Sample records for reference ground plane

  1. Influence of strike object grounding on close lightning electric fields

    NASA Astrophysics Data System (ADS)

    Baba, Yoshihiro; Rakov, Vladimir A.

    2008-06-01

    Using the finite difference time domain (FDTD) method, we have calculated vertical electric field Ez, horizontal (radial) electric field Eh, and azimuthal magnetic field Hϕ produced on the ground surface by lightning strikes to 160-m- and a 553-m-high conical strike objects representing the Peissenberg tower (Germany) and the CN Tower (Canada), respectively. The fields were computed for a typical subsequent stroke at distances d' from the bottom of the object ranging from 5 to 100 m for the 160-m tower and from 10 to 300 m for the 553-m tower. Grounding of the 160-m object was assumed to be accomplished by its underground basement represented by a 10-m-radius and 8-m-long perfectly conducting cylinder with or without a reference ground plane located 2 m below. The reference ground plane simulates, to some extent, a higher-conducting ground layer that is expected to exist below the water table. The configuration without reference ground plane actually means that this plane is present, but is located at an infinitely large depth. Grounding of the 553-m object was modeled in a similar manner but in the absence of reference ground plane only. In all cases considered, waveforms of Eh and Hϕ are not much influenced by the presence of strike object, while waveforms of Ez are. Waveforms of Ez are essentially unipolar (as they are in the absence of strike object) when the ground conductivity σ is 10 mS/m (the equivalent transient grounding impedance is several ohms) or greater. Thus, for the CN Tower, for which σ ≥ 10 mS/m, the occurrence of Ez polarity change is highly unlikely. For the 160-m tower and for σ = 1 and 0.1 mS/m, waveforms of Ez become bipolar (exhibit polarity change) at d' ≤ 10 m and d' ≤ 50 m, respectively, regardless of the presence of the reference ground plane. The corresponding equivalent transient grounding impedances are about 30 and 50 Ω in the absence of the reference ground plane and smaller than 10 Ω in the presence of the reference ground plane. The source of opposite polarity Ez is the potential rise at the object base (at the air/ground interface) relative to the reference ground plane. For a given grounding electrode geometry, the strength of this source increases with decreasing σ, provided that the grounding impedance is linear. Potential rises at the strike object base for σ = 1 and 0.1 mS/m are some hundreds of kilovolts, which is sufficient to produce electrical breakdown from relatively sharp edges of the basement over a distance of several meters (or more) along the ground surface. The resultant ground surface arcs will serve to reduce the equivalent grounding impedance and, hence, potential rise. Therefore, the polarity change of Ez near the Peissenberg tower, for which σ is probably about 1 mS/m, should be a rare phenomenon, if it occurs at all. The equivalent transient grounding impedance of the cylindrical basement is similar to that of a hemispherical grounding electrode of the same radius. For the 160-m tower and for hemispherical grounding electrode, the transient grounding impedance is higher than its dc grounding resistance for σ = 10 and 1 mS/m, but lower for σ = 0.1 mS/m. For the 553-m tower, the transient grounding impedance of hemispherical electrode is equal to or larger than its dc resistance for all values of σ considered.

  2. Electromagnetic Scattering by Multiple Cavities Embedded in the Infinite 2D Ground Plane

    DTIC Science & Technology

    2014-07-01

    Electromagnetic Scattering by Multiple Cavities Embedded in the Infinite 2D Ground Plane Peijun Li 1 and Aihua W. Wood 2 1 Department of...of the electromagnetic wave scattering by multiple open cavities, which are embedded in an infinite two-dimensional ground plane . By introducing a...equation, variational formulation. I. INTRODUCTION A cavity is referred to as a local perturbation of the infinite ground plane . Given the cavity

  3. Calculated SAR distributions in a human voxel phantom due to the reflection of electromagnetic fields from a ground plane between 65 MHz and 2 GHz

    NASA Astrophysics Data System (ADS)

    Findlay, R. P.; Dimbylow, P. J.

    2008-05-01

    If an electromagnetic field is incident normally onto a perfectly conducting ground plane, the field is reflected back into the domain. This produces a standing wave above the ground plane. If a person is present within the domain, absorption of the field in the body may cause problems regarding compliance with electromagnetic guidelines. To investigate this, the whole-body averaged specific energy absorption rate (SAR), localised SAR and ankle currents in the voxel model NORMAN have been calculated for a variety of these exposures under grounded conditions. The results were normalised to the spatially averaged field, a technique used to determine a mean value for comparison with guidelines when the field varies along the height of the body. Additionally, the external field values required to produce basic restrictions for whole-body averaged SAR have been calculated. It was found that in all configurations studied, the ICNIRP reference levels and IEEE MPEs provided a conservative estimate of these restrictions.

  4. Printed wide-slot antenna design with bandwidth and gain enhancement on low-cost substrate.

    PubMed

    Samsuzzaman, M; Islam, M T; Mandeep, J S; Misran, N

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.

  5. Printed Wide-Slot Antenna Design with Bandwidth and Gain Enhancement on Low-Cost Substrate

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Mandeep, J. S.; Misran, N.

    2014-01-01

    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS. PMID:24696661

  6. Workshop on Future Directions for Optical Information Processing.

    DTIC Science & Technology

    1981-03-01

    h . The i reference point source simultaneously illuminates the i member of a family of n phase-encoding Aiffusers (e.g. shower glass , ground glass ...diffuser (ground glass ) section illuminated with a plane wave [35.37). The n(n-1) - 4(3) - 12 crosstalk terms have been distributed into the noise...for 2x2 input Fig. 6. Outnut of processor analogous to that array, l.Sx magnifier, ground glass diffuser of Fig. 5, but using spherical wavefront and

  7. Minimizing eddy currents induced in the ground plane of a large phased-array ultrasound applicator for echo-planar imaging-based MR thermometry.

    PubMed

    Lechner-Greite, Silke M; Hehn, Nicolas; Werner, Beat; Zadicario, Eyal; Tarasek, Matthew; Yeo, Desmond

    2016-01-01

    The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.

  8. Ground Effect - Theory and Practice

    NASA Technical Reports Server (NTRS)

    Pistolesi, E

    1937-01-01

    The conclusion of a previous article by Pistolesi is that the increment of lift due to ground effect is largely attributable to the effect of induction of the free vortices, and is practically equivalent to a virtual increase in aspect ratio. The ground clearance was of the order of magnitude comparable to the wing chord. New reports by Le Seur and Datwyler treat the case of minimum distance from the ground and is confined to the plane problem only. The author briefly reviews these reports and also one by Timotika. References to all the reviewed reports are in the attached bibliography.

  9. Characterization of Finite Ground Coplanar Waveguide with Narrow Ground Planes

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Tentzeris, Emmanouil M.; Katehi, Linda P. B.

    1997-01-01

    Coplanar waveguide with finite width ground planes is characterized through measurements, conformal mapping, and the Finite Difference Time Domain (FDTD) technique for the purpose of determining the optimum ground plane width. The attenuation and effective permittivity of the lines are related to its geometry. It is found that the characteristics of the Finite Ground Coplanar line (FGC) are not dependent on the ground plane width if it is greater than twice the center conductor width, but less than lambda(sub d)/8. In addition, electromagnetic field plots are presented which show for the first time that electric fields in the plane of the substrate terminate on the outer edge of the ground plane, and that the magnitude of these fields is related to the ground plane width.

  10. Significant RF-EMF and thermal levels observed in a computational model of a person with a tibial plate for grounded 40 MHz exposure.

    PubMed

    McIntosh, Robert L; Iskra, Steve; Anderson, Vitas

    2014-05-01

    Using numerical modeling, a worst-case scenario is considered when a person with a metallic implant is exposed to a radiofrequency (RF) electromagnetic field (EMF). An adult male standing on a conductive ground plane was exposed to a 40 MHz vertically polarized plane wave field, close to whole-body resonance where maximal induced current flows are expected in the legs. A metal plate (50-300 mm long) was attached to the tibia in the left leg. The findings from this study re-emphasize the need to ensure compliance with limb current reference levels for exposures near whole-body resonance, and not just rely on compliance with ambient electric (E) and magnetic (H) field reference levels. Moreover, we emphasize this recommendation for someone with a tibial plate, as failure to comply may result in significant tissue damage (increases in the localized temperature of 5-10 °C were suggested by the modeling for an incident E-field of 61.4 V/m root mean square (rms)). It was determined that the occupational reference level for limb current (100 mA rms), as stipulated in the 1998 guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP), is satisfied if the plane wave incident E-field levels are no more than 29.8 V/m rms without an implant and 23.4 V/m rms for the model with a 300 mm implant. © 2014 Wiley Periodicals, Inc.

  11. Metal Patch Antenna

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F. (Inventor); Zawadzki, Mark S. (Inventor); Hodges, Richard E. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  12. Gaze behavior and the perception of egocentric distance

    PubMed Central

    Gajewski, Daniel A.; Wallin, Courtney P.; Philbeck, John W.

    2014-01-01

    The ground plane is thought to be an important reference for localizing objects, particularly when angular declination is informative, as it is for objects seen resting at floor level. A potential role for eye movements has been implicated by the idea that information about the nearby ground is required to localize objects more distant, and by the fact that the time course for the extraction of distance extends beyond the duration of a typical eye fixation. To test this potential role, eye movements were monitored when participants previewed targets. Distance estimates were provided by walking without vision to the remembered target location (blind walking) or by verbal report. We found that a strategy of holding the gaze steady on the object was as frequent as one where the region between the observer and object was fixated. There was no performance advantage associated with making eye movements in an observational study (Experiment 1) or when an eye-movement strategy was manipulated experimentally (Experiment 2). Observers were extracting useful information covertly, however. In Experiments 3 through 5, obscuring the nearby ground plane had a modest impact on performance; obscuring the walls and ceiling was more detrimental. The results suggest that these alternate surfaces provide useful information when judging the distance to objects within indoor environments. Critically, they constrain the role for the nearby ground plane in theories of egocentric distance perception. PMID:24453346

  13. Effects of finite ground plane on the radiation characteristics of a circular patch antenna

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arun K.

    1990-02-01

    An analytical technique to determine the effects of finite ground plane on the radiation characteristics of a microstrip antenna is presented. The induced currents on the ground plane and on the upper surface of the patch are determined from the discontinuity of the near field produced by the equivalent magnetic current source on the physical aperture of the patch. The radiated fields contributed by the induced current on the ground plane and the equivalent sources on the physical aperture yield the radiation pattern of the antenna. Radiation patterns of the circular patch with finite ground plane size are computed and compared with the experimental data, and the agreement is found to be good. The radiation pattern, directive gain, and input impedance are found to vary widely with the ground plane size.

  14. Analysis of propeller-induced ground vortices by particle image velocimetry.

    PubMed

    Yang, Y; Sciacchitano, A; Veldhuis, L L M; Eitelberg, G

    2018-01-01

    The interaction between a propeller and its self-induced vortices originating on the ground is investigated in a scaled experiment. The velocity distribution in the flow field in two different planes containing the self-induced vortices is measured by particle image velocimetry (PIV). These planes are a wall-parallel plane in close proximity to the ground and a wall-normal plane just upstream of the propeller. Based on the visualization of the flow field in these two planes, the occurrence of ground vortices and its domain boundary are analysed. The elevation of the propeller from the ground and the thrust of the propeller are two parameters that determine the occurrence of ground vortices. The main features of the propeller inflow in the presence of the ground vortices are highlighted. Moreover, the analysis of the non-uniform inflow in the azimuthal direction shows that with increasing the propeller thrust coefficient and decreasing the elevation of the propeller above the ground, the variation of the inflow angle of the blade increases.

  15. Radiation Characteristics of Cavity Backed Aperture Antennas in Finite Ground Plane Using the Hybrid FEM/MoM Technique and Geometrical Theory of Diffraction

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    A technique using hybrid Finite Element Method (FEM)/Method of Moments (MoM), and Geometrical Theory of Diffraction (GTD) is presented to analyze the radiation characteristics of cavity fed aperture antennas in a finite ground plane. The cavity which excites the aperture is assumed to be fed by a cylindrical transmission line. The electromagnetic (EM) fields inside the cavity are obtained using FEM. The EM fields and their normal derivatives required for FEM solution are obtained using (1) the modal expansion in the feed region and (2) the MoM for the radiating aperture region(assuming an infinite ground plane). The finiteness of the ground plane is taken into account using GTD. The input admittance of open ended circular, rectangular, and coaxial line radiating into free space through an infinite ground plane are computed and compared with earlier published results. Radiation characteristics of a coaxial cavity fed circular aperture in a finite rectangular ground plane are verified with experimental results.

  16. Searching for bumps and ellipses on the ground and in the sky: no advantage for the ground plane.

    PubMed

    Jóhannesson, Omar I; Sigurdardottir, Kristín Ósk; Kristjánsson, Arni

    2013-11-01

    A staple of modern theories of vision is that the visual system has evolved to perceive cues containing the most predictive information about the layout of the environment. This entails the prediction that - other things being equal - visual performance in a familiar setting should be superior to performance in an unfamiliar one. Visual performance should therefore be better on the familiar ground plane compared to an implied sky or wall plane. We tested this comparing visual search for stimuli presented in an implied ground plane with search on a 180° rotated search display so that the stimuli appeared in an implied "sky" plane, and with search in a random layout implying no depth. This was tested for stimuli with, or without, curvature discontinuities, that have previously been shown to be strong cues for shape analysis. Surprisingly, no advantage of the ground plane over the sky plane was observed, while a strong effect of layout regularity was seen. Similarly, in experiment 2 there was little effect of placing the stimuli on an implied wall plane compared to the ground or the sky. The results are not explained by assuming that curvature discontinuities are such strong cues that they overshadow any effect of depth-plane, since there was a strong effect of regular versus random layout, which should also have disappeared under this account. The results argue instead for a very strong effect of layout regularity, unrelated to environmental regularities in evolutionary history, since there was no ground-plane benefit. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Spatial-temporal and modal analysis of propeller induced ground vortices by particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L. L. M.; Eitelberg, G.

    2016-10-01

    During the ground operation of aircraft, there is potentially a system of vortices generated from the ground toward the propulsor, commonly denoted as ground vortices. Although extensive research has been conducted on ground vortices induced by turbofans which were simplified by suction tubes, these studies cannot well capture the properties of ground vortices induced by propellers, e.g., the flow phenomena due to intermittent characteristics of blade passing and the presence of slipstream of the propeller. Therefore, the investigation of ground vortices induced by a propeller is performed to improve understanding of these phenomena. The distributions of velocities in two different planes containing the vortices were measured by high frequency Particle Image Velocimetry. These planes are a wall-parallel plane in close proximity to the ground and a wall-normal plane upstream of the propeller. The instantaneous flow fields feature highly unsteady flow in both of these two planes. The spectral analysis is conducted in these two flow fields and the energetic frequencies are quantified. The flow fields are further evaluated by applying the Proper Orthogonal Decomposition analysis to capture the coherent flow structures. Consistent flow structures with strong contributions to the turbulent kinetic energy are noticed in the two planes.

  18. Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation.

    PubMed

    Yoon, Kaeng Won; Yoon, Suk-Ja; Kang, Byung-Cheol; Kim, Young-Hee; Kook, Min Suk; Lee, Jae-Seo; Palomo, Juan Martin

    2014-09-01

    This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

  19. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    PubMed

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.

  20. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-01

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.

  1. Waveguide Transition for Submillimeter-Wave MMICs

    NASA Technical Reports Server (NTRS)

    Leong, Kevin M.; Deal, William R.; Radisic, Vesna; Mei, Xiaobing; Uyeda, Jansen; Lai, Richard; Fung, King Man; Gaier, Todd C.

    2009-01-01

    An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.

  2. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cavage, William M.; Kuhlman, John M.

    1993-01-01

    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  3. Finite Ground Coplanar (FGC) Waveguide: It's Characteristics and Advantages for Use in RF and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1998-01-01

    To solve many of the problems encountered when using conventional coplanar waveguide (CPW) with its semi-infinite ground planes, a new version of coplanar waveguide with electrically narrow ground planes has been developed. This new transmission line which we call Finite Ground Coplanar (FGC) waveguide has several advantages which make it a better transmission line for RF and wireless circuits. Since the ground planes are electrically narrow, spurious resonances created by the CPW ground planes and the metal carrier or package base are eliminated. In addition, lumped and distributed circuit elements may now be integrated into the ground strips in the same way as they traditionally have been integrated into the center conductor to realize novel circuit layouts that are smaller and have less parasitic reactance. Lastly, FGC is shown to have lower coupling between adjacent transmission lines than conventional CPW.

  4. A Combined FEM/MoM/GTD Technique To Analyze Elliptically Polarized Cavity-Backed Antennas With Finite Ground Plane

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.

  5. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  6. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  7. The Effects of Ground Plane and Parasitic Layer on Linearly Tapered Slot Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1996-01-01

    The effects of a large ground plane and an upper parasitic layer on a linearly tapered slot antenna has been experimentally investigated. Results indicate that the presence of a large ground plane causes the beam to steer by as much as 50 deg from the endfire direction in the H-plane. With the addition of a parasitic layer above the fed antenna, further beam scanning can be achieved when the spacing between the fed and parasitic layers is properly chosen.

  8. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    NASA Astrophysics Data System (ADS)

    Fisher, I. R.; Degiorgi, L.; Shen, Z. X.

    2011-12-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Néel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  9. Learning to Rank the Severity of Unrepaired Cleft Lip Nasal Deformity on 3D Mesh Data.

    PubMed

    Wu, Jia; Tse, Raymond; Shapiro, Linda G

    2014-08-01

    Cleft lip is a birth defect that results in deformity of the upper lip and nose. Its severity is widely variable and the results of treatment are influenced by the initial deformity. Objective assessment of severity would help to guide prognosis and treatment. However, most assessments are subjective. The purpose of this study is to develop and test quantitative computer-based methods of measuring cleft lip severity. In this paper, a grid-patch based measurement of symmetry is introduced, with which a computer program learns to rank the severity of cleft lip on 3D meshes of human infant faces. Three computer-based methods to define the midfacial reference plane were compared to two manual methods. Four different symmetry features were calculated based upon these reference planes, and evaluated. The result shows that the rankings predicted by the proposed features were highly correlated with the ranking orders provided by experts that were used as the ground truth.

  10. The finite ground plane effect on the microstrip antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1983-01-01

    The uniform geometrical theory of diffraction (GTD) is employed for calculating the edge diffracted fields from the finite ground plane of a microstrip antenna. The source field from the radiating patch is calculated by two different methods: the slot theory and the modal expansion theory. Many numerical and measured results are presented to demonstrate the accuracy of the calculations and the finite ground plane edge effect.

  11. Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure

    NASA Astrophysics Data System (ADS)

    Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.

    2003-10-01

    We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.

  12. 16 CFR 1512.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... post center line (or the center of the seating area if no seat post exists) and the ground plane, as measured with the wheels aligned and in a plane normal to the ground plane. (d) Track bicycle means a...

  13. Construction and validation of the midsagittal reference plane based on the skull base symmetry for three-dimensional cephalometric craniofacial analysis.

    PubMed

    Kim, Hak-Jin; Kim, Bong Chul; Kim, Jin-Geun; Zhengguo, Piao; Kang, Sang Hoon; Lee, Sang-Hwy

    2014-03-01

    The objective of this study was to determine the reliable midsagittal (MS) reference plane in practical ways for the three-dimensional craniofacial analysis on three-dimensional computed tomography images. Five normal human dry skulls and 20 normal subjects without any dysmorphoses or asymmetries were used. The accuracies and stability on repeated plane construction for almost every possible candidate MS plane based on the skull base structures were examined by comparing the discrepancies in distances and orientations from the reference points and planes of the skull base and facial bones on three-dimensional computed tomography images. The following reference points of these planes were stable, and their distribution was balanced: nasion and foramen cecum at the anterior part of the skull base, sella at the middle part, and basion and opisthion at the posterior part. The candidate reference planes constructed using the aforementioned reference points were thought to be reliable for use as an MS reference plane for the three-dimensional analysis of maxillofacial dysmorphosis.

  14. Measured Aerodynamic Interaction of Two Tiltrotors

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Wadcock, Alan J.; Derby, Michael R.

    2003-01-01

    The aerodynamic interaction of two model tilrotors in helicopter-mode formation flight is investigated. Three cenarios representing tandem level flight, tandem operations near the ground, and a single tiltrotor operating above thc ground for varying winds are examined. The effect of aircraft separation distance on the thrust and rolling moment of the trailing aircraft with and without the presence of a ground plane are quantified. Without a ground plane, the downwind aircraft experiences a peak rolling moment when the right (left) roto- of the upwind aircraft is laterally aligned with the left (right) rotor of the downwind aircraft. The presence of the ground plane causes the peak rolling moment on the downwind aircraft to occur when the upwind aircraft is further outboard of the downwind aircraft. Ground plane surface flow visualization images obtained using rufts and oil are used to understand mutual interaction between the two aircraft. These data provide guidance in determining tiltrotor flight formations which minimize disturbance to the trailing aircraft.

  15. RCS tests utilize ground-plane effects

    NASA Astrophysics Data System (ADS)

    Knott, E. F.

    1984-03-01

    It is noted that the ground effects must be thoroughly understood to attain the proper radar cross section (RCS) configurations for a specific test. If the ground is sufficiently smooth, it acts as a mirror. Ground reflections then serve to enhance the incident field strength. If an asphalt or concrete ground plane has not been constructed, the soil must be kept free of vegetation and must be graded and leveled to exploit the effect. To elucidate the role of the ground plane, the various ways that energy propagates to the target and back are considered. In implementing a ground-plane RCS measurement program, it is important that the target height, antenna height, target range, and radar wavelength be chosen so as to place the target at a peak in the interference pattern. It is pointed out that in order to maximize the received signal, the antenna should be depressed below the bisector of the angle between the direct and indirect paths subtended at the radar receiving antenna. The precise amount of depression depends on the antenna radiation pattern.

  16. Calculation of the effects of ice on the backscatter of a ground plane

    NASA Technical Reports Server (NTRS)

    Lambert, K. M.; Peters, L., Jr.

    1988-01-01

    Described is a technique for examining the effect of a rough ice layer on the backscatter of a ground plane. The technique is applied to the special case of a rough ice layer that is periodic in space. By assuming that the roughness is periodic, the backscatter of the ground plane can be found from the backscatter of a single period. Backscatter calculations are presented for a single period in which the thickness of the ice layer has a Gaussian shape.

  17. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    PubMed

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  18. Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Thin Film Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Manos M.; Papapolymerou, John

    2003-01-01

    Three-dimensional (3D) interconnects built upon multiple layers of polyimide are required for constructing 3D circuits on CMOS (low resistivity) Si wafers, GaAs, and ceramic substrates. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines a r e susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements a r e used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions. Furthermore, it is shown that coupled microstrip lines establish a slotline type mode between the two ground planes and a dielectric waveguide type mode, and that the via holes recommended here eliminate these two modes.

  19. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    PubMed

    Murray, Trevor; Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  20. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes

    PubMed Central

    Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its ‘catchment area’) has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the ‘catchment volumes’ within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots. PMID:29088300

  1. Antenna Performance Influenced by the Finite Extent and Conductivity of Ground Planes: A Collection of Reprints

    DTIC Science & Technology

    1990-09-01

    FORMULATION OF PROBLEM denoted by AZ and is given by With reference to a cylindrical polar coordinate 17-Z-Zs.- P, 1." * ()d. (4a) system (p,O,Z) the...without limit as a approaches zero. This formulation is not actually valid in this limiting case since one terminal of the generator would then be connected...current. APPE.IXx I Formulation of the input impedance. An expression is here for- mulated for the input impedance at the terminals of an antenna

  2. 16 CFR Figure 2 to Part 1203 - ISO Headform-Basic, Reference, and Median Planes

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false ISO Headform-Basic, Reference, and Median Planes 2 Figure 2 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... Headform-Basic, Reference, and Median Planes ER10MR98.002 ...

  3. Influence of fracture anisotropy on ground water ages and chemistry, Valley and Ridge province, Pennsylvania

    USGS Publications Warehouse

    Burton, W.C.; Plummer, Niel; Busenberg, E.; Lindsey, B.D.; Gburek, W.J.

    2002-01-01

    Model ground water ages based on chlorofluorocarbons (CFCs) and tritium/helium-3 (3H/3He) data were obtained from two arrays of nested piezometers located on the north limb of an anticline in fractured sedimentary rocks in the Valley and Ridge geologic province of Pennsylvania. The fracture geometry of the gently east plunging fold is very regular and consists predominately of south dipping to subhorizontal to north dipping bedding-plane parting and east striking, steeply dipping axial-plane spaced cleavage. In the area of the piezometer arrays, which trend north-south on the north limb of the fold, north dipping bedding-plane parting is a more dominant fracture set than is steeply south dipping axial-plane cleavage. The dating of ground water from the piezometer arrays reveals that ground water traveling along paths parallel to the dip direction of bedding-plane parting has younger 3H/3He and CFC model ages, or a greater component of young water, than does ground water traveling along paths opposite to the dip direction. In predominantly unmixed samples there is a strong positive correlation between age of the young fraction of water and dissolved sodium concentration. The travel times inferred from the model ages are significantly longer than those previously calculated by a ground water flow model, which assumed isotropically fractured layers parallel to topography. A revised model factors in the directional anisotropy to produce longer travel times. Ground water travel times in the watershed therefore appear to be more influenced by anisotropic fracture geometry than previously realized. This could have significant implications for ground water models in other areas underlain by similarly tilted or folded sedimentary rock, such as elsewhere in the Valley and Ridge or the early Mesozoic basins.

  4. High Frequency Magnetic Field Direction Finding Using MGL-S9A B-dot Sensors

    DTIC Science & Technology

    2013-03-21

    relationship for incident plane wave on a linear array . . . . . . . . . . . 26 3.1 B-dot sensor design in CST Microwave Studio...CST Microwave Studio with an infinite PEC ground plane. . . . . . . . . . . . . . . 50 4.2 Radiation pattern of a single B-dot sensor at 32 MHz...simulated in CST Microwave Studio with an infinite PEC ground plane. . . . . . . . . . . . . . . 50 4.3 Radiation efficiency of single loop versus B-dot

  5. Ground Impingement of a Fan Jet Exhaust Plume

    DTIC Science & Technology

    1978-05-01

    ground plane to avoid a possible interaction between the ground-deflected exhaust and the fan j .t engine inlet. Two pitot pressure rakes , shown on the...Pressure signals from the two rakes (total of 18 pitot tubes) were read sequentially with a Scannivalve system, time-averaged, and displayed on a pen...taken from the inner anid outer rakes with the ground plane normal to the flow at h/d f 2. Pitot pressures from each rake were normalized by the

  6. Coupling Between CPW and Slotline Modes in Finite Ground CPW with Unequal Ground Plane Widths

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Williams, W. D. (Technical Monitor); Tentzeris, Emmanouil M.

    2002-01-01

    The coupling between the desired CPW mode and the unwanted, slotline, mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Method of Moment analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. Introduction: Finite ground coplanar waveguide (FGC) is often used in low cost Monolithic Microwave Integrated Circuits (MMICs) because of its many advantages over microstrip and conventional CoPlanar Waveguide (CPW). It is uniplanar, which facilitates easy connection of series and shunt elements without via holes, supports a low loss, quasi-TEM mode over a wide frequency band, and since the ground planes are electrically and physically narrow, typically less than lambda/5 wide where lambda is the guided wavelength, they reduce the circuit size and the influence of higher order modes. However, they still support the parasitic slotline mode that plagues all CPW transmission lines.

  7. Carpet cloak with graded dielectric metasurface (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Hsu, LiYi; Lepetit, Thomas; Kante, Boubacar

    2015-09-01

    We demonstrate a method to hide a Gaussian-shaped bump on a ground plane from an incoming plane wave. In essence, we use a graded metasurface to shape the wavefronts like those of a flat ground plane[1,2].The metasurface provides additional phase to the electromagnetic field to control the reflection angle. To mimic a flat ground plane, the reflection angle is chosen to be equal to the incident angle. The desired phase distribution is calculated based on generalized Snell's laws[3]. We design our metasurface in the microwave range using sub-wavelength dielectric resonators. We verify the design by full-wave time-domain simulations and show that the result matches our theory well. This approach can be applied to hide any object on a ground plane not only at microwave frequencies but also at higher frequencies up to the infrared. 1. Jensen Li and J. B. Pendry, Hiding under the Carpet: A New Strategy for Cloaking. Phys. Rev. Lett. 101, 203901 (2008) 2. Andrea Alu, Mantle cloak: Invisibility induced by a surface. Phys. Rev. B 80, 245115 (2009) 3. Yu N, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334(6054):333-337 (2011)

  8. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  9. Color quality improvement of reconstructed images in color digital holography using speckle method and spectral estimation

    NASA Astrophysics Data System (ADS)

    Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa

    2018-05-01

    In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.

  10. Placement insensitive antenna for RFID, sensing, and/or communication systems

    DOEpatents

    Bernhard, Jennifer T.; Ruyle, Jessica E.

    2014-06-10

    An antenna includes a ground plane having a slot. The slot may be miniaturized using a meandered slot structure or other appropriate reactive loading method as an end load to one or both ends of the slot. An edge treatment may be included on one or more edges of the ground plane or a closely spaced reflecting plane. The antenna is structured to transmit or receive a signal independently or in response to electromagnetic radiation.

  11. Magnetostriction-driven ground-state stabilization in 2H perovskites

    DOE PAGES

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; ...

    2016-10-04

    In this paper, the magnetic ground state of Sr 3ARuO 6, with A =(Li,Na), is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchangemore » interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. Finally, the symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca 3ARuO 6, with A = (Li,Na), and Ca 3LiOsO 6 whose magnetic ground states are still not completely understood.« less

  12. 16 CFR Figure 3 to Part 1203 - Location of Reference Plane

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Location of Reference Plane 3 Figure 3 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... Plane ER10MR98.003 ...

  13. Applying face identification to detecting hijacking of airplane

    NASA Astrophysics Data System (ADS)

    Luo, Xuanwen; Cheng, Qiang

    2004-09-01

    That terrorists hijacked the airplanes and crashed the World Trade Center is disaster to civilization. To avoid the happening of hijack is critical to homeland security. To report the hijacking in time, limit the terrorist to operate the plane if happened and land the plane to the nearest airport could be an efficient way to avoid the misery. Image processing technique in human face recognition or identification could be used for this task. Before the plane take off, the face images of pilots are input into a face identification system installed in the airplane. The camera in front of pilot seat keeps taking the pilot face image during the flight and comparing it with pre-input pilot face images. If a different face is detected, a warning signal is sent to ground automatically. At the same time, the automatic cruise system is started or the plane is controlled by the ground. The terrorists will have no control over the plane. The plane will be landed to a nearest or appropriate airport under the control of the ground or cruise system. This technique could also be used in automobile industry as an image key to avoid car stealth.

  14. MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu

    2016-08-07

    We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of themore » reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.« less

  15. Grounding the figure: surface attachment influences figure-ground organization.

    PubMed

    Vecera, Shaun P; Palmer, Stephen E

    2006-08-01

    We investigated whether the lower region effect on figure-ground organization (Vecera, Vogel, and Woodman, 2002) would generalize to contextual depth planes in vertical orientations, as is predicted by a theoretical analysis based on the ecological statistics of edges arising from objects that are attached to surfaces of support. Observers viewed left/right ambiguous figure-ground displays that occluded middle sections of four types of contextual inducers: two types of attached, receding, vertical planes (walls) that used linear perspective and/or texture gradients to induce perceived depth and two types of similar trapezoidal control figures that used either uniform color or random texture to reduce or eliminate perceived depth. The results showed a reliable bias toward seeing as "figure" the side of the figure-ground display that was attached to the receding depth plane, but no such bias for the corresponding side in either of the control conditions. The results are interpreted as being consistent with the attachment hypothesis that the lower region cue to figure-ground organization results from ecological biases in edge interpretation that arise when objects are attached to supporting surfaces in the terrestrial gravitational field.

  16. Aerodynamic braking of high speed ground transportation vehicles.

    NASA Technical Reports Server (NTRS)

    Marte, J. E.; Marko, W. J.

    1973-01-01

    The drag effectiveness of aerodynamic brakes arranged in series on a train-like vehicle was investigated. Fixed- and moving-model testing techniques were used in order to determine the importance of proper vehicle-ground interference simulation. Fixed-model tests were carried out on a sting-mounted model: alone; with a fixed ground plane; and in proximity to an image model. Moving-model tests were conducted in a vertical slide-wire facility with and without a ground plane. Results from investigations of one brake configuration are presented which show the effect of the number of brakes in the set and of spacing between brakes.

  17. Comparative Validity and Reproducibility Study of Various Landmark-Oriented Reference Planes in 3-Dimensional Computed Tomographic Analysis for Patients Receiving Orthognathic Surgery

    PubMed Central

    Lin, Hsiu-Hsia; Chuang, Ya-Fang; Weng, Jing-Ling; Lo, Lun-Jou

    2015-01-01

    Background Three-dimensional computed tomographic imaging has become popular in clinical evaluation, treatment planning, surgical simulation, and outcome assessment for maxillofacial intervention. The purposes of this study were to investigate whether there is any correlation among landmark-based horizontal reference planes and to validate the reproducibility and reliability of landmark identification. Materials and Methods Preoperative and postoperative cone-beam computed tomographic images of patients who had undergone orthognathic surgery were collected. Landmark-oriented reference planes including the Frankfort horizontal plane (FHP) and the lateral semicircular canal plane (LSP) were established. Four FHPs were defined by selecting 3 points from the orbitale, porion, or midpoint of paired points. The LSP passed through both the lateral semicircular canal points and nasion. The distances between the maxillary or mandibular teeth and the reference planes were measured, and the differences between the 2 sides were calculated and compared. The precision in locating the landmarks was evaluated by performing repeated tests, and the intraobserver reproducibility and interobserver reliability were assessed. Results A total of 30 patients with facial deformity and malocclusion—10 patients with facial symmetry, 10 patients with facial asymmetry, and 10 patients with cleft lip and palate—were recruited. Comparing the differences among the 5 reference planes showed no statistically significant difference among all patient groups. Regarding intraobserver reproducibility, the mean differences in the 3 coordinates varied from 0 to 0.35 mm, with correlation coefficients between 0.96 and 1.0, showing high correlation between repeated tests. Regarding interobserver reliability, the mean differences among the 3 coordinates varied from 0 to 0.47 mm, with correlation coefficients between 0.88 and 1.0, exhibiting high correlation between the different examiners. Conclusions The 5 horizontal reference planes were reliable and comparable for 3D craniomaxillofacial analysis. These reference planes were useful in standardizing the orientation of 3D skull models. PMID:25668209

  18. Comparative validity and reproducibility study of various landmark-oriented reference planes in 3-dimensional computed tomographic analysis for patients receiving orthognathic surgery.

    PubMed

    Lin, Hsiu-Hsia; Chuang, Ya-Fang; Weng, Jing-Ling; Lo, Lun-Jou

    2015-01-01

    Three-dimensional computed tomographic imaging has become popular in clinical evaluation, treatment planning, surgical simulation, and outcome assessment for maxillofacial intervention. The purposes of this study were to investigate whether there is any correlation among landmark-based horizontal reference planes and to validate the reproducibility and reliability of landmark identification. Preoperative and postoperative cone-beam computed tomographic images of patients who had undergone orthognathic surgery were collected. Landmark-oriented reference planes including the Frankfort horizontal plane (FHP) and the lateral semicircular canal plane (LSP) were established. Four FHPs were defined by selecting 3 points from the orbitale, porion, or midpoint of paired points. The LSP passed through both the lateral semicircular canal points and nasion. The distances between the maxillary or mandibular teeth and the reference planes were measured, and the differences between the 2 sides were calculated and compared. The precision in locating the landmarks was evaluated by performing repeated tests, and the intraobserver reproducibility and interobserver reliability were assessed. A total of 30 patients with facial deformity and malocclusion--10 patients with facial symmetry, 10 patients with facial asymmetry, and 10 patients with cleft lip and palate--were recruited. Comparing the differences among the 5 reference planes showed no statistically significant difference among all patient groups. Regarding intraobserver reproducibility, the mean differences in the 3 coordinates varied from 0 to 0.35 mm, with correlation coefficients between 0.96 and 1.0, showing high correlation between repeated tests. Regarding interobserver reliability, the mean differences among the 3 coordinates varied from 0 to 0.47 mm, with correlation coefficients between 0.88 and 1.0, exhibiting high correlation between the different examiners. The 5 horizontal reference planes were reliable and comparable for 3D craniomaxillofacial analysis. These reference planes were useful in standardizing the orientation of 3D skull models.

  19. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  20. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T [Albuquerque, NM

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  1. High voltage variable diameter insulator

    DOEpatents

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  2. Numerical modelling of GPR ground-matching enhancement by a chirped multilayer structure - output of cooperation within COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Hovik V.; Knyazyan, Tamara M.; Hovhannisyan, Tamara. T.; Marciniak, Marian; Pajewski, Lara

    2016-04-01

    As is well know, Ground Penetrating Radar (GPR) is an electromagnetic technique for the detection and imaging of buried objects, with resolution ranging from centimeters to few meters [1, 2]. Though this technique is mature enough and different types of GPR devices are already in use, some problems are still waiting for their solution [3]. One of them is to achieve a better matching of transmitting GPR antenna to the ground, that will increase the signal penetration depth and the signal/noise ratio at the receiving end. In the current work, a full-wave electromagnetic modelling of the interaction of a plane wave with a chirped multilayered structure on the ground is performed, via numerical simulation. The method of single expression is used, which is a suitable technique for multi-boundary problems solution [4, 5]. The considered multilayer consists of two different dielectric slabs of low and high permittivity, where the highest value of permittivity doesn't exceed the permittivity of the ground. The losses in the ground are suitably taken into account. Two types of multilayers are analysed. Numerical results are obtained for the reflectance from the structure, as well as for the distributions of electric field components and power flow density in both the considered structures and the ground. The obtained results indicate that, for a better matching with the ground, the layer closer to the ground should be the high-permittivity one. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). Part of this work was developed during the Short-Term Scientific Mission COST-STSM-TU1208-25016, carried out by Prof. Baghdasaryan in the National Institute of Telecommunications in Warsaw, Poland. References [1] H. M. Jol. Ground Penetrating Radar: Theory and Applications. Elsevier, 2009. 509 pp. [2] R. Persico. Introduction to Ground Penetrating Radar. IEEE Press, Wiley, 2014. 368 pp. [3] A. Benedetto, L. Pajewski. Civil Engineering Applications of Ground Penetrating Radar. Springer, 2015. 371 pp. [4] H.V. Baghdasaryan, T.M. Knyazyan, "Problem of Plane EM-Wave Self-action in Multilayer Structure: an Exact Solution", Optical and Quantum Electronics, vol. 31, 1999, pp. 1059-1072. [5] H.V. Baghdasaryan, "Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics", Yerevan, Chartaraget, 2013.

  3. Fast and reliable obstacle detection and segmentation for cross-country navigation

    NASA Technical Reports Server (NTRS)

    Talukder, A.; Manduchi, R.; Rankin, A.; Matthies, L.

    2002-01-01

    Obstacle detection is one of the main components of the control system of autonomous vehicles. In the case of indoor/urban navigation, obstacles are typically defined as surface points that are higher than the ground plane. This characterization, however, cannot be used in cross-country and unstructured environments, where the notion of ground plane is often not meaningful.

  4. Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless lan applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.

  5. Results of low speed wind tunnel tests on a .0405 scale model Rockwell Space Shuttle Orbiter tested both in free air and in the presence of a ground plane (OA16)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.; Cameron, B. W.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a .0405 scale representation of the space shuttle orbiter in a 7.75 x 11 foot low speed wind tunnel during the time period March 21, to April 17, 1973. The primary test objectives were to investigate both the aerodynamic and propulsion effects of various air breathing engine systems in free air and in the presence of the ground. The free air portion of this test investigated the aerodynamic effects of engine nacelle number, nacelle grouping, and nacelle location. For this testing the model was sting mounted on a six component internal strain gage balance entering through the model base. The ground plane portion of the aerodynamic test investigated the same nacelle effects at ground plane locations of full scale W.P. = 239.9, 209.3, 158.9, 108.5, and 7.78 in. At the conclusion of the aerodynamic test period the propulsion effects of various nacelle locations and freestream orientations in the presence of the ground were investigated.

  6. Intra- and extra-articular planes of reference for use in total hip arthroplasty: a preliminary study.

    PubMed

    Hausselle, Jerome; Moreau, Pierre Etienne; Wessely, Loic; de Thomasson, Emmanuel; Assi, Ayman; Parratte, Sebastien; Essig, Jerome; Skalli, Wafa

    2012-08-01

    Acetabular component malalignment in total hip arthroplasty can lead to potential complications such as dislocation, component impingement and excessive wear. Computer-assisted orthopaedic surgery systems generally use the anterior pelvic plane (APP). Our aim was to investigate the reliability of anatomical landmarks accessible during surgery and to define new potential planes of reference. Three types of palpations were performed: virtual, on dry bones and on two cadaveric specimens. Four landmarks were selected, the reproducibility of their positioning ranging from 0.9 to 2.3 mm. We then defined five planes and tested them during palpations on two cadaveric specimens. Two planes produced a mean orientation error of 5.0° [standard deviation (SD 3.3°)] and 5.6° (SD 2.7°). Even if further studies are needed to test the reliability of such planes on a larger scale in vivo during surgery, these results demonstrated the feasibility of defining a new plane of reference as an alternative to the APP.

  7. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection.

    PubMed

    Gozem, Samer; Melaccio, Federico; Valentini, Alessio; Filatov, Michael; Huix-Rotllant, Miquel; Ferré, Nicolas; Frutos, Luis Manuel; Angeli, Celestino; Krylov, Anna I; Granovsky, Alexander A; Lindh, Roland; Olivucci, Massimo

    2014-08-12

    We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

  8. Assessment of Aerothermodynamic Flight Prediction Tools through Ground and Flight Experimentation (Evaluation des outils aerothermodynamiques de prediction de vol par l’experimentation au sol et en vol)

    DTIC Science & Technology

    2011-11-01

    6.5 Conclusions 6-30 6.6 Acknowledgments 6-31 6.7 References 6-31 Chapter 7 – Experimental Investigation of the Supersonic Wake of a Re-entry 7-1... Noise on the Axial Location of 4-4 Transition for the HIFiRE-1 Cone at Zero Angle of Attack and Mach 6 Figure 4-2 Correlations for Transition...Without Sting) Mach 2 AoA 19 Symmetry Plane Computed 6-14 with LORE: Effect of Sting/ Blade vs. No Sting/ Blade on 8M Cells Mesh Figure 6-12 Mach 2

  9. Space Optical Communications Using Laser Beams

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2017-01-01

    A system for communicating between an object in space and a ground station, between objects in space, or between ground stations, includes a telecentric lens. Photodetectors positioned upon a focal plane of the telecentric lens detect an inbound light beam, received from a source, that has passed through the telecentric lens to the focal plane. Lasers positioned upon the focal plane transmit light beams from the focal plane through the telecentric lens to an area that includes the source of the inbound light beam. A processor detect signals from individual photodetectors corresponding to light detected, and selectively signals individual lasers that are close to those photodetectors, resulting in a returning beam that arrives close to the source, and which carries encoded data.

