron density and current signals during the driven phase. At this time, the toroidal direction of the ion flow in the central open flux column is opposite to that of the toroidal current there, i.e. the same direction as electrons. After the plasma enters to the resistive decay phase, the toroidal flow tends to reverse to the same direction as the toroidal current. The results are consistent with the model of the repetitive plasmoid ejection and coalescence proposed for CHI-CD. The plasma jet emanating from the gun source and magnetic field generations through reconnection during the driven phase is well reflected in the 3D MHD simulation.

  4. Visualization analysis of tiger-striped flow mark generation phenomena in injection molding

    NASA Astrophysics Data System (ADS)

    Owada, Shigeru; Yokoi, Hidetoshi

    2016-03-01

    The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.

  5. National Combustion Code Validated Against Lean Direct Injection Flow Field Data

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.

    2003-01-01

    Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics.

  6. Visualization of regional cerebrospinal fluid flow with a dye injection technique in focal arachnoid pathologies.

    PubMed

    Yamaguchi, Satoshi; Hida, Kazutoshi; Takeda, Masaaki; Mitsuhara, Takafumi; Morishige, Mizuki; Yamada, Naoto; Kurisu, Kaoru

    2015-05-01

    Surgical lysis of the thickened arachnoid membrane is the first choice of treatment in spinal arachnoid pathologies that cause flow disturbances or blockage of CSF. However, it is important to consider that while extensive lysis of the arachnoid may temporarily provide a wide pathway for CSF, an extensive lytic procedure may later cause secondary adhesion. Thus, it is ideal for the proper extent of the arachnoid lysis to be determined after careful analysis of regional CSF flow. The authors report their limited experience with intraoperative visualization of CSF flow in spinal arachnoid pathologies. Two patients with a dorsal arachnoid web (DAW) with cervical syringomyelia and 1 patient with focal adhesive arachnoiditis causing edema of the spinal cord were surgically treated at the authors' institution between 2007 and 2013. In all cases, the presence of a DAW or focal adhesive arachnoiditis was suspected from the findings on MRI, namely 1) an indentation on the upper thoracic spinal cord and 2) syringomyelia and/or edema of the spinal cord above the indentation. Exploratory surgery disclosed a transversely thickened arachnoid septum on the dorsal side of the indented cord. To prove blockage of the CSF by the septum and to decide on the extent of arachnoid lysis, regional CSF flow around the arachnoid septum was visualized by subarachnoid injection of gentian violet solution close to the web. Injected dye stagnated just close to the arachnoid septum in all cases, and these findings documented CSF blockage by the septum. In 2 cases, a 2-minute observation showed that the injected dye stayed close to the web without diffusion. The authors performed not only resection of the web itself but also lysis of the thickened arachnoid on both sides of the spinal cord to make a CSF pathway on the ventral side. In the third case, the dye stagnated close to the web at first but then diffused through the nerve root to the ventral CSF space. The lysis procedure was completed

  7. Flow-injection enhanced chemiluminescence method for determination of ciprofloxacin in pharmaceutical preparations and biological fluids.

    PubMed

    Sun, Han-Wen; Li, Li-Qing; Chen, Xue-Yan

    2006-03-01

    A novel rapid and sensitive analytical method, enhanced chemiluminescence with flow-injection sampling, is described for determination of ciprofloxacin. The method is based on the chemiluminescence reaction of the potassium permanganate-sodium thiosulfate-ciprofloxacin system. An enhanced chemiluminescence reaction was developed, and optimum conditions for CL emission were investigated. The chemiluminescence intensity was linearly dependent on ciprofloxacin concentration in the range 1.0 x 10(-8)-1.0 x 10(-5) g mL(-1). The detection limit was 4 x 10(-9) g mL(-1). The relative standard deviation was 1.8% for eleven measurements of 2.0 x 10(-7) g mL(-1) ciprofloxacin standard solution. The new method enables simple, sensitive, and rapid determination of ciprofloxacin and has been successfully used for determination of ciprofloxacin in biological fluids and in ciprofloxacin hydrochloride tablet and injection.

  8. Determination of Hypochlorite in Bleaching Products with Flower Extracts to Demonstrate the Principles of Flow Injection Analysis

    ERIC Educational Resources Information Center

    Ramos, Luiz Antonio; Prieto, Katia Roberta; Carvalheiro, Eder Tadeu Gomes; Carvalheiro, Carla Cristina Schmitt

    2005-01-01

    The use of crude flower extracts to the principle of analytical chemistry automation, with the flow injection analysis (FIA) procedure developed to determine hypochlorite in household bleaching products was performed. The FIA comprises a group of techniques based on injection of a liquid sample into a moving, nonsegmented carrier stream of a…

  9. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin.

    PubMed

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change.

  10. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates.

    PubMed

    Safavi, Afsaneh; Karimi, Mohammad Ali

    2002-10-16

    A rapid and sensitive flow injection chemiluminescence (CL) method is described for the determination of hydrazine based on the CL generated during its reaction with either sodium dichloroisocyanurate (SDCC) or trichloroisocyanuric acid (TCCA) in alkaline medium. The emission intensity is greatly enhanced if dichlorofluorescein (DCF) as sensitizer is present in the reaction medium. The presence of citrate prevents the precipitation of some cations in the reaction medium and also causes an enhancement in emission intensity. The effect of analytical and flow injection variables on these CL systems and determination of hydrazine are discussed. The optimum parameters for the determination of hydrazine were studied and were found to be the following: SDCC and TCCA both 1x10(-3) M; NaOH, 2x10(-1) M; DCF, 5x10(-6) M; citrate, 1x10(-3) M and flow rate, 3.8 ml min(-1). The optimized method yielded 3sigma detection limits of 2x10(-7) and 3x10(-7) M for hydrazine with SDCC and TCCA oxidants, respectively. The method is simple, fast, sensitive, and precise and was applied to the determination of hydrazine in water samples. PMID:18968808

  11. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer.

    PubMed

    Allahham, Ayman; Stewart, Peter; Marriott, Jennifer; Mainwaring, David E

    2004-02-11

    A micro-capillary rheometer consisted of a fine needle with an internal diameter of 347 microm attached to a 1 ml removable-needle syringe within an Instron device that operated in compression mode to provide various crosshead speeds ranging from 150 to 950 mm min(-1) covering typical clinical injection rates, and that determined the resulting force on the plunger. The crosshead speed and the resulting force were used to calculate the shear rate and the shear stress respectively. These were used in standard capillary flow expressions together with an independent measurement of the wall frictional force and allowed the viscosity of parenteral Newtonian solutions and non-Newtonian suspensions to be measured quantitatively and their rheological behaviour in needles of clinical dimensions to be established. Commercial pharmaceutical parenteral formulations consisting of three oil-based solutions and three aqueous suspensions were chosen for this study. The net injection forces were also obtained and it was shown that both the oil-based solutions and the aqueous suspensions covered similar ranges. The viscosities for the parenteral solutions were determined from the slope of the linear regression (R(2)>0.97) between shear stress and shear rate and ranged between 0.029 and 0.060 Pas. For the aqueous suspensions examined, viscosities decreased from low shear rate to high shear rate, following a power-law model and indicating a pseudo plastic behaviour. Standardisation of the micro-capillary rheometer with Newtonian silicone oils calibrated with a Rheometrics Fluids Spectrometer showed viscosity values consistent between the rotational flow measurements and capillary flow measurements which were within 5% and showed very high degrees of reproducibility between replicate samples. This degree of reproducibility allowed differences in the contribution of the wall frictional force to the required plunger force for both the oil-based and aqueous parenteral formulations to be

  12. Simple flow injection colorimetric system for determination of paraquat in natural water.

    PubMed

    Chuntib, Prakit; Jakmunee, Jaroon

    2015-11-01

    A simple and low cost flow injection colorimetric system has been developed for determination of paraquat in natural water. The developed method is based on the reduction of paraquat by using sodium dithionite as a reducing agent in an alkaline medium to produce a blue free radical ion that can be detected by a simple light emitting diode-light dependent resistor (LED-LDR) colorimeter. The standard or sample solution was injected via a set of 3-way solenoid valves into a water carrier stream and flowed to merge with reagent to generate a colored product which is proportional to the concentration of paraquat ion in the solution. Under the optimum condition of the system, i.e., mixing coil length 30 cm, flow rate 2.0 mL min(-1), sample volume 100 μL, concentrations of dithionite 0.1% (w/v) and sodium hydroxide 0.06 mol L(-1), a linear calibration graph in the range of 0.2-10.0 mg L(-1) with a correlation coefficient of 0.9996, and a limit of detection of 0.15 mg L(-1) were achieved. Relative standard deviation for 9 replicate injections of 1 mg L(-1) paraquat is 3.7%. A sample throughput of 40 injections h(-1) was achieved. The limit of detection can be improved by off-line preconcentration of paraquat employing a column packed with Dowex 50WX8-100 (H) cation exchange resin and eluted with 10% (w/v) ammonium chloride in ammonium buffer solution pH 10. The eluting solution was then injected into the FI system for paraquat determination. The proposed system did not suffer from interferences of some possible ions in natural water and other herbicides. Recoveries obtained by spiking 0.5 and 5.0 mg L(-1) paraquat standard into water samples were in the range of 104-110% and 101-105%, respectively. The developed system can be conveniently applied for screening of paraquat contaminated in natural water.

  13. Simple flow injection colorimetric system for determination of paraquat in natural water.

    PubMed

    Chuntib, Prakit; Jakmunee, Jaroon

    2015-11-01

    A simple and low cost flow injection colorimetric system has been developed for determination of paraquat in natural water. The developed method is based on the reduction of paraquat by using sodium dithionite as a reducing agent in an alkaline medium to produce a blue free radical ion that can be detected by a simple light emitting diode-light dependent resistor (LED-LDR) colorimeter. The standard or sample solution was injected via a set of 3-way solenoid valves into a water carrier stream and flowed to merge with reagent to generate a colored product which is proportional to the concentration of paraquat ion in the solution. Under the optimum condition of the system, i.e., mixing coil length 30 cm, flow rate 2.0 mL min(-1), sample volume 100 μL, concentrations of dithionite 0.1% (w/v) and sodium hydroxide 0.06 mol L(-1), a linear calibration graph in the range of 0.2-10.0 mg L(-1) with a correlation coefficient of 0.9996, and a limit of detection of 0.15 mg L(-1) were achieved. Relative standard deviation for 9 replicate injections of 1 mg L(-1) paraquat is 3.7%. A sample throughput of 40 injections h(-1) was achieved. The limit of detection can be improved by off-line preconcentration of paraquat employing a column packed with Dowex 50WX8-100 (H) cation exchange resin and eluted with 10% (w/v) ammonium chloride in ammonium buffer solution pH 10. The eluting solution was then injected into the FI system for paraquat determination. The proposed system did not suffer from interferences of some possible ions in natural water and other herbicides. Recoveries obtained by spiking 0.5 and 5.0 mg L(-1) paraquat standard into water samples were in the range of 104-110% and 101-105%, respectively. The developed system can be conveniently applied for screening of paraquat contaminated in natural water. PMID:26452844

  14. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand.

  15. Differential amperometric determination of hydrogen peroxide in honeys using flow-injection analysis with enzymatic reactor.

    PubMed

    Franchini, Rômulo Augusto de Abreu; Matos, Maria Auxiliadora Costa; Colombara, Rosana; Matos, Renato Camargo

    2008-03-15

    Hydrogen peroxide (H2O2) present in honey was rapidly determined by the differential amperometric method in association with flow-injection analysis (FIA) and a tubular reactor containing immobilized enzymes. A gold electrode modified by electrochemical deposition of platinum was employed as working electrode. Hydrogen peroxide was quantified in 14 samples of Brazilian commercial honeys using amperometric differential measurements at +0.60V vs. Ag/AgCl((sat)). For the enzymatic consumption of H2O2, a tubular reactor containing immobilized peroxidase was constructed using an immobilization of enzymes on Amberlite IRA-743 resin. The linear dynamic range in H2O2 extends from 1 to 100 x 10(-6) mol L(-1), at pH 7.0. At flow rate of 2.0 mL min(-1) and injecting 150 microL sample volumes, the sampling frequency of the 90 determinations per hour is afforded. This method is based on three steps involving the flow-injection of: (1) the sample spiked with a standard solution, (2) the pure sample and (3) the enzymatically treated sample with peroxidase immobilized. The reproducibility of the current peaks for hydrogen peroxide in 10(-5) mol L(-1) range concentration showed a relative standard deviation (R.S.D.) better than 1%. The detection limit of this method is 2.9 x 10(-7) mol L(-1). The honey samples analyses were compared with the parallel spectrophotometric determination, and showed an excellent correlation between the methods. PMID:18371882

  16. Investigation of a chemiluminescent system for the determination of ammonia by flow-injection analysis

    SciTech Connect

    Kraus, P.R.; Crouch, S.R.

    1987-01-01

    A novel system for the determination of ammonia based on the chemiluminescent reaction between hypochlorite and luminol is presented. The technique of flow injection analysis was employed to automate the system. Ammonia reacts with hypochlorite to form monochloramine in basic solution which decreases the observed chemiluminescence intensity. Several interferents are identified, and the reasons why they interfere are discussed. The effects of interferents are minimized through the use of a double-tube dialyzer where the ammonia is diffused across the dialyzer membrane into a recipient stream of hydrochloric acid.

  17. Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection

    NASA Astrophysics Data System (ADS)

    Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.

    2015-12-01

    This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.

  18. Automatic flow injection analysis (FIA) determination of total reducing capacity in serum and urine samples.

    PubMed

    Segundo, Marcela A; Tóth, Ildikó V; Magalhães, Luís M; Reis, Salette

    2015-01-01

    Automation of total antioxidant capacity assessment can substantially increase the determination throughput, allowing large scale studies and screening experiments. Total reducing capacity evaluation can be implemented under different chemistries, including the CUPRAC-Cupric Ion Reducing Antioxidant Capacity -assay. This assay is based on reduction of Cu(II)-neocuproine complex to highly colored Cu(I)-neocuproine complex by reducing (antioxidant) components of biological samples. In this chapter, we propose an automatic flow injection method for evaluation of total reducing capacity in serum and urine samples, attaining end-point data within 4 min using a kinetic matching strategy.

  19. Determination of picomolar levels of cobalt in seawater by flow injection analysis with chemiluminescence detection

    SciTech Connect

    Sakamoto-Arnold, C.M.; Johnson, K.S.

    1987-07-15

    Flow injection analysis (FIA) was used to automate the determination of cobalt in seawater by the Co-enhanced chemiluminescent oxidation of gallic acid in alkaline hydrogen peroxide. A preconcentration/separation step in the FIA manifold with an in-line column of immobilized 8-hydroxyquinoline was included to separate the Co from alkaline-earth ions. One sample analysis takes 8 min, including the 4-min sample load period. The detection limit is approximately 8 pM. The average standard deviation of replicate analyses at sea of 80 samples was +/- 5%. The method was tested and intercalibrated on samples collected off the California coast.

  20. Flow injection analysis of trace chromium (VI) in drinking water with a liquid waveguide capillary cell and spectrophotometric detection.

    PubMed

    Ma, Jian; Yuan, Dongxing; Byrne, Robert H

    2014-01-01

    Hexavalent chromium (Cr(VI)) is an acknowledged hazardous material in drinking waters. As such, effective monitoring and assessment of the risks posed by Cr(VI) are important analytical objectives for both human health and environmental science. However, because of the lack of highly sensitive, rapid, and simple procedures, a relatively limited number of studies have been carried out in this field. Here we report a simple and sensitive analytical procedure of flow injection analysis (FIA) for sub-nanomolar Cr(VI) in drinking water samples with a liquid core waveguide capillary cell (LWCC). The procedure is based on a highly selective reaction between 1, 5-diphenylcarbazide and Cr(VI) under acidic conditions. The optimized experimental parameters included reagent concentrations, injection volume, length of mixing coil, and flow rate. Measurements at 540 nm, and a 650-nm reference wavelength, produced a 0.12-nM detection limit. Relative standard deviations for 1, 2, and 10 nM samples were 5.6, 3.6, and 0.72 % (n = 9), and the analysis time was <2 min sample(-1). The effects of salinity and interfering ions, especially Fe(III), were evaluated. Using the FIA-LWCC method, different sources of bottled waters and tap waters were examined. The Cr(VI) concentrations of the bottled waters ranged from the detection limit to ∼20 nM, and tap waters collected from the same community supply had Cr(VI) concentration around 14 nM.

  1. Understanding Off-Label Use and Reference Blood Flows in Modern Membrane Oxygenators

    PubMed Central

    Myers, Gerard J.

    2014-01-01

    Abstract: This editorial will address two issues that are still a source of global controversy and confusion in present day perfusion practice. Membrane oxygenators are designed and tested to a set of stringent flow standards prior to their release from every manufacturer. But how well do we know the iatrogenic consequences of pushing these devices beyond their maximum rated limits? In addition, how well do we know the meaning of the term ‘AAMI Reference Flow’ as it relates to the Manufacturers Maximum Rated Flow? PMID:26357784

  2. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    PubMed

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-07-13

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  3. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    PubMed

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  4. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  5. Selective chlorine dioxide determination using gas-diffusion flow injection analysis with chemiluminescent detection

    SciTech Connect

    Hollowell, D.A.; Gord, J.R.; Gordon, G.; Pacey, G.E.

    1986-06-01

    An automated chemiluminescent technique has been developed utilizing the advantages of gas-diffusion flow injection analysis. A gas-diffusion membrane separates the donor (sampling) stream from the acceptor (detecting) stream and removes ionic interferences. A novel chemiluminescence flow-through detector cell is used to measure the concentration of chlorine dioxide as a function of the intensity of the chemiluminescence produced from its reaction with luminol. The chemiluminescent reagent merges with the analyte directly in front of the photomultiplier tube in order to maximize the sensitivity of the system. The detection limit for chlorine dioxide is approximately 5 ppb. The method is over 1500 times more selective for chlorine dioxide than for chlorine on a mole basis. This method eliminates interference from iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite ion and chlorate ion.

  6. Development of current injection based three phase unbalanced continuation power flow for distribution system

    NASA Astrophysics Data System (ADS)

    Toppo, Shilpa

    Voltage stability studies (VSS) of the electric network is a crucial factor to make the system operate in stable region and to prevent power blackouts. There are several commercial tools available for VSS of electric transmission systems (TS) but not many for distribution systems (DS). With increasing penetration of distributed renewable generations and meshed network within DS, shipboard power system (SPS) and microgrid, these VSS tools need to be extended for DS. Due to inherent characteristic like high R/X ratio, three phase and unbalanced operation, DS or SPS requires different mathematical approach than TS. Unbalanced three phase power flow and continuation power flow tools were developed using current injection and corrector predictor methods in this work for VSS. Maximum loading point for given DS or SPS can be computed using developed tools to guide required preventive and corrective actions. Developed tool was tested and validated for several different test cases.

  7. LDA measurements in a Mach 2 flow over a rearward facing step with staged transverse injection

    NASA Technical Reports Server (NTRS)

    Wang, J.-A.; Dancey, C. L.

    1992-01-01

    Measurements of the mean velocity field and selected turbulence statistics have been obtained via 2D LDA in a Mach 2 flow over a rearward facing step with downstream transverse injection. Axial mean velocity profiles, profiles of the axial and normal RMS levels, and the correlation coefficient between the axial and normal fluctuating components are presented for locations upstream of the step. These data, through comparison with other reported measurements in zero pressure gradient compressible boundary layers indicate that the boundary layers upstream of the step are consistent with 'quasi-equilibrium' turbulent boundary layers with the adiabatic wall boundary condition. Mean velocity field measurements on the symmetry plane of the tunnel are compared to laser induced iodine fluorescence measurements reported in the literature and obtained in the same facility. This comparison demonstrates the quality of the present LDA data set and shows that particle lag is not significant in the LDA measurements despite the complex nature of the downstream flow.

  8. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  9. Flow injection potentiometric system for the simultaneous determination of inositol phosphates and phosphate: phosphorus nutritional evaluation on seeds and grains.

    PubMed

    Parra, Aleix; Ramon, Meritxell; Alonso, Julián; Lemos, Sherlan G; Vieira, Edivan C; Nogueira, Ana R A

    2005-10-01

    A simple flow injection potentiometric (FIP) system, which uses a tubular cobalt electrode, has been developed for phosphorus nutritional evaluation of seeds and grains. Inorganic phosphorus, P(i), is determined using a 1 x 10(-2) mol.L(-1) potassium phthalate buffer solution adjusted at pH 4. A sensitivity of 47 mV/decade and an operating range from 10 to 1000 mg.L(-1) (1 x 10(-4)-1 x 10(-2) M) of dihydrogen phosphate are obtained. The inositol phosphates amount, which is referred to the organic phosphorus, P(org), is directly determined from extracts using a 1 x 10(-2) mol.L(-1) Tris-HCl buffer solution adjusted at pH 8. A sensitivity of 127 mV/decade and an operating range of 10-1000 mg.L(-1) (2.5 x 10(-4)-5 x 10(-3) M) of P(org) (expressed as inositol hexakisphosphoric acid monocalcium) are achieved. Some samples of seed and grain are analyzed by an ICP-OES and a spectrophotometric method to compare results to the developed flow system; no significant differences at the 95% confidence level are observed using a paired t test. Other samples such as animal nursing feed, soybean meal, and corn are also analyzed with the proposed FIP system, showing a good correlation to the ICP-OES values.

  10. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper

  11. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis.

    PubMed

    Vandeput, Marie; Parsajoo, Cobra; Vanheuverzwijn, Jérôme; Patris, Stéphanie; Yardim, Yavuz; le Jeune, Alexandre; Sarakbi, Ahmad; Mertens, Dominique; Kauffmann, Jean-Michel

    2015-01-01

    A commercially available thin-layer flow-through amperometric detector, with the sensing block customized in an original design, was applied to the screening of drug compounds known as acetylcholinesterase (AChE) inhibitors. AChE from electric eel was covalently immobilized onto a cysteamine modified gold disk adjacent to a silver disk working electrode. On-line studies were performed by flow injection analysis (FIA) in PBS buffer pH 7.4. Seven commercially available AChE inhibitors used in the medical field, namely neostigmine, eserine, tacrine, donepezil, rivastigmine, pyridostigmine and galantamine as well as two natural compounds, quercetin and berberine, were investigated. The same trend of inhibitory potency as described in the literature was observed. Of particular interest and in addition to the determination of the IC50 values, this flow-through system allowed the study of both, the stability of the enzyme-inhibitor complex and the kinetic of the enzyme activity recovery. PMID:25459923

  12. Hydrologic Responses to CO2 Injection in Basalts Based on Flow-through Experiments

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Hingerl, F.; Garing, C.; Bird, D. K.; Benson, S. M.; Maher, K.

    2015-12-01

    Experimental studies of basalt-CO2 interactions have increased our ability to predict geochemical responses within a mafic reservoir during geologic CO2 sequestration. However, the lack of flow-through experiments prevents the use of coupled hydrologic-geochemical models to predict evolution of permeability and porosity, critical parameters for assessing storage feasibility. We present here results of three flow-through experiments on an intact basalt core during which we employed X-ray Computed Tomography (CT) to quantify porosity evolution and fluid flow. Using a single core of glassy basaltic tuff from the Snake River Plain (Menan Buttes complex), we performed tracer tests using a solution of NaI (~100,000 ppm) before and after injection of CO2-saturated water at reservoir conditions (90 bar, 50°C) to image porosity and flow path distribution. During the tracer tests, CT scans were taken at 2.5-minute intervals, and outlet fluid was discretely sampled at the same intervals and subsequently measured via ICP-MS, enabling interpretation of the tracer breakthrough curve through both imaging and geochemical analyses. Comparison of the porosity distribution from before and after injection of CO2 shows an overall decrease in core-averaged porosity from 34% to 31.1%. Permeability decreased exponentially from ~4.9x10-12 m2 to 1.18 x10-12 m2. The decrease in porosity and permeability suggests geochemical transformations in the mineral assemblage of the core, which we observe through petrographic analysis of an unaltered sample of the same lithology in contrast with the altered core. There is a significant increase in grain coatings, as well as reduction in the grain size, suggesting dissolution re-precipitation mechanisms. Finally, to develop a framework for the coupled geochemical and hydrologic responses observed experimentally, we have calibrated a reactive transport model at the core scale using the TOUGHREACT simulator [1]. [1] Xu et al. (2011) Comput. Geosci.

  13. Development of a Fully Automated Flow Injection Analyzer Implementing Bioluminescent Biosensors for Water Toxicity Assessment

    PubMed Central

    Komaitis, Efstratios; Vasiliou, Efstathios; Kremmydas, Gerasimos; Georgakopoulos, Dimitrios G.; Georgiou, Constantinos

    2010-01-01

    This paper describes the development of an automated Flow Injection analyzer for water toxicity assessment. The analyzer is validated by assessing the toxicity of heavy metal (Pb2+, Hg2+ and Cu2+) solutions. One hundred μL of a Vibrio fischeri suspension are injected in a carrier solution containing different heavy metal concentrations. Biosensor cells are mixed with the toxic carrier solution in the mixing coil on the way to the detector. Response registered is % inhibition of biosensor bioluminescence due to heavy metal toxicity in comparison to that resulting by injecting the Vibrio fischeri suspension in deionised water. Carrier solutions of mercury showed higher toxicity than the other heavy metals, whereas all metals show concentration related levels of toxicity. The biosensor’s response to carrier solutions of different pHs was tested. Vibrio fischeri’s bioluminescence is promoted in the pH 5–10 range. Experiments indicate that the whole cell biosensor, as applied in the automated fluidic system, responds to various toxic solutions. PMID:22163592

  14. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  15. Flow injection analysis of ketoprofen based on the order transform second chemiluminescence reaction

    NASA Astrophysics Data System (ADS)

    Zhuang, Yafeng; Cao, Guiping; Ge, Chuanqin

    2012-01-01

    This paper explores an order-transform-second-chemiluminescence (OTSCL) method combining the flow injection technique for the determination of ketoprofen. When ketoprofen solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate solution was injected into the reaction mixture of ketoprofen and alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A mechanism for the OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristic, UV-visible absorption and chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of ketoprofen over the range of 2.0 × 10 -7 to 1.0 × 10 -5 mol/L with a correlation coefficient of 0.9950 and a detection limit of 8.0 × 10 -9 mol/L (3 σ). The relative standard deviation for 11 repetitive determinations of 1.0 × 10 -6 mol/L ketoprofen is 2.9%. The utility of this method was demonstrated by determining ketoprofen in pharmaceutical formulations without interference from its potential impurities.

  16. Development of a fully automated Flow Injection analyzer implementing bioluminescent biosensors for water toxicity assessment.

    PubMed

    Komaitis, Efstratios; Vasiliou, Efstathios; Kremmydas, Gerasimos; Georgakopoulos, Dimitrios G; Georgiou, Constantinos

    2010-01-01

    This paper describes the development of an automated Flow Injection analyzer for water toxicity assessment. The analyzer is validated by assessing the toxicity of heavy metal (Pb(2+), Hg(2+) and Cu(2+)) solutions. One hundred μL of a Vibrio fischeri suspension are injected in a carrier solution containing different heavy metal concentrations. Biosensor cells are mixed with the toxic carrier solution in the mixing coil on the way to the detector. Response registered is % inhibition of biosensor bioluminescence due to heavy metal toxicity in comparison to that resulting by injecting the Vibrio fischeri suspension in deionised water. Carrier solutions of mercury showed higher toxicity than the other heavy metals, whereas all metals show concentration related levels of toxicity. The biosensor's response to carrier solutions of different pHs was tested. Vibrio fischeri's bioluminescence is promoted in the pH 5-10 range. Experiments indicate that the whole cell biosensor, as applied in the automated fluidic system, responds to various toxic solutions. PMID:22163592

  17. Flow-injection chemiluminescence determination of dihydralazine sulfate in serum using luminol and diperiodatocuprate (III) system

    NASA Astrophysics Data System (ADS)

    Yang, Chunyan; Zhang, Zhujun; Wang, Jinli

    2010-01-01

    A novel flow-injection chemiluminescence (CL) method for the determination of dihydralazine sulfate (DHZS) is described. The method is based on the reaction of luminol and diperiodatocuprate (K 2[Cu(H 2IO 6)(OH) 2], DPC) in alkaline medium to emit CL, which is greatly enhanced by DHZS. The possible CL mechanism was first proposed based on the kinetic characteristic, CL spectrum and UV spectra. The optimum condition for the CL reaction was in detail studied using flow-injection system. The experiments indicated that under optimum condition, the CL intensity was linearly related to the concentration of DHZS in the range of 7.0 × 10 -9 to 8.6 × 10 -7 g mL -1 with a detection limit (3 σ) of 2.1 × 10 -9 g mL -1. The proposed method had good reproducibility with the relative standard deviation 3.1% ( n = 7) for 5.2 × 10 -8 g mL -1 of DHZS. This method has the advantages of simple operation, fast response and high sensitivity. The special advantage of the system is that very low concentration of luminol can react with DPC catalyzed by DHZS to get excellent experiment results. And CL cannot be observed nearly when luminol with same concentration reacts with other oxidants, so luminol-DPC system has higher selectivity than other luminol CL systems. The method has been successfully applied to determine DHZS in serum.

  18. Flow injection analysis of picric acid explosive using a copper electrode as electrochemical detector.

    PubMed

    Junqueira, João R C; de Araujo, William R; Salles, Maiara O; Paixão, Thiago R L C

    2013-01-30

    A simple and fast electrochemical method for quantitative analysis of picric acid explosive (nitro-explosive) based on its electrochemical reduction at copper surfaces is reported. To achieve a higher sample throughput, the electrochemical sensor was adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with picric acid concentration over the range of 20-300 μmol L(-1). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 3% (n=10), and the detection limit of the method was estimated to be 6.0 μmol L(-1) (S/N=3). The sample throughput under optimised conditions was estimated to be 550 samples h(-1). Peroxide explosives like triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were tested as potential interfering substances for the proposed method, and no significant interference by these explosives was noticed. The proposed method has interesting analytical parameters, environmental applications, and low cost compared with other electroanalytical methods that have been reported for the quantification of picric acid. Additionally, the possibility to develop an in situ device for the detection of picric acid using a disposable sensor was evaluated.

  19. Polyion Selective Polymeric Membrane-Based Pulstrode as a Detector in Flow-Injection Analysis

    PubMed Central

    2015-01-01

    A method for the detection of polyions using fully reversible polyion selective polymeric membrane type pulstrodes as detectors in a flow-injection analysis (FIA) system is examined. The detection electrode consists of a plasticized polymeric membrane doped with 10 wt % of tridodecylmethylammonium-dinonylnaphthalene sulfonate (TDMA/DNNS) ion-exchanger salt. The pulse sequence used involves a short (1 s) galvanostatic pulse, an open-circuit pulse (0.5 s) during which the EMF of the cell is measured, and a longer (15 s) potentiostatic pulse to return the membrane to its original chemical composition. It is shown that total pulse sequence times can be optimized to yield reproducible real-time detection of injected samples of protamine and heparin at up to 20 samples/h. Further, it is shown that the same membrane detector can be employed for FIA detection of both polycations at levels ≥10 μg/mL and polyanions at levels of ≥40 μg/mL by changing the direction of the galvanostatic pulse. The methodology described may also be applicable in the detection of polyionic species at low levels in other flowing configurations, such as in liquid chromatography and capillary electrophoresis. PMID:24650129

  20. Co-determination of sodium metabisulfite and starch in corn syrup by flow injection coulometry.

    PubMed

    Taylor, R H; Rotermund, J; Christian, G D; Ruzicka, J

    1994-01-01

    During the processing of corn syrup for commercial use, starch, in the form of alpha -amylose, must be completely broken down to its D -glucopyranose units. Sodium metabisulfite is added to the corn syrup as a preservative. Flow Injection Coulometry was used to perform an automated assay of these analytes, both individually and jointly. The sodium metabisulfite concentration, over a range of 3.5 x 10(-4)-2.9 x 10(-2)M, is determined by coulometric flow injection titration with generated iodine, using spectrophotometric endpoint detection at 530 nm. Analysis over this range produced a relative standard deviation of < 1.5% and was found to correlate very well with manual titrations. The determination was performed in the presence of varying amounts of starch, and was found to be independent of the starch concentration. Starch was determined, when no sodium metabisulfite was present, from the absorbance level after the reaction of the sample with a specific amount of iodine. In the presence of sodium metabisulfite, the rate of the accumulation of the starch/iodine interaction product after the metabisulfite titration endpoint, at a constant reagent generation rate, was used. A relative standard deviation of < 1.4% was obtained for all starch analyses, with a very good correlation (correlation coefficients 0.997) with the known relative concentration. The use of the FIC technique to perform analyses by specific amount and excess reagent generation is demonstrated, along with dual analyte determination.

  1. Flow injection spectrofluorimetric determination of reserpine in tablets by on-line acetone sensitized photochemical reaction.

    PubMed

    Chen, H; He, Q

    2000-11-01

    On-line photochemical reaction of reserpine in the presence of acetone was investigated. Acetone was found to speed up the on-line photochemical conversion of reserpine into an intensively fluorescent compound. Not only reaction acidity but also the acetate buffer concentration affected the on-line photochemical induced fluorescence signal. Based on the observation an automated flow injection photochemical fluorimetric approach was developed. An injected sample zone was carried by a water stream to be merged with a acetate buffer (pH 3.4) solution containing 0.02% acetone in a knotted PTFE reactor (KR), which was freely coiled around a 6-W low pressure mercury lamp. While passing the KR, reserpine was transformed into an intensively fluorescent compound. It was on-line detected in a flow-through cell at the emission wavelength of 490 nm and excitation wavelength of 386 nm. At optimized conditions, a detection limit 0.45 mug l(-1) was achieved at a sampling rate of 90 h(-1). Eleven determinations of a 0.5 mg l(-1) reserpine standard solution gave a R.S.D. of 0.3%. The linear dynamic range of reserpine calibration curve was 0.01-0.75 mg l(-1). The proposed method was applied to assay the reserpine content in tablets and to monitor the dissolution profile of reserpine tablets. Satisfactory results were obtained for both the assays and dissolution studies. PMID:18968131

  2. Flow injection analysis of picric acid explosive using a copper electrode as electrochemical detector.

    PubMed

    Junqueira, João R C; de Araujo, William R; Salles, Maiara O; Paixão, Thiago R L C

    2013-01-30

    A simple and fast electrochemical method for quantitative analysis of picric acid explosive (nitro-explosive) based on its electrochemical reduction at copper surfaces is reported. To achieve a higher sample throughput, the electrochemical sensor was adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with picric acid concentration over the range of 20-300 μmol L(-1). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 3% (n=10), and the detection limit of the method was estimated to be 6.0 μmol L(-1) (S/N=3). The sample throughput under optimised conditions was estimated to be 550 samples h(-1). Peroxide explosives like triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were tested as potential interfering substances for the proposed method, and no significant interference by these explosives was noticed. The proposed method has interesting analytical parameters, environmental applications, and low cost compared with other electroanalytical methods that have been reported for the quantification of picric acid. Additionally, the possibility to develop an in situ device for the detection of picric acid using a disposable sensor was evaluated. PMID:23597904

  3. Non-extraction flow injection determination of cationic surfactants using eriochrome black-T

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Hemmateenejad, B.; Barzegar, S.

    2009-09-01

    A new, rapid, sensitive, non-extraction batch, and flow injection spectrophotometric method for the determination of cationic surfactants (CSs) such as cetyltrimethyl ammonium bromide (CTAB), tetra-n-butyl ammonium chloride (TBAC) and cetylpyridinium chloride (CPC) is proposed. The method is based on the interaction of cationic surfactants with eriochrome black-T to form an ion-association complex. This complex has strong absorbance at 708 nm. The effects of chemical parameters and FIA variables on the determination of cationic surfactants were studied in detail, especially for CTAB. Under optimum conditions, the two linear calibration ranges of the method are 3.0 × 10 -6 to 5.0 × 10 -3 mol L -1 CTAB, CPB and DTAB for the batch spectrophotometric method and 2.0 × 10 -6 to 2.0 × 10 -4 mol L -1 CTAB, CPB and TBC for the flow injection spectrophotometric method. The sample throughput was 35 ± 5 samples h -1 at room temperature. The relative standard deviations for 10 replicates of analysis of (2.0, 0.6 and 0.2) × 10 -4 mol L -1 CTAB were 1.2, 1.3, and 0.8%, respectively. In addition, the influence of potential interfering substances on the determination of cationic surfactants was studied. The proposed method is simple and rapid, using no toxic organic solvents. It was applied to the determination of trace CS in industrial wastewater with satisfactory results.

  4. Flow injection method for the determination of silver concentration in drinking water for spacecrafts.

    PubMed

    Bruzzoniti, Maria Concetta; Kobylinska, Dorota Korte; Franko, Mladen; Sarzanini, Corrado

    2010-04-14

    A flow injection method has been developed for determination of silver. The method is based on a reduction reaction with sodium borohydride which leads to the formation of a colloidal species which is monitored at a wavelength of 390 nm. The reaction variables flow rate, sodium borohydride concentration and pH, which affect sensitivity, were investigated and their effects were established using a two-levels, three-factor experimental design. Further optimization of manifold variables (reaction coil and injection volume) allowed us to determine silver in the range 0.050-5.0 mg L(-1) with a minimum detectable concentration of 0.050 mg L(-1). Silver is added, as biocide, to drinking water for spacecrafts. The chemical species of silver, present in this kind of sample, were characterized by a procedure based on the selective retention of Ag(+) onto a 2.2.2. cryptand based substrate followed by determination of the non-bound and bound (after elution) Ag(+) by the FIA method. The method optimized was applied to a drinking water sample provided for the launch with the Automated Transfer Vehicle (ATV) module Jule Verne to the International Space Station (March 9, 2008).

  5. Simulation of supercritical flows in rocket-motor engines: application to cooling channel and injection system

    NASA Astrophysics Data System (ADS)

    Ribert, G.; Taieb, D.; Petit, X.; Lartigue, G.; Domingo, P.

    2013-03-01

    To address physical modeling of supercritical multicomponent fluid flows, ideal-gas law must be changed to real-gas equation of state (EoS), thermodynamic and transport properties have to incorporate dense fluid corrections, and turbulence modeling has to be reconsidered compared to classical approaches. Real-gas thermodynamic is presently investigated with validation by NIST (National Institute of Standards and Technology) data. Two major issues of Liquid Rocket Engines (LRE) are also presented. The first one is the supercritical fluid flow inside small cooling channels. In a context of LRE, a strong heat flux coming from the combustion chamber (locally Φ ≈ 80 MW/m2) may lead to very steep density gradients close to the wall. These gradients have to be thermodynamically and numerically captured to properly reproduce in the simulation the mechanism of heat transfer from the wall to the fluid. This is done with a shock-capturing weighted essentially nonoscillatory (WENO) numerical discretization scheme. The second issue is a supercritical fluid injection following experimental conditions [1] in which a trans- or supercritical nitrogen is injected into warm nitrogen. The two-dimensional results show vortex structures with high fluid density detaching from the main jet and persisting in the low-speed region with low fluid density.

  6. Determination of hydralazine with flow injection chemiluminescence sensor using molecularly imprinted polymer as recognition element.

    PubMed

    Xiong, Yan; Zhou, Houjiang; Zhang, Zhujun; He, Deyong; He, Chao

    2006-06-01

    A novel flow injection chemiluminescence (CL) sensor for hydralazine determination using molecularly imprinted polymer (MIP) as recognition element is reported. Hydralazine-MIP was prepared through non-covalent copolymerization using methacrylic acid (MAA) monomer, hydralazine template and ethylene glycol dimethacrylate (EGDMA) cross-linker. Particles of the MIP were packed into a v-shape glass tube for on-line adsorption of the analyte of hydralazine. The adsorbed hydralazine could be sensed by its great enhancing effect on the CL reaction between luminol and periodate. The CL intensity is linear to hydralazine concentration in the range from 2x10(-9) to 8x10(-7) g/mL. The detection limit is 6x10(-10) g/mL (3sigma) and the relative standard deviation is 2.8% (n=7) for 8x10(-9) g/mL hydralazine. The selective experiment showed that the selectivity and sensitivity of the CL method could be greatly improved when MIP was used as recognition element in the flow-injection CL sensor. The sensor was reversible and reusable. It could be used for more than 100 times. It has been used directly to determine the hydralazine in human urine.

  7. Influence of Mold Surface Treatments on Flow of Polymer in Injection Moulding. Application to Weldlines

    NASA Astrophysics Data System (ADS)

    Chailly, M.; Charmeau, J.-Y.; Bereaux, Y.; Monasse, B.

    2007-04-01

    Due to increasing expectations from the market, the aspect of molded parts has to be improved constantly. Some of the defects observed on these parts such as weldlines are related to the filling stage. To limit this, we investigated the influence on weldlines using various surface deposits on the mold surface, mainly PVD and PACVD deposits : Chromium nitride (CrN), Titanium nitride (TiN), Diamond like Carbon (DLC), Chromium and polished steel (PG) on an instrumented plate mold. Injection campaign was led on three polymers which differ in terms of nature (amorphous, semi-crystalline, copolymers). We studied the evolution of the dimensions of weldlines appearing on the plate using the same injection parameters for a given polymer, but with various deposits and thicknesses. Another aspect that had been investigated is the morphology of the weldline through the thickness of the part, depending on polymer nature. Adhesion of polymer at the flow front with the mold surface proved to change. The modification of the initial contact in the filling stage and thus the thermal resistance at the mold implied a change in the process, increasing or reducing the pressure loss in the flow and differential shrinkage in the final part. The induced impact on dimensions of the weldlines allowed to distinguish which surface treatments were able to reduce the defect. A complementary study was led on both polymers in molten state and deposits in terms of wetting using a sessile drop method to confirm the adhesion at the polymer/mold interface. This study proved the influence of the use of surface treatments has clearly an impact on the filling stage of the injection molding process, and it is necessary to get a better knowledge of the interactions between physical adhesion, tribology of polymer/mold contact, and thermal properties of the coatings and their impact on solidification of the polymer.

  8. Seismic monitoring of the June, 1988 Salton Sea Scientific Drilling Program flow/injection test

    SciTech Connect

    Jarpe, S.P.; Kasameyer, P.W.; Hutchings, L.J.; Hauk, T.F.

    1988-10-04

    The purpose of the seismic monitoring project was to characterize in detail the micro-seismic activity related to the Salton Sea Scientific Drilling Program (SSSDP) flow-injection test in the Salton Sea Geothermal Field. Our goal was to determine if any sources of seismic energy related to the test were observable at the surface. We deployed our recording stations so that we could detect and locate both impulsive microearthquakes and continuous seismic noise energy. Our network, which was sensitive enough to be triggered by magnitude 0.0 or larger events, found no impulsive microearthquakes in the vicinity of the flow test in the 8 month period before the test and only one event during the flow test. This event has provided the opportunity to compare the detection and location capabilities of small networks and arrays in a geothermal environment. At present, we are carefully scanning all of the data that we collected during the flow test for evidence of anomalous seismic noise sources and for impulsive events smaller than the network detection threshold (magnitude 0.0). 8 refs., 4 figs.

  9. Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique

    SciTech Connect

    Huisseune, H.; Willockx, A.; De Paepe, M.; T'Joen, C.; De Jaeger, P.

    2010-11-15

    Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

  10. Evaluation of Flow-Injection Tandem Mass Spectrometry for Rapid and High-Throughput Quantitative Determination of B-Vitamins in Nutritional Supplements

    SciTech Connect

    Bhandari, Deepak; Van Berkel, Gary J

    2012-01-01

    The use of flow-injection electrospray ionization tandem mass spectrometry for rapid and high-throughput mass spectral analysis of selected B-vitamins, viz. B1, B2, B3, B5, and B6, in nutritional formulations was demonstrated. A simple and rapid (~5 min) in-tube sample preparation was performed by adding extraction solvent to a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Automated flow injection introduced 1 L of the extracts directly into the mass spectrometer ion source without chromatographic separation. Sample-to-sample analysis time was 60 s representing significant improvement over conventional liquid chromatography approaches which typically require 25-45 min, and often require more significant sample preparation procedures. Quantitative capabilities of the flow-injection analysis were tested using the method of standard additions and NIST standard reference material (SRM 3280) multivitamin/multielement tablets. The quantity determined for each B-vitamin in SRM 3280 was within the statistical range provided for the respective certified values. The same sample preparation and analysis approach was also applied to two different commercial vitamin supplement tablets and proved to be successful in the quantification of the selected B-vitamins as evidenced by an agreement with the labels values and the results obtained using isotope dilution liquid chromatography/mass spectrometry.

