Sample records for reference image features

  1. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

    PubMed

    Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

    2018-09-01

    This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Method and apparatus for detecting a desired behavior in digital image data

    DOEpatents

    Kegelmeyer, Jr., W. Philip

    1997-01-01

    A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spatially filtered to enforce local consensus among neighboring pixels and the spatially filtered image is output.

  3. Method and apparatus for detecting a desired behavior in digital image data

    DOEpatents

    Kegelmeyer, Jr., W. Philip

    1997-01-01

    A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spacially filtered to enforce local consensus among neighboring pixels and the spacially filtered image is output.

  4. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    PubMed

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  5. A natural-color mapping for single-band night-time image based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  6. A fast and automatic mosaic method for high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  7. No-reference image quality assessment based on statistics of convolution feature maps

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoxin; Qin, Min; Chen, Xiaohui; Wei, Guo

    2018-04-01

    We propose a Convolutional Feature Maps (CFM) driven approach to accurately predict image quality. Our motivation bases on the finding that the Nature Scene Statistic (NSS) features on convolution feature maps are significantly sensitive to distortion degree of an image. In our method, a Convolutional Neural Network (CNN) is trained to obtain kernels for generating CFM. We design a forward NSS layer which performs on CFM to better extract NSS features. The quality aware features derived from the output of NSS layer is effective to describe the distortion type and degree an image suffered. Finally, a Support Vector Regression (SVR) is employed in our No-Reference Image Quality Assessment (NR-IQA) model to predict a subjective quality score of a distorted image. Experiments conducted on two public databases demonstrate the promising performance of the proposed method is competitive to state of the art NR-IQA methods.

  8. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the "i-ROP" System and Image Features Associated With Expert Diagnosis.

    PubMed

    Ataer-Cansizoglu, Esra; Bolon-Canedo, Veronica; Campbell, J Peter; Bozkurt, Alican; Erdogmus, Deniz; Kalpathy-Cramer, Jayashree; Patel, Samir; Jonas, Karyn; Chan, R V Paul; Ostmo, Susan; Chiang, Michael F

    2015-11-01

    We developed and evaluated the performance of a novel computer-based image analysis system for grading plus disease in retinopathy of prematurity (ROP), and identified the image features, shapes, and sizes that best correlate with expert diagnosis. A dataset of 77 wide-angle retinal images from infants screened for ROP was collected. A reference standard diagnosis was determined for each image by combining image grading from 3 experts with the clinical diagnosis from ophthalmoscopic examination. Manually segmented images were cropped into a range of shapes and sizes, and a computer algorithm was developed to extract tortuosity and dilation features from arteries and veins. Each feature was fed into our system to identify the set of characteristics that yielded the highest-performing system compared to the reference standard, which we refer to as the "i-ROP" system. Among the tested crop shapes, sizes, and measured features, point-based measurements of arterial and venous tortuosity (combined), and a large circular cropped image (with radius 6 times the disc diameter), provided the highest diagnostic accuracy. The i-ROP system achieved 95% accuracy for classifying preplus and plus disease compared to the reference standard. This was comparable to the performance of the 3 individual experts (96%, 94%, 92%), and significantly higher than the mean performance of 31 nonexperts (81%). This comprehensive analysis of computer-based plus disease suggests that it may be feasible to develop a fully-automated system based on wide-angle retinal images that performs comparably to expert graders at three-level plus disease discrimination. Computer-based image analysis, using objective and quantitative retinal vascular features, has potential to complement clinical ROP diagnosis by ophthalmologists.

  9. Reduced-Reference Quality Assessment Based on the Entropy of DWT Coefficients of Locally Weighted Gradient Magnitudes.

    PubMed

    Golestaneh, S Alireza; Karam, Lina

    2016-08-24

    Perceptual image quality assessment (IQA) attempts to use computational models to estimate the image quality in accordance with subjective evaluations. Reduced-reference (RR) image quality assessment (IQA) methods make use of partial information or features extracted from the reference image for estimating the quality of distorted images. Finding a balance between the number of RR features and accuracy of the estimated image quality is essential and important in IQA. In this paper we propose a training-free low-cost RRIQA method that requires a very small number of RR features (6 RR features). The proposed RRIQA algorithm is based on the discrete wavelet transform (DWT) of locally weighted gradient magnitudes.We apply human visual system's contrast sensitivity and neighborhood gradient information to weight the gradient magnitudes in a locally adaptive manner. The RR features are computed by measuring the entropy of each DWT subband, for each scale, and pooling the subband entropies along all orientations, resulting in L RR features (one average entropy per scale) for an L-level DWT. Extensive experiments performed on seven large-scale benchmark databases demonstrate that the proposed RRIQA method delivers highly competitive performance as compared to the state-of-the-art RRIQA models as well as full reference ones for both natural and texture images. The MATLAB source code of REDLOG and the evaluation results are publicly available online at https://http://lab.engineering.asu.edu/ivulab/software/redlog/.

  10. iGRaND: an invariant frame for RGBD sensor feature detection and descriptor extraction with applications

    NASA Astrophysics Data System (ADS)

    Willis, Andrew R.; Brink, Kevin M.

    2016-06-01

    This article describes a new 3D RGBD image feature, referred to as iGRaND, for use in real-time systems that use these sensors for tracking, motion capture, or robotic vision applications. iGRaND features use a novel local reference frame derived from the image gradient and depth normal (hence iGRaND) that is invariant to scale and viewpoint for Lambertian surfaces. Using this reference frame, Euclidean invariant feature components are computed at keypoints which fuse local geometric shape information with surface appearance information. The performance of the feature for real-time odometry is analyzed and its computational complexity and accuracy is compared with leading alternative 3D features.

  11. Data mining and visualization of average images in a digital hand atlas

    NASA Astrophysics Data System (ADS)

    Zhang, Aifeng; Gertych, Arkadiusz; Liu, Brent J.; Huang, H. K.

    2005-04-01

    We have collected a digital hand atlas containing digitized left hand radiographs of normally developed children grouped accordingly by age, sex, and race. A set of features stored in a database reflecting patient's stage of skeletal development has been calculated by automatic image processing procedures. This paper addresses a new concept, "average" image in the digital hand atlas. The "average" reference image in the digital atlas is selected for each of the groups of normal developed children with the best representative skeletal maturity based on bony features. A data mining procedure was designed and applied to find the average image through average feature vector matching. It also provides a temporary solution for the missing feature problem through polynomial regression. As more cases are added to the digital hand atlas, it can grow to provide clinicians accurate reference images to aid the bone age assessment process.

  12. Retinal status analysis method based on feature extraction and quantitative grading in OCT images.

    PubMed

    Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri

    2016-07-22

    Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.

  13. Color image definition evaluation method based on deep learning method

    NASA Astrophysics Data System (ADS)

    Liu, Di; Li, YingChun

    2018-01-01

    In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.

  14. Reduced reference image quality assessment via sub-image similarity based redundancy measurement

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Xue, Wufeng; Zhang, Lei

    2012-03-01

    The reduced reference (RR) image quality assessment (IQA) has been attracting much attention from researchers for its loyalty to human perception and flexibility in practice. A promising RR metric should be able to predict the perceptual quality of an image accurately while using as few features as possible. In this paper, a novel RR metric is presented, whose novelty lies in two aspects. Firstly, it measures the image redundancy by calculating the so-called Sub-image Similarity (SIS), and the image quality is measured by comparing the SIS between the reference image and the test image. Secondly, the SIS is computed by the ratios of NSE (Non-shift Edge) between pairs of sub-images. Experiments on two IQA databases (i.e. LIVE and CSIQ databases) show that by using only 6 features, the proposed metric can work very well with high correlations between the subjective and objective scores. In particular, it works consistently well across all the distortion types.

  15. Comparison of CT enterography and MR enterography imaging features of active Crohn disease in children and adolescents.

    PubMed

    Gale, Heather I; Sharatz, Steven M; Taphey, Mayureewan; Bradley, William F; Nimkin, Katherine; Gee, Michael S

    2017-09-01

    Assessment for active Crohn disease by CT enterography and MR enterography relies on identifying mural and perienteric imaging features. To evaluate the performance of established imaging features of active Crohn disease in children and adolescents on CT and MR enterography compared with histological reference. We included patients ages 18 years and younger who underwent either CT or MR enterography from 2007 to 2014 and had endoscopic biopsy within 28 days of imaging. Two pediatric radiologists blinded to the histological results reviewed imaging studies and scored the bowel for the presence or absence of mural features (wall thickening >3 mm, mural hyperenhancement) and perienteric features (mesenteric hypervascularity, edema, fibrofatty proliferation and lymphadenopathy) of active disease. We performed univariate analysis and multivariate logistic regression to compare imaging features with histological reference. We evaluated 452 bowel segments (135 from CT enterography, 317 from MR enterography) from 84 patients. Mural imaging features had the highest association with active inflammation both for MR enterography (wall thickening had 80% accuracy, 69% sensitivity and 91% specificity; mural hyperenhancement had 78%, 53% and 96%, respectively) and CT enterography (wall thickening had 84% accuracy, 72% sensitivity and 91% specificity; mural hyperenhancement had 76%, 51% and 91%, respectively), with perienteric imaging features performing significantly worse on MR enterography relative to CT enterography (P < 0.001). Mural features are predictors of active inflammation for both CT and MR enterography, while perienteric features can be distinguished better on CT enterography compared with MR enterography. This likely reflects the increased conspicuity of the mesentery on CT enterography and suggests that mural features are the most reliable imaging features of active Crohn disease in children and adolescents.

  16. A Rapid Segmentation-Insensitive "Digital Biopsy" Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non-Small Cell Lung Cancer.

    PubMed

    Echegaray, Sebastian; Nair, Viswam; Kadoch, Michael; Leung, Ann; Rubin, Daniel; Gevaert, Olivier; Napel, Sandy

    2016-12-01

    Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called "digital biopsy," that allows for the collection of intensity- and texture-based features from these regions at least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of patients with non-small cell lung cancer, and manually adjusted the nodule boundaries in each section, to be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor over multiple cross-sections, a procedure that required an average of <3 minutes per nodule. We simulated additional digital biopsies using morphological procedures. Finally, we compared the features extracted from these digital biopsies with our reference standard using intraclass correlation coefficient (ICC) to characterize robustness. Comparing the reference standard segmentations to our digital biopsies, we found that 84/94 features had an ICC >0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respectively, with ICCs >0.7. We conclude that many intensity- and texture-based features remain consistent between the reference standard and our method while substantially reducing the amount of operator time required.

  17. Deep supervised dictionary learning for no-reference image quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin

    2018-03-01

    We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.

  18. Modified-BRISQUE as no reference image quality assessment for structural MR images.

    PubMed

    Chow, Li Sze; Rajagopal, Heshalini

    2017-11-01

    An effective and practical Image Quality Assessment (IQA) model is needed to assess the image quality produced from any new hardware or software in MRI. A highly competitive No Reference - IQA (NR - IQA) model called Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) initially designed for natural images were modified to evaluate structural MR images. The BRISQUE model measures the image quality by using the locally normalized luminance coefficients, which were used to calculate the image features. The modified-BRISQUE model trained a new regression model using MR image features and Difference Mean Opinion Score (DMOS) from 775 MR images. Two types of benchmarks: objective and subjective assessments were used as performance evaluators for both original and modified-BRISQUE models. There was a high correlation between the modified-BRISQUE with both benchmarks, and they were higher than those for the original BRISQUE. There was a significant percentage improvement in their correlation values. The modified-BRISQUE was statistically better than the original BRISQUE. The modified-BRISQUE model can accurately measure the image quality of MR images. It is a practical NR-IQA model for MR images without using reference images. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. No-Reference Image Quality Assessment by Wide-Perceptual-Domain Scorer Ensemble Method.

    PubMed

    Liu, Tsung-Jung; Liu, Kuan-Hsien

    2018-03-01

    A no-reference (NR) learning-based approach to assess image quality is presented in this paper. The devised features are extracted from wide perceptual domains, including brightness, contrast, color, distortion, and texture. These features are used to train a model (scorer) which can predict scores. The scorer selection algorithms are utilized to help simplify the proposed system. In the final stage, the ensemble method is used to combine the prediction results from selected scorers. Two multiple-scale versions of the proposed approach are also presented along with the single-scale one. They turn out to have better performances than the original single-scale method. Because of having features from five different domains at multiple image scales and using the outputs (scores) from selected score prediction models as features for multi-scale or cross-scale fusion (i.e., ensemble), the proposed NR image quality assessment models are robust with respect to more than 24 image distortion types. They also can be used on the evaluation of images with authentic distortions. The extensive experiments on three well-known and representative databases confirm the performance robustness of our proposed model.

  20. No-reference image quality assessment based on natural scene statistics and gradient magnitude similarity

    NASA Astrophysics Data System (ADS)

    Jia, Huizhen; Sun, Quansen; Ji, Zexuan; Wang, Tonghan; Chen, Qiang

    2014-11-01

    The goal of no-reference/blind image quality assessment (NR-IQA) is to devise a perceptual model that can accurately predict the quality of a distorted image as human opinions, in which feature extraction is an important issue. However, the features used in the state-of-the-art "general purpose" NR-IQA algorithms are usually natural scene statistics (NSS) based or are perceptually relevant; therefore, the performance of these models is limited. To further improve the performance of NR-IQA, we propose a general purpose NR-IQA algorithm which combines NSS-based features with perceptually relevant features. The new method extracts features in both the spatial and gradient domains. In the spatial domain, we extract the point-wise statistics for single pixel values which are characterized by a generalized Gaussian distribution model to form the underlying features. In the gradient domain, statistical features based on neighboring gradient magnitude similarity are extracted. Then a mapping is learned to predict quality scores using a support vector regression. The experimental results on the benchmark image databases demonstrate that the proposed algorithm correlates highly with human judgments of quality and leads to significant performance improvements over state-of-the-art methods.

  1. An initial trial of a prototype telepathology system featuring static imaging with discrete control of the remote microscope.

    PubMed

    Winokur, T S; McClellan, S; Siegal, G P; Reddy, V; Listinsky, C M; Conner, D; Goldman, J; Grimes, G; Vaughn, G; McDonald, J M

    1998-07-01

    Routine diagnosis of pathology images transmitted over telecommunications lines remains an elusive goal. Part of the resistance stems from the difficulty of enabling image selection by the remote pathologist. To address this problem, a telepathology microscope system (TelePath, TeleMedicine Solutions, Birmingham, Ala) that has features associated with static and dynamic imaging systems was constructed. Features of the system include near real time image transmission, provision of a tiled overview image, free choice of any fields at any desired optical magnification, and automated tracking of the pathologist's image selection. All commands and images are discrete, avoiding many inherent problems of full motion video and continuous remote control. A set of 64 slides was reviewed by 3 pathologists in a simulated frozen section environment. Each pathologist provided diagnoses for all 64 slides, as well as qualitative information about the system. Thirty-one of 192 diagnoses disagreed with the reference diagnosis that had been reached before the trial began. Qf the 31, 13 were deferrals and 12 were diagnoses of cases that had a deferral as the reference diagnosis. In 6 cases, the diagnosis disagreed with the reference diagnosis yielding an overall accuracy of 96.9%. Confidence levels in the diagnoses were high. This trial suggests that this system provides high-quality anatomic pathology services, including intraoperative diagnoses, over telecommunications lines.

  2. Characterizing Feature Matching Performance Over Long Time Periods (Author’s Manuscript)

    DTIC Science & Technology

    2015-01-05

    older imagery. These applications, including approaches to geo-location, geo- orientation [13], geo-tagging [16], landmark recognition [23], image... orientation between features is less than 10 degrees. We calculate the percent of features from the reference image that fit into each of these three...always because the key point detection algorithm did not find feature points at the same locations and orientation . 5. Conclusions In this paper, we offer

  3. Similarity estimation for reference image retrieval in mammograms using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Muramatsu, Chisako; Higuchi, Shunichi; Morita, Takako; Oiwa, Mikinao; Fujita, Hiroshi

    2018-02-01

    Periodic breast cancer screening with mammography is considered effective in decreasing breast cancer mortality. For screening programs to be successful, an intelligent image analytic system may support radiologists' efficient image interpretation. In our previous studies, we have investigated image retrieval schemes for diagnostic references of breast lesions on mammograms and ultrasound images. Using a machine learning method, reliable similarity measures that agree with radiologists' similarity were determined and relevant images could be retrieved. However, our previous method includes a feature extraction step, in which hand crafted features were determined based on manual outlines of the masses. Obtaining the manual outlines of masses is not practical in clinical practice and such data would be operator-dependent. In this study, we investigated a similarity estimation scheme using a convolutional neural network (CNN) to skip such procedure and to determine data-driven similarity scores. By using CNN as feature extractor, in which extracted features were employed in determination of similarity measures with a conventional 3-layered neural network, the determined similarity measures were correlated well with the subjective ratings and the precision of retrieving diagnostically relevant images was comparable with that of the conventional method using handcrafted features. By using CNN for determination of similarity measure directly, the result was also comparable. By optimizing the network parameters, results may be further improved. The proposed method has a potential usefulness in determination of similarity measure without precise lesion outlines for retrieval of similar mass images on mammograms.

  4. Alexnet Feature Extraction and Multi-Kernel Learning for Objectoriented Classification

    NASA Astrophysics Data System (ADS)

    Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S.

    2018-04-01

    In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression, an exploratory research is done on feature extraction and classification for high resolution remote sensing images. Taking the Google image with 0.3 meter spatial resolution in Ludian area of Yunnan Province as an example, the image segmentation object was taken as the basic unit, and the pre-trained AlexNet deep convolution neural network model was used for feature extraction. And the spectral features, AlexNet features and GLCM texture features are combined with multi-kernel learning and SVM classifier, finally the classification results were compared and analyzed. The results show that the deep convolution neural network can extract more accurate remote sensing image features, and significantly improve the overall accuracy of classification, and provide a reference value for earthquake disaster investigation and remote sensing disaster evaluation.

  5. Efficient and robust model-to-image alignment using 3D scale-invariant features.

    PubMed

    Toews, Matthew; Wells, William M

    2013-04-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Efficient and Robust Model-to-Image Alignment using 3D Scale-Invariant Features

    PubMed Central

    Toews, Matthew; Wells, William M.

    2013-01-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a-posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. PMID:23265799

  7. Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features.

    PubMed

    Lo, P; Young, S; Kim, H J; Brown, M S; McNitt-Gray, M F

    2016-08-01

    To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. The water phantom results demonstrated substantial variability among feature values calculated across conditions, with the exception of histogram mean. Features calculated from lung nodules demonstrated similar results with histogram mean as the most robust feature (Q ≤ 1), having a mean and standard deviation Q of 0.37 and 0.22, respectively. Surprisingly, histogram standard deviation and variance features were also quite robust. Some GLCM features were also quite robust across conditions, namely, diff. variance, sum variance, sum average, variance, and mean. Except for histogram mean, all features have a Q of larger than one in at least one of the 3% dose level conditions. As expected, the histogram mean is the most robust feature in their study. The effects of acquisition and reconstruction conditions on GLCM features vary widely, though trending toward features involving summation of product between intensities and probabilities being more robust, barring a few exceptions. Overall, care should be taken into account for variation in density and texture features if a variety of dose and reconstruction conditions are used for the quantification of lung nodules in CT, otherwise changes in quantification results may be more reflective of changes due to acquisition and reconstruction conditions than in the nodule itself.

  8. Normative Databases for Imaging Instrumentation.

    PubMed

    Realini, Tony; Zangwill, Linda M; Flanagan, John G; Garway-Heath, David; Patella, Vincent M; Johnson, Chris A; Artes, Paul H; Gaddie, Ian B; Fingeret, Murray

    2015-08-01

    To describe the process by which imaging devices undergo reference database development and regulatory clearance. The limitations and potential improvements of reference (normative) data sets for ophthalmic imaging devices will be discussed. A symposium was held in July 2013 in which a series of speakers discussed issues related to the development of reference databases for imaging devices. Automated imaging has become widely accepted and used in glaucoma management. The ability of such instruments to discriminate healthy from glaucomatous optic nerves, and to detect glaucomatous progression over time is limited by the quality of reference databases associated with the available commercial devices. In the absence of standardized rules governing the development of reference databases, each manufacturer's database differs in size, eligibility criteria, and ethnic make-up, among other key features. The process for development of imaging reference databases may be improved by standardizing eligibility requirements and data collection protocols. Such standardization may also improve the degree to which results may be compared between commercial instruments.

  9. Normative Databases for Imaging Instrumentation

    PubMed Central

    Realini, Tony; Zangwill, Linda; Flanagan, John; Garway-Heath, David; Patella, Vincent Michael; Johnson, Chris; Artes, Paul; Ben Gaddie, I.; Fingeret, Murray

    2015-01-01

    Purpose To describe the process by which imaging devices undergo reference database development and regulatory clearance. The limitations and potential improvements of reference (normative) data sets for ophthalmic imaging devices will be discussed. Methods A symposium was held in July 2013 in which a series of speakers discussed issues related to the development of reference databases for imaging devices. Results Automated imaging has become widely accepted and used in glaucoma management. The ability of such instruments to discriminate healthy from glaucomatous optic nerves, and to detect glaucomatous progression over time is limited by the quality of reference databases associated with the available commercial devices. In the absence of standardized rules governing the development of reference databases, each manufacturer’s database differs in size, eligibility criteria, and ethnic make-up, among other key features. Conclusions The process for development of imaging reference databases may be improved by standardizing eligibility requirements and data collection protocols. Such standardization may also improve the degree to which results may be compared between commercial instruments. PMID:25265003

  10. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; Fuentes, David; Ahmad, Moiz; Wood, Abbie M.; Ludwig, Michelle S.; Guerrero, Thomas

    2013-05-01

    Landmark point-pairs provide a strategy to assess deformable image registration (DIR) accuracy in terms of the spatial registration of the underlying anatomy depicted in medical images. In this study, we propose to augment a publicly available database (www.dir-lab.com) of medical images with large sets of manually identified anatomic feature pairs between breath-hold computed tomography (BH-CT) images for DIR spatial accuracy evaluation. Ten BH-CT image pairs were randomly selected from the COPDgene study cases. Each patient had received CT imaging of the entire thorax in the supine position at one-fourth dose normal expiration and maximum effort full dose inspiration. Using dedicated in-house software, an imaging expert manually identified large sets of anatomic feature pairs between images. Estimates of inter- and intra-observer spatial variation in feature localization were determined by repeat measurements of multiple observers over subsets of randomly selected features. 7298 anatomic landmark features were manually paired between the 10 sets of images. Quantity of feature pairs per case ranged from 447 to 1172. Average 3D Euclidean landmark displacements varied substantially among cases, ranging from 12.29 (SD: 6.39) to 30.90 (SD: 14.05) mm. Repeat registration of uniformly sampled subsets of 150 landmarks for each case yielded estimates of observer localization error, which ranged in average from 0.58 (SD: 0.87) to 1.06 (SD: 2.38) mm for each case. The additions to the online web database (www.dir-lab.com) described in this work will broaden the applicability of the reference data, providing a freely available common dataset for targeted critical evaluation of DIR spatial accuracy performance in multiple clinical settings. Estimates of observer variance in feature localization suggest consistent spatial accuracy for all observers across both four-dimensional CT and COPDgene patient cohorts.

  11. An Evaluation of Feature Learning Methods for High Resolution Image Classification

    NASA Astrophysics Data System (ADS)

    Tokarczyk, P.; Montoya, J.; Schindler, K.

    2012-07-01

    Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.

  12. Image counter-forensics based on feature injection

    NASA Astrophysics Data System (ADS)

    Iuliani, M.; Rossetto, S.; Bianchi, T.; De Rosa, Alessia; Piva, A.; Barni, M.

    2014-02-01

    Starting from the concept that many image forensic tools are based on the detection of some features revealing a particular aspect of the history of an image, in this work we model the counter-forensic attack as the injection of a specific fake feature pointing to the same history of an authentic reference image. We propose a general attack strategy that does not rely on a specific detector structure. Given a source image x and a target image y, the adversary processes x in the pixel domain producing an attacked image ~x, perceptually similar to x, whose feature f(~x) is as close as possible to f(y) computed on y. Our proposed counter-forensic attack consists in the constrained minimization of the feature distance Φ(z) =│ f(z) - f(y)│ through iterative methods based on gradient descent. To solve the intrinsic limit due to the numerical estimation of the gradient on large images, we propose the application of a feature decomposition process, that allows the problem to be reduced into many subproblems on the blocks the image is partitioned into. The proposed strategy has been tested by attacking three different features and its performance has been compared to state-of-the-art counter-forensic methods.

  13. Region-Based Prediction for Image Compression in the Cloud.

    PubMed

    Begaint, Jean; Thoreau, Dominique; Guillotel, Philippe; Guillemot, Christine

    2018-04-01

    Thanks to the increasing number of images stored in the cloud, external image similarities can be leveraged to efficiently compress images by exploiting inter-images correlations. In this paper, we propose a novel image prediction scheme for cloud storage. Unlike current state-of-the-art methods, we use a semi-local approach to exploit inter-image correlation. The reference image is first segmented into multiple planar regions determined from matched local features and super-pixels. The geometric and photometric disparities between the matched regions of the reference image and the current image are then compensated. Finally, multiple references are generated from the estimated compensation models and organized in a pseudo-sequence to differentially encode the input image using classical video coding tools. Experimental results demonstrate that the proposed approach yields significant rate-distortion performance improvements compared with the current image inter-coding solutions such as high efficiency video coding.

  14. Quality assessment of remote sensing image fusion using feature-based fourth-order correlation coefficient

    NASA Astrophysics Data System (ADS)

    Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-04-01

    In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.

  15. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  16. False-colour palette generation using a reference colour gamut

    NASA Astrophysics Data System (ADS)

    Green, Phil

    2015-01-01

    Monochrome images are often converted to false-colour images, in which arbitrary colours are assigned to regions of the image to aid recognition of features within the image. Criteria for selection of colour palettes vary according to the application, but may include distinctiveness, extensibility, consistency, preference, meaningfulness and universality. A method for defining a palette from colours on the surface of a reference gamut is described, which ensures that all colours in the palette have the maximum chroma available for the given hue angle in the reference gamut. The palette can be re-targeted to a reproduction medium as needed using colour management, and this method ensures consistency between cross-media colour reproductions using the palette.

  17. Context-dependent logo matching and recognition.

    PubMed

    Sahbi, Hichem; Ballan, Lamberto; Serra, Giuseppe; Del Bimbo, Alberto

    2013-03-01

    We contribute, through this paper, to the design of a novel variational framework able to match and recognize multiple instances of multiple reference logos in image archives. Reference logos and test images are seen as constellations of local features (interest points, regions, etc.) and matched by minimizing an energy function mixing: 1) a fidelity term that measures the quality of feature matching, 2) a neighborhood criterion that captures feature co-occurrence/geometry, and 3) a regularization term that controls the smoothness of the matching solution. We also introduce a detection/recognition procedure and study its theoretical consistency. Finally, we show the validity of our method through extensive experiments on the challenging MICC-Logos dataset. Our method overtakes, by 20%, baseline as well as state-of-the-art matching/recognition procedures.

  18. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Zhang, Dengrong; Holden, Eun-Jung

    2008-07-01

    Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.

  19. Evaluation of Angioarchitectural Features of Unruptured Brain Arteriovenous Malformation by Susceptibility Weighted Image (SWI).

    PubMed

    Wu, Chun-Xue; Ma, Li; Chen, Xu-Zhu; Chen, Xiao-Lin; Chen, Yu; Zhao, Yuan-Li; Hess, Christopher; Kim, Helen; Jin, Heng-Wei; Ma, Jun

    2018-05-30

    A precise assessment of angioarchitectural characteristics using non-invasive imaging is helpful for serial follow-up and weighting risk of natural history in uruptured brain arteriovenous malformation (bAVM). This study aimed to test the hypothesis that susceptibility weighted image (SWI) would provide an accurate evaluation of angioarchitectural features of unruptured bAVM.. A total of 81 consecutive patients with unruptured bAVM were examined. Image quality of SWI for the assessment of bAVM angioarchitectural features were determined by a five-point scale. The accuracy of SWI for detection of angioarchitectural features was evaluated using DSA as a standard reference. And further compared among unruptured bAVMs with or without silent intralesional microhemorrhage on SWI to examine the potential confounding effect of microhemorrhage on image analysis. All lesions were identified on SWI. Image quality of SWI was judged to be at least adequate for diagnosis (range, 3-5) in all patients by both readers. Using DSA as reference standard, the area under receiver operating curve (AUC) of detection of deep or posterior fossa location, exclusively deep venous drainage, venous ectasia, venous varices and the presence of associated aneurysm on SWI was 1, 0.93, 0.94, 0.95, and 0.83, respectively. Silent intralesional microhemorrhage were detected in 39 patients (48.15%) on SWI and no significant difference (P > 0.05) was found in angioarchitectural features between cases with and without silent microhemorrhage. SWI might be a non-invasive alternative technique for angiogram in the angioarchitectural assessment of unruptured bAVM. Copyright © 2018. Published by Elsevier Inc.

  20. An efficient direct method for image registration of flat objects

    NASA Astrophysics Data System (ADS)

    Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei

    2017-09-01

    Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.

  1. Accuracy of MRI for the diagnosis of metastatic cervical lymphadenopathy in patients with thyroid cancer.

    PubMed

    Chen, Qinghua; Raghavan, Prashant; Mukherjee, Sugoto; Jameson, Mark J; Patrie, James; Xin, Wenjun; Xian, Junfang; Wang, Zhenchang; Levine, Paul A; Wintermark, Max

    2015-10-01

    The aim of this study was to systematically compare a comprehensive array of magnetic resonance (MR) imaging features in terms of their sensitivity and specificity to diagnose cervical lymph node metastases in patients with thyroid cancer. The study included 41 patients with thyroid malignancy who underwent surgical excision of cervical lymph nodes and had preoperative MR imaging ≤4weeks prior to surgery. Three head and neck neuroradiologists independently evaluated all the MR images. Using the pathology results as reference, the sensitivity, specificity and interobserver agreement of each MR imaging characteristic were calculated. On multivariate analysis, no single imaging feature was significantly correlated with metastasis. In general, imaging features demonstrated high specificity, but poor sensitivity and moderate interobserver agreement at best. Commonly used MR imaging features have limited sensitivity at correctly identifying cervical lymph node metastases in patients with thyroid cancer. A negative neck MR scan should not dissuade a surgeon from performing a neck dissection in patients with thyroid carcinomas.

  2. SU-C-BRA-04: Automated Segmentation of Head-And-Neck CT Images for Radiotherapy Treatment Planning Via Multi-Atlas Machine Learning (MAML)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X; Gao, H; Sharp, G

    Purpose: Accurate image segmentation is a crucial step during image guided radiation therapy. This work proposes multi-atlas machine learning (MAML) algorithm for automated segmentation of head-and-neck CT images. Methods: As the first step, the algorithm utilizes normalized mutual information as similarity metric, affine registration combined with multiresolution B-Spline registration, and then fuses together using the label fusion strategy via Plastimatch. As the second step, the following feature selection strategy is proposed to extract five feature components from reference or atlas images: intensity (I), distance map (D), box (B), center of gravity (C) and stable point (S). The box feature Bmore » is novel. It describes a relative position from each point to minimum inscribed rectangle of ROI. The center-of-gravity feature C is the 3D Euclidean distance from a sample point to the ROI center of gravity, and then S is the distance of the sample point to the landmarks. Then, we adopt random forest (RF) in Scikit-learn, a Python module integrating a wide range of state-of-the-art machine learning algorithms as classifier. Different feature and atlas strategies are used for different ROIs for improved performance, such as multi-atlas strategy with reference box for brainstem, and single-atlas strategy with reference landmark for optic chiasm. Results: The algorithm was validated on a set of 33 CT images with manual contours using a leave-one-out cross-validation strategy. Dice similarity coefficients between manual contours and automated contours were calculated: the proposed MAML method had an improvement from 0.79 to 0.83 for brainstem and 0.11 to 0.52 for optic chiasm with respect to multi-atlas segmentation method (MA). Conclusion: A MAML method has been proposed for automated segmentation of head-and-neck CT images with improved performance. It provides the comparable result in brainstem and the improved result in optic chiasm compared with MA. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).« less

  3. 3D-profile measurement of advanced semiconductor features by using FIB as reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami

    2017-03-01

    A novel method of sub-nanometer uncertainty for the 3D-profile measurement and LWR (Line Width Roughness) measurement by using FIB (Focused Ion Beam) processing, and TEM (Transmission Electron Microscope) and CD-SEM (Critical Dimension Scanning Electron Microscope) images measurement is proposed to standardize 3D-profile measurement through reference metrology. In this article, we apply the methodology to line profile measurements and roughness measurement of advanced FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are horizontally sliced as a thin specimen by FIB micro sampling system. Horizontally images of the specimens are obtained then by a planar TEM. LWR is calculated from the edges positions on TEM images. Moreover, we already have demonstrated the novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB slope cut and CD-SEM measuring. Using the method, a few micrometers wide on a wafer is coated and cut by 45-degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We applied FIB-to-CDSEM method to a CMOS image sensor feature. The 45-degree slope cut surface is observed using AFM. The surface profile of slope cut surface and line profiles are analyzed for improving the accuracy of FIB-to-CDSEM method.

  4. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  5. Multi-sensor image registration based on algebraic projective invariants.

    PubMed

    Li, Bin; Wang, Wei; Ye, Hao

    2013-04-22

    A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.

  6. Real-time machine vision system using FPGA and soft-core processor

    NASA Astrophysics Data System (ADS)

    Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad

    2012-06-01

    This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.

  7. Optimized SIFTFlow for registration of whole-mount histology to reference optical images

    PubMed Central

    Shojaii, Rushin; Martel, Anne L.

    2016-01-01

    Abstract. The registration of two-dimensional histology images to reference images from other modalities is an important preprocessing step in the reconstruction of three-dimensional histology volumes. This is a challenging problem because of the differences in the appearances of histology images and other modalities, and the presence of large nonrigid deformations which occur during slide preparation. This paper shows the feasibility of using densely sampled scale-invariant feature transform (SIFT) features and a SIFTFlow deformable registration algorithm for coregistering whole-mount histology images with blockface optical images. We present a method for jointly optimizing the regularization parameters used by the SIFTFlow objective function and use it to determine the most appropriate values for the registration of breast lumpectomy specimens. We demonstrate that tuning the regularization parameters results in significant improvements in accuracy and we also show that SIFTFlow outperforms a previously described edge-based registration method. The accuracy of the histology images to blockface images registration using the optimized SIFTFlow method was assessed using an independent test set of images from five different lumpectomy specimens and the mean registration error was 0.32±0.22  mm. PMID:27774494

  8. Diagnostic features of Alzheimer's disease extracted from PET sinograms

    NASA Astrophysics Data System (ADS)

    Sayeed, A.; Petrou, M.; Spyrou, N.; Kadyrov, A.; Spinks, T.

    2002-01-01

    Texture analysis of positron emission tomography (PET) images of the brain is a very difficult task, due to the poor signal to noise ratio. As a consequence, very few techniques can be implemented successfully. We use a new global analysis technique known as the Trace transform triple features. This technique can be applied directly to the raw sinograms to distinguish patients with Alzheimer's disease (AD) from normal volunteers. FDG-PET images of 18 AD and 10 normal controls obtained from the same CTI ECAT-953 scanner were used in this study. The Trace transform triple feature technique was used to extract features that were invariant to scaling, translation and rotation, referred to as invariant features, as well as features that were sensitive to rotation but invariant to scaling and translation, referred to as sensitive features in this study. The features were used to classify the groups using discriminant function analysis. Cross-validation tests using stepwise discriminant function analysis showed that combining both sensitive and invariant features produced the best results, when compared with the clinical diagnosis. Selecting the five best features produces an overall accuracy of 93% with sensitivity of 94% and specificity of 90%. This is comparable with the classification accuracy achieved by Kippenhan et al (1992), using regional metabolic activity.

  9. Cross-Domain Shoe Retrieval with a Semantic Hierarchy of Attribute Classification Network.

    PubMed

    Zhan, Huijing; Shi, Boxin; Kot, Alex C

    2017-08-04

    Cross-domain shoe image retrieval is a challenging problem, because the query photo from the street domain (daily life scenario) and the reference photo in the online domain (online shop images) have significant visual differences due to the viewpoint and scale variation, self-occlusion, and cluttered background. This paper proposes the Semantic Hierarchy Of attributE Convolutional Neural Network (SHOE-CNN) with a three-level feature representation for discriminative shoe feature expression and efficient retrieval. The SHOE-CNN with its newly designed loss function systematically merges semantic attributes of closer visual appearances to prevent shoe images with the obvious visual differences being confused with each other; the features extracted from image, region, and part levels effectively match the shoe images across different domains. We collect a large-scale shoe dataset composed of 14341 street domain and 12652 corresponding online domain images with fine-grained attributes to train our network and evaluate our system. The top-20 retrieval accuracy improves significantly over the solution with the pre-trained CNN features.

  10. Behavioral model of visual perception and recognition

    NASA Astrophysics Data System (ADS)

    Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.

    1993-09-01

    In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and successive verification of the expected sets of features (stored in Sensory Memory). The model shows the ability of recognition of complex objects (such as faces) in gray-level images invariant with respect to shift, rotation, and scale.

  11. Adapting Local Features for Face Detection in Thermal Image.

    PubMed

    Ma, Chao; Trung, Ngo Thanh; Uchiyama, Hideaki; Nagahara, Hajime; Shimada, Atsushi; Taniguchi, Rin-Ichiro

    2017-11-27

    A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in thermal images, cascade classifiers with Haar-like features are generally used. However, there are few studies exploring the local features for face detection in thermal images. In this paper, we introduce two approaches relying on local features for face detection in thermal images. First, we create new feature types by extending Multi-Block LBP. We consider a margin around the reference and the generally constant distribution of facial temperature. In this way, we make the features more robust to image noise and more effective for face detection in thermal images. Second, we propose an AdaBoost-based training method to get cascade classifiers with multiple types of local features. These feature types have different advantages. In this way we enhance the description power of local features. We did a hold-out validation experiment and a field experiment. In the hold-out validation experiment, we captured a dataset from 20 participants, comprising 14 males and 6 females. For each participant, we captured 420 images with 10 variations in camera distance, 21 poses, and 2 appearances (participant with/without glasses). We compared the performance of cascade classifiers trained by different sets of the features. The experiment results showed that the proposed approaches effectively improve the performance of face detection in thermal images. In the field experiment, we compared the face detection performance in realistic scenes using thermal and RGB images, and gave discussion based on the results.

  12. A Guide to Analysing Tongue Motion from Ultrasound Images

    ERIC Educational Resources Information Center

    Stone, Maureen

    2005-01-01

    This paper is meant to be an introduction to and general reference for ultrasound imaging for new and moderately experienced users of the instrument. The paper consists of eight sections. The first explains how ultrasound works, including beam properties, scan types and machine features. The second section discusses image quality, including the…

  13. Decision Tree Repository and Rule Set Based Mingjiang River Estuarine Wetlands Classifaction

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, X.; Xiao, W.

    2018-05-01

    The increasing urbanization and industrialization have led to wetland losses in estuarine area of Mingjiang River over past three decades. There has been increasing attention given to produce wetland inventories using remote sensing and GIS technology. Due to inconsistency training site and training sample, traditionally pixel-based image classification methods can't achieve a comparable result within different organizations. Meanwhile, object-oriented image classification technique shows grate potential to solve this problem and Landsat moderate resolution remote sensing images are widely used to fulfill this requirement. Firstly, the standardized atmospheric correct, spectrally high fidelity texture feature enhancement was conducted before implementing the object-oriented wetland classification method in eCognition. Secondly, we performed the multi-scale segmentation procedure, taking the scale, hue, shape, compactness and smoothness of the image into account to get the appropriate parameters, using the top and down region merge algorithm from single pixel level, the optimal texture segmentation scale for different types of features is confirmed. Then, the segmented object is used as the classification unit to calculate the spectral information such as Mean value, Maximum value, Minimum value, Brightness value and the Normalized value. The Area, length, Tightness and the Shape rule of the image object Spatial features and texture features such as Mean, Variance and Entropy of image objects are used as classification features of training samples. Based on the reference images and the sampling points of on-the-spot investigation, typical training samples are selected uniformly and randomly for each type of ground objects. The spectral, texture and spatial characteristics of each type of feature in each feature layer corresponding to the range of values are used to create the decision tree repository. Finally, with the help of high resolution reference images, the random sampling method is used to conduct the field investigation, achieve an overall accuracy of 90.31 %, and the Kappa coefficient is 0.88. The classification method based on decision tree threshold values and rule set developed by the repository, outperforms the results obtained from the traditional methodology. Our decision tree repository and rule set based object-oriented classification technique was an effective method for producing comparable and consistency wetlands data set.

  14. No-reference quality assessment based on visual perception

    NASA Astrophysics Data System (ADS)

    Li, Junshan; Yang, Yawei; Hu, Shuangyan; Zhang, Jiao

    2014-11-01

    The visual quality assessment of images/videos is an ongoing hot research topic, which has become more and more important for numerous image and video processing applications with the rapid development of digital imaging and communication technologies. The goal of image quality assessment (IQA) algorithms is to automatically assess the quality of images/videos in agreement with human quality judgments. Up to now, two kinds of models have been used for IQA, namely full-reference (FR) and no-reference (NR) models. For FR models, IQA algorithms interpret image quality as fidelity or similarity with a perfect image in some perceptual space. However, the reference image is not available in many practical applications, and a NR IQA approach is desired. Considering natural vision as optimized by the millions of years of evolutionary pressure, many methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychological features of the human visual system (HVS). To reach this goal, researchers try to simulate HVS with image sparsity coding and supervised machine learning, which are two main features of HVS. A typical HVS captures the scenes by sparsity coding, and uses experienced knowledge to apperceive objects. In this paper, we propose a novel IQA approach based on visual perception. Firstly, a standard model of HVS is studied and analyzed, and the sparse representation of image is accomplished with the model; and then, the mapping correlation between sparse codes and subjective quality scores is trained with the regression technique of least squaresupport vector machine (LS-SVM), which gains the regressor that can predict the image quality; the visual metric of image is predicted with the trained regressor at last. We validate the performance of proposed approach on Laboratory for Image and Video Engineering (LIVE) database, the specific contents of the type of distortions present in the database are: 227 images of JPEG2000, 233 images of JPEG, 174 images of White Noise, 174 images of Gaussian Blur, 174 images of Fast Fading. The database includes subjective differential mean opinion score (DMOS) for each image. The experimental results show that the proposed approach not only can assess many kinds of distorted images quality, but also exhibits a superior accuracy and monotonicity.

  15. Thin plate spline feature point matching for organ surfaces in minimally invasive surgery imaging

    NASA Astrophysics Data System (ADS)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-03-01

    Robust feature point matching for images with large view angle changes in Minimally Invasive Surgery (MIS) is a challenging task due to low texture and specular reflections in these images. This paper presents a new approach that can improve feature matching performance by exploiting the inherent geometric property of the organ surfaces. Recently, intensity based template image tracking using a Thin Plate Spline (TPS) model has been extended for 3D surface tracking with stereo cameras. The intensity based tracking is also used here for 3D reconstruction of internal organ surfaces. To overcome the small displacement requirement of intensity based tracking, feature point correspondences are used for proper initialization of the nonlinear optimization in the intensity based method. Second, we generate simulated images from the reconstructed 3D surfaces under all potential view positions and orientations, and then extract feature points from these simulated images. The obtained feature points are then filtered and re-projected to the common reference image. The descriptors of the feature points under different view angles are stored to ensure that the proposed method can tolerate a large range of view angles. We evaluate the proposed method with silicon phantoms and in vivo images. The experimental results show that our method is much more robust with respect to the view angle changes than other state-of-the-art methods.

  16. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

    PubMed

    Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R

    2015-10-01

    This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

  17. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval

    PubMed Central

    Rahman, Md. Mahmudur; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.

    2015-01-01

    Abstract. This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term “concept” refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature. PMID:26730398

  18. Reproducibility and Prognosis of Quantitative Features Extracted from CT Images12

    PubMed Central

    Balagurunathan, Yoganand; Gu, Yuhua; Wang, Hua; Kumar, Virendra; Grove, Olya; Hawkins, Sam; Kim, Jongphil; Goldgof, Dmitry B; Hall, Lawrence O; Gatenby, Robert A; Gillies, Robert J

    2014-01-01

    We study the reproducibility of quantitative imaging features that are used to describe tumor shape, size, and texture from computed tomography (CT) scans of non-small cell lung cancer (NSCLC). CT images are dependent on various scanning factors. We focus on characterizing image features that are reproducible in the presence of variations due to patient factors and segmentation methods. Thirty-two NSCLC nonenhanced lung CT scans were obtained from the Reference Image Database to Evaluate Response data set. The tumors were segmented using both manual (radiologist expert) and ensemble (software-automated) methods. A set of features (219 three-dimensional and 110 two-dimensional) was computed, and quantitative image features were statistically filtered to identify a subset of reproducible and nonredundant features. The variability in the repeated experiment was measured by the test-retest concordance correlation coefficient (CCCTreT). The natural range in the features, normalized to variance, was measured by the dynamic range (DR). In this study, there were 29 features across segmentation methods found with CCCTreT and DR ≥ 0.9 and R2Bet ≥ 0.95. These reproducible features were tested for predicting radiologist prognostic score; some texture features (run-length and Laws kernels) had an area under the curve of 0.9. The representative features were tested for their prognostic capabilities using an independent NSCLC data set (59 lung adenocarcinomas), where one of the texture features, run-length gray-level nonuniformity, was statistically significant in separating the samples into survival groups (P ≤ .046). PMID:24772210

  19. Variability and robustness of scatterers in HRR/ISAR ground target data and its influence on the ATR performance

    NASA Astrophysics Data System (ADS)

    Schumacher, R.; Schimpf, H.; Schiller, J.

    2011-06-01

    The most challenging problem of Automatic Target Recognition (ATR) is the extraction of robust and independent target features which describe the target unambiguously. These features have to be robust and invariant in different senses: in time, between aspect views (azimuth and elevation angle), between target motion (translation and rotation) and between different target variants. Especially for ground moving targets in military applications an irregular target motion is typical, so that a strong variation of the backscattered radar signal with azimuth and elevation angle makes the extraction of stable and robust features most difficult. For ATR based on High Range Resolution (HRR) profiles and / or Inverse Synthetic Aperture Radar (ISAR) images it is crucial that the reference dataset consists of stable and robust features, which, among others, will depend on the target aspect and depression angle amongst others. Here it is important to find an adequate data grid for an efficient data coverage in the reference dataset for ATR. In this paper the variability of the backscattered radar signals of target scattering centers is analyzed for different HRR profiles and ISAR images from measured turntable datasets of ground targets under controlled conditions. Especially the dependency of the features on the elevation angle is analyzed regarding to the ATR of large strip SAR data with a large range of depression angles by using available (I)SAR datasets as reference. In this work the robustness of these scattering centers is analyzed by extracting their amplitude, phase and position. Therefore turntable measurements under controlled conditions were performed targeting an artificial military reference object called STANDCAM. Measures referring to variability, similarity, robustness and separability regarding the scattering centers are defined. The dependency of the scattering behaviour with respect to azimuth and elevation variations is analyzed. Additionally generic types of features (geometrical, statistical), which can be derived especially from (I)SAR images, are applied to the ATR-task. Therefore subsequently the dependence of individual feature values as well as the feature statistics on aspect (i.e. azimuth and elevation) are presented. The Kolmogorov-Smirnov distance will be used to show how the feature statistics is influenced by varying elevation angles. Finally, confusion matrices are computed between the STANDCAM target at all eleven elevation angles. This helps to assess the robustness of ATR performance under the influence of aspect angle deviations between training set and test set.