  10. Photovoltaic module mounting clip with integral grounding

    DOEpatents

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  11. Cooling/grounding mount for hybrid circuits

    NASA Technical Reports Server (NTRS)

    Bagstad, B.; Estrada, R.; Mandel, H.

    1981-01-01

    Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.

  12. Three-dimensional broadband ground-plane cloak made of metamaterials

    PubMed Central

    Ma, Hui Feng; Cui, Tie Jun

    2010-01-01

    Since invisibility cloaks were first suggested by transformation optics theory, there has been much work on the theoretical analysis and design of various types and a few experimental verifications at microwave and optical frequencies within two-dimensional limits. Here, we realize the first practical implementation of a fully 3D broadband and low-loss ground-plane cloak at microwave frequencies. The cloak, realized by drilling inhomogeneous holes in multi-layered dielectric plates, can conceal a 3D object located under a curved conducting plane from all viewing angles by imitating the reflection of a flat conducting plane. We also designed and realized, using non-resonant metamaterials, a high-gain lens antenna that can produce narrow-beam plane waves in the near-field region in a broad frequency band. The antenna constitutes the transmitter of the measurement system and is essential for the measurement of cloaking behaviour. PMID:20975696

  13. Ground-plane influences on size estimation in early visual processing.

    PubMed

    Champion, Rebecca A; Warren, Paul A

    2010-07-21

    Ground-planes have an important influence on the perception of 3D space (Gibson, 1950) and it has been shown that the assumption that a ground-plane is present in the scene plays a role in the perception of object distance (Bruno & Cutting, 1988). Here, we investigate whether this influence is exerted at an early stage of processing, to affect the rapid estimation of 3D size. Participants performed a visual search task in which they searched for a target object that was larger or smaller than distracter objects. Objects were presented against a background that contained either a frontoparallel or slanted 3D surface, defined by texture gradient cues. We measured the effect on search performance of target location within the scene (near vs. far) and how this was influenced by scene orientation (which, e.g., might be consistent with a ground or ceiling plane, etc.). In addition, we investigated how scene orientation interacted with texture gradient information (indicating surface slant), to determine how these separate cues to scene layout were combined. We found that the difference in target detection performance between targets at the front and rear of the simulated scene was maximal when the scene was consistent with a ground-plane - consistent with the use of an elevation cue to object distance. In addition, we found a significant increase in the size of this effect when texture gradient information (indicating surface slant) was present, but no interaction between texture gradient and scene orientation information. We conclude that scene orientation plays an important role in the estimation of 3D size at an early stage of processing, and suggest that elevation information is linearly combined with texture gradient information for the rapid estimation of 3D size. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the moving target Kalman filter(KF). Experimental results show that our method can instantaneously geo-locate the moving target by operator's single click and can reach 15 meters accuracy for an MAV flying at 200 meters above the ground.

  15. Characterization of the Coupling Between Adjacent Finite Ground Coplanar (FGC) Waveguides

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1997-01-01

    Coupling between adjacent Finite Ground Coplanar (FGC) waveguides as a function of the line geometry is presented for the first time. A two Dimension-Finite Difference Time Domain (2D-FDTD) analysis and measurements are used to show that the coupling decreases as the line to line separation and the grOUnd plane width increases. Furthermore, it is shown that for a given spacing between the center lines of two FGC lines, the coupling is lower if the ground plane width is smaller Lastly, electric field plots generated from the 2D-FDTD technique are presented which demonstrate a strong slotline mode is established in the coupled FGC line.

  16. A novel multi-planar radiography method for three dimensional pose reconstruction of the patellofemoral and tibiofemoral joints after arthroplasty.

    PubMed

    Amiri, Shahram; Wilson, David R; Masri, Bassam A; Sharma, Gulshan; Anglin, Carolyn

    2011-06-03

    Determining the 3D pose of the patella after total knee arthroplasty is challenging. The commonly used single-plane fluoroscopy is prone to large errors in the clinically relevant mediolateral direction. A conventional fixed bi-planar setup is limited in the minimum angular distance between the imaging planes necessary for visualizing the patellar component, and requires a highly flexible setup to adjust for the subject-specific geometries. As an alternative solution, this study investigated the use of a novel multi-planar imaging setup that consists of a C-arm tracked by an external optoelectric tracking system, to acquire calibrated radiographs from multiple orientations. To determine the accuracies, a knee prosthesis was implanted on artificial bones and imaged in simulated 'Supine' and 'Weightbearing' configurations. The results were compared with measures from a coordinate measuring machine as the ground-truth reference. The weightbearing configuration was the preferred imaging direction with RMS errors of 0.48 mm and 1.32 ° for mediolateral shift and tilt of the patella, respectively, the two most clinically relevant measures. The 'imaging accuracies' of the system, defined as the accuracies in 3D reconstruction of a cylindrical ball bearing phantom (so as to avoid the influence of the shape and orientation of the imaging object), showed an order of magnitude (11.5 times) reduction in the out-of-plane RMS errors in comparison to single-plane fluoroscopy. With this new method, complete 3D pose of the patellofemoral and tibiofemoral joints during quasi-static activities can be determined with a many-fold (up to 8 times) (3.4mm) improvement in the out-of-plane accuracies compared to a conventional single-plane fluoroscopy setup. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    PubMed Central

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  18. Experimental determination of the reference plane of shaped diffusers by solar ultraviolet measurements.

    PubMed

    Gröbner, Julian; Blumthaler, Mario

    2007-01-01

    The optical reference plane of a J1002 shaped dome diffuser from CMS-Schreder was determined using direct normal spectral solar UV irradiance measurements relative to a flat Teflon diffuser. The spectroradiometers were calibrated relative to the same irradiance standard. The optical reference plane of the shaped J1002 diffuser is 5.3 mm behind the top of the dome with an uncertainty of 1.0 mm. Solar UV irradiance measurements based on a lamp calibration using the top of the dome as the reference will overestimate the global solar irradiance by 2.1% for the usual calibration distance of 500 mm.

  19. USAF Radiofrequency Radiation Bioeffects Research Program - A Review

    DTIC Science & Technology

    1981-12-01

    Experimental Methods--SARa have been measured in scaled saline spheroidal phantoms irradiated by the near fields of short electric monopoles above ground planes...aperture analysis might be the case where some industrial machines have an equivalent electric dipole parallel to the operator, which causes maximum...short electric monopoles on a ground plane simulating electric dipoles. Some results of these measurements are shown in Fig. 16, with the measured

  20. High voltage variable diameter insulator

    DOEpatents

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  1. Test Of A Microwave Amplifier With Superconductive Filter

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1995-01-01

    Report describes design and low-temperature tests of low-noise GaAs microwave amplifier combined with microstrip band-pass filter. Two versions of microstrip filter used in alternate tests; in one version, microstrips formed as films of high-transition-temperature superconductor Y/Ba/Cu/O on lanthanum aluminate substrate with gold film as ground plane. Other version identical except microstrips as well as ground plane made of gold, normally conductive.

  2. Computer Program for Thin Wire Antenna over a Perfectly Conducting Ground Plane. [using Galerkins method and sinusoidal bases

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    A computer program is presented for a thin-wire antenna over a perfect ground plane. The analysis is performed in the frequency domain, and the exterior medium is free space. The antenna may have finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, and gain. The program uses sinusoidal bases and Galerkin's method.

  3. A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW

    NASA Astrophysics Data System (ADS)

    Weng, Min-Hang; Ye, Chang-Sin; Hung, Cheng-Yuan; Huang, Chun-Yueh

    A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.

  4. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    DOEpatents

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  5. Investigation of the flow-field of two parallel round jets impinging normal to a flat surface

    NASA Astrophysics Data System (ADS)

    Myers, Leighton M.

    The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2, was designed and fabricated with a 50% increase in nozzle exit diameter. The primary design improvement is the ability to quickly and easily exchange the nozzles of the model. This allowed experiments to be performed with rapid-prototyped nozzles that feature more realistic geometry to that of tactical military aircraft engines. One such nozzle, which was designed and demonstrated by previous researchers to reduce jet noise in a free-jet, was incorporated into the model. The nozzle, featuring deflected seals, was installed in the Generation 2 model and its effect on suckdown was evaluated.

  6. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    PubMed

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  7. Silicon base plate with low parasitic electrical interference for sensors

    NASA Technical Reports Server (NTRS)

    Tang, Tony K. (Inventor); Gutierrez, Roman C. (Inventor)

    2002-01-01

    A microgyroscope has a baseplate made of the same material as the rest of the microgyroscope. The baseplate is a silicon baseplate having a heavily p-doped epilayer covered by a thick dielectric film and metal electrodes. The metal electrodes are isolated from the ground plane by the dielectric. This provides very low parasitic capacitive coupling between the electrodes. The thick dielectric reduces the capacitance between the electrodes and the ground plane.

  8. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor); Elliott, Holly A. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  9. Properties of cutoff corrugated surfaces for corrugated horn design. [corrugation shape and density effects on scattering

    NASA Technical Reports Server (NTRS)

    Mentzer, C. A.; Peters, L., Jr.

    1974-01-01

    Corrugated horns involve a junction between the corrugated surface and a conducting ground plane. Proper horn design requires an understanding of the electromagnetic properties of the corrugated surface and this junction. An integral equation solution has been used to study the influence of corrugation density and tooth thickness on the power loss, surface current, and the scattering from a ground plane/corrugated surface junction.

  10. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOEpatents

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  11. New Intensity Attenuation in Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.; Tibaldi, A.; Bonali, F.; Gogoladze, Z.; Kvavadze, N.; Kvedelidze, I.

    2016-12-01

    In seismic-prone zones, increase of urbanization and infrastructures in turn produces increase of seismic risk that is mainly related to: the level of seismic hazard itself, the seismic resistance of dwelling houses, and many other factors. The relevant objectives of the present work is to improve the regional seismic hazard maps of Georgia, by implementing state-of-the art probabilistic seismic hazard assessment techniques and outputs from recent national and international collaborations. Seismic zoning is the identification of zones of similar levels of earthquake hazard. With reference to seismic zoning by ground motion assessment, the shaking intensity essentially depends on i) regional seismicity, ii) attenuation of ground motion with distance, iii) local site effects on ground motion. In the last decade, seismic hazard assessment is presented in terms of Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), or other recorded parameters. But there are very limited strong motion dataset in Georgia. Furthermore, vulnerability of buildings still is estimated for intensity, and there are no information about correlation between the distribution of ground motion recorded parameters and damage. So, macroseimic Intensity is still a very important parameter for strong ground motion evaluation. In the present work, we calibrated intensity prediction equations (IPE) for the Georgian dataset based on about 78 reviewed earthquakes. Metadata for Intensity (MSK 64 scale) were constrained and predictionequations for various types of distance (epicentral and hypocentral distance, Joyner-Boore distance, closest distance to the fault rupture plane) were calibrated. Relations between intensity and PGA values were derived. For this we used hybrid-empirical ground motion equation derived for Georgia and run scenario earthquakes for events with macroseismic data.

  12. Finite Ground Coplanar (FGC) Waveguide: Characteristics and Advantages Evaluated for Radiofrequency and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    Researchers in NASA Lewis Research Center s Electron Device Technology Branch are developing transmission lines for radiofrequency and wireless circuits that are more efficient, smaller, and make lower cost circuits possible. Traditionally, radiofrequency and wireless circuits have employed a microstrip or coplanar waveguide to interconnect the various electrical elements that comprise a circuit. Although a coplanar waveguide (CPW) is widely viewed as better than a microstrip for most applications, it too has problems. To solve these problems, NASA Lewis and the University of Michigan developed a new version of a coplanar waveguide with electrically narrow ground planes. Through extensive numerical modeling and experimental measurements, we have characterized the propagation constant of the FGC waveguide, the lumped and distributed circuit elements integrated in the FGC waveguide, and the coupling between parallel transmission lines. Although the attenuation per unit length is higher for the FGC waveguide because of higher conductor loss, the attenuation is comparable when the ground plane width is twice the center conductor width as shown in the following graph. An upper limit to the line width is derived from observations that when the total line width is greater than ld/2, spurious resonances due to the parallel plate waveguide mode are established. Thus, the ground plane width must be less than ld/4 where ld is the wavelength in the dielectric. Since the center conductor width S is typically less than l/10 to maintain good transverse electromagnetic mode characteristics, it follows that a ground plane width of B = 2S would also be electrically narrow. Thus, we can now treat the ground strips of the FGC waveguide the same way that the center conductor is treated.

  13. Investigation of impingement region and wall jets formed by the interaction of high aspect ratio lift jets and a ground plane

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1978-01-01

    Flow characteristics of impinging jets emanating from rectangular exit area converging nozzles of exit area aspect ratio four, six, and eight were investigated. Azimuthal distributions of wall jet radial momentum flux in the ground plane were strongly directional and sensitive to rectangular nozzle exit area aspect ratio, jet impingement angle, and height above ground, H/D. Effects of jet exit velocity profile nonuniformities were also investigated. Data from the single nozzle rectangular jet impringement investigations were incorporated into an existing VTOL aircraft ground flow field computer program. It is suggested that this program together with the Douglas Neumann program modified for V/STOL applications may be used for the analysis and prediction of flow fields and resulting forces and moments on multijet V/STOL aircraft hovering in ground effect.

  14. Research on optimal path planning algorithm of task-oriented optical remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng

    2015-08-01

    GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.

  15. A Simplified Guidance for Target Missiles Used in Ballistic Missile Defence Evaluation

    NASA Astrophysics Data System (ADS)

    Prabhakar, N.; Kumar, I. D.; Tata, S. K.; Vaithiyanathan, V.

    2013-01-01

    A simplified guidance scheme for the target missiles used in Ballistic Missile Defence is presented in this paper. The proposed method has two major components, a Ground Guidance Computation (GGC) and an In-Flight Guidance Computation. The GGC which runs on the ground uses a missile model to generate attitude history in pitch plane and computes launch azimuth of the missile to compensate for the effect of earth rotation. The vehicle follows the pre launch computed attitude (theta) history in pitch plane and also applies the course correction in azimuth plane based on its deviation from the pre launch computed azimuth plane. This scheme requires less computations and counters In-flight disturbances such as wind, gust etc. quite efficiently. The simulation results show that the proposed method provides the satisfactory performance and robustness.

  16. Flow Resistivity Instrument

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1983-01-01

    A method and apparatus for making in-situ measurements of flow resistivity on the Earth's ground surface is summarized. The novel feature of the invention is two concentric cylinders, inserted into the ground surface with a measured pressure applied to the surface inside the inner cylinder. The outer cylinder vents a plane beneath the surface to the atmosphere through an air space. The flow to the inner cylinder is measured thereby indicating the flow from the surface to the plane beneath the surface.

  17. Note on use of slope diffraction coefficients for aperture antennas on finite ground planes

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, F. B.

    1995-01-01

    The use of slope diffraction coefficients along with regular diffraction coefficients for calculating the radiation patterns of aperture antennas in a finite ground plane is investigated. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The expressions for the incident magnetic field in terms of the magnetic current in the aperture are given. The slope of the incident magnetic field is calculated and closed form expressions are presented.

  18. Mixed configuration ground state in iron(II) phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Rodríguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-01

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2,3 edges of α-Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3E (a2 e3b1 ) and 3B (a1 e4b1 ) g 1g g 2g 2g 1g g 2g with the two configurations coupled by the spin-orbit interaction. The 3Eg(b) and 3B2g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spinmore » moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.« less

  19. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  20. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  1. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  2. Electrically Small Microstrip Quarter-Wave Monopole Antennas

    NASA Technical Reports Server (NTRS)

    Young, W. Robert

    2004-01-01

    Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects with the patch above one-third of the radial distance from the center. The modified feed configuration of the innovative approach is an inductive-short-circuit configuration that provides impedance matching and that has been used for many years on other antennas but not on microstrip-style monopole antennas. In this configuration, the pin is connected to both the conductive patch and the ground plane. As before, the shield of the coaxial cable is connected to the ground plane, but now the central conductor is connected to a point on the pin between the ground plane and the conductive plate (see figure). The location of the connection point on the pin is chosen so that together, the inductive short circuit and the conductive plate or patch act as components of a lumped-element resonant circuit that radiates efficiently at the resonance frequency and, at the resonance frequency, has an impedance that matches that of the coaxial cable. It should be noted that the innovative design entails two significant disadvantages. One disadvantage is that the frequency bandwidth for efficient operation is only about 1/20 to 1/15 that of a whip antenna designed for the same nominal frequency. The other disadvantage is that the estimated gain is between 3-1/2 and 4-1/2 dB below that of the whip antenna. However, if an affected radio-communication system used only a few adjacent frequency channels and the design of the components of the system other than the antenna provided adequate power or gain margin, then these disadvantages could be overcome.

  3. Influence of Ametropia and Its Correction on Measurement of Accommodation.

    PubMed

    Bernal-Molina, Paula; Vargas-Martín, Fernando; Thibos, Larry N; López-Gil, Norberto

    2016-06-01

    Amplitude of accommodation (AA) is reportedly greater for myopic eyes than for hyperopic eyes. We investigated potential explanations for this difference. Analytical analysis and computer ray tracing were performed on two schematic eye models of axial ametropia. Using paraxial and nonparaxial approaches, AA was specified for the naked and the corrected eye using the anterior corneal surface as the reference plane. Assuming that axial myopia is due entirely to an increase in vitreous chamber depth, AA increases with the amount of myopia for two reasons that have not always been taken into account. First is the choice of reference location for specifying refractive error and AA in diopters. When specified relative to the cornea, AA increases with the degree of myopia more than when specified relative to the eye's first Gaussian principal plane. The second factor is movement of the eye's second Gaussian principal plane toward the retina during accommodation, which has a larger dioptric effect in shorter eyes. Using the corneal plane (placed at the corneal vertex) as the reference plane for specifying accommodation, AA depends slightly on the axial length of the eye's vitreous chamber. This dependency can be reduced significantly by using a reference plane located 4 mm posterior to the corneal plane. A simple formula is provided to help clinicians and researchers obtain a value of AA that closely reflects power changes of the crystalline lens, independent of axial ametropia and its correction with lenses.

  4. Effect of Ground Layer Patterns with Slits on Conducted Noise Currents from Printed Circuit Board

    NASA Astrophysics Data System (ADS)

    Maeno, Tsuyoshi; Unou, Takanori; Ichikawa, Kouji; Fujiwara, Osamu

    Electromagnetic disturbances for vehicle-mounted radios can be caused by conducted noise currents that flows out from electronic equipment for vehicles to wire-harnesses. In this paper, for reducing the conducted noise currents from electronic equipment for vehicles, we made a simulation and experiment on how ground patterns affect the noise currents from three-layer printed circuit boards (PCBs) with slit-types and plane-type ground patterns. As a result, we could confirm that slits on a ground pattern allow conducted noise currents to flow out from PCBs to wire-harnesses. For the PCBs with plane-type ground and one of three slit-type patterns, on the other hand, both the simulation and examination showed that resonance phenomena occur at unexpected low-frequencies. A circuit analysis revealed that the above phenomena can be caused by the imbalance of a bridge circuit consisting of the trace circuits on the PCB.

  5. Nonlinear differential equations for the wavefront surface at arbitrary Hartmann-plane distances.

    PubMed

    Téllez-Quiñones, Alejandro; Malacara-Doblado, Daniel; Flores-Hernández, Ricardo; Gutiérrez-Hernández, David A; León-Rodríguez, Miguel

    2016-03-20

    In the Hartmann test, a wave aberration function W is estimated from the information of the spot diagram drawn in an observation plane. The distance from a reference plane to the observation plane, the Hartmann-plane distance, is typically chosen as z=f, where f is the radius of a reference sphere. The function W and the transversal aberrations {X,Y} calculated at the plane z=f are related by two well-known linear differential equations. Here, we propose two nonlinear differential equations to denote a more general relation between W and the transversal aberrations {U,V} calculated at any arbitrary Hartmann-plane distance z=r. We also show how to directly estimate the wavefront surface w from the information of {U,V}. The use of arbitrary r values could improve the reliability of the measurements of W, or w, when finding difficulties in adequate ray identification at z=f.

  6. Reconstruction method for fringe projection profilometry based on light beams.

    PubMed

    Li, Xuexing; Zhang, Zhijiang; Yang, Chen

    2016-12-01

    A novel reconstruction method for fringe projection profilometry, based on light beams, is proposed and verified by experiments. Commonly used calibration techniques require the parameters of projector calibration or the reference planes placed in many known positions. Obviously, introducing the projector calibration can reduce the accuracy of the reconstruction result, and setting the reference planes to many known positions is a time-consuming process. Therefore, in this paper, a reconstruction method without projector's parameters is proposed and only two reference planes are introduced. A series of light beams determined by the subpixel point-to-point map on the two reference planes combined with their reflected light beams determined by the camera model are used to calculate the 3D coordinates of reconstruction points. Furthermore, the bundle adjustment strategy and the complementary gray-code phase-shifting method are utilized to ensure the accuracy and stability. Qualitative and quantitative comparisons as well as experimental tests demonstrate the performance of our proposed approach, and the measurement accuracy can reach about 0.0454 mm.

  7. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  8. Methods for evaluating ground dislocations in mining areas / Metoda oceny przemieszczeń budowli na terenie górniczym

    NASA Astrophysics Data System (ADS)

    Kanciruk, Adam

    2012-12-01

    Underground exploitation of natural resources results in disturbance of the original equilibrium in the strata and leads to the emergence of the so-called subsidence troughs on the ground surface (Florkowska, 2010). Due to ground distortion, buildings located in these areas suffer damages and deformations, including angular tilts. An instrument for measuring constructions' angles of slope is known as an inclinometer. The prototypical vibrating wire inclinometer discussed in the present paper has three wires (each of them cooperating with one electromagnet) on which a weight - attached to an arm - is suspended. Thanks to this, it comes of use in a range of procedures, such as measuring object inclines, or determining the angle between the plane of the incline and the assumed reference direction. As any other vibrating wire transducer, an inclinometer cooperates with a proper electronic device which makes it possible to measure the vibration period for each wire separately. The device is also used for the inclinometer's calibration. Additionally, the paper provides an example of an inclinometer's use in measuring the angular tilt of a historical church tower located in the area affected by underground mining operations connected with exploitation of hard coal.

  9. Monte Carlo Determination of Gamma Ray Exposure from a Homogeneous Ground Plane

    DTIC Science & Technology

    1990-03-01

    A HOMOGENEOUS GROUND PLANE SOURCE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University...come from a standard ANISN format library called FEWG1-85. This state-of-the- art cross section library which contains 37 neutron energy groups and 21...purpose. The FEWGl library, a state-of-the- art cross section library developed for the Defense Nuclear Agency con- sisting of 21 gamma-ray enerQj

  10. Three dimensional nozzle-exhaust flow field analysis by a reference plane technique.

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Del Guidice, P. D.

    1972-01-01

    A numerical method based on reference plane characteristics has been developed for the calculation of highly complex supersonic nozzle-exhaust flow fields. The difference equations have been developed for three coordinate systems. Local reference plane orientations are employed using the three coordinate systems concurrently thus catering to a wide class of flow geometries. Discontinuities such as the underexpansion shock and contact surfaces are computed explicitly for nonuniform vehicle external flows. The nozzles considered may have irregular cross-sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. Results are presented for several nozzle configurations.

  11. The wits appraisal using three reference planes and its interaction with the ANB angle among a sub-set of Nigerians".

    PubMed

    Ifesanya, J U; Adeyemi, A T; Otuyemi, O D

    2014-09-01

    Conjoint analysis of orthodontic patients using the Subspinale (A-point) Nasion-Supramentale (B point) (ANB) angle and the Wits appraisal is popular in many practices. This study aimed to present reference values for the Wits appraisal among Nigerians using three horizontal reference planes namely the bisected occlusal plane (BOP), the functional occlusal plane (FOP) and the maxillomandibular angle bisector (MM° bisector) plane. It also assessed the relationship of the Wits appraisal with the ANB angle and its interaction with clinical measures of sagittal skeletal relations among subjects with malocclusion. One hundred participants with normal occlusion and 120 with malocclusion were recruited in the study. Cephalometric radiographs were taken for all participants. Each radiograph was manually traced on a 0.003 matted cellulose acetate tracing paper using a sharpened 2H pencil. The Wits appraisal and ANB angle were determined. Data was analyzed using SPSS version 19. The mean age was 20.7 ± 4.9 years for those with normal occlusion and 18.8 ± 6.5 years in the malocclusion group. There were 91 (41.4%) males and 129 (58.6%) females. Mean values for the Wits appraisal using the BOP as reference, was--1.27 ± 2.91mm, with the FOP, it was -3.54 ± 3.24mm, while with the MM° bisector plane, it was--.75? ± .94mm. The ANB angle showed highest correlation with the MM'°bisector plane Wits value(P< 0 .001). CCONCLUSION: hen the clinical and angular cephalometric findings are at variance, the ANB angle is best moderated by the MM'° isector plane Wits appraisal.

  12. A MEMS hardness sensor with reduced contact force dependence based on the reference plane concept aimed for medical applications

    NASA Astrophysics Data System (ADS)

    Maeda, Yusaku; Terao, Kyohei; Shimokawa, Fusao; Takao, Hidekuni

    2016-04-01

    In this study, the stable detection principle of a MEMS hardness sensor with “reference plane” structure is theoretically analyzed and demonstrated with experimental results. Hardness measurement independent of contact force instability is realized by the optimum design of the reference plane. The fabricated devices were evaluated, and a “shore A” hardness scale (JIS K 6301 A) was obtained as the reference in the range from A1 to A54 under a stable contact force. The contact force dependence on hardness sensor signals was effectively reduced by 96.6% using our reference plane design. Below 5 N contact force, the maximal signal error of hardness is suppressed to A8. This result corresponds to the detection capability for fat hardness, even when the contact force is unstable. Through experiments, stable detection of human body hardness has been demonstrated without any control of contact force.

  13. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1978-01-01

    Methods of predicting integral parameters and skin friction coefficients of turbulent boundary layers developing over moving ground planes were evaluated. The three methods evaluated were: relative integral parameter method; relative power law method; and modified law of the wall method.

  14. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    PubMed

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  15. A new planar broadband antenna based on meandered line loops for portable wireless communication devices

    NASA Astrophysics Data System (ADS)

    Alibakhshi-Kenari, Mohammad; Naser-Moghadasi, Mohammad; Sadeghzadeh, R. A.; Virdee, Bal S.; Limiti, Ernesto

    2016-07-01

    This article presents the design of a novel planar antenna structure comprising two pairs of interconnected meandered line loops that are grounded to a truncated T-shaped ground plane through two via holes. The T-shaped ground plane is used as a reflector to enhance the performance of the antenna. The resulting antenna is compact occupying an area of 38.5 × 36.6 mm2 (0.070λo × 0.067λo), where free-space wavelength is 550 MHz. The antenna radiates omnidirectionally in the E plane across its operational bandwidth (550 MHz to 3.85 GHz) with peak gain and efficiency of 5.5 dBi and 90.1%, respectively, at 2.35 GHz and reflection coefficient better than -10 dB. These characteristics make the antenna suitable for numerous applications, in particular, JCDMA, UHF RFID, GSM 900, GPS, KPCS, DCS, IMT-2000, WiMAX, WiFi, and Bluetooth.

  16. Electromagnetic scattering analysis of a three-dimensional-cavity-backed aperture in an infinite ground plane using a combined finite element method/method of moments approach

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method/method of moments (FEM/MoM) approach is used to analyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infinite ground plane. The FEM is used to formulate the fields inside the cavity, and the MoM (with subdomain bases) in both spectral and spatial domains is used to formulate the fields above the ground plane. Fields in the aperture and the cavity are solved using a system of equations resulting from the combination of the FEM and the MoM. By virtue of the FEM, this combined approach is applicable to all arbitrarily shaped cavities with inhomogeneous material fillings, and because of the subdomain bases used in the MoM, the apertures can be of any arbitrary shape. This approach leads to a partly sparse and partly full symmetric matrix, which is efficiently solved using a biconjugate gradient algorithm. Numerical results are presented to validate the analysis.

  17. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    NASA Astrophysics Data System (ADS)

    Jangid, K. G.; Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  18. Variability of the inclination of anatomic horizontal reference planes of the craniofacial complex in relation to the true horizontal line in orthognathic patients.

    PubMed

    Zebeib, Ameen M; Naini, Farhad B

    2014-12-01

    The purpose of this study was to assess the reliability of the Frankfort horizontal (FH), sella-nasion horizontal, and optic planes in terms of their variabilities in relation to a true horizontal line in orthognathic surgery patients. Thirty-six consecutive presurgical orthognathic patients (13 male, 23 female; age range, 16-35 years; 30 white, 6 African Caribbean) had lateral cephalometric radiographs taken in natural head position, with a plumb line orientating the true vertical line, and the true horizontal line perpendicular to the true vertical. The inclinations of the anatomic reference planes were compared with the true horizontal. The FH plane was found to be on average closest to the true horizontal, with a mean of -1.6° (SD, 3.4°), whereas the sella-nasion horizontal and the optic plane had means of 2.1° (SD, 5.1°) and 3.2° (SD, 4.7°), respectively. The FH showed the least variability of the 3 anatomic planes. The ranges of variability were high for all anatomic planes: -8° to 8° for the FH, -8° to 15° for the sella-nasion horizontal, and -6° to 13° for the optic plane. No significant differences were found in relation to patients' sex, skeletal patterns, or ethnic backgrounds. The clinically significant variability in the inclinations of anatomic reference planes in relation to the true horizontal plane makes their use unreliable in orthognathic patients. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. On the long range propagation of sound over irregular terrain

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1984-01-01

    The theory of sound propagation over randomly irregular, nominally plane terrain of finite impedance is discussed. The analysis is an extension of the theory of coherent scatter originally proposed by Biot for an irregular rigid surface. It combines Biot's approach, wherein the surface irregularities are modeled by a homogeneous distribution of hemispherical bosses, with more conventional analyses in which the ground is modeled as a smooth plane of finite impedance. At sufficiently low frequencies the interaction of the surface irregularities with the nearfield of a ground-based source leads to the production of surface waves, which are effective in penetrating the ground shadow zone predicted for a smooth surface of the same impedance.

  20. The role of atmospheric shear, turbulence and a ground plane on the dissipation of aircraft vortex wakes

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.; Hirsh, J. E.

    1978-01-01

    Enhanced dispersion of two-dimensional trailed vortex pairs within simplified neutral atmospheric backgrounds is studied numerically for three conditions: when the pair is imbedded in a constant turbulent bath (constant dissipation); when the pair is subjected to a mean cross-wind shear; and when the pair is near the ground. Turbulent transport is modeled using second-order closure turbulent transport theory. The turbulent background fields are constructed using a superequilibrium approximation. The computed results allow several general conclusions to be drawn with regard to the reduction in circulation of the vortex pair and the rolling moment induced on a following aircraft: (1) the rate of decay of a vortex pair increases with increasing background dissipation rate; (2) cross-wind shear disperses the vortex whose vorticity is opposite to the background; and (3) the proximity of a ground plane reduces the hazard of the pair by scrubbing. The phenomenon of vortex bounce is explained in terms of secondary vorticity produced at the ground plane. Qualitative comparisons are made with available experimental data, and inferences of these results upon the persistence of aircraft trailing vortices are discussed.

  1. The reference frame of figure-ground assignment.

    PubMed

    Vecera, Shaun P

    2004-10-01

    Figure-ground assignment involves determining which visual regions are foreground figures and which are backgrounds. Although figure-ground processes provide important inputs to high-level vision, little is known about the reference frame in which the figure's features and parts are defined. Computational approaches have suggested a retinally based, viewer-centered reference frame for figure-ground assignment, but figural assignment could also be computed on the basis of environmental regularities in an environmental reference frame. The present research used a newly discovered cue, lower region, to examine the reference frame of figure-ground assignment. Possible reference frames were misaligned by changing the orientation of viewers by having them tilt their heads (Experiments 1 and 2) or turn them upside down (Experiment 3). The results of these experiments indicated that figure-ground perception followed the orientation of the viewer, suggesting a viewer-centered reference frame for figure-ground assignment.

  2. The error of L5/S1 joint moment calculation in a body-centered non-inertial reference frame when the fictitious force is ignored.

    PubMed

    Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M

    2013-07-26

    In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Metamaterial split ring resonator as a sensitive mechanical vibration sensor

    NASA Astrophysics Data System (ADS)

    Sikha Simon, K.; Chakyar, Sreedevi P.; Andrews, Jolly; Joseph V., P.

    2017-06-01

    This paper introduces a sensitive vibration sensor based on microwave metamaterial Split Ring Resonator (SRR) capable of detecting any ground vibration. The experimental setup consists of single Broad-side Coupled SRR (BCSRR) unit fixed on a cantilever capable of sensitive vibrations. It is arranged between transmitting and receiving probes of a microwave measurement system. The absorption level variations at the resonant frequency due to the displacement from the reference plane of SRR, which is a function of the strength of external mechanical vibration, is analyzed. This portable and cost effective sensor working on a single frequency is observed to be capable of detecting even very weak vibrations. This may find potential applications in the field of tamper-proofing, mining, quarrying and earthquake sensing.

  4. Microplasma generating array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopwood, Jeffrey A.; Wu, Chen; Hoskinson, Alan R.

    A microplasma generator includes first and second conductive resonators disposed on a first surface of a dielectric substrate. The first and second conductive resonators are arranged in line with one another with a gap defined between a first end of each resonator. A ground plane is disposed on a second surface of the dielectric substrate and a second end of each of the first and second resonators is coupled to the ground plane. A power input connector is coupled to the first resonator at a first predetermined distance from the second end chosen as a function of the impedance ofmore » the first conductive resonator. A microplasma generating array includes a number of resonators in a dielectric material substrate with one end of each resonator coupled to ground. A micro-plasma is generated at the non-grounded end of each resonator. The substrate includes a ground electrode and the microplasmas are generated between the non-grounded end of the resonator and the ground electrode. The coupling of each resonator to ground may be made through controlled switches in order to turn each resonator off or on and therefore control where and when a microplasma will be created in the array.« less

  5. Changes in foot and shank coupling due to alterations in foot strike pattern during running.

    PubMed

    Pohl, Michael B; Buckley, John G

    2008-03-01

    Determining if and how the kinematic relationship between adjacent body segments changes when an individual's gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10-15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.

  6. Aircraft wake vortex transport model

    DOT National Transportation Integrated Search

    1974-03-31

    A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...

  7. Flow resistivity instrument in the earth

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor)

    1984-01-01

    Method and apparatus for making in-situ measurements of flow resistivity on the Earth's ground surface. The novel feature of the invention is two concentric cylinders, 22 and 23, inserted into the ground surface 24 with a measured pressure 21 applied to the surface inside the inner cylinder 22. The outer cylinder 23 vents a plane B-B beneath the surface to the atmosphere through an air space 28. The flow to the inner cylinder is measured (16) thereby indicating the flow from the surface to the plane beneath the surface.

  8. WMSA for wireless communication applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vats, Monika; Agarwal, Alok, E-mail: alokagarwal26@yahoo.com; Kumar, Ravindra

    2016-03-09

    Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f{sub 0} = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.

  9. Magnetic anisotropy and chirality of frustrated Cr nanostructures on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Balogh, L.; Udvardi, L.; Szunyogh, L.

    2014-10-01

    By using a fully relativistic embedded cluster Green's function technique we investigated the magnetic anisotropy properties of four different compact Cr trimers (equilateral triangles) and Cr mono-layers deposited on the Au(1 1 1) surface in both fcc and hcp stackings. For all trimers the magnetic ground state was found to be a frustrated 120° Néel configuration. Applying global spin rotations to the magnetic ground state, predictions of an appropriate second order spin Hamiltonian were reproduced with high accuracy by first principles calculations. For the Cr trimers with adjacent Au atoms in similar geometry, we obtained similar values for the in-plane and out-of-plane anisotropy parameters, however, the Dzyaloshinskii-Moriya (DM) interactions appeared to differ remarkably. For two kinds of trimers we found an unconventional magnetic ground state showing 90° in-the-plane rotation with respect to the high symmetry directions. Due to higher symmetry, the in-plane anisotropy term was missing for the mono-layers and distinctly different DM interactions were obtained for the different stackings. The chiral degeneracy of the Néel configurations was lifted by an energy less than 2 meV for the trimers, while this value increased up to about 15 meV per 3 Cr atoms for the hcp packed mono-layer.

  10. Lower incisor inclination regarding different reference planes.

    PubMed

    Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen

    2016-09-01

    The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p <0.05. There is correlation between TVP and NB line (NB) (0.8614), Frankfort mandibular incisor angle (FMIA) (0.8894), IMPA (0.6351), Apo line (Apo) (0.609), IMPACOM (0.8895) and McHorris angle (MH) (0.7769). ANOVA showed statistically significant differences between the means for the 7 variables with 95% confidence level, P=0.0001. The multiple range test showed no significant difference among means: APoNB (0.88), IMPAMH (0.36), IMPANB (0.65), FMIAIMPACOM (0.01), FMIATVP (0.18), TVPIMPACOM (0.17). There was correlation among all reference planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination. Sociedad Argentina de Investigación Odontológica.

  11. A Small Autonomous Unmanned Aerial Vehicle, Ant-Plane 4, for aeromagnetic survey

    NASA Astrophysics Data System (ADS)

    Funaki, M.; Tanabe, S.; Project, A.

    2007-05-01

    Autonomous unmanned aerial vehicles (UAV) are expected to use in Antarctica for geophysical research due to economy and safety operations. We have developed the technology of small UAVwith autonomous navigation referred to GPS and onboard magnetometer, meteorolgical devices and digital camera under the Ant-Plane project. The UAV focuses on operation for use in the summer season at coastal area in Antarctica; higher temperature than -15C under calm wind. In case of Ant-Plane 4, it can fly continuously more than 500 km, probably more than 1000 km, although the flight in Antarcitca has not succeeded The UAV of FRP is pusher type drone consisting of 2.6m span and 2.0m length with 2-cycles and 2-cylinder 86cc gasoline engine (7.2 HP) navigated. The maximum takeoff weight is 25kg including 1kg of payload. Cruising distance 500 km at speed of 130 km/h using 10 litter of fuel. The UAV is controlled by radio telemeter within 5km from a ground station and autonomous navigation referred to GPS latitude and longitude, pitot tube speed and barometer altitude. The magnetometer system consists of a 3-component magneto-resistant magnetometer (MR) sensor (Honeywell HMR2300), GPS and data logger. Three components of magnetic field, latitude, longitude, altitude, the number of satellite and time are recorded every second during 6 hours. The sensitivity of the magnetometer is 7 nT and we use a total magnetic field intensity for magnetic analysis due to unknown direction of heading of the plane. We succeeded in long distant flight to 500km with magnetometer by Ant-Plane 4 collaborated with Geoscience Australia, in March 2006. The survey was performed in the area 10kmx10km at Kalgoorlie, Western Australia. The magnetic data are obtained from 41 courses (250m in interval) of EW direction. The altitude of the flight was 900m from sea level and 500m from the runway. MR-magnetometer sensor was installed at the tip of a FRP pipe of 1m length, and the pipe was fixed to the head of the plane in order to reduce the plane magnetization. After 4 hours 14 minutes from the takeoff, the 500km flight was accomplished and the magnetic data were stored in the data logger. The straight flight course was almost consistent with the way point course, but the course was drastically disturbed when the plane was turning. The resolution of magnetic field decreased to 30nT, when the plane flew to the tail wind. However, it is worse against the head wind. Obtained anomaly pattern was compared with the magnetic anomaly pattern published by Geoscience Australia. Both patterns were essentially consistent, although a part of pattern in the head wind flights was not resemble. Ant-Plane 4 flew up to 5700 m in altitude with aerosol counter, thermometer and hygrometer at northern part of Japan. A drastic change of temperature, humidity and particle number was observed at the inversion layer of atmosphere. Consequently we conclude that the small drone Ant-Plane 4 can be used for geophysical research. We are making effort to develop Ant-Plane for more simple assemblage and more easy operation.

  12. Generation of Ground Truth Datasets for the Analysis of 3d Point Clouds in Urban Scenes Acquired via Different Sensors

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Sun, Z.; Boerner, R.; Koch, T.; Hoegner, L.; Stilla, U.

    2018-04-01

    In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation and semantic segmentation.

  13. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  14. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  15. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1512.16 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... vehicle headlamps. The use of reflector combinations off the center plane of the bicycle (defined in...) Front reflector. The reflector or mount shall not contact the ground plane when the bicycle is resting...

  16. A study of parallelism of the occlusal plane and ala-tragus line.

    PubMed

    Sadr, Katayoun; Sadr, Makan

    2009-01-01

    Orientation of the occlusal plane is one of the most important clinical procedures in prostho-dontic rehabilitation of edentulous patients. The aim of this study was to define the best posterior reference point of ala-tragus line for orientation of occlusal plane for complete denture fabrication. Fifty-three dental students (27 females and 26 males) with complete natural dentition and Angel's Class I occlusal relationship were selected. The subjects were photographed in natural head position while clenching on a Fox plane. After tracing the photographs, the angles between the following lines were measured: the occlusal plane (Fox plane) and the superior border of ala-tragus, the occlusal plane (Fox plane) and the middle of ala-tragus as well as the occlusal plane (Fox plane) and the inferior border of ala-tragus. Descriptive statistics, one sample t-test and independent t-test were used. P value less than 0.05 was considered significant. There was no parallelism between the occlusal plane and ala-tragus line with three different posterior ends and one sample t-test showed that the angles between them were significantly different from zero (p<0.05). However, the supe-rior border of ala-tragus line had the lowest mean angle, 1.80° (3.12) and was almost parallel to the occlusal plane. The superior border of the tragus is suggested as the posterior reference for ala-tragus line.

  17. 16 CFR Figure 2 to Part 1203 - ISO Headform-Basic, Reference, and Median Planes

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false ISO Headform-Basic, Reference, and Median Planes 2 Figure 2 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 2 Figure 2 to Part 1203—ISO...

  18. Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation

    NASA Astrophysics Data System (ADS)

    FernáNdez Pantoja, M.; Yarovoy, A. G.; Rubio Bretones, A.; GonzáLez GarcíA, S.