  11. Rapid Quantitation of Ascorbic and Folic Acids in SRM 3280 Multivitamin/Multielement Tablets using Flow-Injection Tandem Mass Spectrometry

    SciTech Connect

    Bhandari, Deepak; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    RATIONALE: Ascorbic acid (AA) and folic acid (FA) are water-soluble vitamins and are usually fortified in food and dietary supplements. For the safety of human health, proper intake of these vitamins is recommended. Improvement in the analysis time required for the quantitative determination of these vitamins in food and nutritional formulations is desired. METHODS: A simple and fast (~5 min) in-tube sample preparation was performed, independently for FA and AA, by mixing extraction solvent with a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Quantitative detection was achieved by flow-injection (1 L injection volume) electrospray ionization tandem mass spectrometry (ESI-MS/MS) in negative ion mode using the method of standard addition. RESULTS: Method of standard addition was employed for the quantitative estimation of each vitamin in a sample extract. At least 2 spiked and 1 non-spiked sample extract were injected in triplicate for each quantitative analysis. Given an injection-to-injection interval of approximately 2 min, about 18 min was required to complete the quantitative estimation of each vitamin. The concentration values obtained for the respective vitamins in the standard reference material (SRM) 3280 using this approach were within the statistical range of the certified values provided in the NIST Certificate of Analysis. The estimated limit of detections of FA and AA were 13 and 5.9 ng/g, respectively. CONCLUSIONS: Flow-injection ESI-MS/MS was successfully applied for the rapid quantitation of FA and AA in SRM 3280 multivitamin/multielement tablets.

  12. State of the art in on-line techniques coupled to flow injection analysis FIA/on-line- a critical review

    PubMed Central

    Puchades, R.; Maquieira, A.; Atienza, J.; Herrero, M. A.

    1990-01-01

    Flow injection analysis (FIA) has emerged as an increasingly used laboratory tool in chemical analysis. Employment of the technique for on-line sample treatment and on-line measurement in chemical process control is a growing trend. This article reviews the recent applications of FlA. Most papers refer to on-line sample treatment. Although FIA is very well suited to continuous on-line process monitoring, few examples have been found in this areamost of them have been applied to water treatment or fermentation processes. PMID:18925271

  13. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  14. CO2 injectivity in saline aquifers: The impact of non-Darcy flow, phase miscibility, and gas compressibility

    NASA Astrophysics Data System (ADS)

    Mijic, Ana; LaForce, Tara C.; Muggeridge, Ann H.

    2014-05-01

    A key aspect of CO2 storage is the injection rate into the subsurface, which is limited by the pressure at which formation starts to fracture. Hence, it is vital to assess all of the relevant processes that may contribute to the pressure increase in the aquifer during CO2 injection. Building on an existing analytical solution for immiscible and spatially varying non-Darcy flow, this paper presents a mathematical model that accounts for combined effects of non-Darcy flow, phase miscibility, and gas compressibility in radial two-phase displacements. Results show that in low-permeability formations when CO2 is injected at high rates, non-Darcy simulations forecast better displacement efficiency compared to flow under Darcy conditions. This will have a positive effect on the formation CO2 storage capacity. This, however, comes at the cost of increased well pressures. More favorable estimations of the pressure buildup are obtained when CO2 compressibility is taken into account because reservoir pressures are reduced due to the change in the gas phase properties. Also, non-Darcy flow results in a significant reduction in halite precipitation in the near-well region, with a positive effect on CO2 injectivity. In the examples shown, non-Darcy flow conditions may lead to significantly different pressure and saturation distributions in the near-well region, with potentially important implications for CO2 injectivity.

  15. Model and simulation for melt flow in micro-injection molding based on the PTT model

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Kong, Lingchao; Li, Qian; Ying, Jin; Shen, Changyu

    2011-12-01

    Unsteady viscoelastic flows were studied using the finite element method in this work. The Phan-Thien-Tanner (PTT) model was used to represent the rheological behavior of viscoelastic fluids. To effectively describe the microscale effects, the slip boundary condition and surface tension were added to the mathematical model for melt flow in micro-injection molding. The new variational equation of pressure, including the viscoelastic parameters and slip boundary condition, was generalized using integration by parts. A computer code based on the finite element method and finite difference method was developed to solve the melt flow problem. Numerical simulation revealed that the melt viscoelasticity plays an important role in the prediction of melt pressure, temperature at the gate and the succeeding melt front advancement in the cavity. Using the viscoelastic model one can also control the rapid increase in simulated pressure, temperature, and reduce the filling difference among different cavities. The short shot experiments of micro-motor shaft showed that the predicted melt front from the viscoelastic model is in fair agreement with the corresponding experimental results.

  16. FR Number Effect on Downcomer Flow pattern Development in Cold Leg Injection Scenarios

    SciTech Connect

    Gavritas, Mirela; Woods, Brian G.

    2002-07-01

    In addition to acquiring data for code verification, the recent rapid Boron dilution (RBD) test program at the University of Maryland 2 x 4 Thermalhydraulic Loop Facility (UM 2 x 4 Loop) aimed to resolve several issues related to physical phenomena that can affect the re-boration of a boron dilute slug as it travels to the core. Among these issues, confirmation was sought that buoyancy plays a minimal role in the mixing of the slug as it travels through the downcomer. The tests showed, however, that the Froude (Fr) number substantially impacts the downcomer flow pattern. The slug distribution in the downcomer clearly changes from penetrating downwards along a single jet when the Fr number is smaller than approximately 6 to splitting into two jets that form a stagnation region under the injection site when Fr exceeds approximately 10. This observation was initially made evaluating the evolution histories of Fr numbers throughout individual tests. Closer examination of a broad family of tests showed that the flow pattern can actually be predicted based on Fr numbers determined from initial and boundary test conditions. Even though global figures of merit for mixing, e.g., azimuthally averaged scalar descriptors of mixing at a horizontal level of the downcomer, are only weakly affected by Fr number changes, this finding has substantial implications to the computational assessment of rapid Boron-dilution (RBD) consequences. A thorough understanding of the flow field is an essential prerequisite in computational fluid dynamics modeling. (authors)

  17. Flow-injection spectrophotometric determination of calcium using murexide as a color agent.

    PubMed

    Grudpan, K; Jakmunee, J; Vaneesorn, Y; Watanesk, S; Maung, U A; Sooksamiti, P

    1998-08-01

    FI spectrophotometric determination of calcium using murexide has been developed. The problem of the color of the dye fading and/or its complex in an alkaline medium in the batch method can be overcome by taking advantage of FIA. A calcium solution is injected into an ethylenediamine-ethylenediamine hydrochloride buffer (1 M, pH 11) which also serves as a masking agent, and is then merged with the aqueous murexide (0.005%, w/v) and continuously monitored. Simple FIA manifolds, including an LED colorimeter detector hooked up to a PC-based data acquisition and evaluation system are described. Optimization of FIA systems has been made. The proposed procedures have been validated by using reference materials and comparing the results with the standard methods, and then applied to ores and drug samples.

  18. Jet formation in GRBs: a semi-analytic model of MHD flow in Kerr geometry with realistic plasma injection

    SciTech Connect

    Globus, Noemie; Levinson, Amir

    2014-11-20

    We construct a semi-analytic model for magnetohydrodynamic (MHD) flows in Kerr geometry that incorporates energy loading via neutrino annihilation on magnetic field lines threading the horizon. We compute the structure of the double-flow established in the magnetisphere for a wide range of energy injection rates and identify the different operation regimes. At low injection rates, the outflow is powered by the spinning black hole via the Blandford-Znajek mechanism, whereas at high injection rates, it is driven by the pressure of the plasma deposited on magnetic field lines. In the intermediate regime, both processes contribute to the outflow formation. The parameter that quantifies the load is the ratio of the net power injected below the stagnation radius and the maximum power that can be extracted magnetically from the black hole.

  19. An automated microtechnique for selenium determination in human body fluids by flow injection hydride atomic absorption spectrometry (FI-HAAS).

    PubMed

    Negretti de Brätter, V E; Brätter, P; Tomiak, A

    1990-03-01

    The automation of a flow injection system for the hydride generation of selenium and its subsequent determination by atomic absorption spectrometry (FI-HAAS) is described. Pre-treatment of the sample and the details of the automated equipment are reviewed. For the FI-HAAS selenium analysis a volume of 350 microL of acid-digested sample solution is injected. The on-line generated hydride is delivery by the gas-liquid separator and is transported together with an Ar stream to the heated quartz cell for the atomic absorption determination. The absolute detection limit is 35 pg Se; the relative detection limit 0.10 micrograms/L Se. The absolute determination limit in real biological samples is 110 pg Se; the relative detection limit 0.31 micrograms/L Se. The accuracy of the method was evaluated via analysis of certified standard reference materials. Quality control was made by comparing FI-HAAS and instrumental neutron activation analysis (INAA), as an independent analytical method. Two acid-digestion procedures (in open vessels at atmospheric pressure and bomb-digestion in pressure vessels) were experimentally tested. To determine the effectiveness of the selenium reduction and the completeness of the selenium hydride formation a parallel selenium determination was carried out by means of ICP-AES and FI-HAAS analysis. FI-HAAS was applied for blood serum analysis of children undergoing long-term total parenteral nutrition, as well as of persons with high dietary selenium intake, and for human milk analysis. PMID:2135957

  20. Determination of trace metals in seawater by an automated flow injection ion chromatograph pretreatment system with ICPMS.

    PubMed

    Ho, Tung-Yuan; Chien, Chia-Te; Wang, Bing-Nan; Siriraks, Archava

    2010-09-15

    A novel flow injection ion chromatograph (FI-IC) system has been developed to fully automate pretreatment procedures for multi-elemental analysis of trace metals in seawater by inductively coupled plasma mass spectrometer (ICPMS). By combining 10-port, 2 position and 3-way valves in the FI-IC manifold, the system effectively increase sample throughput by simultaneously processing three seawater samples online for: sample loading, injection, buffering, preconcentration, matrix removal, metal elution, and sample collection. Forty-two seawater samples can be continuously processed without any manual handing. Each sample pretreatment takes about 10 min by consuming 25 mL of seawater and producing 5 mL of processed concentrated samples for multi-elemental offline analysis by ICPMS. The offline analysis improve analytical precision and significantly increase total numbers of isotopes determined by ICPMS, which include the metals Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V, and Zn. The blank value and detection limits of trace metals using the system with ICPMS analysis all range from 0.1 to 10 parts per trillion (ppt), except Al, Fe, and Zn. The accuracy of the pretreatment system was validated by measuring open-ocean and coastal reference seawater, NASS-5 and CASS-4. Using the system with ICPMS analysis, we have obtained reliable trace metal concentrations in the water columns of the South China Sea. Possessing the features of full automation, high throughput, low blank, and low reagent volume used, the system automates and simplifies rigorous and complicated pretreatment procedures for multi-elemental analysis of trace metals in seawater and effectively enhances analytical capacity for trace metal analysis in environmental and seawater samples.

  1. Chemiluminescence determination of folic acid by a flow injection analysis assembly

    NASA Astrophysics Data System (ADS)

    Wabaidur, Saikh Mohammad; Alam, Seikh Mafiz; Lee, Sang Hak; Alothman, Zeid Abdullah; Eldesoky, Gaber E.

    2013-03-01

    A flow injection (FI) method is reported for the determination of folic acid by chemiluminescence method. This method is based on the reaction of folic acid with Ru(bipy)32+ and Ce(IV) to produce chemiluminescence. The calibration curve was linear over the range of 2.5 × 10-5-3.1 × 10-7 mol/L with a detection limit of 2.3 × 10-8 mol/L (S/N = 3). The relative standard deviation of 1.0 × 10-6 mol/L folic acid was found 3.5% (n = 11). The influences of potential interfering substances were studied. The recovery was higher than 95.3%. The method was accurate, sensitive, and effective for assay of folic acid. This CL method was successfully applied to the determination of folic acid in pharmaceutical preparations. The mechanism of CL reaction was also studied.

  2. Photodegradation and flow-injection determination of dithiocarbamate fungicides in natural water with chemiluminescence detection.

    PubMed

    Waseem, Amir; Yaqoob, Mohammad; Nabi, Abdul

    2009-03-01

    A simple and rapid flow-injection method is reported for the determination of dithiocarbamate fungicides (maneb, nabam and thiram) based on chemiluminescence detection. The method involves the photodegradation of dithiocarbamate fungicides via UV light in an alkaline medium. Photoproducts are then reacted with luminol in the absence of an oxidant. Linear calibration graphs were obtained in the range 0.01 - 4.0 mg L(-1) for maneb and nabam and 0.05 - 1.0 mg L(-1) for thiram with relative standard deviations (n = 4) in the range 1.0 - 2.6%. The detection limits (S/N = 3) of maneb, nabam and thiram were 10, 8.0 and 5.0 ng mL(-1), respectively, with a sample throughput of 100 h(-1). The method was successfully applied to determine these dithiocarbamate fungicides in spiked natural water samples.

  3. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    PubMed

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity.

  4. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.

    PubMed

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-09

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.

  5. Flow-injection determination of trace amounts of dopamine by chemiluminescence detection.

    PubMed

    Zhang, L; Teshima, N; Hasebe, T; Kurihara, M; Kawashima, T

    1999-10-01

    A flow-injection analysis (FIA) for the determination of dopamine has been developed. The method is based on the inhibition effect of dopamine on the iron(II)-induced chemiluminescence (CL) of 10,10'-dimethyl-9,9'-biacridinium dinitrate (lucigenin). The presence of a non-ionic surfactant, polyoxyethylene (23) lauryl ether (Brij 35), caused an increase in the inhibition effect. The present method allows the determination of dopamine over the range 1x10(-8)-2x10(-7) mol dm(-3). The relative standard deviation was 0.7% for eight determinations of 6x10(-8) mol dm(-3) dopamine. The detection limit (S/N=3) was 2x10(-9) mol dm(-3) with the sampling rate of 40 samples h(-1). The effect of other catecholamines and compounds of similar structure on the lucigenin CL reaction was studied: quinone, hydroquinone, norepinephrine, pyrocatechol and l-dopa suppressed the CL intensity.

  6. Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis

    PubMed Central

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-01

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 μM for methanol and 0.2 μM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement. PMID:24412899

  7. Determination of SO(2) in Wines Using a Flow Injection Analysis System with Potentiometric Detection.

    PubMed

    Araújo; Couto; Lima; Montenegro

    1998-01-19

    This paper describes the development and application of a flow injection analysis system manifold comprising a gas diffusion unit and a potentiometric detector to the determination of free and total SO(2) in white and red wines. A homogeneous crystalline iodide double-membrane tubular electrode was used as detector. SO(2) determination based on the Ripper method was carried out by dosing the iodide formed in the oxidation of SO(2) with iodine, followed by the separation of the formed compound through a diffusion Teflon membrane. The results obtained from the analyses of free and total SO(2) in 30 wine samples showed good agreement between the proposed method and the rapid assay method recommended by the UE and OIV. The relative error deviations of the results obtained by both methods were <6%. This procedure is suitable for samples with approximately 3.2-180 mg L(-)(1) SO(2), performing determinations of 75-100 samples h(-)(1).

  8. Sibutramine selective electrodes for batch and flow injection determinations in pharmaceutical preparations.

    PubMed

    Zayed, S I M; Issa, Y M

    2010-01-01

    The construction and electrochemical response characteristics of two new polyvinyl chloride (PVC) membrane sensors for the determination of sibutramine hydrochloride were described. The sensors are based on the ion association complexes of sibutramine with sodium tetraphenylborate (NaTPB) or phosphotungstic acid (PTA) using dibutyl phthalate as plasticizing solvent. The sensors display a fast, stable response over the concentration range 3.84 x 10(-5)-1.00 x 10(-2) M sibutramine hydrochloride monohydrate (SibuCl), with cationic slopes of 57.7 +/- 0.57 and 59.7 +/- 1.79 mV concentration decade(-1) and detection limits of 8.91 x 10(-6) and 1.47 x 10(-5) M in case of sibutramine-tetraphenylborate (Sibu-TPB) and sibutramine-phosphotungstate ((Sibu)(3)-PT), respectively. The proposed sensors have been successfully applied for the determination of sibutramine hydrochloride in Regitrim capsules in batch and flow injection (FI) conditions.

  9. [Determination of trace amounts of zinc in nickel electrolyte by flow injection on-line enrichment].

    PubMed

    Zhou, Z; Wang, Y; Dong, Z; Tong, K; Guo, X; Guo, X

    1999-10-01

    A method for the determination of trace amount of zinc in nickel electrolyte utilizing the flow injection on-line enrichment technique is reported in this paper. Atomic absorption spectrometer was used as detector. Zinc was separated from large amounts of nickel andother components in the electrolyte by absorption its chlorocomplex on a mini-column packed with strongly basic anion exchangers. It was found that sodium chloride containing in the electrolyte offered a sufficient chloride concentration needed for the formation of the zinc chlorocomplex and thus no additional reagent was required for the determination. The throughput of the method is 30 determinations per hour. The detection limit of the method is 0.002 microg x mL(-1) and the precision is 1.9% (RSD). The proposed method is rapid and cost-effective. It has been used for almost three years in the quality control of the electrolyte in the factory with great success. PMID:15822278

  10. A direct numerical simulation of turbulent channel flow with injection and suction

    NASA Astrophysics Data System (ADS)

    Sumitani, Yasushi; Kasagi, Nobuhide

    1993-07-01

    A direct numerical simulation (DNS) of the fully developed turbulent channel flow with uniform wall injection and suction was carried out. The Reynolds number, which was based on the channel half width and the friction velocity averaged on the two walls, was set to be 150, while the Prandtl number was 0.71. The isothermal boundary condition was imposed at the walls. With any buoyancy effect neglected, temperature was considered as a passive scalar. The computation was executed on about 1.6 x lO exp 6 grid points by using a spectral method. The statistics obtained include the mean velocity and temperature, Reynolds stresses, and turbulent heat fluxes. Each term in the budget equations of the second-order velocity and temperature correlations and of their destruction rates was also calculated. It is found that the injection decreases the friction coefficient, but tends to stimulate the near-wall turbulence activity so that the Reynolds stresses and turbulent heat fluxes are increased, while the suction influences inversely.

  11. Flow injection spectrophotometry using natural reagent from Morinda citrifolia root for determination of aluminium in tea.

    PubMed

    Tontrong, Sopa; Khonyoung, Supada; Jakmunee, Jaroon

    2012-05-01

    A flow injection (FI) spectrophotometric method with using natural reagent extracted from Morinda citrifolia root has been developed for determination of aluminium. The extract contained anthraquinone compounds which could react with Al(3+) to form reddish complexes which had maximum absorption wavelength at 499.0nm. The extract could be used as a reagent in FI system without further purification to obtain pure compound. A sensitive method for determination of aluminium in concentration range of 0.1-1.0mgL(-1), with detection limit of 0.05mgL(-1) was achieved. Relative standard deviations of 1.2% and 1.7% were obtained for the determination of 0.1 and 0.6mgL(-1) Al(3+) (n=11). Sample throughput of 35h(-1) was achieved with the consumption of 3mL each of carrier and reagent solutions per injection. The developed method was successfully applied to tea samples, validated by the FAAS standard method. The method is simple, fast, economical and could be classified as a greener analytical method.

  12. Determination of ammonia in beers by pervaporation flow injection analysis and spectrophotometric detection.

    PubMed

    Wang, Lijuan; Cardwell, Terence J; Cattrall, Robert W; Luque de Castro, Maria D; Kolev, Spas D

    2003-08-29

    A pervaporation flow injection (PFI) method is described for the determination of ammonia in beers. After injecting the sample into a NaOH donor solution, ammonia and other volatiles are transferred in the pervaporation unit from the donor stream to an acceptor stream containing sodium salicylate and nitroprusside, which subsequently mixes with alkaline sodium dichloroisocyanurate to allow the classical Berthelot reaction to take place. The blue-coloured complex formed is monitored spectrophotometrically at 655 nm. A linear calibration curve with a range of 0.1-40 mg l(-1) was obtained. The method has a detection limit of 0.05 mg l(-1) and is capable of a sampling frequency of 11 h(-1) at 4 mg l(-1) ammonia. It was applied successfully to the determination of ammonia in synthetic samples and unfiltered lager beers. The advantages of the present method over the ammonia ion-selective electrode method and the PFI system based on mixed indicator detection are discussed. PMID:18969154

  13. A gravity driven micro flow injection wetting film extraction system on a polycarbonate chip.

    PubMed

    Cai, Zengxuan; Chen, Hengwu; Chen, Biao; Huang, Chaobiao

    2006-01-15

    A micro flow injection wetting film liquid-liquid extraction system has been developed for trace analyte concentration and on-chip detection. A hydrophobic channel fabricated on a polycarbonate chip was used to support the wetting film, and hydrostatic pressure generated by the difference in liquid levels was employed to drive the fluids. Sequential injection of segments of aqueous sample solution and organic solvent was conducted by switching the sample- or solvent-containing vials to an on-chip sampling probe, and detection was performed by a co-focused, laser induced fluorescence detector. Using butyl rhodamine B as a model analyte and butanol as the solvent for both film-coating and elution, various experimental conditions such as hydrostatic pressure, coating time, channel length, sampling volume, and sample acidity were investigated. Under optimized conditions, a 24-fold enrichment factor was obtained with the consumption of about 3 microL sample solution, and a detection limit (3sigma) of 6.0 x 10(-9)M butyl rhodamine B was achieved at the sampling rate of 19 h(-1). Eleven consecutive runs of a 1.0 x 10(-5)M butyl rhodamine B solution produced a relative standard deviation of 1.5% for the detected fluorescence signals.

  14. Sensitive determination of 2-methoxyestradiol in pharmaceutical preparations and serum samples using flow injection chemiluminescence.

    PubMed

    Yao, Hanchun; Zhang, Min; Zeng, Wenyuan; Zeng, Xiaoying; Zhang, Zhenzhong

    2014-05-01

    A rapid and sensitive flow injection chemiluminescence (FI-CL) method is described for the determination of 2-methoxyestradiol (2ME) based on enhancement of the CL intensity from a potassium ferricyanide-calcein system in sodium hydroxide medium. The optimum conditions for the CL emission were investigated. Under optimized conditions, a linear calibration graph was obtained over the range 1.0 × 10(-8) to 1.0 × 10(-6) mol/L (r = 0.998) 2ME with a detection limit (3σ) of 5.4 × 10(-9) mol/L. The relative standard deviation (RSD) for 5.0 × 10(-7) mol/L 2ME was 1.7%. As a preliminary application, the proposed method was successfully applied to the determination of 2ME in injection solutions and serum samples. The possible CL mechanism was also proposed.

  15. On the existence of solutions of an equation arising in the theory of laminar flow in a uniformly porous channel with injection

    NASA Technical Reports Server (NTRS)

    Shih, Ke-Gang

    1987-01-01

    The existence of concave solutions of Berman's equation which describes the laminar flow in channels with injection through porous walls is established. It was found that the (unique) concave solutions exist for all injection Reynolds numbers R less than 0.

  16. [Determination of trace mercury in wastewater by a flow injection analysis composed of immobilized ionic liquid enrichment and colorimetric detection].

    PubMed

    Zhang, Jun; Mao, Li-li; Yang, Gui-peng; Gao, Xian-chi; Tang, Xu-li

    2010-07-01

    Amberlite XAD-7 resin was modified by room temperature ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate, [C6 mim]PF6) coating through a maceration method, gaining a new sort of hydrophobic adsorbent for the solid phase extraction mini-column. Trace inorganic mercury in wastewater samples was preconcentrated and determined by flow injection online mini-column sampling coupled with spectrophotometric determination. In acid medium, dithizone was employed as chelator with cetyltrimethylammonium bromide (CTMAB) to form a red neutral mercury-dithizone complex, which could be extracted quantificationally by solid phase extraction technique on the mini-column. Under the optimized conditions, the linearity and the detection limit of the proposed method were found to be 0.35 to 50.0 microg x L(-1) Hg2+ and 0.067 microg x L(-1) Hg2+, respectively. The enrichment factor of 25 times could be achieved with a 50 mL sampling volume and the developed procedure was successfully applied for the determination of mercury in the certified reference material (GSBZ50016-90) and the spiked dock wastewater samples with the recovery of 99%-103%. PMID:20828014

  17. Flow injection determination of hydrogen peroxide using catalytic effect of cobalt(II) ion on a dye formation reaction.

    PubMed

    Kurihara, Makoto; Muramatsu, Miyuki; Yamada, Mari; Kitamura, Naoya

    2012-07-15

    A novel flow injection photometric method was developed for the determination of hydrogen peroxide in rainwater. This method is based on a cobalt(II)-catalyzed oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone (MBTH) with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAOS) as a modified Trinder's reagent to produce intensely colored dye (λ(max)=530nm) in the presence of hydrogen peroxide at pH 8.4. In this method, 1,2-dihydroxy-3,5-benzenedisulfonic acid (Tiron) acted as an activator for the cobalt(II)-catalyzed reaction and effectively increased the peak height for hydrogen peroxide. The linear calibration graphs were obtained in the hydrogen peroxide concentration range 5×10(-8) to 2.2×10(-6)mol dm(-3) at a sampling rate of 20h(-1). The relative standard deviations for ten determinations of 2.2×10(-6) and 2×10(-7)mol dm(-3) hydrogen peroxide were 1.1% and 3.7%, respectively. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater samples and the analytical results agreed fairly well with the results obtained by different two reference methods; peroxidase method and hydrogen peroxide electrode method.

  18. [Theophylline pharmacokinetics in patients with liver diseases with reference to estimated hepatic blood flow].

    PubMed

    Nomura, F; Ohnishi, K; Ohto, M; Takeda, Y; Rikihisa, T; Kanakubo, Y

    1991-10-01

    Pharmacokinetics of theophylline were determined in patients with liver cirrhosis and idiopathic portal hypertension with reference to estimated hepatic blood flow assessed by indocyanine green (ICG). Decreased plasma clearance of theophylline was noted in patients with liver cirrhosis and the clearance was significantly lower in Child C group than in Child A, B groups (17.5 +/- 3.4 ml/Kg/hr vs 27.6 +/- 8.7, p less than 0.05). Theophylline has been classified as a drug with a low hepatic extraction ratio and it has been believed that changes in hepatic blood flow have little effect on its clearance. The results of present study indicate that theophylline clearance is basically not related to ICG clearance but to theophylline extraction ratio, supporting the common belief. However, it is noteworthy that the clearance was related to decreased hepatic blood flow rather than extraction ratio in a cirrhotic patient with huge extrahepatic shunt, suggesting that hepatic clearance of this drug could be affected by hepatic blood flow under some circumstances.

  19. CFD Validation of Gas Injection in Flowing Mercury over Vertical Smooth and Grooved Wall

    SciTech Connect

    Abdou, Ashraf A; Wendel, Mark W; Felde, David K; Riemer, Bernie

    2009-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron source at Oak Ridge National Laboratory (ORNL).The nuclear spallation reaction occurs when a proton beam hits liquid mercury. This interaction causes thermal expansion of the liquid mercury which produces high pressure waves. When these pressure waves hit the target vessel wall, cavitation can occur and erode the wall. Research and development efforts at SNS include creation of a vertical protective gas layer between the flowing liquid mercury and target vessel wall to mitigate the cavitation damage erosion and extend the life time of the target. Since mercury is opaque, computational fluid dynamics (CFD) can be used as a diagnostic tool to see inside the liquid mercury and guide the experimental efforts. In this study, CFD simulations of three dimensional, unsteady, turbulent, two-phase flow of helium gas injection in flowing liquid mercury over smooth, vertically grooved and horizontally grooved walls are carried out with the commercially available CFD code Fluent-12 from ANSYS. The Volume of Fluid (VOF) model is used to track the helium-mercury interface. V-shaped vertical and horizontal grooves with 0.5 mm pitch and about 0.7 mm depth were machined in the transparent wall of acrylic test sections. Flow visualization data of helium gas coverage through transparent test sections is obtained with a high-speed camera at the ORNL target test facility (TTF). The helium gas mass flow rate is 8 mg/min and introduced through a 0.5 mm diameter port. The local mercury velocity is 0.9 m/s. In this paper, the helium gas flow rate and the local mercury velocity are kept constant for the three cases. Time integration of predicted helium gas volume fraction over time is done to evaluate the gas coverage and calculate the average thickness of the helium gas layer. The predicted time-integrated gas coverage over vertically grooved and horizontally grooved test sections is better than over a smooth wall. The

  20. Performance of 4600-pound-thrust centrifugal-flow-type turbojet engine with water-alcohol injection at inlet

    NASA Technical Reports Server (NTRS)

    Glasser, Philip W

    1950-01-01

    An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.

  1. Flow injection analysis biosensor for urea analysis in urine using enzyme thermistor.

    PubMed

    Mishra, Geetesh K; Sharma, Atul; Deshpande, Kanchanmala; Bhand, Sunil

    2014-10-01

    There is a need for analytical methods capable of monitoring urea levels in urine for patients under clinical monitoring to appraise renal function. Herein, we present a practical method to quantify levels of urea in human urine samples using flow injection analysis-enzyme thermistor (FIA-ET) biosensor. The biosensor comprises a covalently immobilized enzyme urease (Jack bean) on aminated silica support, which selectively hydrolyzes the urea present in the sample. Under optimized conditions, the developed biosensor showed a linear response in the range of 10-1,000 mM, R (2) = 0.99, and response time of 90 s in 100 mM phosphate buffer (PB) (flow rate of 0.5 mL/min, sample volume of 0.1 mL, and pH 7.2). The urea-spiked human urine samples showed minimal matrix interference in the range of 10-1,000 mM. Recoveries were obtained (92.26-99.80 %) in the spiked urine samples. The reliability and reproducibility of the developed biosensor were found satisfactory with percent relative standard deviation (% RSD) = 0.741. The developed biosensor showed excellent operational stability up to 30 weeks with 20 % loss in original response when used continuously at room temperature. These results indicate that the developed biosensor could be very effective to detect low and high levels of urea in urine samples.

  2. Sensitive and simple flow injection analysis of formaldehyde using an activated barrel plating nickel electrode.

    PubMed

    Chen, Pei-Yen; Yangi, Hsueh-Hui; Zen, Jyh-Myng; Shih, Ying

    2011-01-01

    A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 microg/mL formaldehyde was observed, and the LOD of 0.23 microg/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 microg/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample. PMID:22165025

  3. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    PubMed

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  4. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    NASA Astrophysics Data System (ADS)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  5. A reusable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay.

    PubMed

    Lu, H C; Chen, H M; Lin, Y S; Lin, J W

    2000-01-01

    A hydrophilic matrix of periodate-oxidized dextran was used as a double-sided linker to covalently immobilize Staphylococcus aureus protein A (SpA) molecules onto a poly-L-lysine-modified piezoelectric crystal surface to improve their stability, activity, and binding specificity with human immunoglobulin G (IgG) in flow injection assays. The prepared sensing crystals displayed best sensitivity and reusability at a flow rate of 140 microL/min. A human IgG concentration as low as 0.3 nM can be detected by this system. Up to 19 successive assay repetitions were achieved without significant loss of sensitivity using the same crystal. The analysis of adsorption kinetics indicates that such a preparation can greatly increase the amount of available active human IgG binding sites on immobilized SpA. Hardly any response arising from unspecific binding was detected. In addition, the sensing crystal prepared by this method was found to retain activity better than one prepared via direct deposition when stored in either wet or dry states. Finally, the prepared SpA-coated crystals were applied to the affinity immobilization of polyclonal goat anti-Schistosoma japonicum glutathione-S-transferase (GST) and were able to subsequently detect GST and its genetically engineered mutant either in a purified form or in the crude cell lysate. PMID:10662499

  6. Sensitive and simple flow injection analysis of formaldehyde using an activated barrel plating nickel electrode.

    PubMed

    Chen, Pei-Yen; Yangi, Hsueh-Hui; Zen, Jyh-Myng; Shih, Ying

    2011-01-01

    A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 microg/mL formaldehyde was observed, and the LOD of 0.23 microg/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 microg/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample.

  7. Flow injection potentiometric determination of saccharin in dietary products with relocation of filtration unit.

    PubMed

    Fatibello-Filho, O; Nóbrega, J A; Moraes Guaritá-Santos, A J

    1994-05-01

    A flow injection potentiometric procedure for saccharin determination in dietary products is proposed. Saccharin is precipitated as mercurous saccharinate and the excess of the mercurous cation is potentiometrically measured using a silver wire coated with a mercury film as the working electrode. A filter unit is used to avoid contact between the precipitate and the electrode surface. With relocation in the flow manifold, the accumulated precipitate is removed on-line. Sucrose, glucose, aspartame, sodium cyclamate and sodium benzoate do not interfere when present in amounts similar to those observed in commercial products. Results are comparable with those obtained by UV-spectrophotometry and the correlation coefficient between methods is equal to 0.9930. A linear relationship between DeltaE (mV) and the logarithm of saccharin concentration was obtained in the saccharin concentration range 2 x 10(-3) - 1 x 10(-2)M. The sampling frequency is 60/hour and only 0.76 mg of Hg(2+)(2) is consumed in each determination.

  8. Mercury speciation in sea food by flow injection cold vapor atomic absorption spectrometry using selective solid phase extraction.

    PubMed

    Vereda Alonso, E; Siles Cordero, M T; García de Torres, A; Cañada Rudner, P; Cano Pavón, J M

    2008-10-19

    An on-line inorganic and organomercury species separation, preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS or CV-ETAAS) coupled to a flow injection (FI) method was studied. The inorganic mercury species was retained on a column (i.d., 3 mm; length 3 cm) packed to a height of 0.7 cm with a chelating resin aminopropyl-controlled pore glass (550 A) functionalized with [1,5-bis (2 pyridyl)-3-sulphophenyl methylene thiocarbonohydrazyde] placed in the injection valve of a simple flow manifold. Methylmercury is not directly determined. Previous oxidation of the organomercurial species permitted the determination of total mercury. The separation of mercury species was obtained by the selective retention of inorganic mercury on the chelating resin. The difference between total and inorganic mercury determined the organomercury content in the sample. The inorganic mercury was removed on-line from the microcolumn with 6% (m/v) thiourea. The mercury cold vapor generation was performed on-line with 0.2% (m/v) sodium tethrahydroborate and 0.05% (m/v) sodium hydroxide as reducing solution. The determination was performed using CV-AAS and CV-ETAAS, both approaches have been used and compared for the speciation of mercury in sea food. A detection limit of 10 and 6 ng l(-1) was achieved for CV-AAS and CV-ETAAS, respectively. The precision for 10 replicate determinations at the 1 microg l(-1) Hg level was 3.5% relative standard deviation (R.S.D.), calculated from the peak heights obtained. Both approaches were validated with the use of two certified reference materials and by spiking experiments. By analyzing the two biological certified materials, it was evident that the difference between the total mercury and inorganic mercury corresponds to methylmercury. The concentrations obtained by both techniques were in agreement with the certified values or with differences of the certified values for total Hg(2+) and CH(3)Hg

  9. Automated on-line renewable solid-phase extraction-liquid chromatography exploiting multisyringe flow injection-bead injection lab-on-valve analysis.

    PubMed

    Quintana, José Benito; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2006-04-15

    In this paper, the third generation of flow injection analysis, also named the lab-on-valve (LOV) approach, is proposed for the first time as a front end to high-performance liquid chromatography (HPLC) for on-line solid-phase extraction (SPE) sample processing by exploiting the bead injection (BI) concept. The proposed microanalytical system based on discontinuous programmable flow features automated packing (and withdrawal after single use) of a small amount of sorbent (<5 mg) into the microconduits of the flow network and quantitative elution of sorbed species into a narrow band (150 microL of 95% MeOH). The hyphenation of multisyringe flow injection analysis (MSFIA) with BI-LOV prior to HPLC analysis is utilized for on-line postextraction treatment to ensure chemical compatibility between the eluate medium and the initial HPLC gradient conditions. This circumvents the band-broadening effect commonly observed in conventional on-line SPE-based sample processors due to the low eluting strength of the mobile phase. The potential of the novel MSFI-BI-LOV hyphenation for on-line handling of complex environmental and biological samples prior to reversed-phase chromatographic separations was assessed for the expeditious determination of five acidic pharmaceutical residues (viz., ketoprofen, naproxen, bezafibrate, diclofenac, and ibuprofen) and one metabolite (viz., salicylic acid) in surface water, urban wastewater, and urine. To this end, the copolymeric divinylbenzene-co-n-vinylpyrrolidone beads (Oasis HLB) were utilized as renewable sorptive entities in the micromachined unit. The automated analytical method features relative recovery percentages of >88%, limits of detection within the range 0.02-0.67 ng mL(-1), and coefficients of variation <11% for the column renewable mode and gives rise to a drastic reduction in operation costs ( approximately 25-fold) as compared to on-line column switching systems. PMID:16615800

  10. Feedback-amplified electrochemical dual-plate boron-doped diamond microtrench detector for flow injection analysis.

    PubMed

    Lewis, Grace E M; Gross, Andrew J; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Marken, Frank

    2015-08-01

    An electrochemical flow cell with a boron-doped diamond dual-plate microtrench electrode has been developed and demonstrated for hydroquinone flow injection electroanalysis in phosphate buffer pH 7. Using the electrochemical generator-collector feedback detector improves the sensitivity by one order of magnitude (when compared to a single working electrode detector). The diffusion process is switched from an analyte consuming "external" process to an analyte regenerating "internal" process with benefits in selectivity and sensitivity.

  11. Simple flow injection method for simultaneous spectrophotometric determination of Fe(II) and Fe(III).

    PubMed

    Kozak, J; Jodłowska, N; Kozak, M; Kościelniak, P

    2011-09-30

    The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO(3)) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH≅3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05-4.0 and 0.09-6.0 mg L(-1), respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.

  12. Crosslinked poly (4-vinylpyridine-ethylene glycol dimethacrylate) used for preconcentration of Cd(II) and its determination by flow injection flame atomic absorption spectrometry.

    PubMed

    Tarley, César Ricardo Teixeira; Farias, Natália Cristina Botteon; Lima, Giovana de Fátima; de Oliveira, Fernanda Midori; Bonfílio, Rudy; Dragunski, Douglas Cardoso; Clausen, Débora Nobile; Segatelli, Mariana Gava

    2014-01-01

    The main purpose of this research was to synthesize crosslinked poly(4-vinylpyridine-ethylene glycol dimethacrylate) and evaluate its feasibility for highly sensitive and selective determination of Cd in water samples by using flow injection flame atomic absorption spectrometry. The crosslinked polymer, prepared by bulk polymerization, was characterized by FTIR spectrometry and scanning electron microscopy. The flow injection solid-phase method was based on preconcentration of 20.0 mL of sample through 100 mg of the polymer packed into a minicolumn at pH 8.25 using a flow rate of 6.0 mL/min, followed by elution with 1.0 M HNO3. The sample solution parameters influencing the preconcentration behavior of Cd ions, such as pH, buffer concentration, and flow rate, were simultaneously studied and optimized using a Doehlert matrix. Values of 0.10 microg/L, 2.0-210 microg/L, 32.3, 18/h, 9.7/min, and 0.62 mL were obtained for LOD, linear range, preconcentration factor, sample throughput, concentration efficiency, and consumption index, respectively. The effect of the presence of the inorganic cations Pb(II), U(IV), Co(II), Hg(II), Cu(II), As(II), Mg(II), Sb(III), Ni(II), Th(IV), Ba(II), and Ca(II) on the method was studied, and the preconcentration of Cd was observed to have no interference. The accuracy of the method was assessed by analysis of natural water samples using addition and recovery tests and inductively coupled plasma/MS as a reference technique, as well as by analysis of a standard reference material of trace elements in water. PMID:24830174

  13. Numerical Solution for the Effect of Suction or Injection on Flow of Nanofluids Past a Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Abd Elazem, Nader Y.

    2016-06-01

    The flow of nanofluids past a stretching sheet has attracted much attention owing to its wide applications in industry and engineering. Numerical solution has been discussed in this article for studying the effect of suction (or injection) on flow of nanofluids past a stretching sheet. The numerical results carried out using Chebyshev collocation method (ChCM). Useful results for temperature profile, concentration profile, reduced Nusselt number, and reduced Sherwood number are discussed in tabular and graphical forms. It was also demonstrated that both temperature and concentration profiles decrease by an increase from injection to suction. Moreover, the numerical results show that the temperature profiles decrease at high values of Prandtl number Pr. Finally, the present results showed that the reduced Nusselt number is a decreasing function, whereas the reduced Sherwood number is an increasing function at fixed values of Prandtl number Pr, Lewis number Le and suction (or injection) parameter s for variation of Brownian motion parameter Nb, and thermophoresis parameter Nt.

  14. Thrust vectoring effects of a transverse gas injection into a supersonic cross flow of an axisymmetric convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Zmijanovic, V.; Lago, V.; Leger, L.; Depussay, E.; Sellam, M.; Chpoun, A.

    2013-03-01

    The transverse gas injection into the main supersonic flow of an axisymmetric convergent-divergent (C-D) propulsive nozzle is investigated for the fluidic thrust vectoring (FTV) possibilities as the segment part of the CNES "Perseus" project. Truncated ideal contour and conical C-D nozzles with different position and angle of the secondary circular injection port are selected as test models in the current numerical and experimental study. Analytical approach revealed parameters which affect the FTV efficiency, these criterions are further numerically explored and results data of the conical nozzle test cases are compared and coupled with the ones from experiments. It is found that upstream inclined injection has positive effect on vectoring capabilities and that with moderate secondary to primary mass-flow ratios, ranging around 5%, pertinent vector side force is possible to be achieved.

  15. Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow injection mass spectrometry (FIMS) and proton nuclear magnetic resonance spectrometry (1H-NMR), two metabolic fingerprinting methods, and DNA sequencing were used to identify and authenticate Actaea species. Initially, samples of Actaea racemosa L. from a single source were distinguished from ...

  16. Continuous and stopped flow injection for catalytic determination of total iodine in urine.

    PubMed

    Nacapricha, D; Muangkaew, S; Ratanawimarnwong, N; Shiowatana, J; Grudpan, K

    2001-01-01

    This paper describes the use of flow injection (FI) techniques for the determination of iodine in urine, based on the catalytic effect of iodide in the redox reaction between Ce(IV) and As(III). The proposed procedures minimize errors in the conventional batch method arising from the reading of absorbance at a fixed time after addition of Ce(IV) reagent. Two FI systems, for the continuous and stopped modes of operation were assembled. In the continuous-FI system, a thermostated bath was used to increase the sensitivity. However this is not necessary for the stopped-FI system. The two systems are comparable in terms of sensitivity, sample throughput and detection limit. The continuous-FI and the stopped-FI exhibited detection limits (3 sigma) of 2.3 and 3 micrograms I l-1 respectively. Both systems have equal sample throughputs of 35 samples h-1. Calibration plots for both techniques are linear. The FI procedures provide very short analysis times compared to the batch procedure. Using the linear regression test, there is no significant difference between the results from the four methods, i.e., continuous-FI, stopped-FI, conventional method and ICP-MS. The proposed methods are readily applicable for automation and can be an alternative to the conventional procedure for the survey of the iodine deficiency disorder. A condition for sample digestion is also proposed to reduce the amount of chloric acid required for complete digestion. Kinetic information of the reaction can also be obtained from the stopped flow mode.

  17. Pharmacokinetic of pseudoephedrine in rat serum with luminol-pepsin chemiluminescence system by flow injection analysis.

    PubMed

    Luo, Kai; Li, Yajuan; Zheng, Xiaohui; Song, Zhenghua

    2015-02-01

    Pepsin (Pep) accelerated the electron transferring rate of excited 3-aminophathlate and enhanced luminol-dissolved oxygen chemiluminescence (CL) intensity, and the flow injection (FI) luminol-Pep CL system was first developed. It was found that the CL intensity of luminol-Pep reaction could be remarkably inhibited by pseudoephedrine (PE); the decrement of CL intensity was linear to the logarithm of PE concentration in the range of 0.1∼100.0 nmol L(-1) with a detection limit of 0.03 nmol mL(-1) (3σ). At a flow rate of 2.0 mL min(-1), the complete process including washing and sampling was performed within 40 s, offering a sample throughput of 90 h(-1). This proposed method was successfully applied to determining PE in rat serum for 18 h after intragastric administration with the elimination ratio of 42.34 % and recoveries from 90.3 to 110.6 %. The pharmacokinetic results showed that PE could be rapidly absorbed into serum with peak concentration (C max) of 1.45 ± 0.18 g L(-1) at the time (T max) of 1.49 ± 0.02 h; the absorption half-life (0.35 ± 0.04 h), elimination half-life (1.86 ± 0.24 h), the area under curve (109.81 ± 6.03 mg L(-1) h(-1)), mean residence time (3.82 ± 0.27 h), and elimination rate constant (2.26 ± 0.23 L g(-1) h(-1)) in rats vivo were derived, respectively. The possible CL mechanism of luminol-Pep-PE reaction was discussed by FI-CL, fluorescence, and molecular docking (MD) methods.