  20. Dynamic updating atlas for heart segmentation with a nonlinear field-based model.

    PubMed

    Cai, Ken; Yang, Rongqian; Yue, Hongwei; Li, Lihua; Ou, Shanxing; Liu, Feng

    2017-09-01

    Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible. This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation. The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm). Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences. Copyright © 2016 John Wiley & Sons, Ltd.

  1. High resolution quantitative phase imaging of live cells with constrained optimization approach

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2016-03-01

    Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.

  2. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  3. Automatic parameter selection for feature-based multi-sensor image registration

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan

    2006-05-01

    Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.

  4. Image quality assessment using deep convolutional networks

    NASA Astrophysics Data System (ADS)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  5. Ultrasound and MRI of Pediatric Ocular Masses with Histopathologic Correlation

    PubMed Central

    Brennan, Rachel C.; Wilson, Matthew W.; Kaste, Sue; Helton, Kathleen J.; McCarville, M. Beth

    2012-01-01

    We review our experience with unusual ocular pathologies mimicking retinoblastoma that were referred to our institution over the past two decades. After presenting the imaging anatomy of the normal eye, we discuss pertinent clinical and pathological features, and illustrate the ultrasound and magnetic resonance imaging appearance of retinoblastoma, medulloepithelioma, uveal melanoma, persistent fetal vasculature, Coats disease, corneal dermoid, retinal dysplasia and toxocara granuloma. Features useful in discriminating between these entities are emphasized. PMID:22466750

  6. Deeply-Integrated Feature Tracking for Embedded Navigation

    DTIC Science & Technology

    2009-03-01

    metric would result in increased feature strength, but a decrease in repeatability. The feature spacing also helped with repeatability of strong...locations in the second frame. This relationship is a constraint of projective geometry and states that the cross product of a point with itself (when...integrated refers to the incorporation of inertial information into the image processing, rather than just

  7. Anomalous Cases of Astronaut Helmet Detection

    NASA Technical Reports Server (NTRS)

    Dolph, Chester; Moore, Andrew J.; Schubert, Matthew; Woodell, Glenn

    2015-01-01

    An astronaut's helmet is an invariant, rigid image element that is well suited for identification and tracking using current machine vision technology. Future space exploration will benefit from the development of astronaut detection software for search and rescue missions based on EVA helmet identification. However, helmets are solid white, except for metal brackets to attach accessories such as supplementary lights. We compared the performance of a widely used machine vision pipeline on a standard-issue NASA helmet with and without affixed experimental feature-rich patterns. Performance on the patterned helmet was far more robust. We found that four different feature-rich patterns are sufficient to identify a helmet and determine orientation as it is rotated about the yaw, pitch, and roll axes. During helmet rotation the field of view changes to frames containing parts of two or more feature-rich patterns. We took reference images in these locations to fill in detection gaps. These multiple feature-rich patterns references added substantial benefit to detection, however, they generated the majority of the anomalous cases. In these few instances, our algorithm keys in on one feature-rich pattern of the multiple feature-rich pattern reference and makes an incorrect prediction of the location of the other feature-rich patterns. We describe and make recommendations on ways to mitigate anomalous cases in which detection of one or more feature-rich patterns fails. While the number of cases is only a small percentage of the tested helmet orientations, they illustrate important design considerations for future spacesuits. In addition to our four successful feature-rich patterns, we present unsuccessful patterns and discuss the cause of their poor performance from a machine vision perspective. Future helmets designed with these considerations will enable automated astronaut detection and thereby enhance mission operations and extraterrestrial search and rescue.

  8. Research on image complexity evaluation method based on color information

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Duan, Jin; Han, Xue-hui; Xiao, Bo

    2017-11-01

    In order to evaluate the complexity of a color image more effectively and find the connection between image complexity and image information, this paper presents a method to compute the complexity of image based on color information.Under the complexity ,the theoretical analysis first divides the complexity from the subjective level, divides into three levels: low complexity, medium complexity and high complexity, and then carries on the image feature extraction, finally establishes the function between the complexity value and the color characteristic model. The experimental results show that this kind of evaluation method can objectively reconstruct the complexity of the image from the image feature research. The experimental results obtained by the method of this paper are in good agreement with the results of human visual perception complexity,Color image complexity has a certain reference value.

  9. Optimal chroma-like channel design for passive color image splicing detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xudong; Li, Shenghong; Wang, Shilin; Li, Jianhua; Yang, Kongjin

    2012-12-01

    Image splicing is one of the most common image forgeries in our daily life and due to the powerful image manipulation tools, image splicing is becoming easier and easier. Several methods have been proposed for image splicing detection and all of them worked on certain existing color channels. However, the splicing artifacts vary in different color channels and the selection of color model is important for image splicing detection. In this article, instead of finding an existing color model, we propose a color channel design method to find the most discriminative channel which is referred to as optimal chroma-like channel for a given feature extraction method. Experimental results show that both spatial and frequency features extracted from the designed channel achieve higher detection rate than those extracted from traditional color channels.

  10. An adaptive clustering algorithm for image matching based on corner feature

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  11. Bright Feature Appears in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Two Synthetic Aperture Radar (SAR) images from the radar experiment on NASA's Cassini spacecraft show that, between May 2013 and August 2014, a bright feature appeared in Kraken Mare, the largest hydrocarbon sea on Saturn's moon Titan. Researchers think the bright feature is likely representative of something on the hydrocarbon sea's surface, such as waves or floating debris. A similar feature appeared in Ligea Mare, another Titan sea, and was seen to evolve in appearance between 2013 and 2014 (see PIA18430). The image at left was taken on May 23, 2013 at an incidence angle of 56 degrees; the image at right was taken on August 21, 2014 at an incidence angle of 5 degrees. Incidence angle refers to the angle at which the radar beam strikes the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19047

  12. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners.

    PubMed

    Reuzé, Sylvain; Orlhac, Fanny; Chargari, Cyrus; Nioche, Christophe; Limkin, Elaine; Riet, François; Escande, Alexandre; Haie-Meder, Christine; Dercle, Laurent; Gouy, Sébastien; Buvat, Irène; Deutsch, Eric; Robert, Charlotte

    2017-06-27

    To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. 118 patients were included retrospectively. Two groups (G1, G2) were defined according to the PET scanner used for image acquisition. Eleven radiomic features were extracted from delineated cervical tumors to evaluate: (i) the predictive value of features for local recurrence of LACC, (ii) their reproducibility as a function of the scanner within a hepatic reference volume, (iii) the impact of voxel size on feature values. Eight features were statistically significant predictors of local recurrence in G1 (p < 0.05). The multivariate signature trained in G2 was validated in G1 (AUC=0.76, p<0.001) and identified local recurrence more accurately than SUVmax (p=0.022). Four features were significantly different between G1 and G2 in the liver. Spatial resampling was not sufficient to explain the stratification effect. This study showed that radiomic features could predict local recurrence of LACC better than SUVmax. Further investigation is needed before applying a model designed using data from one PET scanner to another.

  13. A concept-based interactive biomedical image retrieval approach using visualness and spatial information

    NASA Astrophysics Data System (ADS)

    Rahman, Md M.; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.

    2015-03-01

    This paper presents a novel approach to biomedical image retrieval by mapping image regions to local concepts and represent images in a weighted entropy-based concept feature space. The term concept refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist user in interactively select a Region-Of-Interest (ROI) and search for similar image ROIs. Further, a spatial verification step is used as a post-processing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval, is validated through experiments on a data set of 450 lung CT images extracted from journal articles from four different collections.

  14. Partial dependence of breast tumor malignancy on ultrasound image features derived from boosted trees

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Su; Li, Wenying; Chen, Yaqing; Lu, Hongtao; Chen, Wufan; Chen, Yazhu

    2010-04-01

    Various computerized features extracted from breast ultrasound images are useful in assessing the malignancy of breast tumors. However, the underlying relationship between the computerized features and tumor malignancy may not be linear in nature. We use the decision tree ensemble trained by the cost-sensitive boosting algorithm to approximate the target function for malignancy assessment and to reflect this relationship qualitatively. Partial dependence plots are employed to explore and visualize the effect of features on the output of the decision tree ensemble. In the experiments, 31 image features are extracted to quantify the sonographic characteristics of breast tumors. Patient age is used as an external feature because of its high clinical importance. The area under the receiver-operating characteristic curve of the tree ensembles can reach 0.95 with sensitivity of 0.95 (61/64) at the associated specificity 0.74 (77/104). The partial dependence plots of the four most important features are demonstrated to show the influence of the features on malignancy, and they are in accord with the empirical observations. The results can provide visual and qualitative references on the computerized image features for physicians, and can be useful for enhancing the interpretability of computer-aided diagnosis systems for breast ultrasound.

  15. Hurler syndrome

    MedlinePlus

    ... I Thick, coarse facial features with low nasal bridge Exams and Tests In some states, babies are ... storage disease - mucopolysaccharidosis type I Images Low nasal bridge References Pyeritz RE. Inherited diseases of connective tissue. ...

  16. Robust recognition of degraded machine-printed characters using complementary similarity measure and error-correction learning

    NASA Astrophysics Data System (ADS)

    Hagita, Norihiro; Sawaki, Minako

    1995-03-01

    Most conventional methods in character recognition extract geometrical features such as stroke direction, connectivity of strokes, etc., and compare them with reference patterns in a stored dictionary. Unfortunately, geometrical features are easily degraded by blurs, stains and the graphical background designs used in Japanese newspaper headlines. This noise must be removed before recognition commences, but no preprocessing method is completely accurate. This paper proposes a method for recognizing degraded characters and characters printed on graphical background designs. This method is based on the binary image feature method and uses binary images as features. A new similarity measure, called the complementary similarity measure, is used as a discriminant function. It compares the similarity and dissimilarity of binary patterns with reference dictionary patterns. Experiments are conducted using the standard character database ETL-2 which consists of machine-printed Kanji, Hiragana, Katakana, alphanumeric, an special characters. The results show that this method is much more robust against noise than the conventional geometrical feature method. It also achieves high recognition rates of over 92% for characters with textured foregrounds, over 98% for characters with textured backgrounds, over 98% for outline fonts, and over 99% for reverse contrast characters.

  17. All-optical animation projection system with rotating fieldstone.

    PubMed

    Ishii, Yuko; Takayama, Yoshihisa; Kodate, Kashiko

    2007-06-11

    A simple and compact rewritable holographic memory system using a fieldstone of Ulexite is proposed. The role of the fieldstone is to impose random patterns on the reference beam to record plural images with the random-reference multiplexing scheme. The operations for writing and reading holograms are carried out by simply rotating the fieldstone in one direction. One of the features of this approach is found in a way to generate random patterns without computer drawings. The experimental study confirms that our system enables the smooth readout of the stored images one after another so that the series of reproduced images are projected as an animation.

  18. All-optical animation projection system with rotating fieldstone

    NASA Astrophysics Data System (ADS)

    Ishii, Yuko; Takayama, Yoshihisa; Kodate, Kashiko

    2007-06-01

    A simple and compact rewritable holographic memory system using a fieldstone of Ulexite is proposed. The role of the fieldstone is to impose random patterns on the reference beam to record plural images with the random-reference multiplexing scheme. The operations for writing and reading holograms are carried out by simply rotating the fieldstone in one direction. One of the features of this approach is found in a way to generate random patterns without computer drawings. The experimental study confirms that our system enables the smooth readout of the stored images one after another so that the series of reproduced images are projected as an animation.

  19. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  20. Measurement of an image jitter of an extended incoherent radiation source

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Nosov, V. V.

    2017-06-01

    A scheme of an image jitter measuring device, which uses an extended incoherent source as a radiation source, is presented. The efficiency of the measuring device is analysed analytically and numerically in order to justify the operation of the adaptive optical system that does not require special creation or formation of a reference source. The features of the formed image of incoherent radiation are considered, in particular from the point of view of its possible application for measuring the phase fluctuations of optical waves propagating in a turbulent atmosphere (the adaptive system monitors the image of a self-luminous object illuminated by extraneous sources). The possibility of utilising a Shack-Hartmann wavefront sensor in adaptive systems using the image of an arbitrary object (or its fragment) as a reference source is shown.

  1. Techniques of Photometry and Astrometry with APASS, Gaia, and Pan-STARRs Results (Abstract)

    NASA Astrophysics Data System (ADS)

    Green, W.

    2017-12-01

    (Abstract only) The databases with the APASS DR9, Gaia DR1, and the Pan-STARRs 3pi DR1 data releases are publicly available for use. There is a bit of data-mining involved to download and manage these reference stars. This paper discusses the use of these databases to acquire accurate photometric references as well as techniques for improving results. Images are prepared in the usual way: zero, dark, flat-fields, and WCS solutions with Astrometry.net. Images are then processed with Sextractor to produce an ASCII table of identifying photometric features. The database manages photometics catalogs and images converted to ASCII tables. Scripts convert the files into SQL and assimilate them into database tables. Using SQL techniques, each image star is merged with reference data to produce publishable results. The VYSOS has over 13,000 images of the ONC5 field to process with roughly 100 total fields in the campaign. This paper provides the overview for this daunting task.

  2. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, M; Arimura, H; Toyofuku, F

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed framework might be useful for tasks involving feature-based image registration in range-image guided radiation therapy.« less

  3. Noise-gating to Clean Astrophysical Image Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeForest, C. E.

    I present a family of algorithms to reduce noise in astrophysical images and image sequences, preserving more information from the original data than is retained by conventional techniques. The family uses locally adaptive filters (“noise gates”) in the Fourier domain to separate coherent image structure from background noise based on the statistics of local neighborhoods in the image. Processing of solar data limited by simple shot noise or by additive noise reveals image structure not easily visible in the originals, preserves photometry of observable features, and reduces shot noise by a factor of 10 or more with little to nomore » apparent loss of resolution. This reveals faint features that were either not directly discernible or not sufficiently strongly detected for quantitative analysis. The method works best on image sequences containing related subjects, for example movies of solar evolution, but is also applicable to single images provided that there are enough pixels. The adaptive filter uses the statistical properties of noise and of local neighborhoods in the data to discriminate between coherent features and incoherent noise without reference to the specific shape or evolution of those features. The technique can potentially be modified in a straightforward way to exploit additional a priori knowledge about the functional form of the noise.« less

  4. Noise-gating to Clean Astrophysical Image Data

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.

    2017-04-01

    I present a family of algorithms to reduce noise in astrophysical images and image sequences, preserving more information from the original data than is retained by conventional techniques. The family uses locally adaptive filters (“noise gates”) in the Fourier domain to separate coherent image structure from background noise based on the statistics of local neighborhoods in the image. Processing of solar data limited by simple shot noise or by additive noise reveals image structure not easily visible in the originals, preserves photometry of observable features, and reduces shot noise by a factor of 10 or more with little to no apparent loss of resolution. This reveals faint features that were either not directly discernible or not sufficiently strongly detected for quantitative analysis. The method works best on image sequences containing related subjects, for example movies of solar evolution, but is also applicable to single images provided that there are enough pixels. The adaptive filter uses the statistical properties of noise and of local neighborhoods in the data to discriminate between coherent features and incoherent noise without reference to the specific shape or evolution of those features. The technique can potentially be modified in a straightforward way to exploit additional a priori knowledge about the functional form of the noise.

  5. [Medication advertisements in the illustrated press and the image of Brazilian nurses (1920-1925)].

    PubMed

    Porto, Fernando; Santos, Tânia Cristina Franco

    2010-09-01

    This is a historical and social study about the symbolic effect of medication advertisements presented by women using object representations used by nurses, featured on Fon-Fon Magazine, which describes the medication advertisements featured on Fon-Fon Magazine; analyzes the object representations of the nurse image present in the referred advertisements and discusses on the symbolic effect of those representations on the consumption of medication by the Brazilian society. The document sources were in print, iconographic and literature referring to the History of Brazil, the Press, Advertising and of Nursing. The medication advertisements, analyzed using an analysis matrix based on concepts of semiotics, were obtained from the Fon-Fon Magazine. The study showed that the analyzed advertisements invested in object representations used by nurses to gain reliability regarding the medication being announced.

  6. Multi-layer cube sampling for liver boundary detection in PET-CT images.

    PubMed

    Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.

  7. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  8. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach

    PubMed Central

    Aerts, Hugo J. W. L.; Velazquez, Emmanuel Rios; Leijenaar, Ralph T. H.; Parmar, Chintan; Grossmann, Patrick; Cavalho, Sara; Bussink, Johan; Monshouwer, René; Haibe-Kains, Benjamin; Rietveld, Derek; Hoebers, Frank; Rietbergen, Michelle M.; Leemans, C. René; Dekker, Andre; Quackenbush, John; Gillies, Robert J.; Lambin, Philippe

    2014-01-01

    Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost. PMID:24892406

  9. Improved Image-Guided Laparoscopic Prostatectomy

    DTIC Science & Technology

    2012-08-01

    prevalent technique used in widening the field of view (FOV) of medical ultrasound images. Also referred to as stitching or panorama , the ultra- sound mosaic...tissue which can add valu- able features to the B-mode panorama . Many clinical applications deal with large cancerous lesions which expand beyond the...1999) 203–233 2. Varghese, T., Zagzebski, J., Lee Jr., F.: Elastographic imaging of thermal lesions in the liver in vivo following radiofrequency

  10. SU-G-BRA-02: Development of a Learning Based Block Matching Algorithm for Ultrasound Tracking in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, A; Bednarz, B

    Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localizedmore » block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA190298.« less

  11. Adrenomegaly and septic adrenal hemorrhage (Waterhouse-Friderichsen syndrome) in the setting of congenital adrenal hyperplasia.

    PubMed

    Saad, Amin F; Ford, Kenneth L; Deprisco, Gregory; Smerud, Michael J

    2013-07-01

    Congenital adrenal hyperplasia refers to a spectrum of autosomal recessive inherited disorders of steroidogenesis most commonly identified on newborn screenings. We describe a young woman who presented with abdominal pain and on subsequent imaging was found to have features of congenital adrenal hyperplasia. Imaging findings, treatment, and potential complications are discussed.

  12. Motions in Prominence Barbs Observed on the Solar Limb

    NASA Astrophysics Data System (ADS)

    Kucera, T. A.; Ofman, L.; Tarbell, T. D.

    2018-06-01

    We analyze and discuss an example of prominence barbs observed on the limb on 2016 January 7 by the Hinode/Solar Optical Telescope in Ca II and Hα, the Interface Region Imaging Spectrograph, with slit jaw images and Mg II spectral data, and the Solar Dynamics Observatory’s Atmospheric Imaging Assembly. In the recent literature there has been a debate concerning whether these features, sometimes referred to as “tornadoes,” are rotating. Our data analysis provides no evidence for systematic rotation in the barbs. We do find line-of-sight motions in the barbs that vary with location and time. We also discuss observations of features moving along the barbs. These moving features are elongated parallel to the solar limb and tend to come in clusters of features moving along the same or similar paths in the plane of the sky during a period of 10 minutes to an hour, moving toward or away from the limb. The motion may have a component along the line of sight as well. The spectral data indicate that the features are Doppler shifted. We discuss possible explanations for these features.

  13. A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification

    PubMed Central

    Liu, Fuxian

    2018-01-01

    One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references. PMID:29581722

  14. A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification.

    PubMed

    Yu, Yunlong; Liu, Fuxian

    2018-01-01

    One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.

  15. Rotation and scale invariant shape context registration for remote sensing images with background variations

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Zhang, Shumei; Cao, Shixiang

    2015-01-01

    Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.

  16. Noninvasive Classification of Hepatic Fibrosis Based on Texture Parameters From Double Contrast-Enhanced Magnetic Resonance Images

    PubMed Central

    Bahl, Gautam; Cruite, Irene; Wolfson, Tanya; Gamst, Anthony C.; Collins, Julie M.; Chavez, Alyssa D.; Barakat, Fatma; Hassanein, Tarek; Sirlin, Claude B.

    2016-01-01

    Purpose To demonstrate a proof of concept that quantitative texture feature analysis of double contrast-enhanced magnetic resonance imaging (MRI) can classify fibrosis noninvasively, using histology as a reference standard. Materials and Methods A Health Insurance Portability and Accountability Act (HIPAA)-compliant Institutional Review Board (IRB)-approved retrospective study of 68 patients with diffuse liver disease was performed at a tertiary liver center. All patients underwent double contrast-enhanced MRI, with histopathology-based staging of fibrosis obtained within 12 months of imaging. The MaZda software program was used to compute 279 texture parameters for each image. A statistical regularization technique, generalized linear model (GLM)-path, was used to develop a model based on texture features for dichotomous classification of fibrosis category (F ≤2 vs. F ≥3) of the 68 patients, with histology as the reference standard. The model's performance was assessed and cross-validated. There was no additional validation performed on an independent cohort. Results Cross-validated sensitivity, specificity, and total accuracy of the texture feature model in classifying fibrosis were 91.9%, 83.9%, and 88.2%, respectively. Conclusion This study shows proof of concept that accurate, noninvasive classification of liver fibrosis is possible by applying quantitative texture analysis to double contrast-enhanced MRI. Further studies are needed in independent cohorts of subjects. PMID:22851409

  17. Event-related potentials reveal rapid registration of features of infrequent changes during change blindness

    PubMed Central

    2010-01-01

    Background Change blindness refers to a failure to detect changes between consecutively presented images separated by, for example, a brief blank screen. As an explanation of change blindness, it has been suggested that our representations of the environment are sparse outside focal attention and even that changed features may not be represented at all. In order to find electrophysiological evidence of neural representations of changed features during change blindness, we recorded event-related potentials (ERPs) in adults in an oddball variant of the change blindness flicker paradigm. Methods ERPs were recorded when subjects performed a change detection task in which the modified images were infrequently interspersed (p = .2) among the frequently (p = .8) presented unmodified images. Responses to modified and unmodified images were compared in the time window of 60-100 ms after stimulus onset. Results ERPs to infrequent modified images were found to differ in amplitude from those to frequent unmodified images at the midline electrodes (Fz, Pz, Cz and Oz) at the latency of 60-100 ms even when subjects were unaware of changes (change blindness). Conclusions The results suggest that the brain registers changes very rapidly, and that changed features in images are neurally represented even without participants' ability to report them. PMID:20181126

  18. Classification Features of US Images Liver Extracted with Co-occurrence Matrix Using the Nearest Neighbor Algorithm

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Bibicu, Dorin; Moraru, Luminita; Nicolae, Mariana Carmen

    2011-12-01

    Co-occurrence matrix has been applied successfully for echographic images characterization because it contains information about spatial distribution of grey-scale levels in an image. The paper deals with the analysis of pixels in selected regions of interest of an US image of the liver. The useful information obtained refers to texture features such as entropy, contrast, dissimilarity and correlation extract with co-occurrence matrix. The analyzed US images were grouped in two distinct sets: healthy liver and steatosis (or fatty) liver. These two sets of echographic images of the liver build a database that includes only histological confirmed cases: 10 images of healthy liver and 10 images of steatosis liver. The healthy subjects help to compute four textural indices and as well as control dataset. We chose to study these diseases because the steatosis is the abnormal retention of lipids in cells. The texture features are statistical measures and they can be used to characterize irregularity of tissues. The goal is to extract the information using the Nearest Neighbor classification algorithm. The K-NN algorithm is a powerful tool to classify features textures by means of grouping in a training set using healthy liver, on the one hand, and in a holdout set using the features textures of steatosis liver, on the other hand. The results could be used to quantify the texture information and will allow a clear detection between health and steatosis liver.

  19. Feature-extracted joint transform correlation.

    PubMed

    Alam, M S

    1995-12-10

    A new technique for real-time optical character recognition that uses a joint transform correlator is proposed. This technique employs feature-extracted patterns for the reference image to detect a wide range of characters in one step. The proposed technique significantly enhances the processing speed when compared with the presently available joint transform correlator architectures and shows feasibility for multichannel joint transform correlation.

  20. Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits

    NASA Technical Reports Server (NTRS)

    Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen

    1992-01-01

    Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.

  1. A complete passive blind image copy-move forensics scheme based on compound statistics features.

    PubMed

    Peng, Fei; Nie, Yun-ying; Long, Min

    2011-10-10

    Since most sensor pattern noise based image copy-move forensics methods require a known reference sensor pattern noise, it generally results in non-blinded passive forensics, which significantly confines the application circumstances. In view of this, a novel passive-blind image copy-move forensics scheme is proposed in this paper. Firstly, a color image is transformed into a grayscale one, and wavelet transform based de-noising filter is used to extract the sensor pattern noise, then the variance of the pattern noise, the signal noise ratio between the de-noised image and the pattern noise, the information entropy and the average energy gradient of the original grayscale image are chosen as features, non-overlapping sliding window operations are done to the images to divide them into different sub-blocks. Finally, the tampered areas are detected by analyzing the correlation of the features between the sub-blocks and the whole image. Experimental results and analysis show that the proposed scheme is completely passive-blind, has a good detection rate, and is robust against JPEG compression, noise, rotation, scaling and blurring. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Sensor feature fusion for detecting buried objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less

  3. Apparatus and method for identification and recognition of an item with ultrasonic patterns from item subsurface micro-features

    DOEpatents

    Perkins, Richard W.; Fuller, James L.; Doctor, Steven R.; Good, Morris S.; Heasler, Patrick G.; Skorpik, James R.; Hansen, Norman H.

    1995-01-01

    The present invention is a means and method for identification and recognition of an item by ultrasonic imaging of material microfeatures and/or macrofeatures within the bulk volume of a material. The invention is based upon ultrasonic interrogation and imaging of material microfeatures within the body of material by accepting only reflected ultrasonic energy from a preselected plane or volume within the material. An initial interrogation produces an identification reference. Subsequent new scans are statistically compared to the identification reference for making a match/non-match decision.

  4. Achromatical Optical Correlator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1989-01-01

    Signal-to-noise ratio exceeds that of monochromatic correlator. Achromatical optical correlator uses multiple-pinhole diffraction of dispersed white light to form superposed multiple correlations of input and reference images in output plane. Set of matched spatial filters made by multiple-exposure holographic process, each exposure using suitably-scaled input image and suitable angle of reference beam. Recording-aperture mask translated to appropriate horizontal position for each exposure. Noncoherent illumination suitable for applications involving recognition of color and determination of scale. When fully developed achromatical correlators will be useful for recognition of patterns; for example, in industrial inspection and search for selected features in aerial photographs.

  5. Apparatus and method for identification and recognition of an item with ultrasonic patterns from item subsurface micro-features

    DOEpatents

    Perkins, R.W.; Fuller, J.L.; Doctor, S.R.; Good, M.S.; Heasler, P.G.; Skorpik, J.R.; Hansen, N.H.

    1995-09-26

    The present invention is a means and method for identification and recognition of an item by ultrasonic imaging of material microfeatures and/or macrofeatures within the bulk volume of a material. The invention is based upon ultrasonic interrogation and imaging of material microfeatures within the body of material by accepting only reflected ultrasonic energy from a preselected plane or volume within the material. An initial interrogation produces an identification reference. Subsequent new scans are statistically compared to the identification reference for making a match/non-match decision. 15 figs.

  6. Image quality evaluation of full reference algorithm

    NASA Astrophysics Data System (ADS)

    He, Nannan; Xie, Kai; Li, Tong; Ye, Yushan

    2018-03-01

    Image quality evaluation is a classic research topic, the goal is to design the algorithm, given the subjective feelings consistent with the evaluation value. This paper mainly introduces several typical reference methods of Mean Squared Error(MSE), Peak Signal to Noise Rate(PSNR), Structural Similarity Image Metric(SSIM) and feature similarity(FSIM) of objective evaluation methods. The different evaluation methods are tested by Matlab, and the advantages and disadvantages of these methods are obtained by analyzing and comparing them.MSE and PSNR are simple, but they are not considered to introduce HVS characteristics into image quality evaluation. The evaluation result is not ideal. SSIM has a good correlation and simple calculation ,because it is considered to the human visual effect into image quality evaluation,However the SSIM method is based on a hypothesis,The evaluation result is limited. The FSIM method can be used for test of gray image and color image test, and the result is better. Experimental results show that the new image quality evaluation algorithm based on FSIM is more accurate.

  7. SU-F-R-32: Evaluation of MRI Acquisition Parameter Variations On Texture Feature Extraction Using ACR Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, J; Wang, C

    Purpose: To investigate the sensitivity of classic texture features to variations of MRI acquisition parameters. Methods: This study was performed on American College of Radiology (ACR) MRI Accreditation Program Phantom. MR imaging was acquired on a GE 750 3T scanner with XRM explain gradient, employing a T1-weighted images (TR/TE=500/20ms) with the following parameters as the reference standard: number of signal average (NEX) = 1, matrix size = 256×256, flip angle = 90°, slice thickness = 5mm. The effect of the acquisition parameters on texture features with and without non-uniformity correction were investigated respectively, while all the other parameters were keptmore » as reference standard. Protocol parameters were set as follows: (a). NEX = 0.5, 2 and 4; (b).Phase encoding steps = 128, 160 and 192; (c). Matrix size = 128×128, 192×192 and 512×512. 32 classic texture features were generated using the classic gray level run length matrix (GLRLM) and gray level co-occurrence matrix (GLCOM) from each image data set. Normalized range ((maximum-minimum)/mean) was calculated to determine variation among the scans with different protocol parameters. Results: For different NEX, 31 out of 32 texture features’ range are within 10%. For different phase encoding steps, 31 out of 32 texture features’ range are within 10%. For different acquisition matrix size without non-uniformity correction, 14 out of 32 texture features’ range are within 10%; for different acquisition matrix size with non-uniformity correction, 16 out of 32 texture features’ range are within 10%. Conclusion: Initial results indicated that those texture features that range within 10% are less sensitive to variations in T1-weighted MRI acquisition parameters. This might suggest that certain texture features might be more reliable to be used as potential biomarkers in MR quantitative image analysis.« less

  8. Adrenomegaly and septic adrenal hemorrhage (Waterhouse-Friderichsen syndrome) in the setting of congenital adrenal hyperplasia

    PubMed Central

    Ford, Kenneth L.; dePrisco, Gregory; Smerud, Michael J.

    2013-01-01

    Congenital adrenal hyperplasia refers to a spectrum of autosomal recessive inherited disorders of steroidogenesis most commonly identified on newborn screenings. We describe a young woman who presented with abdominal pain and on subsequent imaging was found to have features of congenital adrenal hyperplasia. Imaging findings, treatment, and potential complications are discussed. PMID:23814386

  9. Urinary bladder cancer T-staging from T2-weighted MR images using an optimal biomarker approach

    NASA Astrophysics Data System (ADS)

    Wang, Chuang; Udupa, Jayaram K.; Tong, Yubing; Chen, Jerry; Venigalla, Sriram; Odhner, Dewey; Guzzo, Thomas J.; Christodouleas, John; Torigian, Drew A.

    2018-02-01

    Magnetic resonance imaging (MRI) is often used in clinical practice to stage patients with bladder cancer to help plan treatment. However, qualitative assessment of MR images is prone to inaccuracies, adversely affecting patient outcomes. In this paper, T2-weighted MR image-based quantitative features were extracted from the bladder wall in 65 patients with bladder cancer to classify them into two primary tumor (T) stage groups: group 1 - T stage < T2, with primary tumor locally confined to the bladder, and group 2 - T stage < T2, with primary tumor locally extending beyond the bladder. The bladder was divided into 8 sectors in the axial plane, where each sector has a corresponding reference standard T stage that is based on expert radiology qualitative MR image review and histopathologic results. The performance of the classification for correct assignment of T stage grouping was then evaluated at both the patient level and the sector level. Each bladder sector was divided into 3 shells (inner, middle, and outer), and 15,834 features including intensity features and texture features from local binary pattern and gray-level co-occurrence matrix were extracted from the 3 shells of each sector. An optimal feature set was selected from all features using an optimal biomarker approach. Nine optimal biomarker features were derived based on texture properties from the middle shell, with an area under the ROC curve of AUC value at the sector and patient level of 0.813 and 0.806, respectively.

  10. Automatic Spatio-Temporal Flow Velocity Measurement in Small Rivers Using Thermal Image Sequences

    NASA Astrophysics Data System (ADS)

    Lin, D.; Eltner, A.; Sardemann, H.; Maas, H.-G.

    2018-05-01

    An automatic spatio-temporal flow velocity measurement approach, using an uncooled thermal camera, is proposed in this paper. The basic principle of the method is to track visible thermal features at the water surface in thermal camera image sequences. Radiometric and geometric calibrations are firstly implemented to remove vignetting effects in thermal imagery and to get the interior orientation parameters of the camera. An object-based unsupervised classification approach is then applied to detect the interest regions for data referencing and thermal feature tracking. Subsequently, GCPs are extracted to orient the river image sequences and local hot points are identified as tracking features. Afterwards, accurate dense tracking outputs are obtained using pyramidal Lucas-Kanade method. To validate the accuracy potential of the method, measurements obtained from thermal feature tracking are compared with reference measurements taken by a propeller gauge. Results show a great potential of automatic flow velocity measurement in small rivers using imagery from a thermal camera.

  11. Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.

    PubMed

    Gu, Ke; Tao, Dacheng; Qiao, Jun-Fei; Lin, Weisi

    2018-04-01

    In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

  12. Evaluation of the effects of the seasonal variation of solar elevation angle and azimuth on the processes of digital filtering and thematic classification of relief units

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1983-01-01

    The effects of the seasonal variation of illumination over digital processing of LANDSAT images are evaluated. Two sets of LANDSAT data referring to the orbit 150 and row 28 were selected with illumination parameters varying from 43 deg to 64 deg for azimuth and from 30 deg to 36 deg for solar elevation respectively. IMAGE-100 system permitted the digital processing of LANDSAT data. Original images were transformed by means of digital filtering so as to enhance their spatial features. The resulting images were used to obtain an unsupervised classification of relief units. Topographic variables (declivity, altitude, relief range and slope length) were used to identify the true relief units existing on the ground. The LANDSAT over pass data show that digital processing is highly affected by illumination geometry, and there is no correspondence between relief units as defined by spectral features and those resulting from topographic features.

  13. ESIM: Edge Similarity for Screen Content Image Quality Assessment.

    PubMed

    Ni, Zhangkai; Ma, Lin; Zeng, Huanqiang; Chen, Jing; Cai, Canhui; Ma, Kai-Kuang

    2017-10-01

    In this paper, an accurate full-reference image quality assessment (IQA) model developed for assessing screen content images (SCIs), called the edge similarity (ESIM), is proposed. It is inspired by the fact that the human visual system (HVS) is highly sensitive to edges that are often encountered in SCIs; therefore, essential edge features are extracted and exploited for conducting IQA for the SCIs. The key novelty of the proposed ESIM lies in the extraction and use of three salient edge features-i.e., edge contrast, edge width, and edge direction. The first two attributes are simultaneously generated from the input SCI based on a parametric edge model, while the last one is derived directly from the input SCI. The extraction of these three features will be performed for the reference SCI and the distorted SCI, individually. The degree of similarity measured for each above-mentioned edge attribute is then computed independently, followed by combining them together using our proposed edge-width pooling strategy to generate the final ESIM score. To conduct the performance evaluation of our proposed ESIM model, a new and the largest SCI database (denoted as SCID) is established in our work and made to the public for download. Our database contains 1800 distorted SCIs that are generated from 40 reference SCIs. For each SCI, nine distortion types are investigated, and five degradation levels are produced for each distortion type. Extensive simulation results have clearly shown that the proposed ESIM model is more consistent with the perception of the HVS on the evaluation of distorted SCIs than the multiple state-of-the-art IQA methods.

  14. Common path endoscopic probes for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.

    2017-02-01

    Background: Dispersion imbalance and polarization mismatch between the reference and sample arm signals can lead to image quality degradation in optical coherence tomography (OCT). One approach to reduce these image artifacts is to employ a common-path geometry in fiber-based probes. In this work, we report an 800 um diameter all-fiber common-path monolithic probe for coronary artery imaging where the reference signal is generated using an inline fiber partial reflector. Methods: Our common-path probe was designed for swept-source based Fourier domain OCT at 1310 nm wavelength. A face of a coreless fiber was coated with gold and spliced to a standard SMF-28 single mode fiber creating an inline partial reflector, which acted as a reference surface. The other face of the coreless fiber was shaped into a ball lens for focusing. The optical elements were assembled within a 560 µm diameter drive shaft, which was attached to a rotary junction. The drive shaft was placed inside a transparent sheath having an outer diameter of 800 µm. Results: With a source input power of 30mW, the inline common-path probe achieved a sensitivity of 104 dB. Images of human finger skin showed the characteristic layers of skin as well as features such as sweat ducts. Images of coronary arteries ex vivo obtained with this probe enabled visualization of the characteristic architectural morphology of the normal artery wall and known features of atherosclerotic plaque. Conclusion: In this work, we have demonstrated a common path OCT probe for cardiovascular imaging. The probe is easy to fabricate, will reduce system complexity and overall cost. We believe that this design will be helpful in endoscopic applications that require high resolution and a compact form factor.

  15. Multimodal Ultrawide-Field Imaging Features in Waardenburg Syndrome.

    PubMed

    Choudhry, Netan; Rao, Rajesh C

    2015-06-01

    A 45-year-old woman was referred for bilateral irregular fundus pigmentation. Dilated fundus examination revealed irregular hypopigmentation posterior to the equator in both eyes, confirmed by fundus autofluorescence. A thickened choroid was seen on enhanced-depth imaging spectral-domain optical coherence tomography (EDI SD-OCT). Systemic evaluation revealed sensorineural deafness, telecanthus, and a white forelock. Further investigation revealed a first-degree relative with Waardenburg syndrome. Waardenburg syndrome is characterized by a group of features including telecanthus, a broad nasal root, synophrys of the eyebrows, piedbaldism, heterochromia irides, and deafness. Choroidal hypopigmentation is a unique feature that can be visualized with ultrawide-field fundus autofluorescence. The choroid may also be thickened and its thickness measured with EDI SD-OCT. Copyright 2015, SLACK Incorporated.

  16. Diagnostic imaging features of normal anal sacs in dogs and cats.

    PubMed

    Jung, Yechan; Jeong, Eunseok; Park, Sangjun; Jeong, Jimo; Choi, Ul Soo; Kim, Min-Su; Kim, Namsoo; Lee, Kichang

    2016-09-30

    This study was conducted to provide normal reference features for canine and feline anal sacs using ultrasound, low-field magnetic resonance imaging (MRI) and radiograph contrast as diagnostic imaging tools. A total of ten clinically normal beagle dogs and eight clinically normally cats were included. General radiography with contrast, ultrasonography and low-field MRI scans were performed. The visualization of anal sacs, which are located at distinct sites in dogs and cats, is possible with a contrast study on radiography. Most surfaces of the anal sacs tissue, occasionally appearing as a hyperechoic thin line, were surrounded by the hypoechoic external sphincter muscle on ultrasonography. The normal anal sac contents of dogs and cats had variable echogenicity. Signals of anal sac contents on low-field MRI varied in cats and dogs, and contrast medium using T1-weighted images enhanced the anal sac walls more obviously than that on ultrasonography. In conclusion, this study provides the normal features of anal sacs from dogs and cats on diagnostic imaging. Further studies including anal sac evaluation are expected to investigate disease conditions.

  17. Diagnostic imaging features of normal anal sacs in dogs and cats

    PubMed Central

    Jung, Yechan; Jeong, Eunseok; Park, Sangjun; Jeong, Jimo; Choi, Ul Soo; Kim, Min-Su; Kim, Namsoo

    2016-01-01

    This study was conducted to provide normal reference features for canine and feline anal sacs using ultrasound, low-field magnetic resonance imaging (MRI) and radiograph contrast as diagnostic imaging tools. A total of ten clinically normal beagle dogs and eight clinically normally cats were included. General radiography with contrast, ultrasonography and low-field MRI scans were performed. The visualization of anal sacs, which are located at distinct sites in dogs and cats, is possible with a contrast study on radiography. Most surfaces of the anal sacs tissue, occasionally appearing as a hyperechoic thin line, were surrounded by the hypoechoic external sphincter muscle on ultrasonography. The normal anal sac contents of dogs and cats had variable echogenicity. Signals of anal sac contents on low-field MRI varied in cats and dogs, and contrast medium using T1-weighted images enhanced the anal sac walls more obviously than that on ultrasonography. In conclusion, this study provides the normal features of anal sacs from dogs and cats on diagnostic imaging. Further studies including anal sac evaluation are expected to investigate disease conditions. PMID:26645338

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CRESSWELL,M.W.; ALLEN,R.A.; GHOSHTAGORE,R.N.

    This paper describes the fabrication and measurement of the linewidths of the reference segments of cross-bridge resistors patterned in (100) Bonded and Etched Back Silicon-on-Insulator (BESOI) material. The critical dimensions (CD) of the reference segments of a selection of the cross-bridge resistor test structures were measured both electrically and by Scanning-Electron Microscopy (SEM) cross-section imaging. The reference-segment features were aligned with <110> directions in the BESOI surface material and had drawn linewidths ranging from 0.35 to 3.0 {micro}m. They were defined by a silicon micro-machining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} tomore » the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. For example, the non-orthogonal intersection of the sidewalls and top-surface planes of the reference-segment features may alleviate difficulties encountered with atomic-force microscope measurements. In such applications it has been reported that it may be difficult to maintain probe-tip control at the sharp 90{degree} outside corner of the sidewalls and the upper surface. A second application is refining to-down image-processing algorithms and checking instrument performance. Novel aspects of the (100) SOI implementation that are reported here include the cross-bridge resistor test-structure architecture and details of its fabrication. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors' reference segments, as a prelude to developing them for dimensional reference applications. This is believed to be the first report of electrical CD measurements made on test structures of the cross-bridge resistor type that have been patterned in (100) SOI material. The electrical CD results are compared with cross-section SEM measurements made on the same features.« less

  19. Textural analysis of optical coherence tomography skin images: quantitative differentiation between healthy and cancerous tissues

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza

    2017-02-01

    Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.

  20. Influence of appearance-related TV commercials on body image state.

    PubMed

    Legenbauer, Tanja; Rühl, Ilka; Vocks, Silja

    2008-05-01

    This study investigates the influence of media exposure on body image state in eating-disordered (ED) patients. The attitudinal and perceptual components of body image are assessed, as well as any associations with dysfunctional cognitions and behavioral consequences. Twenty-five ED patients and 25 non-ED controls (ND) viewed commercials either featuring appearance (AC; 5 min) or not featuring appearance (NC; 5 min). Both perceptual and attitudinal body image components changed markedly after the AC condition for ED patients, compared with the ND group and NC condition. Cognitions referring to dietary restraint and internalization/social comparison also changed significantly in ED patients depending on the experimental manipulation, whereas thoughts about body and self-esteem did not. The results suggest that media exposure acts as a stimulus that triggers body-related schemas. Partial support is given to cognitive-behavioral models of eating disorders, which postulate an association between cognitive bias, body image disturbances, and compensatory behavioral consequences.

  1. Medical image diagnoses by artificial neural networks with image correlation, wavelet transform, simulated annealing

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1993-09-01

    Classical artificial neural networks (ANN) and neurocomputing are reviewed for implementing a real time medical image diagnosis. An algorithm known as the self-reference matched filter that emulates the spatio-temporal integration ability of the human visual system might be utilized for multi-frame processing of medical imaging data. A Cauchy machine, implementing a fast simulated annealing schedule, can determine the degree of abnormality by the degree of orthogonality between the patient imagery and the class of features of healthy persons. An automatic inspection process based on multiple modality image sequences is simulated by incorporating the following new developments: (1) 1-D space-filling Peano curves to preserve the 2-D neighborhood pixels' relationship; (2) fast simulated Cauchy annealing for the global optimization of self-feature extraction; and (3) a mini-max energy function for the intra-inter cluster-segregation respectively useful for top-down ANN designs.

  2. Crowdtruth validation: a new paradigm for validating algorithms that rely on image correspondences.

    PubMed

    Maier-Hein, Lena; Kondermann, Daniel; Roß, Tobias; Mersmann, Sven; Heim, Eric; Bodenstedt, Sebastian; Kenngott, Hannes Götz; Sanchez, Alexandro; Wagner, Martin; Preukschas, Anas; Wekerle, Anna-Laura; Helfert, Stefanie; März, Keno; Mehrabi, Arianeb; Speidel, Stefanie; Stock, Christian

    2015-08-01

    Feature tracking and 3D surface reconstruction are key enabling techniques to computer-assisted minimally invasive surgery. One of the major bottlenecks related to training and validation of new algorithms is the lack of large amounts of annotated images that fully capture the wide range of anatomical/scene variance in clinical practice. To address this issue, we propose a novel approach to obtaining large numbers of high-quality reference image annotations at low cost in an extremely short period of time. The concept is based on outsourcing the correspondence search to a crowd of anonymous users from an online community (crowdsourcing) and comprises four stages: (1) feature detection, (2) correspondence search via crowdsourcing, (3) merging multiple annotations per feature by fitting Gaussian finite mixture models, (4) outlier removal using the result of the clustering as input for a second annotation task. On average, 10,000 annotations were obtained within 24 h at a cost of $100. The annotation of the crowd after clustering and before outlier removal was of expert quality with a median distance of about 1 pixel to a publically available reference annotation. The threshold for the outlier removal task directly determines the maximum annotation error, but also the number of points removed. Our concept is a novel and effective method for fast, low-cost and highly accurate correspondence generation that could be adapted to various other applications related to large-scale data annotation in medical image computing and computer-assisted interventions.

  3. Accurate registration of temporal CT images for pulmonary nodules detection

    NASA Astrophysics Data System (ADS)

    Yan, Jichao; Jiang, Luan; Li, Qiang

    2017-02-01

    Interpretation of temporal CT images could help the radiologists to detect some subtle interval changes in the sequential examinations. The purpose of this study was to develop a fully automated scheme for accurate registration of temporal CT images for pulmonary nodule detection. Our method consisted of three major registration steps. Firstly, affine transformation was applied in the segmented lung region to obtain global coarse registration images. Secondly, B-splines based free-form deformation (FFD) was used to refine the coarse registration images. Thirdly, Demons algorithm was performed to align the feature points extracted from the registered images in the second step and the reference images. Our database consisted of 91 temporal CT cases obtained from Beijing 301 Hospital and Shanghai Changzheng Hospital. The preliminary results showed that approximately 96.7% cases could obtain accurate registration based on subjective observation. The subtraction images of the reference images and the rigid and non-rigid registered images could effectively remove the normal structures (i.e. blood vessels) and retain the abnormalities (i.e. pulmonary nodules). This would be useful for the screening of lung cancer in our future study.

  4. Techniques for identifying dust devils in mars pathfinder images

    USGS Publications Warehouse

    Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.

    2000-01-01

    Image processing methods used to identify and enhance dust devil features imaged by IMP (Imager for Mars Pathfinder) are reviewed. Spectral differences, visible red minus visible blue, were used for initial dust devil searches, driven by the observation that Martian dust has high red and low blue reflectance. The Martian sky proved to be more heavily dust-laden than pre-Pathfinder predictions, based on analysis of images from the Hubble Space Telescope. As a result, these initial spectral difference methods failed to contrast dust devils with background dust haze. Imager artifacts (dust motes on the camera lens, flat-field effects caused by imperfections in the CCD, and projection onto a flat sensor plane by a convex lens) further impeded the ability to resolve subtle dust devil features. Consequently, reference images containing sky with a minimal horizon were first subtracted from each spectral filter image to remove camera artifacts and reduce the background dust haze signal. Once the sky-flat preprocessing step was completed, the red-minus-blue spectral difference scheme was attempted again. Dust devils then were successfully identified as bright plumes. False-color ratios using calibrated IMP images were found useful for visualizing dust plumes, verifying initial discoveries as vortex-like features. Enhancement of monochromatic (especially blue filter) images revealed dust devils as silhouettes against brighter background sky. Experiments with principal components transformation identified dust devils in raw, uncalibrated IMP images and further showed relative movement of dust devils across the Martian surface. A variety of methods therefore served qualitative and quantitative goals for dust plume identification and analysis in an environment where such features are obscure.