    2009-12-01

    This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which approximates the fields incident on the ground interface as plane waves and calculates the time domain RC using the inverse Fourier transform of Fresnel equations. The implementation presented in this paper uses general expressions for the RC which extend its range of applicability to lossy grounds, and is proven to be accurate and fast for antennas located not too near to the ground. The resulting general purpose procedure, able to treat arbitrarily oriented thin-wire antennas, is appropriate for all kind of half-spaces, including lossy cases, and it has turned out to be as computationally fast solving the problem of an arbitrary ground as dealing with a perfect electric conductor ground plane. Results show a numerical validation of the method for different half-spaces, paying special attention to the influence of the antenna to ground distance in the accuracy of the results.

  19. Spectral Assignments and Analysis of the Ground State of Nitromethane in High-Resolution FTIR Synchrotron Spectra

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Billinghurst, Brant E.; May, Tim E.; Dawadi, Mahesh B.; Perry, David S.

    2014-06-01

    The Fourier Transform infrared spectra of CH3NO2, have been recorded, in the 400-950 wn spectral region, at a resolution of 0.00096 wn, using the Far-Infrared Beamline at Canadian Light Source. The observed spectra contain four fundamental vibrations: the NO2 in-plane rock (475.2 wn), the NO2 out-of-plane rock (604.9 wn), the NO2 symmetric bend (657.1 wn), and the CN-stretch (917.2 wn). For the lowest torsional state of CN-stretch and NO2 in-plane rock, transitions involving quantum numbers, " = 0; " {≤ 50} and {_a}" {≤ 10}, have been assigned with the aid of an automated ground state combination difference program together with a traditional Loomis Wood approach Ground state combination differences derived from more than 2100 infrared transitions have been fit with the six-fold torsion-rotation program developed by Ilyushin et al. Additional sextic and octic centrifugal distortion parameters are derived for the ground vibrational state. C. F. Neese., An Interactive Loomis-Wood Package, V2.0, {56th},OSU Interanational Symposium on Molecular Spectroscopy (2001). V. V. Ilyushin, Z. Kisiel, L. Pszczolkowski, H. Mader, and J. T. Hougen, J. Mol. Spectrosc., 259, 26, (2010).

  20. System for interferometric distortion measurements that define an optical path

    DOEpatents

    Bokor, Jeffrey; Naulleau, Patrick

    2003-05-06

    An improved phase-shifting point diffraction interferometer can measure both distortion and wavefront aberration. In the preferred embodiment, the interferometer employs an object-plane pinhole array comprising a plurality of object pinholes located between the test optic and the source of electromagnetic radiation and an image-plane mask array that is positioned in the image plane of the test optic. The image-plane mask array comprises a plurality of test windows and corresponding reference pinholes, wherein the positions of the plurality of pinholes in the object-plane pinhole array register with those of the plurality of test windows in image-plane mask array. Electromagnetic radiation that is directed into a first pinhole of object-plane pinhole array thereby creating a first corresponding test beam image on the image-plane mask array. Where distortion is relatively small, it can be directly measured interferometrically by measuring the separation distance between and the orientation of the test beam and reference-beam pinhole and repeating this process for at least one other pinhole of the plurality of pinholes of the object-plane pinhole array. Where the distortion is relative large, it can be measured by using interferometry to direct the stage motion, of a stage supporting the image-plane mask array, and then use the final stage motion as a measure of the distortion.

  1. Collins Aerodyne VTOL aircraft investigations

    NASA Image and Video Library

    1960-01-11

    Collins Aerodyne vertical take-off and landing (VTOL) aircraft investigations. Ground plane support system. 3/4 front view. Dave Koening (from Collins Aerodyne) in photo. Mounted on variable height struts, ground board system, zero degree angle of attack. 01/11/1960

  2. Electromagnetic cloak to restore the antenna radiation patterns affected by nearby scatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teperik, Tatiana V., E-mail: tatiana.teperik@u-psud.fr; Donostia International Physics Center, Aptdo. 1072, 20080 San Sebastian; Lustrac, André de

    We have theoretically verified the feasibility of the concept of mantle cloak for very high frequency (VHF) antenna communications. While the applicability of the concept has been demonstrated for an infinitely long cylindrical obstacle and infinitely long electric source [Y.R. Padooru, A.B. Yakovlev, and P.-Y. Chen and Andrea Alù, J. Appl. Phys., 112, 104902, (2012)], the use of this cloak in realistic conditions is not straightforward. In this paper as an electric source we consider a typical VHF monopole antenna mounted on ground plane together with a metallic cylindrical obstacle. The both ground plane and obstacle affect the antenna radiationmore » scattering. Nevertheless, we could show that the mantle cloak can bee successfully applied to restore the radiation patterns of antenna even when the source, the cylindrical metallic obstacle, and the ground plane have finite length. We have studied the antenna adaptation in the presence of the cloaked obstacle and found that the complete radiation system is still functional in the bandwidth that is reduced only by 11%.« less

  3. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jangid, K. G.; Kulhar, V. S.; Choudhary, N.

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiationmore » properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.« less

  4. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt... Plane EC03OC91.035 ...

  5. Updating of the spatial reference frame of head direction cells in response to locomotion in the vertical plane

    PubMed Central

    Wang, Sarah S.; Kim, Stanley Y.; Frohardt, Russell J.

    2013-01-01

    Many species navigate in three dimensions and are required to maintain accurate orientation while moving in an Earth vertical plane. Here we explored how head direction (HD) cells in the rat anterodorsal thalamus responded when rats locomoted along a 360° spiral track that was positioned vertically within the room at the N, S, E, or W location. Animals were introduced into the vertical plane either through passive placement (experiment 1) or by allowing them to run up a 45° ramp from the floor to the vertically positioned platform (experiment 2). In both experiments HD cells maintained direction-specific firing in the vertical plane with firing properties that were indistinguishable from those recorded in the horizontal plane. Interestingly, however, the cells' preferred directions were linked to different aspects of the animal's environment and depended on how the animal transitioned into the vertical plane. When animals were passively placed onto the vertical surface, the cells switched from using the room (global cues) as a reference frame to using the vertically positioned platform (local cues) as a reference frame, independent of where the platform was located. In contrast, when animals self-locomoted into the vertical plane, the cells' preferred directions remained anchored to the three-dimensional room coordinates and their activity could be accounted for by a simple 90° rotation of the floor's horizontal coordinate system to the vertical plane. These findings highlight the important role that active movement signals play for maintaining and updating spatial orientation when moving in three dimensions. PMID:23114216

  6. Localizing people in crosswalks with a moving handheld camera: proof of concept

    NASA Astrophysics Data System (ADS)

    Lalonde, Marc; Chapdelaine, Claude; Foucher, Samuel

    2015-02-01

    Although people or object tracking in uncontrolled environments has been acknowledged in the literature, the accurate localization of a subject with respect to a reference ground plane remains a major issue. This study describes an early prototype for the tracking and localization of pedestrians with a handheld camera. One application envisioned here is to analyze the trajectories of blind people going across long crosswalks when following different audio signals as a guide. This kind of study is generally conducted manually with an observer following a subject and logging his/her current position at regular time intervals with respect to a white grid painted on the ground. This study aims at automating the manual logging activity: with a marker attached to the subject's foot, a video of the crossing is recorded by a person following the subject, and a semi-automatic tool analyzes the video and estimates the trajectory of the marker with respect to the painted markings. Challenges include robustness to variations to lighting conditions (shadows, etc.), occlusions, and changes in camera viewpoint. Results are promising when compared to GNSS measurements.

  7. Holographic memories with encryption-selectable function

    NASA Astrophysics Data System (ADS)

    Su, Wei-Chia; Lee, Xuan-Hao

    2006-03-01

    Volume holographic storage has received increasing attention owing to its potential high storage capacity and access rate. In the meanwhile, encrypted holographic memory using random phase encoding technique is attractive for an optical community due to growing demand for protection of information. In this paper, encryption-selectable holographic storage algorithms in LiNbO 3 using angular multiplexing are proposed and demonstrated. Encryption-selectable holographic memory is an advance concept of security storage for content protection. It offers more flexibility to encrypt the data or not optionally during the recording processes. In our system design, the function of encryption and non-encryption storage is switched by a random phase pattern and a uniform phase pattern. Based on a 90-degree geometry, the input patterns including the encryption and non-encryption storage are stored via angular multiplexing with reference plane waves at different incident angles. Image is encrypted optionally by sliding the ground glass into one of the recording waves or removing it away in each exposure. The ground glass is a key for encryption. Besides, it is also an important key available for authorized user to decrypt the encrypted information.

  8. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    NASA Astrophysics Data System (ADS)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  9. Rectifying antenna and method of manufacture

    NASA Technical Reports Server (NTRS)

    Bhansali, Shekhar (Inventor); Buckle, Kenneth (Inventor); Goswami, D. Yogi (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor)

    2006-01-01

    In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element.

  10. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  11. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  12. Microrectenna: A Terahertz Antenna and Rectifier on a Chip

    NASA Technical Reports Server (NTRS)

    Siegel, Peter

    2007-01-01

    A microrectenna that would operate at a frequency of 2.5 THz has been designed and partially fabricated. The circuit is intended to be a prototype of an extremely compact device that could be used to convert radio-beamed power to DC to drive microdevices (see Figure 1). The microrectenna (see Figure 2) circuit consists of an antenna, a diode rectifier and a DC output port. The antenna consists of a twin slot array in a conducting ground plane (denoted the antenna ground plane) over an enclosed quarter-wavelength-thick resonant cavity (denoted the reflecting ground plane). The circuit also contains a planar high-frequency low-parasitic Schottky-barrier diode, a low-impedance microstrip transmission line, capacitors, and contact beam leads. The entire 3-D circuit is fabricated monolithically from a single GaAs wafer. The resonant cavity renders the slot radiation pattern unidirectional with a half-power beam width of about 65. A unique metal mesh on the rear of the wafer forms the backplate for the cavity but allows the GaAs to be wet etched from the rear surface of the twin slot antennas and ground plane. The beam leads protrude past the edge of the chip and are used both to mount the microrectenna and to make the DC electrical connection with external circuitry. The antenna ground plane and the components on top of it are formed on a 2- m thick GaAs membrane that is grown in the initial wafer MBE (molecular beam epitaxy) process. The side walls of the antenna cavity are not metal coated and, hence, would cause some loss of power; however, the relatively high permittivity (epsilon=13) of the GaAs keeps the cavity modes well confined, without the usual surface-wave losses associated with thick dielectric substrates. The Schottky-barrier diode has the usual submicron dimensions associated with THz operation and is formed in a mesa process above the antenna ground plane. The diode is connected at the midpoint of a microstrip transmission line, which is formed on 1- m-thick SiO (permittivity of 5) laid down on top of the GaAs membrane. The twin slots are fed in phase by this structure. To prevent radio-frequency (RF) leakage past the slot antennas, low-loss capacitors are integrated into the microstrip transmission line at the edges of the slots. The DC current- carrying lines extend from the outer edges of the capacitors, widen approaching the edges of the chip, and continue past the edges of the chip to become the beam leads used in tacking down the devices. The structure provides a self-contained RF to DC converter that works in the THz range.

  13. Improved memory word line configuration allows high storage density

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Plated wire memory word drive line allows high storage density, good plated wire transmission and a simplified memory plane configuration. A half-turn word drive line with a magnetic keeper is used. The ground plane provides the return path for both the word current and the plated wire transmission line.

  14. The 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet

    NASA Technical Reports Server (NTRS)

    Cross, A. E.; Marshall, R. E.; Hearn, C. P.; Neece, R. T.

    1993-01-01

    Monostatic reflection-coefficient magnitude, absolute value of Gamma, measurements occurring between a radiating horn and a metal reflecting plate are presented for a family of three 2.2 lambda diameter conical horn antennas. The three horns have different aperture phase deviations: 6 deg, 22.5 deg, and 125 deg. Measurements of the magnitude of absolute value of Gamma as a function of horn-plate separation (d) extend from an effective antenna aperture short (d = O) to beyond the far-field boundary (d = 2D(sup 2)/lambda, where D is the antenna diameter). Measurement data are presented with various physical environments for each of the horns. Measured scalar data are compared with theoretical data from two models, a numerical model for a circular waveguide aperture in a ground plane and a scalar diffraction theory model. This work was conducted in support of the development effort for a spaceborne multifrequency microwave reflectometer designed to accurately determine the distance from a space vehicle's surface to a reflecting plasma boundary. The metal reflecting plate was used to simulate the RF reflectivity of a critically dense plasma. The resulting configuration, a ground plane mounted aperture facing a reflecting plane in close proximity, produces a strong interaction between the ground plane and the reflecting plate, especially at integral half-wavelength separations. The transition coefficient is characterized by large amplitude variations.

  15. A Study of Parallelism of the Occlusal Plane and Ala-Tragus Line

    PubMed Central

    Sadr, Katayoun; Sadr, Makan

    2009-01-01

    Background and aims Orientation of the occlusal plane is one of the most important clinical procedures in prostho-dontic rehabilitation of edentulous patients. The aim of this study was to define the best posterior reference point of ala-tragus line for orientation of occlusal plane for complete denture fabrication. Materials and methods Fifty-three dental students (27 females and 26 males) with complete natural dentition and Angel’s Class I occlusal relationship were selected. The subjects were photographed in natural head position while clenching on a Fox plane. After tracing the photographs, the angles between the following lines were measured: the occlusal plane (Fox plane) and the superior border of ala-tragus, the occlusal plane (Fox plane) and the middle of ala-tragus as well as the occlusal plane (Fox plane) and the inferior border of ala-tragus. Descriptive statistics, one sample t-test and independent t-test were used. P value less than 0.05 was considered significant. Results There was no parallelism between the occlusal plane and ala-tragus line with three different posterior ends and one sample t-test showed that the angles between them were significantly different from zero (p<0.05). However, the supe-rior border of ala-tragus line had the lowest mean angle, 1.80° (3.12) and was almost parallel to the occlusal plane. Conclusion The superior border of the tragus is suggested as the posterior reference for ala-tragus line. PMID:23230496

  16. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff

    PubMed Central

    Kolomenskiy, Dmitry; Maeda, Masateru; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2016-01-01

    Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV) community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier–Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering. PMID:27019208

  17. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    PubMed

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. A cephalometric study to determine the plane of occlusion in completely edentulous patients: part I.

    PubMed

    Hindocha, Amit D; Vartak, Vikas N; Bhandari, Aruna J; Dudani, Mohit

    2010-12-01

    To determine the relationship between the plane of occlusion and the Camper's line (ala-tragus line). Lateral cephalograms of 105 dentulous subjects were obtained after outlining the tragus and the base of the ala of the nose with radiopaque markers. Tracings of the cephalograms were done and the relationship between the plane of occlusion and the Camper's line (ala-tragus line) was noted. The most common tragal reference as a posterior landmark for determination of plane of occlusion was found to be below inferior (in 30.48% of subjects), and inferior (in 24.76% of subjects). The least common tragal reference was found to be above superior (in 3.82% of subjects) followed by superior of tragus and the point between superior and middle of the tragus (in 6.66% of subjects). The tragal reference in this study population was more towards the inferior of the tragus, with most of the times being below the inferior border. Therefore, the orientation of the plane of occlusion using the superior of tragus as a posterior landmark (according to the widely accepted definition of Camper's line) may be considered to be questionable. Further, the use of the tragus as a posterior landmark for the orientation of the plane of occlusion may be questioned on the basis of the findings of this study.

  19. Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots

    DTIC Science & Technology

    2000-06-01

    physical models of bipedal walking. The insight gained from these models is used in the development of three planar (motion only in the sagittal plane ...ground is implemented and tested in simulation. The dynamics of the sagittal plane are suffciently decoupled from the dynamics of the frontal and...transverse planes such that control of each can be treated separately. We achieve three-dimensional walking by adding lateral balance to the planar algorithms

  20. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    PubMed

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate- (P < .05) and low- (P < .05) INI EA groups. Women were more likely than men to be in the high-INI EA group (χ(2) = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were associated (r = 0.224, P = .04). No other interplanar INI EA relationships were found (P > .05). Greater frontal-plane INI EA was associated with less favorable frontal-plane biomechanics that likely result in greater ACL loading. Women were more likely than men to use greater frontal-plane INI EA. The magnitudes of sagittal- and frontal-plane INI EA were largely independent.

  1. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A o...

  2. Near ground measure and theoretical model of plane wave covariance of intensity in anisotropic turbulence.

    PubMed

    Beason, Melissa; Smith, Christopher; Coffaro, Joseph; Belichki, Sara; Spychalsky, Jonathon; Titus, Franklin; Crabbs, Robert; Andrews, Larry; Phillips, Ronald

    2018-06-01

    Experimental measurements were recently made which displayed characteristics of plane wave propagation through anisotropic optical turbulence. A near-plane wave beam was propagated a distance of 1 and 2 km at a height of 2 m above the concrete runway at the Shuttle Landing Facility, Kennedy Space Center, Florida, during January and February of 2017. The spatial-temporal fluctuations of the beam were recorded, and the covariance of intensity was calculated. These data sets were compared to a theoretical calculation of covariance of intensity for a plane wave.

  3. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, H.

    1998-11-10

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

  4. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, Hector

    1998-01-01

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

  5. Three-dimensional reproducibility of natural head position.

    PubMed

    Weber, Diana W; Fallis, Drew W; Packer, Mark D

    2013-05-01

    Although natural head position has proven to be reliable in the sagittal plane, with an increasing interest in 3-dimensional craniofacial analysis, a determination of its reproducibility in the coronal and axial planes is essential. This study was designed to evaluate the reproducibility of natural head position over time in the sagittal, coronal, and axial planes of space with 3-dimensional imaging. Three-dimensional photographs were taken of 28 adult volunteers (ages, 18-40 years) in natural head position at 5 times: baseline, 4 hours, 8 hours, 24 hours, and 1 week. Using the true vertical and horizontal laser lines projected in an iCAT cone-beam computed tomography machine (Imaging Sciences International, Hatfield, Pa) for orientation, we recorded references for natural head position on the patient's face with semipermanent markers. By using a 3-dimensional camera system, photographs were taken at each time point to capture the orientation of the reference points. By superimposing each of the 5 photographs on stable anatomic surfaces, changes in the position of the markers were recorded and assessed for parallelism by using 3dMDvultus (3dMD, Atlanta, Ga) and software (Dolphin Imaging & Management Solutions, Chatsworth, Calif). No statistically significant differences were observed between the 5 time points in any of the 3 planes of space. However, a statistically significant difference was observed between the mean angular deviations of 3 reference planes, with a hierarchy of natural head position reproducibility established as coronal > axial > sagittal. Within the parameters of this study, natural head position was found to be reproducible in the sagittal, coronal, and axial planes of space. The coronal plane had the least variation over time, followed by the axial and sagittal planes. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  6. EEsoF MICAD and ACADEMY macro files for coplanar waveguide and finite ground plan coplanar waveguide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1995-01-01

    A collection of macro files is presented which when appended to either the EEsoF MICAD.ELE or EEsoF ACADEMY.ELE file permits the layout of coplanar waveguide and finite ground plane coplanar waveguide circuits.

  7. Lower extremity control during turns initiated with and without hip external rotation.

    PubMed

    Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L

    2017-02-08

    The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The acoustic field of a point source in a uniform boundary layer over an impedance plane

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.; Willshire, W. L., Jr.

    1986-01-01

    The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.

  9. Collateral Damage to Satellites from an EMP Attack

    DTIC Science & Technology

    2010-08-01

    peak dose is computed in an infinite half plane of silicon. The resulting in- plane stresses in silicon are shown in Figure VI.23. In- plane refers to...achieved by the SLAR coating 81 Figure VIII.6. Ratio of the peak in- plane compressive stress to the maximum compressive stress for the SLAR coating...82 Figure VIII.7. Maximum in- plane compressive stress in a SLAR coating on DMSP/NOAA subjected to the threat events 83 Figure VIII.8. Maximum in

  10. Acoustic-to-Seismic Coupling Over Porous Ground Surfaces.

    DTIC Science & Technology

    1984-01-01

    of sound into the ground is predicted for both spherical and plane acoustic waves incident upon two models of the ground viz i) a rigid porous solid...and soils of above-ground acoustic disturbances. Furthermore it is found possible to predict the results of model measurements using continuous and...saddle point 2.4 The geometrical wave 2.5 The lateral wave 2.6 Special cases 3. POINT TO POINT PROPAGATION MEASUREMENTS USING ACOUSTIC MODELLING " 3.0

  11. Morphology classification of galaxies in CL 0939+4713 using a ground-based telescope image

    NASA Technical Reports Server (NTRS)

    Fukugita, M.; Doi, M.; Dressler, A.; Gunn, J. E.

    1995-01-01

    Morphological classification is studied for galaxies in cluster CL 0939+4712 at z = 0.407 using simple photometric parameters obtained from a ground-based telescope image with seeing of 1-2 arcseconds full width at half maximim (FWHM). By ploting the galaxies in a plane of the concentration parameter versus mean surface brightness, we find a good correlation between the location on the plane and galaxy colors, which are known to correlate with morphological types from a recent Hubble Space Telescope (HST) study. Using the present method, we expect a success rate of classification into early and late types of about 70% or possibly more.

  12. Analysis of a turbulent boundary layer over a moving ground plane

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1972-01-01

    Four methods of predicting the integral and friction parameters for a turbulent boundary layer over a moving ground plane were evaluated by using test information obtained in 76.2- by 50.8-centimeter tunnel. The tunnel was operated in the open sidewall configuration. These methods are (1) relative integral parameter method, (2) modified power law method, (3) relative power law method, and (4) modified law of the wall method. The modified law of the wall method predicts a more rapid decrease in skin friction with an increase in the ratio of belt velocity to free steam velocity than do methods (1) and (3).

  13. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  14. Polarization-independent dual-band terahertz metamaterial absorbers based on gold/parylene-C/silicide structure.

    PubMed

    Wen, Yongzheng; Ma, Wei; Bailey, Joe; Matmon, Guy; Yu, Xiaomei; Aeppli, Gabriel

    2013-07-01

    We design, fabricate, and characterize dual-band terahertz (THz) metamaterial absorbers with high absorption based on structures consisting of a cobalt silicide (Co-Si) ground plane, a parylene-C dielectric spacer, and a metal top layer. By combining two periodic metal resonators that couple separately within a single unit cell, a polarization-independent absorber with two distinct absorption peaks was obtained. By varying the thickness of the dielectric layer, we obtain absorptivity of 0.76 at 0.76 THz and 0.97 at 2.30 THz, which indicates the Co-Si ground plane absorbers present good performance.

  15. Stereo depth and the control of locomotive heading

    NASA Astrophysics Data System (ADS)

    Rushton, Simon K.; Harris, Julie M.

    1998-04-01

    Does the addition of stereoscopic depth aid steering--the perceptual control of locomotor heading--around an environment? This is a critical question when designing a tele-operation or Virtual Environment system, with implications for computational resources and visual comfort. We examined the role of stereoscopic depth in the perceptual control of heading by employing an active steering task. Three conditions were tested: stereoscopic depth; incorrect stereoscopic depth and no stereoscopic depth. Results suggest that stereoscopic depth does not improve performance in a visual control task. A further set of experiments examined the importance of a ground plane. As a ground plane is a common feature of all natural environments and provides a pictorial depth cue, it has been suggested that the visual system may be especially attuned to exploit its presence. Thus it would be predicted that a ground plane would aid judgments of locomotor heading. Results suggest that the presence of rich motion information in the lower visual field produces significant performance advantages and that provision of such information may prove a better target for system resources than stereoscopic depth. These findings have practical consequences for a system designer and also challenge previous theoretical and psychophysical perceptual research.

  16. Factors influencing superimposition error of 3D cephalometric landmarks by plane orientation method using 4 reference points: 4 point superimposition error regression model.

    PubMed

    Hwang, Jae Joon; Kim, Kee-Deog; Park, Hyok; Park, Chang Seo; Jeong, Ho-Gul

    2014-01-01

    Superimposition has been used as a method to evaluate the changes of orthodontic or orthopedic treatment in the dental field. With the introduction of cone beam CT (CBCT), evaluating 3 dimensional changes after treatment became possible by superimposition. 4 point plane orientation is one of the simplest ways to achieve superimposition of 3 dimensional images. To find factors influencing superimposition error of cephalometric landmarks by 4 point plane orientation method and to evaluate the reproducibility of cephalometric landmarks for analyzing superimposition error, 20 patients were analyzed who had normal skeletal and occlusal relationship and took CBCT for diagnosis of temporomandibular disorder. The nasion, sella turcica, basion and midpoint between the left and the right most posterior point of the lesser wing of sphenoidal bone were used to define a three-dimensional (3D) anatomical reference co-ordinate system. Another 15 reference cephalometric points were also determined three times in the same image. Reorientation error of each landmark could be explained substantially (23%) by linear regression model, which consists of 3 factors describing position of each landmark towards reference axes and locating error. 4 point plane orientation system may produce an amount of reorientation error that may vary according to the perpendicular distance between the landmark and the x-axis; the reorientation error also increases as the locating error and shift of reference axes viewed from each landmark increases. Therefore, in order to reduce the reorientation error, accuracy of all landmarks including the reference points is important. Construction of the regression model using reference points of greater precision is required for the clinical application of this model.

  17. Motion video analysis using planar parallax

    NASA Astrophysics Data System (ADS)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  18. FDTD calculations of SAR for child voxel models in different postures between 10 MHz and 3 GHz.

    PubMed

    Findlay, R P; Lee, A-K; Dimbylow, P J

    2009-08-01

    Calculations of specific energy absorption rate (SAR) have been performed on the rescaled NORMAN 7-y-old voxel model and the Electronics and Telecommunications Research Institute (ETRI) child 7-y-old voxel model in the standing arms down, arms up and sitting postures. These calculations were for plane-wave exposure under isolated and grounded conditions between 10 MHz and 3 GHz. It was found that there was little difference at each resonant frequency between the whole-body averaged SAR values calculated for the NORMAN and ETRI 7-y-old models for each of the postures studied. However, when compared with the arms down posture, raising the arms increased the SAR by up to 25%. Electric field values required to produce the International Commission on Non-Ionizing Radiation Protection and Institute of Electrical and Electronic Engineers public basic restriction were calculated, and compared with reference levels for the different child models and postures. These showed that, under certain worst-case exposure conditions, the reference levels may not be conservative.

  19. Dual surface interferometer

    DOEpatents

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  20. Dual surface interferometer

    DOEpatents

    Pardue, Robert M.; Williams, Richard R.

    1982-01-01

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  1. Hip rotation angle is associated with frontal plane knee joint mechanics during running.

    PubMed

    Sakaguchi, Masanori; Shimizu, Norifumi; Yanai, Toshimasa; Stefanyshyn, Darren J; Kawakami, Yasuo

    2015-02-01

    Inability to control lower extremity segments in the frontal and transverse planes resulting in large knee abduction angle and increased internal knee abduction impulse has been associated with patellofemoral pain (PFP). However, the influence of hip rotation angles on frontal plane knee joint kinematics and kinetics remains unclear. The purpose of this study was to explore how hip rotation angles are related to frontal plane knee joint kinematics and kinetics during running. Seventy runners participated in this study. Three-dimensional marker positions and ground reaction forces were recorded with an 8-camera motion analysis system and a force plate while subjects ran along a 25-m runway at a speed of 4m/s. Knee abduction, hip rotation and toe-out angles, frontal plane lever arm at the knee, internal knee abduction moment and impulse, ground reaction forces and the medio-lateral distance from the ankle joint center to the center of pressure (AJC-CoP) were quantified. The findings of this study indicate that greater hip external rotation angles were associated with greater toe-out angles, longer AJC-CoP distances, smaller internal knee abduction impulses with shorter frontal plane lever arms and greater knee abduction angles. Thus, there appears to exist a conflict between kinematic and kinetic risk factors of PFP, and hip external rotation angle may be a key factor to control frontal plane knee joint kinematics and kinetics. These results may help provide an appropriate manipulation and/or intervention on running style to reduce the risk of PFP. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. US EPA OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS

    EPA Science Inventory

    The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...

  3. Differential InP HEMT MMIC Amplifiers Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene

    2009-01-01

    Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have prohibitively low impedances. Yet another advantage afforded by the virtual ground of the differential configuration is elimination of the need for a ground plane and, hence, elimination of the need for back-side metallization of the MMIC chip. In turn, elimination of the back-side metallization simplifies fabrication, reduces parasitic capacitances, and enables mounting of the MMIC in the electric-field plane ("E-plane") of a waveguide. E-plane mounting is consistent with (and essential for the utility of) the finline configuration, in which transmission lines lie on a dielectric sheet in the middle of a broad side of the waveguide. E-plane mounting offers a combination of low loss and ease of assembly because no millimeter-wave wire bonds or transition substrates are required. Moreover, because there is no ground plane behind the MMIC, the impedance for the detrimental even (single-ended) mode is high, suppressing coupling to that mode. Still another advantage of E-plane mounting is that the fundamental waveguide mode is inherently differential, eliminating the need for a balun to excite the differential mode.

  4. A clinical technique for virtual articulator mounting with natural head position by using calibrated stereophotogrammetry.

    PubMed

    Lam, Walter Y H; Hsung, Richard T C; Choi, Winnie W S; Luk, Henry W K; Cheng, Leo Y Y; Pow, Edmond H N

    2017-09-29

    Accurate articulator-mounted casts are essential for occlusion analysis and for fabrication of dental prostheses. Although the axis orbital plane has been commonly used as the reference horizontal plane, some clinicians prefer to register the horizontal plane with a spirit level when the patient is in the natural head position (NHP) to avoid anatomic landmark variations. This article presents a digital workflow for registering the patient's horizontal plane in NHP on a virtual articulator. An orientation reference board is used to calibrate a stereophotogrammetry device and a 3-dimensional facial photograph with the patient in NHP. The horizontal plane can then be automatically registered to the patient's virtual model and aligned to the virtual articulator at the transverse horizontal axis level. This technique showed good repeatability with positional differences of less than 1 degree and 1 mm in 5 repeated measurements in 1 patient. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. International Aerospace and Ground Conference on Lightning and Static Electricity (8th): Lightning Technology Roundup, held at Fort Worth, Texas on 21-23 June 1983.

    DTIC Science & Technology

    1983-06-01

    fighter aircraft. The entire test bed is from testing of a representative digital supported above the ground plane by non - control system(s)l e.g... control and Increased systems Integration a. Raw data must be collected and Introduce new requirements for protection, experimental setups and An accurate...presented, several possible solutions to the grounding prob! - are suggested. All rely on establishing initial ground contact through a controlled non -zero

  6. Analytical Method to Estimate the Complex Permittivity of Oil Samples.

    PubMed

    Su, Lijuan; Mata-Contreras, Javier; Vélez, Paris; Fernández-Prieto, Armando; Martín, Ferran

    2018-03-26

    In this paper, an analytical method to estimate the complex dielectric constant of liquids is presented. The method is based on the measurement of the transmission coefficient in an embedded microstrip line loaded with a complementary split ring resonator (CSRR), which is etched in the ground plane. From this response, the dielectric constant and loss tangent of the liquid under test (LUT) can be extracted, provided that the CSRR is surrounded by such LUT, and the liquid level extends beyond the region where the electromagnetic fields generated by the CSRR are present. For that purpose, a liquid container acting as a pool is added to the structure. The main advantage of this method, which is validated from the measurement of the complex dielectric constant of olive and castor oil, is that reference samples for calibration are not required.

  7. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crull, E W; Brown Jr., C G; Perkins, M P

    2008-07-30

    For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less

  8. Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.

    PubMed

    Miho, Otoaki; Sato, Toru; Matsukubo, Takashi

    2015-01-01

    The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.

  9. Scattering and Polarization Measurements Using the PL/OPA Low Altitude Lidar

    DTIC Science & Technology

    1990-12-20

    66 A.3.2 Application to Lidar Data .. .. .. .. .. ... ... ... .. 70 References 72 iv List of Figures 1 The Poincare ... the vcctor in the I __ plane is the degree of linear polarization (defined as [Q2 + U2 II/2 /1). The component of the vector along the K axis is the ...scattering refers to the scattering of a monochromatic electromagr1tic plane wave by a spherically shaped, homogeneous, isotropic dielectric and conducting

  10. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tiaoming; School of Information Science and Engineering, Lanzhou University, Lanzhou 730000; Upadhyay, Aditi

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the stripsmore » into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.« less

  11. Characteristics of the wire biconical antenna used for EMC measurements

    NASA Astrophysics Data System (ADS)

    Austin, Brian A.; Fourie, Andre P. C.

    1991-08-01

    The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.

  12. Quantum Hall ferromagnets and transport properties of buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Luo, Wenchen; Chakraborty, Tapash

    2015-10-01

    We study the ground states and low-energy excitations of a generic Dirac material with spin-orbit coupling and a buckling structure in the presence of a magnetic field. The ground states can be classified into three types under different conditions: SU(2), easy-plane, and Ising quantum Hall ferromagnets. For the SU(2) and the easy-plane quantum Hall ferromagnets there are goldstone modes in the collective excitations, while all the modes are gapped in an Ising-type ground state. We compare the Ising quantum Hall ferromagnet with that of bilayer graphene and present the domain-wall solution at finite temperatures. We then specify the phase transitions and transport gaps in silicene in Landau levels 0 and 1. The phase diagram depends strongly on the magnetic field and the dielectric constant. We note that there exist triple points in the phase diagrams in Landau level N =1 that could be observed in experiments.

  13. Lower Extremity Energy Absorption and Biomechanics During Landing, Part II: Frontal-Plane Energy Analyses and Interplanar Relationships

    PubMed Central

    Norcross, Marc F.; Lewek, Michael D.; Padua, Darin A.; Shultz, Sandra J.; Weinhold, Paul S.; Blackburn, J. Troy

    2013-01-01

    Context: Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. Objective: To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. Intervention(s): We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. Main Outcome Measure(s): We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ2 analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. Results: The high–INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low–INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate– (P < .05) and low– (P < .05) INI EA groups. Women were more likely than men to be in the high–INI EA group (χ2 = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were associated (r = 0.224, P = .04). No other interplanar INI EA relationships were found (P > .05). Conclusions: Greater frontal-plane INI EA was associated with less favorable frontal-plane biomechanics that likely result in greater ACL loading. Women were more likely than men to use greater frontal-plane INI EA. The magnitudes of sagittal- and frontal-plane INI EA were largely independent. PMID:23944381

  14. Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space

    NASA Astrophysics Data System (ADS)

    Yuan, Zonghao; Boström, Anders; Cai, Yuanqiang

    2017-01-01

    A closed-form semi-analytical solution for the vibrations due to a moving point load in a tunnel embedded in a half-space is given in this paper. The tunnel is modelled as an elastic hollow cylinder and the ground surrounding the tunnel as a linear viscoelastic material. The total wave field in the half-space with a cylindrical hole is represented by outgoing cylindrical waves and down-going plane waves. To apply the boundary conditions on the ground surface and at the tunnel-soil interface, the transformation properties between the plane and cylindrical wave functions are employed. The proposed solution can predict the ground vibration from an underground railway tunnel of circular cross-section with a reasonable computational effort and can serve as a benchmark solution for other computational methods. Numerical results for the ground vibrations on the free surface due to a moving constant load and a moving harmonic load applied at the tunnel invert are presented for different load velocities and excitation frequencies. It is found that Rayleigh waves play an important role in the ground vibrations from a shallow tunnel.

  15. DORIS Starec ground antenna characterization and impact on positioning

    NASA Astrophysics Data System (ADS)

    Tourain, C.; Moreaux, G.; Auriol, A.; Saunier, J.

    2016-12-01

    In a geodetic radio frequency observing system the phase center offsets and phase center variations of ground antennae are a fundamental component of mathematical models of the system observables. In this paper we describe work aimed at improving the DORIS Starec ground antenna phase center definition model. Seven antennas were analyzed in the Compact Antenna Test Range (CATR), a dedicated CNES facility. With respect to the manufacturer specified phase center offset, the measured antennae varied between -6 mm and +4 mm due to manufacturing variations. To solve this problem, discussions were held with the manufacturer, leading to an improvement of the manufacturing process. This work results in a reduction in the scatter to ±1 mm. The phase center position has been kept unchanged and associated phase law has been updated and provided to users of the International DORIS Service (IDS). This phase law is applicable to all Starec antennas (before and after manufacturing process consolidation) and is azimuth independent. An error budget taking into account these updated characteristics has been established for the antenna alone: ±2 mm on the horizontal plane and ±3 mm on the up component, maximum error values for antennas named type C (Saunier et al., 2016) produced with consolidated manufacturing process. Finally the impact of this updated characterization on positioning results has been analyzed and shows a scale offset only of the order of +12 mm for the Terrestrial Reference Frame.

  16. The 2009-2010 Guerrero Slow Slip Event Monitored by InSAR, Using Time Series Approach

    NASA Astrophysics Data System (ADS)

    Bacques, G.; Pathier, E.; Lasserre, C.; Cotton, F.; Radiguet, M.; Cycle Sismique et Déformations Transitoires

    2011-12-01

    The Guerrero seismic gap is located along the Pacific coast of Mexico in a subduction zone where Cocos plate subducts under the North American plate with a 5.5 cm per year convergence rate. Along this 100 km width band located between Acapulco (East side) and Zihuatanejo (West side), no major earthquake occurred since at least 1911. In contrast, the surrounding areas of the Guerrero gap has been the location of large seismic events during the last century like the 1985 one's (Mw 8), which affected Mexico City. Considering the plate convergence rate, a 5 meters slip deficit has been estimated at this gap location since the last major earthquake (Lowry et al. 1998), making a large earthquake possible at this spot. However, the Guerrero gap was the setting of four slow slip events (SSE) with an approximately four years periodicity (1998, 2002, 2006, 2009-2010) since it was instrumented by GPS permanent network in January 1997. Slow slip events and their associated ground displacements are commonly interpreted as aseismic slips on the deeper part of the subduction plane. One of the main issues concerning that phenomenon, deals with the way that strain accumulated on the deeper part is released on the upper part of the subduction plane, which corresponds to the seismogenic zone. As a consequence, the slip distribution upon the subduction plane associated to the Guerrero SSE represents relevant information concerning the local seismic hazard. To address this issue, geodetic measurements from GPS and/or space-borne SAR differential interferometry (DInSAR) can be used to retrieve the SSE slip distribution on the subduction plane from the ground deformation measurements as it has been done for the 2006 event previously studied. In this work, we focused on the 2009-2010 SSE on Guerrero by processing DInSAR data (C band Envisat data were processed using the small baseline approach method NSBAS based upon ROI-pac) as previously done for the 2006 event but improved by adding a Time Series approach. Time Series approach is useful for monitoring ground deformation evolution during the slow slip events and makes the slip propagation mapping upon the subduction plane a promising goal. Here we present our first results concerning the 2009-2010 slow slip events, particularly the distribution of the cumulative surface displacement in LOS (satellite Line Of Sight), the slip distribution associated on the fault plane and the ground deformation evolution obtained. Finally, we open the discussion with a first comparison between the 2009-2010 and the 2006 events that reveal some differences concerning the amplitude and the distribution of the ground deformation.

  17. Comparison of Skeletal and Dental Reference Planes with the Hamulus-Incisive-Papilla Plane: A Pilot Study on 3D Reconstructed Tomographies of the Skull.

    PubMed

    Pittschieler, Elisabeth; Foltin, Andrea; Falkensammer, Frank; Figl, Michael; Birkfellner, Wolfgang; Jonke, Erwin; Bantleon, Hans-Peter

    2016-01-01

    The aim of this study was to investigate the hamulus-incisive-papilla (HIP) plane as an alternative for transferring the three-dimensional position of a patient's maxilla to an articulator. Camper, Frankfurt horizontal, occlusal, and HIP planes were evaluated in 21 patients' computed tomography scans and compared to one another. Analysis of variance showed significant differences between all planes, with the HIP plane being closest to the occlusal plane (HIP-OP: 0.6 ± 4.0 degrees). Frankfurt and Camper planes, being more peripheral, showed higher geometric asymmetries. The HIP plane, when used for articulator mounting, results in a closer and more technically reliable patient relationship in a clinical and laboratory context.

  18. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  19. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  20. Laser communications technology with airborne platform

    NASA Astrophysics Data System (ADS)

    Jiang, Huilin; Liu, Guojun; Yin, Fuchang; Liu, Zhi

    2006-01-01

    Space laser communications (SLC) possess a series of advantages, such as higher data rates, large capacity of information, very good secrecy, et al. So SLC has been attracting great attention the throughout western and developed countries. USA, EU and Japan are making great efforts in establishing space-air-ground integrated communications network, with satellites, planes or ground vehicles as platforms. China has also carried out laser communication research activities in recent years. Changchun University of Science and technology (CUST) has been doing research studies on space laser communications with plane as the platform, and relatively thorough study on some of the key technologies such as airborne lasercom terminal design. The present paper will address some of these topics.

  1. Compact Low Frequency Radio Antenna

    DOEpatents

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  2. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  3. Bandwidth broadening of a graphene-based circular polarization converter by phase compensation.

    PubMed

    Gao, Xi; Yang, Wanli; Cao, Weiping; Chen, Ming; Jiang, Yannan; Yu, Xinhua; Li, Haiou

    2017-10-02

    We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.

  4. Magnetic response of brickwork artificial spin ice

    NASA Astrophysics Data System (ADS)

    Park, Jungsik; Le, Brian L.; Sklenar, Joseph; Chern, Gia-Wei; Watts, Justin D.; Schiffer, Peter

    2017-07-01

    We have investigated the response of brickwork artificial spin ice to an applied in-plane magnetic field through magnetic force microscopy, magnetotransport measurements, and micromagnetic simulations. We find that, by sweeping an in-plane applied field from saturation to zero in a narrow range of angles near one of the principal axes of the lattice, the moments of the system fall into an antiferromagnetic ground state in both connected and disconnected structures. Magnetotransport measurements of the connected lattice exhibit unique signatures of this ground state. Also, modeling of the magnetotransport demonstrates that the signal arises at vertex regions in the structure, confirming behavior that was previously seen in transport studies of kagome artificial spin ice.

  5. Near Field Radiation Characteristics of Implantable Square Spiral Chip Inductor Antennas for Bio-Sensors

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Simons, Rainee N.; Miranda, Felix A.

    2007-01-01

    The near field radiation characteristics of implantable Square Spiral Chip Inductor Antennas (SSCIA) for Bio-Sensors have been measured. Our results indicate that the measured near field relative signal strength of these antennas agrees with simulated results and confirm that in the near field region the radiation field is fairly uniform in all directions. The effects of parameters such as ground-plane, number of turns and microstrip-gap width on the performance of the SSCIA are presented. Furthermore, the SSCIA antenna with serrated ground plane produce a broad radiation pattern, with a relative signal strength detectable at distances within the range of operation of hand-held devices for self-diagnosis.