  18. Microfluidic Flow Injection Analysis with Thermal Lens Microscopic Detection for Determination of NGAL

    NASA Astrophysics Data System (ADS)

    Radovanović, Tatjana; Liu, Mingqiang; Likar, Polona; Klemenc, Matjaž; Franko, Mladen

    2015-06-01

    A combined microfluidic flow injection analysis-thermal lens microscopy (FIA-TLM) system was applied for determination of neutrophil gelatinase-associated lipocalin (NGAL)—a biomarker of acute kidney injury. NGAL was determined following a commercial ELISA assay and transfer of the resulting solution into the FIA-TLM system with a 100 m deep microchannel. At an excitation power of 100 mW, the FIA-TLM provided about seven times lower limits of detection (1.5 pg as compared to a conventional ELISA test, and a sample throughput of six samples per minute, which compares favorably with sample throughput of the microtiter plate reader, which reads 96 wells in about 30 min. Comparison of results for NGAL in plasma samples from healthy individuals and for NGAL dynamics in patients undergoing coronary angiography measured with transmission mode spectrometry on a microtiter plate reader and with FIA-TLM showed good agreement. In addition to improved LOD, the high sensitivity of FIA-TLM offers possibilities of a further reduction of the total reaction time of the NGAL ELISA test by sacrificing some of the sensitivity while reducing the duration of individual incubation steps.

  19. Method for (236)U Determination in Seawater Using Flow Injection Extraction Chromatography and Accelerator Mass Spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Steier, Peter; Nielsen, Sven; Golser, Robin

    2015-07-21

    An automated analytical method implemented in a flow injection (FI) system was developed for rapid determination of (236)U in 10 L seawater samples. (238)U was used as a chemical yield tracer for the whole procedure, in which extraction chromatography (UTEVA) was exploited to purify uranium, after an effective iron hydroxide coprecipitation. Accelerator mass spectrometry (AMS) was applied for quantifying the (236)U/(238)U ratio, and inductively coupled plasma mass spectrometry (ICPMS) was used to determine the absolute concentration of (238)U; thus, the concentration of (236)U can be calculated. The key experimental parameters affecting the analytical effectiveness were investigated and optimized in order to achieve high chemical yields and simple and rapid analysis as well as low procedure background. Besides, the operational conditions for the target preparation prior to the AMS measurement were optimized, on the basis of studying the coprecipitation behavior of uranium with iron hydroxide. The analytical results indicate that the developed method is simple and robust, providing satisfactory chemical yields (80-100%) and high analysis speed (4 h/sample), which could be an appealing alternative to conventional manual methods for (236)U determination in its tracer application. PMID:26105019

  20. Study on the interaction of catalase with pesticides by flow injection chemiluminescence and molecular docking.

    PubMed

    Tan, Xijuan; Wang, Zhuming; Chen, Donghua; Luo, Kai; Xiong, Xunyu; Song, Zhenghua

    2014-08-01

    The interaction mechanisms of catalase (CAT) with pesticides (including organophosphates: disulfoton, isofenphos-methyl, malathion, isocarbophos, dimethoate, dipterex, methamidophos and acephate; carbamates: carbaryl and methomyl; pyrethroids: fenvalerate and deltamethrin) were first investigated by flow injection (FI) chemiluminescence (CL) analysis and molecular docking. By homemade FI-CL model of lg[(I0-I)/I]=lgK+nlg[D], it was found that the binding processes of pesticides to CAT were spontaneous with the apparent binding constants K of 10(3)-10(5) L mol(-1) and the numbers of binding sites about 1.0. The binding abilities of pesticides to CAT followed the order: fenvalerate>deltamethrin>disulfoton>isofenphos-methyl>carbaryl>malathion>isocarbophos>dimethoate>dipterex>acephate>methomyl>methamidophos, which was generally similar to the order of determination sensitivity of pesticides. The thermodynamic parameters revealed that CAT bound with hydrophobic pesticides by hydrophobic interaction force, and with hydrophilic pesticides by hydrogen bond and van der Waals force. The pesticides to CAT molecular docking study showed that pesticides could enter into the cavity locating among the four subdomains of CAT, giving the specific amino acid residues and hydrogen bonds involved in CAT-pesticides interaction. It was also found that the lgK values of pesticides to CAT increased regularly with increasing lgP, Mr, MR and MV, suggesting that the hydrophobicity and steric property of pesticide played essential roles in its binding to CAT.

  1. Spectrofluorimetric kinetic determination of selenium (IV) by flow injection analysis in cationic micellar medium.

    PubMed

    Safavi, A; Mirzaee, M

    2000-02-01

    A sensitive catalytic kinetic spectrofluorimetric method for determining ng ml(-1) of selenium by flow injection analysis has been developed. The method, based on the catalytic effect of Se (IV) on the reduction of resorufin by sulphide, in the presence of cetylpyridinium chloride, is monitored spectrofluorimetrically (lambda(ex)=480 nm; lambda(em)=583 nm). The linearity range of the calibration graph is dependent on the concentration of sulphide. The variables affecting the rate of the reaction were investigated. The method is simple, rapid, precise, sensitive, and widely applicable. The limit of detection is 1 ng ml(-1) Se (IV), and the calibration range is 5-1000 ng ml(-1). Sampling rate is 60 samples h(-1), and the relative standard deviation of 12 determinations of 100 ng ml(-1) Se was 0.76%. The determination of Se (IV) in the presence of Se (VI) and total selenium is described. The method was applied to the determination of Se in selenium tablets, and several synthetic samples.

  2. Flow injection analysis as a tool for enhancing oceanographic nutrient measurements--a review.

    PubMed

    Worsfold, Paul J; Clough, Robert; Lohan, Maeve C; Monbet, Philippe; Ellis, Peter S; Quétel, Christophe R; Floor, Geerke H; McKelvie, Ian D

    2013-11-25

    Macronutrient elements (C, N and P) and micronutrient elements (Fe, Co, Cu, Zn and Mn) are widely measured in their various physico-chemical forms in open ocean, shelf sea, coastal and estuarine waters. These measurements help to elucidate the biogeochemical cycling of these elements in marine waters and highlight the ecological and socio-economic importance of the oceans. Due to the dynamic nature of marine waters in terms of chemical, biological and physical processes, it is advantageous to make these measurements in situ and in this regard flow injection analysis (FIA) provides a suitable shipboard platform. This review, therefore, discusses the role of FIA in the determination of macro- and micro-nutrient elements, with an emphasis on manifold design and detection strategies for the reliable shipboard determination of specific nutrient species. The application of various FIA manifolds to oceanographic nutrient determinations is discussed, with an emphasis on sensitivity, selectivity, high throughput analysis and suitability for underway analysis and depth profiles. Strategies for enhancing sensitivity and minimizing matrix effects, e.g. refractive index (schlieren) effects and the important role of uncertainty budgets in underpinning method validation and data quality are discussed in some detail.

  3. Flow injection analysis of nitrate and nitrite in commercial baby foods.

    PubMed

    Chetty, Adrian A; Prasad, Surendra

    2016-04-15

    Commercial baby foods are an easy alternative to home-made meals especially for working parents in a nuclear family therefore it is imperative to determine the nitrate and nitrite content in commercially available baby foods varieties marketed in Fiji. A total of 108 baby food samples were analyzed for nitrate and nitrite using our standardized flow injection analysis (FIA) technique with colorimetric detection technique employing sulfanilamide and N-(1-naphthyl)ethylenediamine dihydrochloride as color reagents where the samples throughput was 38 h(-1). The commercial baby food varieties chosen comprised of vegetables, cereals, fruits and milk. The study shows that the nitrate content of the baby foods studied ranges from 2.10 to 220.67 mg kg(-1) whereas the nitrite content ranges from 0.44 to 3.67 mg kg(-1). Typical recoveries of spiked nitrate residues ranged from 92% to 106%. The study shows that the average nitrate content of commercially available baby foods in Fiji descends below the maximum level proposed by the European Union Legislation. PMID:26616981

  4. The electrochemiluminescence of luminol on titania nanotubes functionalised indium tin oxide glass for flow injection analysis.

    PubMed

    Zhao, Qun; Xiao, Changbin; Tu, Yifeng

    2015-10-01

    The titania nanotubes (TiNTs) had been immobilised onto the indium tin oxide (ITO) coated glass to intensify the electrochemiluminescence (ECL) of luminol. The morphology, structure and properties such as specific surface area and transmittance of synthesised TiNTs were characterised. The results indicated that the TiNTs was several hundred nanometres in length with the diameter of 20 nm. In flow injection analysis (FIA) mode, the TiNTs dramatically enhanced the ECL emission of luminol for about 25 multiple, meanwhile decreased the requirement of buffer pH and exciting potential. The ECL emission of luminol on functionalised ITO electrode has sensitive response toward hydrogen peroxide, and extraordinarily responsive toward the antioxidant. Under the optimal conditions, the ECL emission exhibited a linear response within the concentration range from 0.1 mg L(-1) to 30 mg L(-1) and an absolute detection limit of 1.65×10(-10) g of resveratrol. The gross antioxidant activity of blueberry and kiwi were determined with satisfactory recoveries.

  5. Flow-injection determination of isoniazid using sodium dichloroisocyanurate- and trichloroisocyanuric acid-luminol chemiluminescence systems.

    PubMed

    Safavi, A; Karimi, M A; Hormozi Nezhad, M R

    2004-06-01

    A chemiluminescent (CL) method for the determination of isoniazid is described. The method is based on the CL generated during the oxidation of luminol by sodium dichloroisocyanurate (SDCC) and trichloroisocyanuric acid (TCCA) in alkaline medium. It was found that isoniazid greatly enhances this CL intensity when present in the luminol solution. Based on this observation, a new flow-injection CL method for the determination of isoniazid has been proposed in this paper. The detection limits were 2 and 3 ng ml(-1) isoniazid for the SDCC-luminol and TCCA-luminol CL systems, respectively. The relative CL intensity was linear with the isoniazid concentration in the range of 4-100 and 100-200 ng ml(-1) for the SDCC-luminol CL system, and 6-200 and 200-1000 ng ml(-1) for the TCCA-luminol CL system. The results obtained for the assay of pharmaceutical preparations compared well with those obtained by the official methods and demonstrated good accuracy and precision. PMID:15178311

  6. Flow injection analysis of nitrate and nitrite in commercial baby foods.

    PubMed

    Chetty, Adrian A; Prasad, Surendra

    2016-04-15

    Commercial baby foods are an easy alternative to home-made meals especially for working parents in a nuclear family therefore it is imperative to determine the nitrate and nitrite content in commercially available baby foods varieties marketed in Fiji. A total of 108 baby food samples were analyzed for nitrate and nitrite using our standardized flow injection analysis (FIA) technique with colorimetric detection technique employing sulfanilamide and N-(1-naphthyl)ethylenediamine dihydrochloride as color reagents where the samples throughput was 38 h(-1). The commercial baby food varieties chosen comprised of vegetables, cereals, fruits and milk. The study shows that the nitrate content of the baby foods studied ranges from 2.10 to 220.67 mg kg(-1) whereas the nitrite content ranges from 0.44 to 3.67 mg kg(-1). Typical recoveries of spiked nitrate residues ranged from 92% to 106%. The study shows that the average nitrate content of commercially available baby foods in Fiji descends below the maximum level proposed by the European Union Legislation.

  7. Geochemical consequences of flow differentiation in a multiple injection dike (Trinity ophiolite, N. California)

    USGS Publications Warehouse

    Brouxel, M.

    1991-01-01

    A clinopyroxene-rich dike of the Trinity ophiolite sheeted-dike complex shows three different magmatic pulses, probably injected in a short period of time (no well developed chilled margin) and important variations of the clinopyroxene and plagioclase percentages between its core (highly porphyritic) and margins (aphyric). This variation, interpreted as related to a flow differentiation phenomenon (mechanical phenocryst redistribution), has important geochemical consequences. It produces increases in the FeO, MgO, CaO, Cr and Ni contents from the margin to the core, together with increases in the clinopyroxene percentage, and decreases in the SiO2, Zr, Y, Nb and REE contents together with a decrease in the percentage of the fine-grained groundmass toward the core of the dike. This mineralogical redistribution, which also affects the incompatible trace element ratios because of the difference in plagioclase and clinopyroxene mineral/liquid partition coefficients, illustrate the importance of fractionation processes outside of a magma chamber. ?? 1991.

  8. Kinetic flow-injection analysis of boron using 5-fluorosalicylaldehyde and H-acid.

    PubMed

    Sarenqiqige; Kodani, Takamasa; Kajiwara, Mari; Takehara, Kô; Yoshimura, Kazuhisa

    2014-01-01

    Boric acid reacts with 5-fluorosalicylaldehyde (F-SA) and 8-amino-1-naphthol-3,6-disulfonic acid (HA) to form the boric acid-fluoroazomethine H complex (F-AzB) that is now being used for the flow-injection analysis (FIA) of boric acid. At pH 6.5, the F-AzB complexation proceeded fairly fast, whereas the fluoroazomethine H (F-AzH) formation was slow. Thus, highly sensitive measurement of F-AzB was possible if the reaction time was controlled using the FIA method to decrease the background absorbance of F-AzH at the analytical wavelength. The optimum conditions for the color developing reaction were investigated for single and dual channel systems. The former system was simple, applicable to the determination of boron in reversed osmosis (RO) desalination water with a detection limit (LOD) of 4 μg B dm(-3). For the latter system, the calibration range was 0.005 to 10 mg B dm(-3) with an LOD of 1 μg B dm(-3), which can be applicable to natural water analyses of boron. These methods could analyze 15 - 20 samples in one hour. The results of the boron concentration measurement for water samples from an RO desalination plant, industrial wastewater and river water were in fairly good agreement with those obtained by other methods.

  9. Determination of Trace Nickel in Natural Water by Flow Injection Analysis with Cetrimonium Bromide as Sensitizer

    NASA Astrophysics Data System (ADS)

    Zhao, Z. X.; Zhang, C. X.; Li, N.; Zhang, X. S.

    2015-11-01

    2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is a highly sensitive chromogenic reagent that can react with most of the transition and alkaline earth metals. The Ni(II)-5-Br-PADAP complex is more stable than other metal-5-Br-PADAP complexes. In the presence of seignette salt, ethylenediaminetetraacetic acid (EDTA) can decompose most of the 5-Br-PADAP complexes with metals except for iron, cobalt, and nickel. Cetrimonium bromide (CTMAB) as a sensitizer for the color reaction forms a ternary complex with nickel and 5-Br-PADAP with maximum absorption wavelength at 561 nm. CTMAB can significantly improve the sensitivity and selectivity of nickel determination, as well as the stability and solubility of compounds. In this study, the determination of trace nickel in natural water samples was performed by flow injection analysis. The calibration lines were established in the range of 0-200 μg/l of nickel (n ≥ 3), and the limit of detection was 0.093 μg/l. The relative standard deviation was 2.55% for the determination of 25 μg/l nickel (n ≥ 20). The recoveries of this method ranged from 91.0 to 101% for environmental water samples. A large amount of aluminum, calcium, cadmium, copper, bicarbonate, magnesium, zinc, and iron, except for cobalt, did not interfere with the determination of nickel.

  10. A flow injection μ-solid phase extraction system based on electrospun polyaniline nanocomposite.

    PubMed

    Bagheri, Habib; Khanipour, Peyman; Roostaie, Ali

    2016-02-12

    In this study, a fast and sensitive flow injection μ-solid phase extraction (FI-μ-SPE) technique based on an electrospun polyaniline (PANI) nanocomposite in conjunction with gas chromatography-mass spectrometry (GC-MS) was developed. The PANI-based nanocomposite was synthesized by electrospinning of a solution containing polyvinyl alcohol (PVA)/PANI. The majority of PVA template was subsequently removed from the whole PVA/PANI nanofibers blend by exposing the electrospun nanocomposite to hot water. The homogeneity, porosity and characterization of the electrospun nanofibers were investigated by the scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Due to the polar-oriented nature of the prepared nanofibrous nitrogen-containing sorbent, its capability was examined by FI-μ-SPE of some selected triazines, as model compounds, from aquatic media. After optimizing the extraction conditions, the intraday relative standard deviation values for a double distilled water spiked with the selected triazines were in range of 8.9-9.5% (n=3) while the limits of detection were between 0.03-0.09 ng mL(-1). The linearity of the method was in the concentration range of 0.1-500 ng mL(-1). The proficiency of the developed method was validated by analyzing paddy, well and tap water samples and the relative recovery values were found to be in the range of 83-95% under the optimized conditions.

  11. Flow injection analysis as a tool for enhancing oceanographic nutrient measurements--a review.

    PubMed

    Worsfold, Paul J; Clough, Robert; Lohan, Maeve C; Monbet, Philippe; Ellis, Peter S; Quétel, Christophe R; Floor, Geerke H; McKelvie, Ian D

    2013-11-25

    Macronutrient elements (C, N and P) and micronutrient elements (Fe, Co, Cu, Zn and Mn) are widely measured in their various physico-chemical forms in open ocean, shelf sea, coastal and estuarine waters. These measurements help to elucidate the biogeochemical cycling of these elements in marine waters and highlight the ecological and socio-economic importance of the oceans. Due to the dynamic nature of marine waters in terms of chemical, biological and physical processes, it is advantageous to make these measurements in situ and in this regard flow injection analysis (FIA) provides a suitable shipboard platform. This review, therefore, discusses the role of FIA in the determination of macro- and micro-nutrient elements, with an emphasis on manifold design and detection strategies for the reliable shipboard determination of specific nutrient species. The application of various FIA manifolds to oceanographic nutrient determinations is discussed, with an emphasis on sensitivity, selectivity, high throughput analysis and suitability for underway analysis and depth profiles. Strategies for enhancing sensitivity and minimizing matrix effects, e.g. refractive index (schlieren) effects and the important role of uncertainty budgets in underpinning method validation and data quality are discussed in some detail. PMID:24216194

  12. Selective and Sensitive Chemiluminescence Determination of MCPB: Flow Injection and Liquid Chromatography.

    PubMed

    Meseguer-Lloret, Susana; Torres-Cartas, Sagrario; Catalá-Icardo, Mónica; Gómez-Benito, Carmen

    2016-02-01

    Two new chemiluminescence (CL) methods are described for the determination of the herbicide 4-(4-chloro-o-tolyloxy) butyric acid (MCPB). First, a flow injection chemiluminescence (FI-CL) method is proposed. In this method, MCPB is photodegraded with an ultraviolet (UV) lamp and the photoproducts formed provide a great CL signal when they react with ferricyanide in basic medium. Second, a high-performance liquid chromatography chemiluminescence (HPLC-CL) method is proposed. In this method, before the photodegradation and CL reaction, the MCPB and other phenoxyacid herbicides are separated in a C18 column. The experimental conditions for the FI-CL and HPLC-CL methods are optimized. Both methods present good sensitivity, the detection limits being 0.12 µg L(-1) and 0.1 µg L(-1) (for FI-CL and HPLC-CL, respectively) when solid phase extraction (SPE) is applied. Intra- and interday relative standard deviations are below 9.9%. The methods have been satisfactorily applied to the analysis of natural water samples. FI-CL method can be employed for the determination of MCPB in simple water samples and for the screening of complex water samples in a fast, economic, and simple way. The HPLC-CL method is more selective, and allows samples that have not been resolved with the FI-CL method to be solved.

  13. Flow-Injection Amperometric Determination of Tacrine based on Ion Transfer across a Water–Plasticized Polymeric Membrane Interface

    PubMed Central

    Ortuño, Joaquin A.; Rueda, Carlos

    2007-01-01

    A flow-injection pulse amperometric method for determining tacrine, based on ion transfer across a plasticized poly(vinyl chloride) (PVC) membrane, was developed. A four-electrode potentiostat with ohmic drop compensation was used, while a flow-through cell incorporated the four electrodes and the membrane, which contained tetrabutylammonium tetraphenylborate. The influence of the applied potential and of the flow-injection variables on the determination of tacrine was studied. In the selected conditions, a linear relationship between peak height and tacrine concentration was found up to 4×10-5M tacrine. The detection limit was 1×10-7M. Good repeatability was obtained. Some common ions and pharmaceutical excipients did not interfere.

  14. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    NASA Technical Reports Server (NTRS)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  15. Sickle cell anemia: reference values of cerebral blood flow determined by continuous arterial spin labeling MRI.

    PubMed

    Arkuszewski, M; Krejza, J; Chen, R; Melhem, E R

    2013-04-01

    Sickle cell anemia (SCA) is a chronic illness associated with progressive deterioration in patients' quality of life. The major complications of SCA are cerebrovascular accidents (CVA) such as asymptomatic cerebral infarct or overt stroke. The risk of CVA may be related to chronic disturbances in cerebral blood flow (CBF), but the thresholds of "normal" steady-state CBF are not well established. The reference tolerance limits of CBF can be useful to estimate the risk of CVA in asymptomatic children with SCA, who are negative for hyperemia or evidence of arterial narrowing. Continuous arterial spin labeling (CASL) MR perfusion allows for non-invasive quantification of global and regional CBF. To establish such reference tolerance limits we performed CASL MR examinations on a 3-Tesla MR scanner in a carefully selected cohort of 42 children with SCA (mean age, 8.1±3.3 years; range limits, 2.3-14.4 years; 24 females), who were not on chronic transfusion therapy, had no history of overt stroke or transient ischemic attack, were free of signs and symptoms of focal vascular territory ischemic brain injury, did not have intracranial arterial narrowing on MR angiography and were at low risk for stroke as determined by transcranial Doppler ultrasonography.

  16. Numerical analysis of the non-equilibrium plasma flow in the gaseous electronics conference reference reactor

    NASA Astrophysics Data System (ADS)

    Bijie, Yang; Ning, Zhou; Quanhua, Sun

    2016-01-01

    The capacitively coupled plasma in the gaseous electronics conference reference reactor is numerically investigated for argon flow using a non-equilibrium plasma fluid model. The finite rate chemistry is adopted for the chemical non-equilibrium among species including neutral metastable, whereas a two-temperature model is employed to resolve the thermal non-equilibrium between electrons and heavy species. The predicted plasma density agrees very well with experimental data for the validation case. A strong thermal non-equilibrium is observed between heavy particles and electrons due to its low collision frequency, where the heavy species remains near ambient temperature for low pressure and low voltage conditions (0.1 Torr, 100 V). The effects of the operating parameters on the ion flux are also investigated, including the electrode voltage, chamber pressure, and gas flow rate. It is found that the ion flux can be increased by either elevating the electrode voltage or lowering the gas pressure. Project supported by the National Natural Science Foundation of China (Nos. 11372325, 11475239).

  17. Online concentration by field-amplified sample injection in acidic buffer for analysis of fangchinoline and tetrandrine in herbal medicine by flow injection-micellar electrokinetic capillary chromatography.

    PubMed

    Liu, Lihong; Chen, Xingguo; Hu, Zhide

    2005-12-01

    A novel, rapid, and continuous online concentration approach based on field-amplified sample injection for the analysis of fangchinoline and tetrandrine was developed in this paper by combination of flow injection-MEKC. The BGE used was a solution composed of 75 mM H3PO4-triethylamine-2.5% v/v polyoxyethylene sorbitan monolaurate-20% v/v methanol buffer (pH* 5.0). The analytes prepared in 50% v/v aqueous ethanol were used as the test analytes. Sample was injected electrokinetically between plugs of water. When the cations reached the boundary between the water plug and BGE, they slowed down and became concentrated. Thereafter, MEKC was initiated for the separation. This results in 6.8-8.9-fold improvement in concentration sensitivity relative to conventional CE methods. The separation could be achieved within 10 min and sample throughput rate can reach up to 50/h. The repeatability (defined as RSD) was 4.8, 4.4% with peak height evaluation and 3.6, 0.94% with peak area evaluation for TET and FAN, respectively. PMID:16259014

  18. Combined uncertainty estimation for the determination of the dissolved iron amount content in seawater using flow injection with chemiluminescence detection

    PubMed Central

    Floor, Geerke H.; Clough, Robert; Lohan, Maeve C.; Ussher, Simon J.; Worsfold, Paul J.

    2015-01-01

    Abstract This work assesses the components contributing to the combined uncertainty budget associated with the measurement of the Fe amount content by flow injection chemiluminescence (FI‐CL) in <0.2 μm filtered and acidified seawater samples. Amounts of loaded standard solutions and samples were determined gravimetrically by differential weighing. Up to 5% variations in the loaded masses were observed during measurements, in contradiction to the usual assumptions made when operating under constant loading time conditions. Hence signal intensities (V) were normalised to the loaded mass and plots of average normalised intensities (in V kg−1) vs. values of the Fe amount content (in nmol kg−1) added to a “low level” iron seawater matrix were used to produce the calibration graphs. The measurement procedure implemented and the uncertainty estimation process developed were validated from the agreement obtained with consensus values for three SAFe and GEOTRACES reference materials (D2, GS, and GD). Relative expanded uncertainties for peak height and peak area based results were estimated to be around 12% and 10% (coverage factor k = 2), respectively. The most important contributory factors were the uncertainty on the sensitivity coefficient (i.e., calibration slope) and the within‐sequence‐stability (i.e., the signal stability over several hours of operation; here 32 h). For GD, using peak height measurements, these factors contributed respectively 69.7% and 21.6% while the short‐term repeatability accounted for only 7.9%. Therefore, an uncertainty estimation based on the intensity repeatability alone, as is often done in FI‐CL studies, is not a realistic estimation of the overall uncertainty of the procedure. PMID:27610049

  19. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-01-01

    A direct injection nebulizer (DIN) was designed, developed and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. In the HPLC mode, the LODDs were found to be comparable to those obtained by continuous-flow sample introduction into the ICP, or inferior by up to only a factor of four. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methyl-isobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organo-metallic species contained in synthetic mixtures, vanilla extracts and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered.

  20. A rapid and accurate method for determining protein content in dairy products based on asynchronous-injection alternating merging zone flow-injection spectrophotometry.

    PubMed

    Liang, Qin-Qin; Li, Yong-Sheng

    2013-12-01

    An accurate and rapid method and a system to determine protein content using asynchronous-injection alternating merging zone flow-injection spectrophotometry based on reaction between coomassie brilliant blue G250 (CBBG) and protein was established. Main merit of our approach is that it can avoid interferences of other nitric-compounds in samples, such as melamine and urea. Optimized conditions are as follows: Concentrations of CBBG, polyvinyl alcohol (PVA), NaCl and HCl are 150 mg/l, 30 mg/l, 0.1 mol/l and 1.0% (v/v), respectively; volumes of the sample and reagent are 150 μl and 30 μl, respectively; length of a reaction coil is 200 cm; total flow rate is 2.65 ml/min. The linear range of the method is 0.5-15 mg/l (BSA), its detection limit is 0.05 mg/l, relative standard deviation is less than 1.87% (n=11), and analytical speed is 60 samples per hour.

  1. The effect of initial flow nonuniformity on second-stage fuel injection and combustion in a supersonic duct. [supersonic combustion ramjet engine

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1975-01-01

    The effects of flow nonuniformity on second-stage hydrogen fuel injection and combustion in supersonic flow were evaluated. The first case, second-stage fuel injection into a uniform duct flow, produced data indicating that fuel mixing is considerably slower than estimates based on an empirical mixing correlation. The second-case, two-stage fuel injection (or second-stage fuel injection into a nonuniform duct flow), produced a large interaction between stages with extensive flow separation. For this case the measured wall pressure, heat transfer, and amount of reaction at the duct exit were significantly greater than estimates based on the mixing correlation. Substantially more second-stage fuel burned in the second case than in the first case. Overall effects of unmixedness/chemical kinetics were found not to be significant at the exit for stoichiometric fuel injection.

  2. Simultaneous determination of tin, germanium and molybdenum by diode array detection-flow injection analysis with partial least squares calibration model.

    PubMed

    Zou, Xiaoli; Li, Yuanqian; Li, Menglong; Zheng, Bo; Yang, Jingguo

    2004-03-10

    Simultaneous determination of tin, germanium and molybdenum in food samples has been established by flow injection-charge coupled detector (CCD) diode array detection spectrophotometry with partial least squares (PLS) algorithm. The method was based on the chromogenic reaction of metal ions and salicylflurone in the presence of cetyltrimethyl ammonium bromide. The overlapping spectra of these complexes are collected by CCD diode array detector and the multi-wavelength absorbance data are processed using partial least squares algorithm. The reaction conditions and analytical parameters of flow injection analysis have been investigated. The method was applied to directly determine Ge, Mo and Sn in several food samples after digestion with satisfactory results. The recoveries of spiked samples were 80.0-102.0% for tin, 86.3-92.0% for germanium and 83.2-95.2% for molybdenum, and the relative standard deviations for samples were 4.4-7.8%. Molybdenum in certified reference material of cattle liver was determined by the proposed method (n=8). The differential values between determined and guarantee values were within the given uncertain value ranges (t=1.687, P>0.05 for t-test). The samples of mung bean, kelp and pork liver were analyzed by the proposed method and inductively couple plasma-atomic emission spectroscopy (ICP-AES) method. The determination results of the two methods are in good agreement. The sampling rate is 30 samplesh(-1). PMID:18969354

  3. Flow injection assessment of nitrate contents in fresh and cooked fruits and vegetables grown in Fiji.

    PubMed

    Prasad, Surendra; Chetty, Adrian A

    2011-10-01

    Nitrates form part of the essential chemistry of soils and plants. Thus, plant roots are able to absorb nitrate directly from the soil. It has been discovered that human nitrate intake is mainly from vegetables. Vegetables play an important role in human nutrition since they are an outstanding source for vitamins, minerals, and biologically active compounds. In risk assessment of nitrate contents, this study reports the nitrate levels of 8 commonly consumed fruits and vegetables grown in Fiji, tomato (Lycopersicon esculentum), eggplant (Solanum melongena), capsicum (Capsicum annuum var. grossum), breadfruit (Artocarpus altilis), long bean (Vigna sesquipedalis), jackfruit (A. heterophyllus), pumpkin (Cucurbita pepo), and cucumber (Cucumis sativus). The effects of different types of cooking methods, baking, boiling, and frying, have also been studied. The validated flow injection analysis technique has been used to quantify the nitrate-N levels in the chosen products following nitrate extraction using the activated carbon technique. The mean values of nitrate levels in fresh products ranged from 25.83 to 281.02 mg NO(3) (-) kg(-1) . The study shows that boiling reduced nitrate contents by 65.37% to 25.25%. The frying in soy bean oil elevated nitrate contents from 354.79% to 86.69%, but after baking, nitrate contents remained almost constant with slight increasing trend in the case of tomato (19.97%). The nitrate levels published in the literature for the same types of fruits and vegetables studied have also been reviewed and compared. The average nitrate-N values were comparable or lower than overseas data, but did not present unpredictably high values, that is, they were below the risk level. PMID:22417577

  4. Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species

    NASA Astrophysics Data System (ADS)

    Huang, Huilian; Sun, Jianghao; McCoy, Joe-Ann; Zhong, Haiyan; Fletcher, Edward J.; Harnly, James; Chen, Pei

    2015-03-01

    Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. This method has proven to be a powerful tool for botanical authentication and in this study it was used to distinguish between three Actaea species prior to a more detailed chemical analysis using ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Black cohosh has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause. However, it has been known to be adulterated with the Asian Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. species (syn. Cimicifuga dahurica (Turcz.) Maxim). Existing methods for identification of black cohosh and differentiation of Actaea species are usually lengthy, laborious, and lack robustness, often based on the comparison of a few pre-selected components. Chemical fingerprints were obtained for 77 black cohosh samples and their related species using FIMS in the negative ion mode. The analysis time for each sample was less than 2 min. All data were processed using principal component analysis (PCA). FIMS fingerprints could readily differentiate all three species. Representative samples from each of the three species were further examined using UHPLC-MS to provide detailed profiles of the chemical differences between the three species and were compared to the PCA loadings. This study demonstrates a simple, fast, and easy analytical method that can be used to differentiate A. racemosa, Actaea podocarpa, and A. dahurica.

  5. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis.

    PubMed

    Nanita, Sergio C; Kaldon, Laura G

    2016-01-01

    Where does flow injection analysis mass spectrometry (FIA-MS) stand relative to ambient mass spectrometry (MS) and chromatography-MS? Improvements in FIA-MS methods have resulted in fast-expanding uses of this technique. Key advantages of FIA-MS over chromatography-MS are fast analysis (typical run time <60 s) and method simplicity, and FIA-MS offers high-throughput without compromising sensitivity, precision and accuracy as much as ambient MS techniques. Consequently, FIA-MS is increasingly becoming recognized as a suitable technique for applications where quantitative screening of chemicals needs to be performed rapidly and reliably. The FIA-MS methods discussed herein have demonstrated quantitation of diverse analytes, including pharmaceuticals, pesticides, environmental contaminants, and endogenous compounds, at levels ranging from parts-per-billion (ppb) to parts-per-million (ppm) in very complex matrices (such as blood, urine, and a variety of foods of plant and animal origin), allowing successful applications of the technique in clinical diagnostics, metabolomics, environmental sciences, toxicology, and detection of adulterated/counterfeited goods. The recent boom in applications of FIA-MS for high-throughput quantitative analysis has been driven in part by (1) the continuous improvements in sensitivity and selectivity of MS instrumentation, (2) the introduction of novel sample preparation procedures compatible with standalone mass spectrometric analysis such as salting out assisted liquid-liquid extraction (SALLE) with volatile solutes and NH4(+) QuEChERS, and (3) the need to improve efficiency of laboratories to satisfy increasing analytical demand while lowering operational cost. The advantages and drawbacks of quantitative analysis by FIA-MS are discussed in comparison to chromatography-MS and ambient MS (e.g., DESI, LAESI, DART). Generally, FIA-MS sits 'in the middle' between ambient MS and chromatography-MS, offering a balance between analytical

  6. Flow injection assessment of nitrate contents in fresh and cooked fruits and vegetables grown in Fiji.

    PubMed

    Prasad, Surendra; Chetty, Adrian A

    2011-10-01

    Nitrates form part of the essential chemistry of soils and plants. Thus, plant roots are able to absorb nitrate directly from the soil. It has been discovered that human nitrate intake is mainly from vegetables. Vegetables play an important role in human nutrition since they are an outstanding source for vitamins, minerals, and biologically active compounds. In risk assessment of nitrate contents, this study reports the nitrate levels of 8 commonly consumed fruits and vegetables grown in Fiji, tomato (Lycopersicon esculentum), eggplant (Solanum melongena), capsicum (Capsicum annuum var. grossum), breadfruit (Artocarpus altilis), long bean (Vigna sesquipedalis), jackfruit (A. heterophyllus), pumpkin (Cucurbita pepo), and cucumber (Cucumis sativus). The effects of different types of cooking methods, baking, boiling, and frying, have also been studied. The validated flow injection analysis technique has been used to quantify the nitrate-N levels in the chosen products following nitrate extraction using the activated carbon technique. The mean values of nitrate levels in fresh products ranged from 25.83 to 281.02 mg NO(3) (-) kg(-1) . The study shows that boiling reduced nitrate contents by 65.37% to 25.25%. The frying in soy bean oil elevated nitrate contents from 354.79% to 86.69%, but after baking, nitrate contents remained almost constant with slight increasing trend in the case of tomato (19.97%). The nitrate levels published in the literature for the same types of fruits and vegetables studied have also been reviewed and compared. The average nitrate-N values were comparable or lower than overseas data, but did not present unpredictably high values, that is, they were below the risk level.

  7. Flow-injection spectrophotometric determination of cyanate in bioremediation processes by use of immobilised inducible cyanase.

    PubMed

    Luque-Almagro, V M; Blasco, R; Fernández-Romero, J M; de Castro, M D Luque

    2003-11-01

    A new flow injection (FI) method for photometric monitoring of cyanate in bioremediation processes using immobilised native cyanase is described. The method is based on the catalytic reaction between cyanate and bicarbonate to produce ammonia and carbon dioxide in the presence of an inducible native cyanase, immobilised in a reactor packed with glass beads. Two degrees of purification of the biocatalyst were used-heated cell-free extract and purified extract of cyanase from Pseudomonas pseudoalcaligenes CECT 5344. The ammonia produced by the enzymatic reaction is finally monitored photometrically at 700 nm using a modification of the conventional Berthelot method. The method furnishes different calibration curves depending on the degree of purification of the cyanase, with linear ranges between 1.23 and 616.50 micromol L(-1) ( r(2)=0.9979, n=7) and between 1.07 and 308.25 micro mol L(-1) ( r(2)= 0.9992, n=7) for the heated cell-free extract and the purified cyanase extract, respectively. No statistically significant differences between the samples were found in the precision study evaluated at two cyanate concentration levels using one-way analysis of variance. A sampling frequency of 15 h(-1) was achieved. The method was used to monitor cyanate consumption in a cyanate bioremediation tank inoculated with Pseudomonas pseudoalcaligenes CECT 5344 strain. The correlation between cyanate degradation and ammonia production was tested using a conventional method. Finally, the method was applied to different samples collected from the bioremediation tank using the standard addition method; recoveries between 85.9 and 97.4% were obtained.

  8. Modeling of Transient Flow Mixing of Streams Injected into a Mixing Chamber

    NASA Technical Reports Server (NTRS)

    Voytovych, Dmytro M.; Merkle, Charles L.; Lucht, Robert P.; Hulka, James R.; Jones, Gregg W.

    2006-01-01

    Ignition is recognized as one the critical drivers in the reliability of multiple-start rocket engines. Residual combustion products from previous engine operation can condense on valves and related structures thereby creating difficulties for subsequent starting procedures. Alternative ignition methods that require fewer valves can mitigate the valve reliability problem, but require improved understanding of the spatial and temporal propellant distribution in the pre-ignition chamber. Current design tools based mainly on one-dimensional analysis and empirical models cannot predict local details of the injection and ignition processes. The goal of this work is to evaluate the capability of the modern computational fluid dynamics (CFD) tools in predicting the transient flow mixing in pre-ignition environment by comparing the results with the experimental data. This study is a part of a program to improve analytical methods and methodologies to analyze reliability and durability of combustion devices. In the present paper we describe a series of detailed computational simulations of the unsteady mixing events as the cold propellants are first introduced into the chamber as a first step in providing this necessary environmental description. The present computational modeling represents a complement to parallel experimental simulations' and includes comparisons with experimental results from that effort. A large number of rocket engine ignition studies has been previously reported. Here we limit our discussion to the work discussed in Refs. 2, 3 and 4 which is both similar to and different from the present approach. The similarities arise from the fact that both efforts involve detailed experimental/computational simulations of the ignition problem. The differences arise from the underlying philosophy of the two endeavors. The approach in Refs. 2 to 4 is a classical ignition study in which the focus is on the response of a propellant mixture to an ignition source, with

  9. Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90.

    PubMed

    Riccardi Sirtori, Federico; Caronni, Dannica; Colombo, Maristella; Dalvit, Claudio; Paolucci, Mauro; Regazzoni, Luca; Visco, Carlo; Fogliatto, Gianpaolo

    2015-08-30

    ESI-MS is a well established technique for the study of biopolymers (nucleic acids, proteins) and their non covalent adducts, due to its capacity to detect ligand-target complexes in the gas phase and allows inference of ligand-target binding in solution. In this article we used this approach to investigate the interaction of ligands to the Heat Shock Protein 90 (Hsp90). This enzyme is a molecular chaperone involved in the folding and maturation of several proteins which has been subjected in the last years to intensive drug discovery efforts due to its key role in cancer. In particular, reference compounds, with a broad range of dissociation constants from 40pM to 100μM, were tested to assess the reliability of ESI-MS for the study of protein-ligand complexes. A good agreement was found between the values measured with a fluorescence polarization displacement assay and those determined by mass spectrometry. After this validation step we describe the setup of a medium throughput screening method, based on ESI-MS, suitable to explore interactions of therapeutic relevance biopolymers with chemical libraries. Our approach is based on an automated flow injection ESI-MS method (AFI-MS) and has been applied to screen the Nerviano Medical Sciences proprietary fragment library of about 2000 fragments against Hsp90. In order to discard false positive hits and to discriminate those of them interacting with the N-terminal ATP binding site, competition experiments were performed using a reference inhibitor. Gratifyingly, this group of hits matches with the ligands previously identified by NMR FAXS techniques and confirmed by X-ray co-crystallization experiments. These results support the use of AFI-MS for the screening of medium size libraries, including libraries of small molecules with low affinity typically used in fragment based drug discovery. AFI-MS is a valid alternative to other techniques with the additional opportunities to identify compounds interacting with

  10. Estimating maximum sustainable injection pressure duringgeological sequestration of CO2 using coupled fluid flow andgeomechanical fault-slip analysis

    SciTech Connect

    Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F.

    2006-10-17

    This paper demonstrates the use of coupled fluid flow andgeomechanical fault slip (fault reactivation) analysis to estimate themaximum sustainable injection pressure during geological sequestration ofCO2. Two numerical modeling approaches for analyzing faultslip areapplied, one using continuum stress-strain analysis and the other usingdiscrete fault analysis. The results of these two approaches to numericalfault-slip analyses are compared to the results of a more conventionalanalytical fault-slip analysis that assumes simplified reservoirgeometry. It is shown that the simplified analytical fault-slip analysismay lead to either overestimation or underestimation of the maximumsustainable injection pressure because it cannot resolve importantgeometrical factors associated with the injection induced spatialevolution of fluid pressure and stress. We conclude that a fully couplednumerical analysis can more accurately account for the spatial evolutionof both insitu stresses and fluid pressure, and therefore results in amore accurate estimation of the maximum sustainable CO2 injectionpressure.

  11. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  12. Electroanalysis of tetracycline using nickel-implanted boron-doped diamond thin film electrode applied to flow injection system.

    PubMed

    Treetepvijit, Surudee; Chuanuwatanakul, Suchada; Einaga, Yasuaki; Sato, Rika; Chailapakult, Orawon

    2005-05-01

    The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) provided well-resolved oxidation irreversible cyclic voltammograms. The current signals were higher than those obtained using the as-deposited BDD electrode. Results using nickel-implanted boron-doped diamond thin film electrode in flow injection system coupled with amperometric detection are presented. The optimum potential for tetracycline was 1.55 V versus Ag/AgCl. The linear range of 1.0 to 100 microM and the detection limit of 10 nM were obtained. In addition, the application for drug formulation was also investigated.

  13. Flow injection conductometric system with gas diffusion separation for the determination of Kjeldahl nitrogen in milk and chicken meat.

    PubMed

    Junsomboon, Jaroon; Jakmunee, Jaroon

    2008-10-10

    A simple flow injection (FI) conductometric system with gas diffusion separation was developed for the determination of Kjeldahl nitrogen (or proteins) in milk and chicken meat. The sample was digested according to the Kjeldahl standard method and the digest was diluted and directly injected into the donor stream consisting of 4M NaOH. In alkaline medium, ammonium was converted to ammonia, which diffused through the PTFE membrane to dissolve in an acceptor stream (water). Dissociation of ammonia caused a change in conductance of the acceptor solution, which was linearly proportional to the concentration of ammonium originally present in the injected solution. A conductometric flow through cell and an amplifier circuit was fabricated, which helped improve sensitivity of the conductometric detection system. With using a plumbing Teflon tape as a gas diffusion membrane and without thermostating control of the system, a linear calibration graph in range of 10-100mgL(-1) N-NH(4) was obtained, with detection limit of 1mgL(-1) and good precision (relative standard deviation of 0.3% for 11 replicate injections of 50mgL(-1) N-NH(4)). The developed method was validated by the standard Kjeldahl distillation/titration method for the analysis of milk and chicken meat samples. The proposed system had sample throughput of 35h(-1) and consumed much smaller amounts of chemical than the standard method (275mg vs 17.5g of NaOH per analysis, respectively).

  14. Unsteady turbulent flow of a gas suspension in a channel under conditions of injection and forced pressure oscillations

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.

    2013-03-01

    A turbulent flow of a suspension of solid particles in a gas is considered. The suspension is located in a channel with permeable walls (the pressure at the left end face of the channel follows a sinusoidal law). The flow considered here reflects the principal features of the flow in the combustion chamber of a solid-propellant rocket motor. The unsteady flow of the gas suspension is described by using the Eulerian-Lagrangian approach. A stochastic variant of the discrete-trajectory approach is used for modeling the particle motion. The influence of the condensed phase on the turbulence characteristics and acoustic oscillations of the parameters of the working medium in the channel in the case of injection is discussed. The calculated results are compared with data obtained in a physical experiment.

  15. Flow injection spectrophotometry coupled with a crushed barium sulfate reactor column for the determination of sulfate ion in water samples.

    PubMed

    Burakham, Rodjana; Higuchi, Keiro; Oshima, Mitsuko; Grudpan, Kate; Motomizu, Shoji

    2004-12-15

    A new type of a reactor column, a crushed BaSO(4) reactor column used for the flow injection spectrophotometric determination of sulfate ion using the exchange reaction of sulfate ion and barium-dimethylsulfonazo III is proposed. The column is very simple and economical. It can be continuously used for 8h before washing with water for repeated usage of at least 1 month. The procedure is sensitive. Application to various water samples was demonstrated.