  5. Segmental Rescoring in Text Recognition

    DTIC Science & Technology

    2014-02-04

    description relates to rescoring text hypotheses in text recognition based on segmental features. Offline printed text and handwriting recognition (OHR) can... Handwriting , College Park, Md., 2006, which is incorporated by reference here. For the set of training images 202, a character modeler 208 receives

  6. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  7. Fusion of shallow and deep features for classification of high-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang

    2018-02-01

    Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.

  8. Recognition of children on age-different images: Facial morphology and age-stable features.

    PubMed

    Caplova, Zuzana; Compassi, Valentina; Giancola, Silvio; Gibelli, Daniele M; Obertová, Zuzana; Poppa, Pasquale; Sala, Remo; Sforza, Chiarella; Cattaneo, Cristina

    2017-07-01

    The situation of missing children is one of the most emotional social issues worldwide. The search for and identification of missing children is often hampered, among others, by the fact that the facial morphology of long-term missing children changes as they grow. Nowadays, the wide coverage by surveillance systems potentially provides image material for comparisons with images of missing children that may facilitate identification. The aim of study was to identify whether facial features are stable in time and can be utilized for facial recognition by comparing facial images of children at different ages as well as to test the possible use of moles in recognition. The study was divided into two phases (1) morphological classification of facial features using an Anthropological Atlas; (2) algorithm developed in MATLAB® R2014b for assessing the use of moles as age-stable features. The assessment of facial features by Anthropological Atlases showed high mismatch percentages among observers. On average, the mismatch percentages were lower for features describing shape than for those describing size. The nose tip cleft and the chin dimple showed the best agreement between observers regarding both categorization and stability over time. Using the position of moles as a reference point for recognition of the same person on age-different images seems to be a useful method in terms of objectivity and it can be concluded that moles represent age-stable facial features that may be considered for preliminary recognition. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  9. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties.

    PubMed

    Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2015-10-01

    Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.

  10. Development of terminology for mammographic techniques for radiological technologists.

    PubMed

    Yagahara, Ayako; Yokooka, Yuki; Tsuji, Shintaro; Nishimoto, Naoki; Uesugi, Masahito; Muto, Hiroshi; Ohba, Hisateru; Kurowarabi, Kunio; Ogasawara, Katsuhiko

    2011-07-01

    We are developing a mammographic ontology to share knowledge of the mammographic domain for radiologic technologists, with the aim of improving mammographic techniques. As a first step in constructing the ontology, we used mammography reference books to establish mammographic terminology for identifying currently available knowledge. This study proceeded in three steps: (1) determination of the domain and scope of the terminology, (2) lexical extraction, and (3) construction of hierarchical structures. We extracted terms mainly from three reference books and constructed the hierarchical structures manually. We compared features of the terms extracted from the three reference books. We constructed a terminology consisting of 440 subclasses grouped into 19 top-level classes: anatomic entity, image quality factor, findings, material, risk, breast, histological classification of breast tumors, role, foreign body, mammographic technique, physics, purpose of mammography examination, explanation of mammography examination, image development, abbreviation, quality control, equipment, interpretation, and evaluation of clinical imaging. The number of terms that occurred in the subclasses varied depending on which reference book was used. We developed a terminology of mammographic techniques for radiologic technologists consisting of 440 terms.

  11. TU-AB-202-05: GPU-Based 4D Deformable Image Registration Using Adaptive Tetrahedral Mesh Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z; Zhuang, L; Gu, X

    Purpose: Deformable image registration (DIR) has been employed today as an automated and effective segmentation method to transfer tumor or organ contours from the planning image to daily images, instead of manual segmentation. However, the computational time and accuracy of current DIR approaches are still insufficient for online adaptive radiation therapy (ART), which requires real-time and high-quality image segmentation, especially in a large datasets of 4D-CT images. The objective of this work is to propose a new DIR algorithm, with fast computational speed and high accuracy, by using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step ismore » to generate the adaptive tetrahedral mesh based on the image features of a reference phase of 4D-CT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. Subsequently, the deformation vector fields (DVF) and other phases of 4D-CT can be obtained by matching each phase of the target 4D-CT images with the corresponding deformed reference phase. The proposed 4D DIR method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its parallel computing ability. Results: A 4D NCAT digital phantom was used to test the efficiency and accuracy of our method. Both the image and DVF results show that the fine structures and shapes of lung are well preserved, and the tumor position is well captured, i.e., 3D distance error is 1.14 mm. Compared to the previous voxel-based CPU implementation of DIR, such as demons, the proposed method is about 160x faster for registering a 10-phase 4D-CT with a phase dimension of 256×256×150. Conclusion: The proposed 4D DIR method uses feature-based mesh and GPU-based parallelism, which demonstrates the capability to compute both high-quality image and motion results, with significant improvement on the computational speed.« less

  12. Relative Pose Estimation Using Image Feature Triplets

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Rottensteiner, F.; Heipke, C.

    2015-03-01

    A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.

  13. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  14. Feature Extraction for Pose Estimation. A Comparison Between Synthetic and Real IR Imagery

    DTIC Science & Technology

    1991-12-01

    determine the orientation of the sensor relative to the target ....... ........................ 33 4. Effects of changing sensor and target parameters...Reference object is a T-62 tank facing the viewer (sensor/target parameters set equal to zero). NOTE: Changing the target parameters produces...anomalous results. For these images, the field of view (FOV) was not changed .......................... 35 5. Image anomalies from changing the target

  15. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  16. An accelerated image matching technique for UAV orthoimage registration

    NASA Astrophysics Data System (ADS)

    Tsai, Chung-Hsien; Lin, Yu-Ching

    2017-06-01

    Using an Unmanned Aerial Vehicle (UAV) drone with an attached non-metric camera has become a popular low-cost approach for collecting geospatial data. A well-georeferenced orthoimage is a fundamental product for geomatics professionals. To achieve high positioning accuracy of orthoimages, precise sensor position and orientation data, or a number of ground control points (GCPs), are often required. Alternatively, image registration is a solution for improving the accuracy of a UAV orthoimage, as long as a historical reference image is available. This study proposes a registration scheme, including an Accelerated Binary Robust Invariant Scalable Keypoints (ABRISK) algorithm and spatial analysis of corresponding control points for image registration. To determine a match between two input images, feature descriptors from one image are compared with those from another image. A "Sorting Ring" is used to filter out uncorrected feature pairs as early as possible in the stage of matching feature points, to speed up the matching process. The results demonstrate that the proposed ABRISK approach outperforms the vector-based Scale Invariant Feature Transform (SIFT) approach where radiometric variations exist. ABRISK is 19.2 times and 312 times faster than SIFT for image sizes of 1000 × 1000 pixels and 4000 × 4000 pixels, respectively. ABRISK is 4.7 times faster than Binary Robust Invariant Scalable Keypoints (BRISK). Furthermore, the positional accuracy of the UAV orthoimage after applying the proposed image registration scheme is improved by an average of root mean square error (RMSE) of 2.58 m for six test orthoimages whose spatial resolutions vary from 6.7 cm to 10.7 cm.

  17. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    PubMed

    Murray, Trevor; Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  18. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes

    PubMed Central

    Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its ‘catchment area’) has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the ‘catchment volumes’ within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots. PMID:29088300

  19. Necrotizing fasciitis and its mimics: what radiologists need to know.

    PubMed

    Chaudhry, Ammar A; Baker, Kevin S; Gould, Elaine S; Gupta, Rajarsi

    2015-01-01

    The purpose of this article is to review the imaging features of necrotizing fasciitis and its potential mimics. Key imaging features are emphasized to enable accurate and efficient interpretation of variables that are essential in appropriate management. Necrotizing fasciitis is a medical emergency with potential lethal outcome. Dissecting gas along fascial planes in the absence of penetrating trauma (including iatrogenic) is essentially pathognomonic. However, the lack of soft-tissue emphysema does not exclude the diagnosis. Mimics of necrotizing fasciitis include nonnecrotizing fasciitis (eosinophilic, paraneoplastic, inflammatory (lupus myofasciitis, Churg-Strauss, nodular, or proliferative), myositis, neoplasm, myonecrosis, inflammatory myopathy, and compartment syndrome. Necrotizing fasciitis is a clinical diagnosis, and imaging can reveal nonspecific or negative findings (particularly during the early course of disease). One should be familiar with salient clinical and imaging findings of necrotizing fasciitis to facilitate a more rapid and accurate diagnosis and be aware that its diagnosis necessitates immediate discussion with the referring physician.

  20. Real-Time Indoor Scene Description for the Visually Impaired Using Autoencoder Fusion Strategies with Visible Cameras.

    PubMed

    Malek, Salim; Melgani, Farid; Mekhalfi, Mohamed Lamine; Bazi, Yakoub

    2017-11-16

    This paper describes three coarse image description strategies, which are meant to promote a rough perception of surrounding objects for visually impaired individuals, with application to indoor spaces. The described algorithms operate on images (grabbed by the user, by means of a chest-mounted camera), and provide in output a list of objects that likely exist in his context across the indoor scene. In this regard, first, different colour, texture, and shape-based feature extractors are generated, followed by a feature learning step by means of AutoEncoder (AE) models. Second, the produced features are fused and fed into a multilabel classifier in order to list the potential objects. The conducted experiments point out that fusing a set of AE-learned features scores higher classification rates with respect to using the features individually. Furthermore, with respect to reference works, our method: (i) yields higher classification accuracies, and (ii) runs (at least four times) faster, which enables a potential full real-time application.

  1. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  2. Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction

    NASA Astrophysics Data System (ADS)

    Rizal Isnanto, R.

    2015-06-01

    Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)

  3. ViCAR: An Adaptive and Landmark-Free Registration of Time Lapse Image Data from Microfluidics Experiments

    PubMed Central

    Hattab, Georges; Schlüter, Jan-Philip; Becker, Anke; Nattkemper, Tim W.

    2017-01-01

    In order to understand gene function in bacterial life cycles, time lapse bioimaging is applied in combination with different marker protocols in so called microfluidics chambers (i.e., a multi-well plate). In one experiment, a series of T images is recorded for one visual field, with a pixel resolution of 60 nm/px. Any (semi-)automatic analysis of the data is hampered by a strong image noise, low contrast and, last but not least, considerable irregular shifts during the acquisition. Image registration corrects such shifts enabling next steps of the analysis (e.g., feature extraction or tracking). Image alignment faces two obstacles in this microscopic context: (a) highly dynamic structural changes in the sample (i.e., colony growth) and (b) an individual data set-specific sample environment which makes the application of landmarks-based alignments almost impossible. We present a computational image registration solution, we refer to as ViCAR: (Vi)sual (C)ues based (A)daptive (R)egistration, for such microfluidics experiments, consisting of (1) the detection of particular polygons (outlined and segmented ones, referred to as visual cues), (2) the adaptive retrieval of three coordinates throughout different sets of frames, and finally (3) an image registration based on the relation of these points correcting both rotation and translation. We tested ViCAR with different data sets and have found that it provides an effective spatial alignment thereby paving the way to extract temporal features pertinent to each resulting bacterial colony. By using ViCAR, we achieved an image registration with 99.9% of image closeness, based on the average rmsd of 4.10−2 pixels, and superior results compared to a state of the art algorithm. PMID:28620411

  4. Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping

    PubMed Central

    Yarnykh, Vasily L.

    2015-01-01

    Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097

  5. A supervised learning approach for Crohn's disease detection using higher-order image statistics and a novel shape asymmetry measure.

    PubMed

    Mahapatra, Dwarikanath; Schueffler, Peter; Tielbeek, Jeroen A W; Buhmann, Joachim M; Vos, Franciscus M

    2013-10-01

    Increasing incidence of Crohn's disease (CD) in the Western world has made its accurate diagnosis an important medical challenge. The current reference standard for diagnosis, colonoscopy, is time-consuming and invasive while magnetic resonance imaging (MRI) has emerged as the preferred noninvasive procedure over colonoscopy. Current MRI approaches assess rate of contrast enhancement and bowel wall thickness, and rely on extensive manual segmentation for accurate analysis. We propose a supervised learning method for the identification and localization of regions in abdominal magnetic resonance images that have been affected by CD. Low-level features like intensity and texture are used with shape asymmetry information to distinguish between diseased and normal regions. Particular emphasis is laid on a novel entropy-based shape asymmetry method and higher-order statistics like skewness and kurtosis. Multi-scale feature extraction renders the method robust. Experiments on real patient data show that our features achieve a high level of accuracy and perform better than two competing methods.

  6. Computer-aided-diagnosis (CAD) for colposcopy

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Ferris, Daron G.

    2005-04-01

    Uterine cervical cancer is the second most common cancer among women worldwide. Colposcopy is a diagnostic method, whereby a physician (colposcopist) visually inspects the lower genital tract (cervix, vulva and vagina), with special emphasis on the subjective appearance of metaplastic epithelium comprising the transformation zone on the cervix. Cervical cancer precursor lesions and invasive cancer exhibit certain distinctly abnormal morphologic features. Lesion characteristics such as margin; color or opacity; blood vessel caliber, intercapillary spacing and distribution; and contour are considered by colposcopists to derive a clinical diagnosis. Clinicians and academia have suggested and shown proof of concept that automated image analysis of cervical imagery can be used for cervical cancer screening and diagnosis, having the potential to have a direct impact on improving women"s health care and reducing associated costs. STI Medical Systems is developing a Computer-Aided-Diagnosis (CAD) system for colposcopy -- ColpoCAD. At the heart of ColpoCAD is a complex multi-sensor, multi-data and multi-feature image analysis system. A functional description is presented of the envisioned ColpoCAD system, broken down into: Modality Data Management System, Image Enhancement, Feature Extraction, Reference Database, and Diagnosis and directed Biopsies. The system design and development process of the image analysis system is outlined. The system design provides a modular and open architecture built on feature based processing. The core feature set includes the visual features used by colposcopists. This feature set can be extended to include new features introduced by new instrument technologies, like fluorescence and impedance, and any other plausible feature that can be extracted from the cervical data. Preliminary results of our research on detecting the three most important features: blood vessel structures, acetowhite regions and lesion margins are shown. As this is a new and very complex field in medical image processing, the hope is that this paper can provide a framework and basis to encourage and facilitate collaboration and discussion between industry, academia, and medical practitioners.

  7. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  8. Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.

    PubMed

    Lan, Cuiling; Shi, Guangming; Wu, Feng

    2010-04-01

    Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.

  9. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer

    NASA Astrophysics Data System (ADS)

    Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan

    2016-03-01

    Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.

  10. FRAP Analysis: Accounting for Bleaching during Image Capture

    PubMed Central

    Wu, Jun; Shekhar, Nandini; Lele, Pushkar P.; Lele, Tanmay P.

    2012-01-01

    The analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments involves mathematical modeling of the fluorescence recovery process. An important feature of FRAP experiments that tends to be ignored in the modeling is that there can be a significant loss of fluorescence due to bleaching during image capture. In this paper, we explicitly include the effects of bleaching during image capture in the model for the recovery process, instead of correcting for the effects of bleaching using reference measurements. Using experimental examples, we demonstrate the usefulness of such an approach in FRAP analysis. PMID:22912750

  11. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  12. The Martian Prime Meridian -- Longitude "Zero"

    NASA Image and Video Library

    2001-02-08

    On Earth, the longitude of the Royal Observatory in Greenwich, England is defined as the "prime meridian," or the zero point of longitude. Locations on Earth are measured in degrees east or west from this position. The prime meridian was defined by international agreement in 1884 as the position of the large "transit circle," a telescope in the Observatory's Meridian Building. The transit circle was built by Sir George Biddell Airy, the 7th Astronomer Royal, in 1850. (While visual observations with transits were the basis of navigation until the space age, it is interesting to note that the current definition of the prime meridian is in reference to orbiting satellites and Very Long Baseline Interferometry (VLBI) measurements of distant radio sources such as quasars. This "International Reference Meridian" is now about 100 meters east of the Airy Transit at Greenwich.) For Mars, the prime meridian was first defined by the German astronomers W. Beer and J. H. Mädler in 1830-32. They used a small circular feature, which they designated "a," as a reference point to determine the rotation period of the planet. The Italian astronomer G. V. Schiaparelli, in his 1877 map of Mars, used this feature as the zero point of longitude. It was subsequently named Sinus Meridiani ("Middle Bay") by Camille Flammarion. When Mariner 9 mapped the planet at about 1 kilometer (0.62 mile) resolution in 1972, an extensive "control net" of locations was computed by Merton Davies of the RAND Corporation. Davies designated a 0.5-kilometer-wide crater (0.3 miles wide), subsequently named "Airy-0" (within the large crater Airy in Sinus Meridiani) as the longitude zero point. (Airy, of course, was named to commemorate the builder of the Greenwich transit.) This crater was imaged once by Mariner 9 (the 3rd picture taken on its 533rd orbit, 533B03) and once by the Viking 1 orbiter in 1978 (the 46th image on that spacecraft's 746th orbit, 746A46), and these two images were the basis of the martian longitude system for the rest of the 20th Century. The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has attempted to take a picture of Airy-0 on every close overflight since the beginning of the MGS mapping mission. It is a measure of the difficulty of hitting such a small target that nine attempts were required, since the spacecraft did not pass directly over Airy-0 until almost the end of the MGS primary mission, on orbit 8280 (January 13, 2001). In the left figure above, the outlines of the Mariner 9, Viking, and Mars Global Surveyor images are shown on a MOC wide angle context image, M23-00924. In the right figure, sections of each of the three images showing the crater Airy-0 are presented. A is a piece of the Mariner 9 image, B is from the Viking image, and C is from the MGS image. Airy-0 is the larger crater toward the top-center in each frame. The MOC observations of Airy-0 not only provide a detailed geological close-up of this historic reference feature, they will be used to improve our knowledge of the locations of all features on Mars, which will in turn enable more precise landings on the Red Planet by future spacecraft and explorers. http://photojournal.jpl.nasa.gov/catalog/PIA03207

  13. Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India

    NASA Astrophysics Data System (ADS)

    Guha, Arindam; Singh, Vivek Kr.; Parveen, Reshma; Kumar, K. Vinod; Jeyaseelan, A. T.; Dhanamjaya Rao, E. N.

    2013-04-01

    Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR-SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.

  14. [Report of a case with Joubert syndrome and literature review].

    PubMed

    Yi, Ya-hui; Li, Gang; Lu, Zhong-lie; Zhou, Jian-sheng; Yao, Zhen-wei; Wang, Peng-fei; Yao, Jin-xiang

    2011-12-01

    To explore the clinical feature, imaging and their diagnostic value for Joubert syndrome (JS). The clinical data, imaging feature, and 31 references from China Biomedical literature database (CBMdise) were reviewed and analyzed. The age of onset of 32 patients including male 20 and female 12 ranged from 3 days to 6 years (mean 2.2 years). All the 32 patients with Joubert syndrome showed "slow growth" and "reduced muscle tension", 26 cases (81.3%) showed "gasp for breath", 26 cases (81.3%) showed "unusual motion of eyeball", 2 cases (6.3%) showed additional fingers (toes), 6 cases (18.8%) showed stretching tongue with agape. The typical imaging features of Joubert syndrome included "molar tooth sign", "midline cleavage" between cerebellar hemispheres and "bat-wing" like fourth ventricle, all the 32 patients with Joubert syndrome showed "midline cleavage", "molar tooth sign" was present in 29 cases (90.1%), and "bat-wing" like fourth ventricle in 30 cases (93.8%). Joubert syndrome is a rare congenital brain malformation. The typical clinical manifestations included "gasp for breath", "reduced tension of muscle", "slow growth" and "unusual motion of eyeball", and at the same time the patients had the following typical imaging features of brain: "molar tooth sign", "midline cleavage" and "bat-wing" like fourth ventricle.

  15. MR imaging features and staging of neuroendocrine carcinomas of the uterine cervix with pathological correlations.

    PubMed

    Duan, Xiaohui; Ban, Xiaohua; Zhang, Xiang; Hu, Huijun; Li, Guozhao; Wang, Dongye; Wang, Charles Qian; Zhang, Fang; Shen, Jun

    2016-12-01

    To determine MR imaging features and staging accuracy of neuroendocrine carcinomas (NECs) of the uterine cervix with pathological correlations. Twenty-six patients with histologically proven NECs, 60 patients with squamous cell carcinomas (SCCs), and 30 patients with adenocarcinomas of the uterine cervix were included. The clinical data, pathological findings, and MRI findings were reviewed retrospectively. MRI features of cervical NECs, SCCs, and adenocarcinomas were compared, and MRI staging of cervical NECs was compared with the pathological staging. Cervical NECs showed a higher tendency toward a homogeneous signal intensity on T2-weighted imaging and a homogeneous enhancement pattern, as well as a lower ADC value of tumour and a higher incidence of lymphadenopathy, compared with SCCs and adenocarcinomas (P < 0.05). An ADC value cutoff of 0.90 × 10 -3  mm 2 /s was robust for differentiation between cervical NECs and other cervical cancers, with a sensitivity of 63.3 % and a specificity of 95 %. In 21 patients who underwent radical hysterectomy and lymphadenectomy, the overall accuracy of tumour staging by MR imaging was 85.7 % with reference to pathology staging. Homogeneous lesion texture and low ADC value are likely suggestive features of cervical NECs and MR imaging is reliable for the staging of cervical NECs. • Cervical NECs show a tendency of lesion homogeneity and lymphadenopathy • Low ADC values are found in cervical NECs • MRI is an accurate imaging modality for the cervical NEC staging.

  16. View synthesis using parallax invariance

    NASA Astrophysics Data System (ADS)

    Dornaika, Fadi

    2001-06-01

    View synthesis becomes a focus of attention of both the computer vision and computer graphics communities. It consists of creating novel images of a scene as it would appear from novel viewpoints. View synthesis can be used in a wide variety of applications such as video compression, graphics generation, virtual reality and entertainment. This paper addresses the following problem. Given a dense disparity map between two reference images, we would like to synthesize a novel view of the same scene associated with a novel viewpoint. Most of the existing work is relying on building a set of 3D meshes which are then projected onto the new image (the rendering process is performed using texture mapping). The advantages of our view synthesis approach are as follows. First, the novel view is specified by a rotation and a translation which are the most natural way to express the virtual location of the camera. Second, the approach is able to synthesize highly realistic images whose viewing position is significantly far away from the reference viewpoints. Third, the approach is able to handle the visibility problem during the synthesis process. Our developed framework has two main steps. The first step (analysis step) consists of computing the homography at infinity, the epipoles, and thus the parallax field associated with the reference images. The second step (synthesis step) consists of warping the reference image into a new one, which is based on the invariance of the computed parallax field. The analysis step is working directly on the reference views, and only need to be performed once. Examples of synthesizing novel views using either feature correspondences or dense disparity map have demonstrated the feasibility of the proposed approach.

  17. Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials.

    PubMed

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2011-04-01

    In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy

  18. On combining image-based and ontological semantic dissimilarities for medical image retrieval applications

    PubMed Central

    Kurtz, Camille; Depeursinge, Adrien; Napel, Sandy; Beaulieu, Christopher F.; Rubin, Daniel L.

    2014-01-01

    Computer-assisted image retrieval applications can assist radiologists by identifying similar images in archives as a means to providing decision support. In the classical case, images are described using low-level features extracted from their contents, and an appropriate distance is used to find the best matches in the feature space. However, using low-level image features to fully capture the visual appearance of diseases is challenging and the semantic gap between these features and the high-level visual concepts in radiology may impair the system performance. To deal with this issue, the use of semantic terms to provide high-level descriptions of radiological image contents has recently been advocated. Nevertheless, most of the existing semantic image retrieval strategies are limited by two factors: they require manual annotation of the images using semantic terms and they ignore the intrinsic visual and semantic relationships between these annotations during the comparison of the images. Based on these considerations, we propose an image retrieval framework based on semantic features that relies on two main strategies: (1) automatic “soft” prediction of ontological terms that describe the image contents from multi-scale Riesz wavelets and (2) retrieval of similar images by evaluating the similarity between their annotations using a new term dissimilarity measure, which takes into account both image-based and ontological term relations. The combination of these strategies provides a means of accurately retrieving similar images in databases based on image annotations and can be considered as a potential solution to the semantic gap problem. We validated this approach in the context of the retrieval of liver lesions from computed tomographic (CT) images and annotated with semantic terms of the RadLex ontology. The relevance of the retrieval results was assessed using two protocols: evaluation relative to a dissimilarity reference standard defined for pairs of images on a 25-images dataset, and evaluation relative to the diagnoses of the retrieved images on a 72-images dataset. A normalized discounted cumulative gain (NDCG) score of more than 0.92 was obtained with the first protocol, while AUC scores of more than 0.77 were obtained with the second protocol. This automatical approach could provide real-time decision support to radiologists by showing them similar images with associated diagnoses and, where available, responses to therapies. PMID:25036769

  19. Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs.

    PubMed

    Chakrabarty, Lipi; Joshi, Gopal Datt; Chakravarty, Arunava; Raman, Ganesh V; Krishnadas, S R; Sivaswamy, Jayanthi

    2016-07-01

    To describe and evaluate the performance of an automated CAD system for detection of glaucoma from color fundus photographs. Color fundus photographs of 2252 eyes from 1126 subjects were collected from 2 centers: Aravind Eye Hospital, Madurai and Coimbatore, India. The images of 1926 eyes (963 subjects) were used to train an automated image analysis-based system, which was developed to provide a decision on a given fundus image. A total of 163 subjects were clinically examined by 2 ophthalmologists independently and their diagnostic decisions were recorded. The consensus decision was defined to be the clinical reference (gold standard). Fundus images of eyes with disagreement in diagnosis were excluded from the study. The fundus images of the remaining 314 eyes (157 subjects) were presented to 4 graders and their diagnostic decisions on the same were collected. The performance of the system was evaluated on the 314 images, using the reference standard. The sensitivity and specificity of the system and 4 independent graders were determined against the clinical reference standard. The system achieved an area under receiver operating characteristic curve of 0.792 with a sensitivity of 0.716 and specificity of 0.717 at a selected threshold for the detection of glaucoma. The agreement with the clinical reference standard as determined by Cohen κ is 0.45 for the proposed system. This is comparable to that of the image-based decisions of 4 ophthalmologists. An automated system was presented for glaucoma detection from color fundus photographs. The overall evaluation results indicated that the presented system was comparable in performance to glaucoma classification by a manual grader solely based on fundus image examination.

  20. Asymmetric Meckel Cave Enlargement: A Potential Marker of PHACES Syndrome.

    PubMed

    Wright, J N; Wycoco, V

    2017-06-01

    PHACES syndrome is a complex of morphologic abnormalities of unknown cause and includes posterior fossa abnormalities; head and neck infantile hemangiomas; arterial, cardiac, and eye anomalies; and sternal or abdominal wall defects. Accurate identification of the syndrome is important for optimal treatment. The purpose of this study was to investigate the incidence of asymmetric Meckel cave enlargement, a potential novel imaging marker, in a population of patients referred for evaluation of possible PHACES syndrome. Eighty-five patients referred for neuroimaging evaluation of possible PHACES syndrome were identified and stratified on the basis of their ultimate clinical PHACES diagnosis categorization into PHACES, possible PHACES, or not PHACES. MR imaging studies were subsequently reviewed for the presence or absence of unilateral Meckel cave enlargement, with the reviewer blinded to the ultimate PHACES syndrome categorization. Twenty-five of 85 patients (29%) were ultimately categorized as having PHACES or possible PHACES according to consensus guidelines. Asymmetric Meckel cave enlargement was present in 76% (19/25) of these patients and in 82% (19/23) of only those patients with definite PHACES. This finding was present in none of the 60 patients determined not to have PHACES syndrome. In 7/19 patients (37%) with this finding, subtle MR imaging abnormalities consistent with PHACES were missed on the initial MR imaging interpretation. Asymmetric Meckel cave enlargement was a common feature of patients with PHACES in our cohort and may serve as a novel imaging marker. Increased awareness of this imaging feature has the potential to increase the diagnostic accuracy of PHACES. © 2017 by American Journal of Neuroradiology.

  1. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    PubMed Central

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  2. Self-localization for an autonomous mobile robot based on an omni-directional vision system

    NASA Astrophysics Data System (ADS)

    Chiang, Shu-Yin; Lin, Kuang-Yu; Chia, Tsorng-Lin

    2013-12-01

    In this study, we designed an autonomous mobile robot based on the rules of the Federation of International Robotsoccer Association (FIRA) RoboSot category, integrating the techniques of computer vision, real-time image processing, dynamic target tracking, wireless communication, self-localization, motion control, path planning, and control strategy to achieve the contest goal. The self-localization scheme of the mobile robot is based on the algorithms featured in the images from its omni-directional vision system. In previous works, we used the image colors of the field goals as reference points, combining either dual-circle or trilateration positioning of the reference points to achieve selflocalization of the autonomous mobile robot. However, because the image of the game field is easily affected by ambient light, positioning systems exclusively based on color model algorithms cause errors. To reduce environmental effects and achieve the self-localization of the robot, the proposed algorithm is applied in assessing the corners of field lines by using an omni-directional vision system. Particularly in the mid-size league of the RobotCup soccer competition, selflocalization algorithms based on extracting white lines from the soccer field have become increasingly popular. Moreover, white lines are less influenced by light than are the color model of the goals. Therefore, we propose an algorithm that transforms the omni-directional image into an unwrapped transformed image, enhancing the extraction features. The process is described as follows: First, radical scan-lines were used to process omni-directional images, reducing the computational load and improving system efficiency. The lines were radically arranged around the center of the omni-directional camera image, resulting in a shorter computational time compared with the traditional Cartesian coordinate system. However, the omni-directional image is a distorted image, which makes it difficult to recognize the position of the robot. Therefore, image transformation was required to implement self-localization. Second, we used an approach to transform the omni-directional images into panoramic images. Hence, the distortion of the white line can be fixed through the transformation. The interest points that form the corners of the landmark were then located using the features from accelerated segment test (FAST) algorithm. In this algorithm, a circle of sixteen pixels surrounding the corner candidate is considered and is a high-speed feature detector in real-time frame rate applications. Finally, the dual-circle, trilateration, and cross-ratio projection algorithms were implemented in choosing the corners obtained from the FAST algorithm and localizing the position of the robot. The results demonstrate that the proposed algorithm is accurate, exhibiting a 2-cm position error in the soccer field measuring 600 cm2 x 400 cm2.

  3. A novel no-reference objective stereoscopic video quality assessment method based on visual saliency analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xinyan; Zhao, Wei; Ye, Long; Zhang, Qin

    2017-07-01

    This paper proposes a no-reference objective stereoscopic video quality assessment method with the motivation that making the effect of objective experiments close to that of subjective way. We believe that the image regions with different visual salient degree should not have the same weights when designing an assessment metric. Therefore, we firstly use GBVS algorithm to each frame pairs and separate both the left and right viewing images into the regions with strong, general and week saliency. Besides, local feature information like blockiness, zero-crossing and depth are extracted and combined with a mathematical model to calculate a quality assessment score. Regions with different salient degree are assigned with different weights in the mathematical model. Experiment results demonstrate the superiority of our method compared with the existed state-of-the-art no-reference objective Stereoscopic video quality assessment methods.

  4. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    PubMed

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  5. Optical Coherence Microscopy

    NASA Astrophysics Data System (ADS)

    Aguirre, Aaron D.; Zhou, Chao; Lee, Hsiang-Chieh; Ahsen, Osman O.; Fujimoto, James G.

    Cellular imaging of human tissues remains an important advance for many clinical applications of optical coherence tomography (OCT). Imaging cells with traditional OCT systems has not been possible due to the limited transverse resolution of such techniques. Optical coherence microscopy (OCM) refers to OCT methods that achieve high transverse resolution to visualize cells and subcellular features. This chapter provides a comprehensive discussion of the rationale for cellular imaging in human tissues as well as a review of the key technological advances required to achieve it. Time domain and Fourier domain OCM approaches are described with an emphasis on state of the art system designs, including miniaturized endoscopic imaging probes. Clinical applications are discussed and multiple examples of cellular imaging in human tissues are provided.

  6. Referenceless perceptual fog density prediction model

    NASA Astrophysics Data System (ADS)

    Choi, Lark Kwon; You, Jaehee; Bovik, Alan C.

    2014-02-01

    We propose a perceptual fog density prediction model based on natural scene statistics (NSS) and "fog aware" statistical features, which can predict the visibility in a foggy scene from a single image without reference to a corresponding fogless image, without side geographical camera information, without training on human-rated judgments, and without dependency on salient objects such as lane markings or traffic signs. The proposed fog density predictor only makes use of measurable deviations from statistical regularities observed in natural foggy and fog-free images. A fog aware collection of statistical features is derived from a corpus of foggy and fog-free images by using a space domain NSS model and observed characteristics of foggy images such as low contrast, faint color, and shifted intensity. The proposed model not only predicts perceptual fog density for the entire image but also provides a local fog density index for each patch. The predicted fog density of the model correlates well with the measured visibility in a foggy scene as measured by judgments taken in a human subjective study on a large foggy image database. As one application, the proposed model accurately evaluates the performance of defog algorithms designed to enhance the visibility of foggy images.

  7. Research on Optimal Observation Scale for Damaged Buildings after Earthquake Based on Optimal Feature Space

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.

    2018-04-01

    A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.

  8. Preliminary research on the identification system for anthracnose and powdery mildew of sandalwood leaf based on image processing

    PubMed Central

    Wang, Xuefeng

    2017-01-01

    This paper presents a survey on a system that uses digital image processing techniques to identify anthracnose and powdery mildew diseases of sandalwood from digital images. Our main objective is researching the most suitable identification technology for the anthracnose and powdery mildew diseases of the sandalwood leaf, which provides algorithmic support for the real-time machine judgment of the health status and disease level of sandalwood. We conducted real-time monitoring of Hainan sandalwood leaves with varying severity levels of anthracnose and powdery mildew beginning in March 2014. We used image segmentation, feature extraction and digital image classification and recognition technology to carry out a comparative experimental study for the image analysis of powdery mildew, anthracnose disease and healthy leaves in the field. Performing the actual test for a large number of diseased leaves pointed to three conclusions: (1) Distinguishing effects of BP (Back Propagation) neural network method, in all kinds of classical methods, for sandalwood leaf anthracnose and powdery mildew disease are relatively good; the size of the lesion areas were closest to the actual. (2) The differences between two diseases can be shown well by the shape feature, color feature and texture feature of the disease image. (3) Identifying and diagnosing the diseased leaves have ideal results by SVM, which is based on radial basis kernel function. The identification rate of the anthracnose and healthy leaves was 92% respectively, and that of powdery mildew was 84%. Disease identification technology lays the foundation for remote monitoring disease diagnosis, preparing for remote transmission of the disease images, which is a very good guide and reference for further research of the disease identification and diagnosis system in sandalwood and other species of trees. PMID:28749977

  9. Preliminary research on the identification system for anthracnose and powdery mildew of sandalwood leaf based on image processing.

    PubMed

    Wu, Chunyan; Wang, Xuefeng

    2017-01-01

    This paper presents a survey on a system that uses digital image processing techniques to identify anthracnose and powdery mildew diseases of sandalwood from digital images. Our main objective is researching the most suitable identification technology for the anthracnose and powdery mildew diseases of the sandalwood leaf, which provides algorithmic support for the real-time machine judgment of the health status and disease level of sandalwood. We conducted real-time monitoring of Hainan sandalwood leaves with varying severity levels of anthracnose and powdery mildew beginning in March 2014. We used image segmentation, feature extraction and digital image classification and recognition technology to carry out a comparative experimental study for the image analysis of powdery mildew, anthracnose disease and healthy leaves in the field. Performing the actual test for a large number of diseased leaves pointed to three conclusions: (1) Distinguishing effects of BP (Back Propagation) neural network method, in all kinds of classical methods, for sandalwood leaf anthracnose and powdery mildew disease are relatively good; the size of the lesion areas were closest to the actual. (2) The differences between two diseases can be shown well by the shape feature, color feature and texture feature of the disease image. (3) Identifying and diagnosing the diseased leaves have ideal results by SVM, which is based on radial basis kernel function. The identification rate of the anthracnose and healthy leaves was 92% respectively, and that of powdery mildew was 84%. Disease identification technology lays the foundation for remote monitoring disease diagnosis, preparing for remote transmission of the disease images, which is a very good guide and reference for further research of the disease identification and diagnosis system in sandalwood and other species of trees.

  10. Confirmation of a traveling feature in Saturn's rings in Cassini Imaging Science Subsystem data

    NASA Astrophysics Data System (ADS)

    Aye, K. M.; Rehnberg, M.; Esposito, L. W.

    2017-12-01

    Introduction: Using Cassini UVIS occultation data, a traveling wave feature has been identified in the Saturn rings that is most likely caused by the radial positions swap of the moons Janus and Epimetheus [1]. The hypothesis is that non-linear interferences between the density waves when being relocated by the moon swap create a solitary wave that is traveling outward through the rings. The observations in [1] further lead to the derivation of values for the radial travel speeds of the identified traveling features, from 39.6 km/yr for the Janus 5:4 resonance up to 45.8 for the Janus 4:3 resonance. Previous confirmations in ISS data: Work in [1] also identified the feature in Cassini Imaging Science Subsystem (ISS) data that was taken around the time of the UVIS occultations where the phenomenon was first discovered, so far one ISS image for each Janus resonances 2:1, 4:3, 5:4, and 6:5. Searches performed in ISS data: Filtering all existing ISS data down to the best resolutions that include both a clearly identifiable minimum and maximum ring radius, we have visually inspected approx. 200 images, both with and without known resonances within the image, but unbeknownst to the inspector. Identification of a feature of interest happens when train waves are being interrupted by anomalies. Comparing the radial locations of identified ISS features with those in UV data of [1], we have identified several at the same radii. Considering the vast differences in radial resolution, we conclude that the traveling feature causes observable anomalies at both small scales of meters, up to large scales of hundreds of meters to kilometers.References: [1] Rehnberg, M.E., Esposito, L.W., Brown, Z.L., Albers, N., Sremčević, M., Stewart, G.R., 2016. A Traveling Feature in Saturn's Rings. Icarus, accepted in June 2016. [2] K.-Michael Aye (2016, November 11). michaelaye/pyciss: . v0.6.0 Zenodo. https://doi.org/10.5281/zenodo.596802

  11. Searching for a traveling feature in Saturn's rings in Cassini Imaging Science Subsystem data

    NASA Astrophysics Data System (ADS)

    Aye, Klaus-Michael; Rehnberg, Morgan; Brown, Zarah; Esposito, Larry W.

    2016-10-01

    Introduction: Using Cassini UVIS occultation data, a traveling wave feature has been identified in the Saturn rings that is most likely caused by the radial positions swap of the moons Janus and Epimetheus [1]. The hypothesis is that non-linear interferences between the linear density waves when being relocated by the moon swap create a solitary wave that is traveling outward through the rings. The observations in [1] further lead to the derivation of values for the radial travel speeds of the identified traveling features, from 39.6 km/yr for the Janus 5:4 resonance up to 45.8 for the Janus 4:3 resonance.Previous confirmations in ISS data: Work in [1] also identified the feature in Cassini Imaging Science Subsystem (ISS) data that was taken around the time of the UVIS occultations where the phenomenon was first discovered, so far one ISS image for each Janus resonances 2:1, 4:3, 5:4, and 6:5.Search guided by predicted locations: Using the observation-fitted radial velocities from [1], we can extrapolate these to identify Saturn radii at which the traveling feature should be found at later times. Using this and new image analysis and plotting tools available in [2], we have identified a potential candidate feature in an ISS image that was taken 2.5 years after the feature causing moon swap in January 2006. We intend to expand our search by identifying candidate ISS data by a meta-database search constraining the radius at future times corresponding to the predicted future locations of the hypothesized solitary wave and present our findings at this conference.References: [1] Rehnberg, M.E., Esposito, L.W., Brown, Z.L., Albers, N., Sremčević, M., Stewart, G.R., 2016. A Traveling Feature in Saturn's Rings. Icarus, accepted in June 2016. [2] K.-Michael Aye. (2016). pyciss: v0.5.0. Zenodo. 10.5281/zenodo.53092

  12. Advanced Interactive Display Formats for Terminal Area Traffic Control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Shaviv, G. E.

    1999-01-01

    This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.

  13. Prestack depth migration for complex 2D structure using phase-screen propagators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, P.; Huang, Lian-Jie; Burch, C.

    1997-11-01

    We present results for the phase-screen propagator method applied to prestack depth migration of the Marmousi synthetic data set. The data were migrated as individual common-shot records and the resulting partial images were superposed to obtain the final complete Image. Tests were performed to determine the minimum number of frequency components required to achieve the best quality image and this in turn provided estimates of the minimum computing time. Running on a single processor SUN SPARC Ultra I, high quality images were obtained in as little as 8.7 CPU hours and adequate images were obtained in as little as 4.4more » CPU hours. Different methods were tested for choosing the reference velocity used for the background phase-shift operation and for defining the slowness perturbation screens. Although the depths of some of the steeply dipping, high-contrast features were shifted slightly the overall image quality was fairly insensitive to the choice of the reference velocity. Our jests show the phase-screen method to be a reliable and fast algorithm for imaging complex geologic structures, at least for complex 2D synthetic data where the velocity model is known.« less

  14. Visual properties and memorising scenes: Effects of image-space sparseness and uniformity.

    PubMed

    Lukavský, Jiří; Děchtěrenko, Filip

    2017-10-01

    Previous studies have demonstrated that humans have a remarkable capacity to memorise a large number of scenes. The research on memorability has shown that memory performance can be predicted by the content of an image. We explored how remembering an image is affected by the image properties within the context of the reference set, including the extent to which it is different from its neighbours (image-space sparseness) and if it belongs to the same category as its neighbours (uniformity). We used a reference set of 2,048 scenes (64 categories), evaluated pairwise scene similarity using deep features from a pretrained convolutional neural network (CNN), and calculated the image-space sparseness and uniformity for each image. We ran three memory experiments, varying the memory workload with experiment length and colour/greyscale presentation. We measured the sensitivity and criterion value changes as a function of image-space sparseness and uniformity. Across all three experiments, we found separate effects of 1) sparseness on memory sensitivity, and 2) uniformity on the recognition criterion. People better remembered (and correctly rejected) images that were more separated from others. People tended to make more false alarms and fewer miss errors in images from categorically uniform portions of the image-space. We propose that both image-space properties affect human decisions when recognising images. Additionally, we found that colour presentation did not yield better memory performance over grayscale images.

  15. Causes of hepatic capsular retraction: a pictorial essay.

    PubMed

    Tan, Gary Xia Vern; Miranda, Rhian; Sutherland, Tom

    2016-12-01

    Hepatic capsular retraction refers to the loss of the normal convex hepatic contour, with the formation of an area of flattening or concavity. This can result from myriad causes, including intrinsic hepatic conditions such as cirrhosis, biliary obstruction, benign tumours, malignancy and infections, as well as extrahepatic causes such as trauma. This article aims to provide familiarity with this wide spectrum of conditions, including mimics of hepatic capsular retraction, by highlighting the anatomic, pathologic and imaging features that help distinguish these entities from one another. • Hepatic capsular retraction can occur due to various intrinsic or extrinsic hepatic causes. • Hepatic capsular retraction is observed in both benign and malignant conditions. • Recognising associated imaging features can help elicit causes of hepatic capsular retraction.

  16. A Kentucky Journey. Teacher's Guide.

    ERIC Educational Resources Information Center

    Kentucky Historical Society, Frankfort.

    The Kentucky History Center (Frankfort), a 20,000-square-foot museum facility, is a walk through time, complete with the sights, sounds, and smells of the past. The museum's eight chronological areas feature artifacts, images, and life-size environments that evoke places in time. A ready-made reference area in the center of the exhibit provides a…

  17. Analysis of PETT images in psychiatric disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, J.D.; Gomez-Mont, F.; Volkow, N.D.

    1983-01-01

    A quantitative method is presented for studying the pattern of metabolic activity in a set of Positron Emission Transaxial Tomography (PETT) images. Using complex Fourier coefficients as a feature vector for each image, cluster, principal components, and discriminant function analyses are used to empirically describe metabolic differences between control subjects and patients with DSM III diagnosis for schizophrenia or endogenous depression. We also present data on the effects of neuroleptic treatment on the local cerebral metabolic rate of glucose utilization (LCMRGI) in a group of chronic schizophrenics using the region of interest approach. 15 references, 4 figures, 3 tables.

  18. Low level image processing techniques using the pipeline image processing engine in the flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Nashman, Marilyn; Chaconas, Karen J.

    1988-01-01

    The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.

  19. a Critical Review of Automated Photogrammetric Processing of Large Datasets

    NASA Astrophysics Data System (ADS)

    Remondino, F.; Nocerino, E.; Toschi, I.; Menna, F.

    2017-08-01

    The paper reports some comparisons between commercial software able to automatically process image datasets for 3D reconstruction purposes. The main aspects investigated in the work are the capability to correctly orient large sets of image of complex environments, the metric quality of the results, replicability and redundancy. Different datasets are employed, each one featuring a diverse number of images, GSDs at cm and mm resolutions, and ground truth information to perform statistical analyses of the 3D results. A summary of (photogrammetric) terms is also provided, in order to provide rigorous terms of reference for comparisons and critical analyses.

  20. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system

    PubMed Central

    Sunkin, Susan M.; Ng, Lydia; Lau, Chris; Dolbeare, Tim; Gilbert, Terri L.; Thompson, Carol L.; Hawrylycz, Michael; Dang, Chinh

    2013-01-01

    The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal. PMID:23193282

  1. Phase modulation atomic force microscope with true atomic resolution

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Kilpatrick, Jason I.; Jarvis, Suzanne P.

    2006-12-01

    We have developed a dynamic force microscope (DFM) working in a novel operation mode which is referred to as phase modulation atomic force microscopy (PM-AFM). PM-AFM utilizes a fixed-frequency excitation signal to drive a cantilever, which ensures stable imaging even with occasional tip crash and adhesion to the surface. The tip-sample interaction force is detected as a change of the phase difference between the cantilever deflection and excitation signals and hence the time response is not influenced by the Q factor of the cantilever. These features make PM-AFM more suitable for high-speed imaging than existing DFM techniques such as amplitude modulation and frequency modulation atomic force microscopies. Here we present the basic principle of PM-AFM and the theoretical limit of its performance. The design of the developed PM-AFM is described and its theoretically limited noise performance is demonstrated. Finally, we demonstrate the true atomic resolution imaging capability of the developed PM-AFM by imaging atomic-scale features of mica in water.