  6. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  7. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  8. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    NASA Astrophysics Data System (ADS)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  9. U.S. EPA OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS (ROCKY GAP, MD)

    EPA Science Inventory

    The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...

  10. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.

    PubMed

    Begalle, Rebecca L; Walsh, Meghan C; McGrath, Melanie L; Boling, Michelle C; Blackburn, J Troy; Padua, Darin A

    2015-08-01

    The ankle, knee, and hip joints work together in the sagittal plane to absorb landing forces. Reduced sagittal plane motion at the ankle may alter landing strategies at the knee and hip, potentially increasing injury risk; however, no studies have examined the kinematic relationships between the joints during jump landings. Healthy adults (N = 30; 15 male, 15 female) performed jump landings onto a force plate while three-dimensional kinematic data were collected. Joint displacement values were calculated during the loading phase as the difference between peak and initial contact angles. No relationship existed between ankle dorsiflexion displacement during landing and three-dimensional knee and hip displacements. However, less ankle dorsiflexion displacement was associated with landing at initial ground contact with larger hip flexion, hip internal rotation, knee flexion, knee varus, and smaller plantar flexion angles. Findings of the current study suggest that restrictions in ankle motion during landing may contribute to contacting the ground in a more flexed position but continuing through little additional motion to absorb the landing. Transverse plane hip and frontal plane knee positioning may also occur, which are known to increase the risk of lower extremity injury.

  11. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  12. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: implications for the enzyme mechanism.

    PubMed

    Ogura, Hiroshi; Evans, John P; Peng, Dungeng; Satterlee, James D; Ortiz de Montellano, Paul R; La Mar, Gerd N

    2009-04-14

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase 1 (hHO) has been investigated by (1)H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. Two-dimensional (1)H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts that places the lone iron pi-spin in the d(xz) orbital, rather than the d(yz) orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy, and magnetic susceptibilities argues for a low-spin, (d(xy))(2)(d(yz),d(xz))(3), ground state in both azide and cyanide complexes. The switch from singly occupied d(yz) for the cyanide to d(xz) for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide pi-plane in the latter complex, which is approximately 90 degrees in-plane rotated from that of the imidazole pi-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicates that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 --> Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed.

  13. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: Implications for the enzyme mechanism‡

    PubMed Central

    Ogura, Hiroshi; Evans, John P.; Peng, Dungeng; Satterlee, James D.; de Montellano, Paul R. Ortiz; Mar, Gerd N. La

    2009-01-01

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase-1, (hHO) has been investigated by 1H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. 2D 1H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts, that places the lone iron π-spin in the dxz orbital, rather than the dyz orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy and magnetic susceptibilities argues for a low-spin, (dxy)2(dyz,dxz)3, ground state in both azide and cyanide complexes. The switch from singly-occupied dyz for the cyanide to dxz for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide π-plane in the latter complex, which is ∼90° in-plane rotated from that of the imidazole π-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicate that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 → Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed. PMID:19243105

  14. Ground Contact Modeling for the Morpheus Test Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Cordova, Luis

    2014-01-01

    The Morpheus vertical test vehicle is an autonomous robotic lander being developed at Johnson Space Center (JSC) to test hazard detection technology. Because the initial ground contact simulation model was not very realistic, it was decided to improve the model without making it too computationally expensive. The first development cycle added capability to define vehicle attachment points (AP) and to keep track of their states in the lander reference frame (LFRAME). These states are used with a spring damper model to compute an AP contact force. The lateral force is then overwritten, if necessary, by the Coulomb static or kinetic friction force. The second development cycle added capability to use the PolySurface class as the contact surface. The class can load CAD data in STL (Stereo Lithography) format, and use the data to compute line of sight (LOS) intercepts. A polygon frame (PFRAME) is computed from the facet intercept normal and used to convert the AP state to PFRAME. Three flat plane tests validate the transitions from kinetic to static, static to kinetic, and vertical impact. The hazardous terrain test will be used to test for visual reasonableness. The improved model is numerically inexpensive, robust, and produces results that are reasonable.

  15. Ground Contact Modeling for the Morpheus Test Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Cordova, Luis

    2013-01-01

    The Morpheus vertical test vehicle is an autonomous robotic lander being developed at Johnson Space Center (JSC) to test hazard detection technology. Because the initial ground contact simulation model was not very realistic, it was decided to improve the model without making it too computationally expensive. The first development cycle added capability to define vehicle attachment points (AP) and to keep track of their states in the lander reference frame (LFRAME). These states are used with a spring damper model to compute an AP contact force. The lateral force is then overwritten, if necessary, by the Coulomb static or kinetic friction force. The second development cycle added capability to use the PolySurface class as the contact surface. The class can load CAD data in STL (Stereo Lithography) format, and use the data to compute line of sight (LOS) intercepts. A polygon frame (PFRAME) is computed from the facet intercept normal and used to convert the AP state to PFRAME. Three flat plane tests validate the transitions from kinetic to static, static to kinetic, and vertical impact. The hazardous terrain test will be used to test for visual reasonableness. The improved model is numerically inexpensive, robust, and produces results that are reasonable.

  16. VIEW OF MISSILE TUBE AT THE GROUND FLOOR LEVEL. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MISSILE TUBE AT THE GROUND FLOOR LEVEL. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  17. VIEW OF MISSILE TUBE AT THE GROUND FLOOR LEVEL. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MISSILE TUBE AT THE GROUND FLOOR LEVEL. VIEW FACING EAST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  18. VIEW OF WIDE STAIR TO SECOND FLOOR FROM GROUND FLOOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WIDE STAIR TO SECOND FLOOR FROM GROUND FLOOR. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  19. VIEW OF COMPRESSOR ROOM AT GROUND LEVEL SHOWING COMPRESSOR EQUIPMENT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF COMPRESSOR ROOM AT GROUND LEVEL SHOWING COMPRESSOR EQUIPMENT. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  20. Contamination control device

    DOEpatents

    Clark, Robert M.; Cronin, John C.

    1977-01-01

    A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

  1. Strut and wall interference on jet-induced ground effects of a STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Kristy, Michael H.

    1995-01-01

    A small scale ground effect test rig was used to study the ground plane flow field generated by a STOVL aircraft in hover. The objective of the research was to support NASA-Ames Research Center planning for the Large Scale Powered Model (LSPM) test for the ARPA-sponsored ASTOVL program. Specifically, small scale oil flow visualization studies were conducted to make a relative assessment of the aerodynamic interference of a proposed strut configuration and a wall configuration on the ground plane stagnation line. A simplified flat plate model representative of a generic jet-powered STOVL aircraft was used to simulate the LSPM. Cold air jets were used to simulate both the lift fan and the twin rear engines. Nozzle Pressure Ratios were used that closely represented those used on the LSPM tests. The flow visualization data clearly identified a shift in the stagnation line location for both the strut and the wall configuration. Considering the experimental uncertainty, it was concluded that either the strut configuration o r the wall configuration caused only a minor aerodynamic interference.

  2. 49 CFR 572.145 - Upper and lower torso assemblies and torso flexion test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... permits the upper half of the torso, as measured at the posterior surface of the torso reference plane shown in Figure P5 of this subpart, to translate in angular motion in the midsagittal plane 45 ±0.5 degrees relative to the vertical transverse plane, at which time the pulling force applied must not be...

  3. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System

    PubMed Central

    Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2–12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz). PMID:27992466

  4. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    PubMed

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  5. Electromagnetic Scattering from Arbitrarily Shaped Aperture Backed by Rectangular Cavity Recessed in Infinite Ground Plane

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, Fred B.

    1997-01-01

    The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.

  6. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  7. Approximations useful for the prediction of electrostatic discharges for simple electrode geometries

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1986-01-01

    The report provides approximations for estimating the capacitance and the ratio of electric field strength to potential for a certain class of electrode geometries. The geometry consists of an electrode near a grounded plane, with the electrode being a surface of revolution about the perpendicular to the plane. Some examples which show the accuracy of the capacitance estimate and the accuracy of the estimate of electric field over potential can be found in the appendix. When it is possible to estimate the potential of the electrode, knowing the ratio of electric field to potential will help to determine if an electrostatic discharge is likely to occur. Knowing the capacitance will help to determine the strength of the discharge (the energy released by it) if it does occur. A brief discussion of discharge mechanisms is given. The medium between the electrode and the grounded plane may be a neutral gas, a vacuum, or an unchanged homogeneous isotropic dielectric.

  8. Measuring Symmetry in Children With Unrepaired Cleft Lip: Defining a Standard for the Three-Dimensional Midfacial Reference Plane.

    PubMed

    Wu, Jia; Heike, Carrie; Birgfeld, Craig; Evans, Kelly; Maga, Murat; Morrison, Clinton; Saltzman, Babette; Shapiro, Linda; Tse, Raymond

    2016-11-01

      Quantitative measures of facial form to evaluate treatment outcomes for cleft lip (CL) are currently limited. Computer-based analysis of three-dimensional (3D) images provides an opportunity for efficient and objective analysis. The purpose of this study was to define a computer-based standard of identifying the 3D midfacial reference plane of the face in children with unrepaired cleft lip for measurement of facial symmetry.   The 3D images of 50 subjects (35 with unilateral CL, 10 with bilateral CL, five controls) were included in this study.   Five methods of defining a midfacial plane were applied to each image, including two human-based (Direct Placement, Manual Landmark) and three computer-based (Mirror, Deformation, Learning) methods.   Six blinded raters (three cleft surgeons, two craniofacial pediatricians, and one craniofacial researcher) independently ranked and rated the accuracy of the defined planes.   Among computer-based methods, the Deformation method performed significantly better than the others. Although human-based methods performed best, there was no significant difference compared with the Deformation method. The average correlation coefficient among raters was .4; however, it was .7 and .9 when the angular difference between planes was greater than 6° and 8°, respectively.   Raters can agree on the 3D midfacial reference plane in children with unrepaired CL using digital surface mesh. The Deformation method performed best among computer-based methods evaluated and can be considered a useful tool to carry out automated measurements of facial symmetry in children with unrepaired cleft lip.

  9. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: a proposal for reference values.

    PubMed

    Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M

    2014-05-01

    Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  10. The Spin-Plane Double Probe Electric Field Instrument for MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.

    2016-03-01

    The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.

  11. Correction of radiographic measurements of acetabular cup wear for variations in pelvis orientation.

    PubMed

    Derbyshire, Brian

    2018-03-01

    Radiographic measurement of two-dimensional acetabular cup wear is usually carried out on a series of follow-up radiographs of the patient's pelvis. Since the orientation of the pelvis might not be consistent at every X-ray examination, the resulting change in view of the wear plane introduces error into the linear wear measurement. This effect is amplified on some designs of cup in which the centre of the socket is several millimetres below the centre of the cup or circular wire marker. This study describes the formulation of a mathematical method to correct radiographic wear measurements for changes in pelvis orientation. A mathematical simulation of changes in cup orientation and wear vectors caused by pelvic tilt was used to confirm that the formulae corrected the wear exactly if the radiographic plane of the reference radiograph was parallel to the true plane of wear. An error analysis showed that even when the true wear plane was not parallel to the reference radiographic plane, the formulae could still provide a useful correction. A published correction formula was found to be ineffective.

  12. Correction of radiographic measurements of acetabular cup wear for variations in pelvis orientation

    PubMed Central

    Derbyshire, Brian

    2018-01-01

    Radiographic measurement of two-dimensional acetabular cup wear is usually carried out on a series of follow-up radiographs of the patient’s pelvis. Since the orientation of the pelvis might not be consistent at every X-ray examination, the resulting change in view of the wear plane introduces error into the linear wear measurement. This effect is amplified on some designs of cup in which the centre of the socket is several millimetres below the centre of the cup or circular wire marker. This study describes the formulation of a mathematical method to correct radiographic wear measurements for changes in pelvis orientation. A mathematical simulation of changes in cup orientation and wear vectors caused by pelvic tilt was used to confirm that the formulae corrected the wear exactly if the radiographic plane of the reference radiograph was parallel to the true plane of wear. An error analysis showed that even when the true wear plane was not parallel to the reference radiographic plane, the formulae could still provide a useful correction. A published correction formula was found to be ineffective. PMID:29473454

  13. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.

    PubMed

    Vaziri, Siavash; Connor, Charles E

    2016-03-21

    The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like stimuli to objects [2]. Individual neurons did not respond to a single shape class, but to a variety of scene elements that are typically aligned with gravity: large planes in the orientation range of ground surfaces under natural viewing conditions, planes in the orientation range of ceilings, and extended convex and concave edges in the orientation range of wall/floor/ceiling junctions. For a given neuron, these elements tended to share a common alignment in eye-centered coordinates. Thus, each neuron integrated information about multiple gravity-aligned structures as they would be seen from a specific eye and head orientation. This eclectic coding strategy provides only ambiguous information about individual structures but explicit information about the environmental reference frame and the orientation of gravity in egocentric coordinates. In the ventral pathway, this could support perceiving and/or predicting physical events involving objects subject to gravity, recognizing object attributes like animacy based on movement not caused by gravity, and/or stabilizing perception of the world against changes in head orientation [3-5]. Our results, like the recent discovery of object weight representation [6], imply that the ventral pathway is involved not just in recognition, but also in physical understanding of objects and scenes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression.

    PubMed

    Cortes, Daniel H; Elliott, Dawn M

    2012-07-01

    The annulus fibrosus (AF) of the disk is a highly nonlinear and anisotropic material that undergoes a complex combination of loads in multiple orientations. The tensile mechanical behavior of AF in the lamellar plane is dominated by collagen fibers and has been accurately modeled using exponential functions. On the other hand, AF mechanics perpendicular to the lamella, in the radial direction, depend on the properties of the ground matrix with little to no fiber contribution. The ground matrix is mainly composed of proteoglycans (PG), which are negatively charged macromolecules that maintain the tissue hydration via osmotic pressure. The mechanical response of the ground matrix can be divided in the contribution of osmotic pressure and an elastic solid part known as extra-fibrillar matrix (EFM). Mechanical properties of the ground matrix have been measured using tensile and confined compression tests. However, EFM mechanics have not been measured directly. The objective of this study was to measure AF nonlinear mechanics of the EFM in tension and compression. To accomplish this, a combination of osmotic swelling and confined compression in disk radial direction, perpendicular to the lamella, was used. For this type of analysis, it was necessary to define a stress-free reference configuration. Thus, a brief analysis on residual stress in the disk and a procedure to estimate the reference configuration are presented. The proposed method was able to predict similar swelling deformations when using different loading protocols and models for the EFM, demonstrating its robustness. The stress-stretch curve of the EFM was linear in the range 0.9 < λ₃ < 1.3 with an aggregate modulus of 10.18±3.32 kPa; however, a significant nonlinearity was observed for compression below 0.8. The contribution of the EFM to the total aggregate modulus of the AF decreased from 70 to 30% for an applied compression of 50% of the initial thickness. The properties obtained in this study are essential for constitutive and finite element models of the AF and disk and can be applied to differentiate between functional degeneration effects such as PG loss and stiffening due to cross-linking.

  15. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task.

    PubMed

    Ernst, Michael; Altenburg, Björn; Bellmann, Malte; Schmalz, Thomas

    2017-11-16

    Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.

  16. Relationship Between Occlusal Plane and Three Levels of Ala Tragus line in Dentulous and Partially Dentulous Patients in Different Age Groups: A Pilot Study

    PubMed Central

    Shaikh, Saquib Ahmed; K, Lekha

    2015-01-01

    Statement of problem: Correct orientation of the occlusal plane plays a vital role in achieving optimal aesthetics, occlusal balance and function of complete dentures. The use of ala tragus line for determination of occlusal plane has been a topic of debate over past many years. Also, the effect of age on level of ala tragal line has not been investigated in the past. Purpose: To determine the effect of age on location of Ala-Tragus line. Materials and Methods: A total of 180 patients (90 males and 90 females) were selected with complete dentition and were grouped according to their age in three age groups with 60 subjects in each age group (Group A: 20-35 y, Group B: 36-50 y, Group C: 51-65 y). Right lateral profile photographs were taken with subjects having fox plane placed intraorally parallel to occlusal plane. Reference points corresponding to inferior border, middle or superior border of tragus and inferior border of ala of nose were marked on photographs. These were joined to get three different levels of Ala-Tragus line. Images were analysed photometrically and most parallel relationship was determined in between arms of fox plane (that represented the occlusal plane) and three different levels of ala tragus line. Data obtained was subjected to statistical analysis using Pearson chi-square and Likelihood-ratio chi-square test. Results: Significant correlation was found between age and level of Ala-Tragus line. The occlusal plane was found to be more parallel to Ala-tragus line when inferior border of tragus was considered as posterior reference point in young adult age group (20-35 y). In older age groups, occlusal plane was found to be more parallel to Ala-tragus line when middle of tragus was considered as posterior reference point. Conclusion: Within the limitations of this study, it can be concluded that a definite relationship exists in between age and level of ala tragus line. PMID:25859523

  17. DETAIL OF MISSILE TUBE HATCH WITH MILLED FITTINGS AT GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF MISSILE TUBE HATCH WITH MILLED FITTINGS AT GROUND FLOOR LEVEL. VIEW FACING EAST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  18. VIEW OF EQUIPMENT AT THE GROUND FLOOR LEVEL OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EQUIPMENT AT THE GROUND FLOOR LEVEL OF THE MISSILE TUBE ROOM. VIEW FACING SOUTH - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  19. An adaptive array antenna for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Milne, Robert

    1988-01-01

    The adaptive array is linearly polarized and consists essentially of a driven lambda/4 monopole surrounded by an array of parasitic elements all mounted on a ground plane of finite size. The parasitic elements are all connected to ground via pin diodes. By applying suitable bias voltages, the desired parasitic elements can be activated and made highly reflective. The directivity and pointing of the antenna beam can be controlled in both the azimuth and elevation planes using high speed digital switching techniques. The antenna RF losses are neglible and the maximum gain is close to the theoretical value determined by the effective aperture size. The antenna is compact, has a low profile, is inexpensive to manufacture and can handle high transmitter power.

  20. Study of a Flexible Low Profile Tunable Dipole Antenna Using Barium Strontium Titanate Varactors

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2014-01-01

    In this paper a flexible low profile dipole antenna using a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells is presented. The varactor chips were placed only along one dimension of the FSS to avoid the use of vias and simplify the DC bias network. The antenna uses overlapping metallic plates that resemble fish scales as a ground plane to improve the flexibility of the multi-material stack structure. The measured data of the antenna demonstrate tunability from 2.42 GHz to 2.66 GHz and 1.3 dB gain drop when using overlapping metallic plates instead of continuous ground plane. The total antenna thickness is approximately lambda/24.

  1. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  2. Broad band antennas and feed methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benzel, David M.; Twogood, Richard E.

    Two or more Vivaldi antennas, consisting of two plates each, each with the antenna's natural impedance of approximately 100 ohms, are placed in parallel to achieve a 50 ohm impedance in the case of two antennas or other impedances (100/n ohms) for more than two antennas. A single Vivaldi antenna plate (half Vivaldi antenna) over a ground plane can also be used to achieve a 50 ohm impedance, or two or more single plates over a ground plane to achieve other impedances. Unbalanced 50 ohm transmission lines, e.g. coaxial cables, can be used to directly feed, the dual Vivaldi (fourmore » plate) antenna in a center fed angled center departure, or more desirably, a center fed offset departure configuration.« less

  3. Laboratory and telescope demonstration of the TP3-WFS for the adaptive optics segment of AOLI

    NASA Astrophysics Data System (ADS)

    Colodro-Conde, C.; Velasco, S.; Fernández-Valdivia, J. J.; López, R.; Oscoz, A.; Rebolo, R.; Femenía, B.; King, D. L.; Labadie, L.; Mackay, C.; Muthusubramanian, B.; Pérez Garrido, A.; Puga, M.; Rodríguez-Coira, G.; Rodríguez-Ramos, L. F.; Rodríguez-Ramos, J. M.; Toledo-Moreo, R.; Villó-Pérez, I.

    2017-05-01

    Adaptive Optics Lucky Imager (AOLI) is a state-of-the-art instrument that combines adaptive optics (AO) and lucky imaging (LI) with the objective of obtaining diffraction-limited images in visible wavelength at mid- and big-size ground-based telescopes. The key innovation of AOLI is the development and use of the new Two Pupil Plane Positions Wavefront Sensor (TP3-WFS). The TP3-WFS, working in visible band, represents an advance over classical wavefront sensors such as the Shack-Hartmann WFS because it can theoretically use fainter natural reference stars, which would ultimately provide better sky coverages to AO instruments using this newer sensor. This paper describes the software, algorithms and procedures that enabled AOLI to become the first astronomical instrument performing real-time AO corrections in a telescope with this new type of WFS, including the first control-related results at the William Herschel Telescope.

  4. 2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound.

    PubMed

    Ta, Casey N; Eghtedari, Mohammad; Mattrey, Robert F; Kono, Yuko; Kummel, Andrew C

    2014-11-01

    Contrast-enhanced ultrasound (CEUS) cines of focal liver lesions (FLLs) can be quantitatively analyzed to measure tumor perfusion on a pixel-by-pixel basis for diagnostic indication. However, CEUS cines acquired freehand and during free breathing cause nonuniform in-plane and out-of-plane motion from frame to frame. These motions create fluctuations in the time-intensity curves (TICs), reducing the accuracy of quantitative measurements. Out-of-plane motion cannot be corrected by image registration in 2-dimensional CEUS and degrades the quality of in-plane motion correction (IPMC). A 2-tier IPMC strategy and adaptive out-of-plane motion filter (OPMF) are proposed to provide a stable correction of nonuniform motion to reduce the impact of motion on quantitative analyses. A total of 22 cines of FLLs were imaged with dual B-mode and contrast specific imaging to acquire a 3-minute TIC. B-mode images were analyzed for motion, and the motion correction was applied to both B-mode and contrast images. For IPMC, the main reference frame was automatically selected for each cine, and subreference frames were selected in each respiratory cycle and sequentially registered toward the main reference frame. All other frames were sequentially registered toward the local subreference frame. Four OPMFs were developed and tested: subsample normalized correlation (NC), subsample sum of absolute differences, mean frame NC, and histogram. The frames that were most dissimilar to the OPMF reference frame using 1 of the 4 above criteria in each respiratory cycle were adaptively removed by thresholding against the low-pass filter of the similarity curve. Out-of-plane motion filter was quantitatively evaluated by an out-of-plane motion metric (OPMM) that measured normalized variance in the high-pass filtered TIC within the tumor region-of-interest with low OPMM being the goal. Results for IPMC and OPMF were qualitatively evaluated by 2 blinded observers who ranked the motion in the cines before and after various combinations of motion correction steps. Quantitative measurements showed that 2-tier IPMC and OPMF improved imaging stability. With IPMC, the NC B-mode metric increased from 0.504 ± 0.149 to 0.585 ± 0.145 over all cines (P < 0.001). Two-tier IPMC also produced better fits on the contrast-specific TIC than industry standard IPMC techniques did (P < 0.02). In-plane motion correction and OPMF were shown to improve goodness of fit for pixel-by-pixel analysis (P < 0.001). Out-of-plane motion filter reduced variance in the contrast-specific signal as shown by a median decrease of 49.8% in the OPMM. Two-tier IPMC and OPMF were also shown to qualitatively reduce motion. Observers consistently ranked cines with IPMC higher than the same cine before IPMC (P < 0.001) as well as ranked cines with OPMF higher than when they were uncorrected. The 2-tier sequential IPMC and adaptive OPMF significantly reduced motion in 3-minute CEUS cines of FLLs, thereby overcoming the challenges of drift and irregular breathing motion in long cines. The 2-tier IPMC strategy provided stable motion correction tolerant of out-of-plane motion throughout the cine by sequentially registering subreference frames that bypassed the motion cycles, thereby overcoming the lack of a nearly stationary reference point in long cines. Out-of-plane motion filter reduced apparent motion by adaptively removing frames imaged off-plane from the automatically selected OPMF reference frame, thereby tolerating nonuniform breathing motion. Selection of the best OPMF by minimizing OPMM effectively reduced motion under a wide variety of motion patterns applicable to clinical CEUS. These semiautomated processes only required user input for region-of-interest selection and can improve the accuracy of quantitative perfusion measurements.

  5. A cephalometric study to establish the relationship of the occlusal plane to the three different ala-tragal lines and the Frankfort horizontal plane in different head forms.

    PubMed

    Subhas, S; Rupesh, P L; Devanna, R; Kumar, D R V; Paliwal, A; Solanki, P

    2017-04-01

    The aim of the study is to compare the relationship of the occlusal plane to 3 different ala-tragal lines, namely the superior, middle and inferior lines, in individuals having different head forms and its relation to the Frankfort horizontal plane. A total of 75 lateral cephalometric radiographs of subjects with natural dentition, having full complement of teeth, between the age group of 18-25 were screened and selected. Lateral cephalogram were made for each subjects in an open mouth position. Prior to making the lateral cephalogram, radiopaque markers were placed on the superior, middle and inferior tragus points and on the inferior border of the ala of the nose. Cephalometric tracing was done over each cephalogram. In mesiocephalic head form the middle ala-tragal line was most parallel to the occlusal plane having a mean angle of (1.96°). In dolichocephalic headform, the superior ala-tragal line was most parallel to the occlusal plane having a mean angle of (0.48°). In brachycephalic head form, the middle ala-tragal line was most parallel to the occlusal plane having a mean angle of (2.08°). The mean angulations of occlusal plane to FH plane is 11.04°, 10.16° and 10.60° in mesiocephalic, dolichocephalic and brachycephalic head forms, respectively. The study concludes that the middle ala-tragal line can be used as a reference for the mesiocephalic head form and the superior ala-tragal line for the dolichocephalic and brachycephalic head form as a reference to establish the occlusal plane. Copyright © 2016. Published by Elsevier Masson SAS.

  6. An experimental study on compressive behavior of rubble stone walls retrofitted with BFRP grids

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Jia, Bin; Li, Wenjing; Liu, Xiao; Yang, Dan; Deng, Chuanli

    2018-03-01

    An experimental study was conducted to investigate the compressive behavior of rubble stone walls retrofitted with BFRP grids. The experimental program consisted of four rubble stone walls: one unretrofitted rubble stone wall (reference wall) and three BFRP grids retrofitted rubble stone walls. The main purpose of the tests was to gain a better understanding of the compressive behavior of rubble stone walls retrofitted with different amount of BFRP grids. The experimental results showed that the reference wall failed with out-of-plane collapse due to poor connection between rubble stone blocks and the three BFRP grids retrofitted walls failed with BFRP grids rupture followed by out-of-plane collapse. The measured compressive strength of the BFRP grids retrofitted walls is about 1.4 to 2.5 times of that of the reference wall. Besides, the rubble stone wall retrofitted with the maximum amount of BFRP grids showed the minimum vertical and out-of-plane displacements under the same load.

  7. Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Peng, Yuming

    2012-01-01

    In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.

  8. Method and apparatus for electron-only radiation detectors from semiconductor materials

    DOEpatents

    Lund, James C.

    2000-01-01

    A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

  9. SIELETERS: A Static Fourier Transform Infrared Imaging Spectrometer for Airborne Hyperspectral Measurements

    DTIC Science & Technology

    2009-10-01

    cryostat and cooled at a temperature under 77K by a Stirling cryocooler , as represented on the following Figure 5 : Cryostat...Figure 5. Detector cryostat and cryocooler The read-out frequency of the detectors is adapted to the ground speed of the plane above...Cold shield Detector plane Cryocoole r Cryocoole r compresso r Fixed frame Roll frame Pitch frame Yaw frame SIELETERS: a Static Fourier

  10. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  11. Comparison of ATLOG and Xyce for Bell Labs Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Ground Plane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    campione, Salvatore; Warne, Larry K.; Schiek, Richard

    This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to the Bell Labs electromagnetic pulse excitation. We use both a frequency-domain and a time-domain method based on transmission line theory through a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared to the circuit simulator Xyce for selected cases. Intentionally Left Blank

  12. Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Conducting Ground Plane in the Frequency Domain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    campione, Salvatore; Warne, Larry K.; Schiek, Richard

    2017-09-01

    This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a frequency-domain method based on transmission line theory and implemented it in a code we call ATLOG - Analytic Transmission Line Over Ground. Select results are compared to ones computed using the circuit simulator Xyce. Intentionally Left Blank

  13. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  14. Generating Ground Reference Data for a Global Impervious Surface Survey

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; De Colstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan

    2012-01-01

    We are developing an approach for generating ground reference data in support of a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. Since sufficient ground reference data for training and validation is not available from ground surveys, we are developing an interactive tool, called HSegLearn, to facilitate the photo-interpretation of 1 to 2 m spatial resolution imagery data, which we will use to generate the needed ground reference data at 30m. Through the submission of selected region objects and positive or negative examples of impervious surfaces, HSegLearn enables an analyst to automatically select groups of spectrally similar objects from a hierarchical set of image segmentations produced by the HSeg image segmentation program at an appropriate level of segmentation detail, and label these region objects as either impervious or nonimpervious.

  15. Investigation of a L1-optimized choke ring ground plane for a low-cost GPS receiver-system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Schwieger, Volker

    2018-01-01

    Besides the geodetic dual-frequency GNSS receivers-systems (receiver and antenna), there are also low-cost single-frequency GPS receiver-systems. The multipath effect is a limiting factor of accuracy for both geodetic dual-frequency and low-cost single-frequency GPS receivers. And the multipath effect is for the short baselines dominating error (typical for the monitoring in Engineering Geodesy). So accuracy and reliability of GPS measurement for monitoring can be improved by reducing the multipath signal. In this paper, the self-constructed L1-optimized choke ring ground plane (CR-GP) is applied to reduce the multipath signal. Its design will be described and its performance will be investigated. The results show that the introduced low-cost single-frequency GPS receiver-system, which contains the Ublox LEA-6T single-frequency GPS receiver and Trimble Bullet III antenna with a self-constructed L1-optimized CR-GP, can reach standard deviations of 3 mm in east, 5 mm in north and 9 mm in height in the test field which has many reflectors. This accuracy is comparable with the geodetic dual-frequency GNSS receiver-system. The improvement of the standard deviation of the measurement using the CR-GP is about 50 % and 35 % compared to the used antenna without shielding and with flat ground plane respectively.

  16. VIEW OF CONTROL PANEL (RIGHT) AT THE GROUND FLOOR LEVEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CONTROL PANEL (RIGHT) AT THE GROUND FLOOR LEVEL AND SIDE OF THE MISSILE TUBE (FOREGROUND). VIEW FACING EAST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  17. DETAIL OF INTERIOR OF MISSILE TUBE AT GROUND FLOOR LEVEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF INTERIOR OF MISSILE TUBE AT GROUND FLOOR LEVEL SHOWING AIR COMPRESSOR TANKS AND CURVING STEEL PIECE. VIEW FACING EAST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  18. Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh

    In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a techniquemore » to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank« less

  19. Design and Analysis of Orthotrophic Ring-Stiffened Cylindrical Shells Subjected to External Hydrostatic Pressure

    DTIC Science & Technology

    2008-03-28

    in plane bending stiffness. Figure 4. Non-Symmetric General Buckling In accordance with equations (4) through (11), the...the DAPS3 version of the code documented in reference 1, the DAPS4 code computes the stresses and deflections, interbay buckling pressure, general ... plane and out- of- plane bending , eliminating the simple support assumption at the bay ends. b. Stresses and deflections at all points between the

  20. Determination of Tide Heights from Airborne Bathymetric Data

    DTIC Science & Technology

    1989-12-01

    MEASUREMENT ERROR, A FORTRAN FUNCTION ............................. 60 v D. THE MEASUREMENT ERROR .......................... 61 E. THE REFERENCE PLANE ...soundings made to a chart datum. The chart datum is a "tide based" plane which usually corresponds to some mean of the low waters for the local tidal...regime. A low water plane is used so depths published on a nautical chart are shown in their least favorable aspect. If the chart datum is very

  1. Stand-off transmission lines and method for making same

    DOEpatents

    Tuckerman, David B.

    1991-01-01

    Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress.

  2. Analysis of three-dimensional-cavity-backed aperture antennas using a Combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.

  3. Space shuttle: Longitudinal aerodynamic characteristics of low aspect ratio wing configurations in ground effect for a moving and stationary ground surface

    NASA Technical Reports Server (NTRS)

    Romere, P. O.; Chambliss, E. B.

    1972-01-01

    A 0.05-scale model of the NASA-MSC Orbiter 040A Configuration was tested. Test duration was approximately 80 hours during which the model was tested in and out of ground effect with a stationary and moving ground belt. Model height from ground plane surface was varied from one and one-half wing span to landing touchdown while angle of attack varied from -4 to 20 degrees. Eleven effectiveness and alternate configuration geometries were tested to insure complete analysis of low aspect ratio wing aircraft in the presence of ground effect. Test Mach number was approximately 0.067 with a corresponding dynamic pressure value of 6.5 psf.

  4. High-immersion three-dimensional display of the numerical computer model

    NASA Astrophysics Data System (ADS)

    Xing, Shujun; Yu, Xunbo; Zhao, Tianqi; Cai, Yuanfa; Chen, Duo; Chen, Zhidong; Sang, Xinzhu

    2013-08-01

    High-immersion three-dimensional (3D) displays making them valuable tools for many applications, such as designing and constructing desired building houses, industrial architecture design, aeronautics, scientific research, entertainment, media advertisement, military areas and so on. However, most technologies provide 3D display in the front of screens which are in parallel with the walls, and the sense of immersion is decreased. To get the right multi-view stereo ground image, cameras' photosensitive surface should be parallax to the public focus plane and the cameras' optical axes should be offset to the center of public focus plane both atvertical direction and horizontal direction. It is very common to use virtual cameras, which is an ideal pinhole camera to display 3D model in computer system. We can use virtual cameras to simulate the shooting method of multi-view ground based stereo image. Here, two virtual shooting methods for ground based high-immersion 3D display are presented. The position of virtual camera is determined by the people's eye position in the real world. When the observer stand in the circumcircle of 3D ground display, offset perspective projection virtual cameras is used. If the observer stands out the circumcircle of 3D ground display, offset perspective projection virtual cameras and the orthogonal projection virtual cameras are adopted. In this paper, we mainly discussed the parameter setting of virtual cameras. The Near Clip Plane parameter setting is the main point in the first method, while the rotation angle of virtual cameras is the main point in the second method. In order to validate the results, we use the D3D and OpenGL to render scenes of different viewpoints and generate a stereoscopic image. A realistic visualization system for 3D models is constructed and demonstrated for viewing horizontally, which provides high-immersion 3D visualization. The displayed 3D scenes are compared with the real objects in the real world.

  5. A simple and effective process for noise reduction of multichannel cortical field potential recordings in freely moving rats.

    PubMed

    Shaw, Fu-Zen; Yen, Chen Tung; Chen, Ruei Feng

    2003-04-15

    Simple and useful steps, i.e. placing a grounded plate under the recording chamber as well as using multiple reference electrodes, are introduced here for obtaining reliable low-noise recordings of brain activity in freely moving rats. A general circuit model was built to analyze the electrical interference of both single-grounded and two-reference ground-free recording configurations. In both simulated and realistic conditions under two recording states, 60-Hz magnitude was in the microvolt range. Moreover, the noise was significantly reduced by shortening the distance between the subject and the grounded plate under the recording chamber. Furthermore, in chronically implanted rats, average 60-Hz interference of multichannel electroencephalograms of two-reference ground-free recordings (3.74 +/- 0.18 microV) was significantly smaller than that of the single-grounded condition (9.03 +/- 1.98 microV). Thus, we demonstrated that a lower-noise recording can be achieved by a two-reference configuration and a closely-placed metal grounded plate in an open-field circumstance. As compared to the use of a Faraday cage, this simple procedure is of benefit for long-term behavioral tracking with a video camera and for pharmacological experiments.

  6. [A cephalometric study on determining the orientation of occlusal plane].

    PubMed

    Xie, J; Zhao, Y; Chao, Y; Luo, W

    1993-12-01

    A study of the parallel relationship between the occlusal plane and the line connecting nasal alar and tragus was made in 90 dentulous cases by using cephalometry. The results show that the line connecting the inferior point of nasal alar and the mid-point of tragus runs much more parallel with the occlusal plane. The regression equation reveals a "line of closest fitting". It was used in the prosthetic treatment for 50 edentulous patients with good clinical results. The line connecting the inferior point of nasal alar and the mid-point of tragus therefore represents a proper reference plane for determining occlusal plane and hence should be still a valuable index in clinical dentistry.

  7. A radiographic assessment of lumbar spine posture in four different upright standing positions.

    PubMed

    Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P

    2016-08-01

    Approximately 50% of a sample population will develop prolonged standing induced low back pain. The cause of this pain may be due to their lumbar spine posture. The purpose of this study was to investigate differences in lumbar posture between 17 participants categorized as a pain or non-pain developers during level ground standing. A secondary purpose was to evaluate the influence of two standing aids (an elevated surface to act as a foot rest and declined sloped surface) on lumbopelvic posture. Four sagittal plane radiographs were taken: a normal standing position on level ground, when using an elevated foot rest, using a declined sloped surface, and maximum lumbar spine extension as a reference posture. Lumbosacral lordosis, total lumbar lordosis, and L1/L2 and L5/S1 intervertebral joint angles were measured on each radiograph. There was a significant difference between the lumbosacral lordosis angle and L5/S1 angles in upright versus maximum extension; however, this was independent of pain group. The elevated surface was most effective at causing lumbosacral spine flexion. Potentially successful postures for eliminating low back pain during prolonged standing mainly influence the lower lumbar lordosis. Future work should assess the influence of hip posture on low back pain development during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Gender Differences among Sagittal Plane Knee Kinematic and Ground Reaction Force Characteristics during a Rapid Sprint and Cut Maneuver

    ERIC Educational Resources Information Center

    James, C. Roger; Sizer, Phillip S.; Starch, David W.; Lockhart, Thurmon E.; Slauterbeck, James

    2004-01-01

    Women are more prone to anterior cruciate ligament (ACL) injury during cutting sports than men. The purpose of this study was to examine knee kinematic and ground reaction forces (GRF) differences between genders during cutting. Male and female athletes performed cutting trials while force platform and video data were recorded (180 Hz).…

  9. Toward a closer integration of magnetospheric research: Magnetospheric currents inferred from ground-based magnetic data

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.; Kamide, Y.

    1998-07-01

    A new approach is needed to advance magnetospheric physics in the future to achieve a much closer integration than in the past among satellite-based researchers, ground-based researchers, and theorists/modelers. Specifically, we must find efficient ways to combine two-dimensional ground-based data and single points satellite-based data to infer three-dimensional aspects of magnetospheric disturbances. For this particular integration purpose, we propose a new project. It is designed to determine the currents on the magnetospheric equatorial plane from the ionospheric current distribution which has become available by inverting ground-based magnetic data from an extensive, systematic network of observations, combined with ground-based radar measurements of ionospheric parameters, and satellite observations of auroras, electric fields, and currents. The inversion method is based on the KRM/AMIE algorithms. In the first part of the paper, we extensively review the reliability and accuracy of the KRM and AMIE algorithms and conclude that the ionospheric quantities thus obtained are accurate enough for the next step. In the second part, the ionospheric current distribution thus obtained is projected onto the equatorial plane. This process requires a close cooperation with modelers in determining an accurate configuration of the magnetospheric field lines. If we succeed in this projection, we should be able to study the changing distribution of the currents in a vast region of the magnetospheric equatorial plane for extended periods with a time resolution of about 5 min. This process requires a model of the magnetosphere for the different phases of the magnetospheric substorm. Satellite-based observations are needed to calibrate the projection results. Agreements and disagreements thus obtained will be crucial for theoretical studies of magnetospheric plasma convection and dynamics, particularly in studying substorms. Nothing is easy in these procedures. However, unless we can overcome the associated difficulties, we may not be able to make distinct progresses. We believe that the proposed project is one way to draw the three groups closer together in advancing magnetospheric physics in the future. It is important to note that the proposed project has become possible because ground-based space physics has made a major advance during the last decade.

  10. Detecting short circuits during assembly

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1980-01-01

    Detector circuit identifies shorts between bus bars of electronic equipment being wired. Detector sounds alarm and indicates which planes are shorted. Power and ground bus bars are scanned continuously until short circuit occurs.

  11. Analysis of a new phase and height algorithm in phase measurement profilometry

    NASA Astrophysics Data System (ADS)

    Bian, Xintian; Zuo, Fen; Cheng, Ju

    2018-04-01

    Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.

  12. Mechanical Strength of the Proximal Femur After Arthroscopic Osteochondroplasty for Femoroacetabular Impingement: Finite Element Analysis and 3-Dimensional Image Analysis.

    PubMed

    Oba, Masatoshi; Kobayashi, Naomi; Inaba, Yutaka; Choe, Hyonmin; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki

    2018-06-21

    To examine the influence of femoral neck resection on the mechanical strength of the proximal femur in actual surgery. Eighteen subjects who received arthroscopic cam resection for cam-type femoroacetabular impingement (FAI) were included. Finite element analyses (FEAs) were performed to calculate changes in simulative fracture load between pre- and postoperative femur models. The finite element femur models were constructed from computed tomographic images; thus, the models represented the shape of the original femur, including the bone resection site. Three-dimensional image analysis of the bone resection site was performed to identify morphometric factors that affect strength in the postoperative femur model. Four oblique sagittal planes running perpendicular to the femoral neck axis were used as reference planes to measure the bone resection site. At the transcervical reference plane, both the bone resection depth and the cross-sectional area at the resection site correlated strongly with postoperative changes in the simulated fracture load (R 2  = 0.6, P = .0001). However, only resection depth was significantly correlated with the simulated fracture load at the reference plane for the head-neck junction. The resected bone volume did not correlate with the postoperative changes in the simulated fracture load. The results of our FEA suggest that the bone resection depth measured at the head-neck junction and transcervical reference plane correlates with fracture risk after osteochondroplasty. By contrast, bone resection at more proximal areas did not have a significant effect on the postoperative femur model strength in our FEA. The total volume of resected bone was also not significantly correlated with postoperative changes in femur model strength. This biomechanical study using FEA suggest that there is a risk of femoral neck fracture after arthroscopic cam resection, particularly when the resected lesion is located distally. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.