  16. Feedback-amplified electrochemical dual-plate boron-doped diamond microtrench detector for flow injection analysis

    PubMed Central

    Lewis, Grace E M; Gross, Andrew J; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Marken, Frank

    2015-01-01

    An electrochemical flow cell with a boron-doped diamond dual-plate microtrench electrode has been developed and demonstrated for hydroquinone flow injection electroanalysis in phosphate buffer pH 7. Using the electrochemical generator-collector feedback detector improves the sensitivity by one order of magnitude (when compared to a single working electrode detector). The diffusion process is switched from an analyte consuming “external” process to an analyte regenerating “internal” process with benefits in selectivity and sensitivity. PMID:25735831

  17. Determination of total iron in food samples after flow injection preconcentration on polyurethane foam functionalized with N,N-bis(salicylidene)-1,3-propanediamine.

    PubMed

    Abdel-Azeem, S M; Bader, N R; Kuss, H M; El-Shahat, M F

    2013-06-01

    A highly selective flow injection sorption system was developed for the fast determination of total iron in food samples. Iron (III) was reduced to iron (II) by ascorbic acid and preconcentrated on a mini-column packed with polyurethane foam (PUF) functionalized with N,N-bis(salicylidene)-1,3-propanediamine (SPDA). The retained Fe (II) was eluted with hydrochloric acid and subsequently reacted to 2,4,6-tri(2'-pyridyl)-1,3,5-triazine (TPTZ) then measured at 593 nm. The procedure has resulted preconcentration factor 36, sample frequency 20 h(-1) and detection limit 18 μg L(-1). The precision (RSD) was found to be 5.7% and 3.1% at concentration levels 0.1 and 5.0 μg mL(-1) iron (II), respectively. Finally, the method was successfully applied to determination of total iron in reference material and food samples. PMID:23411293

  18. Structure of backward facing step flow in low Reynolds number controlled by synthetic jet array with different injection velocities

    NASA Astrophysics Data System (ADS)

    Takano, Saneyuki

    2013-11-01

    This study presents detailed structure of separated flow downstream of a backward facing step affected by a non-uniform periodic disturbance along spanwise direction induced by synthetic jet array. The Reynolds number based on the step height ranged from 300 to 900. The frequency of the synthetic jet actuation was selected within the acceptance frequency range of separating shear layer. The periodic disturbance generates periodic transverse vortices whose size and shape change corresponding to the strength of the disturbance. The effect of different injection velocities in the synthetic jet array from those of adjacent jets on the transverse vortex structure and resulting reattachment process is discussed based on the wall shear stress measured by the Micro Flow Sensor (MFS) and flow visualization. Near wall behavior of the transverse vortex above the MFS was related to the sensor output. The results show that non-uniform injection velocity manipulated in the jet array induces difference in the distorted vortex structure and reattachment process in spanwise direction, which strongly depend on the Reynolds number and injection velocities of the synthetic jets.

  19. Non invasive monitoring of water flow in the vadose zone: the issue of mass balance in controlled tracer injection experiments.

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Deiana, R.; Kemna, A.

    2006-12-01

    The non invasive characterization of the subsurface, with the goal of obtaining data for the calibration of flow and transport hydrologic models, has become very popular in recent years. However, the process of converting geophysical data into quantitative estimates of volumetric water content and/or solute concentrations is not straightforward, as it requires knowledge of (1) resolution and penetration characteristics of the geophysical methods (imaging characteristics); (2) suitable constitutive laws for the conversion of geophysical quantities into hydrologic quantities (petrophysics). In addition, the calibration of flow/transport models on the basis of geophysically-derived data requires that the space/time evolution of these data be summarized in terms that can be directly compared with simulation results. In the case of controlled injection experiments having a point source (e.g. a borehole section), an effective tool is the analysis of spatial moments of the injected slug. However, important issues are still unresolved, particularly with regard to the identifiability of second order spatial moments (spread) and, more disturbing, mass balance. Field experience demonstrates that it is rarely possible to "see" the total injected tracer mass by means of a non invasive method, be it cross-hole ERT or GPR, leading to errors of the order of 50%. The reasons of these limitations lie mostly in the imaging characteristics of the methods. A better understanding of these characteristics can, on the other hand, provide new tools for a more accurate calibration of flow/transport models.

  20. Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa)

    PubMed Central

    Harnly, James; Chen, Pei; Sun, Jianghao; Huang, Huilian; Colson, Kimberly L.; Yuk, Jimmy; McCoy, Joe-Ann H.; Harbaugh Reynaud, Danica T.; Harrington, Peter B.; Fletcher, Edward J.

    2016-01-01

    Flow injection mass spectrometry and proton nuclear magnetic resonance spectrometry, two metabolic fingerprinting methods, and DNA sequencing were used to identify and authenticate Actaea species. Initially, samples of Actaea racemosa from a single source were distinguished from other Actaea species based on principal component analysis and soft independent modeling of class analogies of flow injection mass spectrometry and proton nuclear magnetic resonance spectrometry metabolic fingerprints. The chemometric results for flow injection mass spectrometry and proton nuclear magnetic resonance spectrometry agreed well and showed similar agreement throughout the study. DNA sequencing using DNA sequence data from two independent gene regions confirmed the metabolic fingerprinting results. Differences were observed between A. racemosa samples from four different sources, although the variance within species was still significantly less than the variance between species. A model based on the combined A. racemosa samples from the four sources consistently permitted distinction between species. Additionally, the combined A. racemosa samples were distinguishable from commercial root samples and from commercial supplements in tablet, capsule, or liquid form. DNA sequencing verified the lack of authenticity of the commercial roots but was unsuccessful in characterizing many of the supplements due to the lack of available DNA. PMID:26692457

  1. Analysis of wastewater for anionic and cationic nutrients by ion chromatography in a single run with sequential flow injection analysis.

    PubMed

    Karmarkar, S V

    1999-07-30

    To prevent nutrient enrichment and, hence the undesirable ecological impacts, the nutrients monitored in wastewater samples include two anionic species, i.e., nitrate and orthophosphate, and a cationic species, ammonium. Ion chromatography (IC) is one of the popularly used techniques for determinations of nitrate and phosphate in these samples, whereas determination of ammonium in wastewater samples is typically done using manual or automated wet chemistry, e.g., flow injection analysis (FIA). We have developed a sequential IC-FIA method, using Lachat's QC8000 IC system, which allows determinations of nitrate, phosphate and ammonia in a single injection. In this system, a QuickChem Small Suppressor cartridge is regenerated in between the samples. A sample is injected while leaving the suppressor off-line. Ammonium, a cation, elutes in the void volume of an anion-exchange column. The unsuppressed column effluent, exiting the conductivity flow cell, up to this point is used for FIA determination of ammonia. When ammonia exits the conductivity flow cell, a fully regenerated suppressor is brought in-line for conductometric detection of the anions. Analog data are simultaneously acquired from colorimetric and conductometric detectors, for the cationic and anionic nutrients, respectively. The method is accurate with spike recoveries in wastewater samples ranging from 91% for nitrate to 114% for chloride. It is precise with RSD values, for replicate analyses (n = 7) of a mid-range standard, ranging from 0.4% for phosphate to 1% for nitrate.

  2. Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa).

    PubMed

    Harnly, James; Chen, Pei; Sun, Jianghao; Huang, Huilian; Colson, Kimberly L; Yuk, Jimmy; McCoy, Joe-Ann H; Reynaud, Danica T Harbaugh; Harrington, Peter B; Fletcher, Edward J

    2016-02-01

    Flow injection mass spectrometry and proton nuclear magnetic resonance spectrometry, two metabolic fingerprinting methods, and DNA sequencing were used to identify and authenticate Actaea species. Initially, samples of Actaea racemosa from a single source were distinguished from other Actaea species based on principal component analysis and soft independent modeling of class analogies of flow injection mass spectrometry and proton nuclear magnetic resonance spectrometry metabolic fingerprints. The chemometric results for flow injection mass spectrometry and proton nuclear magnetic resonance spectrometry agreed well and showed similar agreement throughout the study. DNA sequencing using DNA sequence data from two independent gene regions confirmed the metabolic fingerprinting results. Differences were observed between A. racemosa samples from four different sources, although the variance within species was still significantly less than the variance between species. A model based on the combined A. racemosa samples from the four sources consistently permitted distinction between species. Additionally, the combined A. racemosa samples were distinguishable from commercial root samples and from commercial supplements in tablet, capsule, or liquid form. DNA sequencing verified the lack of authenticity of the commercial roots but was unsuccessful in characterizing many of the supplements due to the lack of available DNA. PMID:26692457

  3. Simultaneous determination of Cr(III) and Cr(VI) in tannery wastewater using low pressure ion chromatography combined with flow injection spectrophotometry

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Zhang, Xinshen; Yu, Lingyun; Wang, Li; Li, Hui

    2012-03-01

    Trivalent and hexavalent chromium have been successfully separated and determined using low pressure ion chromatography combined with flow injection spectrophotometric analysis (LPIC-FIA). A column packed with crosslinking starch microspheres was used for on-line separation of Cr(III) from Cr(VI) in a flow-injection system because of its absorptive effect on Cr(III). To determine the concentration of Cr(III) and Cr(VI) in samples, we used 3.0 mmol/L nitric acid to elute adsorbed Cr(III) from the column and then used ceric sulfate-sulfuric acid as oxidant to convert all Cr(III) into Cr(VI). Then, Cr(VI) directly came from the samples and Cr(VI) came from Cr(III) successively formed a amaranthine complex with diphenycarbazide and the complex shows a maximum absorption at 530 nm. Analytical parameters including the concentration of eluent and oxidant solution, oxidizing temperature, length of oxidizing reaction coil, reaction coil and injection coil, interfering effects, etc., were optimized. The limit of detection was 1.25 μg/L for Cr(VI) and 3.76 μg/L for Cr(III). The linear relationship between absorption with the concentration of Cr(VI) and Cr(III) was 0.001-1.000 mg/L and 0.030-1.000 mg/L with correlation coefficients of 0.9995 and 0.9994, respectively. The relative standard deviation of Cr(VI) and Cr(III) was 1.21% and 1.66%, respectively (n = 10). Major cations and anions did not show any interference. We validated this method through certified reference materials and through measuring the recovery in tannery wastewater.

  4. A comparison of continuous pneumatic nebulization and flow injection-direction injection nebulization for sample introduction in inductively coupled plasma-mass spectrometry

    SciTech Connect

    Crain, J.S.; Kiely, J.T.

    1997-08-01

    Samples containing Ni, Cd, Pb, and U were analyzed eighteen times over a two-month period using inductively coupled plasma-mass spectrometry (ICP-MS). Sample introduction was accomplished by either flow injection-direct injection nebulization (FI-DIN) or continuous pneumatic nebulization (CPN). Using comparable instrumental measurement procedures, FI-DIN analyses were 33% faster and generated 52% less waste than CPN analyses. Instrumental limits of detection obtained with FI-DIN and CPN were comparable but not equivalent (except in the case of Pb) because of nebulizer-related differences in sensitivity (i.e., signal per unit analyte concentration) and background. Substantial and statistically significant differences were found between FI-DIN and CPN Ni determinations, and in the case of laboratory waste samples, there were also small but statistically significant differences between Cd determinations. These small (2 to 3%) differences were not related to polyatomic ion interference (e.g., {sup 95}Mo{sup 16}O{sup +}), but in light of the time and waste savings to be realized, they should not preclude the use of FI-DIN in place of CPN for determination of Cd, Pb, U, and similar elements present at trace concentrations.

  5. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-06-01

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.

  6. Flow injection analysis with on-line nylon powder extraction for room-temperature phosphorescence determination of thiabendazole.

    PubMed

    Piccirilli, G N; Escandar, G M

    2009-07-30

    A fast and very selective flow-through phosphorescence optosensor was designed and characterized for the determination of the fungicide thiabendazole in water samples. For the first time, thiabendazole was determined using a flow-through optosensor based on the phosphorescence signals obtained when it is retained in a solid support. While thiabendazole does not phosphoresce in packing materials commonly used to fill the flow-cell, significant emission signals are observed when it is retained on nylon powder in the presence of iodide and sulfite. The experimental set-up was based on a flow-injection manifold coupled to an on-line phosphorescence detector containing nylon powder packed in a conventional flow-cell. Potassium iodide and sodium sulfite were added to sample aliquots to improve the thiabendazole phosphorescence and injected in the flow manifold using water as carrier. After the phosphorescence emission was registered, the analyte was eluted from the packed nylon with a 65% (v/v) methanol-water mixture. Optimal instrumentation, experimental and flow conditions were evaluated. Using a sample volume of 2000 microL, the analytical signal showed a very good linearity in the range 12.9-110 ng mL(-1), with a detection limit of 4.5 ng mL(-1), and a sample throughput of about 14 samples per hour. The effects of the presence of concomitant species in the thiabendazole phosphorescence signal were studied, and a comparison with the fluorescence nylon-powder optosensor was carried out and discussed. Finally, the applicability of the proposed optosensor was tested in water samples, and satisfactory recoveries ranging between 97% and 105% were obtained.

  7. Visualization of microvascular blood flow in mouse kidney and spleen by quantum dot injection with "in vivo cryotechnique".

    PubMed

    Terada, Nobuo; Saitoh, Yurika; Saitoh, Sei; Ohno, Nobuhiko; Jin, Takashi; Ohno, Shinichi

    2010-12-01

    The "in vivo cryotechnique" (IVCT) is a powerful tool to instantly capture blood flow, and all plasma components are well kept in tissue samples. In this study, we injected glutathione (GSH)-coated quantum dots (QDs), which emit a 650-nm-fluorescent signal with an ultraviolet excitation, into anesthetized mouse left ventricles, and IVCT was performed for kidneys, spleens and livers at 2, 5, 10, 15, 30s or 24h after the QD injection. The frozen tissues were processed to freeze-substitution fixation (FS). Then, some specimens were embedded in paraffin wax for tissue sectioning, and some were cut with a razor blade and directly mounted on glass slides. They were observed in fluorescence or confocal laser scanning microscope (CLSM). In the renal cortex, QD distribution was detected mostly in glomerular blood capillaries at 2second, and extended to peritubular blood capillaries at 5s. Distribution of horseradish peroxidase (HRP) in renal cortex at 30s after the injection was compared by the simultaneous injection with QDs. HRP was detected by a diaminobenzidin reaction in interstitium in addition to blood vessels, whereas QDs were localized only inside blood vessels. Three-dimensional reconstruction with CLSM demonstrated the capillary networks in the whole renal glomerulus. In the spleens, QDs were detected in splenic cords entering from sheathed capillaries at 10s, and extended to deeper splenic cords and also into splenic sinuses at 15s. Thus, strict time-dependent visualization of blood flow in tissue sections became possible within seconds by the new technical combination of IVCT and injection of QDs into animal organs. PMID:20858507

  8. Analytical model for steady flow through a finite channel with one porous wall with arbitrary variable suction or injection

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Darr, Samuel

    2014-12-01

    This paper presents an exact solution of two-dimensional laminar flow through a finite length channel with one porous wall. It improves upon previous solutions by (1) satisfying the no-slip boundary condition at the channel dead end, (2) adding a turbulent term to the porous wall boundary condition, (3) allowing for arbitrary variable suction or injection across the porous wall, and (4) model validation against new cryogenic liquid hydrogen and oxygen experimental data. Of particular interest in the current work is the modeling of cryogenic propellant flow through a porous liquid acquisition device (LAD) screen and channel inside a propellant tank. First, a detailed review of the literature is presented for previously attempted solutions to channel flow with one porous wall. Next, the governing equations, boundary conditions, and model assumptions are used to derive the analytical flow solution and present general model results for pressure and velocity fields within the channel. Then, the model solution is compared with horizontal LAD channel flow data in liquid oxygen as well as vertical LAD channel flow data in an inverted outflow configuration in liquid hydrogen. Model results are used to update the static cryogenic bubble point pressure model with a dynamic bubble point term which factors in enhanced convection and cooling at the screen during propellant outflow. Convective heat transfer at the LAD screen during outflow is also quantified by comparing model and data. The new analytical flow solution with the dynamic bubble point model is shown to compare well with available cryogenic experimental data.

  9. Modification of far-SOL flow by substantial gas injection in the inboard poloidal field null configuration on QUEST

    NASA Astrophysics Data System (ADS)

    Onchi, T.; Zushi, H.; Oyama, Y.; Mishra, K.; Nagashima, Y.; Hanada, K.; Idei, H.; Hasegawa, M.; Kuzmin, A.; Nakamura, K.; Fujisawa, A.; Nagaoka, K.; Quest Team

    2015-11-01

    Spontaneous plasma flow is generated in the inboard poloidal field null (IPN) configuration on QUEST spherical tokamak. Previous research has found that there is a significant relationship between plasma current and far-SOL flow. Consequently, the SOL flow is influenced by global modification of IPN plasma. For further understanding of the far-SOL flow, a hybrid probe measuring plasma flow, electron density ne, and temperature Te, was installed in the far-SOL. Using the hybrid probe and divertor probe array, two-point observation on an open flux surface was performed to study the SOL-divertor relationship and the particle transport. Substantial gas injection (GI) from private region of the IPN configuration leads to high core density but Ip-drop by 50 %. ne and Te in the far-SOL and divertor region are modified appreciably due to the GI. Poloidal flow reversal occurs and toroidal velocity drops by about 50 % in the far-SOL. We investigate modifications of pressure gradient, electric field and particle transport, and study complex structure of the far-SOL flow. This work is supported by Grants-in-aid for Scientific Research (S24226020, 15K17800) and the Collaborative Research Program of Research Institute for Applied Mechanics.

  10. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine

    PubMed Central

    Wosnik, Martin; Gunawan, Budi; Neary, Vincent S.

    2016-01-01

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy’s Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor’s angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor’s NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case—a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding—responsible for mean vertical advection—and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available. PMID:27684076

  11. A submersible battery-powered flow injection (FI) sensor for the determination of nitrate in estuarine and coastal waters.

    PubMed

    David, A R; McCormack, T; Worsfold, P J

    1999-01-01

    The design, construction and performance of a remotely deployed submersible flow injection-based nutrient (total oxidized nitrogen) sensor are described. The sensor featured a custom-built microcomputer and a solid-state, flow-through spectrophotometric detector, and the derivatization chemistry was based on in-line copper-cadmium reduction of nitrate to nitrite, and diazotization with N1NED and sulphanilamide. The limit of detection was 0.0014 mg l(-1) NO3-N and the linear range was 0.0014- 0.77 mg l(-1) with a 260 microl sample volume and a 20 mm path length flow cell. Results from submersed deployments in the Tamar estuary and North Sea are also reported.

  12. A submersible battery-powered flow injection (FI) sensor for the determination of nitrate in estuarine and coastal waters

    PubMed Central

    David, Anthony R. J.; McCormack, Trevor; Worsfold, Paul J.

    1999-01-01

    The design, construction and performance of a remotely deployed submersible flow injection-based nutrient (total oxidized nitrogen) sensor are described. The sensor featured a custom-built microcomputer and a solid-state, flow-through spectrophotometric detector, and the derivatization chemistry was based on in-line coppercadmium reduction of nitrate to nitrite, and diazotization with N1NED and sulphanilamide. The limit of detection was 0.0014 mg l-1 NO3-N and the linear range was 0.0014- 0.77 mg l-1 with a 260 μl sample volume and a 20 mm path length flow cell. Results from submersed deployments in the Tamar estuary and North Sea are also reported. PMID:18924837

  13. A submersible battery-powered flow injection (FI) sensor for the determination of nitrate in estuarine and coastal waters.

    PubMed

    David, A R; McCormack, T; Worsfold, P J

    1999-01-01

    The design, construction and performance of a remotely deployed submersible flow injection-based nutrient (total oxidized nitrogen) sensor are described. The sensor featured a custom-built microcomputer and a solid-state, flow-through spectrophotometric detector, and the derivatization chemistry was based on in-line copper-cadmium reduction of nitrate to nitrite, and diazotization with N1NED and sulphanilamide. The limit of detection was 0.0014 mg l(-1) NO3-N and the linear range was 0.0014- 0.77 mg l(-1) with a 260 microl sample volume and a 20 mm path length flow cell. Results from submersed deployments in the Tamar estuary and North Sea are also reported. PMID:18924837

  14. Laminar and turbulent flow solutions with radiation and ablation injection for Jovian entry. [radiative heating rates for the Galileo probe

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Tiwari, S. N.

    1980-01-01

    Laminar and turbulent flow-field solutions with coupled carbon-phenolic mass injection are presented for the forebody of a probe entering a nominal Jupiter atmosphere. Solutions are obtained for a 35-degree hyperboloid and for a 45-degree spherically blunted cone using a time-dependent, finite-difference method. The radiative heating rates for the coupled laminar flow are significantly reduced as compared to the corresponding no-blowing case; however, for the coupled turbulent flow, it is found that the surface radiative heating rates are substantially increased and often exceed the corresponding no-blowing values. Turbulence is found to have no effect on the surface radiative heating rates for the no-blowing solutions. The present results are compared with the other available solutions, and some additional solutions are presented.

  15. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-03-01

    The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  16. Determination of free and total sulfites in wine using an automatic flow injection analysis system with voltammetric detection.

    PubMed

    Goncalves, Luis Moreira; Grosso Pacheco, Joao; Jorge Magalhaes, Paulo; Antonio Rodrigues, Jose; Araujo Barros, Aquiles

    2010-02-01

    An automated flow injection analysis (FIA) system, based on an initial analyte separation by gas-diffusion and subsequent determination by square-wave voltammetry (SWV) in a flow cell, was developed for the determination of total and free sulfur dioxide (SO(2)) in wine. The proposed method was compared with two iodometric methodologies (the Ripper method and a simplified method commonly used by the wine industry). The developed method displayed good repeatability (RSD lower than 6%) and linearity (between 10 and 250 mg l(-1)) as well as a suitable LOD (3 mg l(-1)) and LOQ (9 mg l(-1)). A major advantage of this system is that SO(2) is directly detected by flow SWV.

  17. New method for simultaneous determination of Fe(II) and Fe(III) in water using flow injection technique.

    PubMed

    Kozak, J; Gutowski, J; Kozak, M; Wieczorek, M; Kościelniak, P

    2010-05-23

    The method exploits the possibilities of flow injection gradient titration in a system of reversed flow with spectrophotometric detection. In the developed approach a small amount of titrant (EDTA) is injected into a stream of sample containing a mixture of indicators (sulfosalicylic acid and 1,10-phenanthroline). In acid environment sulfosalicylic acid forms a complex with Fe(III), whereas 1,10-phenanthroline forms a complex with Fe(II). Measurements are performed at wavelength lambda=530 nm when radiation is absorbed by both complexes. After injection EDTA replaces sulfosalicylic acid and forms with Fe(III) more stable colourless complex. As a result, a characteristic "cut off" peak is registered with a width corresponding to the Fe(III) concentration and with a height corresponding to the Fe(II) concentration. Calibration was performed by titration of four two-component standard solutions of the Fe(II)/Fe(III) concentrations established in accordance with 2(2) factorial plan. The method was tested with the use of synthetic samples and then it was applied to the analysis of water samples taken from artesian wells. Under optimized experimental conditions Fe(II) and Fe(III) were determined with precision less than 0.8 and 2.5% (RSD) and accuracy less than 3.2 and 5.1% (relative error) within the concentration ranges of 0.1-3.0 and 0.9-3.5 mg L(-1) of both analytes, respectively.

  18. Numerical investigation of the nonreacting and reacting flow fields in a transverse gaseous injection channel with different species

    NASA Astrophysics Data System (ADS)

    Yan, Li; Huang, Wei; Zhang, Tian-tian; Li, Hao; Yan, Xiao-ting

    2014-12-01

    The mixing and combustion process has an important impact on the engineering realization of the scramjet engine. The nonreacting and reacting flow fields in a transverse injection channel have been investigated numerically, and the predicted results have been compared with the available experimental data in the open literature, the wall pressure distributions, the separation length, as well as the penetration height. Further, the influences of the molecular weight of the fuel and the jet-to-crossflow pressure ratio on the wall pressure distribution have been studied. The obtained results show that the predicted results show reasonable agreement with the experimental data, and the variable trends of the penetration height and the separation distance are almost the same as those obtained in the experiment. The vapor pressure model is suitable to fit the relationship between the penetration height, the separation distance and the jet-to-crossflow pressure ratio. The combustion process mainly occurs upstream of the injection port, and it makes a great difference to the wall pressure distribution upstream of the injection port, especially when the jet-to-crossflow pressure ratio is large enough, namely 17.72 and 25.15 in the range considered in the current study. For hydrogen, the combustion downstream of the injection port occurs more intensively, and this may be induced by its smaller molecular weight.

  19. Skin friction reduction in supersonic flow by injection through slots, porous sections and combinations of the two

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Vanovereem, J.

    1975-01-01

    An experimental study of skin friction reduction in a Mach 3.0 air steam with gaseous injection through a tangential slot, a porous wall section, and combinations of the two was conducted. The primary data obtained were wall shear values measured directly with a floating element balance and also inferred from Preston Tube measurements. Detailed profiles at several axial stations, wall pressure distributions and schlieren photographs are presented. The data indicate that a slot provides the greatest skin friction reduction in comparison with a reference flat plate experiment. The porous wall section arrangement suffers from an apparent roughness-induced rise in skin friction at low injection rates compared to the flat plate. The combination schemes demonstrated a potential for gain.

  20. Mole fraction imaging of transverse injection in a ducted supersonic flow

    NASA Technical Reports Server (NTRS)

    Abbitt, John D. Iii; Hartfield, Roy J.; Mcdaniel, James C.

    1989-01-01

    Laser-induced iodine fluorescence has been used to generate two-dimensional images of the mixing characteristics of air injected transversely as underexpanded jets behind a rearward-facing step into a ducted Mach 2 freestream; the images thus obtained were processed digitally in order to yield planar-injectant mole fraction distributions. The resulting planar images represent a three-dimensional data base of the injectant mole fraction distribution throughout the flowfield which is then used to reconstruct images exhibiting mole-fraction distributions normal to the duct. These images furnish a direct representation of the evolution of supersonic mixing along the duct, and facilitate the development of one-dimensional mixing schedules on the basis of the three-dimensional data base.

  1. Flow injection determination of copper in mussels by flame atomic absorption spectrometry after on-line continuous ultrasound-assisted extraction

    NASA Astrophysics Data System (ADS)

    Moreno-Cid, A.; Yebra, M. C.

    2002-05-01

    Copper was extracted on-line from solid mussel samples by a simple and rapid continuous ultrasound-assisted extraction system (CUES). The CUES is connected to a flow injection manifold, which permits the on-line flame atomic absorption spectrometric determination of copper. The manifold is simple and the copper signal was obtained for a volume of 250 μl of acid leachate injected into an ultrapure water carrier stream. An experimental design was used for the optimization of the continuous leaching procedure. Compared to off-line ultrasonic-assisted extraction methods, sonication time is reduced by factors of 6-12, the leaching takes place at room temperature (20 °C), and the analysis time is reduced because centrifugation was not necessary to separate the liquid phase. The method allowed a total sampling frequency of 11 samples h -1, with a relative standard deviation for the complete procedure of 2.7% (for a sample containing 2.0 μg g -1 copper (wet mass, n=11). The limit of detection was 0.06 μg g -1 (wet mass) for 30 mg of sample. The analytical procedure was verified for a reference standard material (TORT-1). The analytical procedure was applied to mussel samples from Galicia (Spain).

  2. Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a pH-based flow-injection analysis system.

    PubMed

    Garcia-Mesa, José A; Mateos, Raquel

    2007-05-16

    Flavor and taste are sensorial attributes of virgin olive oil (VOO) highly appreciated by consumers. Among the organoleptic properties of VOO, bitterness is related to the natural phenolic compounds present in the oil. Sensorial analysis is the official method to evaluate VOO flavor and bitterness, which requires highly specialized experts. Alternatively, methods based on physicochemical determinations could be useful for the industry. The present work presents a flow-injection analysis system for the direct automatic determination of bitterness and total phenolic compounds in VOO without prior isolation, based on the spectral shift undergone by phenolic compounds upon pH variation. This system enables a complete automation of the process, including dilution of the sample and its sequential injection into buffer solutions of acidic and alkaline pH. The variation of the absorbance at 274 nm showed a high correlation with bitterness and the total phenolic content of VOO, due to the close relationship between these two parameters. Thus, the proposed method determines the bitterness and phenolic compounds, with results similar to those from reference methods (relative errors ranging from 1% to 8% for bitterness and from 2% and 7% for phenolic compounds). The precision evaluated at two levels of both parameters ranged between 0.6% and 1.5% for bitterness and between 0.7% and 2.6% for phenolic compounds.

  3. Heat transfer in MHD flow with pressure gradient, suction and injection

    NASA Astrophysics Data System (ADS)

    Soundalgekar, V. M.; Ramana Murty, T. V.

    1980-04-01

    Numerical solutions to the MHD Falkner-Skan equation and the corresponding heat transfer equation have been obtained by taking into consideration the effects of suction and injection as well as the pressure gradient parameter. Velocity and temperature profiles are graphed and the numerical values of skin friction and the rate of heat transfer are tabulated. It is observed that an increase in the magnetic field parameter leads to an increase in velocity, skin friction, and rate of heat transfer and to a fall in temperature. In addition, an increase in suction leads to a reduction in the skin friction value and the rate of heat transfer, opposite to the case of injection.

  4. Flow-injection chemiluminescence analysis for sensitive determination of atenolol using cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Joo, Sang Woo

    2016-03-01

    A sensitive, rapid and simple flow-injection chemiluminescence (CL) system based on the light emitted from KMnO4-cadmium sulfide quantum dots (CdS QDs) reaction in the presence of cetyltrimethylammonium bromide (CTAB) in acidic medium was developed as a CL probe for the sensitive determination of atenolol. Optical and structural features of CdS QDs capped with L-cysteine, which synthesized via hydrothermal approach, were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Vis spectroscopy. The CL intensity of KMnO4-CdS QDs-CTAB was remarkably enhanced in the presence of trace level of atenolol. Under optimum experimental conditions, there is a linear relationship between the increase in CL intensity of KMnO4-CdS QDs-CTAB system and atenolol concentration in a range of 0.001 to 4.0 mg L- 1 and 4.0 to 18.0 mg L- 1, with a detection limit (3σ) of 0.0010 mg L- 1. A possible mechanism for KMnO4-CdS QDs-CTAB-atenolol CL reaction is proposed. To prove the practical application of the KMnO4-CdS QDs-CTAB CL method, the method was applied for the determination of atenolol in spiked environmental water samples and commercial pharmaceutical formulation. Furthermore, corona discharge ionization ion mobility spectrometry (CD-IMS) technique was utilized for determination of atenolol. Figure S2. Optimization of the CL reaction conditions: (a) effect of KMnO4 concentration. Conditions: the concentrations of H2SO4, CdS QDs and atenolol were 1 mol L-1, 0.35 mol L-1, and 4.0 mg L-1, respectively; (b) effect of acidic media. Conditions: the concentrations of KMnO4 was 0.04 mmol L-1, other conditions were as in (a); (c) effect of CdS QDs concentration. Conditions: H2SO4 concentration was 1.0 mol L-1, other conditions were as in (b), and (d) effect of CTAB concentration. Conditions: CdS QDs concentration was 0.35 mmol L-1, other conditions were as in (c). Figure S3. UV-Vis absorption spectra of KMnO4-CdS QDs-atenolol CL system

  5. Flow injection analysis of water. Part 1: Automatic preconcentration determination of sulphate, ammonia and iron(II)/iron(III).

    PubMed

    Cosano, J S; de Castro, M D; Valcárcel, M

    1993-01-01

    This paper describes a simple flow-injection (FI) manifold for the determination of a variety of species in industrial water. The chemical systems involved in the determination of ammonia (formation of Indophenol Blue), sulfate (precipitation with Ba(II)), and iron (complexation with 1,10-phenanthroline with the help of a prior redox reaction for speciation) were selected so that a common manifold could be used for the sequential determination of batches of each analyte. A microcolumn of a suitable ion exchange material was used for on-line preconcentration of each analyte prior to injection; linear ranges for the determination of the analytes at the ng/ml levels were obtained with good reproducibility. The manifold and methods are ready for full automation.

  6. Potentiometric flow injection sensing system for determination of heparin based on current-controlled release of protamine.

    PubMed

    Lei, Jiahong; Ding, Jiawang; Chen, Yan; Qin, Wei

    2015-02-01

    A flow injection system incorporated with a polycation-sensitive polymeric membrane electrode in the flow cell is proposed for potentiometric determination of heparin. An external current in nano-ampere scale is continuously applied across the polymeric membrane for controlled release of protamine from the inner filling solution to the sample solution, which makes the electrode membrane regenerate quickly after each measurement. The protamine released at membrane-sample interface is consumed by heparin injected into the flow cell via their strong electrostatic interaction, thus decreasing the measured potential, by which heparin can be detected. Under optimized conditions, a linear relationship between the potential peak height and the concentration of heparin in the sample solution can be obtained in the range of 0.1-2.0 U mL(-1), and the detection limit is 0.06 U mL(-1). The proposed potentiometric sensing system has been successfully applied to the determination of heparin in undiluted sheep whole blood.

  7. Flow injection analysis combined with a hydrothermal flow reactor: application to kinetic determination of trace amounts of iridium using a water-soluble porphyrin.

    PubMed

    Kawamura, Kunio; Ikoma, Keisuke; Igarashi, Shukuro; Hisamoto, Hideaki; Yao, Toshio

    2011-06-15

    A new type of flow injection analysis (FIA) system combined with an extremely high temperature reactor, namely hydrothermal flow injection analysis (HT-FIA), has been successfully constructed for the first time. Fundamental characteristics of HT-FIA system, such as limit temperature, pressure, and flow rate, were examined as an analytical tool. To demonstrate the potential of HT-FIA, the catalytic activity of Ir(IV) for the degradation of a water-soluble porphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (TPPS), was applied for the determination of trace amounts of Ir(IV). Although the indicator reaction is very slow at room temperature, HT-FIA system enables to accelerate the reaction. A linear calibration curve was acquired at 10(-8)M level of Ir(IV) and the interferences of platinum group metal ions were examined. The detection limit of Ir(IV) was 5.8 × 10(-9)M and a fairly high-throughput analysis, of which more than 30 samples can be analyzed within 80 min, was achieved.

  8. Spatially distributed control netowork for flow proportional chemical injection with center pivot irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural production practice of injecting a chemical into an operating irrigation system and applying it to the field area with the water is known as chemigation. Chemigation is a widely adopted practice with center pivot irrigation because it is relatively easy and is usually the least exp...

  9. Fluid flows due to earthquakes with reference to Yucca Mountain, Nevada

    SciTech Connect

    Davies, J.B.

    1993-05-01

    Yucca Mountain geohydrology is dominated by a deep water table in volcanic tuffa beds which are cut by numerous faults. Certain zones in these tuffas and most of the fault apertures are filled with a fine-grained calcitic cement. Earthquakes have occured in this region with the most recent being of magnitude 5.6 and at a distance of about 20 km. Earthquakes in western U.S.A. have been observed to cause fluid flows through and out of the crust of the Earth. These flows are concentrated along the faults with normal faulting producing the largest flows. An earthquake produces rapid pressure changes at and below the ground surface, thereby forcing flows of gas, water, slurries and dissolved salts. In order to examine the properties of flows produced by earthquakes, we simulate the phenomena using computer-based modeling. We investigate the effects of adults and high permeability zones on the pattern of flows induced by the earthquake. We demonstrate that faults act as conduits to the surface and that the higher the permeability of a zone, the more the flows will concentrate there. Numerical estimates of flow rates from these simulations compare favorably with data from observed flows due to earthquakes. Simple volumetric arguments demonstrate the ease with which fluids from the deep water table can reach the surface along fault conduits.

  10. Flow-injection chemiluminescence determination of chrysin and baicalein assisted by theoretical prediction of chemiluminescence behavior of chrysin and baicalein

    NASA Astrophysics Data System (ADS)

    Li, Baoxin; Guo, Lili; Xu, Chunli; Ma, Limei

    2008-12-01

    In this paper, the molecular connectivity indices were applied to theoretically predict the direct chemiluminescence (CL) behavior of chrysin and baicalein with our recently proposed discriminant function. Then, combined with flow-injection analysis, a new CL system for determination of chrysin and baicalein was proposed. The method was based on the oxidation of chrysin and baicalein by acidic KMnO 4 in the presence of formaldehyde to produce strong CL emission. The present paper suggested a new model to discover new CL analytical system: first, to theoretical predict the CL behavior, and the second, to suggest analytical system.

  11. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  12. A portable battery-powered flow injection monitor for the in situ analysis of nitrate in natural waters

    PubMed Central

    Blundell, N. J.; Hopkins, A.; Worsfold, P. J.; Casey, H.

    1993-01-01

    The design and performance of a portable, automated flow injection (FI)-based photometric monitor are described. The system is controlled by an in-house microcomputer system that enables the monitor (including a solid state detector) to operate from a 12 V battery supply. The monitor uses the cadmium reduction/diazotization method to analyse for nitrate with a linear range of 0 to 12 mg l-1 and a limit of detection of 0.05 mg l-1 (NO3-N). The hardware and software design, monitor performance and results obtained during unattended operation are presented. PMID:18924971

  13. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions.

    PubMed

    Chen, Wei-Ni; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A C

    2015-02-20

    A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL(-1) Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g(-1) for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample.

  14. Preliminary results on the determination of ultratrace amounts of cadmium in tea samples using a flow injection on-line solid phase extraction separation and preconcentration technique to couple with a sequential injection hydride generation atomic fluorescence spectrometry.

    PubMed

    Duan, Taicheng; Song, Xuejie; Jin, Dan; Li, Hongfei; Xu, Jingwei; Chen, Hangting

    2005-10-31

    In this work, a method was developed for determination of ultra-trace levels of Cd in tea samples by atomic fluorescence spectrometry (AFS). A flow injection solid phase extraction (FI-SPE) separation and preconcentration technique, to on-line couple with a sequential injection hydride generation (SI-HG) technique is employed in this study. Cd was preconcentrated on the SPE column, which was made from a neutral extractant named Cyanex 923, while other matrix ions or interfering ions were completely or mostly separated off. Conditions for the SPE separation and preconcentration, as well as conditions for the HG technique, were studied. Due to the separation of interfering elements, Cd hydride generation efficiency could be greatly enhanced with the sole presence of Co(2+) with a concentration of 200mugL(-1), which is much lower than those in other works previously reported. Interferences on both the Cd separation and preconcentration, and Cd hydride generation (HG) were investigated; it showed that both the separation and preconcentration system, and the HG system had a strong anti-interference ability. The SPE column could be repeatedly used at least 400 times, a R.S.D. of 0.97% was obtained for 6 measurements of Cd with 0.2mugL(-1) and a correlation coefficiency of 1.0000 was obtained for the measurement of a series of solutions with Cd concentrations from 0.1 to 2mugL(-1). The method has a low detection limit of 10.8ngL(-1) for a 25mL solution and was successfully validated by using two tea standard reference materials (GBW08513 and GBW07605).

  15. Validation Studies for Numerical Simulations of Flow Phenomena Expected in the Lower Plenum of a Prismatic VHTR Reference Design

    SciTech Connect

    Richard W. Johnson

    2005-09-01

    The final design of the very high temperature reactor (VHTR) of the fourth generation of nuclear power plants (Gen IV) has not yet been established. The VHTR may be either a prismatic (block) or pebble bed type. It may be either gas-cooled or cooled with an as yet unspecified molten salt. However, a conceptual design of a gas-cooled VHTR, based on the General Atomics GT-MHR, does exist and is called the prismatic VHTR reference design, MacDonald et al [2003], General Atomics [1996]. The present validation studies are based on the prismatic VHTR reference design. In the prismatic VHTR reference design, the flow in the lower plenum will be introduced by dozens of turbulent jets issuing into a large crossflow that must negotiate dozens of cylindrical support columns as it flows toward the exit duct of the reactor vessel. The jets will not all be at the same temperature due to the radial variation of power density expected in the core. However, it is important that the coolant be well mixed when it enters the power conversion unit to ensure proper operation and long life of the power conversion machinery. Hence, it is deemed important to be able to accurately model the flow and mixing of the variable temperature coolant in the lower plenum and exit duct. Accurate flow modeling involves determining modeling strategies including the fineness of the grid needed, iterative convergence tolerance, numerical discretization method used, whether the flow is steady or unsteady, and the turbulence model and wall treatment employed. It also involves validation of the computer code and turbulence model against a series of separate and combined flow phenomena and selection of the data used for the validation. The present report describes progress made to date for the task entitled ‘CFD software validation of jets in crossflow’ which was designed to investigate the issues pertaining to the validation process.

  16. In-line electrochemical reagent generation coupled to a flow injection biamperometric system for the determination of sulfite in beverage samples.

    PubMed

    de Paula, Nattany T G; Barbosa, Elaine M O; da Silva, Paulo A B; de Souza, Gustavo C S; Nascimento, Valberes B; Lavorante, André F

    2016-07-15

    This work reports an in-line electrochemical reagent generation coupled to a flow injection biamperometric procedure for the determination of SO3(2-). The method was based on a redox reaction between the I3(-) and SO3(2-) ions, after the diffusion of SO2 through a gas diffusion chamber. Under optimum experimental conditions, a linear response ranging from 1.0 to 12.0 mg L(-1) (R=0.9999 and n=7), a detection and quantification limit estimated at 0.26 and 0.86 mg L(-1), respectively, a standard deviation relative of 0.4% (n=10) for a reference solution of 4.0 mg L(-1) SO3(2-) and sampling throughput for 40 determinations per hour were achieved. Addition and recovery tests with juice and wine samples were performed resulting in a range between 92% and 110%. There were no significant differences at a 95% confidence level in the analysis of eight samples when comparing the new method with a reference procedure.

  17. Injection, flow, and mixing of CO2 in porous media with residual gas.

    SciTech Connect

    Oldenburg, C.M.; Doughty, C.A.

    2010-09-01

    Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH{sub 4}. It is well known that CH{sub 4} drastically alters supercritical CO{sub 2} density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH{sub 4} on supercritical CO{sub 2} injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO{sub 2}; and (3) with residual CH{sub 4}. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.

  18. Effects of coil location and injection flow rate in an inductively coupled RF plasma torch

    NASA Astrophysics Data System (ADS)

    Wei, D.; Apelian, D.; Farouk, B.

    1985-07-01

    A numerical model has been developed to investigate the effects of central carrier gas flow rate and coil location in an inductively coupled RF plasma torch. Solution algorithm is based on the primitive variable formulation of the Navier-Stokes equations and includes a pseudo two-dimensional electromagnetic field model. Computational results have shown that with increasing carrier gas flow rate, the plasma plume is penetrated and the back flow due to the magnetic pumping effects is diminished. This facilitates the delivery of powder particles into the discharge region. However, the plasma plume is also disturbed significantly thus enhancing power loss.

  19. The determination of levofloxacin by flow injection analysis using UV detection, potentiometry, and conductometry in pharmaceutical preparations.

    PubMed

    Altiokka, G; Atkosar, Z; Can, N O

    2002-10-15

    A flow injection analysis (FIA) using UV detection, potentiometry and conductometry for levofloxacin (LVF) are described in this study. The best solvent system was found to consist of 0.2 M acetate buffer at pH 3 having 10% MeOH. A flow rate of 1 ml min(-1) was pumped and active material was detected at 288 nm. The detection limit (LOD) and limit of quantification (LOQ) for FIA were calculated to be 3 x 10(-7) M (S/N = 3) and 1 x 10(-7) M (S/N = 10), respectively. In the analysis of tablets, the RSD values were found to be 0.83, 0.98 and 0.99 for FIA, potentiometric and conductometric methods, respectively.

  20. Flow Injection Analysis of Mercury Using 4-(Dimethylamino) Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    PubMed Central

    Tahir, Tara F.; Salhin, Abdussalam; Ghani, Sulaiman Ab

    2012-01-01

    A flow injection analysis (FIA) incorporating a thiosemicarbazone-based coated wire electrode (CWE) was developed method for the determination of mercury(II). A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II), slope of 27.8 ± 1 mV per decade and correlation coefficient (R2) of 0.984 were obtained. The system was successfully applied for the determination of mercury(II) in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3)) were obtained, giving a typical throughput of 30 samples·h−1. PMID:23202196

  1. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters

    SciTech Connect

    Joseph R.V. Flora; Richard A. Hargis; William J. O'Dowd; Andrew Karash; Henry W. Pennline; Radisav D. Vidic

    2006-03-15

    A mathematical model based on simple cake filtration theory was coupled to a previously developed two-stage mathematical model for mercury (Hg) removal from coal combustion using powdered activated carbon injection upstream of a baghouse filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4 x 10{sup -13}m{sup 2} and 2.5 x 10{sup -4}m{sup -1}, respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval. 17 refs., 8 figs., 2 tabs.