  2. The Specters of Mars

    NASA Image and Video Library

    2017-07-13

    This image from NASA's Mars Reconnaissance Orbiter shows Malea Planum,a polar region in the Southern hemisphere of Mars, directly south of Hellas Basin, which contains the lowest point of elevation on the planet. The region contains ancient volcanoes of a certain type, referred to as "paterae." Patera is the Latin word for a shallow drinking bowl, and was first applied to volcanic-looking features, with scalloped-edged calderas. Malea is also a low-lying plain, known to be covered in dust. These two pieces of information provide regional context that aid our understanding of the scene and features contained in our image. The area rises gradually to a ridge (which can be seen in this Context Camera image) and light-colored dust is blown away by gusts of the Martian wind, which accelerate up the slope to the ridge, leading to more sharp angles of contact between light and dark surface materials. https://photojournal.jpl.nasa.gov/catalog/PIA21784

  3. Moon Waves and Moon Wakes

    NASA Image and Video Library

    2017-01-30

    This Cassini image features a density wave in Saturn's A ring (at left) that lies around 134,500 km from Saturn. Density waves are accumulations of particles at certain distances from the planet. This feature is filled with clumpy perturbations, which researchers informally refer to as "straw." The wave itself is created by the gravity of the moons Janus and Epimetheus, which share the same orbit around Saturn. Elsewhere, the scene is dominated by "wakes" from a recent pass of the ring moon Pan. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 18, 2016. The view was obtained at a distance of approximately 34,000 miles (56,000 kilometers) from the rings and looks toward the unilluminated side of the rings. Image scale is about a quarter-mile (340 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21060

  4. Digital hand atlas and computer-aided bone age assessment via the Web

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente

    1999-07-01

    A frequently used assessment method of bone age is atlas matching by a radiological examination of a hand image against a reference set of atlas patterns of normal standards. We are in a process of developing a digital hand atlas with a large standard set of normal hand and wrist images that reflect the skeletal maturity, race and sex difference, and current child development. The digital hand atlas will be used for a computer-aided bone age assessment via Web. We have designed and partially implemented a computer-aided diagnostic (CAD) system for Web-based bone age assessment. The system consists of a digital hand atlas, a relational image database and a Web-based user interface. The digital atlas is based on a large standard set of normal hand an wrist images with extracted bone objects and quantitative features. The image database uses a content- based indexing to organize the hand images and their attributes and present to users in a structured way. The Web-based user interface allows users to interact with the hand image database from browsers. Users can use a Web browser to push a clinical hand image to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, will be extracted and compared with patterns from the atlas database to assess the bone age. The relevant reference imags and the final assessment report will be sent back to the user's browser via Web. The digital atlas will remove the disadvantages of the currently out-of-date one and allow the bone age assessment to be computerized and done conveniently via Web. In this paper, we present the system design and Web-based client-server model for computer-assisted bone age assessment and our initial implementation of the digital atlas database.

  5. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm.

    PubMed

    Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan

    2016-04-01

    To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the reconstruction algorithm used (average of 3.33 features affected by MBIR throughout lesion types; P < .002, for all comparisons), no significant effect of the radiation dose setting was observed for all but one of the texture features (P = .002-.998). Radiation dose settings and reconstruction algorithms affect the extraction and analysis of quantitative imaging features in lesions at multi-detector row CT.

  6. 3D Surface Reconstruction of Rills in a Spanish Olive Grove

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Seeger, Manuel; Wirtz, Stefan; Taguas, Encarnación; Ries, Johannes B.

    2016-04-01

    The low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique is used for 3D surface reconstruction and difference calculation of an 18 meter long rill in South Spain (Andalusia, Puente Genil). The images were taken with a Canon HD video camera before and after a rill experiment in an olive grove. Recording with a video camera has compared to a photo camera a huge time advantage and the method also guarantees more than adequately overlapping sharp images. For each model, approximately 20 minutes of video were taken. As SfM needs single images, the sharpest image was automatically selected from 8 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs and recovers the camera and feature positions. Finally, by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post model a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The results show that rills in olive groves have a high dynamic due to the lack of vegetation cover under the trees, so that the rill can incise until the bedrock. Another reason for the high activity is the intensive employment of machinery.

  7. Digital Shaded-Relief Image of Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image of Alaska at 1:2,500,000 scale (Alaska Department of Natural Resources, 1994), using the 1,000-m digital elevation data set referred to below. An important difference between our image and these previous ones is the method of reproduction: like the Thelin and Pike (1991) image, our image is a composite of halftone images that yields sharp resolution and preserves contrast. Indeed, the first impression of many viewers is that the Alaskan image and the Thelin and Pike image are composites of satellite-generated photographs rather than an artificial rendering of a digital elevation model. A shaded-relief image represents landforms in a natural fashion; that is, a viewer perceives the image as a rendering of reality. Thus a shaded-relief image is intrinsically appealing, especially in areas of spectacular relief. In addition, even subtle physiographic features that reflect geologic structures or the type of bedrock are visible. To our knowledge, some of these Alaskan features have not been depicted before and so the image should provide earth scientists with a new 'look' at fundamental geologic features of Alaska.

  8. Classification and Recognition of Tomb Information in Hyperspectral Image

    NASA Astrophysics Data System (ADS)

    Gu, M.; Lyu, S.; Hou, M.; Ma, S.; Gao, Z.; Bai, S.; Zhou, P.

    2018-04-01

    There are a large number of materials with important historical information in ancient tombs. However, in many cases, these substances could become obscure and indistinguishable by human naked eye or true colour camera. In order to classify and identify materials in ancient tomb effectively, this paper applied hyperspectral imaging technology to archaeological research of ancient tomb in Shanxi province. Firstly, the feature bands including the main information at the bottom of the ancient tomb are selected by the Principal Component Analysis (PCA) transformation to realize the data dimension. Then, the image classification was performed using Support Vector Machine (SVM) based on feature bands. Finally, the material at the bottom of ancient tomb is identified by spectral analysis and spectral matching. The results show that SVM based on feature bands can not only ensure the classification accuracy, but also shorten the data processing time and improve the classification efficiency. In the material identification, it is found that the same matter identified in the visible light is actually two different substances. This research result provides a new reference and research idea for archaeological work.

  9. Groupwise registration of cardiac perfusion MRI sequences using normalized mutual information in high dimension

    NASA Astrophysics Data System (ADS)

    Hamrouni, Sameh; Rougon, Nicolas; Pr"teux, Françoise

    2011-03-01

    In perfusion MRI (p-MRI) exams, short-axis (SA) image sequences are captured at multiple slice levels along the long-axis of the heart during the transit of a vascular contrast agent (Gd-DTPA) through the cardiac chambers and muscle. Compensating cardio-thoracic motions is a requirement for enabling computer-aided quantitative assessment of myocardial ischaemia from contrast-enhanced p-MRI sequences. The classical paradigm consists of registering each sequence frame on a reference image using some intensity-based matching criterion. In this paper, we introduce a novel unsupervised method for the spatio-temporal groupwise registration of cardiac p-MRI exams based on normalized mutual information (NMI) between high-dimensional feature distributions. Here, local contrast enhancement curves are used as a dense set of spatio-temporal features, and statistically matched through variational optimization to a target feature distribution derived from a registered reference template. The hard issue of probability density estimation in high-dimensional state spaces is bypassed by using consistent geometric entropy estimators, allowing NMI to be computed directly from feature samples. Specifically, a computationally efficient kth-nearest neighbor (kNN) estimation framework is retained, leading to closed-form expressions for the gradient flow of NMI over finite- and infinite-dimensional motion spaces. This approach is applied to the groupwise alignment of cardiac p-MRI exams using a free-form Deformation (FFD) model for cardio-thoracic motions. Experiments on simulated and natural datasets suggest its accuracy and robustness for registering p-MRI exams comprising more than 30 frames.

  10. Technical note: A simple approach for efficient collection of field reference data for calibrating remote sensing mapping of northern wetlands

    NASA Astrophysics Data System (ADS)

    Gålfalk, Magnus; Karlson, Martin; Crill, Patrick; Bousquet, Philippe; Bastviken, David

    2018-03-01

    The calibration and validation of remote sensing land cover products are highly dependent on accurate field reference data, which are costly and practically challenging to collect. We describe an optical method for collection of field reference data that is a fast, cost-efficient, and robust alternative to field surveys and UAV imaging. A lightweight, waterproof, remote-controlled RGB camera (GoPro HERO4 Silver, GoPro Inc.) was used to take wide-angle images from 3.1 to 4.5 m in altitude using an extendable monopod, as well as representative near-ground (< 1 m) images to identify spectral and structural features that correspond to various land covers in present lighting conditions. A semi-automatic classification was made based on six surface types (graminoids, water, shrubs, dry moss, wet moss, and rock). The method enables collection of detailed field reference data, which is critical in many remote sensing applications, such as satellite-based wetland mapping. The method uses common non-expensive equipment, does not require special skills or training, and is facilitated by a step-by-step manual that is included in the Supplement. Over time a global ground cover database can be built that can be used as reference data for studies of non-forested wetlands from satellites such as Sentinel 1 and 2 (10 m pixel size).

  11. Unsupervised Feature Selection Based on the Morisita Index for Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Golay, Jean; Kanevski, Mikhail

    2017-04-01

    Hyperspectral sensors are capable of acquiring images with hundreds of narrow and contiguous spectral bands. Compared with traditional multispectral imagery, the use of hyperspectral images allows better performance in discriminating between land-cover classes, but it also results in large redundancy and high computational data processing. To alleviate such issues, unsupervised feature selection techniques for redundancy minimization can be implemented. Their goal is to select the smallest subset of features (or bands) in such a way that all the information content of a data set is preserved as much as possible. The present research deals with the application to hyperspectral images of a recently introduced technique of unsupervised feature selection: the Morisita-Based filter for Redundancy Minimization (MBRM). MBRM is based on the (multipoint) Morisita index of clustering and on the Morisita estimator of Intrinsic Dimension (ID). The fundamental idea of the technique is to retain only the bands which contribute to increasing the ID of an image. In this way, redundant bands are disregarded, since they have no impact on the ID. Besides, MBRM has several advantages over benchmark techniques: in addition to its ability to deal with large data sets, it can capture highly-nonlinear dependences and its implementation is straightforward in any programming environment. Experimental results on freely available hyperspectral images show the good effectiveness of MBRM in remote sensing data processing. Comparisons with benchmark techniques are carried out and random forests are used to assess the performance of MBRM in reducing the data dimensionality without loss of relevant information. References [1] C. Traina Jr., A.J.M. Traina, L. Wu, C. Faloutsos, Fast feature selection using fractal dimension, in: Proceedings of the XV Brazilian Symposium on Databases, SBBD, pp. 158-171, 2000. [2] J. Golay, M. Kanevski, A new estimator of intrinsic dimension based on the multipoint Morisita index, Pattern Recognition 48(12), pp. 4070-4081, 2015. [3] J. Golay, M. Kanevski, Unsupervised feature selection based on the Morisita estimator of intrinsic dimension, arXiv:1608.05581, 2016.

  12. 3D Surface Reconstruction and Volume Calculation of Rills

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    We use the low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique, which is implemented in the Software VisualSfM, for 3D surface reconstruction and volume calculation of an 18 meter long rill in Luxembourg. The images were taken with a Canon HD video camera 1) before a natural rainfall event, 2) after a natural rainfall event and before a rill experiment and 3) after a rill experiment. Recording with a video camera results compared to a photo camera not only a huge time advantage, the method also guarantees more than adequately overlapping sharp images. For each model, approximately 8 minutes of video were taken. As SfM needs single images, we automatically selected the sharpest image from 15 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs, recovers the camera positions and finally by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post models a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The outputs are three models at three different points in time. The results show that especially using images taken from suboptimal videos (bad lighting conditions, low contrast of the surface, too much in-motion unsharpness), the sharpness algorithm leads to much more matching features. Hence the point densities of the 3D models are increased and thereby clarify the calculations.

  13. Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images

    PubMed Central

    Osadebey, Michael; Pedersen, Marius; Arnold, Douglas; Wendel-Mitoraj, Katrina

    2017-01-01

    Abstract. We describe a postacquisition, attribute-based quality assessment method for brain magnetic resonance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy regions. For each entropy region, there are three separate observations of contrast, standard deviation, and sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region given any corresponding region in a feature image where quality attribute is observed. Prior belief in each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP below the predefined threshold, the prior probability for a region is determined by deviation of its percentage composition in the slice from a standard normal distribution built from 250 MRI volume data provided by Alzheimer’s Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a mathematical model that describes the TCP–noise level relationship in brain MRI images. Our proposed method assesses the image quality of each entropy region and the global image. Experimental results demonstrate good correlation with subjective opinions of radiologists for different types and levels of quality distortions. PMID:28630885

  14. Two- and three-dimensional ultrasound imaging to facilitate detection and targeting of taut bands in myofascial pain syndrome.

    PubMed

    Shankar, Hariharan; Reddy, Sapna

    2012-07-01

    Ultrasound imaging has gained acceptance in pain management interventions. Features of myofascial pain syndrome have been explored using ultrasound imaging and elastography. There is a paucity of reports showing the benefit clinically. This report provides three-dimensional features of taut bands and highlights the advantages of using two-dimensional ultrasound imaging to improve targeting of taut bands in deeper locations. Fifty-eight-year-old man with pain and decreased range of motion of the right shoulder was referred for further management of pain above the scapula after having failed conservative management for myofascial pain syndrome. Three-dimensional ultrasound images provided evidence of aberrancy in the architecture of the muscle fascicles around the taut bands compared to the adjacent normal muscle tissue during serial sectioning of the accrued image. On two-dimensional ultrasound imaging over the palpated taut band, areas of hyperechogenicity were visualized in the trapezius and supraspinatus muscles. Subsequently, the patient received ultrasound-guided real-time lidocaine injections to the trigger points with successful resolution of symptoms. This is a successful demonstration of utility of ultrasound imaging of taut bands in the management of myofascial pain syndrome. Utility of this imaging modality in myofascial pain syndrome requires further clinical validation. Wiley Periodicals, Inc.

  15. Palmprint verification using Lagrangian decomposition and invariant interest points

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.

    2011-06-01

    This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.

  16. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOEpatents

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  17. Color normalization for robust evaluation of microscopy images

    NASA Astrophysics Data System (ADS)

    Švihlík, Jan; Kybic, Jan; Habart, David

    2015-09-01

    This paper deals with color normalization of microscopy images of Langerhans islets in order to increase robustness of the islet segmentation to illumination changes. The main application is automatic quantitative evaluation of the islet parameters, useful for determining the feasibility of islet transplantation in diabetes. First, background illumination inhomogeneity is compensated and a preliminary foreground/background segmentation is performed. The color normalization itself is done in either lαβ or logarithmic RGB color spaces, by comparison with a reference image. The color-normalized images are segmented using color-based features and pixel-wise logistic regression, trained on manually labeled images. Finally, relevant statistics such as the total islet area are evaluated in order to determine the success likelihood of the transplantation.

  18. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-05-10

    ISS013-E-17394 (10 May 2006) --- The central Phoenix Metro Area, Arizona is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The Phoenix, Arizona metropolitan area is the largest in the southwestern United States, and is comprised of 21 contiguous incorporated municipalities. Such a collection of discrete political entities forming a larger integrated urban landscape is referred to as a conurbation by urban geographers. This portion of a high resolution (approximately 9 meters/pixel) photograph (upper image) of the central metro region includes the boundary area between three of the municipalities included in the conurbation: the Cities of Phoenix (upper image, left), Tempe (upper image, center and lower right), and Scottsdale (upper image, upper right).

  19. Astrometrica: Astrometric data reduction of CCD images

    NASA Astrophysics Data System (ADS)

    Raab, Herbert

    2012-03-01

    Astrometrica is an interactive software tool for scientific grade astrometric data reduction of CCD images. The current version of the software is for the Windows 32bit operating system family. Astrometrica reads FITS (8, 16 and 32 bit integer files) and SBIG image files. The size of the images is limited only by available memory. It also offers automatic image calibration (Dark Frame and Flat Field correction), automatic reference star identification, automatic moving object detection and identification, and access to new-generation star catalogs (PPMXL, UCAC 3 and CMC-14), in addition to online help and other features. Astrometrica is shareware, available for use for a limited period of time (100 days) for free; special arrangements can be made for educational projects.

  20. Multiple template-based image matching using alpha-rooted quaternion phase correlation

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2010-04-01

    In computer vision applications, image matching performed on quality-degraded imagery is difficult due to image content distortion and noise effects. State-of-the art keypoint based matchers, such as SURF and SIFT, work very well on clean imagery. However, performance can degrade significantly in the presence of high noise and clutter levels. Noise and clutter cause the formation of false features which can degrade recognition performance. To address this problem, previously we developed an extension to the classical amplitude and phase correlation forms, which provides improved robustness and tolerance to image geometric misalignments and noise. This extension, called Alpha-Rooted Phase Correlation (ARPC), combines Fourier domain-based alpha-rooting enhancement with classical phase correlation. ARPC provides tunable parameters to control the alpha-rooting enhancement. These parameter values can be optimized to tradeoff between high narrow correlation peaks, and more robust wider, but smaller peaks. Previously, we applied ARPC in the radon transform domain for logo image recognition in the presence of rotational image misalignments. In this paper, we extend ARPC to incorporate quaternion Fourier transforms, thereby creating Alpha-Rooted Quaternion Phase Correlation (ARQPC). We apply ARQPC to the logo image recognition problem. We use ARQPC to perform multiple-reference logo template matching by representing multiple same-class reference templates as quaternion-valued images. We generate recognition performance results on publicly-available logo imagery, and compare recognition results to results generated from standard approaches. We show that small deviations in reference templates of sameclass logos can lead to improved recognition performance using the joint matching inherent in ARQPC.

  1. Computer-aided diagnosis with textural features for breast lesions in sonograms.

    PubMed

    Chen, Dar-Ren; Huang, Yu-Len; Lin, Sheng-Hsiung

    2011-04-01

    Computer-aided diagnosis (CAD) systems provided second beneficial support reference and enhance the diagnostic accuracy. This paper was aimed to develop and evaluate a CAD with texture analysis in the classification of breast tumors for ultrasound images. The ultrasound (US) dataset evaluated in this study composed of 1020 sonograms of region of interest (ROI) subimages from 255 patients. Two-view sonogram (longitudinal and transverse views) and four different rectangular regions were utilized to analyze each tumor. Six practical textural features from the US images were performed to classify breast tumors as benign or malignant. However, the textural features always perform as a high dimensional vector; high dimensional vector is unfavorable to differentiate breast tumors in practice. The principal component analysis (PCA) was used to reduce the dimension of textural feature vector and then the image retrieval technique was performed to differentiate between benign and malignant tumors. In the experiments, all the cases were sampled with k-fold cross-validation (k=10) to evaluate the performance with receiver operating characteristic (ROC) curve. The area (A(Z)) under the ROC curve for the proposed CAD system with the specific textural features was 0.925±0.019. The classification ability for breast tumor with textural information is satisfactory. This system differentiates benign from malignant breast tumors with a good result and is therefore clinically useful to provide a second opinion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. P04.19 Recommendations for computation of textural measures obtained from 3D brain tumor MRIs: A robustness analysis points out the need for standardization.

    PubMed Central

    Molina, D.; Pérez-Beteta, J.; Martínez-González, A.; Velásquez, C.; Martino, J.; Luque, B.; Revert, A.; Herruzo, I.; Arana, E.; Pérez-García, V. M.

    2017-01-01

    Abstract Introduction: Textural analysis refers to a variety of mathematical methods used to quantify the spatial variations in grey levels within images. In brain tumors, textural features have a great potential as imaging biomarkers having been shown to correlate with survival, tumor grade, tumor type, etc. However, these measures should be reproducible under dynamic range and matrix size changes for their clinical use. Our aim is to study this robustness in brain tumors with 3D magnetic resonance imaging, not previously reported in the literature. Materials and methods: 3D T1-weighted images of 20 patients with glioblastoma (64.80 ± 9.12 years-old) obtained from a 3T scanner were analyzed. Tumors were segmented using an in-house semi-automatic 3D procedure. A set of 16 3D textural features of the most common types (co-occurrence and run-length matrices) were selected, providing regional (run-length based measures) and local information (co-ocurrence matrices) on the tumor heterogeneity. Feature robustness was assessed by means of the coefficient of variation (CV) under both dynamic range (16, 32 and 64 gray levels) and/or matrix size (256x256 and 432x432) changes. Results: None of the textural features considered were robust under dynamic range changes. The textural co-occurrence matrix feature Entropy was the only textural feature robust (CV < 10%) under spatial resolution changes. Conclusions: In general, textural measures of three-dimensional brain tumor images are neither robust under dynamic range nor under matrix size changes. Thus, it becomes mandatory to fix standards for image rescaling after acquisition before the textural features are computed if they are to be used as imaging biomarkers. For T1-weighted images a dynamic range of 16 grey levels and a matrix size of 256x256 (and isotropic voxel) is found to provide reliable and comparable results and is feasible with current MRI scanners. The implications of this work go beyond the specific tumor type and MRI sequence studied here and pose the need for standardization in textural feature calculation of oncological images. FUNDING: James S. Mc. Donnell Foundation (USA) 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer [Collaborative award 220020450 and planning grant 220020420], MINECO/FEDER [MTM2015-71200-R], JCCM [PEII-2014-031-P].

  3. Image-based spectroscopy for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Bachmakov, Eduard; Molina, Carolyn; Wynne, Rosalind

    2014-03-01

    An image-processing algorithm for use with a nano-featured spectrometer chemical agent detection configuration is presented. The spectrometer chip acquired from Nano-Optic DevicesTM can reduce the size of the spectrometer down to a coin. The nanospectrometer chip was aligned with a 635nm laser source, objective lenses, and a CCD camera. The images from a nanospectrometer chip were collected and compared to reference spectra. Random background noise contributions were isolated and removed from the diffraction pattern image analysis via a threshold filter. Results are provided for the image-based detection of the diffraction pattern produced by the nanospectrometer. The featured PCF spectrometer has the potential to measure optical absorption spectra in order to detect trace amounts of contaminants. MATLAB tools allow for implementation of intelligent, automatic detection of the relevant sub-patterns in the diffraction patterns and subsequent extraction of the parameters using region-detection algorithms such as the generalized Hough transform, which detects specific shapes within the image. This transform is a method for detecting curves by exploiting the duality between points on a curve and parameters of that curve. By employing this imageprocessing technique, future sensor systems will benefit from new applications such as unsupervised environmental monitoring of air or water quality.

  4. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada

    NASA Technical Reports Server (NTRS)

    Swayze, Gregg; Clark, Roger N.; Kruse, Fred; Sutley, Steve; Gallagher, Andrea

    1992-01-01

    Mineral abundance maps of 18 minerals were made of the Cuprite Mining District using 1990 AVIRIS data and the Multiple Spectral Feature Mapping Algorithm (MSFMA) as discussed in Clark et al. This technique uses least-squares fitting between a scaled laboratory reference spectrum and ground calibrated AVIRIS data for each pixel. Multiple spectral features can be fitted for each mineral and an unlimited number of minerals can be mapped simultaneously. Quality of fit and depth from continuum numbers for each mineral are calculated for each pixel and the results displayed as a multicolor image.

  5. Mapping the mineralogy and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple spectral feature mapping algorithm

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea

    1992-01-01

    The sedimentary sections exposed in the Canyonlands and Arches National Parks region of Utah (generally referred to as 'Canyonlands') consist of sandstones, shales, limestones, and conglomerates. Reflectance spectra of weathered surfaces of rocks from these areas show two components: (1) variations in spectrally detectable mineralogy, and (2) variations in the relative ratios of the absorption bands between minerals. Both types of information can be used together to map each major lithology and the Clark spectral features mapping algorithm is applied to do the job.

  6. Length measurement and spatial orientation reconstruction of single nanowires.

    PubMed

    Prestopino, Giuseppe; Orsini, Andrea; Falconi, Christian; Bietti, Sergio; Verona-Rinati, Gianluca; Caselli, Federica; Bisegna, Paolo

    2018-06-27

    The accurate determination of the geometrical features of quasi one-dimensional nanostructures is mandatory for reducing errors and improving repeatability in the estimation of a number of geometry-dependent properties in nanotechnology. In this paper a method for the reconstruction of length and spatial orientation of single nanowires is presented. Those quantities are calculated from a sequence of scanning electron microscope images taken at different tilt angles using a simple 3D geometric model. The proposed method is evaluated on a collection of scanning electron microscope images of single GaAs nanowires. It is validated through the reconstruction of known geometric features of a standard reference calibration pattern. An overall uncertainty of about 1% in the estimated length of the nanowires is achieved. © 2018 IOP Publishing Ltd.

  7. The fast iris image clarity evaluation based on Tenengrad and ROI selection

    NASA Astrophysics Data System (ADS)

    Gao, Shuqin; Han, Min; Cheng, Xu

    2018-04-01

    In iris recognition system, the clarity of iris image is an important factor that influences recognition effect. In the process of recognition, the blurred image may possibly be rejected by the automatic iris recognition system, which will lead to the failure of identification. Therefore it is necessary to evaluate the iris image definition before recognition. Considered the existing evaluation methods on iris image definition, we proposed a fast algorithm to evaluate the definition of iris image in this paper. In our algorithm, firstly ROI (Region of Interest) is extracted based on the reference point which is determined by using the feature of the light spots within the pupil, then Tenengrad operator is used to evaluate the iris image's definition. Experiment results show that, the iris image definition algorithm proposed in this paper could accurately distinguish the iris images of different clarity, and the algorithm has the merit of low computational complexity and more effectiveness.

  8. ConfocalGN: A minimalistic confocal image generator

    NASA Astrophysics Data System (ADS)

    Dmitrieff, Serge; Nédélec, François

    Validating image analysis pipelines and training machine-learning segmentation algorithms require images with known features. Synthetic images can be used for this purpose, with the advantage that large reference sets can be produced easily. It is however essential to obtain images that are as realistic as possible in terms of noise and resolution, which is challenging in the field of microscopy. We describe ConfocalGN, a user-friendly software that can generate synthetic microscopy stacks from a ground truth (i.e. the observed object) specified as a 3D bitmap or a list of fluorophore coordinates. This software can analyze a real microscope image stack to set the noise parameters and directly generate new images of the object with noise characteristics similar to that of the sample image. With a minimal input from the user and a modular architecture, ConfocalGN is easily integrated with existing image analysis solutions.

  9. Augmented reality 3D display based on integral imaging

    NASA Astrophysics Data System (ADS)

    Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua

    2017-02-01

    Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.

  10. Painting recognition with smartphones equipped with inertial measurement unit

    NASA Astrophysics Data System (ADS)

    Masiero, Andrea; Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2015-06-01

    Recently, several works have been proposed in the literature to take advantage of the diffusion of smartphones to improve people experience during museum visits. The rationale is that of substituting traditional written/audio guides with interactive electronic guides usable on a mobile phone. Augmented reality systems are usually considered to make the use of such electronic guides more effective for the user. The main goal of such augmented reality system (i.e. providing the user with the information of his/her interest) is usually achieved by properly executing the following three tasks: recognizing the object of interest to the user, retrieving the most relevant information about it, properly presenting the retrieved information. This paper focuses on the first task: we consider the problem of painting recognition by means of measure- ments provided by a smartphone. We assume that the user acquires one image of the painting of interest with the standard camera of the device. This image is compared with a set of reference images of the museum objects in order to recognize the object of interest to the user. Since comparing images taken in different conditions can lead to unsatisfactory recognition results, the acquired image is typically properly transformed in order to improve the results of the recognition system: first, the system estimates the homography between properly matched features in the two images. Then, the user image is transformed accordingly to the estimated homography. Finally, it is compared with the reference one. This work proposes a novel method to exploit inertial measurement unit (IMU) measurements to improve the system performance, in particular in terms of computational load reduction: IMU measurements are exploited to reduce both the computational burden required to estimate the transformation to be applied to the user image, and the number of reference images to be compared with it.

  11. Special feature on imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would not be possible to have this special feature published. We are grateful to all reviewers, who devoted their time and effort, on a voluntary basis, to ensure that all submissions were reviewed rigorously and fairly. The publishing staff of Measurement Science and Technology are particularly acknowledged for giving us timely advice on guest-editing this special feature.

  12. Images of Kilauea East Rift Zone eruption, 1983-1993

    USGS Publications Warehouse

    Takahashi, Taeko Jane; Abston, C.C.; Heliker, C.C.

    1995-01-01

    This CD-ROM disc contains 475 scanned photographs from the U.S. Geological Survey Hawaii Observatory Library. The collection represents a comprehensive range of the best photographic images of volcanic phenomena for Kilauea's East Rift eruption, which continues as of September 1995. Captions of the images present information on location, geologic feature or process, and date. Short documentations of work by the USGS Hawaiian Volcano Observatory in geology, seismology, ground deformation, geophysics, and geochemistry are also included, along with selected references. The CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use only on DOS-based computer systems.

  13. Transient Fourier holography with bacteriorhodopsin films for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Rao, Devulapalli; Kothapalli, Sri-Rajasekar; Wu, Pengfei; Yelleswarapu, Chandra

    X-ray mammography is the current gold standard for breast cancer screening. Microcalcifications and other features which are helpful to the radiologist for early diagnostics are often buried in the noise generated by the surrounding dense tissue. So image processing techniques are required to enhance these important features to improve the sensitivity of detection. An innovative technique is demonstrated for recording a hologram of the mammogram. It is recorded on a thin polymer film of Bacteriorhodopsin (bR) as photo induced isomerization grating containing the interference pattern between the object beam containing the Fourier spatial frequency components of the mammogram and a reference beam. The hologram contains all the enhanced features of the mammogram. A significant innovation of the technique is that the enhanced components in the processed image can be viewed by the radiologist in time scale. A technician can record the movie and when the radiologist looks at the movie at his convenience, freezing the frame as and when desired, he would see the microcalcifications as the brightest and last long in time. He would also observe lesions with intensity decreasing as their size increases. The same bR film can be used repeatedly for recording holograms with different mammograms. The technique is versatile and a different frequency band can be chosen to be optimized by changing the reference beam intensity. The experimental arrangement can be used for mammograms in screen film or digital format.

  14. Soft-Tissue Infections and Their Imaging Mimics: From Cellulitis to Necrotizing Fasciitis.

    PubMed

    Hayeri, Mohammad Reza; Ziai, Pouya; Shehata, Monda L; Teytelboym, Oleg M; Huang, Brady K

    2016-10-01

    Infection of the musculoskeletal system can be associated with high mortality and morbidity if not promptly and accurately diagnosed. These infections are generally diagnosed and managed clinically; however, clinical and laboratory findings sometimes lack sensitivity and specificity, and a definite diagnosis may not be possible. In uncertain situations, imaging is frequently performed to confirm the diagnosis, evaluate the extent of the disease, and aid in treatment planning. In particular, cross-sectional imaging, including computed tomography and magnetic resonance imaging, provides detailed anatomic information in the evaluation of soft tissues due to their inherent high spatial and contrast resolution. Imaging findings of soft-tissue infections can be nonspecific and can have different appearances depending on the depth and anatomic extent of tissue involvement. Although many imaging features of infectious disease can overlap with noninfectious processes, imaging can help establish the diagnosis when combined with the clinical history and laboratory findings. Radiologists should be familiar with the spectrum of imaging findings of soft-tissue infections to better aid the referring physician in managing these patients. The aim of this article is to review the spectrum of soft-tissue infections using a systematic anatomic compartment approach. We discuss the clinical features of soft-tissue infections, their imaging findings with emphasis on cross-sectional imaging, their potential mimics, and clinical management. © RSNA, 2016.

  15. Mapping feature-sensitivity and attentional modulation in human auditory cortex with functional magnetic resonance imaging

    PubMed Central

    Paltoglou, Aspasia E; Sumner, Christian J; Hall, Deborah A

    2011-01-01

    Feature-specific enhancement refers to the process by which selectively attending to a particular stimulus feature specifically increases the response in the same region of the brain that codes that stimulus property. Whereas there are many demonstrations of this mechanism in the visual system, the evidence is less clear in the auditory system. The present functional magnetic resonance imaging (fMRI) study examined this process for two complex sound features, namely frequency modulation (FM) and spatial motion. The experimental design enabled us to investigate whether selectively attending to FM and spatial motion enhanced activity in those auditory cortical areas that were sensitive to the two features. To control for attentional effort, the difficulty of the target-detection tasks was matched as closely as possible within listeners. Locations of FM-related and motion-related activation were broadly compatible with previous research. The results also confirmed a general enhancement across the auditory cortex when either feature was being attended to, as compared with passive listening. The feature-specific effects of selective attention revealed the novel finding of enhancement for the nonspatial (FM) feature, but not for the spatial (motion) feature. However, attention to spatial features also recruited several areas outside the auditory cortex. Further analyses led us to conclude that feature-specific effects of selective attention are not statistically robust, and appear to be sensitive to the choice of fMRI experimental design and localizer contrast. PMID:21447093

  16. Toward a standard reference database for computer-aided mammography

    NASA Astrophysics Data System (ADS)

    Oliveira, Júlia E. E.; Gueld, Mark O.; de A. Araújo, Arnaldo; Ott, Bastian; Deserno, Thomas M.

    2008-03-01

    Because of the lack of mammography databases with a large amount of codified images and identified characteristics like pathology, type of breast tissue, and abnormality, there is a problem for the development of robust systems for computer-aided diagnosis. Integrated to the Image Retrieval in Medical Applications (IRMA) project, we present an available mammography database developed from the union of: The Mammographic Image Analysis Society Digital Mammogram Database (MIAS), The Digital Database for Screening Mammography (DDSM), the Lawrence Livermore National Laboratory (LLNL), and routine images from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Using the IRMA code, standardized coding of tissue type, tumor staging, and lesion description was developed according to the American College of Radiology (ACR) tissue codes and the ACR breast imaging reporting and data system (BI-RADS). The import was done automatically using scripts for image download, file format conversion, file name, web page and information file browsing. Disregarding the resolution, this resulted in a total of 10,509 reference images, and 6,767 images are associated with an IRMA contour information feature file. In accordance to the respective license agreements, the database will be made freely available for research purposes, and may be used for image based evaluation campaigns such as the Cross Language Evaluation Forum (CLEF). We have also shown that it can be extended easily with further cases imported from a picture archiving and communication system (PACS).

  17. A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations

    PubMed Central

    Kurtz, Camille; Beaulieu, Christopher F.; Napel, Sandy; Rubin, Daniel L.

    2014-01-01

    Computer-assisted image retrieval applications could assist radiologist interpretations by identifying similar images in large archives as a means to providing decision support. However, the semantic gap between low-level image features and their high level semantics may impair the system performances. Indeed, it can be challenging to comprehensively characterize the images using low-level imaging features to fully capture the visual appearance of diseases on images, and recently the use of semantic terms has been advocated to provide semantic descriptions of the visual contents of images. However, most of the existing image retrieval strategies do not consider the intrinsic properties of these terms during the comparison of the images beyond treating them as simple binary (presence/absence) features. We propose a new framework that includes semantic features in images and that enables retrieval of similar images in large databases based on their semantic relations. It is based on two main steps: (1) annotation of the images with semantic terms extracted from an ontology, and (2) evaluation of the similarity of image pairs by computing the similarity between the terms using the Hierarchical Semantic-Based Distance (HSBD) coupled to an ontological measure. The combination of these two steps provides a means of capturing the semantic correlations among the terms used to characterize the images that can be considered as a potential solution to deal with the semantic gap problem. We validate this approach in the context of the retrieval and the classification of 2D regions of interest (ROIs) extracted from computed tomographic (CT) images of the liver. Under this framework, retrieval accuracy of more than 0.96 was obtained on a 30-images dataset using the Normalized Discounted Cumulative Gain (NDCG) index that is a standard technique used to measure the effectiveness of information retrieval algorithms when a separate reference standard is available. Classification results of more than 95% were obtained on a 77-images dataset. For comparison purpose, the use of the Earth Mover's Distance (EMD), which is an alternative distance metric that considers all the existing relations among the terms, led to results retrieval accuracy of 0.95 and classification results of 93% with a higher computational cost. The results provided by the presented framework are competitive with the state-of-the-art and emphasize the usefulness of the proposed methodology for radiology image retrieval and classification. PMID:24632078

  18. Automatic rice crop height measurement using a field server and digital image processing.

    PubMed

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  19. The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing

    NASA Astrophysics Data System (ADS)

    Seaton, D. B.; Berghmans, D.; Nicula, B.; Halain, J.-P.; De Groof, A.; Thibert, T.; Bloomfield, D. S.; Raftery, C. L.; Gallagher, P. T.; Auchère, F.; Defise, J.-M.; D'Huys, E.; Lecat, J.-H.; Mazy, E.; Rochus, P.; Rossi, L.; Schühle, U.; Slemzin, V.; Yalim, M. S.; Zender, J.

    2013-08-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54×54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.

  20. Automatic Generation of Caricatures with Multiple Expressions Using Transformative Approach

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Hung; Lai, Chien-An

    The proliferation of digital cameras has changed the way we create and share photos. Novel forms of photo composition and reproduction have surfaced in recent years. In this paper, we present an automatic caricature generation system using transformative approaches. By combing facial feature detection, image segmentation and image warping/morphing techniques, the system is able to generate stylized caricature using only one reference image. When more than one reference sample are available, the system can either choose the best fit based on shape matching, or synthesize a composite style using polymorph technique. The system can also produce multiple expressions by controlling a subset of MPEG-4 facial animation parameters (FAP). Finally, to enable flexible manipulation of the synthetic caricature, we also investigate issues such as color quantization and raster-to-vector conversion. A major strength of our method is that the synthesized caricature bears a higher degree of resemblance to the real person than traditional component-based approaches.

  1. Representations of Shape in Object Recognition and Long-Term Visual Memory

    DTIC Science & Technology

    1993-02-11

    in anything other than linguistic terms ( Biederman , 1987 , for example). STATUS 1. Viewpoint-Dependent Features in Object Representation Tarr and...is object- based orientation-independent representations sufficient for "basic-level" categorization ( Biederman , 1987 ; Corballis, 1988). Alternatively...space. REFERENCES Biederman , I. ( 1987 ). Recognition-by-components: A theory of human image understanding. Psychological Review, 94,115-147. Cooper, L

  2. Technical design and system implementation of region-line primitive association framework

    NASA Astrophysics Data System (ADS)

    Wang, Min; Xing, Jinjin; Wang, Jie; Lv, Guonian

    2017-08-01

    Apart from regions, image edge lines are an important information source, and they deserve more attention in object-based image analysis (OBIA) than they currently receive. In the region-line primitive association framework (RLPAF), we promote straight-edge lines as line primitives to achieve powerful OBIAs. Along with regions, straight lines become basic units for subsequent extraction and analysis of OBIA features. This study develops a new software system called remote-sensing knowledge finder (RSFinder) to implement RLPAF for engineering application purposes. This paper introduces the extended technical framework, a comprehensively designed feature set, key technology, and software implementation. To our knowledge, RSFinder is the world's first OBIA system based on two types of primitives, namely, regions and lines. It is fundamentally different from other well-known region-only-based OBIA systems, such as eCogntion and ENVI feature extraction module. This paper has important reference values for the development of similarly structured OBIA systems and line-involved extraction algorithms of remote sensing information.

  3. Interpretation of fingerprint image quality features extracted by self-organizing maps

    NASA Astrophysics Data System (ADS)

    Danov, Ivan; Olsen, Martin A.; Busch, Christoph

    2014-05-01

    Accurate prediction of fingerprint quality is of significant importance to any fingerprint-based biometric system. Ensuring high quality samples for both probe and reference can substantially improve the system's performance by lowering false non-matches, thus allowing finer adjustment of the decision threshold of the biometric system. Furthermore, the increasing usage of biometrics in mobile contexts demands development of lightweight methods for operational environment. A novel two-tier computationally efficient approach was recently proposed based on modelling block-wise fingerprint image data using Self-Organizing Map (SOM) to extract specific ridge pattern features, which are then used as an input to a Random Forests (RF) classifier trained to predict the quality score of a propagated sample. This paper conducts an investigative comparative analysis on a publicly available dataset for the improvement of the two-tier approach by proposing additionally three feature interpretation methods, based respectively on SOM, Generative Topographic Mapping and RF. The analysis shows that two of the proposed methods produce promising results on the given dataset.

  4. Visual observations over oceans

    NASA Technical Reports Server (NTRS)

    Terry, R. D.

    1979-01-01

    Important factors in locating, identifying, describing, and photographing ocean features from space are presented. On the basis of crew comments and other findings, the following recommendations can be made for Earth observations on Space Shuttle missions: (1) flyover exercises must include observations and photography of both temperate and tropical/subtropical waters; (2) sunglint must be included during some observations of ocean features; (3) imaging remote sensors should be used together with conventional photographic systems to document visual observations; (4) greater consideration must be given to scheduling earth observation targets likely to be obscured by clouds; and (5) an annotated photographic compilation of ocean features can be used as a training aid before the mission and as a reference book during space flight.

  5. Segmentation and classification of brain images using firefly and hybrid kernel-based support vector machine

    NASA Astrophysics Data System (ADS)

    Selva Bhuvaneswari, K.; Geetha, P.

    2017-05-01

    Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.

  6. Travel time tomography with local image regularization by sparsity constrained dictionary learning

    NASA Astrophysics Data System (ADS)

    Bianco, M.; Gerstoft, P.

    2017-12-01

    We propose a regularization approach for 2D seismic travel time tomography which models small rectangular groups of slowness pixels, within an overall or `global' slowness image, as sparse linear combinations of atoms from a dictionary. The groups of slowness pixels are referred to as patches and a dictionary corresponds to a collection of functions or `atoms' describing the slowness in each patch. These functions could for example be wavelets.The patch regularization is incorporated into the global slowness image. The global image models the broad features, while the local patch images incorporate prior information from the dictionary. Further, high resolution slowness within patches is permitted if the travel times from the global estimates support it. The proposed approach is formulated as an algorithm, which is repeated until convergence is achieved: 1) From travel times, find the global slowness image with a minimum energy constraint on the pixel variance relative to a reference. 2) Find the patch level solutions to fit the global estimate as a sparse linear combination of dictionary atoms.3) Update the reference as the weighted average of the patch level solutions.This approach relies on the redundancy of the patches in the seismic image. Redundancy means that the patches are repetitions of a finite number of patterns, which are described by the dictionary atoms. Redundancy in the earth's structure was demonstrated in previous works in seismics where dictionaries of wavelet functions regularized inversion. We further exploit redundancy of the patches by using dictionary learning algorithms, a form of unsupervised machine learning, to estimate optimal dictionaries from the data in parallel with the inversion. We demonstrate our approach on densely, but irregularly sampled synthetic seismic images.

  7. 4D-CT motion estimation using deformable image registration and 5D respiratory motion modeling.

    PubMed

    Yang, Deshan; Lu, Wei; Low, Daniel A; Deasy, Joseph O; Hope, Andrew J; El Naqa, Issam

    2008-10-01

    Four-dimensional computed tomography (4D-CT) imaging technology has been developed for radiation therapy to provide tumor and organ images at the different breathing phases. In this work, a procedure is proposed for estimating and modeling the respiratory motion field from acquired 4D-CT imaging data and predicting tissue motion at the different breathing phases. The 4D-CT image data consist of series of multislice CT volume segments acquired in ciné mode. A modified optical flow deformable image registration algorithm is used to compute the image motion from the CT segments to a common full volume 3D-CT reference. This reference volume is reconstructed using the acquired 4D-CT data at the end-of-exhalation phase. The segments are optimally aligned to the reference volume according to a proposed a priori alignment procedure. The registration is applied using a multigrid approach and a feature-preserving image downsampling maxfilter to achieve better computational speed and higher registration accuracy. The registration accuracy is about 1.1 +/- 0.8 mm for the lung region according to our verification using manually selected landmarks and artificially deformed CT volumes. The estimated motion fields are fitted to two 5D (spatial 3D+tidal volume+airflow rate) motion models: forward model and inverse model. The forward model predicts tissue movements and the inverse model predicts CT density changes as a function of tidal volume and airflow rate. A leave-one-out procedure is used to validate these motion models. The estimated modeling prediction errors are about 0.3 mm for the forward model and 0.4 mm for the inverse model.

  8. Towards Dynamic Contrast Specific Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  9. Towards Dynamic Contrast Specific Ultrasound Tomography.

    PubMed

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2016-10-05

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  10. Towards Dynamic Contrast Specific Ultrasound Tomography

    PubMed Central

    Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251

  11. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  12. Generic Features of Tertiary Chromatin Structure as Detected in Natural Chromosomes

    PubMed Central

    Müller, Waltraud G.; Rieder, Dietmar; Kreth, Gregor; Cremer, Christoph; Trajanoski, Zlatko; McNally, James G.

    2004-01-01

    Knowledge of tertiary chromatin structure in mammalian interphase chromosomes is largely derived from artificial tandem arrays. In these model systems, light microscope images reveal fibers or beaded fibers after high-density targeting of transactivators to insertional domains spanning several megabases. These images of fibers have lent support to chromonema fiber models of tertiary structure. To assess the relevance of these studies to natural mammalian chromatin, we identified two different ∼400-kb regions on human chromosomes 6 and 22 and then examined light microscope images of interphase tertiary chromatin structure when the regions were transcriptionally active and inactive. When transcriptionally active, these natural chromosomal regions elongated, yielding images characterized by a series of adjacent puncta or “beads”, referred to hereafter as beaded images. These elongated structures required transcription for their maintenance. Thus, despite marked differences in the density and the mode of transactivation, the natural and artificial systems showed similarities, suggesting that beaded images are generic features of transcriptionally active tertiary chromatin. We show here, however, that these images do not necessarily favor chromonema fiber models but can also be explained by a radial-loop model or even a simple nucleosome affinity, random-chain model. Thus, light microscope images of tertiary structure cannot distinguish among competing models, although they do impose key constraints: chromatin must be clustered to yield beaded images and then packaged within each cluster to enable decondensation into adjacent clusters. PMID:15485905

  13. SU-E-J-114: Towards Integrated CT and Ultrasound Guided Radiation Therapy Using A Robotic Arm with Virtual Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, K; Zhang, Y; Sen, H

    Purpose: Currently there is an urgent need in Radiation Therapy for noninvasive and nonionizing soft tissue target guidance such as localization before treatment and continuous monitoring during treatment. Ultrasound is a portable, low cost option that can be easily integrated with the LINAC room. We are developing a cooperatively controlled robot arm that has high intrafraction reproducibility with repositioning of the ultrasound probe. In this study, we introduce virtual springs (VS) to assist with interfraction probe repositioning and we compare the soft tissue deformation introduced by VS to the deformation that would exist without them. Methods: Three metal markers weremore » surgically implanted in the kidney of one dog. The dog was anesthetized and immobilized supine in an alpha cradle. The reference ultrasound probe position and force to ideally visualize the kidney was defined by an experienced ultrasonographer using the Clarity ultrasound system and robot sensor. For each interfraction study, the dog was removed from the cradle and re-setup based on CBCT with bony anatomy alignment to mimic regular patient setup. The ultrasound probe was automatically returned to the reference position using the robot. To accommodate the soft tissue anatomy changes between each setup the operator used the VS feature to adjust the probe and obtain an ultrasound image that matched the reference image. CBCT images were acquired and each interfraction marker location was compared with the first interfraction Result. Results: Analysis of the marker positions revealed that the kidney was displaced by 18.8 ± 6.4 mm without VS and 19.9 ± 10.5 mm with VS. No statistically significant differences were found between two procedures. Conclusion: The VS feature is necessary to obtain matching ultrasound images, and they do not introduce further changes to the tissue deformation. Future work will focus on automatic VS based on ultrasound feedback. Supported in part by: NCI R01 CA161613; Elekta Sponsored Research.« less

  14. The 3D Reference Earth Model: Status and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the reference dataset. This procedure allows us to evaluate the extent of consistency in imaging heterogeneity at various depths and between spatial scales.

  15. Statistical characterization of portal images and noise from portal imaging systems.

    PubMed

    González-López, Antonio; Morales-Sánchez, Juan; Verdú-Monedero, Rafael; Larrey-Ruiz, Jorge

    2013-06-01

    In this paper, we consider the statistical characteristics of the so-called portal images, which are acquired prior to the radiotherapy treatment, as well as the noise that present the portal imaging systems, in order to analyze whether the well-known noise and image features in other image modalities, such as natural image, can be found in the portal imaging modality. The study is carried out in the spatial image domain, in the Fourier domain, and finally in the wavelet domain. The probability density of the noise in the spatial image domain, the power spectral densities of the image and noise, and the marginal, joint, and conditional statistical distributions of the wavelet coefficients are estimated. Moreover, the statistical dependencies between noise and signal are investigated. The obtained results are compared with practical and useful references, like the characteristics of the natural image and the white noise. Finally, we discuss the implication of the results obtained in several noise reduction methods that operate in the wavelet domain.