    2016-01-01

    Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense gas by determining the contribution of the APEX/LABOCA maps to the combined maps, and estimate 2-5% for the dense gas fraction (corresponding to Av> 7 mag) on average in the Galactic plane. We also show probability distribution functions of the column density (N-PDF), which reveal the typically observed log-normal distribution for low column density and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive a contribution of this excess to the total column density of ~ 2.2%, corresponding to NH2 = 2.92 × 1022 cm-2. Taking the total flux density observed in the maps, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of ~ 1 × 109 M⊙, which is consistent with previous estimates using CO emission. From the mass and dense gas fraction (fDG), we estimate a Galactic SFR of Ṁ = 1.3 M⊙ yr-1. Conclusions: Retrieving the extended emission helps to better identify massive giant filaments which are elongated and confined structures. We show that the log-normal distribution of low column density gas is ubiquitous in the inner Galaxy. While the distribution of diffuse gas is relatively homogenous in the inner Galaxy, the central molecular zone (CMZ) stands out with a higher dense gas fraction despite its low star formation efficiency.Altogether our findings explain well the observed low star formation efficiency of the Milky Way by the low fDG in the Galactic ISM. In contrast, the high fDG observed towards the CMZ, despite its low star formation activity, suggests that, in that particular region of our Galaxy, high density gas is not the bottleneck for star formation.

  14. Using NASA's Reference Architecture: Comparing Polar and Geostationary Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Burnett, Michael

    2013-01-01

    The JPSS and GOES-R programs are housed at NASA GSFC and jointly implemented by NASA and NOAA to NOAA requirements. NASA's role in the JPSS Ground System is to develop and deploy the system according to NOAA requirements. NASA's role in the GOES-R ground segment is to provide Systems Engineering expertise and oversight for NOAA's development and deployment of the system. NASA's Earth Science Data Systems Reference Architecture is a document developed by NASA's Earth Science Data Systems Standards Process Group that describes a NASA Earth Observing Mission Ground system as a generic abstraction. The authors work within the respective ground segment projects and are also separately contributors to the Reference Architecture document. Opinions expressed are the author's only and are not NOAA, NASA or the Ground Projects' official positions.

  15. Omnidirectional antenna having constant phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Matthew

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintainingmore » a required spacing/parallelism therebetween.« less

  16. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  17. Sound Radiation from a Supersonic Jet Passing Through a Partially Open Exhaust Duct

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    The radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet of 25.4 mm exit diameter flowing through a partially open rigid-walled duct with an upstream i-deflector has been studied experimentally. In the experiments, the nozzle is mounted vertically, with the nozzle exit plane at a height of 73 jet diameters above ground level. Relative to the nozzle exit plane (NEP), the location of the duct inlet is varied at 10, 5, and -1 jet diameters. Far-field sound pressure levels were obtained at 54 jet diameters above ground with the aid of acoustic sensors equally spaced around a circular arc of radius equal to 80 jet diameters from the jet axis. Data on the jet acoustic field for the partially open duct were obtained and compared with those with a free jet and with a closed duct. The results suggest that for the partially open duct the overall sound pressure level (OASPL) decreases as the distance between the NEP and the duct inlet plane decreases, while the opposite trend is observed for the closed duct. It is also concluded that the observed peak frequency in the partially open duct increases above the free jet value as the angle from the duct axis is increased, and as the duct inlet plane becomes closer to the NEP.

  18. Analysis and design of three dimensional supersonic nozzles. Volume 1: Nozzle-exhaust flow field analysis by a reference plane characteristics technique

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    A second order numerical method employing reference plane characteristics has been developed for the calculation of geometrically complex three dimensional nozzle-exhaust flow fields, heretofore uncalculable by existing methods. The nozzles may have irregular cross sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. The nozzles may have highly nonuniform entrance conditions, the medium considered being an equilibrium hydrogen-air mixture. The program calculates and carries along the underexpansion shock and contact as discrete discontinuity surfaces, for a nonuniform vehicle external flow.

  19. Electrical-transport properties and microwave device performance of sputtered TlCaBaCuO superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1992-01-01

    The paper describes the processing and electrical transport measurements for achieving reproducible high-Tc and high-Jc sputtered TlCaBaCuO thin films on LaAlO3 substrates, for microelectronic applications. The microwave properties of TlCaBaCuO thin films were investigated by designing, fabricating, and characterizing microstrip ring resonators with a fundamental resonance frequency of 12 GHz on 10-mil-thick LaAlO3 substrates. Typical unloaded quality factors for a ring resonator with a superconducting ground plane of 0.3 micron-thickness and a gold ground plane of 1-micron-thickness were above 1500 at 65 K. Typical values of penetration depth at 0 K in the TlCaBaCuO thin films were between 7000 and 8000 A.

  20. Microwave switching power divider. [antenna feeds

    NASA Technical Reports Server (NTRS)

    Stockton, R. J.; Johnson, R. W. (Inventor)

    1981-01-01

    A pair of parallel, spaced-apart circular ground planes define a microwave cavity with multi-port microwave power distributing switching circuitry formed on opposite sides of a thin circular dielectric substrate disposed between the ground planes. The power distributing circuitry includes a conductive disk located at the center of the substrate and connected to a source of microwave energy. A high speed, low insertion loss switching diode and a dc blocking capacitor are connected in series between the outer end of a transmission line and an output port. A high impedance, microwave blocking dc bias choke is connected between each switching diode and a source of switching current. The switching source forward biases the diodes to couple microwave energy from the conductive disk to selected output ports and, to associated antenna elements connected to the output ports to form a synthesized antenna pattern.

  1. Shear sensing based on a microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Mohammad, I.; Huang, H.

    2012-10-01

    A microstrip patch antenna sensor was studied for shear sensing with a targeted application of measuring plantar shear distribution on a diabetic foot. The antenna shear sensor consists of three components, namely an antenna patch, a soft foam substrate and a slotted ground plane. The resonant frequency of the antenna sensor is sensitive to the overlapping length between the slot in the ground plane and the antenna patch. A shear force applied along the direction of the slot deforms the foam substrate and causes a change in the overlapping length, which can be detected from the antenna frequency shift. The antenna shear sensor was designed based on simulated antenna frequency response and validated by experiments. Experimental results indicated that the antenna sensor exhibits high sensitivity to shear deformation and responds to the applied shear loads with excellent linearity and repeatability.

  2. Stand-off transmission lines and method for making same

    DOEpatents

    Tuckerman, D.B.

    1991-05-21

    Standoff transmission lines in an integrated circuit structure are formed by etching away or removing the portion of the dielectric layer separating the microstrip metal lines and the ground plane from the regions that are not under the lines. The microstrip lines can be fabricated by a subtractive process of etching a metal layer, an additive process of direct laser writing fine lines followed by plating up the lines or a subtractive/additive process in which a trench is etched over a nucleation layer and the wire is electrolytically deposited. Microstrip lines supported on freestanding posts of dielectric material surrounded by air gaps are produced. The average dielectric constant between the lines and ground plane is reduced, resulting in higher characteristic impedance, less crosstalk between lines, increased signal propagation velocities, and reduced wafer stress. 16 figures.

  3. Children's Inductive Thinking during Intrinsic and Euclidean Geometrical Activities in a Computer Programming Environment.

    ERIC Educational Resources Information Center

    Kynigos, Chronis

    1993-01-01

    Used 2 12-year-old children to investigate deductive and inductive reasoning in plane geometry. A LOGO microworld was programmed to measure distances and turns relative to points on the plane. Learning environments like this may enhance formation of inductive geometrical understandings. (Contains 44 references.) (LDR)

  4. Understanding the Conics through Augmented Reality

    ERIC Educational Resources Information Center

    Salinas, Patricia; Pulido, Ricardo

    2017-01-01

    This paper discusses the production of a digital environment to foster the learning of conics through augmented reality. The name conic refers to curves obtained by the intersection of a plane with a right circular conical surface. The environment gives students the opportunity to interact with the cone and the plane as virtual objects in real…

  5. Low cost impulse compatible wideband antenna

    DOEpatents

    Rosenbury, Erwin T.; Burke, Gerald J.; Nelson, Scott D.; Stever, Robert D.; Governo, George K.; Mullenhoff, Donald J.

    2002-01-01

    An antenna apparatus and method for building the antenna is disclosed. Impulse signals travel through a feed point of the antenna with respect to a ground plane. A geometric fin structure is connected to the feed point, and through a termination resistance to the ground plane. A geometric ridge structure connected to the ground is positioned with respect to the fin in order to receive and radiate electromagnetic energy from the impulse signal at a predetermined impedance and over a predetermined set of frequencies. The fin and ridge can be either a wire or a planar surface. The fin and ridge may be disposed within a radiation cavity such as a horn. The radiation cavity is constructed of stamped and etched metal sheets bent and then soldered together. The fin and ridge are also formed from metal sheets or wires. The fin is attached to the feed point and then to the cavity through a termination resistance. The ridge is attached to the cavity and disposed with respect to the fin in order to achieve a particular set of antenna characteristics.

  6. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done onmore » CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.« less

  7. Evolution of ground-state wave function in CeCoIn5 upon Cd or Sn doping

    NASA Astrophysics Data System (ADS)

    Chen, K.; Strigari, F.; Sundermann, M.; Hu, Z.; Fisk, Z.; Bauer, E. D.; Rosa, P. F. S.; Sarrao, J. L.; Thompson, J. D.; Herrero-Martin, J.; Pellegrin, E.; Betto, D.; Kummer, K.; Tanaka, A.; Wirth, S.; Severing, A.

    2018-01-01

    We present linear polarization-dependent soft-x-ray absorption spectroscopy data at the Ce M4 ,5 edges of Cd- and Sn-doped CeCoIn5. The 4 f ground-state wave functions have been determined for their superconducting, antiferromagnetic, and paramagnetic ground states. The absence of changes in the wave functions in CeCo (In1-xCdx) 5 suggests that the 4 f -conduction-electron (c f ) hybridization is not affected by global Cd doping, thus supporting the interpretation of magnetic droplets nucleating long-range magnetic order. This is contrasted by changes in the wave function due to Sn substitution. Increasing Sn in CeCo (In1-ySny) 5 compresses the 4 f orbitals into the tetragonal plane of these materials, suggesting enhanced c f hybridization with the in-plane In(1) atoms and a homogeneous altering of the electronic structure. As these experiments show, the 4 f wave functions are a very sensitive probe of small changes in the hybridization of 4 f and conduction electrons, even conveying information about direction dependencies.

  8. A transformation method for deriving from a photograph, position and heading of a vehicle in a plane

    NASA Technical Reports Server (NTRS)

    Sleeper, R. K.; Smith, E. G.

    1976-01-01

    Equations have been derived that transform perspectively viewed planar surface coordinates, as seen in a photograph, into coordinates of the original plane surface. These transformation equations are developed in terms of nine geometric variables that define the photographic setup and are redefined in terms of eight parameters. The parameters are then treated as independent quantities that fully characterize the transformation and are expressed directly in terms of the four corner coordinates of a reference rectangle in the object plane and their coordinates as seen in a photograph. Vehicle position is determined by transforming the perspectively viewed coordinate position of a representative vehicle target into runway coordinates. Vehicle heading is determined from the runway coordinates of two vehicle target points. When the targets are elevated above the plane of the reference grid, the computation of the heading angle is unaffected; however, the computation of the target position may require adjustment of two parameters. Methods are given for adjusting the parameters for elevation and an example is included for both nonelevated and elevated target conditions.

  9. High Resolution Analysis of Dyke Tips and Segments, Using Drones

    NASA Astrophysics Data System (ADS)

    Dering, G.; Micklethwaite, S.; Cruden, A. R.

    2016-12-01

    We analyse outstanding exposures of dykes from both coastal (Western Australia) and high altitude glacier-polished (Sierra Nevada, California) outcrops, representing intrusion at shallow upper-crustal and mid-crustal conditions respectively. We covered 10,000 m^2 of outcrop area sampling the ground at a scale of 3-5 mm per pixel. Using Structure-from-Motion photogrammetry from ground-based and UAV photographs lacking GPS camera positions (>500 images per study), we generated and calibrated a 3D geometry of dense point clouds by selectively using 25-30 ground control points measured by high precision GPS (40-90 mm error). Ground control points used in the photogrammetric model building process typically yielded a root mean square error (RMSE) of 5 cm. Half the ground control points were withheld from the model building process and when they were compared against the model they yielded RMSE values only 6-10% higher than the points used for georeferencing, suggesting good internal consistency of the dataset and accuracy relative to the reference frame, at least for the purposes of this study. The structural orientations of the dykes and associated fractures were then extracted digitally using the iterative Random Sample Consensus method (RANSAC) and least-squares plane fitting. Furthermore, fracture intensity relative to dykes was measured along a series of scanlines and the running average and variance calculated. All results were compared against field measurements. Results show fracture intensity increases toward the dykes in the shallow crustal examples (West Australia) but no such fractures exist around the mid-crustal (Californian) dykes. Despite this there is a remarkable uniformity of geometry, and by implication process, between the two dyke sets. In order to extract full value from the big visual data now available to us, the near-future requires dedicated research into software solutions for expert-driven, semi-automatic mapping of geology and structure.

  10. STIP VII: Four Neighboring Radio Paths Traverse the Northern Corona in 1979.

    DTIC Science & Technology

    1981-12-01

    1979 a unique -’fparade . of spacecraft could " be~eobserved. With reference to the ecliptic plane, Pioneer Saturn, Voyager 1 and Voyager 2 appeared...coincidence in August and September 1979. On viewing the sun and using as a horizon referenc, the ecliptic plane, viewers would have seen Pioneer Venus move...were all close together, (2) all in the same side of the ecliptic plane, and (3) moving in opposite directions through a somewhat narrow channel. 4 I

  11. Earth-Facing Antenna Characterization in Complex Ground Plane/Multipath Rich Environment

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth-Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been used successfully to characterize the NEN-LGA's in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned

  12. Earth-Facing Antenna Characterization in a Complex Ground Plane/Multipath Rich Environment

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational space environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been successfully used to characterize the NEN-LGAs in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned.

  13. Solar power satellite system definition study, phase 2. Volume 2: Reference system description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    System descriptions and cost estimates for the reference system of the solar power satellite program are presented. The reference system is divided into five principal elements: the solar power satellites; space construction and support; space and ground transportation; ground receiving stations; and operations control. The program scenario and non-recurring costs are briefly described.

  14. Conversational Grounding in Younger and Older Adults: The Effect of Partner Visibility and Referent Abstractness in Task-Oriented Dialogue

    ERIC Educational Resources Information Center

    Lysander, Katya; Horton, William S.

    2012-01-01

    Many communicative situations present interlocutors with the opportunity to use multiple modalities to establish shared perspectives on conversational referents, a process known as grounding. In the current study, we use a card-matching task to examine how conversational grounding in younger and older adults is influenced both by direct visual…

  15. Numerical analysis of propeller induced ground vortices by actuator disk model.

    PubMed

    Yang, Y; Veldhuis, L L M; Eitelberg, G

    2018-01-01

    During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the production of wall-parallel components of vorticity has a strong contribution from the wall-parallel components of the pressure gradient on the wall, which is generated by the action of the propulsor. This mechanism is a supplementation for the vorticity transported from the far-field boundary layer, which has been assumed the main vorticity source in a number of previous publications. Furthermore, the quantitative prediction of the occurrence of ground vortices is performed from the numerical results. As the distance of the propeller form the ground decreases, and as the thrust of the propeller increases, ground vortices are generated from the ground and enter the propeller. In addition, the vortices which exist near the ground but does not enter the propeller plane are observed and visualized by three-dimensional data.

  16. Breakdown in Atmospheric Pressure Plasma Jets: Nearby Grounds and Voltage Rise Time

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda; Kushner, Mark J.

    2015-09-01

    Atmospheric pressure plasma jets (APPJs) are being investigated to stimulate therapeutic responses in biological systems. These responses are not always consistent. One source of variability may be the design of the APPJs - the number and placement of electrodes, pulse power format - which affects the production of reactive species. In this study, the consequences of design parameters of an APPJ were computationally investigated using nonPDPSIM, a 2 d model. The configuration is a cylindrical tube with one or two ring exterior electrodes, with or without a center pin electrode. The APPJ operates in He/O2 flowing into humid air. We found that the placement of the electrical ground on and around the system is important to the breakdown characteristics of the APPJ, and the electron density and temperature of the resulting plasma. With a single powered ring electrode, the placement of the nearest ground may vary depending on the setup, and this significantly affects the discharge. With two-ring electrodes, the nearest ground plane is well defined, however more distant ground planes can also influence the discharge. With an ionization wave (IW) that propagates out of the tube and into the plume in tens of ns, the rise time of the voltage waveform can be on the same timescale, and so variations in the voltage rise time could produce different IW properties. The effect of ground placement and voltage waveform on IW formation (ns timescales) and production of reactive neutrals (ms timescales) will be discussed. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724). Done...processed 598 records...15:12:56

  17. Interactions of form and orientation

    NASA Technical Reports Server (NTRS)

    Mittelstaedt, Horst

    1989-01-01

    It is well known that the orientation of an optical pattern relative to egocentric or extraneous references affects its figural quality, that is, alters its perceived form and concomitantly delays or quickens its identification (Rock 1973). A square presented in the frontal plane to an upright person (S), for instance, changes from a box to a diamond when it is rotated with respect to the S's median plane by 45 deg. This angle, that is, the angle between the orientations of the pattern in which the two apparent figures (Gestalten) attain a summit of purity and distinctness, will be called the figural disparity of the pattern. If, as in this case, the S is upright, the retinal meridian and the subjective vertical (SV) are both in the viewer's median plane. The question arises with respect to which of these orientation references the two figures are identified. The answer may be found when the pattern and the S are oriented in such a way that the projections of the retinal meridian and the SV into the plane of the pattern diverge by the pattern's figural disparity or its periodic multiples: that is, in this case of a square by 45 or 135 deg, respectively. Similarly, which reference determines whether an equilateral triangle is seen as a pyramid or a traffic warning sign may be revealed at a divergence of SV and retinal meridian of 60 or 180 deg, respectively. It is generally found that for head roll tilts (Rho) and figural disparities of up to 90 deg, the figure whose axis coincides with the SV is seen. At head tilts of Rho=180 deg, however, the retinal reference dominates, as a rule independently of the figural disparity.

  18. Conductive Composites Made Less Expensively

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2005-01-01

    The use of electrically conductive composite structures for electrostatic dissipation, electromagnetic interference shielding, and ground return planes could save between 30 and 90 percent of the mass of the structure, in comparison to aluminum. One strategy that has been shown to make conducting composites effectively uses intercalated graphite fiber as the reinforcement. Intercalation--the insertion of guest atoms or molecules between the graphene planes--can lower the electrical resistivity of graphite fibers by as much as a factor of 10, without sacrificing mechanical or thermal properties.

  19. Modified Coaxial Probe Feeds for Layered Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Chu, Andrew W.; Dobbins, Justin A.; Lin, Greg Y.

    2006-01-01

    In a modified configuration of a coaxial probe feed for a layered printed-circuit antenna (e.g., a microstrip antenna), the outer conductor of the coaxial cable extends through the thickness of at least one dielectric layer and is connected to both the ground-plane conductor and a radiator-plane conductor. This modified configuration simplifies the incorporation of such radio-frequency integrated circuits as power dividers, filters, and low-noise amplifiers. It also simplifies the design and fabrication of stacked antennas with aperture feeds.

  20. National Aero-Space Plane (NASP) program

    NASA Technical Reports Server (NTRS)

    Tank, Ming H.

    1991-01-01

    A program to develop the technology for reusable airbreathing hypersonic/transatmospheric vehicles is addressed. Information on the following topics is presented in viewgraph form: (1) the National Aerospace Plane (NASP) program schedule; (2) the NASP program organization; (3) competitive strategy; (4) propulsion options; (5) wind tunnel data available for NASP; (6) ground track of envelope expansion; and (7) altitude vs. Mach number. A NASP/Space Shuttle comparison, NASP configuration matrix, and the propulsion concept of a high speed scramjet are also briefly addressed.

  1. Multiple sort flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  2. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  3. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  4. Mechanism for the occurrence of paramagnetic planes within magnetically ordered cerium systems

    NASA Astrophysics Data System (ADS)

    Kioussis, Nicholas; Cooper, Bernard R.; Banerjea, Amitava

    1988-11-01

    Hybridization of moderately delocalized f electrons with band electrons gives rise to a highly anisotropic two-ion interaction. Previously it has been shown that such an interaction explains the experimentally observed unusual magnetic behavior of CeBi, yielding a phase transition from a higher-temperature type-I (↑↓) to a lower-temperature type-IA (↑↑↓↓) antiferromagnetic structure. If the hybridization-mediated interaction is the key to understanding the magnetic behavior of such moderately delocalized f-electron systems, we should expect to be able to understand on this basis the even more unusual magnetic behavior of CeSb. In CeSb, there is a sequence of magnetic structures in which the higher-temperature structures involve a periodic stacking of paramagnetic \\{001\\} planes alternating with magnetically ordered \\{001\\} planes of [001]-moment alignment. In this paper we show that such a coexistence of paramagnetic and magnetically ordered Ce3+ sites can be understood on the basis of the hybridization-mediated interionic interaction when there are cubic crystal-field (CF) interactions of comparable strength. The tendency to form paramagnetic planes is found to increase with increasing CF strength (Γ7 ground state); and the stability of the up-down paramagnetic plane arrangement at high temperatures is shown to arise from the reconciliation of the magnetic ordering with the CF interactions. We also find that for a certain range of parameters a different novel situation occurs, with a fully nonmagnetic (singlet) ground state for the Ce3+ ion. This singlet state is not Kondo-like, and occurs in such a way that the system would be expected to fluctuate between two differently polarized states, one of which is the singlet state.

  5. The effect of tibiotalar alignment on coronal plane mechanics following total ankle replacement.

    PubMed

    Grier, A Jordan; Schmitt, Abigail C; Adams, Samuel B; Queen, Robin M

    2016-07-01

    Gait mechanics following total ankle replacement (TAR) have reported improved ankle motion following surgery. However, no studies have addressed the impact of preoperative radiographic tibiotalar alignment on post-TAR gait mechanics. We therefore investigated whether preoperative tibiotalar alignment (varus, valgus, or neutral) resulted in significantly different coronal plane mechanics or ground reaction forces post-TAR. We conducted a non-randomized study of 93 consecutive end-stage ankle arthritis patients. Standard weight-bearing radiographs were obtained preoperatively to categorize patients as having neutral (±4°), varus (≥5° of varus), or valgus (≥5° of valgus) coronal plane tibiotalar alignment. All patients underwent a standard walking assessment including three-dimensional lower extremity kinetics and kinematics preoperatively, 12 and 24 months postoperatively. A significant group by time interaction was observed for the propulsive vertical ground reaction force (vGRF), coronal plane hip range of motion (ROM) and the peak hip abduction moment. The valgus group demonstrated an increase in the peak knee adduction angle and knee adduction angle at heel strike when compared to the other groups. Coronal plane ankle ROM, knee and hip angles at heel strike, and the peak hip angle exhibited significant increases across time. Peak ankle inversion moment, peak knee abduction moment and the weight acceptance vGRF also exhibited significant increases across time. Neutral ankle alignment was achieved for all patients by 2 years following TAR. Restoration of neutral ankle alignment at the time of TAR in patients with preoperative varus or valgus tibiotalar alignment resulted in biomechanics similar to those of patients with neutral preoperative tibiotalar alignment by 24-month follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reduced size dual band pass filters for RFID applications with excellent bandpass/bandstop characteristics

    NASA Astrophysics Data System (ADS)

    Abdalla, M. A.; Choudhary, D. Kumar; Chaudhary, R. Kumar

    2018-02-01

    This paper presents the design of two reduced size dual-band metamaterial bandpass filters and its simulation followed by measurements of proposed filters. These filters are supporting different frequency bands and primarily could be utilize in radio frequency identification (RFID) application. The filter includes three cells in which two are symmetrical and both inductively coupled with the third cell which is present in between them. In the proposed designs, three different metamaterial composite right/left handed (CRLH) cell resonators have been analysed for compactness. The CRLH cell consists of an interdigital capacitor, a stub/meander line/spiral inductor and a via to connect the top of the structure and ground plane. Finally, the proposed dual band bandpass filters (using meander line and spiral inductor) are showing size reduction by 65% and 50% (with 25% operating frequency reduction), respectively, in comparison with reference filter using stub inductor. More than 30 dB attenuation has been achieved between the two passbands.

  7. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    NASA Astrophysics Data System (ADS)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  8. Analysis and Design of a Long Range PTFE Substrate UHF RFID Tag for Cargo Container Identification

    NASA Astrophysics Data System (ADS)

    Petrariu, Adrian-Ioan; Popa, Valentin

    2016-01-01

    In this paper, a high-performances microstrip antenna for UHF (ultra high frequency) RFID (radio frequency identification) tag is designed, prototyped and tested. The antenna consists of two main components: a 1.52 mm RT/duroid 5880 laminate substrate on which the antenna is designed and a 10 mm polytetrafluoroethylene (PTFE) dielectric material placed as a separator between the antenna and the reference ground plane for the microstrip antenna. With this structure, the RFID tag can reach a maximum reading distance of 19 m, although the antenna has a compact size of 80 mm × 50 mm. The long reading distance is obtained by attaching to the antenna an RFID chip that can provide a reading sensitivity of -20.5 dBm. The high bandwidth from 677 MHz to 947 MHz measured at -10 dB, makes the tag being usable worldwide especially for cargo container identification, the main purpose of this research.

  9. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    NASA Astrophysics Data System (ADS)

    Zhai, C.; Shao, M.; Saini, N. S.; Sandhu, J. S.; Werne, T. A.; Choi, P.; Ely, T. A.; Jacobs, C.; Lazio, J.; Martin-Mur, T. J.; Owen, W. K.; Preston, R. A.; Turyshev, S. G.

    2017-12-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package to be carried on the Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  10. New Ground Based facilities in QSO research; The GTC

    NASA Astrophysics Data System (ADS)

    Rodriguez Espinosa, J. M.

    New ground based observing opportunities are becoming, or about to become, available to astronomers for QSO research. These, combined with state of the art focal plane instruments, provide unprecedented sensitivity for detecting faint surface brightness features. During the talk I will take the liberty of talking about one of these new large telescope facilities currently being built in Spain, and will discuss some of the advantages for QSO research offered by these new facilities.

  11. Using the auxiliary camera for system calibration of 3D measurement by digital speckle

    NASA Astrophysics Data System (ADS)

    Xue, Junpeng; Su, Xianyu; Zhang, Qican

    2014-06-01

    The study of 3D shape measurement by digital speckle temporal sequence correlation have drawn a lot of attention by its own advantages, however, the measurement mainly for depth z-coordinate, horizontal physical coordinate (x, y) are usually marked as image pixel coordinate. In this paper, a new approach for the system calibration is proposed. With an auxiliary camera, we made up the temporary binocular vision system, which are used for the calibration of horizontal coordinates (mm) while the temporal sequence reference-speckle-sets are calibrated. First, the binocular vision system has been calibrated using the traditional method. Then, the digital speckles are projected on the reference plane, which is moved by equal distance in the direction of depth, temporal sequence speckle images are acquired with camera as reference sets. When the reference plane is in the first position and final position, crossed fringe pattern are projected to the plane respectively. The control points of pixel coordinates are extracted by Fourier analysis from the images, and the physical coordinates are calculated by the binocular vision. The physical coordinates corresponding to each pixel of the images are calculated by interpolation algorithm. Finally, the x and y corresponding to arbitrary depth value z are obtained by the geometric formula. Experiments prove that our method can fast and flexibly measure the 3D shape of an object as point cloud.

  12. Measurement of optical to electrical and electrical to optical delays with ps-level uncertainty.

    PubMed

    Peek, H Z; Pinkert, T J; Jansweijer, P P M; Koelemeij, J C J

    2018-05-28

    We present a new measurement principle to determine the absolute time delay of a waveform from an optical reference plane to an electrical reference plane and vice versa. We demonstrate a method based on this principle with 2 ps uncertainty. This method can be used to perform accurate time delay determinations of optical transceivers used in fiber-optic time-dissemination equipment. As a result the time scales in optical and electrical domain can be related to each other with the same uncertainty. We expect this method will be a new breakthrough in high-accuracy time transfer and absolute calibration of time-transfer equipment.

  13. Features of the photometry of the superposition of coherent vector electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Sakhnovskyj, Mykhajlo Yu.; Tymochko, Bogdan M.; Rudeichuk, Volodymyr M.

    2018-01-01

    In the paper we propose a general approach to the calculation of the forming the intensity and polarization fields of the superposition of arbitrary coherent vector beams at points of a given reference plane. The method of measuring photometric parameters of a field, formed in the neighborhood of an arbitrary point of the plane of analysis by minimizing the values of irradiance in the vicinity of a given point (method of zero-amplitude at a given point), which is achieved by superimposing on it the reference wave with the controlled values of intensity, polarization state, phase, and angle of incidence, is proposed.

  14. Dynamic Simulations for the Seismic Behavior on the Shallow Part of the Fault Plane in the Subduction Zone during Mega-Thrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Dorjapalam, S.; Dan, K.; Ogawa, S.; Watanabe, T.; Uratani, H.; Iwase, S.

    2012-12-01

    The 2011 Tohoku-Oki earthquake (M9.0) produced some distinct features such as huge slips on the order of several ten meters around the shallow part of the fault and different areas with radiating seismic waves for different periods (e.g., Lay et al., 2012). These features, also reported during the past mega-thrust earthquakes in the subduction zone such as the 2004 Sumatra earthquake (M9.2) and the 2010 Chile earthquake (M8.8), get attentions as the distinct features if the rupture of the mega-thrust earthquakes reaches to the shallow part of the fault plane. Although various kinds of observations for the seismic behavior (rupture process and ground motion characteristics etc.) on the shallow part of the fault plane during the mega-trust earthquakes have been reported, the number of analytical or numerical studies based on dynamic simulation is still limited. Wendt et al. (2009), for example, revealed that the different distribution of initial stress produces huge differences in terms of the seismic behavior and vertical displacements on the surface. In this study, we carried out the dynamic simulations in order to get a better understanding about the seismic behavior on the shallow part of the fault plane during mega-thrust earthquakes. We used the spectral element method (Ampuero, 2009) that is able to incorporate the complex fault geometry into simulation as well as to save computational resources. The simulation utilizes the slip-weakening law (Ida, 1972). In order to get a better understanding about the seismic behavior on the shallow part of the fault plane, some parameters controlling seismic behavior for dynamic faulting such as critical slip distance (Dc), initial stress conditions and friction coefficients were changed and we also put the asperity on the fault plane. These understandings are useful for the ground motion prediction for future mega-thrust earthquakes such as the earthquakes along the Nankai Trough.

  15. Residual settlements detection of ocean reclaimed lands with multi-platform SAR time series and SBAS technique: a case study of Shanghai Pudong International Airport

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Yang, Tianliang; Zhao, Qing; Pepe, Antonio; Dong, Hongbin; Sun, Zhibin

    2017-09-01

    Shanghai Pudong International airport is one of the three major international airports in China. The airport is located at the Yangtze estuary which is a sensitive belt of sea and land interaction region. The majority of the buildings and facilities in the airport are built on ocean-reclaimed lands and silt tidal flat. Residual ground settlement could probably occur after the completion of the airport construction. The current status of the ground settlement of the airport and whether it is within a safe range are necessary to be investigated. In order to continuously monitor the ground settlement of the airport, two Synthetic Aperture Radar (SAR) time series, acquired by X-band TerraSAR-X (TSX) and TanDEM-X (TDX) sensors from December 2009 to December 2010 and from April 2013 to July 2015, were used for analyzing with SBAS technique. We firstly obtained ground deformation measurement of each SAR subset. Both of the measurements show that obvious ground subsidence phenomenon occurred at the airport, especially in the second runway, the second terminal, the sixth cargo plane and the eighth apron. The maximum vertical ground deformation rates of both SAR subset measurements were greater than -30 mm/year, while the cumulative ground deformations reached up to -30 mm and -35 mm respectively. After generation of SBAS-retrieved ground deformation for each SAR subset, we performed a joint analysis to combine time series of each common coherent point by applying a geotechnical model. The results show that three centralized areas of ground deformation existed in the airport, mainly distributed in the sixth cargo plane, the fifth apron and the fourth apron, The maximum vertical cumulative ground subsidence was more than -70 mm. In addition, by analyzing the combined time series of four selected points, we found that the ground deformation rates of the points located at the second runway, the third runway, and the second terminal, were progressively smaller as time goes by. It indicates that the stabilities of the foundation around these points were gradually enhanced.

  16. Ground-Water Reconnaissance at Pinnacles National Monument, California

    USGS Publications Warehouse

    Evenson, R.E.

    1962-01-01

    Ground-water supplies at Pinnacles National Monument have been obtained from springs that occur in fractures and along bedding planes of volcanic flows and deposits, and from springs discharged from perched water in a sedimentary fanglomerate formation. The spring-water yield is barely adequate to supply existing camp facilities, and therefore a supplemental water supply is necessary before existing campgrounds can be expanded. This supplemental water can be supplied by good-quality ground water obtained from shallow wells drilled in the alluvium of Chalone Creek. The yield of properly constructed wells in this area should exceed 10 gallons per minute.

  17. Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Conducting Ground Plane in the Time Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Schiek, Richard

    2017-09-01

    This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a time-domain method based on transmission line theory that allows accounting for time-varying air conductivities. We implemented such method in a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared the frequency-domain version of ATLOG previously developed and to the circuit simulator Xyce in some instances. Intentionally Left Blank

  18. Spatial-heterodyne sampling requirements in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing

    NASA Astrophysics Data System (ADS)

    Banet, Matthias T.; Spencer, Mark F.

    2017-09-01

    Spatial-heterodyne interferometry is a robust solution for deep-turbulence wavefront sensing. With that said, this paper analyzes the focal-plane array sampling requirements for spatial-heterodyne systems operating in the off-axis pupil plane recording geometry. To assess spatial-heterodyne performance, we use a metric referred to as the field-estimated Strehl ratio. We first develop an analytical description of performance with respect to the number of focal-plane array pixels across the Fried coherence diameter and then verify our results with wave-optics simulations. The analysis indicates that at approximately 5 focal-plane array pixels across the Fried coherence diameter, the field-estimated Strehl ratios begin to exceed 0:9 which is indicative of largely diffraction-limited results.

  19. Packaging printed circuit boards: A production application of interactive graphics

    NASA Technical Reports Server (NTRS)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  20. User's manual for CBS3DS, version 1.0

    NASA Astrophysics Data System (ADS)

    Reddy, C. J.; Deshpande, M. D.

    1995-10-01

    CBS3DS is a computer code written in FORTRAN 77 to compute the backscattering radar cross section of cavity backed apertures in infinite ground plane and slots in thick infinite ground plane. CBS3DS implements the hybrid Finite Element Method (FEM) and Method of Moments (MoM) techniques. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity/slot and the triangular elements with the basis functions for MoM at the apertures. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials; due to MoM, the apertures can be of any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computer the code is intended to run.

  1. A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1990-01-01

    A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.

  2. Laser Doppler Velocimeter measurements in a 3-D impinging twin-jet fountain flow

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.

    1987-01-01

    Mean velocity and turbulence measurements were conducted on the three dimensional fountain flow field generated by the impingement of two axisymmetric jets on a ground plane with application to vertical takeoff and landing (VTOL) aircraft. The basic instantaneous velocity data were obtained using a two component laser Doppler velocimeter in a plane connecting the nozzle centerlines at different heights above the ground emphasizing the jet impingement region and the fountain upwash region formed by the collision of the wall jets. The distribution of mean velocity components and turbulence quantities, including the turbulence intensity and the Reynolds shear stress, were derived from the basic velocity data. Detailed studies of the characteristics of the fountain revealed self-similarity in the mean velocity and turbulence profiles across the fountain. The spread and mean velocity decay characteristics of the fountain were established. Turbulence intensities of the order of 50% were observed in the fountain.

  3. A Double-Negative Metamaterial-Inspired Mobile Wireless Antenna for Electromagnetic Absorption Reduction.

    PubMed

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2015-07-29

    A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a -10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane.

  4. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. Themore » optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.« less

  5. Laterally Placed CDRA with Triangular Notches for Ultra Wideband Applications

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Dileep; Venkata Kiran, Duggirala; Mukherjee, Biswajeet

    2017-12-01

    In this paper, a Coaxial probe-fed Laterally placed Cylindrical Dielectric Resonator Antenna (LCDRA) with symmetrical triangular notches is presented. The lateral surface of the Cylindrical Dielectric Resonator Antenna (CDRA) is kept on the ground plane with its longitudinal axis parallel to the ground plane. LCDRA has a lower resonant frequency than the CDRA and it offers considerably wider impedance bandwidth than CDRA. Finally, two symmetrical triangular notches are introduced on the two edges of LCDRA which is perpendicular to the axis to further improve the impedance bandwidth. The proposed antenna offers a wide impedance bandwidth (S_{11} <-10 dB) of 76.7 % (4.5-10.1 GHz). The radiation pattern of the proposed antenna is stable and broadside throughout the impedance bandwidth of operation. The prototype of the proposed antenna is fabricated and measured results are found to be in good agreement with the simulated one.

  6. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  7. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  8. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS)

    PubMed Central

    Kim, Kyeongseob; Lee, Dongju; Eom, Seunghyun; Lim, Sungjoon

    2016-01-01

    A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS). To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm) to 6.4 cm. PMID:27077861

  9. High-resolution Fourier transform infrared synchrotron spectroscopy of the NO2 in-plane rock band of nitromethane

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Twagirayezu, Sylvestre; Perry, David S.; Billinghurst, Brant E.

    2015-09-01

    The high-resolution rotationally resolved Fourier-transform infrared spectrum of the NO2 in-plane rock band (440-510 cm-1) of nitromethane (CH3NO2) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm-1. About 1773 transitions reaching the upper state levels m‧ = 0; Ka‧ ⩽ 7;J‧ ⩽ 50 have been assigned using an automated ground-state combination difference program together with the traditional Loomis-Wood approach. These data from the lowest torsional state, m‧ = 0, were fit using the six-fold torsion-rotation program developed by Ilyushin et al. (2010). The analysis reveals that the rotational energy level structure in the upper vibrational state is similar to that of the ground vibrational state, but the sign and magnitude of high-order constants are significantly changed suggesting the presence of multiple perturbations.

  10. High performance large infrared and visible astronomy arrays for low background applications: instruments performance data and future developments at Raytheon

    NASA Astrophysics Data System (ADS)

    Beuville, Eric; Acton, David; Corrales, Elizabeth; Drab, John; Levy, Alan; Merrill, Michael; Peralta, Richard; Ritchie, William

    2007-09-01

    Raytheon Vision Systems (RVS) has developed a family of high performance large format infrared detector arrays for astronomy and civil space applications. RVS offers unique off-the-shelf solutions to the astronomy community. This paper describes mega-pixel arrays, based on multiple detector materials, developed for astronomy and low-background applications. New focal plane arrays under development at RVS for the astronomy community will also be presented. Large Sensor Chip Assemblies (SCAs) using various detector materials like Si:PIN, HgCdTe, InSb, and Si:As IBC, covering a detection range from visible to large wavelength infrared (LWIR) have been demonstrated with an excellent quantum efficiency and very good uniformity. These focal plane arrays have been assembled using state-of-the-art low noise, low power, readout integrated circuits (ROIC) designed at RVS. Raytheon packaging capabilities address reliability, precision alignment and flatness requirements for both ground-based and space applications. Multiple SCAs can be packaged into even larger focal planes. The VISTA telescope, for example, contains sixteen 2k × 2k infrared focal plane arrays. RVS astronomical arrays are being deployed world-wide in ground-based and space-based applications. A summary of performance data for each of these array types from instruments in operation will be presented (VIRGO Array for large format SWIR, the ORION and VISTA Arrays, NEWFIRM and other solutions for MWIR spectral ranges).

  11. STS-4 landing at Edwards Air Foce Base, California

    NASA Technical Reports Server (NTRS)

    1982-01-01

    STS-4 landing at Edwards Air Foce Base, California. Actor Roy Rogers with Astronauts Jerry L. Ross, left, and Guy S. Gardner at Edwards for the STS-4 landing on July 1, 1982. Also present (behind Gardner at extreme right) was former Astronaut Edwin E. Aldrin, Jr. (33226); President Ronald Reagan and First Lady Nancy Reagan meet Astronauts Thomas K. Mattingly, II., right, and Henry W. Hartsfield, Jr., after the landing of the Columbia at Edwards (33227,33230); Space Shuttle Columbia, followed by two T-38 chase planes, touches down on Edwards Air Force Base's Runway 22 to complete mission. In this view, one chase plane appears to be directly above and behind the Columbia, whose nose wheels have not yet touched ground. The other plane appears to be further up front (33228); The rear wheels of the Columbia touch down on the Edwards AFB runway. There are no chase planes in sight in this photo (33229).

  12. Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Zhang, Jiaolong; Yang, Wuqiang

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technique for measuring the permittivity change of materials. Using a multi-plane ECT sensor, three-dimensional (3D) distribution of permittivity may be represented. In this paper, three excitation strategies, including single-electrode excitation, dual-electrode excitation in the same plane, and dual-electrode excitation in different planes are investigated by numerical simulation and experiment for two three-plane ECT sensors with 12 electrodes in total. In one sensor, the electrodes on the middle plane are in line with the others. In the other sensor, they are rotated 45° with reference to the other two planes. A linear back projection algorithm is used to reconstruct the images and a correlation coefficient is used to evaluate the image quality. The capacitance data and sensitivity distribution with each measurement strategy and sensor model are analyzed. Based on simulation and experimental results using noise-free and noisy capacitance data, the performance of the three strategies is evaluated.

  13. Analysis of Relative Parallelism Between Hamular-Incisive-Papilla Plane and Campers Plane in Edentulous Subjects: A Comparative Study.

    PubMed

    Tambake, Deepti; Shetty, Shilpa; Satish Babu, C L; Fulari, Sangamesh G

    2014-12-01

    The study was undertaken to evaluate the parallelism between hamular-incisive-papilla plane (HIP) and the Campers plane. And to determine which part of the posterior reference of the tragus i.e., the superior, middle or the inferior of the Camper's plane is parallel to HIP using digital lateral cephalograms. Fifty edentulous subjects with well formed ridges were selected for the study. The master casts were obtained using the standard selective pressure impression procedure. On the deepest point of the hamular notches and the centre of the incisive papilla stainless steel spherical bearings were glued to the cast at the marked points. The study templates were fabricated with autopolymerizing acrylic resin. The subjects were prepared for the lateral cephalograms. Stainless steel spherical bearings were adhered to the superior, middle, inferior points of the tragus of the ear and inferior border of the ala of the nose using surgical adhesive tape. The subjects with study templates were subjected to lateral cephalograms. Cephalometric tracings were done using Autocad 2010 software. Lines were drawn connecting the incisive papilla and hamular notch and the stainless steel spherical bearings placed on the superior, middle and inferior points on the tragus and the ala of the nose i.e., the Campers line S, Campers line M, Campers line I. The angles between the three Camper's line and the HIP were measured and recorded. Higher mean angulation was recorded in Campers line S -HIP (8.03) followed by Campers line M-HIP (4.60). Campers line I-HIP recorded the least angulation (3.80). The HIP is parallel to the Camper's plane. The Camper's plane formed with the posterior reference point as inferior point of the tragus is relatively parallel to the HIP.