  2. Flow Instabilities During Injection of CO2 into SalineAquifers

    SciTech Connect

    Garcia, Julio E.; Pruess, Karsten

    2003-04-15

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability so that waves or rounded lobes of saturation may appear and grow into fingers that lead to enhanced dissolution, bypassing, and possibly poor sweep efficiency. This paper presents an analysis, through high-resolution numerical simulations, of the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. We explore the influence of viscosity ratio, relative permeability functions, and capillary pressure on finger growth and spacing. In addition, we address the issues of finger triggering, convergence under grid refinement and boundary condition effects. Simulations were carried out on scalar machines, and on an IBM RS/6000 SP (a distributed-memory parallel computer with 6080 processors) with a parallelized version of TOUGH2.

  3. 3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes

    PubMed Central

    Bishop, Gregory W.; Satterwhite, Jennifer E.; Bhakta, Snehasis; Kadimisetty, Karteek; Gillette, Kelsey M.; Chen, Eric; Rusling, James F.

    2015-01-01

    A consumer-grade fused filament fabrication (FFF) 3D printer was used to construct fluidic devices for nanoparticle preparation and electrochemical sensing. Devices were printed using poly(ethylene terephthalate) and featured threaded ports to connect polyetheretherketone (PEEK) tubing via printed fittings prepared from acrylonitrile butadiene styrene (ABS). These devices included channels designed to have 800 × 800 µm2 square cross sections and were semitransparent to allow visualization of the solution-filled channels. A 3D-printed device with a Y-shaped mixing channel was used to prepare Prussian blue nanoparticles (PBNPs) under flow rates of 100 to 2000 µL min−1. PBNPs were then attached to gold electrodes for hydrogen peroxide sensing. 3D-printed devices used for electrochemical measurements featured threaded access ports into which a fitting equipped with reference, counter, and PBNP-modified working electrodes could be inserted. PBNP-modified electrodes enabled amperometric detection of H2O2 in the 3D-printed channel by flow-injection analysis, exhibiting a detection limit of 100 nM and linear response up to 20 µM. These experiments show that a consumer-grade FFF printer can be used to fabricate low-cost fluidic devices for applications similar to those that have been reported with more expensive 3D-printing methods. PMID:25901660

  4. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. PMID:27260436

  5. Determination of uranium in seawater by flow-injection preconcentration on dodecylamidoxime-impregnated resin and spectrophotometric detection.

    PubMed

    Oguma, Koichi; Suzuki, Toshihiro; Saito, Kyoichi

    2011-06-15

    A flow injection method has been developed for the determination of uranium in seawater combining the on-line preconcentration with spectrophotometric detection. An aliquot (10 mL) of the seawater sample adjusted to pH 5.5 was injected into the analytical system and uranium was adsorbed on the column packed with styrene-divinylbenzene copolymer resin (Bio-Beads SM-2) modified with dodecylamidoxime which showed high selectivity to uranium. Uranium was then eluted with 0.01 M hydrochloric acid and detected spectrophotometrically after the reaction with Chlorophosphonazo III. Interference from calcium and strontium was masked with cyclohexanediaminetetraacetic acid added to the chromogenic reagent solution. The sample throughput, the detection limit (3σ), and the preconcentration factor were 23 per hour, 0.13 μg/L, and 20, respectively, when the sample injection volume was kept at 10 mL. The precision at the 2 μg/L level was less than 4% (RSD). The proposed method was applied to the determination of uranium in the seawater samples collected off the Boso peninsula, Japan and the uranium concentration was found to be ca. 3 μg/L, which is close to the literature data. The yield of the recovery test ranged from 95% to 99%. PMID:21641428

  6. Determination of uranium in seawater by flow-injection preconcentration on dodecylamidoxime-impregnated resin and spectrophotometric detection.

    PubMed

    Oguma, Koichi; Suzuki, Toshihiro; Saito, Kyoichi

    2011-06-15

    A flow injection method has been developed for the determination of uranium in seawater combining the on-line preconcentration with spectrophotometric detection. An aliquot (10 mL) of the seawater sample adjusted to pH 5.5 was injected into the analytical system and uranium was adsorbed on the column packed with styrene-divinylbenzene copolymer resin (Bio-Beads SM-2) modified with dodecylamidoxime which showed high selectivity to uranium. Uranium was then eluted with 0.01 M hydrochloric acid and detected spectrophotometrically after the reaction with Chlorophosphonazo III. Interference from calcium and strontium was masked with cyclohexanediaminetetraacetic acid added to the chromogenic reagent solution. The sample throughput, the detection limit (3σ), and the preconcentration factor were 23 per hour, 0.13 μg/L, and 20, respectively, when the sample injection volume was kept at 10 mL. The precision at the 2 μg/L level was less than 4% (RSD). The proposed method was applied to the determination of uranium in the seawater samples collected off the Boso peninsula, Japan and the uranium concentration was found to be ca. 3 μg/L, which is close to the literature data. The yield of the recovery test ranged from 95% to 99%.

  7. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages.

    PubMed

    Jochmann, Maik A; Steinmann, Dirk; Stephan, Manuel; Schmidt, Torsten C

    2009-11-25

    A new method for bulk carbon isotope ratio determination of water-soluble samples is presented that is based on flow injection analysis-isotope ratio mass spectrometry (FIA-IRMS) using an LC IsoLink interface. Advantages of the method are that (i) only very small amounts of sample are required (2-5 microL of the sample for up to 200 possible injections), (ii) it avoids complex sample preparation procedures such as needed for EA-IRMS analysis (only sample dilution and injection,) and (iii) high throughput due to short analysis times is possible (approximately 15 min for five replicates). The method was first tested and evaluated as a fast screening method with industrially produced ethanol samples, and additionally the applicability was tested by the measurement of 81 alcoholic beverages, for example, whiskey, brandy, vodka, tequila, and others. The minimal sample concentration required for precise and reproducible measurements was around 50 microL L(-1) ethanol/water (1.71 mM carbon). The limit of repeatability was determined to be r=0.49%. FIA-IRMS represents a fast screening method for beverage authenticity control. Due to this, samples can be prescreened as a decisive criterion for more detailed investigations by HPLC-IRMS or multielement GC-IRMS measurements for a verification of adulteration. PMID:19856915

  8. Studies of the analyte-carrier interface in flow injection analysis

    SciTech Connect

    Brown, S.D.

    1992-01-01

    Chemical analysis in flowing solution is popular for automation of classical methods. However, most of the classical methods are not specific enough for direct multicomponent analysis of simple mixtures. This research project has the goals of study of rapid multicomponent analysis of transient species in flowing media, and investigations of chemical reactions at interfaces and of effects of competition on distribution of products from interfacial reaction. This report summarizes work done over the past 4.5 years; support has been terminated.

  9. Coupled Flow and Deformation Modeling of Carbon Dioxide Migration in the Presence of a Caprock Fracture during Injection

    SciTech Connect

    Siriwardane, Hema J; Gondle, Raj K; Bromhal, Grant S

    2013-08-01

    Understanding the transport of carbon dioxide (CO{sub 2}) during long-term CO{sub 2} injection into a typical geologic reservoir, such as a saline aquifer, could be complicated because of changes in geochemical, hydrogeological, and hydromechanical behavior. While the caprock layer overlying the target aquifer is intended to provide a tight, impermeable seal in securing injected CO{sub 2}, the presence of geologic uncertainties, such as a caprock fracture or fault, may provide a channel for CO{sub 2} leakage. There could also be a possibility of the activation of a new or existing dormant fault or fracture, which could act as a leakage pathway. Such a leakage event during CO{sub 2} injection may lead to a different pressure and ground response over a period of time. In the present study, multiphase fluid flow simulations in porous media coupled with geomechanics were used to investigate the overburden geologic response and plume behavior during CO{sub 2} injection in the presence of a hypothetical permeable fractured zone in a caprock, existing or activated. Both single-phase and multiphase fluid flow simulations were performed. The CO{sub 2} migration through an existing fractured zone leads to changes in the fluid pressure in the overburden geologic layers and could have a significant impact on ground deformation behavior. Results of the study show that pressure signatures and displacement patterns are significantly different in the presence of a fractured zone in the caprock layer. The variation in pressure and displacement signatures because of the presence of a fractured zone in the caprock at different locations may be useful in identifying the presence of a fault/fractured zone in the caprock. The pressure signatures can also serve as a mechanism to identify the activation of leakage pathways through the caprock during CO{sub 2} injection. Pressure response and ground deformation behavior from sequestration modeling could be useful in the development of

  10. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.

    PubMed

    Sağlam, Özlem; Kızılkaya, Bayram; Uysal, Hüseyin; Dilgin, Yusuf

    2016-01-15

    A novel amperometric glucose biosensor was proposed in flow injection analysis (FIA) system using glucose oxidase (GOD) and Quantum dot (ZnS-CdS) modified Pencil Graphite Electrode (PGE). After ZnS-CdS film was electrochemically deposited onto PGE surface, GOD was immobilized on the surface of ZnS-CdS/PGE through crosslinking with chitosan (CT). A pair of well-defined reversible redox peak of GOD was observed at GOD/CT/ZnS-CdS/PGE based on enzyme electrode by direct electron transfer between the protein and electrode. Further, obtained GOD/CT/ZnS-CdS/PGE offers a disposable, low cost, selective and sensitive electrochemical biosensing of glucose in FIA system based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. Under optimum conditions (flow rate, 1.3mL min(-1); transmission tubing length, 10cm; injection volume, 100μL; and constant applied potential, -500mV vs. Ag/AgCl), the proposed method displayed a linear response to glucose in the range of 0.01-1.0mM with detection limit of 3.0µM. The results obtained from this study would provide the basis for further development of the biosensing using PGE based FIA systems. PMID:26592613

  11. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds.

    PubMed

    Gonzalez-Rivera, Juan C; Osma, Johann F

    2015-01-01

    We aim to develop an in situ microfluidic biosensor based on laccase from Trametes pubescens with flow-injection and amperometry as the transducer method. The enzyme was directly immobilized by potential step chronoamperometry, and the immobilization was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electrode response by amperometry was probed using ABTS and syringaldazine. A shift of interfacial electron transfer resistance and the electron transfer rate constant from 18.1 kΩ to 3.9 MΩ and 4.6 × 10(-2) cm s(-1) to 2.1 × 10(-4) cm s(-1), respectively, evidenced that laccase was immobilized on the electrode by the proposed method. We established the optimum operating conditions of temperature (55°C), pH (4.5), injection flow rate (200 µL min(-1)), and applied potential (0.4 V). Finally, the microfluidic biosensor showed better lower limit of detection (0.149 µM) and sensitivity (0.2341 nA µM(-1)) for ABTS than previous laccase-based biosensors and the in situ operation capacity. PMID:26509166

  12. Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides.

    PubMed

    Gong, Jingming; Guan, Zhangqiong; Song, Dandan

    2013-01-15

    We developed a highly sensitive flow injection/amperometric biosensor for the detection of organophosphate pesticides (OPs) using layered double hydroxides (LDHs) as the immobilization matrix of acetylcholinesterase (AChE). LDHs provided a biocompatible microenvironment to keep the bioactivity of AChE, due to the intrinsic properties of LDHs (such as a regular structure, good mechanical, chemical and thermal stabilities, and swelling properties). By integrating the flow injection analysis (FIA) with amperometric detection, the resulting AChE-LDHs modified electrode greatly catalyzed the oxidation of the enzymatically generated thiocholine product, and facilitated the detection automation, thus increasing the detection sensitivity. The analytical conditions for the FIA/amperometric detection of OPs were optimized by using methyl parathion (MP) as a model. The inhibition of MP was proportional to its concentration ranging from 0.005 to 0.3μg mL(-1) and 0.3 to 4.0μg mL(-1) with a detection limit 0.6ng mL(-1) (S/N=3). The developed biosensor exhibited good reproducibility and acceptable stability.

  13. Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system.

    PubMed

    Wangfuengkanagul, Nattakarn; Chailapakul, Orawon

    2002-06-01

    The electrochemistry of acetaminophen in phosphate buffer solution (pH 8) was studied at a boron-doped diamond (BDD) thin film electrode using cyclic voltammetry, hydrodynamic voltammetry, and flow injection with amperometric detection. Cyclic voltammetry was used to study the reaction as a function of concentration of analyte. Comparison experiments were performed using a polished glassy carbon (GC) electrode. Acetaminophen undergoes quasi-reversible reaction at both of these two electrodes. The BDD and GC electrodes provided well-resolved cyclic voltammograms but the voltammetric signal-to-background ratios obtained from the diamond electrode were higher than those obtained from the GC electrode. The diamond electrode provided a linear dynamic range from 0.1 to 8 mM and a detection of 10 microM (S/B approximately 3) for voltammetric measurement. The flow injection analysis results at the diamond electrode indicated a linear dynamic range from 0.5 to 50 microM and a detection limit of 10 nM (S/N approximately 4). Acetaminophen in syrup samples has also been investigated. The results obtained in the recovery study (24.68+/-0.26 mg/ml) were comparable to those labeled (24 mg/ml). PMID:12039625

  14. A multisyringe flow injection Winkler-based spectrophotometric analyzer for in-line monitoring of dissolved oxygen in seawater.

    PubMed

    Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor

    2010-01-15

    An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate. PMID:20006097

  15. An environmental friendly method for the automatic determination of hypochlorite in commercial products using multisyringe flow injection analysis.

    PubMed

    Soto, N Ornelas; Horstkotte, B; March, J G; López de Alba, P L; López Martínez, L; Cerdá Martín, V

    2008-03-24

    A multisyringe flow injection analysis system was used for the determination of hypochlorite in cleaning agents, by measurement of the native absorbance of hypochlorite at 292 nm. The methodology was based on the selective decomposition of hypochlorite by a cobalt oxide catalyst giving chloride and oxygen. The difference of the absorbance of the sample before and after its pass through a cobalt oxide column was selected as analytical signal. As no further reagent was required this work can be considered as a contribution to environmental friendly analytical chemistry. The entire analytical procedure, including in-line sample dilution in three steps was automated by first, dilution in a stirred miniature vessel, second by dispersion and third by in-line addition of water using multisyringe flow injection technique. The dynamic concentration range was 0.04-0.78 gL(-1) (relative standard deviation lower than 3%), where the extension of the hypochlorite decomposition was of 90+/-4%. The proposed method was successfully applied to the analysis of commercial cleaning products. The accuracy of the method was established by iodometric titration. PMID:18328319

  16. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds

    PubMed Central

    Gonzalez-Rivera, Juan C.; Osma, Johann F.

    2015-01-01

    We aim to develop an in situ microfluidic biosensor based on laccase from Trametes pubescens with flow-injection and amperometry as the transducer method. The enzyme was directly immobilized by potential step chronoamperometry, and the immobilization was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electrode response by amperometry was probed using ABTS and syringaldazine. A shift of interfacial electron transfer resistance and the electron transfer rate constant from 18.1 kΩ to 3.9 MΩ and 4.6 × 10−2 cm s−1 to 2.1 × 10−4 cm s−1, respectively, evidenced that laccase was immobilized on the electrode by the proposed method. We established the optimum operating conditions of temperature (55°C), pH (4.5), injection flow rate (200 µL min−1), and applied potential (0.4 V). Finally, the microfluidic biosensor showed better lower limit of detection (0.149 µM) and sensitivity (0.2341 nA µM−1) for ABTS than previous laccase-based biosensors and the in situ operation capacity. PMID:26509166

  17. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.

    PubMed

    Sağlam, Özlem; Kızılkaya, Bayram; Uysal, Hüseyin; Dilgin, Yusuf

    2016-01-15

    A novel amperometric glucose biosensor was proposed in flow injection analysis (FIA) system using glucose oxidase (GOD) and Quantum dot (ZnS-CdS) modified Pencil Graphite Electrode (PGE). After ZnS-CdS film was electrochemically deposited onto PGE surface, GOD was immobilized on the surface of ZnS-CdS/PGE through crosslinking with chitosan (CT). A pair of well-defined reversible redox peak of GOD was observed at GOD/CT/ZnS-CdS/PGE based on enzyme electrode by direct electron transfer between the protein and electrode. Further, obtained GOD/CT/ZnS-CdS/PGE offers a disposable, low cost, selective and sensitive electrochemical biosensing of glucose in FIA system based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. Under optimum conditions (flow rate, 1.3mL min(-1); transmission tubing length, 10cm; injection volume, 100μL; and constant applied potential, -500mV vs. Ag/AgCl), the proposed method displayed a linear response to glucose in the range of 0.01-1.0mM with detection limit of 3.0µM. The results obtained from this study would provide the basis for further development of the biosensing using PGE based FIA systems.

  18. Separation and determination of aloperine, sophoridine, matrine and oxymatrine by combination of flow injection with microfluidic capillary electrophoresis.

    PubMed

    Cheng, Yuqiao; Chen, Hongli; Li, Yuqin; Chen, Xingguo; Hu, Zhide

    2004-05-28

    A novel, rapid and accurate method for the separation and determination of aloperine (ALP), sophoridine (SRI), matrine (MT) and oxymatrine (OMT) has been developed by combination of flow injection (FI) with microfluidic capillary electrophoresis (CE) for the first time. In the present paper, a continuous sample introduction interface was described. The interface with an H-channel structure was produced using a non-lithographic approach. The H-channel structure was fixed on a planar plastic base utilizing a horizontal 6.5cm-long separation capillary with two vertical sidearm tubes on each end that served as inlet and outlet flow-through electrode reservoirs. The inlet reservoir also functioned as interface for coupling to the FI system. The buffer solution used was a 50mmoll(-1) borate solution with the pH adjusted to 8.80 with 2moll(-1) HCl. The performance of the system was demonstrated in the separation and determination of ALP, SRI, MT and OMT with UV detection at 215nm, achieving baseline separation within 2min. A series of samples was injected repeatedly without current interruption and subsequent rinsing, and the contents of these four bio-alkaloids in two marketed drugs were determined with satisfactory recovery by this proposed method.

  19. In situ permeable flow sensor - OST reference No. 99. Subsurface contaminants focus area

    SciTech Connect

    1998-02-01

    This summary reports describes the In Situ Permeable Flow Sensor (ISPFS) developed to directly measure the direction and velocity of groundwater flow at a point in saturated soil sediments. The ISPFS provides information for locating, designing, and monitoring waste disposal sites, and for monitoring remediated waste sites. The design and performance are described and compared to alternative methods. Economic, regulatory, and policy issues are discussed. Applicability of the ISPFS to specific situations is also summarized. 8 refs., 7 figs., 3 tabs.

  20. Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver-silver sulfate

    NASA Astrophysics Data System (ADS)

    Ventosa, Edgar; Skoumal, Marcel; Vázquez, Francisco Javier; Flox, Cristina; Morante, Joan Ramon

    2014-12-01

    In-depth evaluation of the electrochemical performance of all-vanadium redox flow batteries (VRFBs) under operando conditions requires the insertion of a reliable reference electrode in the battery cell. In this work, an easy-to-make reference electrode based on silver-silver sulfate is proposed and described for VRFBs. The relevance and feasibility of the information obtained by inserting the reference electrode is illustrated with the study of ammoxidized graphite felts. In this case, we show that the kinetic of the electrochemical reaction VO2+/VO2+ is slower than that of V2+/V3+ at the electrode. While the slow kinetics at the positive electrode limits the voltage efficiency, the operating potential of the negative electrode, which is outside the stability widow of water, reduces the coulombic efficiency due to the hydrogen evolution.

  1. Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate(III) by Ascorbic Acid: A Flow Injection Kinetic Experiment

    NASA Astrophysics Data System (ADS)

    Nobrega, Joanquim A.; Rocha, Fabio R. P.

    1997-05-01

    Flow injection analysis (FIA) is a well recognized tool for solutions management. In spite of the use of this technique mainly for quantitative determination of analytes in solution, FIA systems can also be used for obtaining physical chemistry data. This work describes the use of a flow diagram to perform a kinetic experiment: the effect of ionic strength on the rate of reduction of hexacyanoferrate(III) by ascorbic acid. The rate determining step of this reaction involves the collision between two anionic species. The increase of the ionic strength of the medium alters the ionic atmosphere and changes the charge densities around the anions. Consequently, there is an increment of the rate constants for higher ionic strengths. In the proposed system, the flow is stopped by commutation when the center of the sample zone attained the flow cell and a gradual decrease in signal, related to the redox reaction, is registered as function of time. This allowed the determination of the rate constants as a function of the ionic strength. The product of the charges of the ions involved in the rate determining step was estimated in 3.2 that is close to the expected value considering the proposed mechanism.

  2. Flow injection analysis-based methodology for automatic on-line monitoring and quality control for biodiesel production.

    PubMed

    Pinzi, S; Priego Capote, F; Ruiz Jiménez, J; Dorado, M P; Luque de Castro, M D

    2009-01-01

    An automated on-line approach based on determination of free and bound glycerol was here proposed to monitor biodiesel production. The method was based on liquid-liquid extraction of glycerol from the biodiesel to an aqueous ethanolic phase in which glycerol is oxidized to formaldehyde with meta periodate with subsequent reaction with acetylacetone. The reaction product was photometrically measured at 410 nm. Free and bound glycerol were differentiated by glycerides hydrolysis with potassium ethylate. The experimental set-up consisted of a flow-injection manifold for liquid-liquid extraction without phase separation and iterative change of the flow direction that enabled: (a) filling the flow manifold with a meta periodate-acetylacetone acceptor phase; (b) sampling of small amounts (microl) from the reactor; (c) determination of free glycerol by extraction from biodiesel to the aqueous phase with simultaneous oxidation-reaction with acetylacetone in the acceptor phase; (d) continuous monitoring of the aqueous phase by passage through a photometric detector; (e) filling the flow manifold with a potassium ethylate-meta periodate-acetylacetone new acceptor phase; (d) repetition of steps b-to-d to determine total glycerol after saponification of the bound glycerol by potassium ethylate; and (f) determination of bound glycerol by difference between the second and first analyses. The results showed that the proposed automated on-line method is a suitable option in routine analysis during biodiesel production. PMID:18614358

  3. Flow Control and Measurement in Electric Propulsion Systems: Towards an AIAA Reference Standard

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Baldwin, Jeff; Frieman, Jason D.; Walker, Mitchell L. R.; Hicks, Nathan S.; Polzin, Kurt A.; Singleton, James T.

    2013-01-01

    Accurate control and measurement of propellant flow to a thruster is one of the most basic and fundamental requirements for operation of electric propulsion systems, whether they be in the laboratory or on flight spacecraft. Hence, it is important for the electric propulsion community to have a common understanding of typical methods for flow control and measurement. This paper addresses the topic of propellant flow primarily for the gaseous propellant systems which have dominated laboratory research and flight application over the last few decades, although other types of systems are also briefly discussed. While most flight systems have employed a type of pressure-fed flow restrictor for flow control, both thermal-based and pressure-based mass flow controllers are routinely used in laboratories. Fundamentals and theory of operation of these types of controllers are presented, along with sources of uncertainty associated with their use. Methods of calibration and recommendations for calibration processes are presented. Finally, details of uncertainty calculations are presented for some common calibration methods and for the linear fits to calibration data that are commonly used.

  4. Studies of mixing and combustion in hypervelocity flows with hot hydrogen injection

    NASA Astrophysics Data System (ADS)

    Belanger, Jacques Jean

    1993-01-01

    The ability to build an air-breathing single-stage-to-orbit propulsion system requires the examination of key elements such as turbulent mixing rates, especially at the 'zero shear' fuel-air mixing condition, and combustion efficiency. The required data can only be obtained in experiments which simultaneously match the flight total pressure and total enthalpy as well as the fuel conditions. GALCIT, with its new free piston shock tunnel T5, has the capability to do some of these combustion experiments. But prior to these tests, it was felt that there was a need to simulate the gas dynamical processes in the free piston shock tunnel and also in a new combustion driven shock tunnel built for these experiments so that both systems could be used as efficiently as possible. The numerical code helped explain the piston motion in the free piston shock tunnel. The code was also very useful for the design of the combustion driven shock tunnel. Because hydrogen has to be injected into the combustion chamber of the propulsion system after being used as a cooling fluid, a combustion driven shock tunnel was built to reproduce this 'hot' hydrogen at up to 1500 K for the experiments. To reduce the complexity of the problem, a very basic configuration for the hydrogen injection system was tested. This was first done with an injection system mounted flush with the surface of a flat plate in the test section of T5. Different test conditions as well as Mach 2 and 5 nozzle injectors at angles of 15 or 30 degrees were tested to determine criteria for significant combustion. Lower limits in pressure and enthalpy were found where hydrogen combustion becomes very limited using this 'hot' hydrogen fuel. The second set of experiments still used an injection system mounted slush with the surface but involved a small combustor model previously tested in the hypervelocity HYPULSE facility. Low pressure experiments were performed to reproduce some of the HYPULSE tests and excellent agreement was

  5. Blood flow velocity in the pial arteries of cats, with particular reference to the vessel diameter.

    PubMed

    Kobari, M; Gotoh, F; Fukuuchi, Y; Tanaka, K; Suzuki, N; Uematsu, D

    1984-03-01

    The blood flow velocity and diameter of feline pial arteries, ranging in diameter from 20 to 200 microns, were measured simultaneously using a newly developed video camera method under steady-state conditions for all other parameters. There was a linear relationship between blood flow velocity and pial artery diameter (y = 0.340x + 0.309), the correlation coefficient being 0.785 (p less than 0.001). The average values for blood flow velocity in pial arteries less than 50 microns, greater than or equal to 50 but less than 100 microns, greater than or equal to 100 but less than 150 microns, and greater than or equal to 150 microns in diameter were 12.9 +/- 1.3, 24.6 +/- 3.4, 42.1 +/- 4.7, and 59.9 +/- 5.3 mm/s, respectively. Blood flow rate was calculated as a product of the cross-sectional area and the flow velocity. The blood flow rate increased exponentially as the pial artery diameter increased (y = 2.71 X 10(-4) x2.98). The average values for blood flow rate in pial arteries less than 50 microns, greater than or equal to 50 but less than 100 microns, greater than or equal to 100 but less than 150 microns and greater than or equal to 150 microns in diameter were 12.8 +/- 1.5, 122.1 +/- 24.8, 510.2 +/- 74.8, and 1524.2 +/- 174.4 10(-3) mm3/s, respectively. Hemorheological parameters such as the wall shear rate and Reynolds' number were also calculated. The data obtained provide a useful basis for further investigations in the field of cerebral circulation.

  6. Effect of Suction/Injection on Unsteady Hydromagnetic Convective Flow of Reactive Viscous Fluid between Vertical Porous Plates with Thermal Diffusion

    PubMed Central

    Uwanta, I. J.; Hamza, M. M.

    2014-01-01

    An investigation is performed to study the effect of suction/injection on unsteady hydromagnetic natural convection flow of viscous reactive fluid between two vertical porous plates in the presence of thermal diffusion. The partial differential equations governing the flow have been solved numerically using semi-implicit finite-difference scheme. For steady case, analytical solutions have been derived using perturbation series method. Suction/injection is used to control the fluid flow in the channel, and an exothermic chemical reaction of Arrhenius kinetic is considered. Numerical results are presented graphically and discussed quantitatively with respect to various parameters embedded in the problem. PMID:27382632

  7. Preferential flow characterization in fractured aquifer by injecting dissolved oxygen in boreholes

    NASA Astrophysics Data System (ADS)

    Vurro, Michele; Donnaloia, Mietta; Masciopinto, Costantino; Pennetta, Luigi; Robbins, Gary; Vitale, Sarah

    2016-04-01

    A new approach to identify contributing fractures and wellbore flow in fractured and karst aquifers is presented. It is time efficient, low cost and based on a benign tracer: the dissolved oxygen (DO). The method was already applied by other scientists to test fractured crystalline rock wells. The DO method consists in elevating water DO concentration in a borehole by bubbling air at assigned water depths using a porous polypropylene tube (bubbler) connected to a compressed air tank with tubing. After the aeration, the resulting profile should be a linear increase in DO with depth due to the effects of water pressure on oxygen solubility. Any changes in the DO profile will be then observed when water flows into and through the well. DO dilution can be used to locate inflowing fractures and to define active flow zones in wells. If there is no change in the DO profile, a "dead zones" in the well is present, that is to say no flow is taking place or can be identified. The DO tests in this work have been carried out in the industrial area of Bari, at the experimental station, constituted by five wells drilled at the CNR-IRSA. The wells penetrate karstic limestone. Results show enhanced flow through at depths between 32 and 37 meters below the water level: DO concentrations decrease until they reach values close to 0 mg/l. DO curves show also the presence of inflowing fractures, as testified by the decrease in the DO concentrations due to the effects of water dilution, at depths of 4 and 9 meters (below the water table) in the north well, at 4 and 10 meters in the central well, and at 30 meters in the south well. The benefits of utilizing DO as a tracer include ease of accessibility, low cost and time-efficiency as well as non-toxic nature of the tracer and no impact on flow conditions.

  8. Determination of scandium, yttrium and lanthanides in silicate rocks and four new canadian iron-formation reference materials by flame atomic-absorption spectrometry with microsample injection.

    PubMed

    Sen Gupta, J G

    1984-12-01

    Enhancement of sensitivity by factors of up to 1.5 by use of the microsampling technique, coupled with the advantage of using small samples in small solution volumes, permits rapid flame AAS determination of traces of Sc, Y, Nd, Eu, Dy, Ho, Er, Tm and Yb in ultramafic and most other rocks of low rare-earth content, which would be either impossible or very difficult to analyse by direct aspiration because of the need for much larger sample weights and solution volumes. The rare-earths are separated by a modified ion-exchange or a double calcium oxalate and single hydrous ferric oxide co-precipitation procedure, and ultimately determined in an ethanolic perchlorate solution, buffered with 1% lanthanum, by the flame microsample injection technique, with a nitrous oxide-acetylene flame. The results obtained by this technique for six international reference rocks SY-2 (syenite), BCR-1 (basalt), BHVO-1 (Hawaiian basalt), SCo-1 (cody shale), MAG-1 (marine mud) and STM-1 (syenite) are compared with those obtained previously by the direct aspiration method and with other reported data. Results are given for four new Canadian iron formation reference materials FeR-1 to FeR-4. PMID:18963723

  9. Determination of scandium, yttrium and lanthanides in silicate rocks and four new canadian iron-formation reference materials by flame atomic-absorption spectrometry with microsample injection.

    PubMed

    Sen Gupta, J G

    1984-12-01

    Enhancement of sensitivity by factors of up to 1.5 by use of the microsampling technique, coupled with the advantage of using small samples in small solution volumes, permits rapid flame AAS determination of traces of Sc, Y, Nd, Eu, Dy, Ho, Er, Tm and Yb in ultramafic and most other rocks of low rare-earth content, which would be either impossible or very difficult to analyse by direct aspiration because of the need for much larger sample weights and solution volumes. The rare-earths are separated by a modified ion-exchange or a double calcium oxalate and single hydrous ferric oxide co-precipitation procedure, and ultimately determined in an ethanolic perchlorate solution, buffered with 1% lanthanum, by the flame microsample injection technique, with a nitrous oxide-acetylene flame. The results obtained by this technique for six international reference rocks SY-2 (syenite), BCR-1 (basalt), BHVO-1 (Hawaiian basalt), SCo-1 (cody shale), MAG-1 (marine mud) and STM-1 (syenite) are compared with those obtained previously by the direct aspiration method and with other reported data. Results are given for four new Canadian iron formation reference materials FeR-1 to FeR-4.

  10. Simple in-line stopped flow photolysis of copper complexes in natural waters using a flow injection system

    PubMed Central

    Comber, Michael H. I.; Eales, Gordon J.; Nicholson, Peter J. D.; Henn, Simon P.

    1992-01-01

    The development of an in-line digestion system based on simple UV lamp is reported. The effect of photolysis on the preconcentration of copper was investigated using an in-line Chelex-l00 ion-exchange column linked to an atomic absorption spectrometer. Three model ligands, glycine, NTA and EDTA, have been used to demonstrate the effect of the digestion system. In a stopped-flow mode, over 90% of the complexed copper was recovered in the presence of any of the three ligands. When the UV lamp was turned off, this changed to 84, 45 and 2% recovery for the glycine, NTA and EDTA complexed copper, respectively. The ability to analyse samples with the UV lamp on or off means that the device may be used to study the speciation of the copper. PMID:18924918

  11. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo; Miranda, Jose

    2013-11-01

    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  12. Cadmium determination in natural water samples with an automatic multisyringe flow injection system coupled to a flow-through screen printed electrode.

    PubMed

    Henríquez, C; Laglera, L M; Alpizar, M J; Calvo, J; Arduini, F; Cerdà, V

    2012-07-15

    Heavy metals, as cadmium, attract a rising attention in environmental studies due to their increasing release by human activities and acute toxicity. In situ analytical methods are needed to minimize current uncertainties caused by the transport and conservation of samples. Here, we present the completely automatic determination of Cd in natural waters using a newly developed screen printed electrode sensor (SPE), inserted in a homemade purpose-built flow cell coupled to a Multi-Syringe Flow Injection Analysis system (MSFIA). The working electrode of SPEs was constituted by a carbon film modified with Nafion. Cd was plated on an in situ bismuth film and determined using Square Wave Anodic Stripping Voltammetry. Different chemical conditions of deposition and stripping were studied. A sample/acetic buffer mixture was found to be a well suited medium to form the Bi film and perform the analysis. Cd was quantified via calibration by on line standard additions. The limit of detection was found to be 0.79μgL(-1), well below the limit stipulated by the European directive (5μgL(-1)). Good sample throughput (14h(-1)) and low consumption of reagent and sample (1.3mL) were also obtained in line with previous works in Cd flow analysis.

  13. Cadmium determination in natural water samples with an automatic multisyringe flow injection system coupled to a flow-through screen printed electrode.

    PubMed

    Henríquez, C; Laglera, L M; Alpizar, M J; Calvo, J; Arduini, F; Cerdà, V

    2012-07-15

    Heavy metals, as cadmium, attract a rising attention in environmental studies due to their increasing release by human activities and acute toxicity. In situ analytical methods are needed to minimize current uncertainties caused by the transport and conservation of samples. Here, we present the completely automatic determination of Cd in natural waters using a newly developed screen printed electrode sensor (SPE), inserted in a homemade purpose-built flow cell coupled to a Multi-Syringe Flow Injection Analysis system (MSFIA). The working electrode of SPEs was constituted by a carbon film modified with Nafion. Cd was plated on an in situ bismuth film and determined using Square Wave Anodic Stripping Voltammetry. Different chemical conditions of deposition and stripping were studied. A sample/acetic buffer mixture was found to be a well suited medium to form the Bi film and perform the analysis. Cd was quantified via calibration by on line standard additions. The limit of detection was found to be 0.79μgL(-1), well below the limit stipulated by the European directive (5μgL(-1)). Good sample throughput (14h(-1)) and low consumption of reagent and sample (1.3mL) were also obtained in line with previous works in Cd flow analysis. PMID:22817941

  14. A sensor based on electrodes supported on ion-exchange membranes for the flow-injection monitoring of sulphur dioxide in wines and grape juices.

    PubMed

    Toniolo, Rosanna; Pizzariello, Andrea; Susmel, Sabina; Dossi, Nicolò; Bontempelli, Gino

    2010-03-15

    A sensitive and fast responding electrochemical sensor is described for the determination of free and total sulphur dioxide in wines and grape juices which prevents interferences coming from ethanol and other natural components. It consists of a cell provided with a porous gold working electrode supported on one face of an ion-exchange membrane, acting as a solid polymer electrolyte (SPE), which allows gaseous electroactive analytes to be detected. This sensor was used as an amperometric detector for a flow injection system in which controlled volumes of headspace equilibrated with samples were injected. This approach was adopted to make also possible the determination of total SO(2), avoiding drawbacks caused by the high relative humidity generated by the sample heating resulting from the neutralization reaction of excess NaOH, whose addition was required to release sulphur dioxide from its combined forms. Factors affecting the detection process were examined and optimised. Under the identified optimal conditions, SO(2) detection resulted in sharp peaks which allowed to infer detection limits for a signal-to-noise ratio of 3, referred to liquid samples, of 0.04 and 0.02 mg L(-1) for free and total SO(2) which were determined at 20 and 35 degrees C, respectively. Moreover, the responses were found to be characterized by good repeatability (+/-2% and +/-4%, respectively) and linear dependence on the SO(2) concentration over a wide range (0.2-500 mg L(-1) for both free and total SO(2)). Finally, the long-term stability of the sensor turned out to be totally satisfactory in that responses changed of +/-9% alone even after long periods of continuous use. The application to some commercial wines and grape juices is also presented.

  15. Flow injection analysis of phenolic compounds with carbon paste electrodes modified with tyrosinase purchased from different companies

    SciTech Connect

    Lindgren, A.; Emneus, J.; Csoeregi, E.; Gorton, L.; Marko-Varga, G.; Ruzgas, T.

    1996-05-01

    Tyrosinase-modified carbon paste electrodes were prepared using lyophilised powder of the enzyme purchased from different companies. The selectivity of these electrodes for nine phenolic compounds, including six substituted catechols, has been studied. The signals obtained for catechol were always higher than those found for other phenolic compounds. Cyclic voltammetry and flow injection measurements indicated that the response of the tyrosinase-modified carbon paste electrodes was limited by the rate of the enzymatic oxidation of catechols. Different approaches of past electrode preparation have been studied and compared. Direct mixing of enzyme into the graphite powder doped with the osmium based mediator, resulted in the highest sensitivity for the studied substrates. However, substrate selectivity was found to be dependent on the source of enzyme used for electrode preparation.

  16. Determination of hydrogen peroxide concentrations by flow injection analysis based on the enhanced chemiluminescent reaction using peroxidase

    SciTech Connect

    Eremin, S.A.; Vlasenko, S.B.; Osipov, A.P.; Eremina, I.D.; Egerov, A.M. )

    1989-01-01

    The technique of flow injection analysis was employed in the determination of hydrogen peroxide. The method was based on the chemiluminescence reaction of luminol with H{sub 2}O{sub 2} which is catalyzed by horseradish peroxidase and enhanced by p-iodophenol. Hydrogen peroxide was linearly detected in the range 10{sup {minus}6}M-10{sup {minus}4}M by measuring the maximum intensity of light emitted. The detection limit is about 1 10{sup {minus}6}M hydrogen peroxide. Transition metal cations at millimolar concentrations do not have any interference on the determination of hydrogen peroxide by FIA based on the enhanced chemiluminescent reaction. This technique is relatively rapid and simple, and permits measurement of up to 80 samples/hr using generally available equipment.

  17. Determination of thiram in natural waters using flow-injection with cerium(IV)-quinine chemiluminescence system.

    PubMed

    Waseem, Amir; Yaqoob, Mohammad; Nabi, Abdul

    2010-01-01

    A simple and rapid flow-injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5-2500 ng/mL and the detection limit (signal-to-noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C(18)) cartridges for solid-phase extraction. The recoveries were in the range 99 +/- 1 to 104 +/- 1%.

  18. Design and development of an automated flow injection instrument for the determination of arsenic species in natural waters

    PubMed Central

    Hanrahan, Grady; Fan, Tina K.; Kantor, Melanie; Clark, Keith; Cardenas, Steven; Guillaume, Darrell W.; Khachikian, Crist S.

    2009-01-01

    The design and development of an automated flow injection instrument for the determination of arsenite [As(III)] and arsenate [As(V)] in natural waters is described. The instrument incorporates solenoid activated self-priming micropumps and electronic switching valves for controlling the fluidics of the system and a miniature charge-coupled device spectrometer operating in a graphical programming environment. The limits of detection were found to be 0.79 and 0.98 μM for As(III) and As(V), respectively, with linear range of 1–50 μM. Spiked ultrapure water samples were analyzed and recoveries were found to be 97%–101% for As(III) and 95%–99% for As(V), respectively. Future directions in terms of automation, optimization, and field deployment are discussed. PMID:19895074

  19. Flow injection determination of formaldehyde by its catalytic effect on the oxidation of sulfonazo III by bromate with spectrophotometric detection.

    PubMed

    Ensafi, Ali Asghar; Honarmand, Ebrahim

    2005-05-01

    A simple and sensitive flow injection method with spectrophotometric detection was developed for the determination of formaldehyde. The method is based on the catalytic effect of formaldehyde on the oxidation of sulfonazo III with bromate in acidic media. The decrease in absorbance of the reaction mixture was measured at 566 nm. The calibration graph was linear in the range of 0.005 to 2.80 microg ml(-1) formaldehyde at a rate of 38 +/- 4 samples h(-1). The limit of detection was 4 ng ml(-1). The relative standard deviations for ten replicate measurements of 0.20, 0.50 and 1.00 microg ml(-1) formaldehyde were 1.3, 0.8 and 0.7%, respectively. The method was applied to the determination of formaldehyde in river water, shampoo and melamine-formaldehyde resin.

  20. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  1. Extractable sulphate-sulphur, total sulphur and trace-element determinations in plant material by flow injection analysis

    SciTech Connect

    Heanes, D.L. )

    1990-01-01

    A rapid, accurate and reproducible procedure for determining total sulphur(S) and trace elements (copper, zinc, manganese and iron) in plant material is described. Plant material is digested in culture tubes with a mixture of nitric and perchloric acids containing ammonium metavanadate and calcium chloride. In the acid digest, concentrations of total-S as sulphate are determined by turbidimetry and trace-elements by flame atomic absorption spectrophotometry using flow injection analysis. The results for a range of plant materials compare well with those obtained by conventional procedures for the same elements. The microprocessor controlled digestion and multielement assay procedure described here offers improved laboratory efficiencies in materials, time and cost effectiveness. The techniques should be particularly useful when plant tissues are in limited supply.

  2. Evaluation of flow injection analysis method with spectrophotometric detection for the determination of atrazine in soil extracts.

    PubMed

    Martins, Elisandra C; Melo, Vander De F; Abate, Gilberto

    2016-09-01

    A method for determining atrazine in soil extracts was evaluated by flow injection analysis with spectrophotometric detection. The method is based on the reaction of atrazine with pyridine in an acid medium followed by the reaction with NaOH and sulfanilic acid. Several analytical conditions were previously studied and optimized. Under the best conditions of analysis, the limits of detection and quantification were 0.15 and 0.45 mg L(-1), respectively, for a linear response between 0.50 and 2.50 mg L(-1), and a sampling throughput of 21 determinations per hour. Using the standard addition method, the maximum relative standard deviation of 17% and recovery values between 80 and 100% were observed for three extracts from soil samples with different composition. The proposed method is simple, low-cost and easy to use, and can be employed for studies involving atrazine in soil samples or for screening of atrazine in soils.

  3. Measuring the concentrations of drinking water disinfection by-products using capillary membrane sampling-flow injection analysis.

    PubMed

    Geme, Gija; Brown, Michael A; Simone, Paul; Emmert, Gary L

    2005-10-01

    A capillary membrane sampling-flow injection analysis method is presented for selectively measuring the concentrations of total trihalomethanes (THMs) and total haloacetic acids (HAAs) in drinking water. The method is based on the reaction between nicotinamide and THM or HAA species to yield a fluorescent product. Two configurations are presented, one selective for total THMs and another selective for total HAAs. The construction of a capillary membrane sampler is described, and the results of method detection limit, accuracy and precision studies are reported for each method. Interference, selectivity and linearity studies are reported as well as the effect of temperature and ionic strength changes. Drinking water samples were analyzed by each proposed method and the results were compared to USEPA methods 502.2 and 552.3.

  4. Flow injection with in-line reduction column and conductometric detection for determination of total inorganic nitrogen in soil.

    PubMed

    Yanu, Pattama; Jakmunee, Jaroon

    2015-11-01

    A cost effective flow injection (FI) conductometric system has been developed for determination of total inorganic nitrogen (TIN). The system is aimed for evaluation of nitrogen nutrient in soil for agricultural application. Inorganic nitrogen compounds were extracted from soil according to the standard method by using potassium chloride solution as an extractant, and the extracted solution was then injected into the FI system. Nitrate and nitrite are converted to ammonium ion by an in-line reduction column packed with a Devarda's alloy. A gas diffusion unit was incorporated into the FI system to separate ammonium ion from other ions in a donor stream by forming ammonia gas that can diffuse through a PTFE membrane to re-dissolve in an acceptor stream. Conductance of the acceptor stream was directly proportional to ammonium ion concentration. Various parameters affecting reduction efficiency of the column, e.g., column diameter, column packing procedure, and column length was investigated and optimized. A linear calibration graph in the range of 2.00-60.00 mg L(-1) N-NH4(+) (y=0.123x+0.039, R(2) =0.997) was obtained with a limit of detection of 0.47 mg L(-1). Sample throughput of 20 samples h(-1) was achieved. The result of developed method was correlated with total Kjeldahl nitrogen (TKN) obtained from the Kjeldahl digestion method. The proposed method could be used as an alternative method to the Kjeldahl method for determination of TIN in soil.

  5. Spectrophotometric determination of trace aluminium content in parenteral solutions by combined cloud point preconcentration-flow injection analysis.