  16. A Coarse-to-Fine Geometric Scale-Invariant Feature Transform for Large Size High Resolution Satellite Image Registration

    PubMed Central

    Chang, Xueli; Du, Siliang; Li, Yingying; Fang, Shenghui

    2018-01-01

    Large size high resolution (HR) satellite image matching is a challenging task due to local distortion, repetitive structures, intensity changes and low efficiency. In this paper, a novel matching approach is proposed for the large size HR satellite image registration, which is based on coarse-to-fine strategy and geometric scale-invariant feature transform (SIFT). In the coarse matching step, a robust matching method scale restrict (SR) SIFT is implemented at low resolution level. The matching results provide geometric constraints which are then used to guide block division and geometric SIFT in the fine matching step. The block matching method can overcome the memory problem. In geometric SIFT, with area constraints, it is beneficial for validating the candidate matches and decreasing searching complexity. To further improve the matching efficiency, the proposed matching method is parallelized using OpenMP. Finally, the sensing image is rectified to the coordinate of reference image via Triangulated Irregular Network (TIN) transformation. Experiments are designed to test the performance of the proposed matching method. The experimental results show that the proposed method can decrease the matching time and increase the number of matching points while maintaining high registration accuracy. PMID:29702589

  17. Final Cassini RADAR Observation of Titan's Magic Island Region and Ligeia Mare

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Hayes, A.; Lunine, J. I.; Stiles, B. W.; Malaska, M. J.; Wall, S. D.

    2017-12-01

    Cassini arrived in the Saturn system shortly after the Oct. 2002 northern winter solstice and the mission will end shortly after the May 2017 northern summer solstice. A main objective of the Cassini Solstice mission is to study seasonal and temporal changes and at Titan this includes changes of the hydrocarbon lakes/seas. Titan's Magic Islands are transient bright features in the north polar sea, Ligeia Mare that were observed to be temporal changes in Cassini RADAR images. The Magic Islands were discovered in a July 2013 image as anomalously bright features that were not present in four previous observations from Feb. 2007 - May 2013. The region of the Magic Islands was again anomalously bright in an Aug. 2014 image and the total areal extent of the anomalously bright region had increased by more than a factor of three. The transient features were not, however, observed in a Jan. 2015 image. Thus in seven observations spanning much of the Cassini mission the bright features were observed to appear, increase in extent, and then disappear. They are referred to as Titan's Magic Islands because of their appearing/disappearing behavior and resemblance in appearance to islands. These transient bright features are not actually islands. The transients were concluded to be most consistent with waves, floating solids, suspended solids, and bubbles. Tides, sea level changes, and seafloor changes are unlikely to be the primary cause of these temporal changes. Whether these temporal changes are also seasonal changes was unclear. The final Cassini RADAR imaging observation of Titan in Apr. 2017 included the region of the Magic Islands. The transient bright features were not present during this observation. The geometry of the observation was such that, had the transients been present, their brightness may have ruled out some of the remaining hypotheses. Their absence however, is less constraining but consistent with their transient nature. Waves, floating solids, suspended solids, and bubbles remain the most likely hypotheses. Other regions of Ligeia Mare were also imaged in the Apr. 2017 observation and no transient features were observed elsewhere in the sea. The specific process responsible for these transient features and the role of seasonal changes in their appearance and disappearance remains an open research question.

  18. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    PubMed

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  19. Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process.

    PubMed

    Liu, Ding-Yun; Gan, Tao; Rao, Ni-Ni; Xing, Yao-Wen; Zheng, Jie; Li, Sang; Luo, Cheng-Si; Zhou, Zhong-Jun; Wan, Yong-Li

    2016-08-01

    The gastrointestinal endoscopy in this study refers to conventional gastroscopy and wireless capsule endoscopy (WCE). Both of these techniques produce a large number of images in each diagnosis. The lesion detection done by hand from the images above is time consuming and inaccurate. This study designed a new computer-aided method to detect lesion images. We initially designed an algorithm named joint diagonalisation principal component analysis (JDPCA), in which there are no approximation, iteration or inverting procedures. Thus, JDPCA has a low computational complexity and is suitable for dimension reduction of the gastrointestinal endoscopic images. Then, a novel image feature extraction method was established through combining the algorithm of machine learning based on JDPCA and conventional feature extraction algorithm without learning. Finally, a new computer-aided method is proposed to identify the gastrointestinal endoscopic images containing lesions. The clinical data of gastroscopic images and WCE images containing the lesions of early upper digestive tract cancer and small intestinal bleeding, which consist of 1330 images from 291 patients totally, were used to confirm the validation of the proposed method. The experimental results shows that, for the detection of early oesophageal cancer images, early gastric cancer images and small intestinal bleeding images, the mean values of accuracy of the proposed method were 90.75%, 90.75% and 94.34%, with the standard deviations (SDs) of 0.0426, 0.0334 and 0.0235, respectively. The areas under the curves (AUCs) were 0.9471, 0.9532 and 0.9776, with the SDs of 0.0296, 0.0285 and 0.0172, respectively. Compared with the traditional related methods, our method showed a better performance. It may therefore provide worthwhile guidance for improving the efficiency and accuracy of gastrointestinal disease diagnosis and is a good prospect for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A comparative study of multi-focus image fusion validation metrics

    NASA Astrophysics Data System (ADS)

    Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael

    2016-05-01

    Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).

  1. How to measure a-few-nanometer-small LER occurring in EUV lithography processed feature

    NASA Astrophysics Data System (ADS)

    Kawada, Hiroki; Kawasaki, Takahiro; Kakuta, Junichi; Ikota, Masami; Kondo, Tsuyoshi

    2018-03-01

    For EUV lithography features we want to decrease the dose and/or energy of CD-SEM's probe beam because LER decreases with severe resist-material's shrink. Under such conditions, however, measured LER increases from true LER, due to LER bias that is fake LER caused by random noise in SEM image. A gap error occurs between the right and the left LERs. In this work we propose new procedures to obtain true LER by excluding the LER bias from the measured LER. To verify it we propose a LER's reference-metrology using TEM.

  2. Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization.

    PubMed

    Lu, Lijun; Lv, Wenbing; Jiang, Jun; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2016-12-01

    Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging and to enable enhanced prediction of therapy response and outcome. An important ingredient to success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness. In the present work, we studied the impact of segmentation and discretization on 88 radiomic features in 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and [ 11 C]methyl-choline ([ 11 C]choline) positron emission tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma. Forty patients underwent [ 18 F]FDG PET/CT scans. Of these, nine patients were imaged on a different day utilizing [ 11 C]choline PET/CT. Tumors were delineated using reference manual segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum standardized uptake value (SUV max ) threshold with background correction, Nestle's method, and watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and 1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and 57 second- and higher-order textural features, were extracted from the tumors. The robustness of the features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and higher-order features). Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed ICC ≥0.8 with respect to discretization as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Six features were obtained from both [ 18 F]FDG and [ 11 C]choline having ICC ≥0.8 for both segmentation and discretization, five of which were gray-level co-occurrence matrix (GLCM) features (SumEntropy, Entropy, DifEntropy, Homogeneity1, and Homogeneity2) and one of which was an neighborhood gray-tone different matrix (NGTDM) feature (Coarseness). Discretization generated larger effects on features than segmentation in both tracers. Features extracted from [ 11 C]choline were more robust than [ 18 F]FDG for segmentation. Discretization had very similar effects on features extracted from both tracers.

  3. Long-term chemotherapy with lomustine of intracranial meningioma occurring in a miniature schnauzer.

    PubMed

    Jung, Dong-In; Kim, Ha-Jung; Park, Chul; Kim, Ju-Won; Kang, Byeong-Teck; Lim, Chae-Young; Park, Eun-Hee; Sur, Jung-Hyang; Seo, Min-Ho; Hahm, Dae-Hyun; Park, Hee-Myung

    2006-04-01

    A 14-year-old male miniature schnauzer was referred to us because it was circling to the right. A mass in the diencephalon was noted on brain magnetic resonance images. The dura was thickened with marked linear enhancement after contrast administration. Based on diagnostic image analysis, this lesion strongly suggested meningioma. The patient's symptoms were well controlled by a combination therapy of prednisolone and lomustine (CCNU), and survived for thirteen months after diagnosis. This case was diagnosed as a meningioma based on histopathological findings. This report describes the clinical findings, imaging characteristics, and pathologic features of a diencephalic and mesencephalic meningioma and long-term survival after lomustine and prednisolone therapy.

  4. Image-Guided Rendering with an Evolutionary Algorithm Based on Cloud Model

    PubMed Central

    2018-01-01

    The process of creating nonphotorealistic rendering images and animations can be enjoyable if a useful method is involved. We use an evolutionary algorithm to generate painterly styles of images. Given an input image as the reference target, a cloud model-based evolutionary algorithm that will rerender the target image with nonphotorealistic effects is evolved. The resulting animations have an interesting characteristic in which the target slowly emerges from a set of strokes. A number of experiments are performed, as well as visual comparisons, quantitative comparisons, and user studies. The average scores in normalized feature similarity of standard pixel-wise peak signal-to-noise ratio, mean structural similarity, feature similarity, and gradient similarity based metric are 0.486, 0.628, 0.579, and 0.640, respectively. The average scores in normalized aesthetic measures of Benford's law, fractal dimension, global contrast factor, and Shannon's entropy are 0.630, 0.397, 0.418, and 0.708, respectively. Compared with those of similar method, the average score of the proposed method, except peak signal-to-noise ratio, is higher by approximately 10%. The results suggest that the proposed method can generate appealing images and animations with different styles by choosing different strokes, and it would inspire graphic designers who may be interested in computer-based evolutionary art. PMID:29805440

  5. Accuracy of ultrasonography and magnetic resonance imaging in the diagnosis of placenta accreta.

    PubMed

    Riteau, Anne-Sophie; Tassin, Mikael; Chambon, Guillemette; Le Vaillant, Claudine; de Laveaucoupet, Jocelyne; Quéré, Marie-Pierre; Joubert, Madeleine; Prevot, Sophie; Philippe, Henri-Jean; Benachi, Alexandra

    2014-01-01

    To evaluate the accuracy of ultrasonography and magnetic resonance imaging (MRI) in the diagnosis of placenta accreta and to define the most relevant specific ultrasound and MRI features that may predict placental invasion. This study was approved by the institutional review board of the French College of Obstetricians and Gynecologists. We retrospectively reviewed the medical records of all patients referred for suspected placenta accreta to two university hospitals from 01/2001 to 05/2012. Our study population included 42 pregnant women who had been investigated by both ultrasonography and MRI. Ultrasound images and MRI were blindly reassessed for each case by 2 raters in order to score features that predict abnormal placental invasion. Sensitivity in the diagnosis of placenta accreta was 100% with ultrasound and 76.9% for MRI (P = 0.03). Specificity was 37.5% with ultrasonography and 50% for MRI (P = 0.6). The features of greatest sensitivity on ultrasonography were intraplacental lacunae and loss of the normal retroplacental clear space. Increased vascularization in the uterine serosa-bladder wall interface and vascularization perpendicular to the uterine wall had the best positive predictive value (92%). At MRI, uterine bulging had the best positive predictive value (85%) and its combination with the presence of dark intraplacental bands on T2-weighted images improved the predictive value to 90%. Ultrasound imaging is the mainstay of screening for placenta accreta. MRI appears to be complementary to ultrasonography, especially when there are few ultrasound signs.

  6. Sarcoidosis of the central nervous system: clinical features, imaging, and CSF results.

    PubMed

    Kidd, Desmond P

    2018-06-19

    Neurological complications of systemic sarcoidosis are uncommon and the natural history and optimal treatments under-researched. With the advent of modern biological therapies, it is important to define the clinical characteristics and immunopathology of the disease. Patients referred to and treated within the Centre for Neurosarcoidosis over a 15 year period who had biopsy-proven "highly probable" disease of the central nervous system were studied prospectively. 166 patients were studied, of whom two-thirds had involvement of the brain and spinal cord and the remainder cranial neuropathies and radiculopathy. Imaging was abnormal in all those with meningeal and parenchymal diseases, and was normal in 37% of those with cranial neuropathy. Those with leptomeningeal disease had a more severe disorder, with hydrocephalus and tissue destruction, whereas those with pachymeningeal disease had more striking imaging features but less neurological impairment. The CSF was active in 70% of cases, even when imaging was normal. Disability correlated with CSF indices in those with a leptomeningitis. Oligoclonal bands were seen in 30% of cases and correlated with disability and the presence of hydrocephalus. Unmatched bands were seen only in isolated neurological disease. This prospective study of neurosarcoidosis increases our understanding of the pathophysiology of the disease. A reclassification of the clinical and imaging features of the disease allows an understanding of its pathophysiology and correlation with CSF indices allows an early identification of those with a more destructive disease will help to define treatment and may thereby improve outcome.

  7. Acidalia Planitia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] (Released 25 July 2002) The lineations seen in this THEMIS visible image occur in Acidalia Planitia, and create what is referred to as 'patterned ground' or 'polygonal terrain.' The lineations are fissures, or cracks in the ground and are possibly evidence that there was once subsurface ice or water in the region. On Earth, similar features occur when ice or water is removed from the subsurface. The removal of material causes the ground to slump, and the surface expression of this slumping is the presence of these fissures, which tend to align themselves along common orientations, and in some cases, into polygonal shapes. There are other hypotheses, not all of which involve liquid or frozen water, regarding the formation of patterned ground. Desiccation of wet soils on Earth forms mud cracks, which are similar in appearance to the martian features, but occur on a much smaller scale. Alternatively, oriented cracks form when lava flows cool. The cracks formed by this process would be on about the same scale as those seen in this image. The best example of polygonal terrain occurs about halfway down the image. The largest fractures, as in other places in the image, run from the lower left to the upper right of the image. In some cases, though, smaller fractures occur in other orientations, creating the polygonal terrain. Scientists have been aware of these features on the surface of Mars since the Viking era, but the THEMIS visible camera will allow scientists to map these features at higher resolution with more coverage over the high latitude regions where they are most common, perhaps giving further insight into the mechanism(s) of their formation.

  8. Automatic identification of fault surfaces through Object Based Image Analysis of a Digital Elevation Model in the submarine area of the North Aegean Basin

    NASA Astrophysics Data System (ADS)

    Argyropoulou, Evangelia

    2015-04-01

    The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.

  9. Learning-based 3D surface optimization from medical image reconstruction

    NASA Astrophysics Data System (ADS)

    Wei, Mingqiang; Wang, Jun; Guo, Xianglin; Wu, Huisi; Xie, Haoran; Wang, Fu Lee; Qin, Jing

    2018-04-01

    Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy.

  10. MRI for the detection of calcific features of vertebral haemangioma.

    PubMed

    Bender, Y Y; Böker, S M; Diederichs, G; Walter, T; Wagner, M; Fallenberg, E; Liebig, T; Rickert, M; Hamm, B; Makowski, M R

    2017-08-01

    To evaluate the diagnostic performance of susceptibility-weighted-magnetic-resonance imaging (SW-MRI) for the detection of vertebral haemangiomas (VHs) compared to T1/T2-weighted MRI sequences, radiographs, and computed tomography (CT). The study was approved by the local ethics review board. An SW-MRI sequence was added to the clinical spine imaging protocol. The image-based diagnosis of 56 VHs in 46 patients was established using T1/T2 MRI in combination with radiography/CT as the reference standard. VHs were assessed based on T1/T2-weighted MRI images alone and in combination with SW-MRI, while radiographs/CT images were excluded from the analysis. Fifty-one of 56 VHs could be identified on T1/T2 MRI images alone, if radiographs/CT images were excluded from analysis. In five cases (9.1%), additional radiographs/CT images were required for the imaging-based diagnosis. If T1/T2 and SW-MRI images were used in combination, all VHs could be diagnosed, without the need for radiography/CT. Size measurements revealed a close correlation between CT and SW-MRI (R 2 =0.94; p<0.05). This study demonstrates that SW-MRI enables reliable detection of the typical calcified features of VHs. This is of importance for routine MRI of the spine, as the use of additional CT/radiography can be minimized. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follette, Katherine B.; Macintosh, Bruce; Mullen, Wyatt

    We present optical and near-infrared high-contrast images of the transitional disk HD 100546 taken with the Magellan Adaptive Optics system (MagAO) and the Gemini Planet Imager (GPI). GPI data include both polarized intensity and total intensity imagery, and MagAO data are taken in Simultaneous Differential Imaging mode at H α . The new GPI H -band total intensity data represent a significant enhancement in sensitivity and field rotation compared to previous data sets and enable a detailed exploration of substructure in the disk. The data are processed with a variety of differential imaging techniques (polarized, angular, reference, and simultaneous differentialmore » imaging) in an attempt to identify the disk structures that are most consistent across wavelengths, processing techniques, and algorithmic parameters. The inner disk cavity at 15 au is clearly resolved in multiple data sets, as are a variety of spiral features. While the cavity and spiral structures are identified at levels significantly distinct from the neighboring regions of the disk under several algorithms and with a range of algorithmic parameters, emission at the location of HD 100546 “ c ” varies from point-like under aggressive algorithmic parameters to a smooth continuous structure with conservative parameters, and is consistent with disk emission. Features identified in the HD 100546 disk bear qualitative similarity to computational models of a moderately inclined two-armed spiral disk, where projection effects and wrapping of the spiral arms around the star result in a number of truncated spiral features in forward-modeled images.« less

  12. Improved parameter extraction and classification for dynamic contrast enhanced MRI of prostate

    NASA Astrophysics Data System (ADS)

    Haq, Nandinee Fariah; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi

    2014-03-01

    Magnetic resonance imaging (MRI), particularly dynamic contrast enhanced (DCE) imaging, has shown great potential in prostate cancer diagnosis and prognosis. The time course of the DCE images provides measures of the contrast agent uptake kinetics. Also, using pharmacokinetic modelling, one can extract parameters from the DCE-MR images that characterize the tumor vascularization and can be used to detect cancer. A requirement for calculating the pharmacokinetic DCE parameters is estimating the Arterial Input Function (AIF). One needs an accurate segmentation of the cross section of the external femoral artery to obtain the AIF. In this work we report a semi-automatic method for segmentation of the cross section of the femoral artery, using circular Hough transform, in the sequence of DCE images. We also report a machine-learning framework to combine pharmacokinetic parameters with the model-free contrast agent uptake kinetic parameters extracted from the DCE time course into a nine-dimensional feature vector. This combination of features is used with random forest and with support vector machine classi cation for cancer detection. The MR data is obtained from patients prior to radical prostatectomy. After the surgery, wholemount histopathology analysis is performed and registered to the DCE-MR images as the diagnostic reference. We show that the use of a combination of pharmacokinetic parameters and the model-free empirical parameters extracted from the time course of DCE results in improved cancer detection compared to the use of each group of features separately. We also validate the proposed method for calculation of AIF based on comparison with the manual method.

  13. Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events

    NASA Technical Reports Server (NTRS)

    Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor); Maker, Paul D. (Inventor); Wilson, Daniel W. (Inventor)

    2003-01-01

    The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.

  14. Class Energy Image Analysis for Video Sensor-Based Gait Recognition: A Review

    PubMed Central

    Lv, Zhuowen; Xing, Xianglei; Wang, Kejun; Guan, Donghai

    2015-01-01

    Gait is a unique perceptible biometric feature at larger distances, and the gait representation approach plays a key role in a video sensor-based gait recognition system. Class Energy Image is one of the most important gait representation methods based on appearance, which has received lots of attentions. In this paper, we reviewed the expressions and meanings of various Class Energy Image approaches, and analyzed the information in the Class Energy Images. Furthermore, the effectiveness and robustness of these approaches were compared on the benchmark gait databases. We outlined the research challenges and provided promising future directions for the field. To the best of our knowledge, this is the first review that focuses on Class Energy Image. It can provide a useful reference in the literature of video sensor-based gait representation approach. PMID:25574935

  15. Using Cell-ID 1.4 with R for Microscope-Based Cytometry

    PubMed Central

    Bush, Alan; Chernomoretz, Ariel; Yu, Richard; Gordon, Andrew

    2012-01-01

    This unit describes a method for quantifying various cellular features (e.g., volume, total and subcellular fluorescence localization) from sets of microscope images of individual cells. It includes procedures for tracking cells over time. One purposefully defocused transmission image (sometimes referred to as bright-field or BF) is acquired to segment the image and locate each cell. Fluorescent images (one for each of the color channels to be analyzed) are then acquired by conventional wide-field epifluorescence or confocal microscopy. This method uses the image processing capabilities of Cell-ID (Gordon et al., 2007, as updated here) and data analysis by the statistical programming framework R (R-Development-Team, 2008), which we have supplemented with a package of routines for analyzing Cell-ID output. Both Cell-ID and the analysis package are open-source. PMID:23026908

  16. Prototypes for Content-Based Image Retrieval in Clinical Practice

    PubMed Central

    Depeursinge, Adrien; Fischer, Benedikt; Müller, Henning; Deserno, Thomas M

    2011-01-01

    Content-based image retrieval (CBIR) has been proposed as key technology for computer-aided diagnostics (CAD). This paper reviews the state of the art and future challenges in CBIR for CAD applied to clinical practice. We define applicability to clinical practice by having recently demonstrated the CBIR system on one of the CAD demonstration workshops held at international conferences, such as SPIE Medical Imaging, CARS, SIIM, RSNA, and IEEE ISBI. From 2009 to 2011, the programs of CADdemo@CARS and the CAD Demonstration Workshop at SPIE Medical Imaging were sought for the key word “retrieval” in the title. The systems identified were analyzed and compared according to the hierarchy of gaps for CBIR systems. In total, 70 software demonstrations were analyzed. 5 systems were identified meeting the criterions. The fields of application are (i) bone age assessment, (ii) bone fractures, (iii) interstitial lung diseases, and (iv) mammography. Bridging the particular gaps of semantics, feature extraction, feature structure, and evaluation have been addressed most frequently. In specific application domains, CBIR technology is available for clinical practice. While system development has mainly focused on bridging content and feature gaps, performance and usability have become increasingly important. The evaluation must be based on a larger set of reference data, and workflow integration must be achieved before CBIR-CAD is really established in clinical practice. PMID:21892374

  17. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has been applied to map the distributions of minerals in soils and rocks; however, its application to characterize vegetation cover has been less widespread than SFA. Using IS data and the USGS Processing Routines in IDL for Spectroscopic Measurements (PRISM; http://pubs.usgs.gov/of/2011/1155/), this talk will examine requirements for and limitations in applying SFA and SFC to characterize vegetation. A time series of Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data collected in the marshes of Louisiana following the Deepwater Horizon oil spill will be used to examine the impact of varying leaf water content on the shapes of the SWIR 1700, 2100, and 2300 nm features and the implications of these changes on vegetation identification and biochemical estimation. The USGS collection of HyMap data over Afghanistan, the largest terrestrial coverage of IS data to date, will be used to demonstrate the characterization of vegetation in arid and semi-arid regions, in which chlorophyll absorption is often weak and soil and rock mineral absorption features overlap vegetation features. Hyperion data, overlapping the HyMap data, will be presented to illustrate the complications that arise when signal-to-noise is low. The benefits of and challenges to applying a spectroscopic remote sensing approach to imaging spectrometer data will be discussed.

  18. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration

    PubMed Central

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

    2013-01-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographical image of food contained in a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc.) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image. PMID:24223474

  19. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

    2013-10-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographic image of food contained on a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image-based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image.

  20. Neural-net-based image matching

    NASA Astrophysics Data System (ADS)

    Jerebko, Anna K.; Barabanov, Nikita E.; Luciv, Vadim R.; Allinson, Nigel M.

    2000-04-01

    The paper describes a neural-based method for matching spatially distorted image sets. The matching of partially overlapping images is important in many applications-- integrating information from images formed from different spectral ranges, detecting changes in a scene and identifying objects of differing orientations and sizes. Our approach consists of extracting contour features from both images, describing the contour curves as sets of line segments, comparing these sets, determining the corresponding curves and their common reference points, calculating the image-to-image co-ordinate transformation parameters on the basis of the most successful variant of the derived curve relationships. The main steps are performed by custom neural networks. The algorithms describe in this paper have been successfully tested on a large set of images of the same terrain taken in different spectral ranges, at different seasons and rotated by various angles. In general, this experimental verification indicates that the proposed method for image fusion allows the robust detection of similar objects in noisy, distorted scenes where traditional approaches often fail.

  1. Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design

    NASA Astrophysics Data System (ADS)

    Manghisoni, Massimo; Comotti, Daniele; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio

    2015-10-01

    This work is concerned with the design of a low-noise Charge Sensitive Amplifier featuring a dynamic signal compression based on the non-linear features of an inversion-mode MOS capacitor. These features make the device suitable for applications where a non-linear characteristic of the front-end is required, such as in imaging instrumentation for free electron laser experiments. The aim of the paper is to discuss a methodology for the proper design of the feedback network enabling the dynamic signal compression. Starting from this compression solution, the design of a low-noise Charge Sensitive Amplifier is also discussed. The study has been carried out by referring to a 65 nm CMOS technology.

  2. Direct-to-digital holography reduction of reference hologram noise and fourier space smearing

    DOEpatents

    Voelkl, Edgar

    2006-06-27

    Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.

  3. Juvenile Osteochondritis Dissecans: Correlation Between Histopathology and MRI.

    PubMed

    Zbojniewicz, Andrew M; Stringer, Keith F; Laor, Tal; Wall, Eric J

    2015-07-01

    The objective of our study was to correlate specimens of juvenile osteochondritis dissecans (OCD) lesions of the knee to MRI examinations to elucidate the histopathologic basis of characteristic imaging features. Five children (three boys and two girls; age range, 12-13 years old) who underwent transarticular biopsy of juvenile OCD lesions of the knee were retrospectively included in this study. Two radiologists reviewed the MRI examinations and a pathologist reviewed the histopathologic specimens and recorded characteristic features. Digital specimen photographs were calibrated to the size of the respective MR image with the use of a reference scale. Photographs were rendered semitransparent and over-laid onto the MR image with the location chosen on the basis of the site of the prior biopsy. A total of seven biopsy specimens were included. On MRI, all lesions showed cystlike foci in the subchondral bone, bone marrow edema pattern on proton density-or T2-weighted images, and relatively thick unossified epiphyseal cartilage. In four patients, a laminar signal intensity pattern was seen, and two patients had multiple breaks in the subchondral bone plate. Fibrovascular tissue was found at histopathology in all patients. Cleft spaces near the cartilage-bone interface and were seen in all patients while chondrocyte cloning was present in most cases. Focal bone necrosis and inflammation were infrequent MRI findings. Precise correlation of the MRI appearance to the histopathologic overlays consistently was found. A direct correlation exists between the histopathologic findings and the MRI features in patients with juvenile OCD. Additional studies are needed to correlate these MRI features with juvenile OCD healing success rates.

  4. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Spectroscopic remote sensing for material identification, vegetation characterization, and mapping

    USGS Publications Warehouse

    Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.

    2012-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.

  7. Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite-epidote-chlorite problem

    USGS Publications Warehouse

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.; Rockwell, B.W.

    2004-01-01

    A scheme to discriminate and identify materials having overlapping spectral absorption features has been developed and tested based on the U.S. Geological Survey (USGS) Tetracorder system. The scheme has been applied to remotely sensed imaging spectroscopy data acquired by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument. This approach was used to identify the minerals calcite, epidote, and chlorite in the upper Animas River watershed, Colorado. The study was motivated by the need to characterize the distribution of calcite in the watershed and assess its acid-neutralizing potential with regard to acidic mine drainage. Identification of these three minerals is difficult because their diagnostic spectral features are all centered at 2.3 ??m, and have similar shapes and widths. Previous studies overestimated calcite abundance as a result of these spectral overlaps. The use of a reference library containing synthetic mixtures of the three minerals in varying proportions was found to simplify the task of identifying these minerals when used in conjunction with a rule-based expert system. Some inaccuracies in the mineral distribution maps remain, however, due to the influence of a fourth spectral component, sericite, which exhibits spectral absorption features at 2.2 and 2.4 ??m that overlap the 2.3-??m absorption features of the other three minerals. Whereas the endmember minerals calcite, epidote, chlorite, and sericite can be identified by the method presented here, discrepancies occur in areas where all four occur together as intimate mixtures. It is expected that future work will be able to reduce these discrepancies by including reference mixtures containing sericite. ?? 2004 Elsevier Inc. All rights reserved.

  8. Application of the hydroxyl tagging velocimetry to direct-connect supersonic combustor experiment

    NASA Astrophysics Data System (ADS)

    Ye, Jingfeng; Li, Guohua; Shao, Jun; Hu, Zhiyun; Zhao, Xinyan; Song, WenYan

    2017-05-01

    For the purpose of measuring the flow velocity in a scramjet test model, an special designed measurement system was established, including the strong vibration suppression, optical transport consideration, the movable device etc. The interference of the strong vibration to the velocity measurements was avoided by two ICCD cameras capturing the reference tag lines image and moved tag lines image together during an experiment. According to the tag lines image feature, data processing including correlation algorithm, data fitting by a Gauss function were used respectively to extract the positions of the reference tag lines and the moved tag lines. The velocity measurements were carried out at the isolation section and the cavity section. The results showed that the well SNR could be achieved in the H2/air combustion heating flow, but in the kerosene fuel combustion flow, the measurements images might be interfered by the strong OH background from the chemical reaction, and the signal intensity could be reduced due to the tag laser attenuation through the absorption by kerosene vapor. But when the combustor model was run at a low chemical equivalent, the interference could be suppressed to an accepted level.

  9. Study of sensor spectral responses and data processing algorithms and architectures for onboard feature identification

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.

    1982-01-01

    A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.

  10. Twin Dimples Intrigue Scientists

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Opportunity is part of the first set of pictures that was returned to Earth after the rover exited 'Eagle Crater.' Scientists are busy analyzing Opportunity's new view of the plains of Meridiani Planum. The plentiful ripples are a clear indication that wind is the primary geologic process currently in effect on the plains. On the left of the image are two depressions--each about a meter (about 3.3 feet) across--that feature bright spots in their centers. One possibility is that the bright material is similar in composition to the rocks in Eagle Crater's outcrop and the surrounding darker material is what's referred to as 'lag deposit,' or erosional remnants that are much harder and more difficult to wear away. These twin dimples might be revealing pieces of a larger outcrop that lies beneath. The depression closest to Opportunity is whimsically referred to as 'Homeplate' and the one behind it as 'First Base.' The rover's panoramic camera is set to take detailed images of the depressions today, on Opportunity's 58th sol. The backshell and parachute that helped protect the rover and deliver it safely to the surface of Mars are also visible near the horizon, in the center of the image. This image was taken by the rover's navigation camera.

  11. Reference point detection for camera-based fingerprint image based on wavelet transformation.

    PubMed

    Khalil, Mohammed S

    2015-04-30

    Fingerprint recognition systems essentially require core-point detection prior to fingerprint matching. The core-point is used as a reference point to align the fingerprint with a template database. When processing a larger fingerprint database, it is necessary to consider the core-point during feature extraction. Numerous core-point detection methods are available and have been reported in the literature. However, these methods are generally applied to scanner-based images. Hence, this paper attempts to explore the feasibility of applying a core-point detection method to a fingerprint image obtained using a camera phone. The proposed method utilizes a discrete wavelet transform to extract the ridge information from a color image. The performance of proposed method is evaluated in terms of accuracy and consistency. These two indicators are calculated automatically by comparing the method's output with the defined core points. The proposed method is tested on two data sets, controlled and uncontrolled environment, collected from 13 different subjects. In the controlled environment, the proposed method achieved a detection rate 82.98%. In uncontrolled environment, the proposed method yield a detection rate of 78.21%. The proposed method yields promising results in a collected-image database. Moreover, the proposed method outperformed compare to existing method.

  12. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics.

    PubMed

    Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai

    2013-05-01

    Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.

  13. Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1- 13C] pyruvate in a live rat at 3.0 tesla on a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2011-01-01

    We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.

  14. Generalised model-independent characterisation of strong gravitational lenses. II. Transformation matrix between multiple images

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Tessore, N.

    2018-05-01

    We determine the transformation matrix that maps multiple images with identifiable resolved features onto one another and that is based on a Taylor-expanded lensing potential in the vicinity of a point on the critical curve within our model-independent lens characterisation approach. From the transformation matrix, the same information about the properties of the critical curve at fold and cusp points can be derived as we previously found when using the quadrupole moment of the individual images as observables. In addition, we read off the relative parities between the images, so that the parity of all images is determined when one is known. We compare all retrievable ratios of potential derivatives to the actual values and to those obtained by using the quadrupole moment as observable for two- and three-image configurations generated by a galaxy-cluster scale singular isothermal ellipse. We conclude that using the quadrupole moments as observables, the properties of the critical curve are retrieved to a higher accuracy at the cusp points and to a lower accuracy at the fold points; the ratios of second-order potential derivatives are retrieved to comparable accuracy. We also show that the approach using ratios of convergences and reduced shear components is equivalent to ours in the vicinity of the critical curve, but yields more accurate results and is more robust because it does not require a special coordinate system as the approach using potential derivatives does. The transformation matrix is determined by mapping manually assigned reference points in the multiple images onto one another. If the assignment of the reference points is subject to measurement uncertainties under the influence of noise, we find that the confidence intervals of the lens parameters can be as large as the values themselves when the uncertainties are larger than one pixel. In addition, observed multiple images with resolved features are more extended than unresolved ones, so that higher-order moments should be taken into account to improve the reconstruction precision and accuracy.

  15. Automatic breast tissue density estimation scheme in digital mammography images

    NASA Astrophysics Data System (ADS)

    Menechelli, Renan C.; Pacheco, Ana Luisa V.; Schiabel, Homero

    2017-03-01

    Cases of breast cancer have increased substantially each year. However, radiologists are subject to subjectivity and failures of interpretation which may affect the final diagnosis in this examination. The high density features in breast tissue are important factors related to these failures. Thus, among many functions some CADx (Computer-Aided Diagnosis) schemes are classifying breasts according to the predominant density. In order to aid in such a procedure, this work attempts to describe automated software for classification and statistical information on the percentage change in breast tissue density, through analysis of sub regions (ROIs) from the whole mammography image. Once the breast is segmented, the image is divided into regions from which texture features are extracted. Then an artificial neural network MLP was used to categorize ROIs. Experienced radiologists have previously determined the ROIs density classification, which was the reference to the software evaluation. From tests results its average accuracy was 88.7% in ROIs classification, and 83.25% in the classification of the whole breast density in the 4 BI-RADS density classes - taking into account a set of 400 images. Furthermore, when considering only a simplified two classes division (high and low densities) the classifier accuracy reached 93.5%, with AUC = 0.95.

  16. Regional information guidance system based on hypermedia concept

    NASA Astrophysics Data System (ADS)

    Matoba, Hiroshi; Hara, Yoshinori; Kasahara, Yutako

    1990-08-01

    A regional information guidance system has been developed on an image workstation. Two main features of this system are hypermedia data structure and friendly visual interface realized by the full-color frame memory system. As the hypermedia data structure manages regional information such as maps, pictures and explanations of points of interest, users can retrieve those information one by one, next to next according to their interest change. For example, users can retrieve explanation of a picture through the link between pictures and text explanations. Users can also traverse from one document to another by using keywords as cross reference indices. The second feature is to utilize a full-color, high resolution and wide space frame memory for visual interface design. This frame memory system enables real-time operation of image data and natural scene representation. The system also provides half tone representing function which enables fade-in/out presentations. This fade-in/out functions used in displaying and erasing menu and image data, makes visual interface soft for human eyes. The system we have developed is a typical example of multimedia applications. We expect the image workstation will play an important role as a platform for multimedia applications.

  17. Three-dimensional contour edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yizhou; Ong, Sim Heng; Kassim, Ashraf A.; Foong, Kelvin W. C.

    2000-06-01

    This paper presents a novel algorithm for automatically extracting 3D contour edges, which are points of maximum surface curvature in a surface range image. The 3D image data are represented as a surface polygon mesh. The algorithm transforms the range data, obtained by scanning a dental plaster cast, into a 2D gray scale image by linearly converting the z-value of each vertex to a gray value. The Canny operator is applied to the median-filtered image to obtain the edge pixels and their orientations. A vertex in the 3D object corresponding to the detected edge pixel and its neighbors in the direction of the edge gradient are further analyzed with respect to their n-curvatures to extract the real 3D contour edges. This algorithm provides a fast method of reducing and sorting the unwieldy data inherent in the surface mesh representation. It employs powerful 2D algorithms to extract features from the transformed 3D models and refers to the 3D model for further analysis of selected data. This approach substantially reduces the computational burden without losing accuracy. It is also easily extended to detect 3D landmarks and other geometrical features, thus making it applicable to a wide range of applications.

  18. An interactive system for computer-aided diagnosis of breast masses.

    PubMed

    Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin

    2012-10-01

    Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.

  19. The Study of Residential Areas Extraction Based on GF-3 Texture Image Segmentation

    NASA Astrophysics Data System (ADS)

    Shao, G.; Luo, H.; Tao, X.; Ling, Z.; Huang, Y.

    2018-04-01

    The study chooses the standard stripe and dual polarization SAR images of GF-3 as the basic data. Residential areas extraction processes and methods based upon GF-3 images texture segmentation are compared and analyzed. GF-3 images processes include radiometric calibration, complex data conversion, multi-look processing, images filtering, and then conducting suitability analysis for different images filtering methods, the filtering result show that the filtering method of Kuan is efficient for extracting residential areas, then, we calculated and analyzed the texture feature vectors using the GLCM (the Gary Level Co-occurrence Matrix), texture feature vectors include the moving window size, step size and angle, the result show that window size is 11*11, step is 1, and angle is 0°, which is effective and optimal for the residential areas extracting. And with the FNEA (Fractal Net Evolution Approach), we segmented the GLCM texture images, and extracted the residential areas by threshold setting. The result of residential areas extraction verified and assessed by confusion matrix. Overall accuracy is 0.897, kappa is 0.881, and then we extracted the residential areas by SVM classification based on GF-3 images, the overall accuracy is less 0.09 than the accuracy of extraction method based on GF-3 Texture Image Segmentation. We reached the conclusion that residential areas extraction based on GF-3 SAR texture image multi-scale segmentation is simple and highly accurate. although, it is difficult to obtain multi-spectrum remote sensing image in southern China, in cloudy and rainy weather throughout the year, this paper has certain reference significance.

  20. Wavelength calibration of imaging spectrometer using atmospheric absorption features

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Yuheng; Chen, Xinhua; Ji, Yiqun; Shen, Weimin

    2012-11-01

    Imaging spectrometer is a promising remote sensing instrument widely used in many filed, such as hazard forecasting, environmental monitoring and so on. The reliability of the spectral data is the determination to the scientific communities. The wavelength position at the focal plane of the imaging spectrometer will change as the pressure and temperature vary, or the mechanical vibration. It is difficult for the onboard calibration instrument itself to keep the spectrum reference accuracy and it also occupies weight and the volume of the remote sensing platform. Because the spectral images suffer from the atmospheric effects, the carbon oxide, water vapor, oxygen and solar Fraunhofer line, the onboard wavelength calibration can be processed by the spectral images themselves. In this paper, wavelength calibration is based on the modeled and measured atmospheric absorption spectra. The modeled spectra constructed by the atmospheric radiative transfer code. The spectral angle is used to determine the best spectral similarity between the modeled spectra and measured spectra and estimates the wavelength position. The smile shape can be obtained when the matching process across all columns of the data. The present method is successful applied on the Hyperion data. The value of the wavelength shift is obtained by shape matching of oxygen absorption feature and the characteristics are comparable to that of the prelaunch measurements.

  1. Direct Imaging Detection of Methane in the Atmosphere of GJ 504 b

    NASA Technical Reports Server (NTRS)

    Janson, Markus; Brandt, Timothy; Kuzuhara, Masayuki; Spiegel, David; Thalmann, Christian; Currie, Thayne; Bonnefoy, Mickael; Zimmerman, Neil; Sorahana, Satoko; Kotani, Takayuki; hide

    2013-01-01

    Most exoplanets detected by direct imaging so far have been characterized by relatively hot (approximately greater than1000 K) and cloudy atmospheres. A surprising feature in some of their atmospheres has been a distinct lack of methane, possibly implying non-equilibrium chemistry. Recently, we reported the discovery of a planetary companion to the Sun-like star GJ 504 using Subaru/HiCIAO within the SEEDS survey. The planet is substantially colder (less than 600 K) than previously imaged planets, and has indications of fewer clouds, which implies that it represents a new class of planetary atmospheres with expected similarities to late T-type brown dwarfs in the same temperature range. If so, one might also expect the presence of significant methane absorption, which is characteristic of such objects. Here, we report the detection of deep methane absorption in the atmosphere of GJ 504 b, using the Spectral Differential Imaging mode of HiCIAO to distinguish the absorption feature around 1.6 micrometers. We also report updated JHK photometry based on new K(sub s)-band data and a re-analysis of the existing data. The results support the notion that GJ 504 b has atmospheric properties distinct from other imaged exoplanets, and will become a useful reference object for future planets in the same temperature range.

  2. Cross sectional imaging of post partum headache and seizures.

    PubMed

    Hiremath, Rudresh; Mundaganur, Praveen; Sonwalkar, Pradeep; N S, Vishal; G S, Narendra; P, Sanjay

    2014-12-01

    To evaluate spectrum of causes & their characteristic findings in peripartum head ache and seizures on computed tomography & magnetic resonance imaging. Forty patients with complaints of peripartum headache and seizures underwent cross sectional imaging with computed tomography and magnetic resonance imaging during period of June 2011 to May 2012. Age group of subjects in this study was 18 to 38 y. Out of 40 patients 15 had history of eclampsia and remaining 25 patients were normotensive. Subjects with complaints of headache and seizures after six weeks of delivery were excluded from the study. Intravenous contrast was administered in cases with diagnostic dilemma. All results were reported and informed to the referring physicians on priority bases. Nine patients with peripartum headache and seizures revealed no brain parenchymal or cerebral vascular abnormalities on imaging. Eleven patients with a history of eclampsia showed features of eclamptic encephalopathy. Out 40 patients, 17 patients revealed cortical venous thrombosis with 14 patients showing parenchymal changes. One patient each showed features of meningoencephalitis, ischemic watershed territory infarct & region of gliosis. All results were analysed & tabulated. Eclamptic encephalopathy and cortical venous thrombosis are the major causes for post partum headache and seizures. Rational use of CT & MRI in the early course of the disease helps in characterizing the lesion and providing the appropriate treatment.

  3. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    NASA Astrophysics Data System (ADS)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  4. Fully automated motion correction in first-pass myocardial perfusion MR image sequences.

    PubMed

    Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2008-11-01

    This paper presents a novel method for registration of cardiac perfusion magnetic resonance imaging (MRI). The presented method is capable of automatically registering perfusion data, using independent component analysis (ICA) to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of that ICA. This reference image is used in a two-pass registration framework. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Despite varying image quality and motion patterns in the evaluation set, validation of the method showed a reduction of the average right ventricle (LV) motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. Comparison of clinically relevant parameters computed using registered data and the manual gold standard show a good agreement. Additional tests with a simulated free-breathing protocol showed robustness against considerable deviations from a standard breathing protocol. We conclude that this fully automatic ICA-based method shows an accuracy, a robustness and a computation speed adequate for use in a clinical environment.

  5. SPG11 Presenting with Tremor

    PubMed Central

    Schneider, Susanne A.; Mummery, Catherine J.; Mehrabian, Mohadeseh; Houlden, Henry; Bain, Peter G.

    2012-01-01

    Background Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurological diseases, which typically present with progressive lower extremity weakness and spasticity causing progressive walking difficulties. Complicating neurological or extraneurological features may be present. Case Report We describe a 19-year-old male who was referred because of an action tremor of the hands; he later developed walking difficulties. Callosal atrophy was present on his cerebral magnetic resonance imaging scan, prompting genetic testing for SPG11, which revealed homozygous mutations. Discussion The clinical features, differential diagnosis and management of SPG11, the most common form of autosomal recessive complicated HSP with a thin corpus callosum are discussed. PMID:23439843

  6. The Variability of Transverse Aeolian Ripples in Troughs on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Wilson, S.A.; Zimbelman, J. R.

    2003-01-01

    A precursory glance at MGS images of the surface of Mars show an abundance of aeolian transverse ridges. These ridges are located in a variety of geological terrains. Zimbelman and Wilson have separated the small-scale aeolian features of Syrtis Major into six categories: ripples associated with obstacles, ripple bands, ripple fields, ripple patches, isolated ripple patches and ripples associated with dunes. This paper focuses on one of these categories, that of ripple bands which tend to accumulate within linear troughs. As the origin of these features is still being studied (i.e. ripples versus dunes), we refer to them simply as transverse aeolian ridges.

  7. Noise-cancellation-based nonuniformity correction algorithm for infrared focal-plane arrays.

    PubMed

    Godoy, Sebastián E; Pezoa, Jorge E; Torres, Sergio N

    2008-10-10

    The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compromises severely the quality of the acquired imagery, even making such images inappropriate for some applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancellation-based algorithm that compensates for the additive component of the FPN. The proposed method relies on the assumption that a source of noise correlated to the additive FPN is available to the IR camera. An important feature of the algorithm is that all the calculations are reduced to a simple equation, which allows for the bias compensation of the raw imagery. The algorithm performance is tested using real IR image sequences and is compared to some classical methodologies. (c) 2008 Optical Society of America

  8. Perception for rugged terrain

    NASA Technical Reports Server (NTRS)

    Kweon, In SO; Hebert, Martial; Kanade, Takeo

    1989-01-01

    A three-dimensional perception system for building a geometrical description of rugged terrain environments from range image data is presented with reference to the exploration of the rugged terrain of Mars. An intermediate representation consisting of an elevation map that includes an explicit representation of uncertainty and labeling of the occluded regions is proposed. The locus method used to convert range image to an elevation map is introduced, along with an uncertainty model based on this algorithm. Both the elevation map and the locus method are the basis of a terrain matching algorithm which does not assume any correspondences between range images. The two-stage algorithm consists of a feature-based matching algorithm to compute an initial transform and an iconic terrain matching algorithm to merge multiple range images into a uniform representation. Terrain modeling results on real range images of rugged terrain are presented. The algorithms considered are a fundamental part of the perception system for the Ambler, a legged locomotor.

  9. A Gauss-Seidel Iteration Scheme for Reference-Free 3-D Histological Image Reconstruction

    PubMed Central

    Daum, Volker; Steidl, Stefan; Maier, Andreas; Köstler, Harald; Hornegger, Joachim

    2015-01-01

    Three-dimensional (3-D) reconstruction of histological slice sequences offers great benefits in the investigation of different morphologies. It features very high-resolution which is still unmatched by in-vivo 3-D imaging modalities, and tissue staining further enhances visibility and contrast. One important step during reconstruction is the reversal of slice deformations introduced during histological slice preparation, a process also called image unwarping. Most methods use an external reference, or rely on conservative stopping criteria during the unwarping optimization to prevent straightening of naturally curved morphology. Our approach shows that the problem of unwarping is based on the superposition of low-frequency anatomy and high-frequency errors. We present an iterative scheme that transfers the ideas of the Gauss-Seidel method to image stacks to separate the anatomy from the deformation. In particular, the scheme is universally applicable without restriction to a specific unwarping method, and uses no external reference. The deformation artifacts are effectively reduced in the resulting histology volumes, while the natural curvature of the anatomy is preserved. The validity of our method is shown on synthetic data, simulated histology data using a CT data set and real histology data. In the case of the simulated histology where the ground truth was known, the mean Target Registration Error (TRE) between the unwarped and original volume could be reduced to less than 1 pixel on average after 6 iterations of our proposed method. PMID:25312918

  10. Study on the Classification of GAOFEN-3 Polarimetric SAR Images Using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, J.; Zhao, Z.