  14. RCS measurements, transformations, and comparisons under cylindrical and plane wave illumination

    NASA Astrophysics Data System (ADS)

    Vokura, V. J.; Balanis, Constantine A.; Birtcher, Craig R.

    1994-03-01

    Monostatic RCS measurements of a long bar (at X-band) and of a scale model aircraft (at C-band) were performed under the quasi-plane wave illumination produced by a dual parabolic-cylinder CATR. At Arizona State University's ElectroMagnetic Anechoic Chamber (EMAC) facility, these measurements were repeated under the cylindrical wave illumination produced by a March Microwave Single-Plane Collimating Range (SPCR). The SPRC measurements were corrected using corrected using the 'reference target method.' The corrected SPCR measurements are in good agreement with the CATR measurements.

  15. On the role of constant-stress surfaces in the problem of minimizing elastic stress concentration

    NASA Technical Reports Server (NTRS)

    Wheeler, L.

    1976-01-01

    Cases involving antiplane shear deformation, axisymmetric torsion, and plane strain theory, with surfaces of constant stress magnitude optimal in terms of minimizing stress, are investigated. Results for the plane theory refer to exterior doubly connected domains. Stresses generated by torsion of an elastic solid lying within a radially convex region of revolution with plane ends, body force absent, and lateral surface traction-free, are examined. The unknown portion of the boundary of such domains may involve a hole, fillet, or notch.

  16. Micromaths: Removing Euclid from the Shackles.

    ERIC Educational Resources Information Center

    Oldknow, Adrian

    2000-01-01

    Attempts to lay the groundwork for a study of curves produced as loci using dynamic geometry. Provides some sketches of ways Cabri may be used to enhance the teaching of geometry with particular reference to synthetic plane Euclidean geometry, locus, and the conics. (Contains 26 references.) (ASK)

  17. Out-of-plane dynamic stability analysis of curved beams subjected to uniformly distributed radial loading

    NASA Astrophysics Data System (ADS)

    Sabuncu, M.; Ozturk, H.; Cimen; S.

    2011-04-01

    In this study, out-of-plane stability analysis of tapered cross-sectioned thin curved beams under uniformly distributed radial loading is performed by using the finite-element method. Solutions referred to as Bolotin's approach are analysed for dynamic stability, and the first unstable regions are examined. Out-of-plane vibration and out-of-plane buckling analyses are also studied. In addition, the results obtained in this study are compared with the published results of other researchers for the fundamental frequency and critical lateral buckling load. The effects of subtended angle, variations of cross-section, and dynamic load parameter on the stability regions are shown in graphics

  18. The persistence of directivity in small earthquakes

    USGS Publications Warehouse

    Boatwright, J.

    2007-01-01

    We derive a simple inversion of peak ground acceleration (PGA) or peak ground velocity (PGV) for rupture direction and rupture velocity and then test this inversion on the peak motions obtained from seven 3.5 ??? M ??? 4.1 earthquakes that occurred in two clusters in November 2002 and February 2003 near San Ramon, California. These clusters were located on two orthogonal strike-slip faults so that the events share the same approximate focal mechanism but not the same fault plane. Three earthquakes exhibit strong directivity, but the other four earthquakes exhibit relatively weak directivity. We use the residual PGAs and PGVs from the other six events to determine station corrections for each earthquake. The inferred rupture directions unambiguously identify the fault plane for the three earthquakes with strong directivity and for three of the four earthquakes with weak directivity. The events with strong directivity have fast rupture velocities (0.63????? v ??? 0.87??); the events with weak directivity either rupture more slowly (0.17????? v ???0.35??) or bilaterally. The simple unilateral inversion cannot distinguish between slow and bilateral ruptures: adding a bilateral rupture component degrades the fit of the rupture directions to the fault planes. By comparing PGAs from the events with strong and weak directivity, we show how an up-dip rupture in small events can distort the attenuation of peak ground motion with distance. When we compare the rupture directions of the earthquakes to the location of aftershocks in the two clusters, we find than almost all the aftershocks of the three earthquakes with strong directivity occur within 70?? of the direction of rupture.

  19. Ground reaction forces produced by two different hockey skating arm swing techniques.

    PubMed

    Hayward-Ellis, Julie; Alexander, Marion J L; Glazebrook, Cheryl M; Leiter, Jeff

    2017-10-01

    The arm swing in hockey skating can have a positive effect on the forces produced by each skate, and the resulting velocity from each push off. The main purpose of this study was to measure the differences in ground reaction forces (GRFs) produced from an anteroposterior versus a mediolateral style hockey skating arm swing. Twenty-four elite-level female hockey players performed each technique while standing on a ground-mounted force platform, and all trials were filmed using two video cameras. Force data was assessed for peak scaled GRFs in the frontal and sagittal planes, and resultant GRF magnitude and direction. Upper limb kinematics were assessed from the video using Dartfish video analysis software, confirming that the subjects successfully performed two distinct arm swing techniques. The mediolateral arm swing used a mean of 18.38° of glenohumeral flexion/extension and 183.68° of glenohumeral abduction/adduction while the anteroposterior technique used 214.17° and 28.97° respectively. The results of this study confirmed that the mediolateral arm swing produced 37% greater frontal plane and 33% less sagittal plane GRFs than the anteroposterior arm swing. The magnitudes of the resultant GRFs were not significantly different between the two techniques; however, the mediolateral technique produced a resultant GRF with a significantly larger angle from the direction of travel (44.44°) as compared to the anteroposterior technique (31.60°). The results of this study suggest that the direction of GRFs produced by the mediolateral arm swing more closely mimic the direction of lower limb propulsion during the skating stride.

  20. Quantitative characterization of spin-orbit torques in Pt/Co/Pt/Co/Ta/BTO heterostructures due to the magnetization azimuthal angle dependence

    NASA Astrophysics Data System (ADS)

    Engel, Christian; Goolaup, Sarjoosing; Luo, Feilong; Lew, Wen Siang

    2017-08-01

    Substantial understanding of spin-orbit interactions in heavy-metal (HM)/ferromagnet (FM) heterostructures is crucial in developing spin-orbit torque (SOT) spintronics devices utilizing spin Hall and Rashba effects. Though the study of SOT effective field dependence on the out-of-plane magnetization angle has been relatively extensive, the understanding of in-plane magnetization angle dependence remains unknown. Here, we analytically propose a method to compute the SOT effective fields as a function of the in-plane magnetization angle using the harmonic Hall technique in perpendicular magnetic anisotropy (PMA) structures. Two different samples with PMA, a Pt /Co /Pt /Co /Ta /BaTi O3 (BTO) test sample and a Pt/Co/Pt/Co/Ta reference sample, are studied using the derived formula. Our measurements reveal that only the dampinglike field of the test sample with a BTO capping layer exhibits an in-plane magnetization angle dependence, while no angular dependence is found in the reference sample. The presence of the BTO layer in the test sample, which gives rise to a Rashba effect at the interface, is ascribed as the source of the angular dependence of the dampinglike field.

  1. National and State Attitudes of US Adults Toward Tobacco-Free School Grounds, 2009-2010.

    PubMed

    Kruger, Judy; Patel, Roshni; Kegler, Michelle C; Brener, Nancy D; King, Brian A

    2015-12-31

    Schools are an important environment for addressing tobacco use among youth. Tobacco-free school policies can help reduce the social acceptability of tobacco use and prevent tobacco initiation among youth. This study assessed attitudes toward tobacco-free school grounds among US adults. Data came from the 2009-2010 National Adult Tobacco Survey, a telephone survey of adults aged 18 or older in the 50 US states and District of Columbia. Respondents were considered to have a favorable attitude toward tobacco-free school grounds if they reported tobacco use should be completely banned on school grounds, including fields and parking lots, and at all school events. Data were assessed using descriptive statistics and multivariable logistic regression, overall and by tobacco use status. Correlates were sex, age, race/ethnicity, education, marital status, income, sexual orientation, US region, and whether respondent lived with any children aged 17 years or younger. Nationally, 86.1% of adults had a favorable attitude toward tobacco-free school grounds, with larger percentages among nontobacco users (91.9%) than current users (76.1%). State prevalence ranged from 80.0% (Kentucky) to 90.9% (Washington). Overall odds of favorable attitudes were higher among nontobacco users (referent, current users), women (referent, men), and adults aged 25 or older (referent, aged 18-24); odds were lower among residents of the South (referent, West) and lesbian, gay, bisexual, or transgender adults (referent, heterosexual or straight). Nearly 9 in 10 US adults have a favorable attitude toward tobacco-free school grounds, but attitudes vary across states and subpopulations. Opportunities exist to educate the public about the benefits of tobacco-free school grounds, which might help reduce tobacco use among youth.

  2. The effect of sinusoidal rolling ground motion on lifting biomechanics.

    PubMed

    Ning, Xiaopeng; Mirka, Gary A

    2010-12-01

    The objective of this study was to quantify the effects of ground surface motion on the biomechanical responses of a person performing a lifting task. A boat motion simulator (BMS) was built to provide a sinusoidal ground motion (simultaneous vertical linear translation and a roll angular displacement) that simulates the deck motion on a small fishing boat. Sixteen participants performed lifting, lowering and static holding tasks under conditions of two levels of mass (5 and 10 kg) and five ground moving conditions. Each ground moving condition was specified by its ground angular displacement and instantaneous vertical acceleration: A): +6°, -0.54 m/s(2); B): +3°, -0.27 m/s(2); C): 0°, 0m/s(2); D): -3°, 0.27 m/s(2); and E): -6°, 0.54 m/s(2). As they performed these tasks, trunk kinematics were captured using the lumbar motion monitor and trunk muscle activities were evaluated through surface electromyography. The results showed that peak sagittal plane angular acceleration was significantly higher in Condition A than in Conditions C, D and E (698°/s(2) vs. 612-617°/s(2)) while peak sagittal plane angular deceleration during lowering was significantly higher in moving conditions (conditions A and E) than in the stationary condition C (538-542°/s(2) vs. 487°/s(2)). The EMG results indicate that the boat motions tend to amplify the effects of the slant of the lifting surface and the external oblique musculature plays an important role in stabilizing the torso during these dynamic lifting tasks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Evolution of ground-state wave function in CeCoIn 5 upon Cd or Sn doping

    DOE PAGES

    Chen, K.; Strigari, F.; Sundermann, M.; ...

    2018-01-17

    We present linear polarization-dependent soft-x-ray absorption spectroscopy data at the Ce M 4,5 edges of Cd- and Sn-doped CeCoIn 5. The 4f ground-state wave functions have been determined for their superconducting, antiferromagnetic, and paramagnetic ground states. The absence of changes in the wave functions in CeCo (In 1- xCd x) 5 suggests that the 4f-conduction-electron (c f) hybridization is not affected by global Cd doping, thus supporting the interpretation of magnetic droplets nucleating long-range magnetic order. This is contrasted by changes in the wave function due to Sn substitution. Increasing Sn in CeCo (In 1 - ySn y) 5 compressesmore » the 4f orbitals into the tetragonal plane of these materials, suggesting enhanced c f hybridization with the in-plane In(1) atoms and a homogeneous altering of the electronic structure. As these experiments show, the 4 f wave functions are a very sensitive probe of small changes in the hybridization of 4f and conduction electrons, even conveying information about direction dependencies.« less

  4. An analytic model for acoustic scattering from an impedance cylinder placed normal to an impedance plane

    NASA Astrophysics Data System (ADS)

    Swearingen, Michelle E.

    2004-04-01

    An analytic model, developed in cylindrical coordinates, is described for the scattering of a spherical wave off a semi-infinite reight cylinder placed normal to a ground surface. The motivation for the research is to have a model with which one can simulate scattering from a single tree and which can be used as a fundamental element in a model for estimating the attenuation in a forest comprised of multiple tree trunks. Comparisons are made to the plane wave case, the transparent cylinder case, and the rigid and soft ground cases as a method of theoretically verifying the model for the contemplated range of model parameters. Agreement is regarded as excellent for these benchmark cases. Model sensitivity to five parameters is also explored. An experiment was performed to study the scattering from a cylinder normal to a ground surface. The data from the experiment is analyzed with a transfer function method to yield frequency and impulse responses, and calculations based on the analytic model are compared to the experimental data. Thesis advisor: David C. Swanson Copies of this thesis written in English can be obtained from

  5. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  6. Evolution of ground-state wave function in CeCoIn 5 upon Cd or Sn doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Strigari, F.; Sundermann, M.

    We present linear polarization-dependent soft-x-ray absorption spectroscopy data at the Ce M 4,5 edges of Cd- and Sn-doped CeCoIn 5. The 4f ground-state wave functions have been determined for their superconducting, antiferromagnetic, and paramagnetic ground states. The absence of changes in the wave functions in CeCo (In 1- xCd x) 5 suggests that the 4f-conduction-electron (c f) hybridization is not affected by global Cd doping, thus supporting the interpretation of magnetic droplets nucleating long-range magnetic order. This is contrasted by changes in the wave function due to Sn substitution. Increasing Sn in CeCo (In 1 - ySn y) 5 compressesmore » the 4f orbitals into the tetragonal plane of these materials, suggesting enhanced c f hybridization with the in-plane In(1) atoms and a homogeneous altering of the electronic structure. As these experiments show, the 4 f wave functions are a very sensitive probe of small changes in the hybridization of 4f and conduction electrons, even conveying information about direction dependencies.« less

  7. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory.

    PubMed

    Egger, David A; Liu, Zhen-Fei; Neaton, Jeffrey B; Kronik, Leeor

    2015-04-08

    A key quantity for molecule-metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal-molecule interfaces. The method builds on the "DFT+Σ" approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule-metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.

  8. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    PubMed Central

    2015-01-01

    A key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors. PMID:25741626

  9. The position of the occlusal plane in natural and artificial dentitions as related to other craniofacial planes.

    PubMed

    Al Quran, Firas A M; Hazza'a, Abdalla; Al Nahass, Nabeel

    2010-12-01

    This study aimed at determining the most reliable ala-tragus line as a guide for the orientation of the occlusal plane in complete denture patients by use of cephalometric landmarks on dentate volunteers. Analysis was made for prosthodontically related craniofacial reference lines and angles of lateral cephalometric radiographs taken for 47 dentate adults. Variables were determined and data were analyzed using SPSS (SPSS, Inc., Chicago, IL). Occlusal plane angle formed between the occlusal plane and Camper's plane had the lowest mean value in the angle formed with Camper's I, which represents the measure taken from the superior border of the tragus of the ear with a score of 2.1°. The highest was measured in the angle formed with Camper's III with a score of 6.1°, while the angle formed with Camper's II was 3.2°. The differences between the three planes in relation to the occlusal plane was significant (p < 0.001). The superior border of the tragus with the inferior border of the ala of the nose was most accurate in orienting the occlusal plane. © 2010 by The American College of Prosthodontists.

  10. Magnetic domains in Tb-Fe-Co thin films under anisotropy tilt

    NASA Astrophysics Data System (ADS)

    Talapatra, A.; Umadevi, K.; Arout Chelvane, J.; Mohanty, J.; Jayalakshmi, V.

    2018-04-01

    Tailoring of magnetic domains of Tb-Fe-Co thin films with rapid thermal processing has been reported in this paper. While the as-deposited films show elongated, inter-connected domains with high out-of-plane magnetic phase contrast, the rapid thermal processed films at 550 °C with different time intervals display deterioration of magnetic contrast. A longitudinal extension of domains has been observed with the processing time of 5 min. With subsequent increase in processing time, the domain patterns exhibit considerable decrease in magnetic phase difference combined with strong intermixing between two oppositely magnetized areas. The out-of-plane magnetic contrast is seen to be very weak for the Tb-Fe-Co film processed for 30 min. The domain morphology and the contrast variation have been modeled with micromagnetic simulations, considering the in-plane (along xz plane) tilt of anisotropy axis. The ground state energy profile and the variation in magnetic properties indicate the threshold tilt angle to be around 30 ° wherein the in-plane and out-of-plane squareness ratio and coercivities are comparable and hence the system shows a spin re-orientation behavior at higher tilt angles.

  11. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 3,5-difluorophenol

    NASA Astrophysics Data System (ADS)

    Peng, Wei Chih; Wu, Pei Ying; Tzeng, Shen Yuan; Tzeng, Wen Bih

    2018-05-01

    The first electronic transition and adiabatic ionization energies of 3,5-difluorophenol (35DFP) have been identified as 37614 cm-1 and 72468 cm-1, respectively. These energy values of 35DFP are marginally higher than those of other positional isomers of difluorophenols (25DFP, 34DFP, and 24DFP). The observed active vibrations are primarily due to the in-plane and out-of-plane ring deformation and substituent-sensitive bending motions in the electronically excited (S1) and cationic ground (D0) states.

  12. Multiple sort flow cytometer

    DOEpatents

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  13. Aspects of scintillation modelling in LEO-ground free-space optical communications

    NASA Astrophysics Data System (ADS)

    Moll, Florian

    2017-10-01

    Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non-ideal tracking are also discussed. Eventually, satellite measurements are discussed together with model calculations. It is found that the model calculation with the modified HAP turbulence profile fits the measurements. The plane wave assumption is valid for calculation of scintillation. The flat earth model is accurate enough to model scintillation over elevation when using the extended Rytov theory. The effect of beam wander is negligible. Further work needs to be carried out to elaborate a new scintillation model from the measurements and theory.

  14. Chemicals and wildlife

    USGS Publications Warehouse

    DeWitt, J.B.; Springer, P.F.

    1957-01-01

    Short paper that reviews some of the facts about effects of insecticides on wildlife and states principles that should be followed for maximum safety in treatment. These principles include minimal doses, good ground-to-plane control to avoid overdoses, and least possible pollution of water areas.

  15. Chemicals and wildlife

    USGS Publications Warehouse

    DeWitt, J.B.; Springer, P.F.

    1958-01-01

    Short paper that reviews some of the facts about effects of insecticides on wildlife and states principles that should be followed for maximum safety in treatment. These principles include minimal doses, good ground-to-plane control to avoid overdoses, and least possible pollution of water areas.

  16. Giant slip lengths of a simple fluid at vibrating solid interfaces

    NASA Astrophysics Data System (ADS)

    Drezet, Aurélien; Siria, Alessandro; Huant, Serge; Chevrier, Joël

    2010-04-01

    It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev. Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime, the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results to those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nanoelectromechanical systems.

  17. Giant slip lengths of a simple fluid at vibrating solid interfaces.

    PubMed

    Drezet, Aurélien; Siria, Alessandro; Huant, Serge; Chevrier, Joël

    2010-04-01

    It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev. Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime, the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results to those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nanoelectromechanical systems.

  18. Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Itotia, Isaac K.; Drayton, Rhonda Franklin

    2003-01-01

    Measured and modeled propagation characteristics of Finite Ground Coplanar (FGC) waveguide fabricated on a 15 ohm-cm Si substrate with a 23 micron thick, 68% porous Si layer and a 20 micron thick polyimide interface layer are presented for the first time. Attenuation and effective permittivity as function of the FGC geometry and the bias between the center conductor and the ground planes are presented. It is shown that the porous Si reduces the attenuation by 1 dB/cm compared to FGC lines with only polyimide interface layers, and the polyimide on porous silicon demonstrates negligible bias dependence.

  19. A plane-polar approach for far-field construction from near-field measurements. [of large space-craft antennas

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.; Galindo-Israel, V.; Mittra, R.

    1980-01-01

    The planar configuration with a probe scanning a polar geometry is discussed with reference to its usefulness in the determination of a far field from near-field measurements. The accuracy of the method is verified numerically, using the concept of probe compensation as a vector deconvolution. Advantages of the Jacobi-Bessel series over the fast Fourier transforms for the plane-polar geometry are demonstrated. Finally, the far-field pattern of the Viking high gain antenna is constructed from the plane-polar near-field measured data and compared with the previously measured far-field pattern.

  20. Quasidynamic calibration of stroboscopic scanning white light interferometer with a transfer standard

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Kassamakov, Ivan; Heikkinen, Ville; Nolvi, Anton; Paulin, Tor; Lassila, Antti; Hæggström, Edward

    2013-12-01

    A stroboscopic scanning white light interferometer (SSWLI) can characterize both static features and motion in micro(nano)electromechanical system devices. SSWLI measurement results should be linked to the meter definition to be comparable and unambiguous. This traceability is achieved by careful error characterization and calibration of the interferometer. The main challenge in vertical scale calibration is to have a reference device with reproducible out-of-plane movement. A piezo-scanned flexure guided stage with capacitive sensor feedback was attached to a mirror and an Invar steel holder with a reference plane-forming a transfer standard that was calibrated by laser interferometry with 2.3 nm uncertainty. The moving mirror vertical position was then measured with the SSWLI, relative to the reference plane, between successive mirror position steppings. A light-emitting diode pulsed at 100 Hz with 0.5% duty cycle synchronized to the CCD camera and a halogen light source were used. Inside the scanned 14 μm range, the measured SSWLI scale amplification coefficient error was 0.12% with 4.5 nm repeatability of the steps. For SWLI measurements using a halogen lamp, the corresponding results were 0.05% and 6.7 nm. The presented methodology should permit accurate traceable calibration of the vertical scale of any SWLI.

  1. The Debate is Over: Close Air Support in Korea and Vietnam

    DTIC Science & Technology

    2011-05-03

    F4U Corsair became Marine aviation’s plane of choice. Early models of the Corsair were formidable fighter aircraft best suited for the air...superiority role. By 1944, the Marine Corps made a deliberate effort to transform the Corsair from a fighter to a multi-role fighter- bomber. As such, the F4U...installation of a ten-channel radio facilitated better communications with ground forces. The upgraded Corsair was such an effective ground attack platform

  2. Electromagnetic pulse excitation of finite- and infinitely-long lossy conductors over a lossy ground plane

    DOE PAGES

    Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.; ...

    2017-01-13

    This study details a model for the response of a finite- or an infinite-length wire interacting with a conducting ground to an electromagnetic pulse excitation. We develop a frequency–domain method based on transmission line theory that we name ATLOG – Analytic Transmission Line Over Ground. This method is developed as an alternative to full-wave methods, as it delivers a fast and reliable solution. It allows for the treatment of finite or infinite lossy, coated wires, and lossy grounds. The cases of wire above ground, as well as resting on the ground and buried beneath the ground are treated. The reportedmore » method is general and the time response of the induced current is obtained using an inverse Fourier transform of the current in the frequency domain. The focus is on the characteristics and propagation of the transmission line mode. Comparisons with full-wave simulations strengthen the validity of the proposed method.« less

  3. Electromagnetic pulse excitation of finite- and infinitely-long lossy conductors over a lossy ground plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.

    This study details a model for the response of a finite- or an infinite-length wire interacting with a conducting ground to an electromagnetic pulse excitation. We develop a frequency–domain method based on transmission line theory that we name ATLOG – Analytic Transmission Line Over Ground. This method is developed as an alternative to full-wave methods, as it delivers a fast and reliable solution. It allows for the treatment of finite or infinite lossy, coated wires, and lossy grounds. The cases of wire above ground, as well as resting on the ground and buried beneath the ground are treated. The reportedmore » method is general and the time response of the induced current is obtained using an inverse Fourier transform of the current in the frequency domain. The focus is on the characteristics and propagation of the transmission line mode. Comparisons with full-wave simulations strengthen the validity of the proposed method.« less

  4. 48 CFR 217.171 - Multiyear contracts for services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... agency may enter into multiyear contracts for supplies and services required for management, maintenance..., maintenance, and support of facilities and installations. (ii) Maintenance or modification of aircraft, ships... services (e.g., ground maintenance, in-plane refueling, bus transportation, and refuse collection and...

  5. 16 CFR 1512.17 - Other requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Other requirements. 1512.17 Section 1512.17 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... the ground plane. (d) Toe clearance. Bicycles not equipped with positive foot-retaining devices (such...

  6. 16 CFR 1204.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY... addition to the definitions given in section 3 of the Consumer Product Safety Act (15 U.S.C. 2052), the..., ground plane elements, matching networks, element-connecting hardware, mounting hardware, feed cable, and...

  7. Fourier transform synchrotron spectroscopy of the in-plane methyl-rocking band of CD3OH

    NASA Astrophysics Data System (ADS)

    Lees, R. M.; Xu, Li-Hong; Gao, Song; Billinghurst, B. E.

    2015-09-01

    Infrared Fourier transform spectra of the 12CD3OH isotopologue of methanol recorded at the Canadian Light Source synchrotron have been investigated in the 750-950 cm-1 region to explore the torsional energy pattern of the in-plane methyl-rocking mode. The in-plane CD3-rocking band is primarily of parallel a-type character with relatively widely spaced K-structure, and the central Q-branch region is well-resolved. Sub-bands have been assigned for the vt = 0 ground torsional state from K = 0 to 15 for both A and E torsional species, as well as a number of sub-bands in the vt = 1 excited torsional state. A variety of perturbations due to asymmetry-induced, anharmonic Fermi and level-crossing resonances is seen in the spectra. Mapping of K-reduced torsional energies determined from the upper-state term values shows that the K-dependence is severely distorted from the usual pattern of smoothly oscillating, near-sinusoidal interlocking τ-curves. Although the K = 0 levels are nominally inverted for vt = 0, the torsional splitting is very small with the A level higher than the E level by only 0.625 cm-1, and the anomalous behavior precludes a definite conclusion about torsional inversion. However, the range of variation with K of the vt = 0 CD3-rocking τ-curves is about half that of the ground vibrational state, similar to previous observations for CH3OH isotopologues, suggesting a comparable reduction of about 25% in the effective torsional barrier height for the in-plane rocking mode.

  8. Mid-callosal plane determination using preferred directions from diffusion tensor images

    NASA Astrophysics Data System (ADS)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  9. [The effect of mandibular distraction on the maxilla growth in children with hemifacial microsomia].

    PubMed

    Yang, Renkai; Tang, Xiaojun; Shi, Lei; Yin, Lin; Yang, Bin; Yin, Hongyu; Liu, Wei; Zhang, Zhiyong

    2014-11-01

    To analyze the effect of mandibular distraction on the maxilla growth in children with hemifacial microsomia through measurement with the posterior-anterior cephalometric X-ray films and Three-dimensional CT reconstruction images. The deviation angular of maxilla occlusion plane and nasal base plane from the infra-orbital plane were measured on the posterior-anterior cephalometric X-ray films in 22 patients before and half a year after operation. The vertical distance from the midpoint of 5th teeth alveolar and the lowest point of maxillary sinus to reference plane were measured on 3D reconstruction images in 15 patients. The data were statistically analyzed. On posterior-anterior cephalometric X-ray films, the cant of occlusion plane were significantly reduced (P < 0.05), While the angular of nasal base plane and the infra-orbital plane had no significant change. On 3D reconstruction images, all the detection points had significantly declined except the lowest point of maxillary sinus on normal side. Distraction osteogenesis of mandible can promote the growth of the maxilla in children with HFM, the accelerated growth parts include alveolar bone and maxillary sinus.

  10. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  11. A source model of the 2014 South Napa Earthquake by the EGF broad-band strong ground motion simulation

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Asano, K.; Kubo, H.

    2014-12-01

    The source model of the 2014 South Napa earthquake (Mw6.0) is estimated using broad band strong ground motion simulation by the empirical Green's function method (Irikura, 1986, Irikura et al., 1997). We used the CESMD strong motion data. Aftershock ground motion records of Mw3.6 which occurred at 05:33 on 24th August (PDT), are used as an empirical Green's function. We refer to the finite source model by Dreger et al. (2014) for setting the geometry of the source fault plane and the rupture velocity. We assume a single rectangular strong motion generation area (e.g. Miyake et al., 2003; Asano and Iwata, 2012). The seismic moment ratio between the target and EGF events is fixed from the moment magnitudes. As only five station data are available for the aftershock records, the size of SMGA area, rupture starting point, and the rise time on the SMGA are determined by the trial and error. Preliminary SMGA model is 6x6km2 and the rupture mainly propagates WNW and shallower directions. The SMGA size we obtained follows the empirical relationship of Mw and SMGA size for the inland crustal events (Irikura and Miyake, 2011). Waveform fittings are fairly well at the near source station NHC (Huichica creek) and 68150 (Napa Collage), where as the fitting is not good at the south-side stations, 68206 (Crockett - Carquinez Br. Geotech Array) and 68310 (Vallejo - Hwy 37/Napa River E Geo. Array). Particularly, we did not succeed in explaining the high PGA at the 68206 surface station. We will try to improve our SMGA model and will discuss the origin of the high PGA observed at that station.

  12. Rupture process and strong ground motions of the 2007 Niigataken Chuetsu-Oki earthquake -Directivity pulses striking the Kashiwazaki-Kariwa Nuclear Power Plant-

    NASA Astrophysics Data System (ADS)

    Irikura, K.; Kagawa, T.; Miyakoshi, K.; Kurahashi, S.

    2007-12-01

    The Niigataken Chuetsu-Oki earthquake occurred on July 16, 2007, northwest-off Kashiwazaki in Niigata Prefecture, Japan, causing severe damages of ten people dead, about 1300 injured, about 1000 collapsed houses and major lifelines suspended. In particular, strong ground motions from the earthquake struck the Kashiwazaki-Kariwa nuclear power plant (hereafter KKNPP), triggering a fire at an electric transformer and other problems such as leakage of water containing radioactive materials into air and the sea, although the radioactivity levels of the releases are as low as those of the radiation which normal citizens would receive from the natural environment in a year. The source mechanism of this earthquake is a reverse fault, but whether it is the NE-SW strike and NW dip or the SW-NE strike and SE dip are still controversial from the aftershock distribution and geological surveys near the source. Results of the rupture processes inverted by using the GPS and SAR data, tsunami data and teleseismic data so far did not succeed in determining which fault planes moved. Strong ground motions were recorded at about 390 stations by the K-NET of NIED including the stations very close to the source area. There was the KKNPP which is probably one of buildings and facilities closest to the source area. They have their own strong motion network with 22 three-components' accelerographs locating at ground-surface, underground, buildings and basements of reactors. The PGA attenuation-distance relationships made setting the fault plane estimated from the GPS data generally follow the empirical relations in Japan, for example, Fukushima and Tanaka (1990) and Si and Midorikawa (1999), even if either fault plane, SE dip or NW dip, is assumed. However, the strong ground motions in the site of the KKNPP had very large accelerations and velocities more than those expected from the empirical relations. The surface motions there had the PGA of more than 1200 gals and even underground motions at the basements of the reactors locating five stories below the ground had the PGA of 680 gals. We simulated ground motions using the characterized source model (Kamae and Irikura, 1998) with three asperities and the empirical Green's function method (Irikura, 1986). Then, we found that the source model should be a reverse fault with the NE-SW strike and NW dip to explain the strong motion records obtained near the source area. In particular, strong ground motions in the site of the KKNPP had three significant pulses which are generated as directivity pulses in forward direction of rupture propagation. This is the reason why the strong ground motions in the site of the KKNPP had very large accelerations and velocities. The source model is also verified comparing the observed records at the KKNPP with the numerical simulations by the discrete wavenumber method (Bouchon, 1981).

  13. Analyzing Forest Inventory Data from Geo-Located Photographs

    NASA Astrophysics Data System (ADS)

    Toivanen, Timo; Tergujeff, Renne; Andersson, Kaj; Molinier, Matthieu; Häme, Tuomas

    2015-04-01

    Forests are widely monitored using a variety of remote sensing data and techniques. Remote sensing offers benefits compared to traditional in-situ forest inventories made by experts. One of the main benefits is that the number of ground reference plots can be significantly reduced. Remote sensing of forests can provide reduced costs and time requirement compared to full forest inventories. The availability of ground reference data has been a bottleneck in remote sensing analysis over wide forested areas, as the acquisition of this data is an expensive and slow process. In this paper we present a tool for estimating forest inventory data from geo-located photographs. The tool can be used to estimate in-situ forest inventory data including estimated biomass, tree species, tree height and diameter. The collected in-situ forest measurements can be utilized as a ground reference material for spaceborne or airborne remote sensing data analysis. The GPS based location information with measured forest data makes it possible to introduce measurements easily as in-situ reference data. The central projection geometry of digital photographs allows the use of the relascope principle [1] to measure the basal area of stems per area unit, a variable very closely associated with tree biomass. Relascope is applied all over the world for forest inventory. Experiments with independent ground reference data have shown that in-situ data analysed from photographs can be utilised as reference data for satellite image analysis. The concept was validated by comparing mobile measurements with 54 independent ground reference plots from the Hyytiälä forest research station in Finland [2]. Citizen scientists could provide the manpower for analysing photographs from forests on a global level and support researchers working on tasks related to forests. This low-cost solution can also increase the coverage of forest management plans, particularly in regions where possibilities to invest on expensive planning work are limited. References [1] Bitterlich, W. (1984) The Relascope Idea: Relative Measurements in Forestry, Commonwealth Agricultural Bureaux, Farnham Royal, 1984. [2] Molinier, M., Hame, T., Toivanen, T., Andersson, K., Mutanen, T., Relasphone -- Mobile phone and interactive applications to collect ground reference biomass data for satellite image analysis, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, pp. 836-839, 13-18 July 2014, doi: 10.1109/IGARSS.2014.6946554

  14. Vertically integrated visible and near-infrared metasurfaces enabling an ultra-broadband and highly angle-resolved anomalous reflection.

    PubMed

    Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2018-06-21

    An optical device with minimized dimensions, which is capable of efficiently resolving an ultra-broad spectrum into a wide splitting angle but incurring no spectrum overlap, is of importance in advancing the development of spectroscopy. Unfortunately, this challenging task cannot be easily addressed through conventional geometrical or diffractive optical elements. Herein, we propose and demonstrate vertically integrated visible and near-infrared metasurfaces which render an ultra-broadband and highly angle-resolved anomalous reflection. The proposed metasurface capitalizes on a supercell that comprises two vertically concatenated trapezoid-shaped aluminum antennae, which are paired with a metallic ground plane via a dielectric layer. Under normal incidence, reflected light within a spectral bandwidth of 1000 nm ranging from λ = 456 nm to 1456 nm is efficiently angle-resolved to a single diffraction order with no spectrum overlap via the anomalous reflection, exhibiting an average reflection efficiency over 70% and a substantial angular splitting of 58°. In light of a supercell pitch of 1500 nm, to the best of our knowledge, the micron-scale bandwidth is the largest ever reported. It is noted that the substantially wide bandwidth has been accomplished by taking advantage of spectral selective vertical coupling effects between antennae and ground plane. In the visible regime, the upper antenna primarily renders an anomalous reflection by cooperating with the lower antenna, which in turn cooperates with the ground plane and produces phase variations leading to an anomalous reflection in the near-infrared regime. Misalignments between the two antennae have been particularly inspected to not adversely affect the anomalous reflection, thus guaranteeing enhanced structural tolerance of the proposed metasurface.

  15. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    NASA Astrophysics Data System (ADS)

    Jimenez V., Reina A.

    2007-10-01

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called "isodoses" as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named "cloud") that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  16. Development of Ground Reference GIS for Assessing Land Cover Maps of Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Warner, Amanda; Terrie, Greg; Davis, Bruce

    2001-01-01

    GIS technology and ground reference data often play vital roles in assessing land cover maps derived from remotely sensed data. This poster illustrates these roles, using results from a study done in Northeast Yellowstone National Park. This area holds many forest, range, and wetland cover types of interest to park managers. Several recent studies have focused on this locale, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project performed by Yellowstone Ecosystems Studies (YES) on riparian and in-stream habitat mapping. This poster regards a spin-off to the EOCAP project in which YES and NASA's Earth Science Applications Directorate explored the potential for synergistic use of hyperspecral, synthetic aperture radar, and multiband thermal imagery in mapping land cover types. The project included development of a ground reference GIS for site-specific data needed to evaluate maps from remotely sensed imagery. Field survey data included reflectance of plant communities, native and exotic plant species, and forest health conditions. Researchers also collected GPS points, annotated aerial photographs, and took hand held photographs of reference sites. The use of ESRI, ERDAS, and ENVI software enabled reference data entry into a GIS for comparision to georeferenced imagery and thematic maps. The GIS-based ground reference data layers supported development and assessment of multiple maps from remotely sensed data sets acquired over the study area.

  17. Reflection holograms using peristrophic multiplexing

    NASA Astrophysics Data System (ADS)

    Sayeh, Mohammed R.; Jeong, Y.

    2000-07-01

    In this paper, we consider a peristrophic multiplexing for reflection holograms. This type of multiplexing the rotation of either the material or the reference beam causes the grating vector to be off the plane of the reference and image beams. In the case of reflection hologram, we developed a relationship for the angular selectivity which is verified experimentally.

  18. A method of camera calibration in the measurement process with reference mark for approaching observation space target

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zeng, Luan

    2017-11-01

    Binocular stereoscopic vision can be used for space-based space targets near observation. In order to solve the problem that the traditional binocular vision system cannot work normally after interference, an online calibration method of binocular stereo measuring camera with self-reference is proposed. The method uses an auxiliary optical imaging device to insert the image of the standard reference object into the edge of the main optical path and image with the target on the same focal plane, which is equivalent to a standard reference in the binocular imaging optical system; When the position of the system and the imaging device parameters are disturbed, the image of the standard reference will change accordingly in the imaging plane, and the position of the standard reference object does not change. The camera's external parameters can be re-calibrated by the visual relationship of the standard reference object. The experimental results show that the maximum mean square error of the same object can be reduced from the original 72.88mm to 1.65mm when the right camera is deflected by 0.4 degrees and the left camera is high and low with 0.2° rotation. This method can realize the online calibration of binocular stereoscopic vision measurement system, which can effectively improve the anti - jamming ability of the system.

  19. Situational Behavior Modeling

    DTIC Science & Technology

    2009-06-30

    VIStology, Inc. June 30, 2009 Page 16 Figure 3. Situations and Perception Figure 3 shows four planes, each referring to a different level...the computer, as shown in the figure. The next layer is denoted as “ Perception .” The dots on this plane represent objects from the World that are...which then feeds the computer, which in turn generates the object representations. The label “ Perception ” represents the fact that this kind of

  20. Quantitative Analysis of Bone Microstructure Using Tomosynthesis

    DTIC Science & Technology

    2013-10-01

    resolution of separation, thickness, distances, in-plane and out-of-plane geometric distortion, and density linearity. 5 To assess the minimum spacing... geometric accuracy phantom was created using four 1 mm beads, placed in four corners at 35 mm apart (Figure 1f). An embedded human vertebra was also...included in the phantom as a realistic reference material (Figure 1g). Figure 1: Tray of phantoms to assess DTS resolution, geometric distortion

  1. Quantitative Analysis of Bone Microstructure Using Tomosynthesis

    DTIC Science & Technology

    2012-10-01

    resolution of separation, thickness, distances, in-plane and out-of-plane geometric distortion, and density linearity. To assess the minimum spacing...volume, a geometric accuracy phantom was created using four 1 mm beads, placed in four corners at 35 mm apart (Figure 1f). An embedded human vertebra...was also included in the phantom as a realistic reference material (Figure 1g). Figure 1: Tray of phantoms to assess DTS resolution, geometric

  2. Acquisition and replay systems for direct-to-digital holography and holovision

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2003-02-25

    Improvements to the acquisition and replay systems for direct-to-digital holography and holovision are described. A method of recording an off-axis hologram includes: splitting a laser beam into an object beam and a reference beam; reflecting the reference beam from a reference beam mirror; reflecting the object beam from an illumination beamsplitter; passing the object beam through an objective lens; reflecting the object beam from an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form an off-axis hologram; digitally recording the off-axis hologram; and transforming the off-axis hologram in accordance with a Fourier transform to obtain a set of results. A method of writing an off-axis hologram includes: passing a laser beam through a spatial light modulator; and focusing the laser beam at a focal plane of a photorefractive crystal to impose a holographic diffraction grating pattern on the photorefractive crystal. A method of replaying an off-axis hologram includes: illuminating a photorefractive crystal having a holographic diffraction grating with a replay beam.

  3. Single-exposure color digital holography

    NASA Astrophysics Data System (ADS)

    Feng, Shaotong; Wang, Yanhui; Zhu, Zhuqing; Nie, Shouping

    2010-11-01

    In this paper, we report a method for color image reconstruction by recording only one single multi-wavelength hologram. In the recording process, three lasers of different wavelengths emitting in the red, green and blue regions are used for illuminating on the object and the object diffraction fields will arrive at the hologram plane simultaneously. Three reference beams with different spatial angles will interfere with the corresponding object diffraction fields on the hologram plane, respectively. Finally, a series of sub-holograms incoherently overlapped on the CCD to be recorded as a multi-wavelength hologram. Angular division multiplexing is employed to reference beams so that the spatial spectra of the multiple recordings will be separated in the Fourier plane. In the reconstruction process, the multi-wavelength hologram will be Fourier transformed into its Fourier plane, where the spatial spectra of different wavelengths are separated and can be easily extracted by employing frequency filtering. The extracted spectra are used to reconstruct the corresponding monochromatic complex amplitudes, which will be synthesized to reconstruct the color image. For singleexposure recording technique, it is convenient for applications on the real-time image processing fields. However, the quality of the reconstructed images is affected by speckle noise. How to improve the quality of the images needs for further research.