    PubMed

    Sombra, L; Luconi, M; Silva, M F; Olsina, R A; Fernandez, L

    2001-07-01

    A cloud point preconcentration and flow injection (FI) analysis methodology for aluminium(III) determination has been developed. The analyte in the initial aqueous solution was complexed with Chrome Azurol S (CAS) in the presence of the cationic surfactant benzyldimethyltetradecylammonium chloride (BDTAC). The absorption spectroscopic characteristics of the ternary complex [Al(III)-CAS-BDTAC] were examined in detail. The preconcentration step was carried out by means of the non-ionic surfactant polyethylene glycol p-nonylphenyl ether (PONPE 7.5). The enriched analyte solution was injected into an FI system using an HPLC pump. The chemical variables affecting the analytical performance of the combined methodology were studied and optimised. The developed approach was successfully applied to the determination of trace amounts of aluminium in parenteral solutions without previous treatment. Under the optimum experimental conditions, 99.9% extraction was achieved for a preconcentration factor of 50. The limit of detection was 1.12 x 10(-7) mol(-1). The calibration plot was linear over at least two orders of magnitude of aluminium concentration. The developed coupled methodology, which thoroughly satisfies the typical requirements for pharmaceutical control processes, is appropriate for monitoring the aluminium concentration in parenteral nutrition.

  6. Preliminary experiment of high-speed gas flow generation by a compact toroid injection into a gas neutralizer

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Liu, D.; Shoji, T.; Nakanishi, R.; Fukumoto, N.; Sekioka, T.; Kikuchi, Y.; Nagata, M.

    2007-11-01

    A supersonic gas jet injection has been considered to be a new technique for future reactor fuelling and disruption mitigation in tokamak devices [1]. We have recently started to investigate a production of high-speed gas flow by using a compact toroid (CT) injection into a hydrogen gas neutralizer. The electron density of the CT plasma is 1˜4 x10^21 m-3, and the CT speed is 30˜70 km/s in the preliminary experiment. The kinetic-energy measurements of ions and neutrals after the neutralization were carried out by using an electrostatic ion energy analyzer and time-of-flight technique. An enhancement of the Hβ emission level, a significant decay of the CT plasma density and the magnetic field profile have been observed after the neutralization when the neutral pressure is about 10-3 Torr. It could be considered that high-energy neutral particles were generated by a charge exchange process from the CT plasma to the neutral particles. [1] V. Rozhansky, et al., Nucl. Fusion 46, 367 (2006).

  7. Flow injection with in-line reduction column and conductometric detection for determination of total inorganic nitrogen in soil.

    PubMed

    Yanu, Pattama; Jakmunee, Jaroon

    2015-11-01

    A cost effective flow injection (FI) conductometric system has been developed for determination of total inorganic nitrogen (TIN). The system is aimed for evaluation of nitrogen nutrient in soil for agricultural application. Inorganic nitrogen compounds were extracted from soil according to the standard method by using potassium chloride solution as an extractant, and the extracted solution was then injected into the FI system. Nitrate and nitrite are converted to ammonium ion by an in-line reduction column packed with a Devarda's alloy. A gas diffusion unit was incorporated into the FI system to separate ammonium ion from other ions in a donor stream by forming ammonia gas that can diffuse through a PTFE membrane to re-dissolve in an acceptor stream. Conductance of the acceptor stream was directly proportional to ammonium ion concentration. Various parameters affecting reduction efficiency of the column, e.g., column diameter, column packing procedure, and column length was investigated and optimized. A linear calibration graph in the range of 2.00-60.00 mg L(-1) N-NH4(+) (y=0.123x+0.039, R(2) =0.997) was obtained with a limit of detection of 0.47 mg L(-1). Sample throughput of 20 samples h(-1) was achieved. The result of developed method was correlated with total Kjeldahl nitrogen (TKN) obtained from the Kjeldahl digestion method. The proposed method could be used as an alternative method to the Kjeldahl method for determination of TIN in soil. PMID:26452820

  8. Flow injection chemiluminescence determination of lercanidipine based on N-chlorosuccinimide-eosin Y post-chemiluminescence reaction.

    PubMed

    Wang, Guowei; Zhao, Fang; Gao, Ying

    2014-12-01

    A novel post-chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N-chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10(-10) to 3.0 × 10(-6)  g/mL with a detection limit of 2.3 × 10(-10) g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10(-8) g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly.

  9. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.

    PubMed

    Expert, Fabien; Ruffier, Franck

    2015-04-01

    Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame. PMID:25717052

  10. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.

    PubMed

    Expert, Fabien; Ruffier, Franck

    2015-02-26

    Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.

  11. Electrochemical flow injection analysis of hydrazine in an excess of an active pharmaceutical ingredient: achieving pharmaceutical detection limits electrochemically.

    PubMed

    Channon, Robert B; Joseph, Maxim B; Bitziou, Eleni; Bristow, Anthony W T; Ray, Andrew D; Macpherson, Julie V

    2015-10-01

    The quantification of genotoxic impurities (GIs) such as hydrazine (HZ) is of critical importance in the pharmaceutical industry in order to uphold drug safety. HZ is a particularly intractable GI and its detection represents a significant technical challenge. Here, we present, for the first time, the use of electrochemical analysis to achieve the required detection limits by the pharmaceutical industry for the detection of HZ in the presence of a large excess of a common active pharmaceutical ingredient (API), acetaminophen (ACM) which itself is redox active, typical of many APIs. A flow injection analysis approach with electrochemical detection (FIA-EC) is utilized, in conjunction with a coplanar boron doped diamond (BDD) microband electrode, insulated in an insulating diamond platform for durability and integrated into a two piece flow cell. In order to separate the electrochemical signature for HZ such that it is not obscured by that of the ACM (present in excess), the BDD electrode is functionalized with Pt nanoparticles (NPs) to significantly shift the half wave potential for HZ oxidation to less positive potentials. Microstereolithography was used to fabricate flow cells with defined hydrodynamics which minimize dispersion of the analyte and optimize detection sensitivity. Importantly, the Pt NPs were shown to be stable under flow, and a limit of detection of 64.5 nM or 0.274 ppm for HZ with respect to the ACM, present in excess, was achieved. This represents the first electrochemical approach which surpasses the required detection limits set by the pharmaceutical industry for HZ detection in the presence of an API and paves the wave for online analysis and application to other GI and API systems. PMID:26302058

  12. Velocity field of a round jet in a cross flow for various jet injection angles and velocity ratios. [Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1979-01-01

    A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.

  13. Pretreatment of oily samples for analysis by flow injection-spectrometric methods.

    PubMed

    Burguera, José Luis; Burguera, Marcela

    2011-01-15

    This review presents a critical discussion of selected reports dealing with the pretreatment methods of oily samples and the determination of their organic and inorganic constituents using flow systems and spectrometric methods. Special emphasis is given to the on-line couplings with detection systems based on UV-visible spectrophotometry and spectrofluorimetry, atomic absorption spectrometry either with flame or electrothermal atomization as well as inductively coupled plasma optical emission spectrometry or inductively coupled plasma-mass spectrometry. Simple dilution with organic solvents, digestion with concentrated acids under thermal heating, microwave or ultrasound radiation and emulsification procedures are mostly used. The empirical preparation of certain organized assemblies like micelles, emulsions and specially microemulsions added to the confusion of some of the terms, demand a brief description of their characteristics, the correct formulation and some of their applications to the manipulation and treatment of oily samples. The analytical capabilities of combining flow manifolds with spectrometric methods for the determination of specific parameters in oily samples apparently have not been sufficiently exploited yet. PMID:21147308

  14. Flow injection analysis with bioluminescence-based fiber-optic biosensors

    NASA Astrophysics Data System (ADS)

    Blum, Loic J.; Gautier, Sabine; Coulet, Pierre R.

    1991-09-01

    Fiber optic biosensors based on the firefly and the bacterial bioluminescence reactions have been constructed and incorporated in a specially designed flow-cell for the sensitive determination of ATP and NADH, respectively. The bioluminescence enzymes were immobilized on preactivated polyamide membranes which were placed in close contact with the surface on one end of a glass-fiber bundle, the other end being connected to the photomultiplier tube of a luminometer. When using the continuous-flow device with the firefly luciferase or the bacterial system immobilized separately on different membranes, the detection limit for ATP and NADH were 0.25 and 2 pmol, respectively. The versatility of the fiber optic probe has been improved by co-immobilizing the bacterial bioluminescent system and the firefly luciferase on the same support enabling the use of a single sensor for the selective, specific, and alternate determination of these two analytes. Compatible reaction conditions preserving the activity of each co-immobilized enzyme without impairing its stability were found. The selection of the appropriate reaction medium was done using a four port valve. Alternate quantification of ATP and NADH could then be performed in the linear ranges 0.25 pmol - 3 nmol and 5 pmol - 1 nmol, respectively with a RSD of 4.0 - 4.5%.

  15. Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2005-01-01

    A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.

  16. Evaluation of chelation preconcentration for the determination of actinide elements by flow injection ICP-MS

    SciTech Connect

    Evans, E.H.; Truscott, J.B.; Bromley, L.; Jones, P.; Turner, J.; Fairman, B.E.

    1998-12-31

    A chelation column preconcentration method has been developed for the determination of uranium and thorium in waters by ICP-MS. Detection limits of 24 pg and 60 pg respectively were obtained, but these were blank limited. Uranium and Thorium were determined in certified reference materials. Results for uranium were 121 {+-} 21 and 15 {+-} 3 ng/g in NIST 1566a and NIST 1575 compared with certified values of 132 {+-} 12 and 20 {+-} 4 ng/g respectively. Results for thorium were 29 {+-} 8 and 28 {+-} 5 ng/g in NIST 1566a and NIST 1575 compared with indicative and certified values of 40 and 37 {+-} 3 ng/g respectively. The on-line separation of actinide radionuclides was achieved by selective elution of U, Th, Pu, Np, and Am.

  17. Trace Lead Measurement and Online Removal of Matrix Interference in Geosamples by Ion-Exchange Coupled with Flow Injection and Hydride Generation Atomic Fluorescence Spectrometry

    PubMed Central

    Tan, Chun-Hua; Huang, Xu-Guang

    2009-01-01

    A flow injection method has been developed for the direct determination of free available Pb(II). The method is based on the chemical sorption of Pb(II), from pH7 solutions, on a column packed of chelating resin. The retained complex was afterwards eluted with hydrochloric acid followed by hydride generation with reduction by tetrahydroborate. The preconcentration system proposed in this paper allows the elimination of great part of the saline content in the sample. A thorough scrutiny was made for chemical variables and FI parameters. With a sampling volume of 10.5 mL, quantitative retention of Pb (II) was obtained, along with an enrichment factor of 40 and a sampling frequency of 15 h−1. The detection limit, defined as 3 times the blank standard deviation (3σ), was 0.0031 ngml−1. The precision was characterized by an RSD value of 3.78% (at the 4 ng·ml−1 level, n = 11). The developed method has been applied to the determination of trace Pb in three standard reference materials. Accuracy was assessed through comparing the results with the accepted values. PMID:19746179

  18. Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2015-02-01

    The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts.

  19. Determination of inorganic arsenic in marine food samples by hydrochloric acid distillation and flow-injection hydride-generation atomic absorption spectrometry.

    PubMed

    Oygard, J K; Lundebye, A K; Julshamn, K

    1999-01-01

    A simple, rapid, and reliable method was developed for determination of inorganic As in biological samples such as fish fillet. Inorganic AS was distilled from the sample as AsCl3 with HCl. The separated inorganic AS was determined by flow-injection hydride-generation atomic absorption spectrometry after prereduction with KI and HCl. The influences of various concentrations of KI, ascorbic acid, and HCl in the prereduction stage; NaBH4 as the reductant; and HCl as the carrier solution on analytical results were studied. Digestion was performed in a Kjeldahl digestion system for 75 min with 4 mL nitric acid and 1 mL sulfuric acid at 380 degrees C. The concentrations of inorganic As in samples were less than 0.1 mg/kg dry weight for fish fillet and somewhat higher for crustaceans and bivalve molluscs. The total and inorganic As contents of various marine biological samples and certified reference materials were determined.

  20. Masking Agents Evaluation for Lead Determination by Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry Technique: Effect of KI, L-Cysteine, and 1,10-Phenanthroline

    PubMed Central

    Beltrán, Blanca G.; Ferrer, Laura; Cerdà, Víctor

    2016-01-01

    Hydride generation (HG) of lead technique presents interferences from foreign ions of complex matrix samples. In order to minimize these interferences, the effect of masking agents such as KI, L-cysteine, and 1,10-phenanthroline was studied in the absence and in the presence of selected interfering species (As, Cr, Cu, and Fe). Different modes of addition of masking agents were accomplished, that is, to either sample or KBH4 reducing solution. The lead determinations were performed using a flow injection analysis (FIA) system coupled to HG and atomic fluorescence spectrometry (AFS). The linearity of calibration curves (1–10 μg Pb L−1) was not affected by the addition of the masking agents. The use of KI in the reducing solution diminished interferences from concentrations of As and Cu, while 1,10-phenanthroline showed a positive effect on the interference by As. Moreover, Cr and Cu appeared to be the most serious interfering ions for plumbane (PbH4), because they drastically reduced the analytical signal of lead. Fe did not present any interference under the employed experimental conditions, even at high levels. The accuracy was established through the analysis of certified reference material (i.e., BCR-610, groundwater) using KI as masking agent. The detection limit reached by FIA-HG-AFS proposed methodology was 0.03 μg Pb L−1. PMID:27148365

  1. Direct and selective flow-injection method for the simultaneous spectrophotometric determination of calcium and magnesium in red and white wines using online dilution based on "Zone Sampling".

    PubMed

    Themelis, D G; Tzanavaras, P D; Trellopoulos, A V; Sofoniou, M C

    2001-11-01

    The present work reports a selective and simple flow injection method for the direct and simultaneous determination of calcium and magnesium ions in red, rose, and white wines. Both ions react with methylthymol blue (MTB) at a strongly basic medium to form colored complexes that are monitored spectrophotometrically (lambda(max) = 610 nm). The simultaneous determination is achieved by online masking of magnesium by 8-hydroxyquinoline (8-HQ). Incorporating an online dilution mode based on the "zone sampling" technique in the FI system, the determination of both analytes was achieved without any pretreatment of the samples, in the range 0-350 mg L(-1) and 0-200 mg L(-1) for Ca(II) and Mg(II), respectively. The 3 sigma detection limits were quite satisfactory (2.1 and 1.8 mg L(-1) for Ca(II) and Mg(II) respectively), and the precision was 1.2% (at a mixture of 100.0 mg L(-1) Ca(II) + 100.0 mg L(-1) Mg(II), n = 12). A detailed study of interferences proved that the proposed method is highly selective. The application of the method to the direct analysis of red, rose, and white wines yielded excellent results compared with those obtained by using FAAS as a reference method (e(r) < 2.8%).

  2. Ultrasound-assisted dispersive liquid-liquid microextraction of tetracycline drugs from egg supplements before flow injection analysis coupled to a liquid waveguide capillary cell.

    PubMed

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-09-01

    A simple, rapid, and efficient ultrasound-assisted dispersive liquid-liquid microextraction (US-DLLME) method was developed for extraction of tetracycline residues from egg supplement samples, with subsequent determination by flow injection analysis (FIA) coupled to a liquid waveguide capillary cell (LWCC) and a controlled temperature heating bath. Tetracyclines react with diazotized p-sulfanilic acid, in a slightly alkaline medium, to form azo compounds that can be measured at 435 nm. The reaction sensitivity improved substantially (5.12-fold) using an in-line heating temperature of 45 °C. Multivariate methodology was used to optimize the factors affecting the extraction efficiency, considering the volumes of extraction and disperser solvents, sonication time, extraction time, and centrifugation time. Good linearity in the range 30-600 μg L(-1) was obtained for all the tetracyclines, with regression coefficients (r) higher than 0.9974. The limits of detection ranged from 6.4 to 11.1 μg L(-1), and the recoveries were in the range 85.7-96.4 %, with relative standard deviation lower than 9.8 %. Analyte recovery was improved by approximately 6 % when the microextraction was assisted by ultrasound. The results obtained with the proposed US-DLLME-FIA method were confirmed by a reference HPLC method and showed that the egg supplement samples analyzed were suitable for human consumption.

  3. Cyclone-driven deep sea injection of freshwater and heat by hyperpycnal flow in the subtropics

    NASA Astrophysics Data System (ADS)

    Kao, S. J.; Dai, M.; Selvaraj, K.; Zhai, W.; Cai, P.; Chen, S. N.; Yang, J. Y. T.; Liu, J. T.; Liu, C. C.; Syvitski, J. P. M.

    2010-11-01

    The western tropical Pacific gives birth to 23 tropical cyclones annually, bringing torrential rainfall to mountainous islands across Oceania resulting in a global sediment production hotspot, in which many rivers have great hyperpycnal potential. By using a temperature (T) and salinity (S) profiler, we observed anomalously warm, low salinity turbid water at 3000-3700 m depths in seas ˜180 km off southwestern Taiwan immediately after Typhoon Morakot in 2009. This 250m-thick bottom-hugging water occupies ˜2400 km2, and contains 0.15% freshwater, suggesting a remarkably high fraction (6-10%) of event rainfall from southwestern Taiwan. These characteristics indicate the turbid water originated from shallow coastal waters via hyperpycnal flow. Apparently, sediment produced from the land during tropical cyclones open an “express gate” to convey heat and freshwater vertically to the deep ocean basin subsequently warming the deep water from the bottom up.

  4. Plasma heating, plasma flow and wave production around an electron beam injected into the ionosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1986-01-01

    A brief historical summary of the Minnesota ECHO series and other relevant electron beam experiments is given. The primary purpose of the ECHO experiments is the use of conjugate echoes as probes of the magnetosphere, but beam-plasma and wave studies were also made. The measurement of quasi-dc electric fields and ion streaming during the ECHO 6 experiment has given a pattern for the plasma flow in the hot plasma region extending to 60m radius about the ECHO 6 electron beam. The sheath and potential well caused by ion orbits is discussed with the aid of a model which fits the observations. ELF wave production in the plasma sheath around the beam is briefly discussed. The new ECHO 7 mission to be launched from the Poker Flat range in November 1987 is described.

  5. Photoamperometric flow injection analysis of glucose based on dehydrogenase modified quantum dots-carbon nanotube nanocomposite electrode.

    PubMed

    Ertek, Bensu; Dilgin, Yusuf

    2016-12-01

    In this work, a core-shell quantum dot (QD, ZnS-CdS) was electrodeposited onto multiwalled carbon nanotube modified glassy carbon electrode (ZnS-CdS/MWCNT/GCE) and following glucose dehydrogenase (GDH) was immobilized onto QD modified electrode. The proposed electrode (GDH/ZnS-CdS/MWCNT/GCE) was effectively used for the photoelectrochemical biosensing of glucose in flow injection analysis (FIA) system using a home-made flow cell. Results from cyclic voltammetric and FI amperometric measurements have revealed that GDH/ZnS-CdS/MWCNT/GCE is capable of signaling photoelectrocatalytic activity toward NADH when the surface of enzyme modified electrode was irradiated with a light source (250W Halogen lamp). Thus, photoelectrochemical biosensing of glucose was monitored by recording current-time curve of enzymatically produced NADH at optimized conditions. The biosensor response was found linear over the range 0.010-2.0mM glucose with detection limits of 6.0 and 4.0μM for amperometric and photoamperometric methods, respectively. The relative standard deviations (n=5) for 0.5mM glucose were 5.8% and 3.8% for photoamperometric and amperometric results, respectively. The photoelectrochemical biosensor was successfully applied to the real samples. The results with this biosensor showed good selectivity, repeatability and sensitivity for monitoring glucose in amperometric and photoamperometric FIA studies. PMID:26944347

  6. Hyphenation of sequential- and flow injection analysis with FTIR-spectroscopy for chemical analysis in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lendl, B.; Schindler, R.; Kellner, R.

    1998-06-01

    A survey of the principles of sequential (SIA)-and flow injection analysis (FIA) systems with FTIR spectroscopic detection is presented to introduce these hyphenations as powerful techniques for performing chemical analysis in aqueous solution. The strength of FIA/SIA-FTIR systems lies in the possibility to perform highly reproducible and automated sample manipulations such as sample clean-up and/or chemical reactions prior to spectrum acquisition. It is shown that the hyphenation of FIA/SIA systems with an FTIR spectrometer enhances the problem solving capabilities of the FTIR spectrometer as also parameters which can not be measured directly (e.g. enzyme activities) can be determined. On the other hand application of FTIR spectroscopic detection in FIA or SIA is also of advantage as it allows to shorten conventional analysis procedures (e.g. sucrose or phosphate analysis) or to establish and apply a multivariate calibration model for simultaneous determinations (e.g. glucose, fructose and sucrose analysis). In addition to these examples two recent instrumental developments in miniaturized FIA/SIA-FTIR systems, a μ-Flow through cell based on IR fiber optics and a micromachined SI-enzyme reactor are presented in this paper.

  7. Application of Prussian Blue electrodes for amperometric detection of free chlorine in water samples using Flow Injection Analysis.

    PubMed

    Salazar, Pedro; Martín, Miriam; González-Mora, José Luis; González-Elipe, Agustín R

    2016-01-01

    The performance for free chlorine detection of surfactant-modified Prussian Blue screen printed carbon electrodes (SPCEs/PB-BZT) have been assessed by cyclic voltammetry and constant potential amperometry. The characterization of SPCEs/PB-BZT by X-ray photoemission, Raman and infrared spectroscopies confirmed the correct electrodeposition of the surfactant-modified PB film. These electrodes were incorporated in a Flow Injection device and the optimal working conditions determined as a function of experimental variables such as detection potential, electrolyte concentration or flow-rate. The sensor presented a linear response in the range 0-3 ppm free chlorine, with a sensitivity of 16.2 μA ppm(-1) cm(-2). The limit of detection (LOD) (S/N=3.3) and the limit of quantification (S/N=10) amounted to 8.25 and 24.6 ppb, respectively, adequate for controlling tap and drinking waters. To demonstrate the feasibility of using this free chlorine sensor for real applications possible interferences such as nitrate, nitrite and sulfate ions were successfully tested and discarded. Real free chlorine analysis was carried out in spiked tap water samples and commercial bleaches.

  8. An Investigation of Glutathione-Platinum(II) Interactions by Means of the Flow Injection Analysis Using Glassy Carbon Electrode

    PubMed Central

    Zitka, Ondrej; Huska, Dalibor; Krizkova, Sona; Adam, Vojtech; Chavis, Grace J.; Trnkova, Libuse; Horna, Ales; Hubalek, Jaromir; Kizek, Rene

    2007-01-01

    Despite very intensive research in the synthesising of new cytostatics, cisplatin is still one of the most commonly used anticancer drugs. Therefore, an investigation of interactions of cisplatin with different biologically important amino acids, peptides and proteins is very topical. In the present paper, we utilized flow injection analysis coupled with electrochemical detection to study and characterize the behaviour of various forms of glutathione (reduced glutathione – GSH, oxidized glutathione – GSSG and S-nitroso glutathione – GSNO). The optimized conditions were as follows: mobile phase consisted of acetate buffer (pH 3) with a flow rate of 1 mL min-1. Based on results obtained we chose 850 mV as the optimal potential for detection of GSH and 1,100 mV as the optimal potential for detection of GSSG and GSNO. The detection limits of GSH, GSSG and GSNO were 100 pg mL-1, 50 ng mL-1 and 300 pg mL-1, respectively. Further, the optimized technique was used for investigation of interactions between cisplatin and GSH. We were able to observe the interaction between GSH and cisplatin via decrease in the signal corresponding to glutathione. Moreover, we evaluated the formation of the complex by spectrometry. The spectrometric results obtained were in good agreement with electrochemical ones.

  9. Determination of L-phenylalanine on-line based on molecularly imprinted polymeric microspheres and flow injection chemiluminescence

    NASA Astrophysics Data System (ADS)

    Qiu, Huamin; Xi, Yulei; Lu, Fuguang; Fan, Lulu; Luo, Chuannan

    2012-02-01

    A novel molecular imprinting-chemiluminescence (MIP-CL) sensor for the determination of L-phenylalanine (Phe) using molecularly imprinted polymer (MIP) as recognition element is reported. The Phe-MIP was synthesized using acrylamide (AM) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, 2,2-azobisisobutyronitrile (AIBN) as initiator and the polymers' properties were characterized. Then the synthesized MIP was employed as recognition element by packing into flow cell to establish a novel flow injection CL sensor. The CL intensity responded linearly to the concentration of Phe in the range 1.3 × 10 -6 to 5.44 × 10 -4 mol/L with a detection limit of 6.23 × 10 -7 mol/L (3 σ), which is lower than that of conventional methods. The sensor is reusable and has a great improvement in sensitivity and selectivity for CL analysis. As a result, the new MIP-CL sensor had been successfully applied to the determination of Phe in samples.

  10. Cerebral blood flow and metabolism during cardiopulmonary bypass with special reference to effects of hypotension induced by prostacyclin

    SciTech Connect

    Feddersen, K.; Aren, C.; Nilsson, N.J.; Radegran, K.

    1986-04-01

    Cerebral blood flow and metabolism of oxygen, glucose, and lactate were studied in 43 patients undergoing aortocoronary bypass. Twenty-five patients received prostacyclin infusion, 50 ng per kilogram of body weight per minute, during cardiopulmonary bypass (CPB), and 18 patients served as a control group. Regional cerebral blood flow (CBF) was studied by intraarterially injected xenon 133 and a single scintillation detector. Oxygen tension, carbon dioxide tension, oxygen saturation, glucose, and lactate were measured in arterial and cerebral venous blood. Mean arterial blood pressure decreased during hypothermia and prostacyclin infusion to less than 30 mm Hg. The regional CBF was, on average, 22 (standard deviation (SD) 4) ml/100 gm/min before CPB. It increased in the control group during hypothermia to 34 (SD 12) ml/100 gm/min, but decreased in the prostacyclin group to 15 (SD 5) ml/100 gm/min. It increased during rewarming in the prostacyclin group. After CPB, regional CBF was about 40 ml/100 gm/min in both groups. The cerebral arteriovenous oxygen pressure difference decreased more in the control group than in the prostacyclin group during hypothermia. The cerebral metabolic rate of oxygen decreased in both groups from approximately 2 ml/100 gm/min to about 1 ml/100 gm/min during hypothermia, increased again during rewarming, and after CPB was at the levels measured before bypass in both groups. There was no difference between the groups in regard to glucose and lactate metabolism.

  11. Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide.

    PubMed

    Mahbub, Parvez; Zakaria, Philip; Guijt, Rosanne; Macka, Mirek; Dicinoski, Greg; Breadmore, Michael; Nesterenko, Pavel N

    2015-10-01

    The applicability of acid degradation of organic peroxides into hydrogen peroxide in a pneumatically driven flow injection system with chemiluminescence reaction with luminol and Cu(2+) as a catalyst (FIA-CL) was investigated for the fast and sensitive detection of organic peroxide explosives (OPEs). The target OPEs included hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP) and methylethyl ketone peroxide (MEKP). Under optimised conditions maximum degradations of 70% and 54% for TATP and HMTD, respectively were achieved at 162 µL min(-1), and 9% degradation for MEKP at 180 µL min(-1). Flow rates were precisely controlled in this single source pneumatic pressure driven multi-channel FIA system by model experiments on mixing of easily detectable component solutions. The linear range for detection of TATP, HMTD and H2O2 was 1-200 µM (r(2)=0.98-0.99) at both flow rates, while that for MEKP was 20-200 µM (r(2)=0.97) at 180 µL min(-1). The detection limits (LODs) obtained were 0.5 µM for TATP, HMTD and H2O2 and 10 µM for MEKP. The detection times varied from 1.5 to 3 min in this FIA-CL system. Whilst the LOD for H2O2 was comparable with those reported by other investigators, the LODs and analysis times for TATP and HMTD were superior, and significantly, this is the first time the detection of MEKP has been reported by FIA-CL. PMID:26078148

  12. Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide.

    PubMed

    Mahbub, Parvez; Zakaria, Philip; Guijt, Rosanne; Macka, Mirek; Dicinoski, Greg; Breadmore, Michael; Nesterenko, Pavel N

    2015-10-01

    The applicability of acid degradation of organic peroxides into hydrogen peroxide in a pneumatically driven flow injection system with chemiluminescence reaction with luminol and Cu(2+) as a catalyst (FIA-CL) was investigated for the fast and sensitive detection of organic peroxide explosives (OPEs). The target OPEs included hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP) and methylethyl ketone peroxide (MEKP). Under optimised conditions maximum degradations of 70% and 54% for TATP and HMTD, respectively were achieved at 162 µL min(-1), and 9% degradation for MEKP at 180 µL min(-1). Flow rates were precisely controlled in this single source pneumatic pressure driven multi-channel FIA system by model experiments on mixing of easily detectable component solutions. The linear range for detection of TATP, HMTD and H2O2 was 1-200 µM (r(2)=0.98-0.99) at both flow rates, while that for MEKP was 20-200 µM (r(2)=0.97) at 180 µL min(-1). The detection limits (LODs) obtained were 0.5 µM for TATP, HMTD and H2O2 and 10 µM for MEKP. The detection times varied from 1.5 to 3 min in this FIA-CL system. Whilst the LOD for H2O2 was comparable with those reported by other investigators, the LODs and analysis times for TATP and HMTD were superior, and significantly, this is the first time the detection of MEKP has been reported by FIA-CL.

  13. Effects of exogenous amines on mammalian cells, with particular reference to membrane flow.

    PubMed Central

    Dean, R T; Jessup, W; Roberts, C R

    1984-01-01

    We have reviewed the evidence that amines accumulate in intracellular vesicles of low pH, such as lysosomes and endosomes. There is consequent elevation of intravesicular pH, and inhibition of receptor-ligand dissociation often results from this pH change. We have argued that the capacity for fusion of such vesicles is also reduced by the high pH. We suggest that the variety of effects of amines on membrane flow and macromolecular transport we describe are at least partly due to such reduced fusion (Figs. 1 and 2). We propose that an internal low pH may facilitate heterologous vesicle-vesicle and vesicle-plasma membrane fusion. There is some evidence that clathrin can accelerate phospholipid vesicle fusion in vitro at low pH (Blumenthal et al., 1983) but no direct evidence on the role of intravesicular pH. This idea is consistent not only with the preceding discussion, but also with the fact that the intracellular membrane-bound compartments least involved in fusion events (e.g. mitochondria) are of neutral or alkaline internal pH. Membrane fusion is certainly required for the formation of vesicles at the periphery of the Golgi apparatus, and possibly earlier in the transport and processing of biosynthetic products in the Golgi (Bergeron et al., 1982). Thus the accumulation of amines in the Golgi may be responsible for several effects on the flow of macromolecules along their translocation pathways. The status of the plasma membrane in this view is complex. It might be argued that the pH dictating the fusion step in endocytosis is that of the extracellular fluid, in which case the inhibitory effects of amines on this process are not explained. However, the rapidity of acidification of the newly formed endocytic vesicles allows the possibility that plasma membrane invaginations might temporarily sequester areas which are of lower pH than that of the bulk extracellular fluid even before fusion, since the proton pumping enzyme(s) are probably present on the plasma

  14. Thermodynamic study of β-cyclodextrin-dye inclusion complexes using gradient flow injection technique and molecular modeling.

    PubMed

    Izadmanesh, Y; Ghasemi, Jahan B

    2016-08-01

    Gradient flow injection technique-diode array spectrophotometry was applied for β-cyclodextrin (β-CD)-dye inclusion complex studies. A single injection of a small amount of mixed β-CD-dye solution (100μl) into the carrier solution of the dye and recording the spectra gave the titration data. The mole ratio data were calculated by calibrating the dispersion pattern using a calibrator dye (rose bengal). Model-based multivariate methods were used to analyze the spectral-mole ratio data and, as a result, estimate stability constants and concentration-spectral profiles. Reliability was tested by applying this method to study the β-CD host-guest complexes with several dyes as guest molecules. Singular value decomposition (SVD) was used to select the chemical model and reduce noise. Molecular modeling provided the ability to predict the guest conformation-orientation (posing) within the cavity of β-CD and the nature of the involved interactions. Among those dyes showing observable spectral variation, the stoichiometric ratio of β-CD: dye (and log Kf) of methyl orange, fluorescein, phenol red, 4-(2-pyridylazo) resorcinol (PAR), and crystal violet were calculated to be 1:1 (4.26±0.01), 1:1 (1.53±0.08), 1:1 (3.11±0.04), 1:1 (1.06±0.12), and 2:1 (5.27±0.03), respectively. Compared with the classical method of titration, this method is simple and fast and has the advantage of needing reduced human interference. Molecular modeling facilitates a better understanding of the type of interactions and conformation of guest molecules in the β-CD cavity. The details of the proposed method are discussed in this paper.

  15. Thermodynamic study of β-cyclodextrin-dye inclusion complexes using gradient flow injection technique and molecular modeling

    NASA Astrophysics Data System (ADS)

    Izadmanesh, Y.; Ghasemi, Jahan B.

    2016-08-01

    Gradient flow injection technique-diode array spectrophotometry was applied for β-cyclodextrin (β-CD)-dye inclusion complex studies. A single injection of a small amount of mixed β-CD-dye solution (100 μl) into the carrier solution of the dye and recording the spectra gave the titration data. The mole ratio data were calculated by calibrating the dispersion pattern using a calibrator dye (rose bengal). Model-based multivariate methods were used to analyze the spectral-mole ratio data and, as a result, estimate stability constants and concentration-spectral profiles. Reliability was tested by applying this method to study the β-CD host-guest complexes with several dyes as guest molecules. Singular value decomposition (SVD) was used to select the chemical model and reduce noise. Molecular modeling provided the ability to predict the guest conformation-orientation (posing) within the cavity of β-CD and the nature of the involved interactions. Among those dyes showing observable spectral variation, the stoichiometric ratio of β-CD: dye (and log Kf) of methyl orange, fluorescein, phenol red, 4-(2-pyridylazo) resorcinol (PAR), and crystal violet were calculated to be 1:1 (4.26 ± 0.01), 1:1 (1.53 ± 0.08), 1:1 (3.11 ± 0.04), 1:1 (1.06 ± 0.12), and 2:1 (5.27 ± 0.03), respectively. Compared with the classical method of titration, this method is simple and fast and has the advantage of needing reduced human interference. Molecular modeling facilitates a better understanding of the type of interactions and conformation of guest molecules in the β-CD cavity. The details of the proposed method are discussed in this paper.

  16. Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: an injection experiment.

    PubMed

    Avila, Cristina; Pedescoll, Anna; Matamoros, Víctor; Bayona, Josep María; García, Joan

    2010-11-01

    A continuous injection experiment was implemented in a pilot-scale horizontal subsurface flow constructed wetland system to evaluate the behavior of four pharmaceuticals and personal care products (i.e. ibuprofen, naproxen, diclofenac and tonalide) and a phenolic estrogenic compound (i.e. bisphenol A). The treatment system consisted of an anaerobic reactor as a primary treatment, followed by two 0.65 m² wetlands (B1 and B2) working in parallel and connected to a 1.65 m² wetland (B3) operating in series. Overall removal efficiencies for the selected compounds ranged from 97% to 99%. The response curves of the injected pollutants show that the behavior of these compounds strongly depends on their sorption and biodegradation characteristics. While about 50% of ibuprofen was removed in B1 and B2, 99% was achieved at B3, where the dissolved oxygen concentration was significantly higher (B1-B2=0.5 mg L⁻¹ and B3=5.4 mg L⁻¹). Naproxen and diclofenac were efficiently removed (93%) in B1 and B2, revealing anaerobic degradation as a probable removal mechanism. Moreover, tonalide and bisphenol A were readily removed in the small wetlands (94% and 83%, respectively), where the removal of total suspended solids was 93%. Therefore, given their high hydrophobicity, sorption onto the particulate matter stands for the major removal mechanism. However, the tentative identification of carboxy-bisphenol A as an intermediate degradation product in B3 suggested biodegradation as a relevant bisphenol A removal pathway under aerobic prevailing conditions.

  17. Thermodynamic study of β-cyclodextrin-dye inclusion complexes using gradient flow injection technique and molecular modeling.

    PubMed

    Izadmanesh, Y; Ghasemi, Jahan B

    2016-08-01

    Gradient flow injection technique-diode array spectrophotometry was applied for β-cyclodextrin (β-CD)-dye inclusion complex studies. A single injection of a small amount of mixed β-CD-dye solution (100μl) into the carrier solution of the dye and recording the spectra gave the titration data. The mole ratio data were calculated by calibrating the dispersion pattern using a calibrator dye (rose bengal). Model-based multivariate methods were used to analyze the spectral-mole ratio data and, as a result, estimate stability constants and concentration-spectral profiles. Reliability was tested by applying this method to study the β-CD host-guest complexes with several dyes as guest molecules. Singular value decomposition (SVD) was used to select the chemical model and reduce noise. Molecular modeling provided the ability to predict the guest conformation-orientation (posing) within the cavity of β-CD and the nature of the involved interactions. Among those dyes showing observable spectral variation, the stoichiometric ratio of β-CD: dye (and log Kf) of methyl orange, fluorescein, phenol red, 4-(2-pyridylazo) resorcinol (PAR), and crystal violet were calculated to be 1:1 (4.26±0.01), 1:1 (1.53±0.08), 1:1 (3.11±0.04), 1:1 (1.06±0.12), and 2:1 (5.27±0.03), respectively. Compared with the classical method of titration, this method is simple and fast and has the advantage of needing reduced human interference. Molecular modeling facilitates a better understanding of the type of interactions and conformation of guest molecules in the β-CD cavity. The details of the proposed method are discussed in this paper. PMID:27111153

  18. Novel miniaturized sensors for potentiometric batch and flow-injection analysis (FIA) of perchlorate in fireworks and propellants.

    PubMed

    Almeer, Saeed H M A; Zogby, Ibrahim A; Hassan, Saad S M

    2014-11-01

    Three planar miniaturized perchlorate membrane sensors (3×5 mm(2)) are prepared using a flexible Kaptan substrate coated with nitron-perchlorate (NT-ClO4) [sensor 1], methylene blue-perchlorate (MB-ClO4) [sensor II] and indium-porphyrin (In-Por) [sensor III] as electroactive materials in PVC membranes plasticized with 2-NPPE. Sensors I, II and III display near-Nernstian response for 1.0×10(-5)-1.0×10(-2), 3.1×10(-5)-1.0×10(-2) and 3.1×10(-6)-1.0×10(-2) mol L(-1) ClO4(-) with lower detection limits of 6.1×10(-6), 6.9×10(-6) and 1.2×10(-6) mol L(-1), and anionic calibration slopes of 50.9±0.4, 48.4±0.4 and 57.7±0.3 mV decade(-1), respectively. Methods for determining perchlorate using these sensors offer many attractive advantages including simplicity, flexibility, cost effectiveness, wide linear dynamic response range (0.1-1000 ppm), low detection limit (<1.2×10(-6) mol L(-1)≡0.1 ppm), small sample test volume (100 μL), safety, short response time (<20 s), long life span (~8 weeks), and extended wide working pH range (4.5-8.0). The sensors show high selectivity in the presence of some inorganic ions (e.g., PO4(3-), SO4(2-), S2O3(2-), NO2(-), NO3(-), N3(-), CN(-), Cl(-), Br(-), I(-)) and automation feasibility. Indium-porphyrin based membrane sensor (sensor III) is used as a detector in a wall-jet flow injection set-up to enable accurate flow injection analysis (FIA) of perchlorate in some fireworks without interferences from the associated reducing agents (sulfur and charcoal), binders (dextrin, lactose), coloring agents (calcium, strontium, copper, iron, sodium), color brighten (linseed oil) and regulators (aluminum flakes) which are commonly used in the formulations. The sensor is also used for perchlorate assessment in some propellant powders. The results fairly agree with data obtained by ion-chromatography.

  19. Preserving drinking water quality in geotechnical operations: predicting the feedback between fluid injection, fluid flow, and contamination

    NASA Astrophysics Data System (ADS)

    Schilling, Frank R.

    2014-05-01

    Not only in densely populated areas the preservation of drinking water quality is of vital interest. On the other side, our modern economies request for a sustained energy supply and a secure storage of waste materials. As energy sources with a high security of supply, oil, natural gas, and geothermal energy cover ca. 60% of Europe's energy demand; together with coal more than 75% (IEA 2011). Besides geothermal energy, all of the resources have a high greenhouse gas footprint. All these production activities are related to fluid injection and/or fluid production. The same holds true for gas storage operations in porous reservoirs, to store natural gases, oil, or greenhouse gases. Different concerns are discussed in the public and geoscientific community to influence the drinking water quality: - wastewater discharges from field exploration, drilling, production, well treatment and completion - wastewater sequestration - gas storage - tight gas and tight oil production (including hydraulic fracturing) - Shale gas production (including hydraulic fracturing) - mine drainage This overview contribution focusses on strategies to systematically reduce the risk of water pollution in geotechnical operations of deep reservoirs. The principals will be exemplarily revealed for different geotechnical operations. - How to control hydraulic fracturing operations to reduce the risk of enhanced seismic activity and avoiding the connection of originally separated aquifers. The presented approach to quantitatively predict the impact of stimulation activities is based on petrophysical models taking the feedback of geomechanical processes and fluid flow in porous media, fissures and faults into account. The specific flow patterns in various rock types lead to distinguished differences in operational risk. - How can a proper planning of geotechnical operations reduce the involved risks. A systematic risk reduction strategy will be discussed. On selected samples the role of exploration

  20. Novel miniaturized sensors for potentiometric batch and flow-injection analysis (FIA) of perchlorate in fireworks and propellants.

    PubMed

    Almeer, Saeed H M A; Zogby, Ibrahim A; Hassan, Saad S M

    2014-11-01

    Three planar miniaturized perchlorate membrane sensors (3×5 mm(2)) are prepared using a flexible Kaptan substrate coated with nitron-perchlorate (NT-ClO4) [sensor 1], methylene blue-perchlorate (MB-ClO4) [sensor II] and indium-porphyrin (In-Por) [sensor III] as electroactive materials in PVC membranes plasticized with 2-NPPE. Sensors I, II and III display near-Nernstian response for 1.0×10(-5)-1.0×10(-2), 3.1×10(-5)-1.0×10(-2) and 3.1×10(-6)-1.0×10(-2) mol L(-1) ClO4(-) with lower detection limits of 6.1×10(-6), 6.9×10(-6) and 1.2×10(-6) mol L(-1), and anionic calibration slopes of 50.9±0.4, 48.4±0.4 and 57.7±0.3 mV decade(-1), respectively. Methods for determining perchlorate using these sensors offer many attractive advantages including simplicity, flexibility, cost effectiveness, wide linear dynamic response range (0.1-1000 ppm), low detection limit (<1.2×10(-6) mol L(-1)≡0.1 ppm), small sample test volume (100 μL), safety, short response time (<20 s), long life span (~8 weeks), and extended wide working pH range (4.5-8.0). The sensors show high selectivity in the presence of some inorganic ions (e.g., PO4(3-), SO4(2-), S2O3(2-), NO2(-), NO3(-), N3(-), CN(-), Cl(-), Br(-), I(-)) and automation feasibility. Indium-porphyrin based membrane sensor (sensor III) is used as a detector in a wall-jet flow injection set-up to enable accurate flow injection analysis (FIA) of perchlorate in some fireworks without interferences from the associated reducing agents (sulfur and charcoal), binders (dextrin, lactose), coloring agents (calcium, strontium, copper, iron, sodium), color brighten (linseed oil) and regulators (aluminum flakes) which are commonly used in the formulations. The sensor is also used for perchlorate assessment in some propellant powders. The results fairly agree with data obtained by ion-chromatography. PMID:25127583

  1. Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine

    PubMed Central

    Hassan, Ahmed Khudhair; Saad, Bahruddin; Ghani, Sulaiman Ab; Adnan, Rohana; Rahim, Afidah Abdul; Ahmad, Norariza; Mokhtar, Marina; Ameen, Suham Tawfiq; Al-Araji, Suad Mustafa

    2011-01-01

    Plasticised poly(vinyl chloride)-based membranes containing the ionophores (α-, β- and γ-cyclodextrins (CD), dibenzo-18-crown-6 (DB18C6) and dibenzo-30-crown-10 (DB30C10) were evaluated for their potentiometric response towards promethazine (PM) in a flow injection analysis (FIA) set-up. Good responses were obtained when β- and γ-CDs, and DB30C10 were used. The performance characteristics were further improved when tetrakis(4-chlorophenyl) borate (KTPB) was added to the membrane. The sensor based on β-CD, bis(2-ethylhexyl) adipate (BEHA) and KTPB exhibited the best performance among the eighteen sensor compositions that were tested. The response was linear from 1 × 10−5 to 1 × 10−2 M, slope was 61.3 mV decade−1, the pH independent region ranged from 4.5 to 7.0, a limit of detection of 5.3 × 10−6 M was possible and a lifetime of more than a month was observed when used in the FIA system. Other plasticisers such as dioctyl phenylphosphonate and tributyl phosphate do not show significant improvements in the quality of the sensors. The promising sensors were further tested for the effects of foreign ions (Li+, Na+, K+, Mg2+, Ca2+, Co2+, Cu2+, Cr3+, Fe3+, glucose, fructose). FIA conditions (e.g., effects of flow rate, injection volume, pH of the carrier stream) were also studied when the best sensor was used (based on β-CD). The sensor was applied to the determination of PM in four pharmaceutical preparations and human urine that were spiked with different levels of PM. Good agreement between the sensor and the manufacturer’s claimed values (for pharmaceutical preparations) was obtained, while mean recoveries of 98.6% were obtained for spiked urine samples. The molecular recognition features of the sensors as revealed by molecular modelling were rationalised by the nature of the interactions and complexation energies between the host and guest molecules. PMID:22346617

  2. Differentiation of the four major types (C. Burmannii, C. Verum, C. cassia, And C. Loureiroi) of cinnamons using a flow-injection mass spectrometric (FIMS) fingerprinting method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple and efficient flow-injection mass spectrometric (FIMS) method was developed to differentiate cinnamon (Cinnamomum) bark (CB) samples of the four major species (C. burmannii, C. verum, C. aromaticum, and C. loureiroi) of cinnamon. Fifty cinnamon samples collected from China, Vietnam, Indon...