    2018-04-01

    Polarimetric Synthetic Aperture Radar (POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  11. Pedestrian detection in thermal images: An automated scale based region extraction with curvelet space validation

    NASA Astrophysics Data System (ADS)

    Lakshmi, A.; Faheema, A. G. J.; Deodhare, Dipti

    2016-05-01

    Pedestrian detection is a key problem in night vision processing with a dozen of applications that will positively impact the performance of autonomous systems. Despite significant progress, our study shows that performance of state-of-the-art thermal image pedestrian detectors still has much room for improvement. The purpose of this paper is to overcome the challenge faced by the thermal image pedestrian detectors, which employ intensity based Region Of Interest (ROI) extraction followed by feature based validation. The most striking disadvantage faced by the first module, ROI extraction, is the failed detection of cloth insulted parts. To overcome this setback, this paper employs an algorithm and a principle of region growing pursuit tuned to the scale of the pedestrian. The statistics subtended by the pedestrian drastically vary with the scale and deviation from normality approach facilitates scale detection. Further, the paper offers an adaptive mathematical threshold to resolve the problem of subtracting the background while extracting cloth insulated parts as well. The inherent false positives of the ROI extraction module are limited by the choice of good features in pedestrian validation step. One such feature is curvelet feature, which has found its use extensively in optical images, but has as yet no reported results in thermal images. This has been used to arrive at a pedestrian detector with a reduced false positive rate. This work is the first venture made to scrutinize the utility of curvelet for characterizing pedestrians in thermal images. Attempt has also been made to improve the speed of curvelet transform computation. The classification task is realized through the use of the well known methodology of Support Vector Machines (SVMs). The proposed method is substantiated with qualified evaluation methodologies that permits us to carry out probing and informative comparisons across state-of-the-art features, including deep learning methods, with six standard and in-house databases. With reference to deep learning, our algorithm exhibits comparable performance. More important is that it has significant lower requirements in terms of compute power and memory, thus making it more relevant for depolyment in resource constrained platforms with significant size, weight and power constraints.

  12. Combining Landform Thematic Layer and Object-Oriented Image Analysis to Map the Surface Features of Mountainous Flood Plain Areas

    NASA Astrophysics Data System (ADS)

    Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.

    2012-04-01

    The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster mitigation. In this study, an automatic and fast image interpretation process for eight surface features including main channel, secondary channel, sandbar, flood plain, river terrace, alluvial fan, landslide, and the nearby artificial structures in the mountainous flood plain is proposed. Images along timelines can even be compared in order to differentiate historical events such as village inundations, failure of roads, bridges and levees, as well as alternation of watercourse, and therefore can be used as references for safety evaluation of engineering structures near rivers, disaster prevention and mitigation, and even future land-use planning. Keywords: Flood plain area, Remote sensing, Object-oriented, Surface feature interpretation, Terrain analysis, Thematic layer, Typhoon Morakot

  13. Accuracy of Ultrasonography and Magnetic Resonance Imaging in the Diagnosis of Placenta Accreta

    PubMed Central

    Riteau, Anne-Sophie; Tassin, Mikael; Chambon, Guillemette; Le Vaillant, Claudine; de Laveaucoupet, Jocelyne; Quéré, Marie-Pierre; Joubert, Madeleine; Prevot, Sophie; Philippe, Henri-Jean; Benachi, Alexandra

    2014-01-01

    Purpose To evaluate the accuracy of ultrasonography and magnetic resonance imaging (MRI) in the diagnosis of placenta accreta and to define the most relevant specific ultrasound and MRI features that may predict placental invasion. Material and Methods This study was approved by the institutional review board of the French College of Obstetricians and Gynecologists. We retrospectively reviewed the medical records of all patients referred for suspected placenta accreta to two university hospitals from 01/2001 to 05/2012. Our study population included 42 pregnant women who had been investigated by both ultrasonography and MRI. Ultrasound images and MRI were blindly reassessed for each case by 2 raters in order to score features that predict abnormal placental invasion. Results Sensitivity in the diagnosis of placenta accreta was 100% with ultrasound and 76.9% for MRI (P = 0.03). Specificity was 37.5% with ultrasonography and 50% for MRI (P = 0.6). The features of greatest sensitivity on ultrasonography were intraplacental lacunae and loss of the normal retroplacental clear space. Increased vascularization in the uterine serosa-bladder wall interface and vascularization perpendicular to the uterine wall had the best positive predictive value (92%). At MRI, uterine bulging had the best positive predictive value (85%) and its combination with the presence of dark intraplacental bands on T2-weighted images improved the predictive value to 90%. Conclusion Ultrasound imaging is the mainstay of screening for placenta accreta. MRI appears to be complementary to ultrasonography, especially when there are few ultrasound signs. PMID:24733409

  14. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.

  15. Hand-Based Biometric Analysis

    NASA Technical Reports Server (NTRS)

    Bebis, George (Inventor); Amayeh, Gholamreza (Inventor)

    2015-01-01

    Hand-based biometric analysis systems and techniques are described which provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an in put image. Additionally, the analysis utilizes re-use of commonly-seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.

  16. Hand-Based Biometric Analysis

    NASA Technical Reports Server (NTRS)

    Bebis, George

    2013-01-01

    Hand-based biometric analysis systems and techniques provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an input image. Additionally, the analysis uses re-use of commonly seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.

  17. Diagnosis of a sigmoid volvulus in pregnancy: ultrasonography and magnetic resonance imaging findings

    PubMed Central

    Palmucci, Stefano; Lanza, Maria Letizia; Gulino, Fabrizio; Scilletta, Beniamino; Ettorre, Giovanni Carlo

    2014-01-01

    Sigmoid volvulus complicating pregnancy is a rare, non-obstetric cause of abdominal pain that requires prompt surgical intervention (decompression) to avoid intestinal ischemia and perforation. We report the case of a 31-week pregnant woman with abdominal pain and subsequent development of constipation. Preoperative diagnosis was achieved using magnetic resonance imaging and ultrasonography: the large bowel distension and a typical whirl sign - near a sigmoid colon transition point - suggested the diagnosis of sigmoid volvulus. The decision to refer the patient for emergency laparotomy was adopted without any ionizing radiation exposure, and the pre-operative diagnosis was confirmed after surgery. Imaging features of sigmoid volvulus and differential diagnosis from other non-obstetric abdominal emergencies in pregnancy are discussed in our report, with special emphasis on the diagnostic capabilities of ultrasonography and magnetic resonance imaging. PMID:24967020

  18. Diagnosis of a sigmoid volvulus in pregnancy: ultrasonography and magnetic resonance imaging findings.

    PubMed

    Palmucci, Stefano; Lanza, Maria Letizia; Gulino, Fabrizio; Scilletta, Beniamino; Ettorre, Giovanni Carlo

    2014-02-01

    Sigmoid volvulus complicating pregnancy is a rare, non-obstetric cause of abdominal pain that requires prompt surgical intervention (decompression) to avoid intestinal ischemia and perforation. We report the case of a 31-week pregnant woman with abdominal pain and subsequent development of constipation. Preoperative diagnosis was achieved using magnetic resonance imaging and ultrasonography: the large bowel distension and a typical whirl sign - near a sigmoid colon transition point - suggested the diagnosis of sigmoid volvulus. The decision to refer the patient for emergency laparotomy was adopted without any ionizing radiation exposure, and the pre-operative diagnosis was confirmed after surgery. Imaging features of sigmoid volvulus and differential diagnosis from other non-obstetric abdominal emergencies in pregnancy are discussed in our report, with special emphasis on the diagnostic capabilities of ultrasonography and magnetic resonance imaging.

  19. A reference estimator based on composite sensor pattern noise for source device identification

    NASA Astrophysics Data System (ADS)

    Li, Ruizhe; Li, Chang-Tsun; Guan, Yu

    2014-02-01

    It has been proved that Sensor Pattern Noise (SPN) can serve as an imaging device fingerprint for source camera identification. Reference SPN estimation is a very important procedure within the framework of this application. Most previous works built reference SPN by averaging the SPNs extracted from 50 images of blue sky. However, this method can be problematic. Firstly, in practice we may face the problem of source camera identification in the absence of the imaging cameras and reference SPNs, which means only natural images with scene details are available for reference SPN estimation rather than blue sky images. It is challenging because the reference SPN can be severely contaminated by image content. Secondly, the number of available reference images sometimes is too few for existing methods to estimate a reliable reference SPN. In fact, existing methods lack consideration of the number of available reference images as they were designed for the datasets with abundant images to estimate the reference SPN. In order to deal with the aforementioned problem, in this work, a novel reference estimator is proposed. Experimental results show that our proposed method achieves better performance than the methods based on the averaged reference SPN, especially when few reference images used.

  20. Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature.

    PubMed

    Shimal, A; Davies, A M; James, S L J; Grimer, R J

    2010-05-01

    To investigate the association of a fatigue-type stress fracture and a fibrous cortical defect/non-ossifying fibroma (FCD/NOF) of the lower limb long bones in skeletally immature patients. The patient database of a specialist orthopaedic oncology centre was searched to determine the number of skeletally immature patients (

  1. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    PubMed

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of sampling points exceeding 1 mm. A novel harmonic analysis approach relying on finite element methods was introduced and validated for multiple volumes with surface shape functions ranging from simple to highly complex. Since a boundary value problem is solved the method requires input data from only the surface of the desired domain of interest. It is believed that the harmonic method will facilitate (a) the design of new phantoms dedicated for the quantification of MR image distortions in large volumes and (b) an integrative approach of combining multiple imaging tests specific to radiotherapy into a single test object for routine imaging quality control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Automated color classification of urine dipstick image in urine examination

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Royananda; Muchtar, M. A.; Taqiuddin, R.; Adnan, S.; Anugrahwaty, R.; Budiarto, R.

    2018-03-01

    Urine examination using urine dipstick has long been used to determine the health status of a person. The economical and convenient use of urine dipstick is one of the reasons urine dipstick is still used to check people health status. The real-life implementation of urine dipstick is done manually, in general, that is by comparing it with the reference color visually. This resulted perception differences in the color reading of the examination results. In this research, authors used a scanner to obtain the urine dipstick color image. The use of scanner can be one of the solutions in reading the result of urine dipstick because the light produced is consistent. A method is required to overcome the problems of urine dipstick color matching and the test reference color that have been conducted manually. The method proposed by authors is Euclidean Distance, Otsu along with RGB color feature extraction method to match the colors on the urine dipstick with the standard reference color of urine examination. The result shows that the proposed approach was able to classify the colors on a urine dipstick with an accuracy of 95.45%. The accuracy of color classification on urine dipstick against the standard reference color is influenced by the level of scanner resolution used, the higher the scanner resolution level, the higher the accuracy.

  3. OSTA-3 Shuttle payload

    NASA Technical Reports Server (NTRS)

    Dillman, R. D.; Eav, B. B.; Baldwin, R. R.

    1984-01-01

    The Office of Space and Terrestrial Applications-3 payload, scheduled for flight on STS Mission 17, consists of four earth-observation experiments. The Feature Identification and Location Experiment-1 will spectrally sense and numerically classify the earth's surface into water, vegetation, bare earth, and ice/snow/cloud-cover, by means of spectra ratio techniques. The Measurement of Atmospheric Pollution from Satellite experiment will measure CO distribution in the middle and upper troposphere. The Imaging Camera-B uses side-looking SAR to create two-dimensional images of the earth's surface. The Large Format Camera/Attitude Reference System will collect metric quality color, color-IR, and black-and-white photographs for topographic mapping.

  4. Can CT imaging features of ground-glass opacity predict invasiveness? A meta-analysis.

    PubMed

    Dai, Jian; Yu, Guoyou; Yu, Jianqiang

    2018-04-01

    A meta-analysis was conducted to investigate the diagnostic performance of computed tomography (CT) imaging features of ground-glass opacity (GGO) to predict invasiveness. Two reviewers independently searched PubMed, Medline, Web of Science, Cochrane Embase and CNKI for relevant studies. CT imaging signs of bubble lucency, speculation, lobulated margin, and pleural indentation were used as diagnostic references to discriminate pre-invasive and invasive disease. The sensitivity, specificity, diagnostic odds ratio (DOR), summary receiver operating characteristic (SROC) curves, and the area under the SROC curve (AUC) were calculated to evaluate diagnostic efficiency. Twelve studies were finally included. Diagnostic performance ranged from 0.41 to 0.52 for sensitivity and 0.56 to 0.63 for specificity. The diagnostic positive and negative likelihood ratios ranged from 1.03 to 2.13 and 0.52 to 1.05, respectively. The DORs of the GGO CT features for discriminating invasive disease ranged from 1.02 to 4.00. The area under the ROC curve was also low, with a range of 0.60 to 0.67 for discriminating pre-invasive and invasive disease. The diagnostic value of a single CT imaging sign of GGO, such as bubble lucency, speculation, lobulated margin, or pleural indentation is limited for discriminating pre-invasive and invasive disease because of low sensitivity, specificity, and AUC. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Breast cancer molecular subtype classification using deep features: preliminary results

    NASA Astrophysics Data System (ADS)

    Zhu, Zhe; Albadawy, Ehab; Saha, Ashirbani; Zhang, Jun; Harowicz, Michael R.; Mazurowski, Maciej A.

    2018-02-01

    Radiogenomics is a field of investigation that attempts to examine the relationship between imaging characteris- tics of cancerous lesions and their genomic composition. This could offer a noninvasive alternative to establishing genomic characteristics of tumors and aid cancer treatment planning. While deep learning has shown its supe- riority in many detection and classification tasks, breast cancer radiogenomic data suffers from a very limited number of training examples, which renders the training of the neural network for this problem directly and with no pretraining a very difficult task. In this study, we investigated an alternative deep learning approach referred to as deep features or off-the-shelf network approach to classify breast cancer molecular subtypes using breast dynamic contrast enhanced MRIs. We used the feature maps of different convolution layers and fully connected layers as features and trained support vector machines using these features for prediction. For the feature maps that have multiple layers, max-pooling was performed along each channel. We focused on distinguishing the Luminal A subtype from other subtypes. To evaluate the models, 10 fold cross-validation was performed and the final AUC was obtained by averaging the performance of all the folds. The highest average AUC obtained was 0.64 (0.95 CI: 0.57-0.71), using the feature maps of the last fully connected layer. This indicates the promise of using this approach to predict the breast cancer molecular subtypes. Since the best performance appears in the last fully connected layer, it also implies that breast cancer molecular subtypes may relate to high level image features

  6. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrw B. (Inventor)

    2010-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image. or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image . Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer. SSO. Some embodiments include masking functions. window functions. special treatment for images lying on or near border and pre-processing of test images.

  7. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2012-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image, or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image. Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer, SSO. Some embodiments include masking functions, window functions, special treatment for images lying on or near borders and pre-processing of test images.

  8. A Novel Feature-Tracking Echocardiographic Method for the Quantitation of Regional Myocardial Function

    PubMed Central

    Pirat, Bahar; Khoury, Dirar S.; Hartley, Craig J.; Tiller, Les; Rao, Liyun; Schulz, Daryl G.; Nagueh, Sherif F.; Zoghbi, William A.

    2012-01-01

    Objectives The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. Background A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking—incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Methods Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Results Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Conclusions Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function. PMID:18261685

  9. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion.

    PubMed

    Pirat, Bahar; Khoury, Dirar S; Hartley, Craig J; Tiller, Les; Rao, Liyun; Schulz, Daryl G; Nagueh, Sherif F; Zoghbi, William A

    2008-02-12

    The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking-incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function.

  10. Geometric registration of images by similarity transformation using two reference points

    NASA Technical Reports Server (NTRS)

    Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

    2011-01-01

    A method for registering a first image to a second image using a similarity transformation. The each image includes a plurality of pixels. The first image pixels are mapped to a set of first image coordinates and the second image pixels are mapped to a set of second image coordinates. The first image coordinates of two reference points in the first image are determined. The second image coordinates of these reference points in the second image are determined. A Cartesian translation of the set of second image coordinates is performed such that the second image coordinates of the first reference point match its first image coordinates. A similarity transformation of the translated set of second image coordinates is performed. This transformation scales and rotates the second image coordinates about the first reference point such that the second image coordinates of the second reference point match its first image coordinates.

  11. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images.

    PubMed

    Shahidi, Shoaleh; Bahrampour, Ehsan; Soltanimehr, Elham; Zamani, Ali; Oshagh, Morteza; Moattari, Marzieh; Mehdizadeh, Alireza

    2014-09-16

    Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods.

  12. Body image dissatisfaction: clinical features, and psychosocial disability in inflammatory bowel disease.

    PubMed

    McDermott, Edel; Mullen, Georgina; Moloney, Jenny; Keegan, Denise; Byrne, Kathryn; Doherty, Glen A; Cullen, Garret; Malone, Kevin; Mulcahy, Hugh E

    2015-02-01

    Body image refers to a person's sense of their physical appearance and body function. A negative body image self-evaluation may result in psychosocial dysfunction. Crohn's disease and ulcerative colitis are associated with disabling features, and body image dissatisfaction is a concern for many patients with inflammatory bowel disease (IBD). However, no study has assessed body image and its comorbidities in patients with IBD using validated instruments. Our aim was to explore body image dissatisfaction in patients with IBD and assess its relationship with biological and psychosocial variables. We studied 330 patients (median age, 36 yr; range, 18-83; 169 men) using quantitative and qualitative methods. Patients completed a self-administered questionnaire that included a modified Hopwood Body Image Scale, the Cash Body Image Disturbance Questionnaire, and other validated instruments. Clinical and disease activity data were also collected. Body image dissatisfaction was associated with disease activity (P < 0.001) and steroid treatment (P = 0.03) but not with immunotherapy (P = 0.57) or biological (P = 0.55) therapy. Body image dissatisfaction was also associated with low levels of general (P < 0.001) and IBD-specific (P < 0.001) quality of life, self-esteem (P < 0.001), and sexual satisfaction (P < 0.001), and with high levels of anxiety (P < 0.001) and depression (P < 0.001). Qualitative analysis indicated that patients were concerned about both physical and psychosocial consequences of body image dissatisfaction, including steroid side effects and impaired work and social activities. Body image dissatisfaction is common in patients with IBD, relates to specific clinical variables and is associated with significant psychological dysfunction. Its measurement is warranted as part of a comprehensive patient-centered IBD assessment.

  13. Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Atsuko; Ohashi, Takeyoshi; Kawasaki, Takahiro; Inoue, Osamu; Kawada, Hiroki

    2013-04-01

    A new method for calculating critical dimension (CDs) at the top and bottom of three-dimensional (3D) pattern profiles from a critical-dimension scanning electron microscope (CD-SEM) image, called as "T-sigma method", is proposed and evaluated. Without preparing a library of database in advance, T-sigma can estimate a feature of a pattern sidewall. Furthermore, it supplies the optimum edge-definition (i.e., threshold level for determining edge position from a CDSEM signal) to detect the top and bottom of the pattern. This method consists of three steps. First, two components of line-edge roughness (LER); noise-induced bias (i.e., LER bias) and unbiased component (i.e., bias-free LER) are calculated with set threshold level. Second, these components are calculated with various threshold values, and the threshold-dependence of these two components, "T-sigma graph", is obtained. Finally, the optimum threshold value for the top and the bottom edge detection are given by the analysis of T-sigma graph. T-sigma was applied to CD-SEM images of three kinds of resist-pattern samples. In addition, reference metrology was performed with atomic force microscope (AFM) and scanning transmission electron microscope (STEM). Sensitivity of CD measured by T-sigma to the reference CD was higher than or equal to that measured by the conventional edge definition. Regarding the absolute measurement accuracy, T-sigma showed better results than the conventional definition. Furthermore, T-sigma graphs were calculated from CD-SEM images of two kinds of resist samples and compared with corresponding STEM observation results. Both bias-free LER and LER bias increased as the detected edge point moved from the bottom to the top of the pattern in the case that the pattern had a straight sidewall and a round top. On the other hand, they were almost constant in the case that the pattern had a re-entrant profile. T-sigma will be able to reveal a re-entrant feature. From these results, it is found that T-sigma method can provide rough cross-sectional pattern features and achieve quick, easy and accurate measurements of top and bottom CD.

  14. T2*-based MR imaging (gradient echo or susceptibility-weighted imaging) in midline and off-midline intracranial germ cell tumors: a pilot study.

    PubMed

    Morana, Giovanni; Alves, Cesar Augusto; Tortora, Domenico; Finlay, Jonathan L; Severino, Mariasavina; Nozza, Paolo; Ravegnani, Marcello; Pavanello, Marco; Milanaccio, Claudia; Maghnie, Mohamad; Rossi, Andrea; Garrè, Maria Luisa

    2018-01-01

    The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naïve intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT.

  15. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3268, Khayr Kot (521) and Urgun (522) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral Surface Materials Map of Quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) Quadrangles, Afghanistan, Showing Carbonates, Phyllosilicates, Sulfates, Altered Minerals, and Other Materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. High resolution diagnosis of common nevi by multiphoton laser tomography and fluorescence lifetime imaging.

    PubMed

    Arginelli, Federica; Manfredini, Marco; Bassoli, Sara; Dunsby, Christopher; French, Paul; König, Karsten; Magnoni, Cristina; Ponti, Giovanni; Talbot, Clifford; Seidenari, Stefania

    2013-05-01

    Multiphoton Laser Tomography (MPT) has developed as a non-invasive tool that allows real-time observation of the skin with subcellular resolution. MPT is readily combined with time resolved detectors to achieve fluorescence lifetime imaging (FLIM). The aim of our study was to identify morphologic MPT/FLIM descriptors of melanocytic nevi, referring to cellular and architectural features. In the preliminary study, MPT/FLIM images referring to 16 ex vivo nevi were simultaneously evaluated by 3 observers for the identification of morphologic descriptors characteristic of melanocytic nevi. Proposed descriptors were discussed and the parameters referring to epidermal keratinocytes, epidermal melanocytes, dermo-epidermal junction, papillary dermis and overall architecture were selected. In the main study, the presence/absence of the specified criteria were blindly evaluated on a test set, comprising 102 ex vivo samples (51 melanocytic nevi, 51 miscellaneous skin lesions) by 2 observers. Twelve descriptors were identified: "short-lifetime cells in the stratum corneum", "melanin-containing keratinocytes", "dendritic cells", "small short-lifetime cells" in the upper and lower layers", "edged papillae", "non-edged papillae", "junctional nests of short-lifetime cells", "dermal cell clusters", "short-lifetime cells in the papilla", "monomorphic and regular histoarchitecture", "architectural disarray". Identified descriptors for benign melanocytic lesions proved sensitive and specific, enabling the differentiation between melanocytic nevi and non-melanocytic lesions. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  13. Cygnus A super-resolved via convex optimization from VLA data

    NASA Astrophysics Data System (ADS)

    Dabbech, A.; Onose, A.; Abdulaziz, A.; Perley, R. A.; Smirnov, O. M.; Wiaux, Y.

    2018-05-01

    We leverage the Sparsity Averaging Re-weighted Analysis approach for interferometric imaging, that is based on convex optimization, for the super-resolution of Cyg A from observations at the frequencies 8.422 and 6.678 GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned primal-dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high-resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324 and 14.252 GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our MATLAB code is available online on GitHub.

  14. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.

  15. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.

    PubMed

    Yang, Xin; Liu, Chaoyue; Wang, Zhiwei; Yang, Jun; Min, Hung Le; Wang, Liang; Cheng, Kwang-Ting Tim

    2017-12-01

    Multi-parameter magnetic resonance imaging (mp-MRI) is increasingly popular for prostate cancer (PCa) detection and diagnosis. However, interpreting mp-MRI data which typically contains multiple unregistered 3D sequences, e.g. apparent diffusion coefficient (ADC) and T2-weighted (T2w) images, is time-consuming and demands special expertise, limiting its usage for large-scale PCa screening. Therefore, solutions to computer-aided detection of PCa in mp-MRI images are highly desirable. Most recent advances in automated methods for PCa detection employ a handcrafted feature based two-stage classification flow, i.e. voxel-level classification followed by a region-level classification. This work presents an automated PCa detection system which can concurrently identify the presence of PCa in an image and localize lesions based on deep convolutional neural network (CNN) features and a single-stage SVM classifier. Specifically, the developed co-trained CNNs consist of two parallel convolutional networks for ADC and T2w images respectively. Each network is trained using images of a single modality in a weakly-supervised manner by providing a set of prostate images with image-level labels indicating only the presence of PCa without priors of lesions' locations. Discriminative visual patterns of lesions can be learned effectively from clutters of prostate and surrounding tissues. A cancer response map with each pixel indicating the likelihood to be cancerous is explicitly generated at the last convolutional layer of the network for each modality. A new back-propagated error E is defined to enforce both optimized classification results and consistent cancer response maps for different modalities, which help capture highly representative PCa-relevant features during the CNN feature learning process. The CNN features of each modality are concatenated and fed into a SVM classifier. For images which are classified to contain cancers, non-maximum suppression and adaptive thresholding are applied to the corresponding cancer response maps for PCa foci localization. Evaluation based on 160 patient data with 12-core systematic TRUS-guided prostate biopsy as the reference standard demonstrates that our system achieves a sensitivity of 0.46, 0.92 and 0.97 at 0.1, 1 and 10 false positives per normal/benign patient which is significantly superior to two state-of-the-art CNN-based methods (Oquab et al., 2015; Zhou et al., 2015) and 6-core systematic prostate biopsies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment.

    PubMed

    Zheng, Bin; Lu, Amy; Hardesty, Lara A; Sumkin, Jules H; Hakim, Christiane M; Ganott, Marie A; Gur, David

    2006-01-01

    The purpose of this study was to develop and test a method for selecting "visually similar" regions of interest depicting breast masses from a reference library to be used in an interactive computer-aided diagnosis (CAD) environment. A reference library including 1000 malignant mass regions and 2000 benign and CAD-generated false-positive regions was established. When a suspicious mass region is identified, the scheme segments the region and searches for similar regions from the reference library using a multifeature based k-nearest neighbor (KNN) algorithm. To improve selection of reference images, we added an interactive step. All actual masses in the reference library were subjectively rated on a scale from 1 to 9 as to their "visual margins speculations". When an observer identifies a suspected mass region during a case interpretation he/she first rates the margins and the computerized search is then limited only to regions rated as having similar levels of spiculation (within +/-1 scale difference). In an observer preference study including 85 test regions, two sets of the six "similar" reference regions selected by the KNN with and without the interactive step were displayed side by side with each test region. Four radiologists and five nonclinician observers selected the more appropriate ("similar") reference set in a two alternative forced choice preference experiment. All four radiologists and five nonclinician observers preferred the sets of regions selected by the interactive method with an average frequency of 76.8% and 74.6%, respectively. The overall preference for the interactive method was highly significant (p < 0.001). The study demonstrated that a simple interactive approach that includes subjectively perceived ratings of one feature alone namely, a rating of margin "spiculation," could substantially improve the selection of "visually similar" reference images.

  17. Dento-osseous anomalies associated to familial adenomatous polyposis mimicking florid cemento-osseous dysplasia.

    PubMed

    Almeida, Fabiana Tolentino; Leite, André Ferreira; de Souza Figueiredo, Paulo Tadeu; Melo, Nilce Santos; Sousa, João Batista; Almeida, Rômulo; Acevedo, Ana Carolina; Silva Guerra, Eliete Neves

    2012-12-01

    Familial adenomatous polyposis (FAP) is a colorectal cancer syndrome characterized by the development of multiple polyps of the colon and rectum with high risk of malignant transformation. The extraintestinal manifestations such as dento-osseous changes are associated with FAP. This is a case report of a 36-year-old female patient who was referred for dental treatment with the initial diagnosis of florid cemento-osseous dysplasia (FCOD). However, the association of the imaging dento-osseous findings with the medical history confirmed the diagnosis of FAP. The paper illustrates the clinical characteristics and imaging findings associated with FAP, and also discusses misdiagnosis based exclusively on imaging features. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Study on Mosaic and Uniform Color Method of Satellite Image Fusion in Large Srea

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, H.; Wang, X.; Guo, L.; Wang, R.

    2018-04-01

    Due to the improvement of satellite radiometric resolution and the color difference for multi-temporal satellite remote sensing images and the large amount of satellite image data, how to complete the mosaic and uniform color process of satellite images is always an important problem in image processing. First of all using the bundle uniform color method and least squares mosaic method of GXL and the dodging function, the uniform transition of color and brightness can be realized in large area and multi-temporal satellite images. Secondly, using Color Mapping software to color mosaic images of 16bit to mosaic images of 8bit based on uniform color method with low resolution reference images. At last, qualitative and quantitative analytical methods are used respectively to analyse and evaluate satellite image after mosaic and uniformity coloring. The test reflects the correlation of mosaic images before and after coloring is higher than 95 % and image information entropy increases, texture features are enhanced which have been proved by calculation of quantitative indexes such as correlation coefficient and information entropy. Satellite image mosaic and color processing in large area has been well implemented.

  19. Free-breathing Sparse Sampling Cine MR Imaging with Iterative Reconstruction for the Assessment of Left Ventricular Function and Mass at 3.0 T.

    PubMed

    Sudarski, Sonja; Henzler, Thomas; Haubenreisser, Holger; Dösch, Christina; Zenge, Michael O; Schmidt, Michaela; Nadar, Mariappan S; Borggrefe, Martin; Schoenberg, Stefan O; Papavassiliu, Theano

    2017-01-01

    Purpose To prospectively evaluate the accuracy of left ventricle (LV) analysis with a two-dimensional real-time cine true fast imaging with steady-state precession (trueFISP) magnetic resonance (MR) imaging sequence featuring sparse data sampling with iterative reconstruction (SSIR) performed with and without breath-hold (BH) commands at 3.0 T. Materials and Methods Ten control subjects (mean age, 35 years; range, 25-56 years) and 60 patients scheduled to undergo a routine cardiac examination that included LV analysis (mean age, 58 years; range, 20-86 years) underwent a fully sampled segmented multiple BH cine sequence (standard of reference) and a prototype undersampled SSIR sequence performed during a single BH and during free breathing (non-BH imaging). Quantitative analysis of LV function and mass was performed. Linear regression, Bland-Altman analysis, and paired t testing were performed. Results Similar to the results in control subjects, analysis of the 60 patients showed excellent correlation with the standard of reference for single-BH SSIR (r = 0.93-0.99) and non-BH SSIR (r = 0.92-0.98) for LV ejection fraction (EF), volume, and mass (P < .0001 for all). Irrespective of breath holding, LV end-diastolic mass was overestimated with SSIR (standard of reference: 163.9 g ± 58.9, single-BH SSIR: 178.5 g ± 62.0 [P < .0001], non-BH SSIR: 175.3 g ± 63.7 [P < .0001]); the other parameters were not significantly different (EF: 49.3% ± 11.9 with standard of reference, 48.8% ± 11.8 with single-BH SSIR, 48.8% ± 11 with non-BH SSIR; P = .03 and P = .12, respectively). Bland-Altman analysis showed similar measurement errors for single-BH SSIR and non-BH SSIR when compared with standard of reference measurements for EF, volume, and mass. Conclusion Assessment of LV function with SSIR at 3.0 T is noninferior to the standard of reference irrespective of BH commands. LV mass, however, is overestimated with SSIR. © RSNA, 2016 Online supplemental material is available for this article.

  20. Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.

    PubMed

    Fast, Martin F; Eiben, Björn; Menten, Martin J; Wetscherek, Andreas; Hawkes, David J; McClelland, Jamie R; Oelfke, Uwe

    2017-12-01

    Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Sex Differences in Hookah-Related Images Posted on Tumblr: A Content Analysis.

    PubMed

    Primack, Brian A; Carroll, Mary V; Shensa, Ariel; Davis, Wesley; Levine, Michele D

    2016-01-01

    Hookah tobacco smoking is prevalent, widespread, and associated with large amounts of toxicants. Hookah tobacco smoking may be viewed differently by males and females. For example, females have been drawn to types of tobacco that are flavored, milder, and marketed as more social and exotic. Individuals often use the growing segment of anonymous social networking sites, such as Tumblr, to learn about potentially dangerous or harmful behaviors. We used a systematic process involving stratification by time of day, day of week, and search term to gather a sample of 140 Tumblr posts related to hookah tobacco smoking. After a structured codebook development process, 2 coders independently assessed all posts in their entirety, and all disagreements were easily adjudicated. When data on poster sex and age were available, we found that 77% of posts were posted by females and 35% were posted by individuals younger than 18. The most prominent features displayed in all posts were references to or images of hookahs themselves, sexuality, socializing, alcohol, hookah smoke, and tricks performed with hookah smoke. Compared with females, males more frequently posted images of hookahs and alcohol-related images or references. This information may help guide future research in this area and the development of targeted interventions to curb this behavior.

  2. Classifications for Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) site-specific projects: 2010

    USGS Publications Warehouse

    Jones, William R.; Garber, Adrienne

    2013-01-01

    The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funds over 100 wetland restoration projects across Louisiana. Integral to the success of CWPPRA is its long-term monitoring program, which enables State and Federal agencies to determine the effectiveness of each restoration effort. One component of this monitoring program is the classification of high-resolution, color-infrared aerial photography at the U.S. Geological Survey’s National Wetlands Research Center in Lafayette, Louisiana. Color-infrared aerial photography (9- by 9-inch) is obtained before project construction and several times after construction. Each frame is scanned on a photogrametric scanner that produces a high-resolution image in Tagged Image File Format (TIFF). By using image-processing software, these TIFF files are then orthorectified and mosaicked to produce a seamless image of a project area and its associated reference area (a control site near the project that has common environmental features, such as marsh type, soil types, and water salinities.) The project and reference areas are then classified according to pixel value into two distinct classes, land and water. After initial land and water ratios have been established by using photography obtained before and after project construction, subsequent comparisons can be made over time to determine land-water change.

  3. Right Ventricular Strain and Dyssynchrony Assessment in Arrhythmogenic Right Ventricular Cardiomyopathy: Cardiac Magnetic Resonance Feature-Tracking Study.

    PubMed

    Prati, Giulio; Vitrella, Giancarlo; Allocca, Giuseppe; Muser, Daniele; Buttignoni, Sonja Cukon; Piccoli, Gianluca; Morocutti, Giorgio; Delise, Pietro; Pinamonti, Bruno; Proclemer, Alessandro; Sinagra, Gianfranco; Nucifora, Gaetano

    2015-11-01

    Analysis of right ventricular (RV) regional dysfunction by cardiac magnetic resonance (CMR) imaging in arrhythmogenic RV cardiomyopathy (ARVC) may be inadequate because of the complex contraction pattern of the RV. Aim of this study was to determine the use of RV strain and dyssynchrony assessment in ARVC using feature-tracking CMR analysis. Thirty-two consecutive patients with ARVC referred to CMR imaging were included. Thirty-two patients with idiopathic RV outflow tract arrhythmias and 32 control subjects, matched for age and sex to the ARVC group, were included for comparison purpose. CMR imaging was performed to assess biventricular function; feature-tracking analysis was applied to the cine CMR images to assess regional and global longitudinal, circumferential, and radial RV strains and RV dyssynchrony (defined as the SD of the time-to-peak strain of the RV segments). RV global longitudinal strain (-17±5% versus -26±6% versus -29±6%; P<0.001), global circumferential strain (-9±4% versus -12±4% versus -13±5%; P=0.001), and global radial strain (18 [12-26]% versus 22 [15-32]% versus 27 [20-39]%; P=0.015) were significantly lower and SD of the time-to-peak RV strain in all 3 directions were significantly higher among patients with ARVC compared with patients with RV outflow tract arrhythmias and controls. RV global longitudinal strain >-23.2%, SD of the time-to-peak RV longitudinal strain >113.1 ms, and SD of the time-to-peak RV circumferential strain >177.1 ms allowed correct identification of 88%, 75%, and 63% of ARVC patients with no or only minor CMR criteria for ARVC diagnosis. Strain analysis by feature-tracking CMR helps to objectively quantify global and regional RV dysfunction and RV dyssynchrony in patients with ARVC and provides incremental value over conventional cine CMR imaging. © 2015 American Heart Association, Inc.

  4. Biomedical visual data analysis to build an intelligent diagnostic decision support system in medical genetics.

    PubMed

    Kuru, Kaya; Niranjan, Mahesan; Tunca, Yusuf; Osvank, Erhan; Azim, Tayyaba

    2014-10-01

    In general, medical geneticists aim to pre-diagnose underlying syndromes based on facial features before performing cytological or molecular analyses where a genotype-phenotype interrelation is possible. However, determining correct genotype-phenotype interrelationships among many syndromes is tedious and labor-intensive, especially for extremely rare syndromes. Thus, a computer-aided system for pre-diagnosis can facilitate effective and efficient decision support, particularly when few similar cases are available, or in remote rural districts where diagnostic knowledge of syndromes is not readily available. The proposed methodology, visual diagnostic decision support system (visual diagnostic DSS), employs machine learning (ML) algorithms and digital image processing techniques in a hybrid approach for automated diagnosis in medical genetics. This approach uses facial features in reference images of disorders to identify visual genotype-phenotype interrelationships. Our statistical method describes facial image data as principal component features and diagnoses syndromes using these features. The proposed system was trained using a real dataset of previously published face images of subjects with syndromes, which provided accurate diagnostic information. The method was tested using a leave-one-out cross-validation scheme with 15 different syndromes, each of comprised 5-9 cases, i.e., 92 cases in total. An accuracy rate of 83% was achieved using this automated diagnosis technique, which was statistically significant (p<0.01). Furthermore, the sensitivity and specificity values were 0.857 and 0.870, respectively. Our results show that the accurate classification of syndromes is feasible using ML techniques. Thus, a large number of syndromes with characteristic facial anomaly patterns could be diagnosed with similar diagnostic DSSs to that described in the present study, i.e., visual diagnostic DSS, thereby demonstrating the benefits of using hybrid image processing and ML-based computer-aided diagnostics for identifying facial phenotypes. Copyright © 2014. Published by Elsevier B.V.

  5. Computer-assisted liver graft steatosis assessment via learning-based texture analysis.

    PubMed

    Moccia, Sara; Mattos, Leonardo S; Patrini, Ilaria; Ruperti, Michela; Poté, Nicolas; Dondero, Federica; Cauchy, François; Sepulveda, Ailton; Soubrane, Olivier; De Momi, Elena; Diaspro, Alberto; Cesaretti, Manuela

    2018-05-23

    Fast and accurate graft hepatic steatosis (HS) assessment is of primary importance for lowering liver dysfunction risks after transplantation. Histopathological analysis of biopsied liver is the gold standard for assessing HS, despite being invasive and time consuming. Due to the short time availability between liver procurement and transplantation, surgeons perform HS assessment through clinical evaluation (medical history, blood tests) and liver texture visual analysis. Despite visual analysis being recognized as challenging in the clinical literature, few efforts have been invested to develop computer-assisted solutions for HS assessment. The objective of this paper is to investigate the automatic analysis of liver texture with machine learning algorithms to automate the HS assessment process and offer support for the surgeon decision process. Forty RGB images of forty different donors were analyzed. The images were captured with an RGB smartphone camera in the operating room (OR). Twenty images refer to livers that were accepted and 20 to discarded livers. Fifteen randomly selected liver patches were extracted from each image. Patch size was [Formula: see text]. This way, a balanced dataset of 600 patches was obtained. Intensity-based features (INT), histogram of local binary pattern ([Formula: see text]), and gray-level co-occurrence matrix ([Formula: see text]) were investigated. Blood-sample features (Blo) were included in the analysis, too. Supervised and semisupervised learning approaches were investigated for feature classification. The leave-one-patient-out cross-validation was performed to estimate the classification performance. With the best-performing feature set ([Formula: see text]) and semisupervised learning, the achieved classification sensitivity, specificity, and accuracy were 95, 81, and 88%, respectively. This research represents the first attempt to use machine learning and automatic texture analysis of RGB images from ubiquitous smartphone cameras for the task of graft HS assessment. The results suggest that is a promising strategy to develop a fully automatic solution to assist surgeons in HS assessment inside the OR.

  6. Preliminary study of ultrasonic structural quality control of Swiss-type cheese.

    PubMed

    Eskelinen, J J; Alavuotunki, A P; Haeggström, E; Alatossava, T

    2007-09-01

    There is demand for a new nondestructive cheese-structure analysis method for Swiss-type cheese. Such a method would provide the cheese-making industry the means to enhance process control and quality assurance. This paper presents a feasibility study on ultrasonic monitoring of the structural quality of Swiss cheese by using a single-transducer 2-MHz longitudinal mode pulse-echo setup. A volumetric ultrasonic image of a cheese sample featuring gas holes (cheese-eyes) and defects (cracks) in the scan area is presented. The image is compared with an optical reference image constructed from dissection images of the same sample. The results show that the ultrasonic method is capable of monitoring the gas-solid structure of the cheese during the ripening process. Moreover, the method can be used to detect and to characterize cheese-eyes and cracks in ripened cheese. Industrial application demands were taken into account when conducting the measurements.

  7. Fishtail deformity--a delayed complication of distal humeral fractures in children.

    PubMed

    Narayanan, Srikala; Shailam, Randheer; Grottkau, Brian E; Nimkin, Katherine

    2015-06-01

    Concavity in the central portion of the distal humerus is referred to as fishtail deformity. This entity is a rare complication of distal humeral fractures in children. The purpose of this study is to describe imaging features of post-traumatic fishtail deformity and discuss the pathophysiology. We conducted a retrospective analysis of seven cases of fishtail deformity after distal humeral fractures. Seven children ages 7-14 years (five boys, two girls) presented with elbow pain and history of distal humeral fracture. Four of the seven children had limited range of motion. Five children had prior grade 3 supracondylar fracture treated with closed reduction and percutaneous pinning. One child had a medial condylar fracture and another had a lateral condylar fracture; both had been treated with conservative casting. All children had radiographs, five had CT and three had MRI. All children had a concave central defect in the distal humerus. Other imaging features included joint space narrowing with osteophytes and subchondral cystic changes in four children, synovitis in one, hypertrophy or subluxation of the radial head in three and proximal migration of the ulna in two. Fishtail deformity of the distal humerus is a rare complication of distal humeral fractures in children. This entity is infrequently reported in the radiology literature. Awareness of the classic imaging features can result in earlier diagnosis and appropriate treatment.

  8. Mapping surface disturbance of energy-related infrastructure in southwest Wyoming--An assessment of methods

    USGS Publications Warehouse

    Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne

    2012-01-01

    We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.

  9. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.

    PubMed

    Li, Yuqian; Cornelis, Bruno; Dusa, Alexandra; Vanmeerbeeck, Geert; Vercruysse, Dries; Sohn, Erik; Blaszkiewicz, Kamil; Prodanov, Dimiter; Schelkens, Peter; Lagae, Liesbet

    2018-05-01

    Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Speech Signal and Facial Image Processing for Obstructive Sleep Apnea Assessment

    PubMed Central

    Espinoza-Cuadros, Fernando; Fernández-Pozo, Rubén; Toledano, Doroteo T.; Alcázar-Ramírez, José D.; López-Gonzalo, Eduardo; Hernández-Gómez, Luis A.

    2015-01-01

    Obstructive sleep apnea (OSA) is a common sleep disorder characterized by recurring breathing pauses during sleep caused by a blockage of the upper airway (UA). OSA is generally diagnosed through a costly procedure requiring an overnight stay of the patient at the hospital. This has led to proposing less costly procedures based on the analysis of patients' facial images and voice recordings to help in OSA detection and severity assessment. In this paper we investigate the use of both image and speech processing to estimate the apnea-hypopnea index, AHI (which describes the severity of the condition), over a population of 285 male Spanish subjects suspected to suffer from OSA and referred to a Sleep Disorders Unit. Photographs and voice recordings were collected in a supervised but not highly controlled way trying to test a scenario close to an OSA assessment application running on a mobile device (i.e., smartphones or tablets). Spectral information in speech utterances is modeled by a state-of-the-art low-dimensional acoustic representation, called i-vector. A set of local craniofacial features related to OSA are extracted from images after detecting facial landmarks using Active Appearance Models (AAMs). Support vector regression (SVR) is applied on facial features and i-vectors to estimate the AHI. PMID:26664493

  11. Speech Signal and Facial Image Processing for Obstructive Sleep Apnea Assessment.

    PubMed

    Espinoza-Cuadros, Fernando; Fernández-Pozo, Rubén; Toledano, Doroteo T; Alcázar-Ramírez, José D; López-Gonzalo, Eduardo; Hernández-Gómez, Luis A

    2015-01-01

    Obstructive sleep apnea (OSA) is a common sleep disorder characterized by recurring breathing pauses during sleep caused by a blockage of the upper airway (UA). OSA is generally diagnosed through a costly procedure requiring an overnight stay of the patient at the hospital. This has led to proposing less costly procedures based on the analysis of patients' facial images and voice recordings to help in OSA detection and severity assessment. In this paper we investigate the use of both image and speech processing to estimate the apnea-hypopnea index, AHI (which describes the severity of the condition), over a population of 285 male Spanish subjects suspected to suffer from OSA and referred to a Sleep Disorders Unit. Photographs and voice recordings were collected in a supervised but not highly controlled way trying to test a scenario close to an OSA assessment application running on a mobile device (i.e., smartphones or tablets). Spectral information in speech utterances is modeled by a state-of-the-art low-dimensional acoustic representation, called i-vector. A set of local craniofacial features related to OSA are extracted from images after detecting facial landmarks using Active Appearance Models (AAMs). Support vector regression (SVR) is applied on facial features and i-vectors to estimate the AHI.

  12. Methodologies for semiquantitative evaluation of hip osteoarthritis by magnetic resonance imaging: approaches based on the whole organ and focused on active lesions.

    PubMed

    Jaremko, Jacob L; Lambert, Robert G W; Zubler, Veronika; Weber, Ulrich; Loeuille, Damien; Roemer, Frank W; Cibere, Jolanda; Pianta, Marcus; Gracey, David; Conaghan, Philip; Ostergaard, Mikkel; Maksymowych, Walter P

    2014-02-01

    As a wider variety of therapeutic options for osteoarthritis (OA) becomes available, there is an increasing need to objectively evaluate disease severity on magnetic resonance imaging (MRI). This is more technically challenging at the hip than at the knee, and as a result, few systematic scoring systems exist. The OMERACT (Outcome Measures in Rheumatology) filter of truth, discrimination, and feasibility can be used to validate image-based scoring systems. Our objective was (1) to review the imaging features relevant to the assessment of severity and progression of hip OA; and (2) to review currently used methods to grade these features in existing hip OA scoring systems. A systematic literature review was conducted. MEDLINE keyword search was performed for features of arthropathy (such as hip + bone marrow edema or lesion, synovitis, cyst, effusion, cartilage, etc.) and scoring system (hip + OA + MRI + score or grade), with a secondary manual search for additional references in the retrieved publications. Findings relevant to the severity of hip OA include imaging markers associated with inflammation (bone marrow lesion, synovitis, effusion), structural damage (cartilage loss, osteophytes, subchondral cysts, labral tears), and predisposing geometric factors (hip dysplasia, femoral-acetabular impingement). Two approaches to the semiquantitative assessment of hip OA are represented by Hip OA MRI Scoring System (HOAMS), a comprehensive whole organ assessment of nearly all findings, and the Hip Inflammation MRI Scoring System (HIMRISS), which selectively scores only active lesions (bone marrow lesion, synovitis/effusion). Validation is presently confined to limited assessment of reliability. Two methods for semiquantitative assessment of hip OA on MRI have been described and validation according to the OMERACT Filter is limited to evaluation of reliability.