  4. The visible ground surface as a reference frame for scaling binocular depth of a target in midair

    PubMed Central

    WU, JUN; ZHOU, LIU; SHI, PAN; HE, ZIJIANG J; OOI, TENG LENG

    2014-01-01

    The natural ground surface carries texture information that extends continuously from one’s feet to the horizon, providing a rich depth resource for accurately locating an object resting on it. Here, we showed that the ground surface’s role as a reference frame also aids in locating a target suspended in midair based on relative binocular disparity. Using real world setup in our experiments, we first found that a suspended target is more accurately localized when the ground surface is visible and the observer views the scene binocularly. In addition, the increased accuracy occurs only when the scene is viewed for 5 sec rather than 0.15 sec, suggesting that the binocular depth process takes time. Second, we found that manipulation of the configurations of the texture-gradient and/or linear-perspective cues on the visible ground surface affects the perceived distance of the suspended target in midair. Third, we found that a suspended target is more accurately localized against a ground texture surface than a ceiling texture surface. This suggests that our visual system usesthe ground surface as the preferred reference frame to scale the distance of a suspended target according to its relative binocular disparity. PMID:25384237

  5. The positive side of a negative reference: the delay between linguistic processing and common ground

    PubMed Central

    Noveck, Ira; Rivera, Natalia; Jaume-Guazzini, Francisco

    2017-01-01

    Interlocutors converge on names to refer to entities. For example, a speaker might refer to a novel looking object as the jellyfish and, once identified, the listener will too. The hypothesized mechanism behind such referential precedents is a subject of debate. The common ground view claims that listeners register the object as well as the identity of the speaker who coined the label. The linguistic view claims that, once established, precedents are treated by listeners like any other linguistic unit, i.e. without needing to keep track of the speaker. To test predictions from each account, we used visual-world eyetracking, which allows observations in real time, during a standard referential communication task. Participants had to select objects based on instructions from two speakers. In the critical condition, listeners sought an object with a negative reference such as not the jellyfish. We aimed to determine the extent to which listeners rely on the linguistic input, common ground or both. We found that initial interpretations were based on linguistic processing only and that common ground considerations do emerge but only after 1000 ms. Our findings support the idea that—at least temporally—linguistic processing can be isolated from common ground. PMID:28386440

  6. Role of electron filling in the magnetic anisotropy of monolayer WSe2 doped with 5 d transition metals

    NASA Astrophysics Data System (ADS)

    Song, Yan; Wang, Xiaocha; Mi, Wenbo

    2017-12-01

    Exploring magnetic anisotropy (MA) in single-atom-doped two-dimensional materials provides a viable ground for realizing information storage and processing at ultimate length scales. Herein, the MA of 5 d transition-metal doped monolayer WSe2 is investigated by first-principles calculations. Large MA energy (MAE) is achieved in several doping systems. The direction of MA is determined by the dopant in-plane d states in the vicinity of the Fermi level in line with previous studies. An occupation rule that the parity of the occupation number of the in-plane d orbital of the dopant determines the preference between in-plane and out-of-plane anisotropy is found in this 5 d -doped system. Furthermore, this rule is understood by second-order perturbation theory and proved by charge-doping analysis. Considering relatively little research on two-dimensional MA and not sufficiently large MAE, suitable contact medium dopant pairs with large MAE and tunable MA pave the way to novel data storage paradigms.

  7. Pilot-in-the-Loop CFD Method Development

    DTIC Science & Technology

    2017-02-01

    Penn State University. All software supporting piloted simulations must run at real time speeds or faster. This requirement drives the number of...dynamics of interacting blade tip vortices with a ground plane,” American Helicopter Society 64 th Annual Forum Proceedings, 2008. [2] Johnson, W

  8. Radio Sounding of the Magnetopause from the Ground (NIRFI Part)

    DTIC Science & Technology

    2000-04-06

    subsolar point sounding from SURA location leads to oblique sounding wave propagation through the ionosphere when penetration condition requires less... ecliptic plane (along the direction of solar wind sector boundaries, morning hours) • near the subsolar point (along the solar wind velocity, noon

  9. Space Transfer Concepts and Analyses for Exploration Missions. Technical Directive 12: Beamed Power Systems Study

    NASA Technical Reports Server (NTRS)

    Eder, D.

    1992-01-01

    Parametric models were constructed for Earth-based laser powered electric orbit transfer from low Earth orbit to geosynchronous orbit. These models were used to carry out performance, cost/benefit, and sensitivity analyses of laser-powered transfer systems including end-to-end life cycle cost analyses for complete systems. Comparisons with conventional orbit transfer systems were made indicating large potential cost savings for laser-powered transfer. Approximate optimization was done to determine best parameter values for the systems. Orbit transfer flights simulations were conducted to explore effects of parameters not practical to model with a spreadsheet. The simulations considered view factors that determine when power can be transferred from ground stations to an orbit transfer vehicle and conducted sensitivity analyses for numbers of ground stations, Isp including dual-Isp transfers, and plane change profiles. Optimal steering laws were used for simultaneous altitude and plane change. Viewing geometry and low-thrust orbit raising were simultaneously simulated. A very preliminary investigation of relay mirrors was made.

  10. A Double-Negative Metamaterial-Inspired Mobile Wireless Antenna for Electromagnetic Absorption Reduction

    PubMed Central

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2015-01-01

    A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a −10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane. PMID:28793474

  11. Reconfigurable antenna options for 2.45/5 GHz wireless body area networks in healthcare applications.

    PubMed

    Abbas, Syed Muzahir; Ranga, Yogesh; Esselle, Karu P

    2015-01-01

    This paper presents electronically reconfigurable antenna options in healthcare applications. They are suitable for wireless body area network devices operating in the industrial, scientific, and medical (ISM) band at 2.45 GHz and IEEE 802.11 Wireless Local Area Network (WLAN) band at 5 GHz (5.15-5.35 GHz, 5.25-5.35 GHz). Two types of antennas are investigated: Antenna-I has a full ground plane and Antenna-II has a partial ground plane. The proposed antennas provide ISM operation in one mode while in another mode they support 5 GHz WLAN band. Their performance is assessed for body centric wireless communication using a simplified human body model. Antenna sensitivity to the gap between the antenna and the human body is investigated for both modes of each antenna. The proposed antennas exhibit a wide radiation pattern along the body surface to provide wide coverage and their small width (14 mm) makes them suitable for on-body communication in healthcare applications.

  12. Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data

    NASA Astrophysics Data System (ADS)

    McClure, M. D.; Sirbaugh, J. R.

    1991-02-01

    The computational fluid dynamics (CFD) computer code PARC3D was used to predict the inlet reference plane (IRP) flow field for a side-mounted inlet and forebody simulator in a free jet for five different flow conditions. The calculations were performed for free-jet conditions, mass flow rates, and inlet configurations that matched the free-jet test conditions. In addition, viscous terms were included in the main flow so that the viscous free-jet shear layers emanating from the free-jet nozzle exit were modeled. A measure of the predicted accuracy was determined as a function of free-stream Mach number, angle-of-attack, and sideslip angle.

  13. Zigzag antiferromagnetic ground state with anisotropic correlation lengths in the quasi-two-dimensional honeycomb lattice compound N a2C o2Te O6

    NASA Astrophysics Data System (ADS)

    Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.

    2017-03-01

    The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is discussed.

  14. The binding energies of one and two water molecules to the first transition-row metal positive ions. II

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.

    1990-01-01

    The present investigation of H2O's binding energy to transition-metal ions proceeds from the D(2h) structure and bends the two water molecules out of plane. The molecule is constrained to have C(2v) symmetry, so that each water molecule and metal ion lies on a plane. The ground states are bent only for Mn(H2O)2(+) and Zn(H2O)2(+), where only 4s4p hybridization is energetically favorable; 4s4p hybridization reduces repulsion.

  15. Circular single domains in hemispherical Permalloy nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Clodoaldo I. L de, E-mail: dearaujo@ufv.br; Fonseca, Jakson M.; Sinnecker, João P.

    2014-11-14

    We have studied ferromagnetic Permalloy clusters obtained by electrodeposition on n-type silicon. Magnetization measurements reveal hysteresis loops almost independent on temperature and very similar in shape to those obtained in nanodisks with diameter bigger than 150 nm. The spin configuration for the ground state, obtained by micromagnetic simulation, shows topological vortices with random chirality and polarization. This behavior in the small diameter clusters (∼80 nm) is attributed to the Dzyaloshinskii-Moriya interaction that arises in its hemispherical geometries. This magnetization behavior can be utilized to explain the magnetoresistance measured with magnetic field in plane and out of sample plane.

  16. Reynolds Stress Balance in Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Miichael M.; Merriam, Marshal (Technical Monitor)

    1997-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of various irrotational plane strains have been generated. A pseudospectral numerical method with up to 25 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, R(sub e), of about 2,000. All the terms in the equations governing the evolution of the Reynolds stresses have been calculated. The relative importance of the various terms is examined for the different strain geometries and the behavior of the individual terms is used to better assess whether the strained wakes are evolving self-similarly.

  17. Solid-state curved focal plane arrays

    NASA Technical Reports Server (NTRS)

    Jones, Todd (Inventor); Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor)

    2010-01-01

    The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

  18. Mission Capability Gains from Multi-Mode Propulsion Thrust Profile Variations for a Plane Change Maneuver

    DTIC Science & Technology

    2010-12-29

    propellant mass [kg] msc = mass of the spacecraft [kg] MMP = multi-mode propulsion   = position in the Geocentric Equatorial Reference...thrust burn time [s] Tsc = thrust of the spacecraft [N] = vector between current and final velocity vector   = velocity vector in the Geocentric ...Equatorial Reference Frame of spacecraft in intended orbit [km/s]   = velocity vector in the Geocentric Equatorial Reference Frame of spacecraft in

  19. Establishing a celestial VLBI reference frame. 1: Searching for VLBI sources

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Morabito, D. D.; Williams, J. G.; Slade, M. A.; Harris, A. W.; Finley, S. G.; Skjerve, L. J.; Tanida, L.; Spitzmesser, D. J.; Johnson, B.

    1978-01-01

    The Deep Space Network is currently engaged in establishing a new high-accuracy VLBI celestial reference frame. The present status of the task of finding suitable celestial radio sources for constructing this reference frame is discussed. To date, 564 VLBI sources were detected, with 166 of these lying within 10 deg of the ecliptic plane. The variation of the sky distribution of these sources with source strength is examined.

  20. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  1. Automated Detection and Closing of Holes in Aerial Point Clouds Using AN Uas

    NASA Astrophysics Data System (ADS)

    Fiolka, T.; Rouatbi, F.; Bender, D.

    2017-08-01

    3D terrain models are an important instrument in areas like geology, agriculture and reconnaissance. Using an automated UAS with a line-based LiDAR can create terrain models fast and easily even from large areas. But the resulting point cloud may contain holes and therefore be incomplete. This might happen due to occlusions, a missed flight route due to wind or simply as a result of changes in the ground height which would alter the swath of the LiDAR system. This paper proposes a method to detect holes in 3D point clouds generated during the flight and adjust the course in order to close them. First, a grid-based search for holes in the horizontal ground plane is performed. Then a check for vertical holes mainly created by buildings walls is done. Due to occlusions and steep LiDAR angles, closing the vertical gaps may be difficult or even impossible. Therefore, the current approach deals with holes in the ground plane and only marks the vertical holes in such a way that the operator can decide on further actions regarding them. The aim is to efficiently create point clouds which can be used for the generation of complete 3D terrain models.

  2. The magnetic ground state and relationship to Kitaev physics in α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab

    The 2D Kitaev candidate alpha-RuCl3 consists of stacked honeycomb layers weakly coupled by Van der Waals interactions. Here we report the measurements of bulk properties and neutron diffraction in both powder and single crystal samples. Our results show that the full three dimensional magnetic ground state is highly pliable with at least two dominant phases corresponding to two different out-of-plane magnetic orders. They have different Neel temperatures dependent on the stacking of the 2D layers, such as a broad magnetic transition at TN = 14 K as observed in phase-pure powder samples, or a sharp magnetic transition at a lower TN = 7 K as observed in homogeneous single crystals with no evidence for stacking faults. The magnetic refinements of the neutron scattering data will be discussed, which in all cases shows the in-plane magnetic ground state is the zigzag phase common in Kitaev related materials including the honeycomb lattice Iridates. Inelastic neutron scattering in all cases shows that this material consistently exhibit strong two-dimensional magnetic fluctuations leading to a break-down of the classical spin-wave picture. Work performed at ORNL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.

  3. The "RED Versa NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements"

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Evans, K.; Wiscombe, W.

    2003-01-01

    A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the RED and near infrared (MR) spectral regions is introduced. Because zenith radiance does not have a one-to-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances such as NDCI while largely removing nouniquiness and the radiative effects of cloud inhomogeneity, can result in poor retrievals due to its insensitivity to cloud fraction. Instead, both RED and NIR radiances as points on the 'RED vs. NIR' plane are proposed to be used for retrieval. The proposed retrieval method is applied to Cimel measurements at the Atmospheric Radiation Measurements (ARM) site in Oklahoma. Cimel, a multi-channel sunphotometer, is a part of AERONET - a ground-based network for monitoring aerosol optical properties. The results of retrieval are compared with the ones from Microwave Radiometer (MWR) and Multi-Filter Rotating Shadowband Radiometers (MFRSR) located next to Cimel at the ARM site. In addition, the performance of the retrieval method is assessed using a fractal model of cloud inhomogeneity and broken cloudiness. The preliminary results look very promising both theoretically and from measurements.

  4. Analytical model for vibration prediction of two parallel tunnels in a full-space

    NASA Astrophysics Data System (ADS)

    He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui

    2018-06-01

    This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.

  5. Glenoid morphology and the safe zone for protecting the suprascapular nerve during baseplate fixation in reverse shoulder arthroplasty.

    PubMed

    Yang, Yuhui; Zuo, Jianlin; Liu, Tong; Shao, Pu; Wu, Haihe; Gao, Zhongli; Xiao, Jianlin

    2018-03-01

    The purpose of this study was to investigate glenoid morphology and define the safe zone for protecting the suprascapular nerve baseplate screw during baseplate fixation in reverse shoulder arthroplasty (RSA) in a Chinese population. Shoulder computed tomography (CT) scans from 56 subjects were retrospectively reviewed. Three-dimensional (3D) reconstruction was performed using Mimics software, and corresponding bony references were used to evaluate glenoid morphology. To standardize evaluation, the coronal scapular plane was defined. Safe fixation distances and screw placements were investigated by constructing a simulated cutting plane of the baseplate during RSA. Mean glenoid height was 35.83 ± 2.95 mm, and width was 27.32 ± 2.78 mm, with significant sexual dimorphism (p < 0.01). According to the cutting plane morphology, the average baseplate radius was 13.84 ± 1.34 mm. The distances from the suprascapular notch and from two bony reference points at the base of the scapular spine to the cutting plane were 30.27 ± 2.77 mm, 18.39 ± 1.67 mm and 16.52 ± 1.52 mm, respectively, with a gender-related difference. Based on the clock face indication system, the danger zone caused by the suprascapular nerve projection was oriented between the two o'clock and eight o'clock positions in reference to the right shoulder. Glenoid size and the safe zone for screw fixation during RSA were characterized in a Chinese population. Careful consideration of baseplate fixation and avoidance of suprascapular nerve injury are important for improved clinical outcome.

  6. Phantom Study Investigating the Accuracy of Manual and Automatic Image Fusion with the GE Logiq E9: Implications for use in Percutaneous Liver Interventions.

    PubMed

    Burgmans, Mark Christiaan; den Harder, J Michiel; Meershoek, Philippa; van den Berg, Nynke S; Chan, Shaun Xavier Ju Min; van Leeuwen, Fijs W B; van Erkel, Arian R

    2017-06-01

    To determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions. CT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined by measurement of the residual displacement in phantom lesions by two independent observers. Mean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values. The accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.

  7. Random phase encoding for optical security

    NASA Astrophysics Data System (ADS)

    Wang, RuiKang K.; Watson, Ian A.; Chatwin, Christopher R.

    1996-09-01

    A new optical encoding method for security applications is proposed. The encoded image (encrypted into the security products) is merely a random phase image statistically and randomly generated by a random number generator using a computer, which contains no information from the reference pattern (stored for verification) or the frequency plane filter (a phase-only function for decoding). The phase function in the frequency plane is obtained using a modified phase retrieval algorithm. The proposed method uses two phase-only functions (images) at both the input and frequency planes of the optical processor leading to maximum optical efficiency. Computer simulation shows that the proposed method is robust for optical security applications.

  8. Symmetry-breaking dynamics of the finite-size Lipkin-Meshkov-Glick model near ground state

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Li, Tongcang; Yin, Zhang-qi

    2018-01-01

    We study the dynamics of the Lipkin-Meshkov-Glick (LMG) model with a finite number of spins. In the thermodynamic limit, the ground state of the LMG model with an isotropic Hamiltonian in the broken phase breaks to a mean-field ground state with a certain direction. However, when the spin number N is finite, the exact ground state is always unique and is not given by a classical mean-field ground state. Here, we prove that when N is large but finite, through a tiny external perturbation, a localized state which is close to a mean-field ground state can be prepared, which mimics spontaneous symmetry breaking. Also, we find the localized in-plane spin polarization oscillates with two different frequencies ˜O (1 /N ) , and the lifetime of the localized state is long enough to exhibit this oscillation. We numerically test the analytical results and find that they agree very well with each other. Finally, we link the phenomena to quantum time crystals and time quasicrystals.

  9. Dual polarized, heat spreading rectenna

    NASA Technical Reports Server (NTRS)

    Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor); Smith, R. Peter (Inventor); Smith, Hugh K. (Inventor)

    1999-01-01

    An aperture coupled patch splits energy from two different polarization components to different locations to spread heat. In addition, there is no physical electrical connection between the slot, patch and circuitry. The circuitry is located under a ground plane which shields against harmonic radiation back to the RF source.

  10. Simulation of Ground-Water Flow in the Shenandoah Valley, Virginia and West Virginia, Using Variable-Direction Anisotropy in Hydraulic Conductivity to Represent Bedrock Structure

    USGS Publications Warehouse

    Yager, Richard M.; Southworth, Scott C.; Voss, Clifford I.

    2008-01-01

    Ground-water flow was simulated using variable-direction anisotropy in hydraulic conductivity to represent the folded, fractured sedimentary rocks that underlie the Shenandoah Valley in Virginia and West Virginia. The anisotropy is a consequence of the orientations of fractures that provide preferential flow paths through the rock, such that the direction of maximum hydraulic conductivity is oriented within bedding planes, which generally strike N30 deg E; the direction of minimum hydraulic conductivity is perpendicular to the bedding. The finite-element model SUTRA was used to specify variable directions of the hydraulic-conductivity tensor in order to represent changes in the strike and dip of the bedding throughout the valley. The folded rocks in the valley are collectively referred to as the Massanutten synclinorium, which contains about a 5-km thick section of clastic and carbonate rocks. For the model, the bedrock was divided into four units: a 300-m thick top unit with 10 equally spaced layers through which most ground water is assumed to flow, and three lower units each containing 5 layers of increasing thickness that correspond to the three major rock units in the valley: clastic, carbonate and metamorphic rocks. A separate zone in the carbonate rocks that is overlain by colluvial gravel - called the western-toe carbonate unit - was also distinguished. Hydraulic-conductivity values were estimated through model calibration for each of the four rock units, using data from 354 wells and 23 streamflow-gaging stations. Conductivity tensors for metamorphic and western-toe carbonate rocks were assumed to be isotropic, while conductivity tensors for carbonate and clastic rocks were assumed to be anisotropic. The directions of the conductivity tensor for carbonate and clastic rocks were interpolated for each mesh element from a stack of 'form surfaces' that provided a three-dimensional representation of bedrock structure. Model simulations were run with (1) variable strike and dip, in which conductivity tensors were aligned with the strike and dip of the bedding, and (2) uniform strike in which conductivity tensors were assumed to be horizontally isotropic with the maximum conductivity direction parallel to the N30 deg E axis of the valley and the minimum conductivity direction perpendicular to the horizontal plane. Simulated flow penetrated deeper into the aquifer system with the uniform-strike tensor than with the variable-strike-and-dip tensor. Sensitivity analyses suggest that additional information on recharge rates would increase confidence in the estimated parameter values. Two applications of the model were conducted - the first, to determine depth of recent ground-water flow by simulating the distribution of ground-water ages, showed that most shallow ground water is less than 10 years old. Ground-water age distributions computed by variable-strike-and-dip and uniform-strike models were similar, but differed beneath Massanutten Mountain in the center of the valley. The variable-strike-and-dip model simulated flow from west to east parallel to the bedding of the carbonate rocks beneath Massanutten Mountain, while the uniform-strike model, in which flow was largely controlled by topography, simulated this same area as an east-west ground-water divide. The second application, which delineated capture zones for selected well fields in the valley, showed that capture zones delineated with both models were similar in plan view, but differed in vertical extent. Capture zones simulated by the variable-strike-and-dip model extended downdip with the bedding of carbonate rock and were relatively shallow, while those simulated by the uniform-strike model extended to the bottom of the flow system, which is unrealistic. These results suggest that simulations of ground-water flow through folded fractured rock can be constructed using SUTRA to represent variable orientations of the hydraulic-conductivity tensor and produce a

  11. The Doolittle Raid in History and Memory

    DTIC Science & Technology

    2000-02-15

    21 April, President Roosevelt told reporters that the planes came from Shangri - La , a fictional land found in James Hilton’s Lost Horizons, a novel...following this announcement, Roosevelt again correlated the planes with Shangri - La .46 The references confused people because the President did not...clarify whether Shangri - La was a codename for something the U.S. previously possessed or the actual name of a recently acquired air base or carrier

  12. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  13. Research in the Optical Sciences.

    DTIC Science & Technology

    1987-12-15

    been chosen for the wavefront sensor. REFERENCES 1. C. L. Koliopoulos, " Wavefront sensing of the turbulent atmosphere using a lateral shearing...technique would permit wavefront sensing in the image plane without employing an elaborate method to obtain a reference wavefront . Background Initial...and R. H. Potoff ......... 87 0rd . . .. El WAVEFRONT SENSING AND ADAPTIVE OPTICS C . K oliopoulos ............................................. 97

  14. Improvement of both bandwidth and driving voltage of polymer phase modulators using buried in-plane coupled micro-strip driving electrodes

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2017-06-01

    A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.

  15. Walking in circles: a modelling approach

    PubMed Central

    Maus, Horst-Moritz; Seyfarth, Andre

    2014-01-01

    Blindfolded or disoriented people have the tendency to walk in circles rather than on a straight line even if they wanted to. Here, we use a minimalistic walking model to examine this phenomenon. The bipedal spring-loaded inverted pendulum exhibits asymptotically stable gaits with centre of mass (CoM) dynamics and ground reaction forces similar to human walking in the sagittal plane. We extend this model into three dimensions, and show that stable walking patterns persist if the leg is aligned with respect to the body (here: CoM velocity) instead of a world reference frame. Further, we demonstrate that asymmetric leg configurations, which are common in humans, will typically lead to walking in circles. The diameter of these circles depends strongly on parameter configuration, but is in line with empirical data from human walkers. Simulation results suggest that walking radius and especially direction of rotation are highly dependent on leg configuration and walking velocity, which explains inconsistent veering behaviour in repeated trials in human data. Finally, we discuss the relation between findings in the model and implications for human walking. PMID:25056215

  16. Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI

    NASA Astrophysics Data System (ADS)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Rodrigues, Barbara; Ellis, Jon Robert; Baker, Robert; Barthelmy, Scott; Mao, Peter; Miyasaka, Hiromasa; Apple, Jeff

    2013-12-01

    We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6 ' angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm × 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technology readiness for space application. During the flight both telescopes performed as well as on the ground. We report the results of ground calibration and the initial results for the detector performance in the balloon flight.

  17. Haptic information provided by the "anchor system" reduces trunk sway acceleration in the frontal plane during tandem walking in older adults.

    PubMed

    Costa, Andréia Abud da Silva; Manciopi, Priscila Abbári Rossi; Mauerberg-deCastro, Eliane; Moraes, Renato

    2015-11-16

    This study assessed whether the use of an "anchor system" benefited older adults who performed a tandem walking task. Additionally, we tested the effects of practice with the anchor system during walking on trunk stability, in the frontal plane, of older adults. Forty-four older adults were randomly assigned to three groups: control group, 0g anchor group, and 125g anchor group. Individuals in each group performed a tandem walking task on the GaitRite system with an accelerometer placed on the cervical region. The participants in the 125g anchor group held, in each hand, a flexible cable with a light mass attached at the end of the cable, which rested on the ground. While the participants walked, they pulled on the cables just enough to keep them taut as the masses slid over the ground. The 0g anchor group held an anchor tool without any mass attached to the end portion. The results of this study demonstrated that the use of the anchor system contributed to the reduction of trunk acceleration in the frontal plane. However, this effect did not persist after removal of the anchors, which suggests that the amount of practice with this tool was insufficient to generate any lasting effect, or that the task was not sufficiently challenging, or both. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Off-axis digital holographic microscopy with LED illumination based on polarization filtering.

    PubMed

    Guo, Rongli; Yao, Baoli; Gao, Peng; Min, Junwei; Zhou, Meiling; Han, Jun; Yu, Xun; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan; Ye, Tong

    2013-12-01

    A reflection mode digital holographic microscope with light emitting diode (LED) illumination and off-axis interferometry is proposed. The setup is comprised of a Linnik interferometer and a grating-based 4f imaging unit. Both object and reference waves travel coaxially and are split into multiple diffraction orders in the Fourier plane by the grating. The zeroth and first orders are filtered by a polarizing array to select orthogonally polarized object waves and reference waves. Subsequently, the object and reference waves are combined again in the output plane of the 4f system, and then the hologram with uniform contrast over the entire field of view can be acquired with the aid of a polarizer. The one-shot nature in the off-axis configuration enables an interferometric recording time on a millisecond scale. The validity of the proposed setup is illustrated by imaging nanostructured substrates, and the experimental results demonstrate that the phase noise is reduced drastically by an order of 68% when compared to a He-Ne laser-based result.

  19. Alternative Methods for Estimating Plane Parameters Based on a Point Cloud

    NASA Astrophysics Data System (ADS)

    Stryczek, Roman

    2017-12-01

    Non-contact measurement techniques carried out using triangulation optical sensors are increasingly popular in measurements with the use of industrial robots directly on production lines. The result of such measurements is often a cloud of measurement points that is characterized by considerable measuring noise, presence of a number of points that differ from the reference model, and excessive errors that must be eliminated from the analysis. To obtain vector information points contained in the cloud that describe reference models, the data obtained during a measurement should be subjected to appropriate processing operations. The present paperwork presents an analysis of suitability of methods known as RANdom Sample Consensus (RANSAC), Monte Carlo Method (MCM), and Particle Swarm Optimization (PSO) for the extraction of the reference model. The effectiveness of the tested methods is illustrated by examples of measurement of the height of an object and the angle of a plane, which were made on the basis of experiments carried out at workshop conditions.

  20. Resonant frequency of microstrip antennas calculated from TE-excitation of an infinite strip embedded in a grounded dielectric slab

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1979-01-01

    The calculation of currents induced by a plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer the resonant width (or frequency) of rectangular microstrip antennas. By placing the strip inside the dielectric, the effect of a dielectric cover of the same material as the substrate can be included in the calculation of resonant frequency. A comparison with measured results indicated agreement of 1 percent or better for rectangular microstrip antennas constructed on Teflon-fiberglass substrate.

  1. Improved Capacitive Liquid Sensor

    NASA Technical Reports Server (NTRS)

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  2. PLANES Act of 2010

    THOMAS, 111th Congress

    Rep. Braley, Bruce L. [D-IA-1

    2010-01-13

    House - 01/28/2010 Referred to the Subcommittee on Transportation Security and Infrastructure Protection. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. An Analysis of the Pressures, Forces and Moments Induced by the Ground Vortex Generated by a Single Impinging Jet

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.

    1997-01-01

    When a jet STOVL aircraft is in STOL operation the jets impinge on the ground and generate wall jets flowing radially outward from the points at which the jets impinge. When the forward flowing part of a wall jet meets the free stream flow it is rolled back on itself forming a parabolic shaped ground vortex. Positive pressures are induced on the lower surface of the configuration ahead of the ground vortex and suction pressures are induced over the ground vortex itself. In addition, the suction pressures induced aft of the jet out of ground effect are reduced and lifting pressures are induced on the upper surface. This study analyzes available pressure and force data and develops a method for estimating the forces and moments induced in ground effect. The method includes the effects of configuration variables, height and operating conditions, as well as the effects of the location, deflection and shape of the jet. However, it is limited to single jets at subcritical nozzle pressure ratios. An analysis of the effects of moving over the ground vs. tests over a fixed ground plane is included.

  4. Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory

    DOE PAGES

    Egger, David A.; Liu, Zhen-Fei; Neaton, Jeffrey B.; ...

    2015-03-05

    We report a key quantity for molecule–metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal–molecule interfaces. The method builds on the “DFT+Σ” approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways:more » first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule–metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors.« less

  5. An eight-octant phase-mask coronagraph for the Subaru coronagraphic extreme AO (SCExAO) system: system design and expected performance

    NASA Astrophysics Data System (ADS)

    Murakami, Naoshi; Guyon, Olivier; Martinache, Frantz; Matsuo, Taro; Yokochi, Kaito; Nishikawa, Jun; Tamura, Motohide; Kurokawa, Takashi; Baba, Naoshi; Vogt, Frédéric; Garrel, Vincent; Yoshikawa, Takashi

    2010-07-01

    An eight-octant phase-mask (EOPM) coronagraph is one of the highest performance coronagraphic concepts, and attains simultaneously high throughput, small inner working angle, and large discovery space. However, its application to ground-based telescopes such as the Subaru Telescope is challenging due to pupil geometry (thick spider vanes and large central obstruction) and residual tip-tilt errors. We show that the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, scheduled to be installed onto the Subaru Telescope, includes key technologies which can solve these problems. SCExAO uses a spider removal plate which translates four parts of the pupil with tilted plane parallel plates. The pupil central obstruction can be removed by a pupil remapping system similar to the PIAA optics already in the SCExAO system, which could be redesigned with no amplitude apodization. The EOPM is inserted in the focal plane to divide a stellar image into eight-octant regions, and introduces a π-phase difference between adjacent octants. This causes a self-destructive interference inside the pupil area on a following reimaged pupil plane. By using a reflective mask instead of a conventional opaque Lyot stop, the stellar light diffracted outside the pupil can be used for a coronagraphic low-order wave-front sensor to accurately measure and correct tip-tilt errors. A modified inverse-PIAA system, located behind the reimaged pupil plane, is used to remove off-axis aberrations and deliver a wide field of view. We show that this EOPM coronagraph architecture enables high contrast imaging at small working angle on the Subaru Telescope. Our approach could be generalized to other phase-mask type coronagraphs and other ground-based telescopes.

  6. Fine-tuning satellite-based rainfall estimates

    NASA Astrophysics Data System (ADS)

    Harsa, Hastuadi; Buono, Agus; Hidayat, Rahmat; Achyar, Jaumil; Noviati, Sri; Kurniawan, Roni; Praja, Alfan S.

    2018-05-01

    Rainfall datasets are available from various sources, including satellite estimates and ground observation. The locations of ground observation scatter sparsely. Therefore, the use of satellite estimates is advantageous, because satellite estimates can provide data on places where the ground observations do not present. However, in general, the satellite estimates data contain bias, since they are product of algorithms that transform the sensors response into rainfall values. Another cause may come from the number of ground observations used by the algorithms as the reference in determining the rainfall values. This paper describe the application of bias correction method to modify the satellite-based dataset by adding a number of ground observation locations that have not been used before by the algorithm. The bias correction was performed by utilizing Quantile Mapping procedure between ground observation data and satellite estimates data. Since Quantile Mapping required mean and standard deviation of both the reference and the being-corrected data, thus the Inverse Distance Weighting scheme was applied beforehand to the mean and standard deviation of the observation data in order to provide a spatial composition of them, which were originally scattered. Therefore, it was possible to provide a reference data point at the same location with that of the satellite estimates. The results show that the new dataset have statistically better representation of the rainfall values recorded by the ground observation than the previous dataset.

  7. Simultaneous measurement of in-plane and out-of-plane displacement derivatives using dual-wavelength digital holographic interferometry.

    PubMed

    Rajshekhar, Gannavarpu; Gorthi, Sai Siva; Rastogi, Pramod

    2011-12-01

    The paper introduces a method for simultaneously measuring the in-plane and out-of-plane displacement derivatives of a deformed object in digital holographic interferometry. In the proposed method, lasers of different wavelengths are used to simultaneously illuminate the object along various directions such that a unique wavelength is used for a given direction. The holograms formed by multiple reference-object beam pairs of different wavelengths are recorded by a 3-color CCD camera with red, green, and blue channels. Each channel stores the hologram related to the corresponding wavelength and hence for the specific direction. The complex reconstructed interference field is obtained for each wavelength by numerical reconstruction and digital processing of the recorded holograms before and after deformation. Subsequently, the phase derivative is estimated for a given wavelength using two-dimensional pseudo Wigner-Ville distribution and the in-plane and out-of-plane components are obtained from the estimated phase derivatives using the sensitivity vectors of the optical configuration. © 2011 Optical Society of America

  8. Flow cytometer

    DOEpatents

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  9. Grandma Moses Meets Eric Carle

    ERIC Educational Resources Information Center

    Sutley, Jane

    2012-01-01

    This activity features artwork by "Grandma Moses" in which children will learn the picture plane in terms of foreground, middle ground, and background. The teacher also introduces the children to Eric Carle's colorful collaged images in his books. Using the two artists' methods, children experimented and invented new techniques and colors. As the…

  10. Construction and Testing of Broadband High Impedance Ground Planes (HIGPS) for Surface Mount Antennas

    DTIC Science & Technology

    2008-03-01

    Conductor PMC: Perfect Magnetic Conductor RF: Radio Frequency RH: Right-handed SNG : Single Negative TACAN: Tactical Air Navigation UAV: Unmanned Aerial...negative ( SNG ) and double-negative (DNG) materials, and their fascinating properties have driven the interest in MTMs (Engheta and Ziolkowski, 2006

  11. Flow cytometer

    DOEpatents

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  12. Magnetic-sensor performance evaluated from magneto-conductance curve in magnetic tunnel junctions using in-plane or perpendicularly magnetized synthetic antiferromagnetic reference layers

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Oogane, M.; Furuichi, T.; Ando, Y.

    2018-04-01

    The automotive industry requires magnetic sensors exhibiting highly linear output within a dynamic range as wide as ±1 kOe. A simple model predicts that the magneto-conductance (G-H) curve in a magnetic tunnel junction (MTJ) is perfectly linear, whereas the magneto-resistance (R-H) curve inevitably contains a finite nonlinearity. We prepared two kinds of MTJs using in-plane or perpendicularly magnetized synthetic antiferromagnetic (i-SAF or p-SAF) reference layers and investigated their sensor performance. In the MTJ with the i-SAF reference layer, the G-H curve did not necessarily show smaller nonlinearities than those of the R-H curve with different dynamic ranges. This is because the magnetizations of the i-SAF reference layer start to rotate at a magnetic field even smaller than the switching field (Hsw) measured by a magnetometer, which significantly affects the tunnel magnetoresistance (TMR) effect. In the MTJ with the p-SAF reference layer, the G-H curve showed much smaller nonlinearities than those of the R-H curve, thanks to a large Hsw value of the p-SAF reference layer. We achieved a nonlinearity of 0.08% FS (full scale) in the G-H curve with a dynamic range of ±1 kOe, satisfying our target for automotive applications. This demonstrated that a reference layer exhibiting a large Hsw value is indispensable in order to achieve a highly linear G-H curve.

  13. Bibliography of ground-water references for all 254 counties in Texas, 1886-2001

    USGS Publications Warehouse

    Baker, E.T.

    2005-01-01

    PrefaceThis bibliography comprises more than 10,000 citations of ground-water references involving all 254 counties in Texas. The reference citations date from 1886 and extend into 2001. Publications and reports from more than 30 agencies, universities, water districts, geological societies, cities, consultants, and private publication outlets are included in the bibliography. The bibliographic listing is, first, alphabetical by county and, second, chronological by date of the report, from oldest to most recent. The passing years have seen a proliferation in both published and unpublished reports, and such proliferation continues to expand at an accelerating pace. All 254 counties have had groundwater studies, either cursory or detailed. Investigation and development of the ground-water resources of the State of Texas resulted in reports that appear in a variety of formats, including Federal, State, and local agency reports; scholarly, professional, and trade journals; conference proceedings; guidebooks; maps; and theses and dissertations. The end result for the person seeking ground-water information about specific Texas counties is the increasing difficulty in locating pertinent data among the many and diverse ground-water reports in which the information is recorded. This bibliography, covering a span of 115 years, should have considerable utility in guiding those individuals seeking ground-water information.

  14. Non-contact measurements of ultrasonic waves on paper webs using a photorefractive interferometer

    DOEpatents

    Brodeur, Pierre H.; Lafond, Emmanuel F.

    2000-01-01

    An apparatus and method for non-contact measurement of ultrasonic waves on moving paper webs employs a photorefractive interferometer. The photorefractive interferometer employs an optical head in which the incident beam and reflected beam are coaxial, thus enabling detection of both in-plane and out-of-plane waves with a single apparatus. The incident beam and reference beams are focused into a line enabling greater power to be used without damaging the paper.

  15. Projective Structure from Two Uncalibrated Images: Structure from Motion and Recognition

    DTIC Science & Technology

    1992-09-01

    correspondence between points in Maybank 1990). The question, therefore, is why look for both views more of a problem, and hence, may make the...plane is fixed with respect to the 1987, Faugeras, Luong and Maybank 1992). The prob- camera coordinate frame. A rigid camera motion, there- lem of...the second reference Rieger-Lawton 1985, Faugeras and Maybank 1990, Hil- plane (assuming the four object points Pi, j = 1, ...,4, dreth 1991, Faugeras

  16. New digital measurement methods for left ventricular volume using real-time three-dimensional echocardiography: comparison with electromagnetic flow method and magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Qin, J. J.; Jones, M.; Shiota, T.; Greenberg, N. L.; Firstenberg, M. S.; Tsujino, H.; Zetts, A. D.; Sun, J. P.; Cardon, L. A.; Odabashian, J. A.; hide

    2000-01-01

    AIM: The aim of this study was to investigate the feasibility and accuracy of using symmetrically rotated apical long axis planes for the determination of left ventricular (LV) volumes with real-time three-dimensional echocardiography (3DE). METHODS AND RESULTS: Real-time 3DE was performed in six sheep during 24 haemodynamic conditions with electromagnetic flow measurements (EM), and in 29 patients with magnetic resonance imaging measurements (MRI). LV volumes were calculated by Simpson's rule with five 3DE methods (i.e. apical biplane, four-plane, six-plane, nine-plane (in which the angle between each long axis plane was 90 degrees, 45 degrees, 30 degrees or 20 degrees, respectively) and standard short axis views (SAX)). Real-time 3DE correlated well with EM for LV stroke volumes in animals (r=0.68-0.95) and with MRI for absolute volumes in patients (r-values=0.93-0.98). However, agreement between MRI and apical nine-plane, six-plane, and SAX methods in patients was better than those with apical four-plane and bi-plane methods (mean difference = -15, -18, -13, vs. -31 and -48 ml for end-diastolic volume, respectively, P<0.05). CONCLUSION: Apically rotated measurement methods of real-time 3DE correlated well with reference standards for calculating LV volumes. Balancing accuracy and required time for these LV volume measurements, the apical six-plane method is recommended for clinical use.

  17. Comparing non-invasive scapular tracking methods across elevation angles, planes of elevation and humeral axial rotations.

    PubMed

    Grewal, T-J; Cudlip, A C; Dickerson, C R

    2017-12-01

    Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p < 0.01). Method of measurement interacted with axial rotation in anterior/posterior tilt and protraction/retraction (p < 0.01). The AMC had strong agreement with the reference stylus than the locator for the majority of humeral elevations, planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Reference-free ground truth metric for metal artifact evaluation in CT images.

    PubMed

    Kratz, Bärbel; Ens, Svitlana; Müller, Jan; Buzug, Thorsten M

    2011-07-01

    In computed tomography (CT), metal objects in the region of interest introduce data inconsistencies during acquisition. Reconstructing these data results in an image with star shaped artifacts induced by the metal inconsistencies. To enhance image quality, the influence of the metal objects can be reduced by different metal artifact reduction (MAR) strategies. For an adequate evaluation of new MAR approaches a ground truth reference data set is needed. In technical evaluations, where phantoms can be measured with and without metal inserts, ground truth data can easily be obtained by a second reference data acquisition. Obviously, this is not possible for clinical data. Here, an alternative evaluation method is presented without the need of an additionally acquired reference data set. The proposed metric is based on an inherent ground truth for metal artifacts as well as MAR methods comparison, where no reference information in terms of a second acquisition is needed. The method is based on the forward projection of a reconstructed image, which is compared to the actually measured projection data. The new evaluation technique is performed on phantom and on clinical CT data with and without MAR. The metric results are then compared with methods using a reference data set as well as an expert-based classification. It is shown that the new approach is an adequate quantification technique for artifact strength in reconstructed metal or MAR CT images. The presented method works solely on the original projection data itself, which yields some advantages compared to distance measures in image domain using two data sets. Beside this, no parameters have to be manually chosen. The new metric is a useful evaluation alternative when no reference data are available.

  19. Note: cryogenic microstripline-on-Kapton microwave interconnects.

    PubMed

    Harris, A I; Sieth, M; Lau, J M; Church, S E; Samoska, L A; Cleary, K

    2012-08-01

    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and crosstalk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.

  20. Status of astigmatism-corrected Czerny-Turner spectrometers

    NASA Astrophysics Data System (ADS)

    Li, Xinhang; Dong, Keyan; An, Yan; Wang, Zhenye

    2016-10-01

    In order to analysis and design the Czerny-Turner structure spectrometer with the high resolution and high energy reception, various astigmatism methods of the Czerny-Turner structure are reported. According to the location of plane grating, the astigmatism correction methods are divided into two categories, one is the plane grating in divergent illumination, another is the plane grating in parallel illumination. Basing on the different methods, the anastigmatic principle and methods are analyzed, the merits and demerits of the above methods are summarized and evaluated. The theoretical foundation for design of broadband eliminating astigmatism Czerny-Turner spectrometer and the reference value for the further design work are laid by the summary and analyzing in this paper.

  1. Large Subduction Earthquake Simulations using Finite Source Modeling and the Offshore-Onshore Ambient Seismic Field

    NASA Astrophysics Data System (ADS)

    Viens, L.; Miyake, H.; Koketsu, K.

    2016-12-01

    Large subduction earthquakes have the potential to generate strong long-period ground motions. The ambient seismic field, also called seismic noise, contains information about the elastic response of the Earth between two seismic stations that can be retrieved using seismic interferometry. The DONET1 network, which is composed of 20 offshore stations, has been deployed atop the Nankai subduction zone, Japan, to continuously monitor the seismotectonic activity in this highly seismically active region. The surrounding onshore area is covered by hundreds of seismic stations, which are operated the National Research Institute for Earth Science and Disaster Prevention (NIED) and the Japan Meteorological Agency (JMA), with a spacing of 15-20 km. We retrieve offshore-onshore Green's functions from the ambient seismic field using the deconvolution technique and use them to simulate the long-period ground motions of moderate subduction earthquakes that occurred at shallow depth. We extend the point source method, which is appropriate for moderate events, to finite source modeling to simulate the long-period ground motions of large Mw 7 class earthquake scenarios. The source models are constructed using scaling relations between moderate and large earthquakes to discretize the fault plane of the large hypothetical events into subfaults. Offshore-onshore Green's functions are spatially interpolated over the fault plane to obtain one Green's function for each subfault. The interpolated Green's functions are finally summed up considering different rupture velocities. Results show that this technique can provide additional information about earthquake ground motions that can be used with the existing physics-based simulations to improve seismic hazard assessment.