  3. Differentiation of the two major species of Echinacea (E. augustifolia and E. purpurea) using a flow injection mass spectrometric (FIMS) fingerprinting method and chemometric analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid, simple, and reliable flow-injection mass spectrometric (FIMS) method was developed to discriminate two major Echinacea species (E. purpurea and E. angustifolia) samples. Fifty-eight Echinacea samples collected from United States were analyzed using FIMS. Principle component analysis (PCA) a...

  4. Large-eddy simulations of turbulent reacting flows in a chamber with gaseous ethylene injecting through the porous wall

    SciTech Connect

    Liou, T.M.; Lien, W.Y.; Hwang, P.W. . Dept of Power Mechanical Engineering)

    1994-12-01

    Large-eddy simulations were performed to study the turbulent reacting flows in a simulated solid-fuel combustion chamber. The time-dependent axisymmetric compressible conservation equations were solved directly without using subgrid-scale turbulence models. The combustion process considered was a one-step, irreversible, and infinitely fast chemical reaction and the pyrolizing solid fuel was simulated by gaseous ethylene injected through a porous wall for a practical range of fuel blowing velocity encountered in solid-fuel combustion chambers for the first time. The numerical code used the finite-volume technique which involved alternating in time the second-order, explicit MacCormack's and Godunov's methods. Characteristic-based boundary conditions were applied on inflow and outflow boundaries, which allow outlet boundary conditions to be nonzero gradients, and in turn, a practical length of computational domain to be realized. The effects of combustion on the large-scale unsteady flow structure and the mean flameholder recirculation zone were documented in terms of the density contours, vorticity dynamics, streamlines, mean-velocity vector fields, temperature profiles, flame position, and fuel blowing velocity. A comparison of the distributions of instantaneous and mean mass fractions of reactants shows that the present method appropriately reveals the effects of large-scale turbulent motions on combustion. Furthermore, the present large-eddy simulations have achieved a significant improvement in predicting the mean effective reattachment length over the previous calculations incorporating with turbulence models. The physical insight regarding the decrease of the mean effective reattachment length with combustion was also addressed.

  5. Analysis of Ground-Water Flow in the Madison Aquifer using Fluorescent Dyes Injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04

    USGS Publications Warehouse

    Putnam, Larry D.; Long, Andrew J.

    2007-01-01

    The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO

  6. Transient Fluid Flow Along Basement Faults and Rupture Mechanics: Can We Expect Injection-Induced Earthquake Behavior to Correspond Directly With Injection Operations?

    NASA Astrophysics Data System (ADS)

    Norbeck, J. H.; Horne, R. N.

    2015-12-01

    We explored injection-induced earthquake behavior in geologic settings where basement faults are connected hydraulically to overlying saline aquifers targeted for wastewater disposal. Understanding how the interaction between natural geology and injection well operations affects the behavior of injection-induced earthquake sequences has important implications for characterizing seismic hazard risk. Numerical experiments were performed to investigate the extent to which seismicity is influenced by the migration of pressure perturbations along fault zones. Two distinct behaviors were observed: a) earthquake ruptures that were confined to the pressurized region of the fault and b) sustained earthquake ruptures that propagated far beyond the pressure front. These two faulting mechanisms have important implications for assessing the manner in which seismicity can be expected respond to injection well operations.Based upon observations from the numerical experiments, we developed a criterion that can be used to classify the expected faulting behavior near wastewater disposal sites. The faulting criterion depends on the state of stress, the initial fluid pressure, the orientation of the fault, and the dynamic friction coefficient of the fault. If the initial ratio of shear to effective normal stress resolved on the fault (the prestress ratio) is less than the fault's dynamic friction coefficient, then earthquake ruptures will tend to be limited by the distance of the pressure front. In this case, parameters that affect seismic hazard assessment, like the maximum earthquake magnitude or earthquake recurrence interval, could correlate with injection well operational parameters. For example, the maximum earthquake magnitude might be expected to grow over time in a systematic manner as larger patches of the fault are exposed to significant pressure changes. In contrast, if the prestress ratio is greater than dynamic friction, a stress drop can occur outside of the pressurized

  7. Ultrasensitive detection of streptomycin using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) biosensor.

    PubMed

    Mishra, Geetesh K; Sharma, Atul; Bhand, Sunil

    2015-05-15

    This work presents the development of an ultrasensitive biosensor for detection of streptomycin residues in milk samples using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) technique. Monoclonal antibody specific to streptomycin was immobilized on to the thiol modified gold quartz crystal surface. A broad dynamic range (0.3-300 ng/mL) was obtained for streptomycin with a good linearity in the range 0.3-10 ng/mL for PBS and 0.3-50 ng/mL for milk. The correlation coefficient (R(2)) of the biosensor was found to be 0.994 and 0.997 for PBS and milk respectively. Excellent recoveries were obtained from the streptomycin spiked milk samples in the range 98-99.33%, which shows the applicability of the developed biosensor in milk. The reproducibility of the developed biosensor was found satisfactory with % RSD (n=5) 0.351. A good co-relation was observed between the streptomycin recoveries measured through the developed biosensor and the commercial ELISA kit. The analytical figures of merit of the developed biosensor confirm that the developed FIA-EQCN biosensor could be very effective for low-level detection of streptomycin in milk samples.

  8. Miniaturized ionophore-based potentiometric sensors for the flow-injection determination of metformin in pharmaceutical formulations and biological fluids.

    PubMed

    Khaled, Elmorsy; Kamel, Manal S; Hassan, Hassan N; Abd El-Alim, Sameh H; Aboul-Enein, Hassan Y

    2012-12-01

    Miniaturized potentiometric sensors based on β-cyclodextrins (β-CDs) are described for determination of metformin (Mf) in pharmaceutical preparations and biological fluids. Electrode matrix compositions are optimized on the basis of the nature and content of sensing ionophore, ionic sites and plasticizers. Coated wire electrodes (CWEs) modified with heptakis(2,3,6-tri-O-methyl)-β-CD, sodium tetrakis(4-fluorophenyl)borate (NaTFPB) and 2-fluorophenyl 2-nitrophenyl ether (f-NPE), work satisfactorily in the concentration range from 10(-6) to 10(-1) mol L(-1) with Nernstian compliance (55.7 ± 0.4 mV per decade activity) and a detection limit of 8 × 10(-7) mol L(-1). Incorporation of β-CD as a molecular recognition element improved the electrode sensitivity and selectivity due to encapsulation of Mf into the β-CD cavity (host-guest interaction). The developed electrodes have been successfully applied for the potentiometric determination of Mf under batch and flow injection analysis (FIA). FIA allows analysis of 90 samples per h offering the advantages of simplicity, accuracy and automation feasibility. The dissolution profile for metformin pharmaceutical samples (Cidophage®) was monitored using the proposed electrode in comparison with the official spectrophotometric methods. Characterization of the formed Mf-β-CD inclusion complexes is discussed in detail.

  9. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  10. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography.

    PubMed

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55μg/L, the relative standard deviation (n=10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  11. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry.

    PubMed

    Benkhedda, Karima; Epov, Vladimir N; Evans, R Douglas

    2005-04-01

    A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP-mass spectrometry (SF-ICP-MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L(-1), respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86-5.50 and 0.176-2.35 ng L(-1), respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82-1.04% (RSD) was obtained for 235U/238U at low ng L(-1) levels, using the FI transient signal approach.

  12. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction. PMID:18969896

  13. Flow injection analysis with electrochemical detection for rapid identification of platinum-based cytostatics and platinum chlorides in water.

    PubMed

    Kominkova, Marketa; Heger, Zbynek; Zitka, Ondrej; Kynicky, Jindrich; Pohanka, Miroslav; Beklova, Miroslava; Adam, Vojtech; Kizek, Rene

    2014-02-04

    Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED). Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer) and potential changes (1,000, 1,100 and 1,200 mV) offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  14. Flow-injection determination of hydrogen peroxide based on fluorescence quenching of chromotropic acid catalyzed with Fe(II).

    PubMed

    Li, Zhen Hai; Li, Dong Hao; Oshita, Koji; Motomizu, Shoji

    2010-09-15

    Flow-injection analysis system (FIA system), which was based on Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide, was developed for the determination of hydrogen peroxide. The chromotropic acid has a fluorescence measured at lambda(em)=440 nm (emission wavelength) with lambda(ex)=235 nm (excitation wavelength), and the fluorescence intensity at lambda(em)=440 nm quietly decreased in the presence of hydrogen peroxide and Fe(II), which was caused by Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide. By measuring the difference of fluorescence intensity, hydrogen peroxide (1.0 x 10(-8)-1.0 x 10(-3) mol L(-1)) could be determined by the proposed FIA system, whose analytical throughput was 40 samples h(-1). The relative standard deviation (RSD) was 1.03% (n=10) for 4.0 x 10(-8) mol L(-1) hydrogen peroxide. The proposed FIA technique could be applied to the determination of hydrogen peroxide in rain water samples.

  15. On-line preconcentration and determination of chromium in parenteral solutions by flow injection-flame atomic absorption spectrometry.

    PubMed

    Wuilloud, Gustavo M; Wuilloud, Rodolfo G; de Wuilloud, Jorgelina C A; Olsina, Roberto A; Martinez, Luis D

    2003-02-01

    An on-line chromium preconcentration and determination system implemented with flame atomic absorption spectrometry (FAAS) associated to flow injection (FI) was studied. For the retention of chromium, 4-(2-Thiazolylazo)-resorcinol (TAR) and Amberlite XAD-16 were used, at pH 5.0. The Cr-TAR complex was removed from the micro-column with ethanol. An enrichment factor of 50 was obtained for the preconcentration of 50 ml of sample solution. The detection limit value for the preconcentration of 50 ml of aqueous solution of Cr was 20 ng l(-1). The precision for ten replicate determinations at the 5 microg l(-1) Cr levels was 2.9% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9997 at levels near the detection limits up to at least 100 microg l(-1). The method was successfully applied to the determination of chromium in parenteral solution samples.

  16. Miniature flow injection analyser for laboratory, shipboard and in situ monitoring of nitrate in estuarine and coastal waters.

    PubMed

    Gardolinski, Paulo C F C; David, Anthony R J; Worsfold, Paul J

    2002-12-01

    A miniature, submersible flow injection analyser, with solid-state spectrophotometric detection, for the in situ determination of nitrate is described. It utilises the standard laboratory chemistry of cadmium reduction followed by diazotisation. The detection limit was 2.8 mug l(-1) N and the linear range could be varied from 2.8 to 100 mug l(-1) N up to 100-2000 mug l(-1) N to suit local environmental conditions. The versatility of the instrument is demonstrated by results from laboratory, shipboard (North Sea IMPACT Cruise) and in situ (Tamar Estuary, UK) deployments. They show the excellent temporal and spatial resolution that can be achieved for studying dynamic processes in estuarine and coastal waters. The results acquired during the IMPACT Cruise map the transport of nitrate from the Humber Estuary into the North Sea and show that nitrate uptake was more pronounced in areas of shallow and clear waters (Dogger Bank) than in the coastal mixing zone with higher suspended solids. A key feature of the analyser is its portability and ease of deployment due to the small size and weight and low buoyancy. Accuracy was assessed by participation in an international intercomparison exercise and the results were within the assigned tolerance interval of the consensus mean (Z<2). PMID:18968836

  17. Quantification of Phenolic Antioxidant Moieties in Dissolved Organic Matter by Flow-Injection Analysis with Electrochemical Detection.

    PubMed

    Walpen, Nicolas; Schroth, Martin H; Sander, Michael

    2016-06-21

    Phenolic moieties in dissolved organic matter (DOM) play important roles as antioxidants in oxidation processes in natural and engineered systems. This work presents an automated and highly sensitive flow injection analysis (FIA) system coupled to both spectrophotometric and electrochemical detection to quantify electron-donating phenolic moieties in DOM by determining the number of electrons that these moieties transfer to an added chemical oxidant, the radical cation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(•+)). The FIA system was successfully validated using Trolox as a redox standard. Highest method sensitivity was attained when combining the FIA with chronoamperometric detection, resulting in limits of quantification of picomolar amounts of Trolox and nanogram amounts of DOM (corresponding to solutions with <1 mg carbon per liter). The analysis of DOM isolates showed a strong linear correlation between the number of electrons donated and their titrated phenol contents, supporting oxidation of phenols by ABTS(•+). The broad application spectrum of the FIA system to dilute natural DOM samples was illustrated by analyzing water samples collected from northern peatlands and by monitoring the oxidation of phenols in one peat sample upon incubation with a phenol oxidase. The superior analytical capability of the FIA system allows quantifying phenols and monitoring phenol dynamics in dilute DOM samples. PMID:27227422

  18. Flow injection chemiluminescence immunoassay based on resin beads, enzymatic amplification and a novel monoclonal antibody for determination of Hg(2+).

    PubMed

    Xu, Mingxia; Chen, Mengting; Dong, Tiantian; Zhao, Kang; Deng, Anping; Li, Jianguo

    2015-09-21

    In the present work, a simple and sensitive flow injection chemiluminescent competitive immunoassay was developed for the determination of mercury(II) ion (Hg(2+)) based on carboxylic resin beads, a novel specific monoclonal antibody (McAb) and HRP enzyme-amplification. Resin beads with carboxyl groups were creatively employed as supports for immobilizing more coating antigen through acylamide bonds. With a competitive-type assay mode, the Hg(2+) in solution competed with the immobilized coating antigen for the limited McAb. Then, the second antibody labeled with HRP was introduced, and an effectively increased CL was obtained, which was ascribed to the catalytic activity of HRP for the luminol-PIP-H2O2 reaction. With increasing concentration of Hg(2+), the CL of this system decreases because less HRP is present in the CL reaction. At optimal conditions, the CL signal displayed a good linear relation toward Hg(2+) in the range of 0.05-200 ng mL(-1) with a detection limit (3σ) of 0.015 ng mL(-1). The immunosensor possessed high specificity, acceptable accuracy and reproducibility, and was examined in real samples with favorable results. This immunoassay will have intriguing application prospects for the determination of other heavy metal ions and environmental contaminants.

  19. Flow Injection Photosensitized Chemiluminescence of Luminol with Cu(II)-Rose Bengal: Mechanistic Approach and Vitamin A and C Determination

    PubMed Central

    Asgher, Muhammad; Yaqoob, Mohammad; Nabi, Abdul; Siddiqi, Abdul Rauf

    2014-01-01

    Rose Bengal photosensitized flow injection chemiluminescence method is reported using luminol-Cu(II) for the determination of vitamins A and C in pharmaceutical formulations. The reaction is based on the enhancement effect of analyte in the production of anion radicals of Rose Bengal (RB•−) which rapidly interact with dissolved oxygen and generate superoxide anions radicals (O2•−) and hydrogen peroxide (H2O2). Highly reactive hydroxyl radicals (•OH) were produced via dismutation of H2O2 by catalyst (Cu2+). The generated superoxide anions radicals and hydroxyl radicals thus oxidize luminol in alkaline medium to generate strong chemiluminescence. The limit of detection (3s of the blank, n = 6) of vitamins A and C and RB was found to be 0.008, 0.005, and 0.05 μg mL−1, respectively. The sample throughput of 70 h−1 for vitamins A and C and 30 h−1 for RB was found. Calibration curve was linear in the range of 0.05–15, 0.01–20, and 0.1–50 μg mL−1 for vitamins A and C and RB, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.6–3.6%. The method was successfully applied to pharmaceutical formulations and the results obtained were in good agreement with the labeled values. PMID:25614739

  20. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction.

  1. Development of a flow-injection fluorescence method for estimation of total polycyclic aromatic compounds in asphalt fumes.

    PubMed

    Neumeister, Charles E; Olsen, Larry D; Dollberg, Donald D

    2003-01-01

    Traditionally, measurements of specific polycyclic aromatic compounds (PACs) have been attempted as an estimate of asphalt fume exposure. However, asphalt fumes contain numerous alkyl substituted PACs, including PACs containing heteroatoms of nitrogen, oxygen, and sulfur. Many of these compounds coelute precluding the resolution of the individual compounds resulting in ambiguous data. Moreover, many researchers believe that some observed health hazards are associated with PACs overall and not just a few select PACs. Therefore, NIOSH method 5800 was developed to evaluate total PACs as a chemical class in asphalt fumes. Asphalt fume samples were collected on a poly(tetrafluoroethylene) filter backed by an XAD-2 sorbent tube. The samples were extracted with hexane; then, a cyano-solid-phase-extraction column was used to remove the polar compounds while the aliphatic and aromatic compounds were eluted with hexane. An equal volume of dimethyl sulfoxide (DMSO) was added to the hexane extract, causing the aromatic compounds to partition into the DMSO, thus isolating the PACs. The PACs were then analyzed for fluorescence using a flow-injection method with two fluorescence detectors. Wavelength settings for the first detector (254-nm excitation, 370-nm emission) emphasized the 2- to 4-ring PACs that may cause eye and respiratory tract irritation. Wavelength settings of the second detector (254-nm excitation, 400-nm emission) emphasized the 4- and higher-ring PACs that are often mutagenic and possibly carcinogenic. PMID:14521431

  2. Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2015-01-01

    The use of atmospheric pressure photoionization is not widespread in metabolomics, despite its considerable potential for the simultaneous analysis of compounds with diverse polarities. This work considers the development of a novel analytical approach based on flow injection analysis and atmospheric pressure photoionization mass spectrometry for rapid metabolic screening of serum samples. Several experimental parameters were optimized, such as type of dopant, flow injection solvent, and their flows, given that a careful selection of these variables is mandatory for a comprehensive analysis of metabolites. Toluene and methanol were the most suitable dopant and flow injection solvent, respectively. Moreover, analysis in negative mode required higher solvent and dopant flows (100 µl min(-1) and 40 µl min(-1), respectively) compared to positive mode (50 µl min(-1) and 20 µl min(-1)). Then, the optimized approach was used to elucidate metabolic alterations associated with Alzheimer's disease. Thereby, results confirm the increase of diacylglycerols, ceramides, ceramide-1-phosphate and free fatty acids, indicating membrane destabilization processes, and reduction of fatty acid amides and several neurotransmitters related to impairments in neuronal transmission, among others. Therefore, it could be concluded that this metabolomic tool presents a great potential for analysis of biological samples, considering its high-throughput screening capability, fast analysis and comprehensive metabolite coverage.

  3. Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry.

    PubMed

    Li, Yan; Jiang, Yan; Yan, Xiu-Ping; Ni, Zhe-Ming

    2002-11-15

    The toxic effects of mercury are well-known. To establish sources of mercury contamination and to evaluate levels of mercury pollution, sensitive, selective, and accurate analytical methods with excellent reproducibility are required. We have developed a novel methodology for the determination of trace mercury in environmental and foods samples by online coupling of flow injection (FI) displacement sorption preconcentration in a knotted reactor (KR) to electrothermal atomic absorption spectrometry (ETAAS). The developed methodology involved the online formation of copper pyrrolidine dithiocarbamate (Cu-PDC), presorption of the resulting Cu-PDC onto the inner walls of the KR, and selective retention of the analyte Hg(ll) onto the inner walls of the KR through online displacement reaction between Hg(ll) and the presorbed Cu-PDC. The retained analyte was subsequently eluted by 50 microL of ethanol and online detected by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their APDC complexes relative to Cu- PDC were minimized without the need of any masking reagents. The tolerable concentrations of Cu(II), Cd(II), Fe(III), Ni(III), and Zn(II) were up to 12, 20, 16, 20, and 60 mg L(-1), respectively. No additional chemical modifiers for the stabilization of mercury were required in the present system owing to the stability of Hg-PDC at the drying stage, and no pyrolysis stage was necessary due to the effective removal of the matrices. With consumption of 2.5 mL of sample solution, an enhancement factor of 91 was obtained in comparison with direct injection of 50 microL of aqueous solution. The relative detection limit (3s) was 6.2 ng L(-1), corresponding to an absolute detection limit of 15.5 pg. The precision (RSD, n = 13) was 1.1% at the 2 microg L(-1) level. The method was successfully applied to the determination of mercury in several certified environmental and foods reference materials and locally collected water samples.

  4. Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry.

    PubMed

    Li, Yan; Jiang, Yan; Yan, Xiu-Ping; Ni, Zhe-Ming

    2002-11-15

    The toxic effects of mercury are well-known. To establish sources of mercury contamination and to evaluate levels of mercury pollution, sensitive, selective, and accurate analytical methods with excellent reproducibility are required. We have developed a novel methodology for the determination of trace mercury in environmental and foods samples by online coupling of flow injection (FI) displacement sorption preconcentration in a knotted reactor (KR) to electrothermal atomic absorption spectrometry (ETAAS). The developed methodology involved the online formation of copper pyrrolidine dithiocarbamate (Cu-PDC), presorption of the resulting Cu-PDC onto the inner walls of the KR, and selective retention of the analyte Hg(ll) onto the inner walls of the KR through online displacement reaction between Hg(ll) and the presorbed Cu-PDC. The retained analyte was subsequently eluted by 50 microL of ethanol and online detected by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their APDC complexes relative to Cu- PDC were minimized without the need of any masking reagents. The tolerable concentrations of Cu(II), Cd(II), Fe(III), Ni(III), and Zn(II) were up to 12, 20, 16, 20, and 60 mg L(-1), respectively. No additional chemical modifiers for the stabilization of mercury were required in the present system owing to the stability of Hg-PDC at the drying stage, and no pyrolysis stage was necessary due to the effective removal of the matrices. With consumption of 2.5 mL of sample solution, an enhancement factor of 91 was obtained in comparison with direct injection of 50 microL of aqueous solution. The relative detection limit (3s) was 6.2 ng L(-1), corresponding to an absolute detection limit of 15.5 pg. The precision (RSD, n = 13) was 1.1% at the 2 microg L(-1) level. The method was successfully applied to the determination of mercury in several certified environmental and foods reference materials and locally collected water samples. PMID:12487313

  5. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping

    2006-07-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  6. Perturbation solutions for a micropolar fluid flow in a semi-infinite expanding or contracting pipe with large injection or suction through porous wall

    NASA Astrophysics Data System (ADS)

    Si, Xinhui; Yuan, Lili; Cao, Limei; Zheng, Liancun; Shen, Yanan; Li, Lin

    2016-07-01

    We investigate an unsteady incompressible laminar micropolar flow in a semi-infinite porous pipe with large injection or suction through a deforming pipe wall. Using suitable similarity transformations, the governing partial differential are transformed into a coupled nonlinear singular boundary value problem. For large injection, the asymptotic solutions are constructed using the Lighthill method, which eliminates singularity of solution in the high order derivative. For large suction, a series expansion matching method is used. Analytical solutions are validated against the numerical solutions obtained by Bvp4c.

  7. Fluorescence method using on-line sodium cholate coacervate surfactant mediated extraction for the flow injections analysis of Rhodamine B.

    PubMed

    Acosta, Gimena; Talio, María C; Luconi, Marta O; Hinze, Willie L; Fernández, Liliana P

    2014-11-01

    An on-line surfactant mediated extraction method in a flow injection analysis format with fluorescence detection was developed for the determination of Rhodamine B (RhB) in food condiments. The sample was extracted using the phase separation behavior exhibited by the bile salt surfactant, sodium cholate (NaC), upon addition of sodium dodecylsulfate (SDS) in the presence of acid at room temperature. The RhB in the sample was incorporated into the NaC/SDS coacervate phase which was then collected on a glass-wool packed mini column from which it was subsequently eluted using a 1.00 mol L(-1) HCl solution. The inherent fluorescence (λex=555 nm; λem=575 nm) of RhB was employed for detection. Good linearity (r(2)=0.9933) was obtained over the concentration range 0.4-4794-479.0 µg L(-1) RhB. The detection (LOD) and quantification (LOQ) limits were 0.12 and 0.40 µg L(-1), respectively. The method was successfully applied for analysis of RhB in food condiments and spiked samples. The average recoveries ranged from 95.3% to 118.9% at spiked concentration levels of 1.19 and 2.39 µg L(-1). Under optimized conditions, a throughput of 50 samples per hour was achieved. The proposed method may be a valuable tool not only for quality control of food condiments and similar food confectioneries but for the analysis of a variety of other RhB-containing samples as well.

  8. Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations*1

    NASA Astrophysics Data System (ADS)

    Sigrist, Mirna E.; Beldoménico, Horacio R.

    2004-07-01

    This work describes a study on the determination of inorganic arsenic species in ground water and synthetic experimental matrices, using a flow injection system with on-line hydride generation device coupled to an atomic absorption spectrometer with flame-heated quartz atomizer (FI HG AAS). Specific trivalent arsenic determination is based on the slow kinetics of As(V) on the hydride generation reaction using sufficiently low concentrations of sodium tetrahydroborate (NaBH 4) as reductant in highly acidic conditions (pH<0). Under these conditions, the efficiency of hydride generation from As(V) is much lower than that from As(III). The pentavalent form is determined by the difference between total inorganic arsenic and As(III). As(V) interferences were studied using As(III) solutions ranging from 0% to 50% of total inorganic As. The optimized NaBH 4 concentration was 0.035% (w/v). The detection limit was 1.4 μg l -1 As(III). As(V) interferences were 6% in the case of water samples with 6 μg l -1 As(III) in the presence of 54 μg l -1 As(V) (i.e. 10% As(III)). Interferences of methylated arsenic species (MMA and DMA) were evaluated. Speciation method was satisfactorily applied to 20 field arsenical water samples from Santa Fe, Argentina, with values ranging from 30 to 308 μg l -1 total As. We found from 0% to 36% As(III) in the 20 field samples. The developed methodology constitutes an economic, simple and reliable way to evaluate inorganic arsenic distribution in underground waters or similar systems with negligible or no content of organoarsenicals.

  9. Incorporation of flow injection analysis or capillary electrophoresis with resonance Rayleigh scattering detection for inorganic ion analysis.

    PubMed

    Qi, Li; Han, Zhi-qiang; Chen, Yi

    2006-03-31

    Resonance Rayleigh scattering (RRS) has been explored as a detection (RRSD) technique for capillary electrophoresis (CE) or flow injection analysis (FIA) of inorganic ions. The detection was achieved through a scattering probe of ion-association complex formed from rhodamine B (Rh B) and iodine. The probe scatters strongly at 630 nm when oxidants such as Cr(2)O(7)(2-), MnO(4)(-) and ClO(-) present in a mixed solution of Rh B and iodide. The scattering disappears once iodine is reduced by reductants. Oxidant or reductant species in a sample can thus be detected by positive or negative RRS signal. To verify the RRSD, FIA-RRSD was first constructed and continuous measurement of testing samples containing Cr(2)O(7)(2-), MnO(4)(-) and/or ClO(-) was performed. The detection limits reached a level of decade nM and a linear range was found between peak height and concentration at the range of 0.255-2.04microM for Cr(2)O(7)(2-), 0.158-3.16microM for MnO(4)(-), and 1.18-9.43microM for ClO(-), with linear regression coefficients of all above 0.99. The run-to-run relative standard deviation of peak height was less than 3% (n=6). CE-RRSD was then set up and studied, using a capillary of 75microm i.d.x33cm filled with a running buffer of 50mM citrate and 25mM Tris (pH 3.32) and worked under -12kV at room temperature. The CE eluent was at-line conducted into a stream of rhodamine B and iodine flowing inner a wide tube by plugging the capillary outlet into the wide tube. Different mixtures prepared from Cr(2)O(7)(2-), MnO(4)(-) and ClO(-) were successfully separated and detected by the CE-RRSD. PMID:16455096

  10. Upregulation and induction of surface antigens with special reference to MHC class II expression in microglia in postnatal rat brain following intravenous or intraperitoneal injections of lipopolysaccharide.

    PubMed Central

    Xu, J; Ling, E A

    1994-01-01

    The effects of bacterial lipopolysaccharide (LPS) on the expression of surface antigens including major histocompatibility complex (MHC) and complement type 3 (CR3) receptors on microglial cells in the corpus callosum in postnatal rat brain were investigated. When LPS was injected intravenously (i.v.) in 1-d-old rats, the immunostaining of callosal amoeboid microglial cells with OX-18 directed against MHC class I antigen was enhanced 24 h after the injection in comparison with the controls. The expression of MHC class II (Ia) antigen on the same cell type as shown by its immunoreactivity with OX-6 was also elicited especially after 2 intraperitoneal (i.p.) injections of LPS. Thus 7 d after a single i.p. injection of LPS into 1-d-old rats, only a few OX-6 positive cells showing a moderate staining reaction were observed in the corpus callosum. The immunoreactivity diminished 14 d after the injection. However, in rats receiving 2 successive i.p. injections of LPS at 1 and 4 d of age and killed 7 d after the 1st injection, a significant number of intensely stained OX-6 positive amoeboid microglial cells were observed in the corpus callosum. The expression of MHC class II antigens induced by 2 injections of LPS was sustained at least until d 14 when the callosal ramified microglial cells, known to be derived from gradual metamorphic transformation of amoeboid microglia, still exhibited intense immunoreactivity with OX-6. The effect of LPS on the expression of CR3 on amoeboid microglial cells was not obvious after a single injection, but the immunoreactivity with OX-42 was also augmented in rats given 2 i.p. administration of LPS into rats at 1 an 4 d of age. It is concluded from this study that the expression of MHC class I and class II antigens on amoeboid microglial cells in corpus callosum was upregulated and induced respectively after i.v. or i.p. injection of LPS into early postnatal rats. Although relatively fewer in number when compared with OX-18 and OX-42

  11. Study and application of flow injection spectrofluorimetry with a fluorescent probe of 2-(2-pyridil)-benzothiazoline for superoxide anion radicals.

    PubMed

    Tang, Bo; Zhang, Li; Zhang, Li-Li

    2004-03-15

    This paper presents an automatic spectrofluorimetric method (flow injection spectrofluorimetry) using a novel fluorescent probe named H. Py. Bzt (2-(2-pyridil)-benzothiazoline) for determining superoxide dismutase (SOD) activity. The fluorescent probe was synthesized in house and fully characterized by elemental analysis and by infrared and (1)H nuclear magnetic resonance spectra. It could specially identify and trap O(2)(*-) and was oxidized by O(2)(*-) to form a strong fluorescence product. Based on this reaction, the flow injection spectrofluorimetric method was proposed and successfully used to determine SOD activity. The proposed method has a better selectivity in the determination of reactive oxygen species because the probe can be oxidized only by O(2)(*-) excluding H(2)O(2). As a kind of simple, rapid, precise, sensitive and automatic technique, it was applied to measurement of SOD activity in scallion, garlic, and onion with satisfactory results.

  12. Reference values for pulsed Doppler signals from the blood flow on both sides of the aortic valve.

    PubMed

    van Dam, I; Heringa, A; de Boo, T; Alsters, J; van Oort, A; Hopman, J; Fast, J; de Knecht, S; van der Werf, T; Daniels, O

    1987-11-01

    Pulsed Doppler signals were recorded in 215 healthy subjects, 120 males and 95 females, between 1 and 65 years of age. The measurements were performed in the left ventricular outflow tract (LVOT) and in the ascending aorta (AAO). Amplitude spectra from the Doppler signals were stored in digital form together with adjustment data for the instrument, the simultaneously registered ECG and respiration signal. The maximum velocity (Vmax), the maximum acceleration (Amax) and the width of the velocity distribution around Vmax (width) were derived from these spectra and used for the characterization of the signals. These parameters were computed without observer interaction using a computer program. Effects of age, sex, body surface area, heart rate and respiration were studied. Reference ranges were calculated. The following conclusions can be drawn: Vmax and Amax in the AAO decrease clearly with increasing age from approximately 100 to 60 cm s-1 and from 2000 to 1000 cm s-2 (medians), respectively. The variation of the width in the AAO is greater for people over 45 years. Vmax, Amax and width in the LVOT increase slightly with advancing age from approximately 60 to 80 cm s-1, 800 to 1000 cm s-2 and 12 to 15 cm s-1 (medians), respectively. These parameters of flow were either unrelated or only weakly related to other physiological variables in this study group. PMID:3691558

  13. Diagnostic performance of cardiac stress perfusion MRI in the detection of coronary artery disease using fractional flow reserve as the reference standard: a meta-analysis.

    PubMed

    Desai, Ravi R; Jha, Saurabh

    2013-08-01

    OBJECTIVE. This is an analysis of pooled studies for the determination of the test characteristics of stress perfusion cardiac MRI in the diagnosis of flow-limiting obstructive coronary artery disease (CAD) using fractional flow reserve (FFR) at catheter coronary angiography as the reference standard. MATERIALS AND METHODS. Traditionally, planimetric measurement of coronary stenosis at catheter coronary angiography has been considered the reference standard and has been used to verify the diagnostic characteristics of gatekeeper tests. FFR is a physiologic measure of flow limitation and is considered a more authentic reference standard in the diagnosis of CAD. The emergence of a new reference standard questions the true diagnostic accuracy of gatekeeper tests. A systematic literature review was performed for qualifying studies. The DerSimonian-Laird random effects model and a random-effects symmetric summary receiver operating characteristic curve analysis were performed. RESULTS. Twelve studies (761 patients) met the inclusion criteria. Four hundred six stenotic coronary arteries had FFR less than 0.75. Perfusion stress MRI has a sensitivity of 89.1% (95% CI, 84-93%) and specificity of 84.9% (95% CI, 76.6-91.1%) on a patient basis and a sensitivity of 87.7% (95% CI, 84.4-90.6%) and specificity of 88.6% (95% CI, 86.7-90.4%) on a coronary territory basis. CONCLUSION. Stress perfusion MRI remains an accurate test for the detection of flow-limiting stenosis when adjudicated by a physiologic reference standard.

  14. Hollow fiber-based liquid-liquid-liquid microextraction followed by flow injection analysis using column-less HPLC for the determination of phenazopyridine in plasma and urine.

    PubMed

    Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Farajmand, Bahman

    2011-07-01

    Hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) followed by flow injection analysis and diode array detection (FIA-DAD) was applied as a simple and sensitive quantitative method for the determination of phenazopyridine in urine and plasma samples. Flow injection system included a conventional HPLC system (without a chromatographic column) and a diode array detector. The extraction of phenazopyridine was carried out using diphenyl ether as the organic phase for filling the pores of the hollow fiber wall, and 0.1 M H(2)SO(4) solution as acceptor phase in the lumen of the fiber. The factors affecting the HF-LLLME and flow injection analysis including type of organic solvent, pH of donor phase, extraction temperature, extraction time, stirring rate, and pH of mobile phase were investigated and the optimal extraction conditions were established. With the consumption of 5 mL of sample solution, the enrichment factor was about 230. The limit of detection was 0.5 μg/L with inter- and intra-day precision being (RSD%) 6.9 and 4.9, respectively. Excellent linearity was found between 5 and 200 μg/L.

  15. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection.

    PubMed

    Burguera-Pascu, Margarita; Rodríguez-Archilla, Alberto; Burguera, José Luis; Burguera, Marcela; Rondón, Carlos; Carrero, Pablo

    2007-09-26

    An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI(1)) which allowed the introduction of 10 microL of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI(1) also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 microL aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI(2)). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 degrees C), followed by pyrolysis and atomization at 700 and 1700 degrees C, respectively. The aqueous calibration was linear up to 120.0 microgL(-1) for diluted standard solutions/samples and its slope was similar (p>0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3sigma) was of 0.35 microgL(-1). To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery of added zinc of

  16. Circulatory kinetics of intravenously injected {sup 238}Pu(IV) citrate and {sup 14}C-CaNa{sub 3}-DTPA in mice: Comparison with rat, dog, and Reference Man

    SciTech Connect

    Durbin, P.W.; Kullgren, B.; Schmidt, C.T.

    1997-02-01

    New ligands for in vivo chelation of Pu(IV) are being synthesized and evaluated in mice for efficacy and toxicity. Biokinetic studies of the new ligands, CaNa{sub 3}-DTPA, and Pu(IV) are major components of those investigations. Young adult female mice were injected intravenously (iv) with {sup 3}H-inulin, {sup 14}C-CaNa{sub 3}-DTPA, or {sup 238}Pu(IV) citrate to provide base- line data for plasma clearance, tissue uptake, and excretion rates and to determine the dilution volume (VOD) and renal clearance rate (RC) of filterable substances. Published plasma clearance data in Reference Man, dog, and rat were collected. Based on combined data for {sup 3}H-inulin and {sup 14}C-CaNa{sub 3}-DTPA, VOD = 17% of body weight and RC = 18 mL kg{sup -1} min{sup -1} for mice. Retention of {sup 14}C-CaNa{sub 3}-DTPA in the four species is proportional to body weight and inversely proportional to RC: Integrals of the retention of {sup 14}C-CaNa{sub 3}-DTPA from R(t) = 1.0 to R(t) = 0.05 are 108, 43, 28, and 10 DF min, respectively, for Reference Man, dog, rat, and mouse. Clearances of iv-injected Pu(IV) citrate from plasma are in the same order: The plasma curve integrals from injection to 1440 min are 840, 640, 280, and 67 DF min, respectively, for Reference Man, dog, rat, and mouse. In mice, a large fraction of newly injected Pu(IV) is rapidly transferred to the interstitial water of bulk soft tissue (excluding liver and kidneys), from which it is cleared at the same rate as from the plasma. Rapid plasma clearance, escape into interstitial water (22%ID at 20 min), significant early urinary excretion (8%ID in 12 h), and prompt deposition in liver and skeleton (complete in 12 h) are evidence of inefficient binding to plasma protein of newly injected Pu(IV) in mice. Slow plasma clearance, little early urinary excretion, and delayed deposition in liver and skeleton reflect more efficient binding of newly injected Pu(IV) in Reference Man and dog. 39 refs., 6 figs., 3 tabs.

  17. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    SciTech Connect

    Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana

    2014-05-15

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  18. Simultaneous determination of some food additives in soft drinks and other liquid foods by flow injection on-line dialysis coupled to high performance liquid chromatography.

    PubMed

    Kritsunankul, Orawan; Jakmunee, Jaroon

    2011-06-15

    Flow injection on-line dialysis was developed for sample pretreatment prior to the simultaneous determination of some food additives by high performance liquid chromatography (FID-HPLC). A liquid sample or mixed standard solution (900 μL) was injected into a donor stream (5%, w/v, sucrose) of FID system and was pushed further through a dialysis cell, while an acceptor solution (0.025 mol L(-1) phosphate buffer, pH 3.75) was held in the opposite side of the dialysis membrane. The dialysate was then flowed to an injection loop of the HPLC valve, where it was further injected into the HPLC system and analyzed under isocratic reverse-phase HPLC conditions and UV detection (230 nm). The order of elution of five food additives was acesulfame-K, saccharin, caffeine, benzoic acid and sorbic acid, respectively, with the analysis time of 14 min. On-line dialysis and HPLC analysis could be performed in parallel, providing sample throughput of 4.3h(-1). Dialysis efficiencies of five food additives were in ranges of 5-11%. Linear calibration graphs were in ranges of 10-100 mg L(-1) for acesulfame-K and saccharin, 10-250 mg L(-1) for benzoic acid and 10-500 mg L(-1) for caffeine and sorbic acid. Good precisions (RSD<5%) for all the additives were obtained. The proposed system was applied to soft drink and other liquid food samples. Acceptable percentage recoveries could be obtained by appropriate dilution of the sample before injecting into the system. The developed system has advantages of high degrees of automation for sample pretreatment, i.e., on-line sample separation and dilution and low consumption of chemicals and materials.

  19. A rapid and precise assay for peroxide as 'active oxygen' in products, by flow injection analysis in a high pressure system with spectrophotometric detection.

    PubMed

    Bloomfield, M S

    2004-12-15

    A simple, rapid and automated assay for 'active oxygen' originating from hydrogen peroxide, or other organic peroxides, in products is presented employing flow injection (FI) analysis. The product is dispersed and peroxide dissolved in a solvent of 5% (v/v) acetic acid, which constitutes the carrier stream. Ammonium molybdate can be added to this carrier stream to increase sensitivity as required. The sample solution is injected into the acid carrier stream, which is then merged with iodide ion in situ in a two-stream manifold. The 'active oxygen' in the product oxidises acidified iodide to iodine, which is detected spectrophotometrically at 350nm. The closed conditions prevent interference from atmospheric oxygen and the short reaction time minimises the potential for interference from side reactions. Standard HPLC equipment is used throughout, employing a back-pressure to improve precision (high pressure flow injection). Conditions have been investigated using screening multivariate experimental design (two-level quarter fractional factorial design incorporating centre points) to identify and optimise the critical variables. The method has been fully validated (with sample solution R.S.D.s typically < 0.5%, LOQs of 0.04 or 0.006mugml(-1) as 'active oxygen' for acid or acid/molybdate carriers respectively) and is quicker and simpler than the currently employed manual titration approach. It should be applicable to a range of 'active oxygen' products. PMID:18969726

  20. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  1. Characterization of performance reference compound kinetics and analyte sampling rate corrections under three flow regimes using nylon organic chemical integrative samplers.

    PubMed

    Morrison, Shane A; Belden, Jason B

    2016-09-30

    Performance reference compounds (PRCs) can be spiked into passive samplers prior to deployment. If the dissipation kinetics of PRCs from the sampler corresponds to analyte accumulation kinetics, then PRCs can be used to estimate in-situ sampling rates, which may vary depending on environmental conditions. Under controlled laboratory conditions, the effectiveness of PRC corrections on prediction accuracy of water concentrations were evaluated using nylon organic chemical integrative samplers (NOCIS). Results from PRC calibrations suggest that PRC elimination occurs faster under higher flow conditions; however, minimal differences were observed for PRC elimination between fast flow (9.3cm/s) and slow flow (5.0cm/s) conditions. Moreover, minimal differences were observed for PRC elimination from Dowex Optipore L-493; therefore, PRC corrections did not improve results for NOCIS configurations containing Dowex Optipore L-493. Regardless, results suggest that PRC corrections were beneficial for NOCIS configurations containing Oasis HLB; however, due to differences in flow dependencies of analyte sampling rates and PRC elimination rates across the investigated flow regimes, the use of multiple PRC corrections was necessary. As such, a "Best-Fit PRC" approach was utilized for Oasis HLB corrections using caffeine-(13)C3, DIA-d5, or no correction based on the relative flow dependencies of analytes and these PRCs. Although PRC corrections reduced the variability when in-situ conditions differed from laboratory calibrations (e.g. static versus moderate flow), applying PRC corrections under similar flow conditions increases variability in estimated values. PMID:27578408

  2. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Escudero, Leticia B; Olsina, Roberto A; Wuilloud, Rodolfo G

    2013-11-15

    A simple and green technique named polymer-supported ionic liquid solid phase extraction (PSIL-SPE) was developed for mercury (Hg) species determination. Inorganic Hg (InHg) species was complexed with chloride ions followed by its introduction into a flow injection on-line system to quantitatively retain the anionic chlorocomplex (HgCl4(2-)) in a column packed with CYPHOS(®) IL 101-impregnated resin. The trapped InHg was then reduced with stannous chloride (SnCl2) and eluted with the same flow of reducing agent followed by cold vapor atomic absorption spectrometry (CV-AAS) detection. Organic mercury species (OrgHg) did not interact with the impregnated resin and were not retained into the column. Total concentration of OrgHg was evaluated by difference between total Hg and InHg concentration. A 95% extraction efficiency was achieved for InHg when the procedure was developed under optimal experimental conditions. The limit of detection obtained for preconcentration of 40 mL of sample was 2.4 ng L(-1) InHg. The relative standard deviation (RSD) was 2.7% (at 1 µg L(-1) InHg and n=10) calculated from the peak height of absorbance signals (Gaussian-shape and reproducible peaks). This work reports the first polymer-supported IL solid phase extraction approach implemented in a flow injection on-line system for determination of Hg species in mineral, tap and river water samples.

  3. Application of direct-injection detector integrated with the multi-pumping flow system to chemiluminescence determination of the total polyphenol index.