  13. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  14. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  15. Automatic slice-alignment method in cardiac magnetic resonance imaging for evaluation of the right ventricle in patients with pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kenichi; Nitta, Shuhei; Kuhara, Shigehide; Ishimura, Rieko; Kariyasu, Toshiya; Imai, Masamichi; Nitatori, Toshiaki; Takeguchi, Tomoyuki; Shiodera, Taichiro

    2015-09-01

    We propose a new automatic slice-alignment method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, to simplify right ventricular cardiac scan planning and assess its accuracy and the clinical acceptability of the acquired imaging planes in the evaluation of patients with pulmonary hypertension. Steady-state free precession (SSFP) sequences covering the whole heart in the end-diastolic phase with ECG gating were used to acquire 2D axial multislice images. To realize right ventricular scan planning, two morphological feature points are added to be detected and a total of eight morphological features of the heart were extracted from these series of images, and six left ventricular planes and four right ventricular planes were calculated simultaneously based on the extracted features. The subjects were 33 patients (25 with chronic thromboembolic pulmonary hypertension and 8 with idiopathic pulmonary arterial hypertension). The four right ventricular reference planes including right ventricular short-axis, 4-chamber, 2-chamber, and 3-chamber images were evaluated. The acceptability of the acquired imaging planes was visually evaluated using a 4-point scale, and the angular differences between the results obtained by this method and by conventional manual annotation were measured for each view. The average visual scores were 3.9±0.4 for short-axis images, 3.8±0.4 for 4-chamber images, 3.8±0.4 for 2-chamber images, and 3.5±0.6 for 3-chamber images. The average angular differences were 8.7±5.3, 8.3±4.9, 8.1±4.8, and 7.9±5.3 degrees, respectively. The processing time was less than 2.5 seconds in all subjects. The proposed method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, can provide clinically acceptable planes in a short time and is useful because special proficiency in performing cardiac MR for patients with right ventricles of various sizes and shapes is not required.

  16. Baseline coastal oblique aerial photographs collected from Breton Island, Louisiana, to the Alabama-Florida border, July 13, 2013

    USGS Publications Warehouse

    Morgan, Karen L.M.; Westphal, Karen A.

    2014-01-01

    The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On July 13, 2013, the USGS conducted an oblique aerial photographic survey from Breton Island, Louisiana, to the Alabama-Florida border, aboard a Cessna 172 flying at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. This mission was flown to collect baseline data for assessing incremental changes since the last survey, and the data can be used in the assessment of future coastal change. The images provided here are Joint Photographic Experts Group (JPEG) images. ExifTtool was used to add the following to the header of each photo: time of collection, Global Positioning System (GPS) latitude, GPS longitude, keywords, credit, artist (photographer), caption, copyright, and contact information. The photograph locations are an estimate of the position of the aircraft and do not indicate the location of any feature in the images (see the Navigation Data page). These photographs document the configuration of the barrier islands and other coastal features at the time of the survey. Pages containing thumbnail images of the photographs, referred to as contact sheets, were created in 5-minute segments of flight time. These segements can be found on the Photos and Maps page. Photographs can be opened directly with any JPEG-compatible image viewer by clicking on a thumbnail on the contact sheet. Table 1 provides detailed information about the GPS location, name, date, and time each of the 1242 photographs taken along with links to each photograph. The photography is organized into segments, also referred to as contact sheets, and represent approximately 5 minutes of flight time. (Also see the Photos and Maps page). In addition to the photographs, a Google Earth Keyhole Markup Language (KML) file is provided and can be used to view the images by clicking on the marker and then clicking on either the thumbnail or the link above the thumbnail. The KML files were created using the photographic navigation files.

  17. Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, August 8, 2012

    USGS Publications Warehouse

    Morgan, Karen L.M.; Westphal, Karen A.

    2014-01-01

    The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On August 8, 2012, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a Cessna 172 at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. This mission was flown to collect baseline data for assessing incremental changes since the last survey, and the data can be used in the assessment of future coastal change. The images provided here are Joint Photographic Experts Group (JPEG) images. Exiftool was used to add the following to the header of each photo: time of collection, Global Positioning System (GPS) latitude, GPS longitude, keywords, credit, artist (photographer), caption, copyright, and contact information. The photograph locations are an estimate of the position of the aircraft and do not indicate the location of any feature in the images (see the Navigation Data page). These photographs document the configuration of the barrier islands and other coastal features at the time of the survey. Pages containing thumbnail images of the photographs, referred to as contact sheets, were created in 5-minute segments of flight time. These segements can be found on the Photos and Maps page. Photographs can be opened directly with any JPEG-compatible image viewer by clicking on a thumbnail on the contact sheet. Table 1 provides detailed information about the GPS location, name, date, and time each of the 1241 photographs taken along with links to each photograph. The photography is organized into segments, also referred to as contact sheets, and represent approximately 5 minutes of flight time. (Also see the Photos and Maps page). In addition to the photographs, a Google Earth Keyhole Markup Language (KML) file is provided and can be used to view the images by clicking on the marker and then clicking on either the thumbnail or the link above the thumbnail. The KML files were created using the photographic navigation files.

  18. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).

    PubMed

    Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E

    2015-02-01

    Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.

  19. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  20. The Photogrammetry Cube

    NASA Technical Reports Server (NTRS)

    2008-01-01

    We can determine distances between objects and points of interest in 3-D space to a useful degree of accuracy from a set of camera images by using multiple camera views and reference targets in the camera s field of view (FOV). The core of the software processing is based on the previously developed foreign-object debris vision trajectory software (see KSC Research and Technology 2004 Annual Report, pp. 2 5). The current version of this photogrammetry software includes the ability to calculate distances between any specified point pairs, the ability to process any number of reference targets and any number of camera images, user-friendly editing features, including zoom in/out, translate, and load/unload, routines to help mark reference points with a Find function, while comparing them with the reference point database file, and a comprehensive output report in HTML format. In this system, scene reference targets are replaced by a photogrammetry cube whose exterior surface contains multiple predetermined precision 2-D targets. Precise measurement of the cube s 2-D targets during the fabrication phase eliminates the need for measuring 3-D coordinates of reference target positions in the camera's FOV, using for example a survey theodolite or a Faroarm. Placing the 2-D targets on the cube s surface required the development of precise machining methods. In response, 2-D targets were embedded into the surface of the cube and then painted black for high contrast. A 12-inch collapsible cube was developed for room-size scenes. A 3-inch, solid, stainless-steel photogrammetry cube was also fabricated for photogrammetry analysis of small objects.

  1. Development and Evaluation of Reference Standards for Image-based Telemedicine Diagnosis and Clinical Research Studies in Ophthalmology

    PubMed Central

    Ryan, Michael C.; Ostmo, Susan; Jonas, Karyn; Berrocal, Audina; Drenser, Kimberly; Horowitz, Jason; Lee, Thomas C.; Simmons, Charles; Martinez-Castellanos, Maria-Ana; Chan, R.V. Paul; Chiang, Michael F.

    2014-01-01

    Information systems managing image-based data for telemedicine or clinical research applications require a reference standard representing the correct diagnosis. Accurate reference standards are difficult to establish because of imperfect agreement among physicians, and discrepancies between clinical vs. image-based diagnosis. This study is designed to describe the development and evaluation of reference standards for image-based diagnosis, which combine diagnostic impressions of multiple image readers with the actual clinical diagnoses. We show that agreement between image reading and clinical examinations was imperfect (689 [32%] discrepancies in 2148 image readings), as was inter-reader agreement (kappa 0.490-0.652). This was improved by establishing an image-based reference standard defined as the majority diagnosis given by three readers (13% discrepancies with image readers). It was further improved by establishing an overall reference standard that incorporated the clinical diagnosis (10% discrepancies with image readers). These principles of establishing reference standards may be applied to improve robustness of real-world systems supporting image-based diagnosis. PMID:25954463

  2. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

    USGS Publications Warehouse

    Rowan, L.C.; Mars, J.C.; Simpson, C.J.

    2005-01-01

    Spectral measurements made in the Mordor Pound, NT, Australia study area using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), in the laboratory and in situ show dominantly Al-OH and ferric-iron VNIR-SWIR absorption features in felsic rock spectra and ferrous-iron and Fe,Mg-OH features in the mafic-ultramafic rock spectra. ASTER ratio images, matched-filter, and spectral-angle mapper processing (SAM) were evaluated for mapping the lithologies. Matched-filter processing in which VNIR + SWIR image spectra were used for reference resulted in 4 felsic classes and 4 mafic-ultramafic classes based on Al-OH or Fe,Mg-OH absorption features and, in some, subtle reflectance differences related to differential weathering and vegetation. These results were similar to those obtained by match-filter analysis of HyMap data from a previous study, but the units were more clearly demarcated in the HyMap image. ASTER TIR spectral emittance data and laboratory emissivity measurements document a wide wavelength range of Si-O spectral features, which reflect the lithological diversity of the Mordor ultramafic complex and adjacent rocks. SAM processing of the spectral emittance data distinguished 2 classes representing the mafic-ultramafic rocks and 4 classes comprising the quartzose to intermediate composition rocks. Utilization of the complementary attributes of the spectral reflectance and spectral emittance data resulted in discrimination of 4 mafic-ultramafic categories; 3 categories of alluvial-colluvial deposits; and a significantly more completely mapped quartzite unit than could be accomplished by using either data set alone. ?? 2005 Elsevier Inc. All rights reserved.

  3. Thyroid nodule ultrasound: technical advances and future horizons.

    PubMed

    McQueen, Andrew S; Bhatia, Kunwar S S

    2015-04-01

    Thyroid nodules are extremely common and the vast majority are non-malignant; therefore the accurate discrimination of a benign lesion from malignancy is challenging. Ultrasound (US) characterisation has become the key component of many thyroid nodule guidelines and is primarily based on the detection of key features by high-resolution US. The thyroid imager should be familiar with the strengths and limitations of this modality and understand the technical factors that create and alter the imaging characteristics. Specific advances in high-resolution US are discussed with reference to individual features of thyroid cancer and benign disease. Potential roles for three-dimensional thyroid ultrasound and computer-aided diagnosis are also considered. The second section provides an overview of current evidence regarding thyroid ultrasound elastography (USE). USE is a novel imaging technique that quantifies tissue elasticity (stiffness) non-invasively and has potential utility because cancers cause tissue stiffening. In recent years, there has been much research into the value of thyroid USE for distinguishing benign and malignant nodules. Preliminary findings from multiple pilot studies and meta-analyses are promising and suggest that USE can augment the anatomical detail provided by high-resolution US. However, a definite role remains controversial and is discussed. • High-resolution US characterises thyroid nodules by demonstration of specific anatomical features • Technical advances heavily influence the key US features of thyroid nodules • Most papillary carcinomas appear stiffer than benign thyroid nodules on US elastography (USE) • Thyroid USE is controversial because of variation in the reported accuracies for malignancy • Combined grey-scale US/USE may lower the FNAC rate in benign nodules.

  4. Picking Up Artifacts: Storyboarding as a Gateway to Reuse

    NASA Astrophysics Data System (ADS)

    Wahid, Shahtab; Branham, Stacy M.; Cairco, Lauren; McCrickard, D. Scott; Harrison, Steve

    Storyboarding offers designers the opportunity to illustrate a visual narrative of use. Because designers often refer to past ideas, we argue storyboards can be constructed by reusing shared artifacts. We present a study in which we explore how designers reuse artifacts consisting of images and rationale during storyboard construction. We find images can aid in accessing rationale and that connections among features aid in deciding what to reuse, creating new artifacts, and constructing. Based on requirements derived from our findings, we present a storyboarding tool, PIC-UP, to facilitate artifact sharing and reuse and evaluate its use in an exploratory study. We conclude with remarks on facilitating reuse and future work.

  5. ISLE (Image and Signal Processing LISP Environment) reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, R.J.; Searfus, R.M.

    1990-01-01

    ISLE is a rapid prototyping system for performing image and signal processing. It is designed to meet the needs of a person doing development of image and signal processing algorithms in a research environment. The image and signal processing modules in ISLE form a very capable package in themselves. They also provide a rich environment for quickly and easily integrating user-written software modules into the package. ISLE is well suited to applications in which there is a need to develop a processing algorithm in an interactive manner. It is straightforward to develop the algorithms, load it into ISLE, apply themore » algorithm to an image or signal, display the results, then modify the algorithm and repeat the develop-load-apply-display cycle. ISLE consists of a collection of image and signal processing modules integrated into a cohesive package through a standard command interpreter. ISLE developer elected to concentrate their effort on developing image and signal processing software rather than developing a command interpreter. A COMMON LISP interpreter was selected for the command interpreter because it already has the features desired in a command interpreter, it supports dynamic loading of modules for customization purposes, it supports run-time parameter and argument type checking, it is very well documented, and it is a commercially supported product. This manual is intended to be a reference manual for the ISLE functions The functions are grouped into a number of categories and briefly discussed in the Function Summary chapter. The full descriptions of the functions and all their arguments are given in the Function Descriptions chapter. 6 refs.« less

  6. Efficient burst image compression using H.265/HEVC

    NASA Astrophysics Data System (ADS)

    Roodaki-Lavasani, Hoda; Lainema, Jani

    2014-02-01

    New imaging use cases are emerging as more powerful camera hardware is entering consumer markets. One family of such use cases is based on capturing multiple pictures instead of just one when taking a photograph. That kind of a camera operation allows e.g. selecting the most successful shot from a sequence of images, showing what happened right before or after the shot was taken or combining the shots by computational means to improve either visible characteristics of the picture (such as dynamic range or focus) or the artistic aspects of the photo (e.g. by superimposing pictures on top of each other). Considering that photographic images are typically of high resolution and quality and the fact that these kind of image bursts can consist of at least tens of individual pictures, an efficient compression algorithm is desired. However, traditional video coding approaches fail to provide the random access properties these use cases require to achieve near-instantaneous access to the pictures in the coded sequence. That feature is critical to allow users to browse the pictures in an arbitrary order or imaging algorithms to extract desired pictures from the sequence quickly. This paper proposes coding structures that provide such random access properties while achieving coding efficiency superior to existing image coders. The results indicate that using HEVC video codec with a single reference picture fixed for the whole sequence can achieve nearly as good compression as traditional IPPP coding structures. It is also shown that the selection of the reference frame can further improve the coding efficiency.

  7. A non-reference evaluation method for edge detection of wear particles in ferrograph images

    NASA Astrophysics Data System (ADS)

    Wang, Jingqiu; Bi, Ju; Wang, Lianjun; Wang, Xiaolei

    2018-02-01

    Edges are one of the most important features of wear particles in a ferrograph image and are widely used to extract parameters, recognize types of wear particles, and assist in the identification of the wear mode and severity. Edge detection is a critical step in ferrograph image processing and analysis. Till date, there has been no single algorithm that guarantees the production of good quality edges in ferrograph images for a variety of applications. Therefore, it is desirable to have a reliable evaluation method for measuring the performance of various edge detection algorithms and for aiding in the selection of the optimal parameter and algorithm for ferrographic applications. In this paper, a new non-reference method for the objective evaluation of wear particle edge detection is proposed. In this method, a comprehensive index of edge evaluation is composed of three components, i.e., the reconstruction based similarity sub-index between the original image and the reconstructed image, the confidence degree sub-index used to show the true or false degree of the edge pixels, and the edge form sub-index that is used to determine the direction consistency and width uniformity of the edges. Two experiments are performed to illustrate the validity of the proposed method. First, this method is used to select the best parameters for an edge detection algorithm, and it is then used to compare the results obtained using various edge detection algorithms and determine the best algorithm. Experimental results of various real ferrograph images verify the effectiveness of the proposed method.

  8. SU-F-R-36: Validating Quantitative Radiomic Texture Features for Oncologic PET: A Digital Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Yang, Y; Young, L

    Purpose: Radiomic texture features derived from the oncologic PET have recently been brought under intense investigation within the context of patient stratification and treatment outcome prediction in a variety of cancer types; however, their validity has not yet been examined. This work is aimed to validate radiomic PET texture metrics through the use of realistic simulations in the ground truth setting. Methods: Simulation of FDG-PET was conducted by applying the Zubal phantom as an attenuation map to the SimSET software package that employs Monte Carlo techniques to model the physical process of emission imaging. A total of 15 irregularly-shaped lesionsmore » featuring heterogeneous activity distribution were simulated. For each simulated lesion, 28 texture features in relation to the intensity histograms (GLIH), grey-level co-occurrence matrices (GLCOM), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated and compared with their respective values extracted from the ground truth activity map. Results: In reference to the values from the ground truth images, texture parameters appearing on the simulated data varied with a range of 0.73–3026.2% for GLIH-based, 0.02–100.1% for GLCOM-based, 1.11–173.8% for GLNDM-based, and 0.35–66.3% for GLZSM-based. For majority of the examined texture metrics (16/28), their values on the simulated data differed significantly from those from the ground truth images (P-value ranges from <0.0001 to 0.04). Features not exhibiting significant difference comprised of GLIH-based standard deviation, GLCO-based energy and entropy, GLND-based coarseness and contrast, and GLZS-based low gray-level zone emphasis, high gray-level zone emphasis, short zone low gray-level emphasis, long zone low gray-level emphasis, long zone high gray-level emphasis, and zone size nonuniformity. Conclusion: The extent to which PET imaging disturbs texture appearance is feature-dependent and could be substantial. It is thus advised that use of PET texture parameters for predictive and prognostic measurements in oncologic setting awaits further systematic and critical evaluation.« less

  9. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  10. Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size.

    PubMed

    Morgan, Kaye S; Paganin, David M; Siu, Karen K W

    2011-01-01

    The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size. A grating is used to create a high-visibility reference pattern incident on the sample, which is distorted according to the complex refractive index and thickness of the sample. The resolution, along a line parallel to the grating, is not restricted by the grating spacing, and the detector resolution becomes the primary determinant of the spatial resolution. We present a method of analysis that maps the displacement of interrogation windows in order to retrieve a quantitative phase map. Application of this analysis to the imaging of known phantoms shows excellent correspondence.

  11. Generating Mosaics of Astronomical Images

    NASA Technical Reports Server (NTRS)

    Bergou, Attila; Berriman, Bruce; Good, John; Jacob, Joseph; Katz, Daniel; Laity, Anastasia; Prince, Thomas; Williams, Roy

    2005-01-01

    "Montage" is the name of a service of the National Virtual Observatory (NVO), and of software being developed to implement the service via the World Wide Web. Montage generates science-grade custom mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. "Science-grade" in this context signifies that terrestrial and instrumental features are removed from images in a way that can be described quantitatively. "Custom" refers to user-specified parameters of projection, coordinates, size, rotation, and spatial sampling. The greatest value of Montage is expected to lie in its ability to analyze images at multiple wavelengths, delivering them on a common projection, coordinate system, and spatial sampling, and thereby enabling further analysis as though they were part of a single, multi-wavelength image. Montage will be deployed as a computation-intensive service through existing astronomy portals and other Web sites. It will be integrated into the emerging NVO architecture and will be executed on the TeraGrid. The Montage software will also be portable and publicly available.

  12. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    PubMed

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  13. Digital shaded relief image of a carbonate platform (northern Great Bahama Bank): Scenery seen and unseen

    NASA Astrophysics Data System (ADS)

    Boss, Stephen K.

    1996-11-01

    A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise.

  14. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  15. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganelli, Chiara; Peroni, Marta; Baroni, Guido

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application ofmore » contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT, providing a motion description comparable to expert manual identification, as confirmed by DIR.Conclusions: The application of the method to a 4D lung CT patient dataset demonstrated adaptive-SIFT potential as an automatic tool to detect landmarks for DIR regularization and internal motion quantification. Future works should include the optimization of the computational cost and the application of the method to other anatomical sites and image modalities.« less

  16. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1990-01-01

    A process is disclosed for x ray registration and differencing which results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  17. Digital Data Registration and Differencing Compression System

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1996-01-01

    A process for X-ray registration and differencing results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic X-ray digital images.

  18. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1992-01-01

    A process for x ray registration and differencing results in more efficient compression is discussed. Differencing of registered modeled subject image with a modeled reference image forms a differential image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three dimensional model, which three dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  19. A data model and database for high-resolution pathology analytical image informatics.

    PubMed

    Wang, Fusheng; Kong, Jun; Cooper, Lee; Pan, Tony; Kurc, Tahsin; Chen, Wenjin; Sharma, Ashish; Niedermayr, Cristobal; Oh, Tae W; Brat, Daniel; Farris, Alton B; Foran, David J; Saltz, Joel

    2011-01-01

    The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS), and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs). (1) Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2) Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole slides and TMAs within several minutes. Hence, it is becoming increasingly feasible for basic, clinical, and translational research studies to produce thousands of whole-slide images. Systematic analysis of these large datasets requires efficient data management support for representing and indexing results from hundreds of interrelated analyses generating very large volumes of quantifications such as shape and texture and of classifications of the quantified features. We have designed a data model and a database to address the data management requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines. The data model represents virtual slide related image, annotation, markup and feature information. The database supports a wide range of metadata and spatial queries on images, annotations, markups, and features. We currently have three databases running on a Dell PowerEdge T410 server with CentOS 5.5 Linux operating system. The database server is IBM DB2 Enterprise Edition 9.7.2. The set of databases consists of 1) a TMA database containing image analysis results from 4740 cases of breast cancer, with 641 MB storage size; 2) an algorithm validation database, which stores markups and annotations from two segmentation algorithms and two parameter sets on 18 selected slides, with 66 GB storage size; and 3) an in silico brain tumor study database comprising results from 307 TCGA slides, with 365 GB storage size. The latter two databases also contain human-generated annotations and markups for regions and nuclei. Modeling and managing pathology image analysis results in a database provide immediate benefits on the value and usability of data in a research study. The database provides powerful query capabilities, which are otherwise difficult or cumbersome to support by other approaches such as programming languages. Standardized, semantic annotated data representation and interfaces also make it possible to more efficiently share image data and analysis results.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance andmore » diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand-alone imaging system showed contrast discrimination of 47%, while the CT imaging system showed a discrimination of only 1.5%. The structural similarity index measure showed a drop of 24% with EIT imaging compared to CT imaging. The average detectability measure for CT imaging was found to be 2.375 ± 0.19 before fusion. After complementing with EIT information, the detectability measure increased to 11.06 ± 2.04. Based on the feature metrics, the functional imaging quality of CT and EIT were found to be 2.29% and 86%, respectively, before fusion. Structural imaging quality was found to be 66% for CT and 16% for EIT. After fusion, functional imaging quality improved in CT imaging from 2.29% to 42% and the structural imaging quality of EIT imaging changed from 16% to 66%. The improvement in image quality was also observed in detecting objects of different sizes. Conclusions: The authors found a significant improvement in the contrast detectability performance of CT imaging when complemented with functional imaging information from EIT. Along with the feature assessment metrics, the concept of complementing CT with EIT imaging can lead to an EIT/CT imaging modality which might fully utilize the functional imaging abilities of EIT imaging, thereby enhancing the quality of care in the areas of cancer diagnosis and radiotherapy treatment planning.« less

  1. What constitutes an efficient reference frame for vision?

    PubMed Central

    Tadin, Duje; Lappin, Joseph S.; Blake, Randolph; Grossman, Emily D.

    2015-01-01

    Vision requires a reference frame. To what extent does this reference frame depend on the structure of the visual input, rather than just on retinal landmarks? This question is particularly relevant to the perception of dynamic scenes, when keeping track of external motion relative to the retina is difficult. We tested human subjects’ ability to discriminate the motion and temporal coherence of changing elements that were embedded in global patterns and whose perceptual organization was manipulated in a way that caused only minor changes to the retinal image. Coherence discriminations were always better when local elements were perceived to be organized as a global moving form than when they were perceived to be unorganized, individually moving entities. Our results indicate that perceived form influences the neural representation of its component features, and from this, we propose a new method for studying perceptual organization. PMID:12219092

  2. Multispectral image fusion based on fractal features

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the composition of source pyramid images. So this fusion scheme is a multi-resolution analysis. The wavelet decomposition of image can be actually considered as special pyramid decomposition. According to wavelet decomposition theories, the approximation of image (formula available in paper) at resolution 2j+1 equal to its orthogonal projection in space , that is, where Ajf is the low-frequency approximation of image f(x, y) at resolution 2j and , , represent the vertical, horizontal and diagonal wavelet coefficients respectively at resolution 2j. These coefficients describe the high-frequency information of image at direction of vertical, horizontal and diagonal respectively. Ajf, , and are independent and can be considered as images. In this paper J is set to be 1, so the source image is decomposed to produce the son-images Af, D1f, D2f and D3f. To solve the problem of detecting artifacts, the concepts of vertical fractal dimension FD1, horizontal fractal dimension FD2 and diagonal fractal dimension FD3 are proposed in this paper. The vertical fractal dimension FD1 corresponds to the vertical wavelet coefficients image after the wavelet decomposition of source image, the horizontal fractal dimension FD2 corresponds to the horizontal wavelet coefficients and the diagonal fractal dimension FD3 the diagonal one. These definitions enrich the illustration of source images. Therefore they are helpful to classify the targets. Then the detection of artifacts in the decomposed images is a problem of pattern recognition in 4-D space. The combination of FD0, FD1, FD2 and FD3 make a vector of (FD0, FD1, FD2, FD3), which can be considered as a united feature vector of the studied image. All the parts of the images are classified in the 4-D pattern space created by the vector of (FD0, FD1, FD2, FD3) so that the area that contains man-made objects could be detected. This detection can be considered as a coarse recognition, and then the significant areas in each son-images are signed so that they can be dealt with special rules. There has been various fusion rules developed with each one aiming at a special problem. These rules have different performance, so it is very important to select an appropriate rule during the design of an image fusion system. Recent research denotes that the rule should be adjustable so that it is always suitable to extrude the features of targets and to preserve the pixels of useful information. In this paper, owing to the consideration that fractal dimension is one of the main features to distinguish man-made targets from natural objects, the fusion rule was defined that if the studied region of image contains man-made target, the pixels of the source image whose fractal dimension is minimal are saved to be the pixels of the fused image, otherwise, a weighted average operator is adopted to avoid loss of information. The main idea of this rule is to store the pixels with low fractal dimensions, so it can be named Minimal Fractal dimensions (MFD) fusion rule. This fractal-based algorithm is compared with a common weighted average fusion algorithm. An objective assessment is taken to the two fusion results. The criteria of Entropy, Cross-Entropy, Peak Signal-to-Noise Ratio (PSNR) and Standard Gray Scale Difference are defined in this paper. Reversely to the idea of constructing an ideal image as the assessing reference, the source images are selected to be the reference in this paper. It can be deemed that this assessment is to calculate how much the image quality has been enhanced and the quantity of information has been increased when the fused image is compared with the source images. The experimental results imply that the fractal-based multi-spectral fusion algorithm can effectively preserve the information of man-made objects with a high contrast. It is proved that this algorithm could well preserve features of military targets because that battlefield targets are most man-made objects and in common their images differ from fractal models obviously. Furthermore, the fractal features are not sensitive to the imaging conditions and the movement of targets, so this fractal-based algorithm may be very practical.

  3. Interactive content-based image retrieval (CBIR) computer-aided diagnosis (CADx) system for ultrasound breast masses using relevance feedback

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-chong; Hadjiiski, Lubomir; Sahiner, Berkman; Chan, Heang-Ping; Paramagul, Chintana; Helvie, Mark; Nees, Alexis V.

    2012-03-01

    We designed a Content-Based Image Retrieval (CBIR) Computer-Aided Diagnosis (CADx) system to assist radiologists in characterizing masses on ultrasound images. The CADx system retrieves masses that are similar to a query mass from a reference library based on computer-extracted features that describe texture, width-to-height ratio, and posterior shadowing of a mass. Retrieval is performed with k nearest neighbor (k-NN) method using Euclidean distance similarity measure and Rocchio relevance feedback algorithm (RRF). In this study, we evaluated the similarity between the query and the retrieved masses with relevance feedback using our interactive CBIR CADx system. The similarity assessment and feedback were provided by experienced radiologists' visual judgment. For training the RRF parameters, similarities of 1891 image pairs obtained from 62 masses were rated by 3 MQSA radiologists using a 9-point scale (9=most similar). A leave-one-out method was used in training. For each query mass, 5 most similar masses were retrieved from the reference library using radiologists' similarity ratings, which were then used by RRF to retrieve another 5 masses for the same query. The best RRF parameters were chosen based on three simulated observer experiments, each of which used one of the radiologists' ratings for retrieval and relevance feedback. For testing, 100 independent query masses on 100 images and 121 reference masses on 230 images were collected. Three radiologists rated the similarity between the query and the computer-retrieved masses. Average similarity ratings without and with RRF were 5.39 and 5.64 on the training set and 5.78 and 6.02 on the test set, respectively. The average Az values without and with RRF were 0.86+/-0.03 and 0.87+/-0.03 on the training set and 0.91+/-0.03 and 0.90+/-0.03 on the test set, respectively. This study demonstrated that RRF improved the similarity of the retrieved masses.

  4. Unsupervised feature learning for autonomous rock image classification

    NASA Astrophysics Data System (ADS)

    Shu, Lei; McIsaac, Kenneth; Osinski, Gordon R.; Francis, Raymond

    2017-09-01

    Autonomous rock image classification can enhance the capability of robots for geological detection and enlarge the scientific returns, both in investigation on Earth and planetary surface exploration on Mars. Since rock textural images are usually inhomogeneous and manually hand-crafting features is not always reliable, we propose an unsupervised feature learning method to autonomously learn the feature representation for rock images. In our tests, rock image classification using the learned features shows that the learned features can outperform manually selected features. Self-taught learning is also proposed to learn the feature representation from a large database of unlabelled rock images of mixed class. The learned features can then be used repeatedly for classification of any subclass. This takes advantage of the large dataset of unlabelled rock images and learns a general feature representation for many kinds of rocks. We show experimental results supporting the feasibility of self-taught learning on rock images.

  5. New technology and regional studies in human ecology: A Papua New Guinea example

    NASA Technical Reports Server (NTRS)

    Morren, George E. B., Jr.

    1991-01-01

    Two key issues in using technologies such as digital image processing and geographic information systems are a conceptually and methodologically valid research design and the exploitation of varied sources of data. With this realized, the new technologies offer anthropologists the opportunity to test hypotheses about spatial and temporal variations in the features of interest within a regionally coherent mosaic of social groups and landscapes. Current research on the Mountain OK of Papua New Guinea is described with reference to these issues.

  6. Instructional Videos for Unsupervised Harvesting and Learning of Action Examples

    DTIC Science & Technology

    2014-11-03

    collection of image or video anno - tations has been tackled in different ways, but most existing methods still require a human in the loop. The...the views of ARO and NSF. 7. REFERENCES [1] C.-C. Chang and C.- J . Lin. LIBSVM: A library for support vector machines. In ACM Transactions on...feature encoding methods. In BMVC, 2011. [3] J . Chen, Y. Cui, G. Ye, D. Liu, and S.-F. Chang. Event-driven semantic concept discovery by exploiting

  7. Progressive multifocal leukoence--phalopathy presenting as homonymous hemianopia in a patient with acquired immunodeficiency syndrome.

    PubMed

    Pandey, Amit; Bandivdekar, Karishma; Ramchandani, Suresh; Ramchandani, Sushama

    2012-01-01

    We present a case of a Human Immunodeficiency Virus (HIV) positive patient who was referred for retinal evaluation to rule out ophthalmic manifestations of Acquired Immunodeficiency Syndrome (AIDS). She complained of some disturbance in vision in both eyes. Fundus examination showed no abnormality. Perimetry, done to rule out optic nerve pathology, showed a left homonymous hemianopia. Magnetic Resonance Imaging (MRI) scan showed features of Progressive Multifocal Leukoencephalopathy (PML). She had no other neurological symptoms or signs.

  8. Unusual Bone Superscan, MIBG Superscan, and 68Ga DOTATATE PET/CT in Metastatic Pheochromocytoma.

    PubMed

    Tan, Teik Hin; Wong, Teck Huat; Hassan, Siti Zarina Amir; Lee, Boon Nang

    2015-11-01

    A 17-year-old adolescent boy with biochemically raised 2-hour urinary metanephrine and normetanephrine as well as CT findings of retroperitoneal soft tissue mass and bony metastases was referred for further assessment. Apart from Ga DOTATATE PET/CT evaluation, pretargeted systemic radionuclide therapy assessment with I-MIBG scintigraphy showed unusual phenomenon of MIBG superscan. Postsurgically, restaging Tc-MDP bone scintigraphy showed typical bone superscan features. The MIBG superscan was better delineated on post-I-MIBG therapy images.

  9. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Online coupled camera pose estimation and dense reconstruction from video

    DOEpatents

    Medioni, Gerard; Kang, Zhuoliang

    2016-11-01

    A product may receive each image in a stream of video image of a scene, and before processing the next image, generate information indicative of the position and orientation of an image capture device that captured the image at the time of capturing the image. The product may do so by identifying distinguishable image feature points in the image; determining a coordinate for each identified image feature point; and for each identified image feature point, attempting to identify one or more distinguishable model feature points in a three dimensional (3D) model of at least a portion of the scene that appears likely to correspond to the identified image feature point. Thereafter, the product may find each of the following that, in combination, produce a consistent projection transformation of the 3D model onto the image: a subset of the identified image feature points for which one or more corresponding model feature points were identified; and, for each image feature point that has multiple likely corresponding model feature points, one of the corresponding model feature points. The product may update a 3D model of at least a portion of the scene following the receipt of each video image and before processing the next video image base on the generated information indicative of the position and orientation of the image capture device at the time of capturing the received image. The product may display the updated 3D model after each update to the model.

  11. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oines, A; Oines, A; Kilian-Meneghin, J

    2016-06-15

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  12. Imaging of sound speed using reflection ultrasound tomography.

    PubMed

    Nebeker, Jakob; Nelson, Thomas R

    2012-09-01

    The goal of this work was to obtain and evaluate measurements of tissue sound speed in the breast, particularly dense breasts, using backscatter ultrasound tomography. An automated volumetric breast ultrasound scanner was constructed for imaging the prone patient. A 5- to 7-MHz linear array transducer acquired 17,920 radiofrequency pulse echo A-lines from the breast, and a back-wall reflector rotated over 360° in 25 seconds. Sound speed images used reflector echoes that after preprocessing were uploaded into a graphics processing unit for filtered back-projection reconstruction. A velocimeter also was constructed to measure the sound speed and attenuation for comparison to scanner performance. Measurements were made using the following: (1) deionized water from 22°C to 90°C; (2) various fluids with sound speeds from 1240 to 1904 m/s; (3) acrylamide gel test objects with features from 1 to 15 mm in diameter; and (4) healthy volunteers. The mean error ± SD between sound speed reference and image data was -0.48% ± 9.1%, and the error between reference and velocimeter measurements was -1.78% ± 6.50%. Sound speed image and velocimeter measurements showed a difference of 0.10% ± 4.04%. Temperature data showed a difference between theory and imaging performance of -0.28% ± 0.22%. Images of polyacrylamide test objects showed detectability of an approximately 1% sound speed difference in a 2.4-mm cylindrical inclusion with a contrast to noise ratio of 7.9 dB. An automated breast scanner offers the potential to make consistent automated tomographic images of breast backscatter, sound speed, and attenuation, potentially improving diagnosis, particularly in dense breasts.

  13. Syntactic Approach To Geometric Surface Shell Determination

    NASA Astrophysics Data System (ADS)

    DeGryse, Donald G.; Panton, Dale J.

    1980-12-01

    Autonomous terminal homing of a smart missile requires a stored reference scene of the target for which the missle is destined. The reference scene is produced from stereo source imagery by deriving a three-dimensional model containing cultural structures such as buildings, towers, bridges, and tanks. This model is obtained by the precise matching of cultural features from one image of the stereo pair to the other. In the past, this stereo matching process has relied heavily on local edge operators and a gray scale matching metric. The processing is performed line by line over the imagery and the amount of geometric control is minimal. As a result, the gross structure of the scene is determined but the derived three-dimensional data is noisy, oscillatory, and at times significantly inaccurate. This paper discusses new concepts that are currently being developed to stabilize this geometric reference preparation process. The new concepts involve the use of a structural syntax which will be used as a geometric constraint on automatic stereo matching. The syntax arises from the stereo configuration of the imaging platforms at the time of exposure and the knowledge of how various cultural structures are constructed. The syntax is used to parse a scene in terms of its cultural surfaces and to dictate to the matching process the allowable relative positions and orientations of surface edges in the image planes. Using the syntax, extensive searches using a gray scale matching metric are reduced.

  14. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    PubMed

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.

  15. Where's Wally: the influence of visual salience on referring expression generation.

    PubMed

    Clarke, Alasdair D F; Elsner, Micha; Rohde, Hannah

    2013-01-01

    REFERRING EXPRESSION GENERATION (REG) PRESENTS THE CONVERSE PROBLEM TO VISUAL SEARCH: given a scene and a specified target, how does one generate a description which would allow somebody else to quickly and accurately locate the target?Previous work in psycholinguistics and natural language processing has failed to find an important and integrated role for vision in this task. That previous work, which relies largely on simple scenes, tends to treat vision as a pre-process for extracting feature categories that are relevant to disambiguation. However, the visual search literature suggests that some descriptions are better than others at enabling listeners to search efficiently within complex stimuli. This paper presents a study testing whether participants are sensitive to visual features that allow them to compose such "good" descriptions. Our results show that visual properties (salience, clutter, area, and distance) influence REG for targets embedded in images from the Where's Wally? books. Referring expressions for large targets are shorter than those for smaller targets, and expressions about targets in highly cluttered scenes use more words. We also find that participants are more likely to mention non-target landmarks that are large, salient, and in close proximity to the target. These findings identify a key role for visual salience in language production decisions and highlight the importance of scene complexity for REG.

  16. Apparatus for generating x-ray holograms

    DOEpatents

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  17. Apparatus for generating x-ray holograms

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith; Solem, Johndale C.; Haddad, Waleed S.

    1990-01-01

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  18. Bag of Lines (BoL) for Improved Aerial Scene Representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Harini; Cheriyadat, Anil M.

    2014-09-22

    Feature representation is a key step in automated visual content interpretation. In this letter, we present a robust feature representation technique, referred to as bag of lines (BoL), for high-resolution aerial scenes. The proposed technique involves extracting and compactly representing low-level line primitives from the scene. The compact scene representation is generated by counting the different types of lines representing various linear structures in the scene. Through extensive experiments, we show that the proposed scene representation is invariant to scale changes and scene conditions and can discriminate urban scene categories accurately. We compare the BoL representation with the popular scalemore » invariant feature transform (SIFT) and Gabor wavelets for their classification and clustering performance on an aerial scene database consisting of images acquired by sensors with different spatial resolutions. The proposed BoL representation outperforms the SIFT- and Gabor-based representations.« less

  19. A fast image matching algorithm based on key points

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Wang, Ying; An, Ru; Yan, Peng

    2014-05-01

    Image matching is a very important technique in image processing. It has been widely used for object recognition and tracking, image retrieval, three-dimensional vision, change detection, aircraft position estimation, and multi-image registration. Based on the requirements of matching algorithm for craft navigation, such as speed, accuracy and adaptability, a fast key point image matching method is investigated and developed. The main research tasks includes: (1) Developing an improved celerity key point detection approach using self-adapting threshold of Features from Accelerated Segment Test (FAST). A method of calculating self-adapting threshold was introduced for images with different contrast. Hessian matrix was adopted to eliminate insecure edge points in order to obtain key points with higher stability. This approach in detecting key points has characteristics of small amount of computation, high positioning accuracy and strong anti-noise ability; (2) PCA-SIFT is utilized to describe key point. 128 dimensional vector are formed based on the SIFT method for the key points extracted. A low dimensional feature space was established by eigenvectors of all the key points, and each eigenvector was projected onto the feature space to form a low dimensional eigenvector. These key points were re-described by dimension-reduced eigenvectors. After reducing the dimension by the PCA, the descriptor was reduced to 20 dimensions from the original 128. This method can reduce dimensions of searching approximately near neighbors thereby increasing overall speed; (3) Distance ratio between the nearest neighbour and second nearest neighbour searching is regarded as the measurement criterion for initial matching points from which the original point pairs matched are obtained. Based on the analysis of the common methods (e.g. RANSAC (random sample consensus) and Hough transform cluster) used for elimination false matching point pairs, a heuristic local geometric restriction strategy is adopted to discard false matched point pairs further; and (4) Affine transformation model is introduced to correct coordinate difference between real-time image and reference image. This resulted in the matching of the two images. SPOT5 Remote sensing images captured at different date and airborne images captured with different flight attitude were used to test the performance of the method from matching accuracy, operation time and ability to overcome rotation. Results show the effectiveness of the approach.

  20. Image ratio features for facial expression recognition application.

    PubMed

    Song, Mingli; Tao, Dacheng; Liu, Zicheng; Li, Xuelong; Zhou, Mengchu

    2010-06-01

    Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e.g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.

  1. Operator for object recognition and scene analysis by estimation of set occupancy with noisy and incomplete data sets

    NASA Astrophysics Data System (ADS)

    Rees, S. J.; Jones, Bryan F.

    1992-11-01

    Once feature extraction has occurred in a processed image, the recognition problem becomes one of defining a set of features which maps sufficiently well onto one of the defined shape/object models to permit a claimed recognition. This process is usually handled by aggregating features until a large enough weighting is obtained to claim membership, or an adequate number of located features are matched to the reference set. A requirement has existed for an operator or measure capable of a more direct assessment of membership/occupancy between feature sets, particularly where the feature sets may be defective representations. Such feature set errors may be caused by noise, by overlapping of objects, and by partial obscuration of features. These problems occur at the point of acquisition: repairing the data would then assume a priori knowledge of the solution. The technique described in this paper offers a set theoretical measure for partial occupancy defined in terms of the set of minimum additions to permit full occupancy and the set of locations of occupancy if such additions are made. As is shown, this technique permits recognition of partial feature sets with quantifiable degrees of uncertainty. A solution to the problems of obscuration and overlapping is therefore available.

  2. Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C.

    2015-01-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art. PMID:26552069

  3. Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning.

    PubMed

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Munsell, Brent C; Shen, Dinggang

    2016-07-01

    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked autoencoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework, image registration experiments were conducted on 7.0-T brain MR images. In all experiments, the results showed that the new image registration framework consistently demonstrated more accurate registration results when compared to state of the art.

  4. Automatic parquet block sorting using real-time spectral classification

    NASA Astrophysics Data System (ADS)

    Astrom, Anders; Astrand, Erik; Johansson, Magnus

    1999-03-01

    This paper presents a real-time spectral classification system based on the PGP spectrograph and a smart image sensor. The PGP is a spectrograph which extracts the spectral information from a scene and projects the information on an image sensor, which is a method often referred to as Imaging Spectroscopy. The classification is based on linear models and categorizes a number of pixels along a line. Previous systems adopting this method have used standard sensors, which often resulted in poor performance. The new system, however, is based on a patented near-sensor classification method, which exploits analogue features on the smart image sensor. The method reduces the enormous amount of data to be processed at an early stage, thus making true real-time spectral classification possible. The system has been evaluated on hardwood parquet boards showing very good results. The color defects considered in the experiments were blue stain, white sapwood, yellow decay and red decay. In addition to these four defect classes, a reference class was used to indicate correct surface color. The system calculates a statistical measure for each parquet block, giving the pixel defect percentage. The patented method makes it possible to run at very high speeds with a high spectral discrimination ability. Using a powerful illuminator, the system can run with a line frequency exceeding 2000 line/s. This opens up the possibility to maintain high production speed and still measure with good resolution.

  5. Application of Convolutional Neural Network in Classification of High Resolution Agricultural Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.

    2017-09-01

    With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  6. Automated Ki-67 Quantification of Immunohistochemical Staining Image of Human Nasopharyngeal Carcinoma Xenografts.

    PubMed

    Shi, Peng; Zhong, Jing; Hong, Jinsheng; Huang, Rongfang; Wang, Kaijun; Chen, Yunbin

    2016-08-26

    Nasopharyngeal carcinoma is one of the malignant neoplasm with high incidence in China and south-east Asia. Ki-67 protein is strictly associated with cell proliferation and malignant degree. Cells with higher Ki-67 expression are always sensitive to chemotherapy and radiotherapy, the assessment of which is beneficial to NPC treatment. It is still challenging to automatically analyze immunohistochemical Ki-67 staining nasopharyngeal carcinoma images due to the uneven color distributions in different cell types. In order to solve the problem, an automated image processing pipeline based on clustering of local correlation features is proposed in this paper. Unlike traditional morphology-based methods, our algorithm segments cells by classifying image pixels on the basis of local pixel correlations from particularly selected color spaces, then characterizes cells with a set of grading criteria for the reference of pathological analysis. Experimental results showed high accuracy and robustness in nucleus segmentation despite image data variance. Quantitative indicators obtained in this essay provide a reliable evidence for the analysis of Ki-67 staining nasopharyngeal carcinoma microscopic images, which would be helpful in relevant histopathological researches.

  7. Performance evaluation of multi-material electronic cleansing for ultra-low-dose dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Kohlhase, Naja; Näppi, Janne J.; Hironaka, Toru; Ota, Junko; Ishida, Takayuki; Regge, Daniele; Yoshida, Hiroyuki

    2016-03-01

    Accurate electronic cleansing (EC) for CT colonography (CTC) enables the visualization of the entire colonic surface without residual materials. In this study, we evaluated the accuracy of a novel multi-material electronic cleansing (MUMA-EC) scheme for non-cathartic ultra-low-dose dual-energy CTC (DE-CTC). The MUMA-EC performs a wateriodine material decomposition of the DE-CTC images and calculates virtual monochromatic images at multiple energies, after which a random forest classifier is used to label the images into the regions of lumen air, soft tissue, fecal tagging, and two types of partial-volume boundaries based on image-based features. After the labeling, materials other than soft tissue are subtracted from the CTC images. For pilot evaluation, 384 volumes of interest (VOIs), which represented sources of subtraction artifacts observed in current EC schemes, were sampled from 32 ultra-low-dose DE-CTC scans. The voxels in the VOIs were labeled manually to serve as a reference standard. The metric for EC accuracy was the mean overlap ratio between the labels of the reference standard and the labels generated by the MUMA-EC, a dualenergy EC (DE-EC), and a single-energy EC (SE-EC) scheme. Statistically significant differences were observed between the performance of the MUMA/DE-EC and the SE-EC methods (p<0.001). Visual assessment confirmed that the MUMA-EC generated less subtraction artifacts than did DE-EC and SE-EC. Our MUMA-EC scheme yielded superior performance over conventional SE-EC scheme in identifying and minimizing subtraction artifacts on noncathartic ultra-low-dose DE-CTC images.

  8. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  9. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  10. Neural Response After a Single ECT Session During Retrieval of Emotional Self-Referent Words in Depression: A Randomized, Sham-Controlled fMRI Study.

    PubMed

    Miskowiak, Kamilla W; Macoveanu, Julian; Jørgensen, Martin B; Støttrup, Mette M; Ott, Caroline V; Jensen, Hans M; Jørgensen, Anders; Harmer, J; Paulson, Olaf B; Kessing, Lars V; Siebner, Hartwig R

    2018-03-01

    Negative neurocognitive bias is a core feature of depression that is reversed by antidepressant drug treatment. However, it is unclear whether modulation of neurocognitive bias is a common mechanism of distinct biological treatments. This randomized controlled functional magnetic resonance imaging study explored the effects of a single electroconvulsive therapy session on self-referent emotional processing. Twenty-nine patients with treatment-resistant major depressive disorder were randomized to one active or sham electroconvulsive therapy session at the beginning of their electroconvulsive therapy course in a double-blind, between-groups design. The following day, patients were given a self-referential emotional word categorization test and a free recall test. This was followed by an incidental word recognition task during whole-brain functional magnetic resonance imaging at 3T. Mood was assessed at baseline, on the functional magnetic resonance imaging day, and after 6 electroconvulsive therapy sessions. Data were complete and analyzed for 25 patients (electroconvulsive therapy: n = 14, sham: n = 11). The functional magnetic resonance imaging data were analyzed using the FMRIB Software Library randomize algorithm, and the Threshold-Free Cluster Enhancement method was used to identify significant clusters (corrected at P < .05). A single electroconvulsive therapy session had no effect on hippocampal activity during retrieval of emotional words. However, electroconvulsive therapy reduced the retrieval-specific neural response for positive words in the left frontopolar cortex. This effect occurred in the absence of differences between groups in behavioral performance or mood symptoms. The observed effect of electroconvulsive therapy on prefrontal response may reflect early facilitation of memory for positive self-referent information, which could contribute to improvements in depressive symptoms including feelings of self-worth with repeated treatments.