  2. Parametric Study of a YAV-8B Harrier in Ground Effect using Time-Dependent Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir; Chaderjian, Neal; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A process is described which enables the generation of 35 time-dependent viscous solutions for a YAV-8B Harrier in ground effect in one week. Overset grids are used to model the complex geometry of the Harrier aircraft and the interaction of its jets with the ground plane and low-speed ambient flow. The time required to complete this parametric study is drastically reduced through the use of process automation, modern computational platforms, and parallel computing. Moreover, a dual-time-stepping algorithm is described which improves solution robustness. Unsteady flow visualization and a frequency domain analysis are also used to identify and correlated key flow structures with the time variation of lift.

  3. a Study of Co-Planing Technology of Spaceborne, Airborne and Ground Remote Sensing Detecting Resource, Driven by Disaster Emergency Task

    NASA Astrophysics Data System (ADS)

    Yu, F.; Chen, H.; Tu, K.; Wen, Q.; He, J.; Gu, X.; Wang, Z.

    2018-04-01

    Facing the monitoring needs of emergency responses to major disasters, combining the disaster information acquired at the first time after the disaster and the dynamic simulation result of the disaster chain evolution process, the overall plan for coordinated planning of spaceborne, airborne and ground observation resources have been designed. Based on the analysis of the characteristics of major disaster observation tasks, the key technologies of spaceborne, airborne and ground collaborative observation project are studied. For different disaster response levels, the corresponding workflow tasks are designed. On the basis of satisfying different types of disaster monitoring demands, the existing multi-satellite collaborative observation planning algorithms are compared, analyzed, and optimized.

  4. Design of modified pentagonal patch antenna on defective ground for Wi-Max/WLAN application

    NASA Astrophysics Data System (ADS)

    Rawat, Sanyog; Sharma, K. K.

    2016-04-01

    This paper presents the design and performance of a modified pentagonal patch antenna with defective ground plane. A pentagonal slot is inserted in the pentagonal patch and slot loaded ground through optimized dimensions is used in the antenna to resonate it at dual frequency. The geometry operates at two resonant frequencies (2.5 GHz and 5.58 GHz) and offers impedance bandwidth of 864 MHz and 554 MHz in the two bands of interest. The proposed antenna covers the lower band (2.45 to 2.484/2.495 to 2.695 GHz) and upper band (5.15 to 5.825 GHz/5.25 to 5.85 GHz) allocated for Wi-Max and WLAN communication systems.

  5. Planar microstrip YAGI antenna array

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1993-01-01

    A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.

  6. Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer

    NASA Astrophysics Data System (ADS)

    Song, Wenshen; Fei, Ruixiang; Yang, Li

    2017-12-01

    Vertically (off-plane) ferroelectric ordering in ultrathin films has been pursued for decades. We predict the existence of intrinsic vertical polarization orderings in ultrathin metal chalcogen-diphosphates (MCDs). Taking CuInP2Se6 as an example, the first-principles calculation and electrostatic-energy model show that, under the open-circuit boundary condition, the ground state of bulk CuInP2Se6 is ferroelectric (FE) while that of monolayer is antiferroelectric (AFE), and the critical thickness for this FE/AFE transition is around six layers. Interestingly, under the closed-circuit boundary condition, the FE state can hold even for monolayer. Particularly, because of the small energy difference but the large barrier between FE and AFE orderings, the FE state can be stabilized in a free-standing monolayer, giving rise to intrinsic, off-plane two-dimensional ferroelectrics. Applying Monte Carlo simulations, we further calculate the ferroelectric Curie temperature (Tc) and electric hysteresis.

  7. Optical conductivity of partially oxidized graphene from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasehnia, F., E-mail: f.nasehnia@gmail.com; Seifi, M., E-mail: Seifi@guilan.ac.ir

    2015-07-07

    We investigate the geometry, electronic structure, and optical properties of partially oxidized graphene using density functional theory. Our calculations show that oxygen atoms are chemisorbed on graphene plane and distort carbon atoms vertically, with almost no change in the in-plane structure. The ground state configurations for different oxygen coverages ranging from 2% to 50% (O/C ratio) are calculated and show the strong tendency of oxygen adatoms to aggregate and form discrete islands on graphene plane. It is found that the opened band gap due to oxygen functionalization depends on the oxygen density and the adsorption configuration. The gap is notmore » significant for oxygen densities lower than 8%. The optical conductivities are calculated in the infrared, visible, and ultraviolet regions and show different characteristic features depending on the degree of oxidation. These results imply that optical measurement techniques can be employed to monitor oxidation (or reduction) process as contact-free methods.« less

  8. Logical Connectors, Grounding and Cognition.

    ERIC Educational Resources Information Center

    Chen, Rong

    1991-01-01

    Study of a group of logical connectors in English demonstrates how the meanings of those connectors signal the grounding of the clauses they introduce in absolute terms, unlike other linguistic means of grounding performed by tense, aspect, mood, voice, or verbal categories. (14 references) (Author/CB)

  9. Full field vertical scanning in short coherence digital holographic microscope.

    PubMed

    Monemahghdoust, Zahra; Montfort, Frederic; Cuche, Etienne; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2013-05-20

    In Digital holography Microscopes (DHM) implemented in the so-called "off axis" configuration, the object and reference wave fronts are not co-planar but form an angle of a few degrees. This results into two main drawbacks. First, the contrast of the interference is not uniform spatially when the light source has low coherence. The interference contrast is optimal along a line, but decreases when moving away from it, resulting in a lower image quality. Second, the non-coplanarity between the coherence plane of both wavefronts impacts the coherence vertical scanning measurement mode: when the optical path difference between the signal and the reference beam is changed, the region of maximum interference contrast shifts laterally in the plane of the objective. This results in more complex calculations to extract the topography of the sample and requires scanning over a much larger vertical range, leading to a longer measurement time. We have previously shown that by placing a volume diffractive optical element (VDOE) in the reference arm, the wavefront can be made coplanar with the object wavefront and the image plane of the microscope objective, resulting in a uniform and optimal interferogram. In this paper, we demonstrate a vertical scanning speed improvement by an order of magnitude. Noise in the phase and intensity images caused by scattering and non-uniform diffraction in the VDOE is analyzed quantitatively. Five VDOEs were fabricated with an identical procedure. We observe that VDOEs introduce a small intensity non-uniformity in the reference beam which results in a 20% noise increase in the extracted phase image as compared to the noise in extracted phase image when the VDOE is removed. However, the VDOE has no impact on the temporal noise measured from extracted phase images.

  10. Corrections to the Thomson cross section caused by relativistic effects and by the presence of the drift velocity of a classical charged particle in the field of a monochromatic plane wave

    NASA Astrophysics Data System (ADS)

    Perestoronin, A. V.

    2017-03-01

    An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.

  11. Common-Path Wavefront Sensing for Advanced Coronagraphs

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri

    2012-01-01

    Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.

  12. Co-evolving Physical and Biological Organization in Step-pool Channels: Experiments from a Restoration Reach on Wildcat Creek, California

    NASA Astrophysics Data System (ADS)

    Chin, A.; O'Dowd, A. P.; Mendez, P. K.; Velasco, K. Z.; Leventhal, R. D.; Storesund, R.; Laurencio, L. R.

    2014-12-01

    Step-pools are important features in fluvial systems. Through energy dissipation, step-pools provide stability in high-energy environments that otherwise may erode and degrade. Although research has focused on geomorphological aspects of step-pool channels, the ecological significance of step-pool streams is increasingly recognized. Step-pool streams often contain higher density and diversity of benthic macroinvertebrates and are critical habitats for organisms such as salmonids and tailed frogs. Step-pools are therefore increasingly used to restore eroding channels and improve ecological conditions. This paper addresses a restoration reach of Wildcat Creek in Berkeley, California that featured an installation of step-pools in 2012. The design framework recognized step-pool formation as a self-organizing process that produces a rhythmic morphology. After placing step particles at locations where step-pools are expected to form according to hydraulic theory, the self-organizing approach allowed fluvial processes to refine the rocks into adjusted sequences over time. In addition, a 30-meter "experimental" reach was created to explore the co-evolution of geomorphological and ecological characteristics. After constructing a plane bed channel, boulders and cobbles piled at the upstream end allowed natural flows to mobilize and sort them into step-pool sequences. Ground surveys and LiDAR recorded the development of step-pool sequences over several seasons. Concurrent sampling of benthic macroinvertebrates documented the formation of biological communities in conjunction with habitat. Biological sampling in an upstream reference reach provided a comparison with the restored reach over time. Results to date show an emergent step-pool channel with steps that segment the plane bed into initial step and pool habitats. Biological communities are beginning to form, showing more distinction among habitat types during some seasons, although they do not yet approach reference values at this stage of development. Research over longer timeframes is needed to reveal how biological and physical characteristics may co-organize toward an equilibrium landscape. Such integrated understanding will assist development of innovative restoration designs.

  13. Interest in the glenoid hull method for analyzing humeral subluxation in primary glenohumeral osteoarthritis.

    PubMed

    Bouacida, Soufyane; Gauci, Marc-Olivier; Coulet, Bertrand; Lazerges, Cyril; Cyteval, Catherine; Boileau, Pascal; Chammas, Michel

    2017-07-01

    Posterior humeral subluxation is the main cause of failure of total shoulder arthroplasty. We aimed to compare humeral head subluxation in various reference planes and to search for a correlation with retroversion, inclination, and glenoid wear. We included 109 computed tomography scans of primary glenohumeral osteoarthritis and 97 of shoulder problems unrelated to shoulder osteoarthritis (controls); all computed tomography scans were reconstructed in the anatomic scapular plane and the glenoid hull plane that we defined. In both planes, we measured retroversion, inclination, glenohumeral offset (Walch index), and scapulohumeral offset. Retroversion in the scapular plane (Friedman method) was lower than that in the glenoid hull plane for controls and for arthritic shoulders. The threshold of scapulohumeral subluxation was 60% and 65% in the scapular plane and glenoid hull plane, respectively. The mean upward inclination was lower in the scapular plane (Churchill method) than in the glenoid hull plane (Maurer method). In the glenoid hull plane, 35% of type A2 glenoids showed glenohumeral offset greater than 75%, with mean retroversion of 25.6° ± 6° as compared with 7.5° ± 7.2° for the "centered" type A2 glenoids (P < .0001) and an upward inclination of -1.4° ± 8° and 6.3° ± 7° (P = .03), respectively. The correlation between retroversion and scapulohumeral offset was r = 0.64 in the glenoid hull plane and r = 0.59 in the scapular plane (P < .05). Measurement in the glenoid hull plane may be more accurate than in the scapular plane. Thus, the glenoid hull method allows for better understanding type B3 of the modified Walch classification. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Launch Vehicles

    NASA Image and Video Library

    1990-09-25

    The Atlas-Centaur, AC-68 vehicle, with the FLTSATCOM (F-8 Communication Satellite) aboard, on the Complex 36 at the Cape Canaveral Air Force Station. The FLTSATCOM will provide communications for ships and submarines at sea, planes in the air and military ground units throughout the world. It will also provide instant communications between the President and the Commanding Officers.

  15. A Ground-based Sensor to Detect GEOs Without the Use of a Laser Guide-star

    DTIC Science & Technology

    2013-09-01

    atmospheric turbulence generator to create atmospheric turbulence. The different Zernikes used in the experiment are focus, astigmatism , and coma...radian of astigmatism in the pupil plane are shown in figure 5. The top row shows actual data obtained with the telescope and the bottom row shows

  16. 76 FR 12559 - Antidrug and Alcohol Misuse Prevention Programs for Personnel Engaged in Specified Aviation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... Machining and N welding of ground support parts for planes. Manufacturing & N precision grinding and testing... governing drug and alcohol testing to clarify that each person who performs a safety-sensitive function for a regulated employer by contract, including bysubcontract at any tier, is subject to testing. DATES...

  17. Optimal UAV Path Planning for Tracking a Moving Ground Vehicle with a Gimbaled Camera

    DTIC Science & Technology

    2014-03-27

    micro SD card slot to record all video taken at 1080P resolution. This feature allows the team to record the high definition video taken by the...Inequality constraints 64 h=[]; %Equality constraints 104 Bibliography 1. “ DIY Drones: Official ArduPlane Repository”, 2013. URL https://code

  18. Vanguard 2C VTOL Airplane Tested in the Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1960-02-01

    Vanguard 2C vertical take-off and landing (VTOL) airplane, wind tunnel test. Front view from below, model 14 1/2 feet high disk off. Nasa Ames engineer Ralph Maki in photo. Variable height struts and ground plane, low pressure ratio, fan in wing. 02/01/1960.

  19. Visual Perception of Touchdown Point During Simulated Landing

    ERIC Educational Resources Information Center

    Palmisano, Stephen; Gillam, Barbara

    2005-01-01

    Experiments examined the accuracy of visual touchdown point perception during oblique descents (1.5?-15?) toward a ground plane consisting of (a) randomly positioned dots, (b) a runway outline, or (c) a grid. Participants judged whether the perceived touchdown point was above or below a probe that appeared at a random position following each…

  20. The Work of the Hand

    ERIC Educational Resources Information Center

    Ludick, Pat

    2013-01-01

    Recognizing Maria and Mario Montessori's reverence for the hand, Pat Ludick takes the reader into the wonder of the human body, mind, and spirit and across the planes of education, into the making of a whole personality and grounded intelligence that is ready for the adult world. Putting the hand front and center, she lyrically evolves an overview…

  1. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    NASA Technical Reports Server (NTRS)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  2. The statistical analysis of received time-series signals from the laser illumination of remote objects through turbulence

    NASA Astrophysics Data System (ADS)

    Chandler, Susan; Lukesh, Gordon

    2006-11-01

    Ground-to-space illumination experiments, such as the Floodbeam I (FBE I, 1993), Floodbeam II (FBE II, 1996) and Active Imaging Testbed (AIT, 1999), fielded by the Imaging Branch of the United States Air Force Research Laboratory at Starfire Optical Range (SOR) on Kirtland AFB, NM, obtained considerable information from these highly successful experiments. While the experiments were primarily aimed at collecting focal/pupil plane data, the authors recognized during data reduction that the received time-series signals from the integrated full receiver focal plane data contains considerable hitherto unexploited information. For more than 10 years the authors have investigated the exploitation of data contained within the time-series signal from ground-to-space experiments. Results have been presented at numerous SPIE and EOS Remote Sensing Meetings. In July 2005, the authors were honored as invited speakers at the XIIth Symposium "Atmosphere and Ocean Optics; Atmospheric Physics" Tomsk, Russia. The authors were invited to return to Tomsk in 2006 however a serious automobile accident precluded attendance. This paper, requested for publication, provides an important summary of recent results.

  3. Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses.

    PubMed

    Wu, Kaimin; Huang, Yongjun; Wanghuang, Tenglong; Chen, Weijian; Wen, Guangjun

    2015-01-10

    In this paper, we numerically and theoretically discuss the novel absorption properties of a conventional metasurface-based terahertz (THz) electromagnetic (EM) absorber with different dielectric thicknesses. Two absorption modes are presented in the considered frequency band due to the increased dielectric thickness, and both modes can achieve near-unity absorptions when the dielectric layers reach additional nλ(d)/2 (n=1, 2) thicknesses, where λ(d) is the operating wavelength at the peak absorption in the dielectric slabs. The surface currents between the metasurface resonators and ground plane are not associated any longer, different from the conventional thin absorbers. Moreover, the EM wave energies are completely absorbed by the metasurface resonators and dielectric layer, and the main function of ground plane is to reflect the incident EM waves back to the resonators. The discussed novel absorption properties are analyzed and explained by classical EM theory and interference theory after numerical demonstrations. These findings can broaden the potential applications of the metasurface-based absorbers in the THz frequency range for different requirements.

  4. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  5. Pressure dependence of the magnetic ground states in MnP

    DOE PAGES

    Matsuda, Masaaki; Ye, Feng; Dissanayake, Sachith E.; ...

    2016-03-17

    MnP, a superconductor under pressure, exhibits a ferromagnetic order below TC~290 K followed by a helical order with the spins lying in the ab plane and the helical rotation propagating along the c axis below Ts~50 K at ambient pressure. We performed single-crystal neutron diffraction experiments to determine the magnetic ground states under pressure. Both TC and Ts are gradually suppressed with increasing pressure and the helical order disappears at ~1.2 GPa. At intermediate pressures of 1.8 and 2.0 GPa, the ferromagnetic order first develops and changes to a conical or two-phase (ferromagnetic and helical) structure with the propagation alongmore » the b axis below a characteristic temperature. At 3.8 GPa, a helical magnetic order appears below 208 K, which hosts the spins in the ac plane and the propagation along the b axis. The period of this b axis modulation is shorter than that at 1.8 GPa. Here, our results indicate that the magnetic phase in the vicinity of the superconducting phase may have a helical magnetic correlation along the b axis.« less

  6. Update on Waveguide-Embedded Differential MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schleht, Erich

    2010-01-01

    There is an update on the subject matter of Differential InP HEMT MMIC Amplifiers Embedded in Waveguides (NPO-42857) NASA Tech Briefs, Vol. 33, No. 9 (September 2009), page 35. To recapitulate: Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The MMICs are designed integrally with, and embedded in, waveguide packages. The instant work does not mention InP HEMTs but otherwise reiterates part of the subject matter of the cited prior article, with emphasis on the following salient points: An MMIC is mounted in the electric-field plane ("E-plane") of a waveguide and includes a finline transition to each differential-amplifier stage. The differential configuration creates a virtual ground within each pair of transistor-gate fingers, eliminating the need for external radio-frequency grounding. This work concludes by describing a single-stage differential submillimeter-wave amplifier packaged in a rectangular waveguide and summarizing results of tests of this amplifier at frequencies of 220 and 305 GHz.

  7. Magnetic ground state of the Ising-like antiferromagnet DyScO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, L. S.; Nikitin, Stanislav E.; Frontzek, Matthias D.

    2017-10-05

    Here, we report on the low-temperature magnetic properties of the DyScO3 perovskite, which were characterized by means of single crystal and powder neutron scattering, and by magnetization measurements. Below T N = 3.15 K, Dy 3+ moments form an antiferromagnetic structure with an easy axis of magnetization lying in the ab plane. The magnetic moments are inclined at an angle of ~ ±28° to the b axis. We show that the ground-state Kramers doublet of Dy 3+ is made up of primarily |±15/2> eigenvectors and well separated by a crystal field from the first excited state at E 1 =more » 24.9 meV. This leads to an extreme Ising single-ion anisotropy, M ⊥/M ∥~0.05. The transverse magnetic fluctuations, which are proportional to M 2 ⊥/M 2 ∥, are suppressed, and only moment fluctuations along the local Ising direction are allowed. We also found that the Dy-Dy dipolar interactions along the crystallographic c axis are two to four times larger than in-plane interactions.« less

  8. Magnetization plateaus and ground-state phase diagrams of the S=1 Ising model on the Shastry Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Deviren, Seyma Akkaya

    2017-02-01

    In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.

  9. Wideband Circularly Polarized Printed Ring Slot Antenna for 5 GHz – 6 GHz

    NASA Astrophysics Data System (ADS)

    Nasrun Osman, Mohamed; Rahim, Mohamad Helmi A.; Jusoh, Muzammil; Sabapathy, Thennarasan; Rahim, Mohamad Kamal A.; Norlyana Azemi, Saidatul

    2018-03-01

    This paper presents the design of circularly polarized printed slot antenna operating at 5 – 6 GHz. The proposed antenna consists of L-shaped feedline on the top of structure and circular ring slot positioned at the ground plane underneath the substrate as a radiator. A radial and narrow slot in the ground plane provides coupling between the L-shaped feedline and circular ring slot. The circular polarization is realized by implementing the slits perturbation located diagonally to perturb the current flow on the slot structure. The antenna prototype is fabricated on FR4 substrate. The simulated and measured results are compared and analyzed to demonstrate the performance of the antenna. Good measured of simulated results are obtained at the targeted operating frequency. The simulated -10dB reflection coefficient bandwidths and axial ratio are 750 MHz and 165 MHz, respectively. The investigation on the affect of the important parameters towards the reflection coefficient and axial are also presented. The proposed antenna is highly potential to be used for wireless local area network (WLAN) and wireless power transfer (WPT).

  10. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    PubMed Central

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-01-01

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed. PMID:28420217

  11. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    PubMed

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.

  12. High temperature capacitive strain gage

    NASA Astrophysics Data System (ADS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  13. Forecast model for great earthquakes at the Nankai Trough subduction zone

    USGS Publications Warehouse

    Stuart, W.D.

    1988-01-01

    An earthquake instability model is formulated for recurring great earthquakes at the Nankai Trough subduction zone in southwest Japan. The model is quasistatic, two-dimensional, and has a displacement and velocity dependent constitutive law applied at the fault plane. A constant rate of fault slip at depth represents forcing due to relative motion of the Philippine Sea and Eurasian plates. The model simulates fault slip and stress for all parts of repeated earthquake cycles, including post-, inter-, pre- and coseismic stages. Calculated ground uplift is in agreement with most of the main features of elevation changes observed before and after the M=8.1 1946 Nankaido earthquake. In model simulations, accelerating fault slip has two time-scales. The first time-scale is several years long and is interpreted as an intermediate-term precursor. The second time-scale is a few days long and is interpreted as a short-term precursor. Accelerating fault slip on both time-scales causes anomalous elevation changes of the ground surface over the fault plane of 100 mm or less within 50 km of the fault trace. ?? 1988 Birkha??user Verlag.

  14. Assignment and Analysis of the NO2 In-Plane Rock Band of Nitromethane Recorded by High-Resolution FTIR Synchrotron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Perry, David S.; Twagirayezu, Sylvestre; Billinghurst, Brant E.

    2014-06-01

    The high-resolution rotationally resolved Fourier Transform Far-infrared spectrum of the NO2 in plane-rock band (440-510 cm-1) of nitromethane (CH3NO2) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm-1. More than 1500 transitions lines have been assigned for ' = 0; {_a}' {≤ 7}; ' {≤ 50}; using an automated ground state combination difference program together with the traditional Loomis Wood approach. Transitions involving ' = 0; {_a}' {≤7}; ' {≤ 20}; in the upper vibrational state are fit using the six-fold torsion-rotation program developed by Ilyushin et.al. The torsion-rotation energy pattern in the lowest torsional state ( ' = 0) of the upper vibrational state is similar to that of the vibrational ground state. C. F. Neese., An Interactive Loomis-Wood Package, V2.0, {56th},OSU Interanational Symposium on Molecular Spectroscopy (2001). V. V. Ilyushin, Z. Kisiel, L. Pszczolkowski, H. Mader, and J. T. Hougen, M. Mol. Spectrosc., 259, 26, (2010).

  15. STOL and STOVL hot gas ingestion and airframe heating tests in the NASA Lewis 9- by 15-foot low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.

    1989-01-01

    Short takeoff and landing (STOL) and advanced short takeoff and vertical landing (STOVL) aircraft are being pursued for deployment near the end of this century. These concepts offer unique capabilities not seen in conventional aircraft: for example, shorter takeoff distances and the ability to operate from damaged runways and remote sites. However, special technology is critical to the development of this unique class of aircraft. Some of the real issues that are associated with these concepts are hot gas ingestion and airframe heating while in ground effects. Over the past nine years, NASA Lewis Research Center has been involved in several cooperative programs in the 9- by 15 Foot Low-Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion and airframe heating. The modifications are presented that were made in the 9- by 15-Foot LSWT, including the evolution of the ground plane, model support system, and tunnel sidewalls; and flow visualization techniques, instrumentation, test procedures, and test results. The 9- by 15-Foot LSWT tests were conducted at full scale exhaust nozzle pressure ratios. The headwind velocities varied from 8 to 120 kn depending on the concept (STOL or STOVL). Typical compressor-face distortions (pressure and temperature), ground plane contours, and model surface temperature profiles are presented.

  16. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate TOA flux reference level is used to define satellite TOA fluxes, and horizontal transmission of solar radiation through the planet is not accounted for in the radiation budget equation, systematic errors in net flux of up to 8 W/sq m can result. Since climate models generally use a plane-parallel model approximation to estimate TOA fluxes and the earth radiation budget, they implicitly assume zero horizontal transmission of solar radiation in the radiation budget equation, and do not need to specify a flux reference level. By defining satellite-based TOA flux estimates at a 20-km flux reference level, comparisons with plane-parallel climate model calculations are simplified since there is no need to explicitly correct plane-parallel climate model fluxes for horizontal transmission of solar radiation through a finite earth.

  17. Study on the Effect of Steel Wheel and Ground on Single Steel Vibratory Roller

    NASA Astrophysics Data System (ADS)

    Li, Jiabo; You, Guanghui; Qiao, Jiabin; Ye, Min; Guo, Jin; Zhang, Hongyang

    2018-03-01

    In the compacting operation of single drum vibratory roller, the forces acting on the foundation of drum include the weight of the drum, the weight of the frame, the exciting force and so on. Based on the theoretical study of ground mechanics, this paper analyzes and calculates the forces acting on the steel wheel and the ground, and obtains the distribution of the laminar stress in the ground when the working plane vibrates. Derive the formula of dynamic compressive stress and static compressive stress in the foundation during vibration compaction. Through the compaction test of the soil trough of 20T single drum roller, the compressive stress data of the soil hydraulic field are obtained. The data of the dynamic compressive stress and the static compressive stress of each layer during the third compaction are obtained, and the theoretical research is verified.

  18. Accuracy concerns in digital speckle photography combined with Fresnel digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.

    2018-05-01

    A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.

  19. Positioning system for single or multi-axis sensitive instrument calibration and calibration system for use therewith

    NASA Technical Reports Server (NTRS)

    Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)

    2008-01-01

    A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.

  20. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  1. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  2. Weather Information Communication Technologies for Increased Safety and Mobility in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Hilderman, Don R.

    2006-01-01

    The purpose of the NASA Glenn Research Center Weather Information Communications (WINCOMM) project was to develop advanced communications and information technologies to enable the high-quality and timely dissemination of strategic weather information between the flight deck and ground users as well as tactical turbulence hazard information between relevant aircraft and to the ground. This report will document and reference accomplishments on the dissemination of weather information during the en route phase of flight from ground-based weather information providers to the flight deck (ground-to-air), from airborne meteorological sensors to ground users (air-to-ground), and weather turbulence and icing hazard information between relevant aircraft (air-to-air). In addition, references in this report will demonstrate the architecture necessary to implement and perform successful transmission and reception of weather information to the cockpit, show that weather information flow does not impact "normal" traffic, demonstrate the feasibility of operational implementation, and lay foundation for future data link development.

  3. Surface anatomy and anatomical planes in the adult turkish population.

    PubMed

    Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S

    2016-03-01

    Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.

  4. A numerical technique for linear elliptic partial differential equations in polygonal domains.

    PubMed

    Hashemzadeh, P; Fokas, A S; Smitheman, S A

    2015-03-08

    Integral representations for the solution of linear elliptic partial differential equations (PDEs) can be obtained using Green's theorem. However, these representations involve both the Dirichlet and the Neumann values on the boundary, and for a well-posed boundary-value problem (BVPs) one of these functions is unknown. A new transform method for solving BVPs for linear and integrable nonlinear PDEs usually referred to as the unified transform ( or the Fokas transform ) was introduced by the second author in the late Nineties. For linear elliptic PDEs, this method can be considered as the analogue of Green's function approach but now it is formulated in the complex Fourier plane instead of the physical plane. It employs two global relations also formulated in the Fourier plane which couple the Dirichlet and the Neumann boundary values. These relations can be used to characterize the unknown boundary values in terms of the given boundary data, yielding an elegant approach for determining the Dirichlet to Neumann map . The numerical implementation of the unified transform can be considered as the counterpart in the Fourier plane of the well-known boundary integral method which is formulated in the physical plane. For this implementation, one must choose (i) a suitable basis for expanding the unknown functions and (ii) an appropriate set of complex values, which we refer to as collocation points, at which to evaluate the global relations. Here, by employing a variety of examples we present simple guidelines of how the above choices can be made. Furthermore, we provide concrete rules for choosing the collocation points so that the condition number of the matrix of the associated linear system remains low.

  5. EMP on a NTS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, J.; van Lint, V.; Sherwood, S.

    This report is a compilation of two previous sets of pretest calculations, references 1 and 2 and the grounding and shielding report, reference 3. The calculations performed in reference 1 were made for the baseline system, with the instrumentation trailers not isolated from ground, and wider ranges of ground conductivity were considered. This was used to develop the grounding and shielding plan included in the appendix. The final pretest calculations of reference 2 were performed for the modified system with isolated trailers, and with a better knowledge of the ground conductivity. The basic driving mechanism for currents in the modelmore » is the motion of Compton electrons, driven by gamma rays, in the air gaps and soil. Most of the Compton current is balanced by conduction current which returns directly along the path of the Compton electron, but a small fraction will return by circuitous paths involving current flow on conductors, including the uphole cables. The calculation of the currents is done in a two step process -- first the voltages in the ground near the conducting metallic structures is calculated without considering the presence of the structures. These are then used as open circuit drivers for an electrical model of the conductors which is obtained from loop integrals of Maxwell`s equations. The model which is used is a transmission line model, similar to those which have been used to calculate EMP currents on buried and overhead cables in other situations, including previous underground tests, although on much shorter distance and time scales, and with more controlled geometries. The behavior of air gaps between the conducting structure and the walls of the drift is calculated using an air chemistry model which determines the electron and ion densities and uses them to calculate the air conductivity across the gap.« less

  6. Strip mine reclamation: criteria and methods for measurement of revegetation success. Progress report, April 1, 1980-March 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrel, J.E.; Kucera, C.L.; Johannsen, C.J.

    1980-12-01

    During this contract period research was continued at finding suitable methods and criteria for determining the success of revegetation in Midwestern prime ag lands strip mined for coal. Particularly important to the experimental design was the concept of reference areas, which were nearby fields from which the performance standards for reclaimed areas were derived. Direct and remote sensing techniques for measuring plant ground cover, production, and species composition were tested. 15 mine sites were worked in which were permitted under interim permanent surface mine regulations and in 4 adjoining reference sites. Studies at 9 prelaw sites were continued. All sitesmore » were either in Missouri or Illinois. Data gathered in the 1980 growing season showed that 13 unmanaged or young mineland pastures generally had lower average ground cover and production than 2 reference pastures. In contrast, yields at approximately 40% of 11 recently reclaimed mine sites planted with winter wheat, soybeans, or milo were statistically similar to 3 reference values. Digital computer image analysis of color infrared aerial photographs, when compared to ground level measurements, was a fast, accurate, and inexpensive way to determine plant ground cover and areas. But the remote sensing approach was inferior to standard surface methods for detailing plant species abundance and composition.« less

  7. Agreements between ground-based and satellite-based observations. [of earth magnetospheric currents

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Weimer, D.; Iijima, T.; Ahn, B.-H.; Kamide, Y.

    1990-01-01

    The polar ionospheric parameters obtained by the meridian chain of magnetometers are compared with those obtained by satellites, and a number of ionospheric quantities including the distribution of the electric potential, field-aligned currents, ionospheric currents and their equatorial counterparts, and the relationship between the AE index and the cross-polar cap potential is determined. It is noted that the agreement observed between the ground-based and satellite-based results allows to reduce the search for the driving mechanism of the ionospheric Pedersen current to identifying the driving mechanism of the Pedersen counterpart current in the equatorial plane.

  8. Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor

    NASA Technical Reports Server (NTRS)

    Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.

    2011-01-01

    Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.

  9. Wind-tunnel investigation at low speeds of a model of the Kestrel (XV-6A) vectored-trust V/STOL airplane

    NASA Technical Reports Server (NTRS)

    Margason, R. J.; Vogler, R. D.; Winston, M. M.

    1972-01-01

    Longitudinal and lateral stability data were obtained with the model out of and in ground effect over a moving ground plane for a range of model angles of attack and sideslip at various thrust coefficients. These data were taken primarily at thrust coefficients which simulate transition speeds on the airplane between hover and 200 knots. Some data, however, represent the effect of thrust deflection at speeds up to 350 knots. Also presented are the effects of control-surface deflections and interference between the jets and free stream.

  10. Face Sheet/Core Disbond Growth in Honeycomb Sandwich Panels Subjected to Ground-Air-Ground Pressurization and In-Plane Loading

    NASA Technical Reports Server (NTRS)

    Chen, Zhi M.; Krueger, Ronald; Rinker, Martin

    2015-01-01

    Typical damage modes in light honeycomb sandwich structures include face sheet/core disbonding and core fracture, both of which can pose a threat to the structural integrity of a component. These damage modes are of particular interest to aviation certification authorities since several in-service occurrences, such as rudder structural failure and other control surface malfunctions, have been attributed to face sheet/core disbonding. Extensive studies have shown that face sheet/core disbonding and core fracture can lead to damage propagation caused by internal pressure changes in the core. The increasing use of composite sandwich construction in aircraft applications makes it vitally important to understand the effect of ground-air-ground (GAG) cycles and conditions such as maneuver and gust loads on face sheet/core disbonding. The objective of the present study was to use a fracture mechanics based approach developed earlier to evaluate the loading at the disbond front caused by ground-air-ground pressurization and in-plane loading. A honeycomb sandwich panel containing a circular disbond at one face sheet/core interface was modeled with three-dimensional (3D) solid finite elements. The disbond was modeled as a discrete discontinuity and the strain energy release rate along the disbond front was computed using the Virtual Crack Closure Technique (VCCT). Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed. The commercial finite element analysis software, Abaqus/Standard, was used for the analyses. The recursive pressure-deformation coupling problem was solved by representing the entrapped air in the honeycomb cells as filled cavities in Abaqus/Standard. The results show that disbond size, face sheet thickness and core thickness are important parameters that determine crack tip loading at the disbond front. Further, the pressure-deformation coupling was found to have an important load decreasing effect [6]. In this paper, a detailed problem description is provided first. Second, the analysis methodology is presented. The fracture mechanics approach used is described and the specifics of the finite element model, including the fluid-filled cavities, are introduced. Third, the initial model verification and validation are discussed. Fourth, the findings from a closely related earlier study [6] are summarized. These findings provided the basis for the current investigation. Fifth, an aircraft ascent scenario from 0 to 12192 m (0 to 40000 ft) is considered and the resulting crack tip loading at the disbond front is determined. In-plane loading to simulate maneuvers and gust conditions are also considered. Sixth, the results are shown for a curved panel, which was used to simulate potential fuselage applications. Finally, a brief summary of observations is presented and recommendations for improvement are provided.

  11. Aerodynamic Characteristics of Low-Aspect-Ratio Wings in Close Proximity to the Ground

    NASA Technical Reports Server (NTRS)

    Fink, Marvin P.; Lastinger, James L.

    1961-01-01

    A wind-tunnel investigation has been conducted to determine the effect of ground proximity on the aerodynamic characteristics of thick highly cambered rectangular wings with aspect ratios of 1. 2, 4, and 6. The results showed that, for these aspect ratios, as the ground war, approached all wings experienced increases in lift-curve slope and reductions in induced drag which resulted in increases in lift-drag ratio. Although an increase in lift-curve slope was obtained for all aspect ratios as the ground was approached, the lift coefficient at an angle of attack of 0 deg for any given aspect ratio remained nearly constant. The experimental results were in general agreement with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77). As the wings approached the ground, there was an increase in static longitudinal stability at positive angles of attack. When operating in ground effect, all the wings had stability of height at positive angles of attack and instability of height at negative angles of attack. Wing-tip fairings on the wings with aspect ratios of 1 and 2 produced small increases in lift-drag ratio in ground effect. End plates extending only below the chord plane on the wing with an aspect ratio of 1 provided increases in lift coefficient and in lift-drag ratio in ground effect.

  12. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  13. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.

    PubMed

    Shell, Courtney E; Segal, Ava D; Klute, Glenn K; Neptune, Richard R

    2017-11-01

    Little evidence exists regarding how prosthesis design characteristics affect performance in tasks that challenge mediolateral balance such as turning. This study assesses the influence of prosthetic foot stiffness on amputee walking mechanics and balance control during a continuous turning task. Three-dimensional kinematic and kinetic data were collected from eight unilateral transtibial amputees as they walked overground at self-selected speed clockwise and counterclockwise around a 1-meter circle and along a straight line. Subjects performed the walking tasks wearing three different ankle-foot prostheses that spanned a range of sagittal- and coronal-plane stiffness levels. A decrease in stiffness increased residual ankle dorsiflexion (10-13°), caused smaller adaptations (<5°) in proximal joint angles, decreased residual and increased intact limb body support, increased residual limb propulsion and increased intact limb braking for all tasks. While changes in sagittal-plane joint work due to decreased stiffness were generally consistent across tasks, effects on coronal-plane hip work were task-dependent. When the residual limb was on the inside of the turn and during straight-line walking, coronal-plane hip work increased and coronal-plane peak-to-peak range of whole-body angular momentum decreased with decreased stiffness. Changes in sagittal-plane kinematics and kinetics were similar to those previously observed in straight-line walking. Mediolateral balance improved with decreased stiffness, but adaptations in coronal-plane angles, work and ground reaction force impulses were less systematic than those in sagittal-plane measures. Effects of stiffness varied with the residual limb inside versus outside the turn, which suggests that actively adjusting stiffness to turn direction may be beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anatomical planes: are we teaching accurate surface anatomy?

    PubMed

    Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D

    2012-10-01

    Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.

  15. Optical super resolution using tilted illumination coupled with object rotation

    NASA Astrophysics Data System (ADS)

    Hussain, Anwar; Mudassar, Asloob A.

    2015-03-01

    In conventional imaging systems, the resolution of the final image is mainly distorted due to diffraction of higher spatial frequencies of the target object. To overcome the diffraction limit, imaging techniques which synthetically enlarge the aperture of the system are used. In this paper, synthesized aperture is produced by means of a three fiber illumination assembly coupled with an in-plane object rotation. The high order diffracted spatial frequencies of the object are brought into the pass band of optical system by illuminating the object with tilted beams. The tilt produced at the fiber assembly plane is related to the dimension of the aperture, placed at the Fourier plane of the system. To span the 2D object spectrum at the Fourier plane, an in-plane object rotation procedure is applied at the object plane. The spectrum of the object is rotated as the object is rotated and illuminated with tilted beams. The corresponding object beam is interfered with a reference beam from the same source to record interferograms. All the recorded interferograms are stored in computer and de-convolution algorithm is applied to recover the synthesized spectrum. The image of the synthesized spectrum has three times improved resolution compared to the conventional image.

  16. Evaluation of gait kinetics in puppies with coxofemoral joint laxity

    PubMed Central

    Lopez, Mandi J.; Quinn, Margaret M.; Markel, Mark D.

    2007-01-01

    Objective To characterize ground reaction forces (GRFs) and determine whether there were correlations between forces and passive coxofemoral joint laxity in puppies. Animals Fifty-one 16-week-old hound-breed dogs. Procedure Force-plate gait evaluation and distraction radiographic imaging were performed. Ground reaction forces evaluated included x (mediolateral), y (craniocaudal breaking and propulsion), and z (vertical) peak force and impulse. Z-plane limb loading and unloading rates, loading interval, and weight distribution and y-plane stance time breaking and propulsion percentages were calculated. One-way ANOVA with the Duncan multiple range test was used to evaluate differences in gait variables among limbs. The relationships of left, right, highest, and mean distraction index (DI) with individual limb data of each dog were evaluated with the Spearman rank correlation. Left and right DIs were compared by means of linear regression analysis. Results Mean ± SEM DI was 0.67 ± 0.02. Left and right DIs were strongly correlated, but there were no significant relationships between DIs and gait variables. Most fore- and hind limb gait variables differed significantly, whereas paired fore- and hind limb gait variables did not. Asymmetry was most pronounced in the x- and y-planes. Conclusions and Clinical Relevance GRFs were consistent with those of clinically normal mature dogs, supporting an absence of association between GRF and DI in young dogs. The GRFs and elucidation of the relationship between GRFs and DI may be useful for future studies in immature dogs. PMID:16454627

  17. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Whole body frontal plane mechanics across walking, running, and sprinting in young and older adults.

    PubMed

    Kulmala, J-P; Korhonen, M T; Kuitunen, S; Suominen, H; Heinonen, A; Mikkola, A; Avela, J

    2017-09-01

    This study investigated the whole body frontal plane mechanics among young (26 ± 6 years), early old (61 ± 5 years), and old (78 ± 4 years) adults during walking, running, and sprinting. The age-groups had similar walking (1.6 m/s) and running (4.0 m/s) speeds, but different maximal sprinting speed (young 9.3 m/s, early old 7.9 m/s, and old 6.6 m/s). Surprisingly, although the old group exerted much lower vertical ground reaction force during running and sprinting, the hip frontal plane moment did not differ between the age-groups. Kinematic analysis demonstrated increased hip adduction and pelvis drop, as well as reduced trunk lateral flexion among old adults, especially during sprinting. These alterations in the hip and pelvis motions may reflect insufficient force production of hip abductors to stabilize the pelvis during single-limb support, while limited trunk lateral flexion may enhance control of the mediolateral balance. On the other hand, larger trunk side-to-side movement among the young and early old adults may provide a mechanism to prevent the increase of the hip frontal moment despite greater vertical ground reaction force. This, in turn, can assist hip abductors to maintain stability of the pelvis during sprinting while allowing powerful force generation by a large adductor muscle group. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. In-plane elastic properties of auxetic multilattices

    NASA Astrophysics Data System (ADS)

    Berinskii, Igor E.

    2018-07-01

    Numerous studies proposed the possible use of auxetic periodic structures in engineering applications. The regular cellular structures with several nodes in a unit cell of the lattice are referred to as multilattices. In this work, a homogenization procedure was applied to three types of plane multilattices: conventional and re-entrant honeycombs (REH), double arrowheads, and semi REH constructed from elastic ribs. It was shown, that for all considered lattices the components of effective tensors of elasticity can be obtained in an explicit way in the frames of the same approach taking stretching, bending and shear of the ribs into account. As a result, equivalent elastic in-plane properties were found analytically as the functions of geometrical parameters of the lattices and the elastic parameters of the ribs. The estimation of the limits for the elastic properties was also performed. It was investigated how the condition of constant density changes the dependence of the elastic constants on the angles between the nodes. Also, different lattices were investigated at the same reference density taken equal to the density of the honeycomb lattice. The most typical cases from the practical point of view were considered and the corresponding elastic parameters were calculated for them.

  20. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    DOEpatents

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

Top