    PubMed

    Nalewajko-Sieliwoniuk, Edyta; Iwanowicz, Magdalena; Kalinowski, Sławomir; Kojło, Anatol

    2016-03-10

    In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL(-1). The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL(-1)), high precision (RSD = 3.3%) and high sample throughput (144 samples h(-1)) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices). PMID:26893089

  4. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  5. On-line monitoring of bioreactions of Bacillus polymyxa and Klebsiella oxytoca by membrane introduction tandem mass spectrometry with flow injection analysis sampling

    SciTech Connect

    Hayward, M.J.; Kotiaho, Tapio; Lister, A.K.; Cooks, R.G.; Austin, G.D.; Narayan, Ramani; Tsao, G.T. )

    1990-09-01

    Membrane introduction mass spectrometry with flow injection analysis sampling has been utilized for on-line monitoring of the major products and the volatile metabolites of fermentation of the Bacillus polymyxa and Klebsiella oxytoca organisms. A flow injection sampling system was used to rapidly deliver fermentation broth or an external standard to the mass spectrometer. Analyte introduction occurred via a direct insertion membrane probe in which the aqueous solutions flowed past a membrane located within the ion source of the mass spectrometer. For both organisms, concentrations of the liquid-phase products acetic acid, acetoin, 2,3-butanediol, and ethanol, were monitored as a function of time after permeation through the membrane and ionization by chemical ionization. Tandem mass spectrometry confirmed that these measurements were made without interference. Off-line gas chromatography was utilized to test the accuracy of these measurements, and excellent agreement was found. The use of tandem mass spectrometry has allowed the detection of additional compounds that were previously not known to be present in measurable amounts.

  6. Establishment of a finite element model for extracting chemical reaction kinetics in a micro-flow injection system with high throughput sampling.

    PubMed

    Wu, Zeng-Qiang; Du, Wen-Bin; Li, Jin-Yi; Xia, Xing-Hua; Fang, Qun

    2015-08-01

    Numerical simulation can provide valuable insights for complex microfluidic phenomena coupling mixing and diffusion processes. Herein, a novel finite element model (FEM) has been established to extract chemical reaction kinetics in a microfluidic flow injection analysis (micro-FIA) system using high throughput sample introduction. To reduce the computation burden, the finite element mesh generation is performed with different scales based on the different geometric sizes of micro-FIA. In order to study the contribution of chemical reaction kinetics under non-equilibrium condition, a pseudo-first-order chemical kinetics equation is adopted in the numerical simulations. The effect of reactants diffusion on reaction products is evaluated, and the results demonstrate that the Taylor dispersion plays a determining role in the micro-FIA system. In addition, the effects of flow velocity and injection volume on the reaction product are also simulated. The simulated results agree well with the ones from experiments. Although gravity driven flow is used to the numerical model in the present study, the FEM model also can be applied into the systems with other driving forces such as pressure. Therefore, the established FEM model will facilitate the understanding of reaction mechanism in micro-FIA systems and help us to optimize the manifold of micro-FIA systems.

  7. Application of direct-injection detector integrated with the multi-pumping flow system to chemiluminescence determination of the total polyphenol index.

    PubMed

    Nalewajko-Sieliwoniuk, Edyta; Iwanowicz, Magdalena; Kalinowski, Sławomir; Kojło, Anatol

    2016-03-10

    In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL(-1). The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL(-1)), high precision (RSD = 3.3%) and high sample throughput (144 samples h(-1)) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices).

  8. Further study on a flow injection on-line multiplexed sorption preconcentration coupled with flame atomic absorption spectrometry for trace element determination.

    PubMed

    Li, Yan; Jiang, Yan; Yan, Xiu-Ping

    2004-10-20

    A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0mlmin(-1) and a total preconcentration time of 180s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26mugl(-1) for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2mugl(-1) Cr(VI), Co(II) and Ni(II), and 1mugl(-1) Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively. PMID:18969669

  9. A study of the geo-herbalism of evodiae fructus based on a flow-injection mass spectrometric fingerprinting method combined with chemometrics.

    PubMed

    Zhao, Yang; Zhou, Xin; Zhao, Yun-Ling; Gong, Xiao-Jian; Zhao, Chao

    2015-02-03

    A flow-injection mass spectrometric (FIMS) fingerprinting method in combination with principal component analysis (PCA) was used to study the geo-herbalism of Evodiae Fructus (EF) samples. Twenty four EF samples from different regions in China were collected and analyzed. The PCA scores plot showed that the samples from Guizhou Province were scattered in different groups, however, most of the samples from other provinces were basically scattered in the same group. Nine characteristic compounds responsible for the classification of the samples were tentatively characterized. These nine compounds might help differentiating EF samples from different regions.

  10. Rapid isolation of biomarkers for compound specific radiocarbon dating using high-performance liquid chromatography and flow injection analysis-atmospheric pressure chemical ionisation mass spectrometry.

    PubMed

    Smittenberg, Rienk H; Hopmans, Ellen C; Schouten, Stefan; Sinninghe Damsté, Jaap S

    2002-11-29

    Repeated semi-preparative normal-phase HPLC was performed to isolate selected biomarkers from sediment extracts for radiocarbon analysis. Flow injection analysis-mass spectrometry was used for rapid analysis of collected fractions to evaluate the separation procedure, taking only 1 min per fraction. In this way 100-1000 microg of glycerol dialkyl glycerol tetraethers, sterol fractions and chlorophyll-derived phytol were isolated from typically 100 g of marine sediment, i.e., in sufficient quantities for radiocarbon analysis, without significant carbon isotopic fractionation or contamination.

  11. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  12. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  13. Analysis and design of three dimensional supersonic nozzles. Volume 1: Nozzle-exhaust flow field analysis by a reference plane characteristics technique

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    A second order numerical method employing reference plane characteristics has been developed for the calculation of geometrically complex three dimensional nozzle-exhaust flow fields, heretofore uncalculable by existing methods. The nozzles may have irregular cross sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. The nozzles may have highly nonuniform entrance conditions, the medium considered being an equilibrium hydrogen-air mixture. The program calculates and carries along the underexpansion shock and contact as discrete discontinuity surfaces, for a nonuniform vehicle external flow.

  14. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection

    PubMed Central

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162

  15. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.

    PubMed

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J I

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined.

  16. Detoxification and antioxidant effects of garlic and curcumin in Oreochromis niloticus injected with aflatoxin B₁ with reference to gene expression of glutathione peroxidase (GPx) by RT-PCR.

    PubMed

    El-Barbary, Manal I

    2016-04-01

    The present study aims to investigate the effects of both garlic and curcumin through evaluating their therapeutic properties as antioxidants on liver and kidney functions, hepatic antioxidants and GPx gene expression against aflatoxicosis of O. niloticus. In total, 180 of tilapia were divided into ten groups; T1 represented the negative control fed on a basal diet, and T2 was injected with a single intraperitoneal (i.p.) dose of AFB1 (6 mg/kg b.w.). Fish in T3-T6 were fed on a basal diet supplemented with both garlic (T3 and T4) and curcumin (T5 and T6) at the two concentrations of 10 and 20 g/kg diet, respectively. Fish in T7-T10 groups were injected with AFB1 and fed on the garlic (T7 and T8) and curcumin (T9 and T10) dietaries. The results showed that AFB1 has significant potency for increasing the activity of plasma AST, ALT, creatinine and uric acid values, and hepatic MDA as well as for reducing the concentrations of plasma TP, AL, GL and hepatic activity of TAC, while AFB1 led to up-regulated GPx gene expression when compared to the control (T1). These harmful effects of AFB1 were alleviated due to the garlic and curcumin dietaries in some studied parameters. Garlic reflected the highest induction of gene expression (T7); however, curcumin showed significant down-regulated (T9). These results concluded that the effects of garlic were better than curcumin at the two concentrations and the low concentration of them is more beneficial than the high concentration when it used against AFB1 in O. niloticus.

  17. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  18. A novel flow-injection analysis system for evaluation of antioxidants by using sodium dichloroisocyanurate as a source of hypochlorite anion.

    PubMed

    Ichiba, H; Hanami, K; Yagasaki, K; Tanaka, M; Ito, H; Fukushima, T

    2012-02-01

    A flow injection analysis (FIA) system for evaluation of the antioxidant activity of a compound capable of scavenging a hypochlorite anion (OCl⁻), one of the reactive oxygen species (ROS), was developed. Aminophenyl fluorescein (APF), a fluorescence indicator of ROS, was mixed manually with the test compounds and the mixed solution was injected into the FIA system. The injected solution was reacted in-line with OCl⁻, that was produced by using sodium dichloroisocyanurate in the presence of 0.1 M CH3CO2Na in H2O. The fluorescence intensity of fluorescein generated from non-fluorescent APF was significantly attenuated in compounds that had a scavenging effect on OCl⁻. The precision obtained by the FIA system was satisfactory (relative standard deviation < 5.0%) and a rapid assay within 0.5 min per sample was achieved. The proposed FIA system was used to demonstrate that reduced glutathione, dithiothreitol, and 3-methyl-1-phenyl-5-pyrazolone (edaravone) showed a significant scavenging effect on OCl⁻. Therefore, the proposed FIA system can be used as a screening assay for OCl⁻-scavenging compounds. PMID:22460428

  19. Studies of the analyte-carrier interface in flow injection analysis. Final report, June 1, 1987--January 31, 1992

    SciTech Connect

    Brown, S.D.

    1992-12-31

    Chemical analysis in flowing solution is popular for automation of classical methods. However, most of the classical methods are not specific enough for direct multicomponent analysis of simple mixtures. This research project has the goals of study of rapid multicomponent analysis of transient species in flowing media, and investigations of chemical reactions at interfaces and of effects of competition on distribution of products from interfacial reaction. This report summarizes work done over the past 4.5 years; support has been terminated.

  20. Can the Dupuit-Thiem equation accurately describe the flow pattern induced by injection in a laboratory scale aquifer-well system?

    NASA Astrophysics Data System (ADS)

    Bonilla, Jose; Kalwa, Fritz; Händel, Falk; Binder, Martin; Stefan, Catalin

    2016-04-01

    The Dupuit-Thiem equation is normally used to assess flow towards a pumping well in unconfined aquifers under steady-state conditions. For the formulation of the equation it is assumed that flow is laminar, radial and horizontal towards the well. It is well known that these assumptions are not met in the vicinity of the well; some authors restrict the application of the equation only to a radius larger than 1.5-fold the aquifer thickness. In this study, the equation accuracy to predict the pressure head is evaluated as a simple and quick analytical method to describe the flow pattern for different injection rates in the LSAW. A laboratory scale aquifer-well system (LSAW) was implemented to study the aquifer recharge through wells. The LSAW consists of a 1.0 m-diameter tank with a height of 1.1 meters, filled with sand and a screened well in the center with a diameter of 0.025 m. A regulated outflow system establishes a controlled water level at the tank wall to simulate various aquifer thicknesses. The pressure head at the bottom of the tank along one axis can be measured to assess the flow profile every 0.1 m between the well and the tank wall. In order to evaluate the accuracy of the Dupuit-Thiem equation, a combination of different injection rates and aquifer thicknesses were simulated in the LSAW. Contrary to what was expected (significant differences between the measured and calculated pressure heads in the well), the absolute difference between the calculated and measured pressure head is less than 10%. Beside this, the highest differences are not observed in the well itself, but in the near proximity of it, at a radius of 0.1 m. The results further show that the difference between the calculated and measured pressure heads tends to decrease with higher flow rates. Despite its limitations (assumption of laminar and horizontal flow throughout the whole aquifer), the Dupuit-Thiem equation is considered to accurately represent the flow system in the LSAW.

  1. Comparison of two methods for selegiline determination: A flow-injection chemiluminescence method using cadmium sulfide quantum dots and corona discharge ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Zarei, Mahmoud; Joo, Sang Woo

    2016-01-01

    Two analytical approaches including chemiluminescence (CL) and corona discharge ionization ion mobility spectrometry (CD-IMS) were developed for sensitive determination of selegiline (SG). We found that the CL intensity of the KMnO4-Na2S2O3 CL system was significantly enhanced in the presence of L-cysteine capped CdS quantum dots (QDs). A possible CL mechanism for this CL reaction is proposed. In the presence of SG, the enhanced CL system was inhibited. Based on this inhibition, a simple and sensitive flow-injection CL method was proposed for the determination of SG. Under optimum experimental conditions, the decreased CL intensity was proportional to SG concentration in the range of 0.01 to 30.0 mg L- 1. The detection limit (3σ) was 0.004 mg L- 1. Also, SG was determined using CD-IMS, and under optimum conditions of CD-IMS, calibration curves were linear in the range of 0.15 to 42.0 mg L- 1, with a detection limit (3σ) of 0.03 mg L- 1. The precision of the two methods was calculated by analyzing samples containing 5.0 mg L- 1 of SG (n = 11). The relative standard deviations (RSDs%) of the flow-injection CL and CD-IMS methods are 2.17% and 3.83%, respectively. The proposed CL system exhibits a higher sensitivity and precision than the CD-IMS method for the determination of SG.

  2. Hollow-fiber liquid-phase microextraction for the direct determination of flumequine in urban wastewaters by flow-injection analysis with terbium-sensitized chemiluminescence.

    PubMed

    Ocaña-González, Juan Antonio; Ramos-Payán, María; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2014-10-01

    A flow-injection analysis chemiluminescence method based on the enhancement effect of the flumequine-Tb(III) complex on the weak native emission of the Ce(IV)-Na2SO3 system has been developed for the determination of flumequine. The method includes a cleanup and preconcentration stage (750-fold) of the sample by hollow-fiber liquid-phase microextraction using an Accurel(®) Q 3/2 polypropylene hollow fiber impregnated with 1-octanol as the supported liquid membrane. The obtained 50 μL acceptor phase was injected in a 1 mM Tb(III) + 4 mM Ce(IV) in 5% v/v H2 SO4 stream and mixed with a 2 mM Na2 SO3 stream before its introduction into the flow cell. The chemiluminescence signal was linear in the 0.3-15 ng/mL range, with detection and quantitation limits of 0.1 and 0.3 ng/mL, respectively. The method allows the selective extraction and determination of flumequine in wastewater samples, using simpler and lower-cost instrumentation and with shorter extraction and analysis times than traditional high-performance liquid chromatography analysis.

  3. Determination of thiram and aminocarb pesticides in natural water samples using flow injection with tris(2,2'-bipyridyl)ruthenium(II)-diperiodatoargentate(III) chemiluminescence detection.

    PubMed

    Asghar, Mohammad; Yaqoob, Mohammad; Haque, Naheed; Nabi, Abdul

    2013-01-01

    A simple and sensitive flow-injection (FI) method is reported for the determination of thiram and aminocarb pesticides in natural water samples based on the strong enhancing effects of these pesticides on the tris(2,2'-bipyridyl)ruthenium(II)-diperiodatoargentate(III) (Ru(bipy)3(2+)-DPA) chemiluminescence (CL) system. Under the optimum experimental conditions, the CL intensity was linear over the range of 1.0 - 1000 and 1.0 - 10000 ng mL(-1) (R(2) = 0.9998 (n = 7) and 0.9994 (n = 11)) for thiram and aminocarb, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.0 - 2.6%. The limits of detection (S/N = 3) were 0.1 ng mL(-1) for both pesticides with injection throughputs of 150 h(-1). The key chemical and physical variables (reagent concentrations, flow rates, sample volume, PMT voltage) were optimized and potential interferences investigated. The method was successfully applied to natural water samples and the results obtained were not significantly different (95% confidence interval) from results obtained by the previously reported FI-CL and HPLC methods. Thiram could be determined in the presence of aminocarb using Triton X-100. The possible CL reaction mechanism is also discussed briefly.

  4. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour.

  5. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide.

    PubMed

    Reanpang, Preeyaporn; Themsirimongkon, Suwaphid; Saipanya, Surin; Chailapakul, Orawon; Jakmunee, Jaroon

    2015-11-01

    Various metal nanoparticles (NPs) decorated on carbon nanotube (CNT) was modified on the home-made screen printed carbon electrode (SPCE) in order to enhances sensitivity of hydrogen peroxide (H2O2) determination. The simple casting method was used for the electrode modification. The monometallic and bimetallic NPs modified electrodes were investigated for their electrochemical properties for H2O2 reduction. The Pd-CNT/SPCE is appropriated to measure the H2O2 reduction at a potential of -0.3 V, then this modified electrode was incorporated with a home-made flow through cell and applied in a simple flow injection amperometry (FI-Amp). Some parameters influencing the resulted modified electrode and the FI-Amp system were studied. The proposed detection system was able to detect H2O2 in the range of 0.1-1.0 mM, with detection limit of 20 µM. Relative standard deviation for 100 replicated injections of 0.6 mM H2O2 was 2.3%. The reproducibility of 6 electrodes preparing in 3 different lots was 8.2%. It was demonstrated for determination of H2O2 in disinfectant, hair colorant and milk samples. Recoveries in the range of 90-109% were observed. The developed system provided high stability, good repeatability, high sample throughput and low reagent consumption.

  6. A simple and rapid flow-injection chemiluminescence method for the determination of noscapine with Ru(phen)3(2+)-Ce(IV) system.

    PubMed

    Rezaei, Behzad; Mokhtari, Ali; Khayamian, Taghi

    2007-08-01

    A new flow injection chemiluminescence (CL) system was used for the determination of noscapine. This technique is based on the reduction effect of noscapine on the Ru(phen)3(3+), which is produced by reaction between Ru(phen)3(2+) and acidic Ce(IV) solutions, and this rapid reduction produces strong CL. Calibration plots were linear over the range of 3.0 x 10(-7) - 2.0 x 10(-6) mol L(-1) and 2.0 x 10(-6) - 2.0 x 10(-4) mol L(-1). The CL intensity was so high, that it is able to produce a detection limit of 6.6 x 10(-8) M noscapine (3sigma). The relative standard deviation of 2.0 x 10(-6) M noscapine was 1.0% (n=10). The proposed method was successfully applied for the flow injection determination of noscapine in cough and Tonin syrup samples. The results of real sample analyses show good recovery percentages (97.3-102.4%). The minimum sampling rate was 100 samples per hour. PMID:17899875

  7. Application of flow injection analysis--photo-induced fluorescence (FIA-PIF) for the determination of α-cypermethrin pesticide residues in natural waters.

    PubMed

    Mbaye, M; Gaye Seye, M D; Aaron, J J; Coly, A; Tine, A

    2011-04-01

    Flow injection analysis combined with photo-induced fluorescence (FIA-PIF) has been applied for the determination of α-cypermethrin pesticide residues in Senegalese natural waters, using organic solutions and cyclodextrin (β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin) aqueous media. The α-cypermethrin insecticide has a very weak natural fluorescence, but it is converted into strongly fluorescent photoproduct(s) by UV irradiation. Cyclodextrins were found to enhance the PIF signal. FIA parameters, including mobile phase flow rate, injected volume, and reactor length, were optimized. Analytical performances of the FIA-PIF method for the determination of α-cypermethrin were satisfactory, with concentration linear dynamic ranges over one to two orders of magnitude and with rather low limits of detection and limits of quantification, in the ng mL(-1) range, and relative standard deviations comprised between 1.2% and 3.8%. Application of FIA-PIF for the analysis of fortified natural water samples collected from Senegal yielded good recovery values (84-112%). Because of its high sampling rate, the FIA-PIF method constitutes a rapid analytical tool, useful for quantification of α-cypermethrin residues in natural waters.

  8. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    NASA Astrophysics Data System (ADS)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  9. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour. PMID:25435239

  10. Changes in monthly flows in the Yangtze River, China - With special reference to the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Finlayson, Brian L.; Wei, Taoyuan; Sun, Qianli; Webber, Michael; Li, Maotian; Chen, Zhongyuan

    2016-05-01

    Much has been written on the hydrology of the Yangtze River in China, especially since the construction of the Three Gorges Dam. Given the range of views in the literature on the impacts of dams and other natural and anthropogenic activities in the catchment on monthly flows, we here set out to analyse the behavior of monthly flows over the period of record 1955-2014. In the literature, the Three Gorges dam has been singled out for particular comment, mostly adverse. In this paper we analyse trend in temperature, precipitation and discharge of the Yangtze River at the monthly time scale over a period that includes the 11 years since the Three Gorges Dam came into operation. The results show that for the upper basin, there has been a marked increase in discharge in the low flow months of January to March that began abruptly in 2003 and an abrupt decrease in flow in October at the same time. Similar changes are found for discharge from the lower basin but in that case the changes have occurred gradually over the period of record. These changes are the outcome of the operation of hydroelectric and flood control dams that have been built continuously in the lower basin since 1955 while in the upper basin the building of the Three Gorges Dam began a phase of rapid dam building not seen in the lower basin. The decreased flows in the late summer and autumn are not of sufficient magnitude to cause any problems for navigation or water supply. The enhanced flows in the winter low flow period are beneficial in that they reduce the likelihood of salt water intrusions in the estuary adversely affecting the supply of freshwater to Shanghai.

  11. Moving Beyond Whole-stream Tracer Injections to Understand the Role of Flow and Geomorphic Variability in Stream and River Ecosystems

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.

    2011-12-01

    Flow in aquatic ecosystems affects ecological processes by influencing how sediments and nutrients are stored and transformed. Decades of tracer-addition experiments in streams have been central in revealing the key physical-biological linkages. The averaging of heterogeneous processes made possible by injecting tracers during steady baseflow conditions has allowed the individual roles of transport, storage, and biogeochemical reactions that influence stream ecological health to be clearly separated. However, fluvial systems are inherently unsteady, with flow and sediment transport continually readjusting to one another. Also, very few investigators have addressed effects of temporal variability in flow or interactions that occur between hydrologic or geomorphic processes. Thus, whole-stream tracer addition experiments often end up having limited transferability beyond the very specific flow and geomorphic conditions under which the experiments were conducted. Furthermore, there is increasing recognition that, no matter what measurement technique is used (e.g. hydraulic or tracer-based) or what model is employed, the results are almost always limited by a "window of detection" that is determined by measurement spacing and frequency, sensitivity, and by experiment duration. To counter these challenges, field investigators are increasingly supplementing whole-stream injections with additional measurements that help address different spatial and temporal scales. Furthermore they are often using multi-scale models to more fully evaluate of the full spectrum of water fluxes and biogeochemical reaction rates involved. Often the goal is to identify the combinations of flow and geomorphic conditions which enhance a particular biogeochemical reaction (e.g. dentrification, removal of toxic metals, etc.), or to rank by importance the extent of reactions occurring in different sub-environments. Examples of studies in streams, wetlands, and floodplains range in spatial scale

  12. Effects of Top Layer, Nozzle Arrangement, and Gas Flow Rate on Mixing Time in Agitated Ladles by Bottom Gas Injection

    NASA Astrophysics Data System (ADS)

    Conejo, A. N.; Kitamura, S.; Maruoka, N.; Kim, S.-J.

    2013-08-01

    This research investigates mixing phenomena in bottom gas-stirred ladles using water modeling, which incorporates hexane as the top layer. The effects of slag thickness, nozzle position, number of nozzles, and gas flow rate on mixing time have been investigated. Conditions to improve mixing time have been identified. A single nozzle located at two-thirds of the ladle radius was found to produce the shortest mixing time. Under extremely low gas flow rates, an unusual behavior was observed, where the top layer promoted a decrease in mixing time.

  13. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    PubMed Central

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J.

    2015-01-01

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600

  14. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate.

    PubMed

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J

    2015-01-01

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600

  15. Determination of elemental constituents in different matrix materials and flow injection studies by the electrolyte cathode glow discharge technique with a new design

    SciTech Connect

    Shekhar, R.; Karunasagar, D.; Ranjit, M.; Arunachalam, J.

    2009-10-15

    An open-to-air type electrolyte cathode discharge (ELCAD) has been developed with a new design. The present configuration leads to a stable plasma even at low flow rates (0.96 mL/min). Plasma fluctuations arising from the variations in the gap between solid anode and liquid cathode were eliminated by providing a V-groove to the liquid glass-capillary. Cathode (ground) connection is given to the solution at the V-groove itself. Interfaced to atomic emission spectrometry (AES), its analytical performance is evaluated. The optimized molarity of the solution is 0.2 M. The analytical response curves for Ca, Cu, Cd, Pb, Hg, Fe, and Zn demonstrated good linearity. The limit of detections of Ca, Cu, Cd, Pb, Hg, Fe, and Zn are determined to be 17, 11, 5, 45, 15, 28, and 3 ng mL{sup -1}. At an integration time of 0.3 s, the relative standard deviation (RSD) values of the acid blank solutions are found to be less than 10% for the elements Ca, Cu, Cd, Hg, Fe, and Zn and 18% for Pb. The method is applied for the determination of the elemental constituents in different matrix materials such as tuna fish (IAEA-350), oyster tissue (NIST SRM 1566a), and coal fly ash (CFA SRM 1633b). The obtained results are in good agreement with the certified values. The accuracy is found to be between 7% and 0.6% for major to trace levels of constituent elements and the precision between 11% and 0.6%. For the injection of 100 {mu} L of 200 ng mL{sup -1} mercury solution at the flow rate of 0.8 mL/min, the flow injection studies resulted in the relative standard deviation (RSD) of 8%, concentration detection limit of 10 ng/mL, and mass detection limit of 1 ng for mercury.

  16. Determination of elemental constituents in different matrix materials and flow injection studies by the electrolyte cathode glow discharge technique with a new design.

    PubMed

    Shekhar, R; Karunasagar, D; Ranjit, Manjusha; Arunachalam, J

    2009-10-01

    An open-to-air type electrolyte cathode discharge (ELCAD) has been developed with a new design. The present configuration leads to a stable plasma even at low flow rates (0.96 mL/min). Plasma fluctuations arising from the variations in the gap between solid anode and liquid cathode were eliminated by providing a V-groove to the liquid glass-capillary. Cathode (ground) connection is given to the solution at the V-groove itself. Interfaced to atomic emission spectrometry (AES), its analytical performance is evaluated. The optimized molarity of the solution is 0.2 M. The analytical response curves for Ca, Cu, Cd, Pb, Hg, Fe, and Zn demonstrated good linearity. The limit of detections of Ca, Cu, Cd, Pb, Hg, Fe, and Zn are determined to be 17, 11, 5, 45, 15, 28, and 3 ng mL(-1). At an integration time of 0.3 s, the relative standard deviation (RSD) values of the acid blank solutions are found to be less than 10% for the elements Ca, Cu, Cd, Hg, Fe, and Zn and 18% for Pb. The method is applied for the determination of the elemental constituents in different matrix materials such as tuna fish (IAEA-350), oyster tissue (NIST SRM 1566a), and coal fly ash (CFA SRM 1633b). The obtained results are in good agreement with the certified values. The accuracy is found to be between 7% and 0.6% for major to trace levels of constituent elements and the precision between 11% and 0.6%. For the injection of 100 microL of 200 ng mL(-1) mercury solution at the flow rate of 0.8 mL/min, the flow injection studies resulted in the relative standard deviation (RSD) of 8%, concentration detection limit of 10 ng/mL, and mass detection limit of 1 ng for mercury. PMID:19715301

  17. A Novel Type of Tri-Colour Light-Emitting-Diode-Based Spectrometric Detector for Low-Budget Flow-Injection Analysis

    PubMed Central

    Gros, Nataša

    2007-01-01

    In this paper we describe a low-cost spectrometric detector that can be easily assembled in a laboratory for less than €80 with a minimal number of optical components and which has proved sensitive and flexible enough for real-life applications. The starting point for the idea to construct this small, compact low-cost spectrometric detector was the decision to use a tri-colour light-emitting diode (LED) of the red-green-blue (RGB) type as a light source with the objective of achieving some flexibility in the selection of the wavelength (430 nm, 565 nm, 625 nm) but avoiding the use of optical fibres. Due to the dislocation of the emitters of the different coloured light, the tri-colour LED-based detector required an optical geometry that differs from those that are described in literature. The proposed novel geometry, with a coil-type glass flow-through cell with up to four ascending turns, proved useful and fit for the purpose. The simplicity of the device means it requires a minimal number of optical components, i.e., only a tri-colour LED and a photoresistor. In order to make a flow-injection analysis (FIA) with the spectrometric detector even more accessible for those with a limited budget, we additionally describe a low-cost simplified syringe-pump-based FIA set-up (€625), the assembling of which requires no more than basic technical facilities. We used such a set-up to test the performance of the proposed spectrometric detector for flow-injection analyses. The tests proved its suitability for real-life applications. The design procedures are also described.

  18. Relationship between Addiction Relapse and Self-Efficacy Rates in Injection Drug Users Referred to Maintenance Therapy Center of Sari, 1391

    PubMed Central

    Abdollahi, Zahra; Taghizadeh, Fatemeh; Hamzehgardeshi, Zeinab; Bahramzad, Olia

    2014-01-01

    Background and Purpose: Self-efficacy is the belief that one has the ability to implement the behaviors needed to produce a desired effect. There has been growing interest in the role of self-efficacy as a predictor and/or mediator of treatment outcome in number of domains. In numerous studies of substance abuse treatment, self-efficacy has emerged as an important predictor of outcome, or as a mediator of treatment effects. In the event of a slip, highly self-efficacious persons are inclined to regard the slip as a temporary setback and to reinstate control, whereas those who have low self-efficacy are more likely to proceed to a full-blown relapse. This study was carried out to determine relationship between relapse and self-efficacy and other factors in injected drug users. Materials and Methods: We conducted this study in 200 addicts in the center of counseling behavioral disease in health center of sari city (methadone maintenance therapy center or MMTC). A cross-sectional study was carried out on all of these addicts. Results: The average age in addictions was38 and its range was 20-60.72%of them were married and the first drug used was opium. All of them had relapse at least one time. We found a relationship between relapse and self-efficacy as well as the relationship between self-efficacy with the age of the first of drug use, dose, and procrastination for treatment, marriage, employment and job was significant. Conclusion: This study found that there was a significant difference between relapse and self-efficacy as well as other related factors. It is important to include drug users and common society organizations representing them in every stage of the governmental policy and program development process to make them responsive to the needs of the community. PMID:24762356

  19. Characterizing flow behavior for gas injection: Relative permeability of CO2-brine and N2-water in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Krevor, S.

    2015-12-01

    We provide a comprehensive experimental study of steady state, drainage relative permeability curves with CO2-brine and N2-deionized water, on a single Bentheimer sandstone core with a simple two-layer heterogeneity. We demonstrate that, if measured in the viscous limit, relative permeability is invariant with changing reservoir conditions, and is consistent with the continuum-scale multiphase flow theory for water wet systems. Furthermore, we show that under capillary limited conditions, the CO2-brine system is very sensitive to heterogeneity in capillary pressure, and by performing core floods under capillary limited conditions, we produce effective relative permeability curves that are flow rate and fluid parameter dependent. We suggest that the major uncertainty in past observations of CO2-brine relative permeability curves is due to the interaction of CO2 flow with pore space heterogeneity under capillary limited conditions and is not due to the effects of changing reservoir conditions. We show that the appropriate conditions for measuring intrinsic or effective relative permeability curves can be selected simply by scaling the driving force for flow by a quantification of capillary heterogeneity. Measuring one or two effective curves on a core with capillary heterogeneity that is representative of the reservoir will be sufficient for reservoir simulation.

  20. An Annotated Reference Guide on International Telecommunications and Transborder Data Flow for Library and Information Science Professionals.

    ERIC Educational Resources Information Center

    Borod, Elizabeth A.

    The purpose of this guide is to provide library and information professionals with a brief history of telecommunications and transborder data flow (TDF) as well as an annotated listing of available resources and organizations concerned with these topics. The bibliography is organized into 14 themes: (1) communication--international; (2)…

  1. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    SciTech Connect

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Rogers, John A.; Wahab, Muhammad A.; Alam, Muhammad A.; Li, Yuhang; Tomic, Bojan; Huang, Jiyuan; Burns, Branden; Song, Jizhou; Huang, Yonggang

    2015-04-07

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.

  2. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Xu; Wahab, Muhammad A.; Li, Yuhang; Islam, Ahmad E.; Tomic, Bojan; Huang, Jiyuan; Burns, Branden; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Song, Jizhou; Huang, Yonggang; Alam, Muhammad A.; Rogers, John A.

    2015-04-01

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.

  3. Studies of the analyte carrier interface in flow injection analysis: Project report, June 1, 1987-February 1, 1988

    SciTech Connect

    Brown, S.D.

    1988-01-01

    The goal of this project is the study of rapid multicomponent analysis of transient species in flowing media. Application of methods developed for multicomponent analysis is aimed at the investigation of dispersion-controlled chemical reactions at an analyte bolus-carrier solution interface, and the study of the effects of competition between analyte species on the distribution of products in chemical reactions. To meet these goals, study of new methods for the analysis of three-dimensional data resulting from measurement of transient species by sensor arrays or by rapid-scan (or multiplex) detection has commenced. Research has concentrated on three areas during the past year. These areas are (1) flow reaction analysis, (2) modeling of complex reaction kinetics, and (3) new methods for multicomponent analysis of inadequately modeled systems. Progress in each area is evaluated. 3 figs.

  4. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  5. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  6. On-line solid-phase extraction and multisyringe flow injection analysis of Al(III) and Fe(III) in drinking water.

    PubMed

    Vanloot, Pierre; Branger, Catherine; Margaillan, André; Brach-Papa, Christophe; Boudenne, Jean-Luc; Coulomb, Bruno

    2007-11-01

    A new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step). A specific reagent was elaborated for sensitive and specific spectrophotometric determination of Al(III) and Fe(III), by optimizing surfactant and ligand concentrations and buffer composition. The whole procedure was automated by a multisyringe flow injection analysis (MSFIA) system. Detection limits of 4.9 and 5.6 microg L(-1) were obtained for Al(III) and Fe(III) determination , respectively, and the linear calibration graph up to 300 microg L(-1) (both for Al(III) and Fe(III)) was well adapted to the monitoring of drinking water quality. The system was successfully applied to the on-site determination of Al(III) and Fe(III) at the outlet of two water treatment units during two periods of the year (winter and summer conditions).

  7. Electron Cyclotron Resonance-Reactive Ion Etching of III-V Semiconductors by Cyclic Injection of CH4/H2/Ar and O2 with Constant Ar Flow

    NASA Astrophysics Data System (ADS)

    Haneji, Nobuo; Segami, Goh; Ide, Tomoyoshi; Suzuki, Tatsuya; Arakawa, Taro; Tada, Kunio; Shimogaki, Yukihiro; Nakano, Yoshiaki

    2003-06-01

    Electron cyclotron resonance-reactive ion etching (ECR-RIE) is very useful for fabricating semiconductor photonic devices and integrated circuits (PICs). The mixture gas of CH4/H2 is used for etching III-V semiconductors, but the carbon polymer film deposited on the surface during the etching process presents some problems. Thus, the polymer film must be ashed off using an O2 plasma. We introduced the cyclic injection of CH4/H2/Ar and O2 to ECR-RIE, and demonstrated that it was very useful for etching of InP. However, compound semiconductors containing Al (e.g., AlGaAs and InAlAs) react with oxygen and an alumina layer is formed, which cannot be etched by CH4/H2 etching. Therefore, we used a new cyclic etching process with constant Ar flow in the chamber to remove this alumina layer by Ar ion etching, and obtained good results for etching rate and surface morphology for the compound semiconductors containing Al. We also proposed a suitable combination of three cyclic etching procedures (continuous etching, cyclic etching without constant Ar flow and cyclic etching with constant Ar flow) for etching the multilayer heterostructure of III-V semiconductors including InP and/or compound semiconductors containing Al.

  8. Automated flow injection system for the preconcentration of bismuth and lead from acid solutions of alloys and determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Giacomelli, Maria B. O.; Ganzarolli, Edgard M.; Curtius, Adilson J.

    2000-05-01

    An automated flow injection system for the preconcentration of Bi and Pb from acid solutions of alloys is proposed. The system uses three-way solenoid valves, a peristaltic pump, a mixing coil and a minicolumn filled with activated carbon. The valves are time-based controlled by a microcomputer using a program written in Turbo Pascal 4.0. Bismuth(III) and Pb(II) are preconcentrated on activated carbon after complexation with the ammonium salt of dithiophosphoric acid O, O-diethyl ester. Ethanol is used as the eluent in a reverse-flow mode, and is delivered into the autosampler cup of the electrothermal atomic absorption spectrometer. Four certified steel samples and a non-certified aluminum foil, spiked with the analytes, were analyzed after microwave-assisted dissolution with acids. For the steel samples, ascorbic acid was added to the sample solution to reduce Fe(III) to Fe(II). Iron(II) and Al(III) do not react with the complexing agent and are separated in the preconcentration step. The obtained analyte concentrations were in agreement with the certified or recommended values. The recoveries for the spiked aluminum sample were between 88 and 110%. The relative standards deviations were reasonable for a non-commercial flow system, ranging from 4 to 19%.

  9. A Very Large Eddy Simulation of the Nonreacting Flow in a Single-Element Lean Direct Injection Combustor Using PRNS with a Nonlinear Subscale Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2009-01-01

    Very large eddy simulation (VLES) of the nonreacting turbulent flow in a single-element lean direct injection (LDI) combustor has been successfully performed via the approach known as the partially resolved numerical simulation (PRNS/VLES) using a nonlinear subscale model. The grid is the same as the one used in a previous RANS simulation, which was considered as too coarse for a traditional LES simulation. In this study, we first carry out a steady RANS simulation to provide the initial flow field for the subsequent PRNS/VLES simulation. We have also carried out an unsteady RANS (URANS) simulation for the purpose of comparing its results with that of the PRNS/VLES simulation. In addition, these calculated results are compared with the experimental data. The present effort has demonstrated that the PRNS/VLES approach, while using a RANS type of grid, is able to reveal the dynamically important, unsteady large-scale turbulent structures occurring in the flow field of a single-element LDI combustor. The interactions of these coherent structures play a critical role in the dispersion of the fuel, hence, the mixing between the fuel and the oxidizer in a combustor.

  10. Pegfilgrastim Injection

    MedlinePlus

    ... a pre-filled automatic injection device (On-body Injector) to inject subcutaneously (under the skin). If you ... a pre-filled automatic injection device (On-body Injector), the device will usually be applied to your ...

  11. Cabazitaxel Injection

    MedlinePlus

    ... injection is used along with prednisone to treat prostate cancer (cancer of a male reproductive organ) that has ... cabazitaxel injection is usually used in men with prostate cancer. If used by pregnant women, cabazitaxel injection can ...

  12. Morphine Injection

    MedlinePlus

    Morphine injection is used to relieve moderate to severe pain. Morphine is in a class of medications called opiate ( ... Morphine injection comes as a solution (liquid) to inject intramuscularly (into a muscle) or intravenously (into a ...

  13. Romidepsin Injection

    MedlinePlus

    Romidepsin injection is used to treat cutaneous T-cell lymphoma (CTCL; a group of cancers of the ... other medication given by mouth or by injection. Romidepsin injection is in a class of medications called ...

  14. Separation and determination of tetrandrine and fangchinoline in herbal medicines by flow injection-micellar electrokinetic capillary chromatography with internal standard method.

    PubMed

    Liu, Lihong; Liu, Xiumei; Chen, Xingguo; Hu, Zhide

    2005-12-01

    A simple, rapid and precision flow injection-micellar electrokinetic capillary chromatography (FI-MEKC) system with trimethoprim as internal standard (IS) for automated quantitative analysis of tetrandrine (TET) and fangchinoline (FAN) in various herbal medicines was demonstrated. The real sample throughput was 19-40 samples per hour using the background electrolyte (BGE) containing 15mM acetic acid-15mM sodium acetate-3% (v/v) polyoxyethylene sorbitan monolaurate (Tween 20)-5% (v/v) methanol at pH 5.5. The method resulted in excellent linearity, with correlation coefficient of regression equation of 0.9996 and 0.9991 for TET and FAN, respectively. Recoveries were in the range 95-109% and 92-106% for TET and FAN, respectively. PMID:16314176

  15. Determination of phenol by flow-injection with chemiluminescence detection based on the hemin-catalysed luminol-hydrogen peroxide reaction

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen; Cao, Wei; Liu, Weihua; Du, Kang; Gong, Pixue

    2012-01-01

    This study established a novel flow injection (FI) methodology for the determination of phenol in aqueous samples based on luminol chemiluminescence (CL) detection. The method was based on the inhibition that phenol caused on the hemin-catalysed chemiluminescence reaction between luminol and hydrogen peroxide in alkaline solution. Optimum conditions and possible mechanisms have been investigated. The linear range was 2.0 × 10 -9 to 4.0 × 10 -7 g mL -1 for phenol. The proposed method is sensitive with a detection limit of 4.0 × 10 -10 g mL -1. The relative standard deviation for 11 measurements was 2.3% for 1.0 × 10 -7g mL -1 phenol. The method was applied for the determination of phenol in waste water samples. The results obtained compared well with those by an official method.

  16. Flow injection spectrophotometric determination of formaldehyde based on its condensation with hydroxylamine and subsequent redox reaction with iron(III)-ferrozine complex.

    PubMed

    Teshima, Norio; Fernández, Sara Keiko Murase; Ueda, Minoru; Nakai, Hirokazu; Sakai, Tadao

    2011-06-15

    A flow injection (FI) spectrophotometric method is proposed for the determination of low concentration of formaldehyde (HCHO) in liquid media. It is based on the condensation of HCHO with hydroxylamine sulfate, followed by the reduction reaction of iron(III)-ferrozine complex with the residual hydroxylamine to form a purple iron(II)-ferrozine complex (λ(max)=562 nm). In the first reaction, hydroxylamine decreases proportionally to the concentration of HCHO, and therefore the produced purple iron(II)-ferrozine complex decreases with increasing HCHO (a negative FI peak is obtained). The detection limit (S/N=3) was 1.6 μg L(-1). The method can be applied to the determination of HCHO in industrial wastewater.

  17. Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis.

    PubMed

    Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli Lucy

    2014-07-01

    Sweet basil, Ocimum basilicum, is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time.

  18. High-throughput total cupric ion reducing antioxidant capacity of biological samples determined using flow injection analysis and microplate-based methods.

    PubMed

    Ribeiro, Joana P N; Magalhães, Luís M; Reis, Salette; Lima, José L F C; Segundo, Marcela A

    2011-01-01

    High-throughput cupric ion reducing antioxidant capacity (CUPRAC) methods were developed for assessment of total antioxidant capacity (TAC) in urine and serum, based on reduction of Cu(II)-neocuproine complex to highly colored Cu(I)-neocuproine complex, measured spectrophotometrically at 450 nm. The reaction time was significantly reduced from 30 to 4 min by application of a calibration compound (uric acid) with kinetic behavior similar to that shown by urine samples. The method was implemented in a microformat (96 well plates) and also in an automatic fashion (flow injection analysis, FIA). A determination throughput value of 288 h(-1) (microplate method) or of 15 h(-1) (automatic FIA) was attained. Application of both methods to human serum (SRM 909b, level I) and urines (n = 9) provided TAC values in agreement with those of the end-point batch method.

  19. Electroanalysis of sulfonamides by flow injection system/high-performance liquid chromatography coupled with amperometric detection using boron-doped diamond electrode.

    PubMed

    Preechaworapun, Anchana; Chuanuwatanakul, Suchada; Einaga, Yasuaki; Grudpan, Kate; Motomizu, Shoji; Chailapakul, Orawon

    2006-02-28

    Sulfonamides (SAs) were electrochemically investigated using cyclic voltammetry at a boron-doped diamond (BDD) electrode. Comparison experiments were carried out using a glassy carbon electrode. The BDD electrode provided well-resolved oxidation, irreversible cyclic voltammograms and higher current signals when compared to the glassy carbon electrode. Results obtained from using the BDD electrode in a flow injection system coupled with amperometric detection were illustrated. The optimum potential from a hydrodynamic voltammogram was found to be 1100mV versus Ag/AgCl, which was chosen for the HPLC-amperometric system. Excellent results of linear range and detection limit were obtained. This method was also used for determination of sulfonamides in egg samples. The standard solutions of 5, 10, and 15ppm were spiked in a real sample, and percentage of recoveries was found to be between 90.0 and 107.7.

  20. Selectivity enhancements for the determination of thorium by flow-injection analysis through the formation of the Th-DTPA-HQS fluorescent ternary complex.

    PubMed

    Ye, L; Lucy, C A

    1996-06-01

    Addition of diethylenetriaminepentaacetic acid (DTPA) to the fluorescent binary complex of thorium and 8-hydroxyquinoline-5-sulfonic acid (HQS) forms the Th-DTPA-HQS fluorescent ternary complex. The formation of this ternary complex enhances the selectivity for the determination of thorium. Excesses of DTPA and HQS are used as reagents in flow-injection analysis to detect thorium. The excess DTPA effectively masks potentially interfering ions by preventing the formation of fluorescent binary metal-HQS complexes. The presence of lanthanides and transition metals does not interfere with the thorium detection with this method (the ratio of molar intensity for metals to molar intensity for thorium is <0.3% with the exception of lutetium, for which molar intensity ratio is 1.34%). The detection limit for thorium is 12 ng ml(-1).