  11. Image registration with auto-mapped control volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreibmann, Eduard; Xing Lei

    2006-04-15

    Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction,more » in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of inhale and exhale phases of a lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a large number of initial transformation parameters. An accuracy of {approx}2 mm was achieved for both deformable and rigid registration. The proposed image registration method greatly reduces the complexity involved in the determination of homologous control points and allows us to minimize the subjectivity and uncertainty associated with the current manual interactive approach. Patient studies have indicated that the two-step registration technique is fast, reliable, and provides a valuable tool to facilitate both rigid and nonrigid image registrations.« less

  12. Hypertrophic Osteoarthropathy: Clinical and Imaging Features.

    PubMed

    Yap, Felix Y; Skalski, Matthew R; Patel, Dakshesh B; Schein, Aaron J; White, Eric A; Tomasian, Anderanik; Masih, Sulabha; Matcuk, George R

    2017-01-01

    Hypertrophic osteoarthropathy (HOA) is a medical condition characterized by abnormal proliferation of skin and periosteal tissues involving the extremities and characterized by three clinical features: digital clubbing (also termed Hippocratic fingers), periostosis of tubular bones, and synovial effusions. HOA can be a primary entity, known as pachydermoperiostosis, or can be secondary to extraskeletal conditions, with different prognoses and management implications for each. There is a high association between secondary HOA and malignancy, especially non-small cell lung cancer. In such cases, it can be considered a form of paraneoplastic syndrome. The most prevalent secondary causes of HOA are pulmonary in origin, which is why this condition was formerly referred to as hypertrophic pulmonary osteoarthropathy. HOA can also be associated with pleural, mediastinal, and cardiovascular causes, as well as extrathoracic conditions such as gastrointestinal tumors and infections, cirrhosis, and inflammatory bowel disease. Although the skeletal manifestations of HOA are most commonly detected with radiography, abnormalities can also be identified with other modalities such as computed tomography, magnetic resonance imaging, and bone scintigraphy. The authors summarize the pathogenesis, classification, causes, and symptoms and signs of HOA, including the genetics underlying the primary form (pachydermoperiostosis); describe key findings of HOA found at various imaging modalities, with examples of underlying causative conditions; and discuss features differentiating HOA from other causes of multifocal periostitis, such as thyroid acropachy, hypervitaminosis A, chronic venous insufficiency, voriconazole-induced periostitis, progressive diaphyseal dysplasia, and neoplastic causes such as lymphoma. © RSNA, 2016.

  13. Developing a tablet computer-based application ('App') to measure self-reported alcohol consumption in Indigenous Australians.

    PubMed

    Lee, K S Kylie; Wilson, Scott; Perry, Jimmy; Room, Robin; Callinan, Sarah; Assan, Robert; Hayman, Noel; Chikritzhs, Tanya; Gray, Dennis; Wilkes, Edward; Jack, Peter; Conigrave, Katherine M

    2018-01-15

    The challenges of assessing alcohol consumption can be greater in Indigenous communities where there may be culturally distinct approaches to communication, sharing of drinking containers and episodic patterns of drinking. This paper discusses the processes used to develop a tablet computer-based application ('App') to collect a detailed assessment of drinking patterns in Indigenous Australians. The key features of the resulting App are described. An iterative consultation process was used (instead of one-off focus groups), with Indigenous cultural experts and clinical experts. Regular (weekly or more) advice was sought over a 12-month period from Indigenous community leaders and from a range of Indigenous and non-Indigenous health professionals and researchers. The underpinning principles, selected survey items, and key technical features of the App are described. Features include culturally appropriate questioning style and gender-specific voice and images; community-recognised events used as reference points to 'anchor' time periods; 'translation' to colloquial English and (for audio) to traditional language; interactive visual approaches to estimate quantity of drinking; images of specific brands of alcohol, rather than abstract description of alcohol type (e.g. 'spirits'); images of make-shift drinking containers; option to estimate consumption based on the individual's share of what the group drank. With any survey platform, helping participants to accurately reflect on and report their drinking presents a challenge. The availability of interactive, tablet-based technologies enables potential bridging of differences in culture and lifestyle and enhanced reporting.

  14. Co-registration of In-Vivo Human MRI Brain Images to Postmortem Histological Microscopic Images

    PubMed Central

    Singh, M.; Rajagopalan, A.; Kim, T.-S.; Hwang, D.; Chui, H.; Zhang, X.-L.; Lee, A.-Y.; Zarow, C.

    2009-01-01

    Certain features such as small vascular lesions seen in human MRI are detected reliably only in postmortem histological samples by microscopic imaging. Co-registration of these microscopically detected features to their corresponding locations in the in-vivo images would be of great benefit to understanding the MRI signatures of specific diseases. Using non-linear Polynomial transformation, we report a method to co-register in-vivo MRIs to microscopic images of histological samples drawn off the postmortem brain. The approach utilizes digital photographs of postmortem slices as an intermediate reference to co-register the MRIs to microscopy. The overall procedure is challenging due to gross structural deformations in the postmortem brain during extraction and subsequent distortions in the histological preparations. Hemispheres of the brain were co-registered separately to mitigate these effects. Approaches relying on matching single-slices, multiple-slices and entire volumes in conjunction with different similarity measures suggested that using four slices at a time in combination with two sequential measures, Pearson correlation coefficient followed by mutual information, produced the best MRI-postmortem co-registration according to a voxel mismatch count. The accuracy of the overall registration was evaluated by measuring the 3D Euclidean distance between the locations of microscopically identified lesions on postmortem slices and their MRI-postmortem co-registered locations. The results show a mean 3D displacement of 5.1 ± 2.0 mm between the in-vivo MRI and microscopically determined locations for 21 vascular lesions in 11 subjects. PMID:19169415

  15. ALPO Observations of Saturn During the 2005-2006 Apparition

    NASA Astrophysics Data System (ADS)

    Benton, Julius L., Jr.

    2008-12-01

    For the 2005-2006 apparition (from August 23, 2005 through June 12, 2006) the ALPO Saturn Section received 414 visual observations and digital images submitted by 50 observers in the USA, Germany, Romania, Japan, France, Canada, Philippines, Italy, UK, Spain, and The Netherlands. Apertures used to perform observations ranged from 12.5cm up to 76.2cm. Saturn observers occasionally reported discrete, short-lived dark features in the South Equatorial Belt during the observing season, as well as small enduring white spots in the South Polar Region (SPR), the South Equatorial Belt Zone (SEBZ) and South Tropical Zone (STrZ). The SEBZ and STrZ white spots, first detected in November and December 2005, exhibited notable changes in morphology as the apparition progressed. A few recurring central meridian transit timings were submitted for some of these features. The inclination of Saturn's ring system towards Earth attained a maximum value of -20.21° on April 4, 2006, so observers could view and image considerable portions of Saturn's Southern Hemisphere and South face of the rings throughout the observing season. With the diminishing ring tilt, regions of the Northern Hemisphere, such as the North Polar Cap and North Polar Region were becoming accessible to our Earth-based telescope. A summary of visual observations and digital images of Saturn contributed during the apparition are discussed, including the results of continuing efforts to image the bicolored aspect and azimuthal brightness asymmetries of the rings. Accompanying the report are references, drawings, photographs, digital images, graphs, and tables.

  16. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    PubMed Central

    Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi

    2016-01-01

    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003

  17. SU-E-I-68: Practical Considerations On Implementation of the Image Gently Pediatric CT Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Adams, C; Lumby, C

    Purpose: One limitation associated with the Image Gently pediatric CT protocols is practical implementation of the recommended manual techniques. Inconsistency as a result of different practice is a possibility among technologist. An additional concern is the added risk of data error that would result in over or underexposure. The Automatic Exposure Control (AEC) features automatically reduce radiation for children. However, they do not work efficiently for the patients of very small size and relative large size. This study aims to implement the Image Gently pediatric CT protocols in the practical setting while maintaining the use of AEC features for pediatricmore » patients of varying size. Methods: Anthropomorphological abdomen phantoms were scanned in a CT scanner using the Image Gently pediatric protocols, the AEC technique with a fixed adult baseline, and automatic protocols with various baselines. The baselines were adjusted corresponding to patient age, weight and posterioranterior thickness to match the Image Gently pediatric CT manual techniques. CTDIvol was recorded for each examination. Image noise was measured and recorded for image quality comparison. Clinical images were evaluated by pediatric radiologists. Results: By adjusting vendor default baselines used in the automatic techniques, radiation dose and image quality can match those of the Image Gently manual techniques. In practice, this can be achieved by dividing pediatric patients into three major groups for technologist reference: infant, small child, and large child. Further division can be done but will increase the number of CT protocols. For each group, AEC can efficiently adjust acquisition techniques for children. This implementation significantly overcomes the limitation of the Image Gently manual techniques. Conclusion: Considering the effectiveness in clinical practice, Image Gently Pediatric CT protocols can be implemented in accordance with AEC techniques, with adjusted baselines, to achieve the goal of providing the most appropriate radiation dose for pediatric patients of varying sizes.« less

  18. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.

    PubMed

    Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan

    2016-09-01

    Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated good repeatability, with all standard deviations under 0.33. The algorithm is independent of the background and requires 10 cows for training with approximately 30 movies of 4 s each. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Image database for digital hand atlas

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente; Dey, Partha S.; Gertych, Arkadiusz; Pospiech-Kurkowska, Sywia

    2003-05-01

    Bone age assessment is a procedure frequently performed in pediatric patients to evaluate their growth disorder. A commonly used method is atlas matching by a visual comparison of a hand radiograph with a small reference set of old Greulich-Pyle atlas. We have developed a new digital hand atlas with a large set of clinically normal hand images of diverse ethnic groups. In this paper, we will present our system design and implementation of the digital atlas database to support the computer-aided atlas matching for bone age assessment. The system consists of a hand atlas image database, a computer-aided diagnostic (CAD) software module for image processing and atlas matching, and a Web user interface. Users can use a Web browser to push DICOM images, directly or indirectly from PACS, to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, are then extracted and compared with patterns from the atlas image database to assess the bone age. The digital atlas method built on a large image database and current Internet technology provides an alternative to supplement or replace the traditional one for a quantitative, accurate and cost-effective assessment of bone age.

  20. A novel false color mapping model-based fusion method of visual and infrared images

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu

    2013-12-01

    A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.

  1. Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Pandremmenou, Katerina; Kondi, Lisimachos P.; Rossholm, Andreas; Lövström, Benny

    2016-09-01

    Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using features that account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. The purpose of this study is to analyze a number of potentially quality-relevant features in order to select the most suitable set of features for building the desired models. The proposed sets of features have not been used in the literature and some of the features are used for the first time in this study. The features are employed by the least absolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward perceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression on the reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjectively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RR LASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual quality with high accuracy, higher than that of ridge, which uses more features. The comparisons with competing works and two full-reference metrics also verify the superiority of our models.

  2. Differentiating invasive and pre-invasive lung cancer by quantitative analysis of histopathologic images

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Sun, Hongliu; Chan, Heang-Ping; Chughtai, Aamer; Wei, Jun; Hadjiiski, Lubomir; Kazerooni, Ella

    2018-02-01

    We are developing automated radiopathomics method for diagnosis of lung nodule subtypes. In this study, we investigated the feasibility of using quantitative methods to analyze the tumor nuclei and cytoplasm in pathologic wholeslide images for the classification of pathologic subtypes of invasive nodules and pre-invasive nodules. We developed a multiscale blob detection method with watershed transform (MBD-WT) to segment the tumor cells. Pathomic features were extracted to characterize the size, morphology, sharpness, and gray level variation in each segmented nucleus and the heterogeneity patterns of tumor nuclei and cytoplasm. With permission of the National Lung Screening Trial (NLST) project, a data set containing 90 digital haematoxylin and eosin (HE) whole-slide images from 48 cases was used in this study. The 48 cases contain 77 regions of invasive subtypes and 43 regions of pre-invasive subtypes outlined by a pathologist on the HE images using the pathological tumor region description provided by NLST as reference. A logistic regression model (LRM) was built using leave-one-case-out resampling and receiver operating characteristic (ROC) analysis for classification of invasive and pre-invasive subtypes. With 11 selected features, the LRM achieved a test area under the ROC curve (AUC) value of 0.91+/-0.03. The results demonstrated that the pathologic invasiveness of lung adenocarcinomas could be categorized with high accuracy using pathomics analysis.

  3. Towards robust identification and tracking of nevi in sparse photographic time series

    NASA Astrophysics Data System (ADS)

    Vogel, Jakob; Duliu, Alexandru; Oyamada, Yuji; Gardiazabal, Jose; Lasser, Tobias; Ziai, Mahzad; Hein, Rüdiger; Navab, Nassir

    2014-03-01

    In dermatology, photographic imagery is acquired in large volumes in order to monitor the progress of diseases, especially melanocytic skin cancers. For this purpose, overview (macro) images are taken of the region of interest and used as a reference map to re-localize highly magni ed images of individual lesions. The latter are then used for diagnosis. These pictures are acquired at irregular intervals under only partially constrained circumstances, where patient positions as well as camera positions are not reliable. In the presence of a large number of nevi, correct identi cation of the same nevus in a series of such images is thus a time consuming task with ample chances for error. This paper introduces a method for largely automatic and simultaneous identi cation of nevi in di erent images, thus allowing the tracking of a single nevus over time, as well as pattern evaluation. The method uses a rotation-invariant feature descriptor that uses the local neighborhood of a nevus to describe it. The texture, size and shape of the nevus are not used to describe it, as these can change over time, especially in the case of a malignancy. We then use the Random Walks framework to compute the correspondences based on the probabilities derived from comparing the feature vectors. Evaluation is performed on synthetic and patient data at the university clinic.

  4. Image search engine with selective filtering and feature-element-based classification

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhang, Yujin; Dai, Shengyang

    2001-12-01

    With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.

  5. An Enhanced Algorithm for Automatic Radiometric Harmonization of High-Resolution Optical Satellite Imagery Using Pseudoinvariant Features and Linear Regression

    NASA Astrophysics Data System (ADS)

    Langheinrich, M.; Fischer, P.; Probeck, M.; Ramminger, G.; Wagner, T.; Krauß, T.

    2017-05-01

    The growing number of available optical remote sensing data providing large spatial and temporal coverage enables the coherent and gapless observation of the earth's surface on the scale of whole countries or continents. To produce datasets of that size, individual satellite scenes have to be stitched together forming so-called mosaics. Here the problem arises that the different images feature varying radiometric properties depending on the momentary acquisition conditions. The interpretation of optical remote sensing data is to a great extent based on the analysis of the spectral composition of an observed surface reflection. Therefore the normalization of all images included in a large image mosaic is necessary to ensure consistent results concerning the application of procedures to the whole dataset. In this work an algorithm is described which enables the automated spectral harmonization of satellite images to a reference scene. As the stable and satisfying functionality of the proposed algorithm was already put to operational use to process a high number of SPOT-4/-5, IRS LISS-III and Landsat-5 scenes in the frame of the European Environment Agency's Copernicus/GMES Initial Operations (GIO) High-Resolution Layer (HRL) mapping of the HRL Forest for 20 Western, Central and (South)Eastern European countries, it is further evaluated on its reliability concerning the application to newer Sentinel-2 multispectral imaging products. The results show that the algorithm is comparably efficient for the processing of satellite image data from sources other than the sensor configurations it was originally designed for.

  6. Science in Motion: Isolated Araneiform Topography

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Have you ever found that to describe something you had to go to the dictionary and search for just the right word?

    The south polar terrain is so full of unearthly features that we had to visit Mr. Webster to find a suitable term. 'Araneiform' means 'spider-like'. These are channels that are carved in the surface by carbon dioxide gas. We do not have this process on Earth.

    The channels are somewhat radially organized (figure 1) and widen and deepen as they converge. In the past we've just refered to them as 'spiders.' 'Isolated araneiform topography' means that our features look like spiders that are not in contact with each other.

    Observation Geometry Image PSP_003087_0930 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 24-Mar-2007. The complete image is centered at -87.1 degrees latitude, 126.3 degrees East longitude. The range to the target site was 244.4 km (152.8 miles). At this distance the image scale is 24.5 cm/pixel (with 1 x 1 binning) so objects 73 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 08:22 PM and the scene is illuminated from the west with a solar incidence angle of 81 degrees, thus the sun was about 9 degrees above the horizon. At a solar longitude of 206.4 degrees, the season on Mars is Northern Autumn.

  7. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    USGS Publications Warehouse

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  8. Waardenburg syndrome: iris and choroidal hypopigmentation: findings on anterior and posterior segment imaging.

    PubMed

    Shields, Carol L; Nickerson, Stephanie J; Al-Dahmash, Saad; Shields, Jerry A

    2013-09-01

    Waardenburg syndrome typically manifests with congenital iris pigmentary abnormalities, but careful inspection can reveal additional posterior uveal pigmentary abnormalities. To demonstrate iris and choroidal hypopigmentation in patients with Waardenburg syndrome. Retrospective review of 7 patients referred for evaluation of presumed ocular melanocytosis. To describe the clinical and imaging features of the anterior and posterior uvea. In all patients, the diagnosis of Waardenburg syndrome was established. The nonocular features included white forelock in 4 of 7 (57%), tubular nose in 5 of 6 (83%), and small nasal alae in 5 of 6 (83%) patients. In 2 patients, a hearing deficit was documented on audiology testing. Family history of Waardenburg syndrome was elicited in 5 of 7 (71%) patients. Ocular features (7 patients) included telecanthus in 5 (71%), synophrys in 2 (29%), iris hypopigmentation in 5 (71%), and choroidal hypopigmentation in 5 (71%) patients. No patient had muscle contractures or Hirschsprung disease. Visual acuity was 20/20 to 20/50 in all patients. Iris hypopigmentation in 8 eyes was sector in 6 (75%) and diffuse (complete) in 2 (25%). Choroidal hypopigmentation in 9 eyes (100%) showed a sector pattern in 6 (67%) and a diffuse pattern in 3 (33%). Anterior segment optical coherence tomography revealed the hypopigmented iris to be thinner and with shallower crypts than the normal iris. Posterior segment optical coherence tomography showed a normal retina in all patients, but the subfoveal choroid in the hypopigmented region was slightly thinner (mean, 197 μm) compared with the opposite normal choroid (243 μm). Fundus autofluorescence demonstrated mild hyperautofluorescence (scleral unmasking) in hypopigmented choroid and no lipofuscin abnormality. Waardenburg syndrome manifests hypopigmentation of the iris and choroid with imaging features showing a slight reduction in the thickness of the affected tissue.

  9. Quantitative Anthropometric Measures of Facial Appearance of Healthy Hispanic/Latino White Children: Establishing Reference Data for Care of Cleft Lip With or Without Cleft Palate

    NASA Astrophysics Data System (ADS)

    Lee, Juhun; Ku, Brian; Combs, Patrick D.; Da Silveira, Adriana. C.; Markey, Mia K.

    2017-06-01

    Cleft lip with or without cleft palate (CL ± P) is one of the most common congenital facial deformities worldwide. To minimize negative social consequences of CL ± P, reconstructive surgery is conducted to modify the face to a more normal appearance. Each race/ethnic group requires its own facial norm data, yet there are no existing facial norm data for Hispanic/Latino White children. The objective of this paper is to identify measures of facial appearance relevant for planning reconstructive surgery for CL ± P of Hispanic/Latino White children. Quantitative analysis was conducted on 3D facial images of 82 (41 girls, 41 boys) healthy Hispanic/Latino White children whose ages ranged from 7 to 12 years. Twenty-eight facial anthropometric features related to CL ± P (mainly in the nasal and mouth area) were measured from 3D facial images. In addition, facial aesthetic ratings were obtained from 16 non-clinical observers for the same 3D facial images using a 7-point Likert scale. Pearson correlation analysis was conducted to find features that were correlated with the panel ratings of observers. Boys with a longer face and nose, or thicker upper and lower lips are considered more attractive than others while girls with a less curved middle face contour are considered more attractive than others. Associated facial landmarks for these features are primary focus areas for reconstructive surgery for CL ± P. This study identified anthropometric measures of facial features of Hispanic/Latino White children that are pertinent to CL ± P and which correlate with the panel attractiveness ratings.

  10. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    PubMed

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P < 10 -560 ) for FHR and 0.97 (P < 10 -560 ) for UC. On average, MSE value was 0.00 for both FHR and UC. No CTG feature was found significantly different when measured in eCTG vs. reference signals. eCTG procedure is a promising useful tool to accurately extract digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Gynecomastia: a common indication for mammography in men of all age.

    PubMed

    Capasso, Raffaella; Sica, A; D'Amora, M; Mostardi, Maurizio; Martella, Ilenia; Totaro, Marilina; Della Casa, Giovanni; Vallara, Manuela; Pesce, Antonella; Gatta, G; Cappabianca, S

    2016-07-28

    Gynecomastia (GM) is the most frequent cause of male breast-related signs and symptoms and represents also the most common indication for mammography (MX) in men. In this article, our 7-year long experience with MX in men suffering from GM is reviewed, and the mammographic features of GM are presented. MXs performed in male patients at our institution from January 2009 to January 2016 were retrospectively reviewed and patients with mammographic features of GM were selected. Informed consent was waived by the local institutional review board given the retrospective nature of the study. Mammograms were performed in both cranio-caudal (CC) and medio-lateral-oblique (MLO) views according to diagnostic needs. Clinical and pathologic data were obtained by review of patient charts. 37 males (aged between 13-79 years, mean 59 years) referred for MX at our institution because of palpable lump (31/37; 83.8%), breast enlargement (33/37; 89.2%), tenderness or pain (25/37; 67.6%). Of the 37 patients evaluated, 32 (86.5%) had true GM while 5 (13.5%) had pseudoGM. The evaluation of GM can be complex but a stepwise approach that starts with careful history taking and physical examination may obviate the need for extensive work-up. In this context, MX has been shown to be an accurate diagnostic tool for detecting GM and should be the first imaging examination to be performed in all clinically suspicious lesions referred for imaging.

  12. Generation of binary holograms for deep scenes captured with a camera and a depth sensor

    NASA Astrophysics Data System (ADS)

    Leportier, Thibault; Park, Min-Chul

    2017-01-01

    This work presents binary hologram generation from images of a real object acquired from a Kinect sensor. Since hologram calculation from a point-cloud or polygon model presents a heavy computational burden, we adopted a depth-layer approach to generate the holograms. This method enables us to obtain holographic data of large scenes quickly. Our investigations focus on the performance of different methods, iterative and noniterative, to convert complex holograms into binary format. Comparisons were performed to examine the reconstruction of the binary holograms at different depths. We also propose to modify the direct binary search algorithm to take into account several reference image planes. Then, deep scenes featuring multiple planes of interest can be reconstructed with better efficiency.

  13. Method and apparatus for the simultaneous display and correlation of independently generated images

    DOEpatents

    Vaitekunas, Jeffrey J.; Roberts, Ronald A.

    1991-01-01

    An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.

  14. Design of a web portal for interdisciplinary image retrieval from multiple online image resources.

    PubMed

    Kammerer, F J; Frankewitsch, T; Prokosch, H-U

    2009-01-01

    Images play an important role in medicine. Finding the desired images within the multitude of online image databases is a time-consuming and frustrating process. Existing websites do not meet all the requirements for an ideal learning environment for medical students. This work intends to establish a new web portal providing a centralized access point to a selected number of online image databases. A back-end system locates images on given websites and extracts relevant metadata. The images are indexed using UMLS and the MetaMap system provided by the US National Library of Medicine. Specially developed functions allow to create individual navigation structures. The front-end system suits the specific needs of medical students. A navigation structure consisting of several medical fields, university curricula and the ICD-10 was created. The images may be accessed via the given navigation structure or using different search functions. Cross-references are provided by the semantic relations of the UMLS. Over 25,000 images were identified and indexed. A pilot evaluation among medical students showed good first results concerning the acceptance of the developed navigation structures and search features. The integration of the images from different sources into the UMLS semantic network offers a quick and an easy-to-use learning environment.

  15. Image registration for a UV-Visible dual-band imaging system

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yuan, Shuang; Li, Jianping; Xing, Sheng; Zhang, Honglong; Dong, Yuming; Chen, Liangpei; Liu, Peng; Jiao, Guohua

    2018-06-01

    The detection of corona discharge is an effective way for early fault diagnosis of power equipment. UV-Visible dual-band imaging can detect and locate corona discharge spot at all-weather condition. In this study, we introduce an image registration protocol for this dual-band imaging system. The protocol consists of UV image denoising and affine transformation model establishment. We report the algorithm details of UV image preprocessing, affine transformation model establishment and relevant experiments for verification of their feasibility. The denoising algorithm was based on a correlation operation between raw UV images, a continuous mask and the transformation model was established by using corner feature and a statistical method. Finally, an image fusion test was carried out to verify the accuracy of affine transformation model. It has proved the average position displacement error between corona discharge and equipment fault at different distances in a 2.5m-20 m range are 1.34 mm and 1.92 mm in the horizontal and vertical directions, respectively, which are precise enough for most industrial applications. The resultant protocol is not only expected to improve the efficiency and accuracy of such imaging system for locating corona discharge spot, but also supposed to provide a more generalized reference for the calibration of various dual-band imaging systems in practice.

  16. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    NASA Astrophysics Data System (ADS)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  17. Textural features for radar image analysis

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  18. Neighbourhood looking glass: 360º automated characterisation of the built environment for neighbourhood effects research.

    PubMed

    Nguyen, Quynh C; Sajjadi, Mehdi; McCullough, Matt; Pham, Minh; Nguyen, Thu T; Yu, Weijun; Meng, Hsien-Wen; Wen, Ming; Li, Feifei; Smith, Ken R; Brunisholz, Kim; Tasdizen, Tolga

    2018-03-01

    Neighbourhood quality has been connected with an array of health issues, but neighbourhood research has been limited by the lack of methods to characterise large geographical areas. This study uses innovative computer vision methods and a new big data source of street view images to automatically characterise neighbourhood built environments. A total of 430 000 images were obtained using Google's Street View Image API for Salt Lake City, Chicago and Charleston. Convolutional neural networks were used to create indicators of street greenness, crosswalks and building type. We implemented log Poisson regression models to estimate associations between built environment features and individual prevalence of obesity and diabetes in Salt Lake City, controlling for individual-level and zip code-level predisposing characteristics. Computer vision models had an accuracy of 86%-93% compared with manual annotations. Charleston had the highest percentage of green streets (79%), while Chicago had the highest percentage of crosswalks (23%) and commercial buildings/apartments (59%). Built environment characteristics were categorised into tertiles, with the highest tertile serving as the referent group. Individuals living in zip codes with the most green streets, crosswalks and commercial buildings/apartments had relative obesity prevalences that were 25%-28% lower and relative diabetes prevalences that were 12%-18% lower than individuals living in zip codes with the least abundance of these neighbourhood features. Neighbourhood conditions may influence chronic disease outcomes. Google Street View images represent an underused data resource for the construction of built environment features. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Facial expression identification using 3D geometric features from Microsoft Kinect device

    NASA Astrophysics Data System (ADS)

    Han, Dongxu; Al Jawad, Naseer; Du, Hongbo

    2016-05-01

    Facial expression identification is an important part of face recognition and closely related to emotion detection from face images. Various solutions have been proposed in the past using different types of cameras and features. Microsoft Kinect device has been widely used for multimedia interactions. More recently, the device has been increasingly deployed for supporting scientific investigations. This paper explores the effectiveness of using the device in identifying emotional facial expressions such as surprise, smile, sad, etc. and evaluates the usefulness of 3D data points on a face mesh structure obtained from the Kinect device. We present a distance-based geometric feature component that is derived from the distances between points on the face mesh and selected reference points in a single frame. The feature components extracted across a sequence of frames starting and ending by neutral emotion represent a whole expression. The feature vector eliminates the need for complex face orientation correction, simplifying the feature extraction process and making it more efficient. We applied the kNN classifier that exploits a feature component based similarity measure following the principle of dynamic time warping to determine the closest neighbors. Preliminary tests on a small scale database of different facial expressions show promises of the newly developed features and the usefulness of the Kinect device in facial expression identification.

  20. Neuroimaging Feature Terminology: A Controlled Terminology for the Annotation of Brain Imaging Features.

    PubMed

    Iyappan, Anandhi; Younesi, Erfan; Redolfi, Alberto; Vrooman, Henri; Khanna, Shashank; Frisoni, Giovanni B; Hofmann-Apitius, Martin

    2017-01-01

    Ontologies and terminologies are used for interoperability of knowledge and data in a standard manner among interdisciplinary research groups. Existing imaging ontologies capture general aspects of the imaging domain as a whole such as methodological concepts or calibrations of imaging instruments. However, none of the existing ontologies covers the diagnostic features measured by imaging technologies in the context of neurodegenerative diseases. Therefore, the Neuro-Imaging Feature Terminology (NIFT) was developed to organize the knowledge domain of measured brain features in association with neurodegenerative diseases by imaging technologies. The purpose is to identify quantitative imaging biomarkers that can be extracted from multi-modal brain imaging data. This terminology attempts to cover measured features and parameters in brain scans relevant to disease progression. In this paper, we demonstrate the systematic retrieval of measured indices from literature and how the extracted knowledge can be further used for disease modeling that integrates neuroimaging features with molecular processes.

  1. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors

    PubMed Central

    Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung

    2018-01-01

    Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases. PMID:29495417

  2. The role of external features in face recognition with central vision loss: A pilot study

    PubMed Central

    Bernard, Jean-Baptiste; Chung, Susana T.L.

    2016-01-01

    Purpose We evaluated how the performance for recognizing familiar face images depends on the internal (eyebrows, eyes, nose, mouth) and external face features (chin, outline of face, hairline) in individuals with central vision loss. Methods In Experiment 1, we measured eye movements for four observers with central vision loss to determine whether they fixated more often on the internal or the external features of face images while attempting to recognize the images. We then measured the accuracy for recognizing face images that contained only the internal, only the external, or both internal and external features (Experiment 2), and for hybrid images where the internal and external features came from two different source images (Experiment 3), for five observers with central vision loss and four age-matched control observers. Results When recognizing familiar face images, approximately 40% of the fixations of observers with central vision loss were centered on the external features of faces. The recognition accuracy was higher for images containing only external features (66.8±3.3% correct) than for images containing only internal features (35.8±15.0%), a finding contradicting that of control observers. For hybrid face images, observers with central vision loss responded more accurately to the external features (50.4±17.8%) than to the internal features (9.3±4.9%), while control observers did not show the same bias toward responding to the external features. Conclusions Contrary to people with normal vision who rely more on the internal features of face images for recognizing familiar faces, individuals with central vision loss show a higher dependence on using external features of face images. PMID:26829260

  3. The Role of External Features in Face Recognition with Central Vision Loss.

    PubMed

    Bernard, Jean-Baptiste; Chung, Susana T L

    2016-05-01

    We evaluated how the performance of recognizing familiar face images depends on the internal (eyebrows, eyes, nose, mouth) and external face features (chin, outline of face, hairline) in individuals with central vision loss. In experiment 1, we measured eye movements for four observers with central vision loss to determine whether they fixated more often on the internal or the external features of face images while attempting to recognize the images. We then measured the accuracy for recognizing face images that contained only the internal, only the external, or both internal and external features (experiment 2) and for hybrid images where the internal and external features came from two different source images (experiment 3) for five observers with central vision loss and four age-matched control observers. When recognizing familiar face images, approximately 40% of the fixations of observers with central vision loss was centered on the external features of faces. The recognition accuracy was higher for images containing only external features (66.8 ± 3.3% correct) than for images containing only internal features (35.8 ± 15.0%), a finding contradicting that of control observers. For hybrid face images, observers with central vision loss responded more accurately to the external features (50.4 ± 17.8%) than to the internal features (9.3 ± 4.9%), whereas control observers did not show the same bias toward responding to the external features. Contrary to people with normal vision who rely more on the internal features of face images for recognizing familiar faces, individuals with central vision loss show a higher dependence on using external features of face images.

  4. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors.

    PubMed

    Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung

    2018-02-26

    Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.

  5. Vision based tunnel inspection using non-rigid registration

    NASA Astrophysics Data System (ADS)

    Badshah, Amir; Ullah, Shan; Shahzad, Danish

    2015-04-01

    Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.

  6. An iterative shrinkage approach to total-variation image restoration.

    PubMed

    Michailovich, Oleg V

    2011-05-01

    The problem of restoration of digital images from their degraded measurements plays a central role in a multitude of practically important applications. A particularly challenging instance of this problem occurs in the case when the degradation phenomenon is modeled by an ill-conditioned operator. In such a situation, the presence of noise makes it impossible to recover a valuable approximation of the image of interest without using some a priori information about its properties. Such a priori information--commonly referred to as simply priors--is essential for image restoration, rendering it stable and robust to noise. Moreover, using the priors makes the recovered images exhibit some plausible features of their original counterpart. Particularly, if the original image is known to be a piecewise smooth function, one of the standard priors used in this case is defined by the Rudin-Osher-Fatemi model, which results in total variation (TV) based image restoration. The current arsenal of algorithms for TV-based image restoration is vast. In this present paper, a different approach to the solution of the problem is proposed based upon the method of iterative shrinkage (aka iterated thresholding). In the proposed method, the TV-based image restoration is performed through a recursive application of two simple procedures, viz. linear filtering and soft thresholding. Therefore, the method can be identified as belonging to the group of first-order algorithms which are efficient in dealing with images of relatively large sizes. Another valuable feature of the proposed method consists in its working directly with the TV functional, rather then with its smoothed versions. Moreover, the method provides a single solution for both isotropic and anisotropic definitions of the TV functional, thereby establishing a useful connection between the two formulae. Finally, a number of standard examples of image deblurring are demonstrated, in which the proposed method can provide restoration results of superior quality as compared to the case of sparse-wavelet deconvolution.

  7. Normal Central Zone of the Prostate and Central Zone Involvement by Prostate Cancer: Clinical and MR Imaging Implications

    PubMed Central

    Akin, Oguz; Franiel, Tobias; Goldman, Debra A.; Udo, Kazuma; Touijer, Karim A.; Reuter, Victor E.; Hricak, Hedvig

    2012-01-01

    Purpose: To describe the anatomic features of the central zone of the prostate on T2-weighted and diffusion-weighted (DW) magnetic resonance (MR) images and evaluate the diagnostic performance of MR imaging in detection of central zone involvement by prostate cancer. Materials and Methods: The institutional review board waived informed consent and approved this retrospective, HIPAA-compliant study of 211 patients who underwent T2-weighted and DW MR imaging of the prostate before radical prostatectomy. Whole-mount step-section pathologic findings were the reference standard. Two radiologists independently recorded the visibility, MR signal intensity, size, and symmetry of the central zone and scored the likelihood of central zone involvement by cancer on T2-weighted MR images and on T2-weighted MR images plus apparent diffusion coefficient (ADC) maps generated from the DW MR images. Descriptive summary statistics were calculated for central zone imaging features. Sensitivity, specificity, and area under the curve were used to evaluate reader performance in detecting central zone involvement. Results: For readers 1 and 2, the central zone was visible, at least partially, in 177 (84%) and 170 (81%) of 211 patients, respectively. The most common imaging appearance of the central zone was symmetric, homogeneous low signal intensity. Cancers involving the central zone had higher prostate-specific antigen values, Gleason scores, and rates of extracapsular extension and seminal vesicle invasion compared with cancers not involving the central zone (P < .05). Area under the curve, sensitivity, and specificity in detecting central zone involvement were 0.70, 0.30, and 0.96 for reader 1 and 0.65, 0.35, and 0.93 for reader 2, and these values did not differ significantly between T2-weighted imaging and T2-weighted imaging plus ADC maps. Conclusion: The central zone was visualized in most patients. Cancers involving the central zone were associated with more aggressive disease than those without central zone involvement. © RSNA, 2012 PMID:22357889

  8. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Byrd, D; Bowen, S

    2015-06-15

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolutionmore » of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter-institution studies attempting to validate prognostic values of PET texture features in cancer treatment.« less

  9. Feature Selection based on Machine Learning in MRIs for Hippocampal Segmentation

    NASA Astrophysics Data System (ADS)

    Tangaro, Sabina; Amoroso, Nicola; Brescia, Massimo; Cavuoti, Stefano; Chincarini, Andrea; Errico, Rosangela; Paolo, Inglese; Longo, Giuseppe; Maglietta, Rosalia; Tateo, Andrea; Riccio, Giuseppe; Bellotti, Roberto

    2015-01-01

    Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic resonance imaging (MRI) scans can show these variations and therefore can be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust, and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach; for each voxel a number of local features were calculated. In this paper, we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) sequential forward selection and (iii) sequential backward elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 feature for each voxel (sequential backward elimination) we obtained comparable state-of-the-art performances with respect to the standard tool FreeSurfer.

  10. Finding the optical axis of a distant object using an optical alignment system based on a holographic marker

    NASA Astrophysics Data System (ADS)

    Zhuk, D. I.; Denisyuk, I. Yu.; Gutner, I. E.

    2015-07-01

    A way to construct a holographic indicator of the position of the central axis of a distant object based on recording a transmission hologram in a layer of photosensitive material and forming a remote real image before a light source is considered. A light source with a holographically formed marker designed for visual guidance to the object axis; it can be used to simplify aircraft landing on a glide path, preliminary visual alignment of large coaxial details of various machines, etc. Specific features of the scheme of recording a holographic marker and the reconstruction of its image are considered. The possibility of forming a remote holographic image marker, which can be aligned with a simultaneously operating reference laser system for determining the direction to an object and its optical axis, has been demonstrated experimentally.

  11. Benefits of cloud computing for PACS and archiving.

    PubMed

    Koch, Patrick

    2012-01-01

    The goal of cloud-based services is to provide easy, scalable access to computing resources and IT services. The healthcare industry requires a private cloud that adheres to government mandates designed to ensure privacy and security of patient data while enabling access by authorized users. Cloud-based computing in the imaging market has evolved from a service that provided cost effective disaster recovery for archived data to fully featured PACS and vendor neutral archiving services that can address the needs of healthcare providers of all sizes. Healthcare providers worldwide are now using the cloud to distribute images to remote radiologists while supporting advanced reading tools, deliver radiology reports and imaging studies to referring physicians, and provide redundant data storage. Vendor managed cloud services eliminate large capital investments in equipment and maintenance, as well as staffing for the data center--creating a reduction in total cost of ownership for the healthcare provider.

  12. Connected component analysis of review-SEM images for sub-10nm node process verification

    NASA Astrophysics Data System (ADS)

    Halder, Sandip; Leray, Philippe; Sah, Kaushik; Cross, Andrew; Parisi, Paolo

    2017-03-01

    Analysis of hotspots is becoming more and more critical as we scale from node to node. To define true process windows at sub-14 nm technology nodes, often defect inspections are being included to weed out design weak spots (often referred to as hotspots). Defect inspection sub 28 nm nodes is a two pass process. Defect locations identified by optical inspection tools need to be reviewed by review-SEM's to understand exactly which feature is failing in the region flagged by the optical tool. The images grabbed by the review-SEM tool are used for classification but rarely for quantification. The goal of this paper is to see if the thousands of review-SEM images which are existing can be used for quantification and further analysis. More specifically we address the SEM quantification problem with connected component analysis.

  13. An efficient multi-resolution GA approach to dental image alignment

    NASA Astrophysics Data System (ADS)

    Nassar, Diaa Eldin; Ogirala, Mythili; Adjeroh, Donald; Ammar, Hany

    2006-02-01

    Automating the process of postmortem identification of individuals using dental records is receiving an increased attention in forensic science, especially with the large volume of victims encountered in mass disasters. Dental radiograph alignment is a key step required for automating the dental identification process. In this paper, we address the problem of dental radiograph alignment using a Multi-Resolution Genetic Algorithm (MR-GA) approach. We use location and orientation information of edge points as features; we assume that affine transformations suffice to restore geometric discrepancies between two images of a tooth, we efficiently search the 6D space of affine parameters using GA progressively across multi-resolution image versions, and we use a Hausdorff distance measure to compute the similarity between a reference tooth and a query tooth subject to a possible alignment transform. Testing results based on 52 teeth-pair images suggest that our algorithm converges to reasonable solutions in more than 85% of the test cases, with most of the error in the remaining cases due to excessive misalignments.

  14. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  15. Camera pose refinement by matching uncertain 3D building models with thermal infrared image sequences for high quality texture extraction

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, Dorota; Stilla, Uwe

    2017-10-01

    Thermal infrared (TIR) images are often used to picture damaged and weak spots in the insulation of the building hull, which is widely used in thermal inspections of buildings. Such inspection in large-scale areas can be carried out by combining TIR imagery and 3D building models. This combination can be achieved via texture mapping. Automation of texture mapping avoids time consuming imaging and manually analyzing each face independently. It also provides a spatial reference for façade structures extracted in the thermal textures. In order to capture all faces, including the roofs, façades, and façades in the inner courtyard, an oblique looking camera mounted on a flying platform is used. Direct geo-referencing is usually not sufficient for precise texture extraction. In addition, 3D building models have also uncertain geometry. In this paper, therefore, methodology for co-registration of uncertain 3D building models with airborne oblique view images is presented. For this purpose, a line-based model-to-image matching is developed, in which the uncertainties of the 3D building model, as well as of the image features are considered. Matched linear features are used for the refinement of the exterior orientation parameters of the camera in order to ensure optimal co-registration. Moreover, this study investigates whether line tracking through the image sequence supports the matching. The accuracy of the extraction and the quality of the textures are assessed. For this purpose, appropriate quality measures are developed. The tests showed good results on co-registration, particularly in cases where tracking between the neighboring frames had been applied.

  16. Electromagnetic image guidance in gynecology: prospective study of a new laparoscopic imaging and targeting technique for the treatment of symptomatic uterine fibroids.

    PubMed

    Galen, Donald I

    2015-10-15

    Uterine fibroids occur singly or as multiple benign tumors originating in the myometrium. Because they vary in size and location, the approach and technique for their identification and surgical management vary. Reference images, such as ultrasound images, magnetic resonance images, and sonohystograms, do not provide real-time intraoperative findings. Electromagnetic image guidance, as incorporated in the Acessa Guidance System, has been cleared by the FDA to facilitate targeting and ablation of uterine fibroids during laparoscopic surgery. This is the first feasibility study to verify the features and usefulness of the guidance system in targeting symptomatic uterine fibroids-particularly hard-to-reach intramural fibroids and those abutting the endometrium. One gynecologic surgeon, who had extensive prior experience in laparoscopic ultrasound-guided identification of fibroids, treated five women with symptomatic uterine fibroids using the Acessa Guidance System. The surgeon evaluated the system and its features in terms of responses to prescribed statements; the responses were analyzed prospectively. The surgeon strongly agreed (96 %) or agreed (4 %) with statements describing the helpfulness of the transducer and handpiece's dynamic animation in targeting each fibroid, reaching the fibroid quickly, visualizing the positions of the transducer and handpiece within the pelvic cavity, and providing the surgeon with confidence when targeting the fibroid even during "out-of-plane" positioning of the handpiece. The surgeon's positive user experience was evident in the guidance system's facilitation of accurate handpiece tip placement during targeting and ablation of uterine fibroids. Continued study of electromagnetic image guidance in the laparoscopic identification and treatment of fibroids is warranted. ClinicalTrials.gov Identifier: NCT01842789.

  17. Measurement of small lesions near metallic implants with mega-voltage cone beam CT

    NASA Astrophysics Data System (ADS)

    Grigorescu, Violeta; Prevrhal, Sven; Pouliot, Jean

    2008-03-01

    Metallic objects severely limit diagnostic CT imaging because of their high X-ray attenuation in the diagnostic energy range. In contrast, radiation therapy linear accelerators now offer CT imaging with X-ray energies in the megavolt range, where the attenuation coefficients of metals are significantly lower. We hypothesized that Mega electron-Voltage Cone-Beam CT (MVCT) implemented on a radiation therapy linear accelerator can detect and quantify small features in the vicinity of metallic implants with accuracy comparable to clinical Kilo electron-Voltage CT (KVCT) for imaging. Our test application was detection of osteolytic lesions formed near the metallic stem of a hip prosthesis, a condition of severe concern in hip replacement surgery. Both MVCT and KVCT were used to image a phantom containing simulated osteolytic bone lesions centered around a Chrome-Cobalt hip prosthesis stem with hemispherical lesions with sizes and densities ranging from 0.5 to 4 mm radius and 0 to 500 mg•cm -3, respectively. Images for both modalities were visually graded to establish lower limits of lesion visibility as a function of their size. Lesion volumes and mean density were determined and compared to reference values. Volume determination errors were reduced from 34%, on KVCT, to 20% for all lesions on MVCT, and density determination errors were reduced from 71% on KVCT to 10% on MVCT. Localization and quantification of lesions was improved with MVCT imaging. MVCT offers a viable alternative to clinical CT in cases where accurate 3D imaging of small features near metallic hardware is critical. These results need to be extended to other metallic objects of different composition and geometry.

  18. Mobile robots traversability awareness based on terrain visual sensory data fusion

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2007-04-01

    In this paper, we have presented methods that significantly improve the robot awareness of its terrain traversability conditions. The terrain traversability awareness is achieved by association of terrain image appearances from different poses and fusion of extracted information from multimodality imaging and range sensor data for localization and clustering environment landmarks. Initially, we describe methods for extraction of salient features of the terrain for the purpose of landmarks registration from two or more images taken from different via points along the trajectory path of the robot. The method of image registration is applied as a means of overlaying (two or more) of the same terrain scene at different viewpoints. The registration geometrically aligns salient landmarks of two images (the reference and sensed images). A Similarity matching techniques is proposed for matching the terrain salient landmarks. Secondly, we present three terrain classifier models based on rule-based, supervised neural network, and fuzzy logic for classification of terrain condition under uncertainty and mapping the robot's terrain perception to apt traversability measures. This paper addresses the technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain spatial and textural cues.

  19. Rock Abrasion on Mars: Clues from the Pathfinder and Viking Landing Sites

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Parker, T. J.; Kramer, G. M.

    2000-01-01

    A significant discovery of the Mars Pathfinder (MPF) mission was that many rocks exhibit characteristics of ventifacts, rocks that have been sculpted by saltating particles. Diagnostic features identifying the rocks as ventifacts am elongated pits, flutes, and grooves (collectively referred to as "flutes" unless noted otherwise). Faceted rocks or rock portions, circular pits, rills, and possibly polished rock surfaces are also seen and could be due, to aeolian abrasion. Many of these features were initially identified in rover images, where spatial resolution generally exceeded that of the IMP (Imager for Mars Pathfinder) camera. These images had two major limitations: 1) Only a limited number of rocks were viewed by the rover, biasing flute statistics; and 2) The higher resolution obtained by the rover images and the lack of such pictures at the Viking landing sites hampered comparisons of rock morphologies between the Pathfinder and Viking sites. To avoid this problem, rock morphology and ventifact statistics have been examined using new "super-resolution" IMP and Viking Lander images. Analyses of these images show that: 1) Flutes are seen on about 50% or more of the rocks in the near field at the MPF site; 2) The orientation of these flutes is similar to that for flutes identified in rover images; and 3) Ventifacts are significantly more abundant at the Pathfinder landing site than at the two Viking Landing sites, where rocks have undergone only a limited amount of aeolian abrasion. This is most likely due to the ruggedness of the Pathfinder site and a greater supply of abrading particles available shortly after the Arcs and Tiu Valles outflow channel floods.

  20. Enhancing spatial resolution of (18)F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine.

    PubMed

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I; Shi, Kuangyu

    2015-07-07

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by (18)F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [(18)F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

Top