Rodier, Marion; Li, Qingfeng; Berg, Rolf Willestofte; Bjerrum, Niels Janniksen
2016-07-01
A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case the scattering ratios between water and reference ν1 Q-branches were found to be 1.20 ± 0.03 and 0.40 ± 0.02 for H2 and CH4, respectively. © The Author(s) 2016.
Best-estimate coupled RELAP/CONTAIN analysis of inadvertent BWR ADS valve opening transient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Muftuoglu, A.K.
1993-01-01
Noncondensible gases may become dissolved in boiling water reactor (BWR) water-level instrumentation during normal operations. Any dissolved noncondensible gases inside these water columns may come out of solution during rapid depressurization events and displace water from the reference leg piping, resulting in a false high level. Significant errors in water-level indication are not expected to occur until the reactor pressure vessel (RPV) pressure has dropped below [approximately]450 psig. These water level errors may cause a delay or failure in emergency core cooling system (ECCS) actuation. The RPV water level is monitored using the pressure of a water column having amore » varying height (reactor water level) that is compared to the pressure of a water column maintained at a constant height (reference level). The reference legs have small-diameter pipes with varying lengths that provide a constant head of water and are located outside the drywell. The amount of noncondensible gases dissolved in each reference leg is very dependent on the amount of leakage from the reference leg and its geometry and interaction of the reactor coolant system with the containment, i.e., torus or suppression pool, and reactor building. If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response. In the postulated inadvertent opening of all seven automatic depressurization system (ADS) valves, the ECCS signal on high drywell pressure would be circumvented because the ADS valves discharge directly into the suppression pool. A best-estimate analysis of such an inadvertent opening of all ADS valves would have to consider the thermal-hydraulic coupling between the pool, drywell, reactor building, and RPV.« less
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Mochizuki, Kenji; Koga, Kenichiro
2018-02-05
Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard-sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard-sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high-temperature and high-pressure unfolding of the protein. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... a medium, such as air or water. Sound levels are compared to a reference sound pressure to identify the medium. For air and water, these reference pressures are ``re 20 microPa'' and ``re 1 microPa... produce a wide range of social signals, most occurring at relatively low frequencies (Southall et al...
Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment
NASA Astrophysics Data System (ADS)
Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti
2017-04-01
Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation chamber to the main pressure vessel. The amount of water vapor added is also monitored with the pressure reference. For example in -70°C, very small absolute amount of water vapor corresponding to 1 Pa [1][2] pressure rise in the main chamber results in humidity saturation. As the flow of both CO2 and water vapor is kept constant, the main chamber is served with water vapor all the time, keeping the uniform saturation conditions inside the vessel even if some of the water freezes on the vessel and pipe walls. [1] Goff, J. A., and S. Gratch (1946) Low-pressure properties of water from -160 to 212 °F, Transactions of the American Society of Heating and Ventilating Engineers [2] Goff, J. A. (1957) Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers
Cassidy, Cathal; Yamashita, Masao; Cheung, Martin; Kalale, Chola; Adaniya, Hidehito; Kuwahara, Ryusuke; Shintake, Tsumoru
2017-01-01
We have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast. For example, for 1.3 kPa pure water vapor and 300kV electrons, we report pressure stability of ± 20 Pa over tens of minutes, effective thickness of 0.57 inelastic mean free paths, lattice resolution of 0.14 nm on a reference Au specimen, and no significant degradation in contrast or stability of a biological specimen (M13 virus, with 6 nm body diameter). We have also done some brief experiments to confirm feasibility of loading specimens into an in situ water vapor ambient without exposure to intermediate desiccating conditions. Finally, we have also checked if water experiments had any discernible impact on the microscope performance, and report pertinent vacuum and electron optical data, for reference purposes.
NASA Astrophysics Data System (ADS)
Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.
2013-12-01
We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.
Yamashita, Masao; Cheung, Martin; Kalale, Chola; Adaniya, Hidehito; Kuwahara, Ryusuke; Shintake, Tsumoru
2017-01-01
We have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast. For example, for 1.3 kPa pure water vapor and 300kV electrons, we report pressure stability of ± 20 Pa over tens of minutes, effective thickness of 0.57 inelastic mean free paths, lattice resolution of 0.14 nm on a reference Au specimen, and no significant degradation in contrast or stability of a biological specimen (M13 virus, with 6 nm body diameter). We have also done some brief experiments to confirm feasibility of loading specimens into an in situ water vapor ambient without exposure to intermediate desiccating conditions. Finally, we have also checked if water experiments had any discernible impact on the microscope performance, and report pertinent vacuum and electron optical data, for reference purposes. PMID:29099843
Theory of the Maxwell pressure tensor and the tension in a water bridge.
Widom, A; Swain, J; Silverberg, J; Sivasubramanian, S; Srivastava, Y N
2009-07-01
A water bridge refers to an experimental "flexible cable" made up of pure de-ionized water, which can hang across two supports maintained with a sufficiently large voltage difference. The resulting electric fields within the de-ionized water flexible cable maintain a tension that sustains the water against the downward force of gravity. A detailed calculation of the water bridge tension will be provided in terms of the Maxwell pressure tensor in a dielectric fluid medium. General properties of the dielectric liquid pressure tensor are discussed along with unusual features of dielectric fluid Bernoulli flows in an electric field. The "frictionless" Bernoulli flow is closely analogous to that of a superfluid.
Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo
2016-12-01
A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raats, P.A.C.
1975-12-01
Balances of mass for the water in N distinct phases and a balance of heat for the medium as a whole were formulated. Following Philip and de Vries, it was assumed that the flux of water in each phase is proportional to the gradient of the pressure in that phase and that the diffusive component of the flux of heat is proportional to the gradient of the temperature. Clapeyron equations were used to express the gradient of the pressure in any phase in terms of the gradient of the pressure in a reference state and of the temperature. The referencemore » state may be the water in one of the phases or the water in some measuring device such as a tensiometer or a psychrometer. Expressions for the total flux of water and for the diffusive flux of heat plus the convective flux of heat associated with the conversion from any phase to the reference state were shown to satisfy the onsager reciprocal relations. A theorem due to Meixner was used to delineate the class of fluxes and forces that preserves these relations. In particular, it was shown that if the gradients of water content and temperature are used as the driving forces, the onsager relations are no longer satisfied.« less
Monitoring Inland Storm Surge and Flooding from Hurricane Rita
McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.
2006-01-01
Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.
The shock Hugoniot of liquid hydrazine in the pressure range of 3.1 to 21.4 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, B.O.; Persson, P-A.
1996-10-01
Impedance matching was used; the technique was similar to Richard Dick`s. Shock pressures were produced using a plane wave explosive driver with different explosives and different reference materials against liq. hydrazine. Velocity of shock wave in the liquid and free surface velocity of the reference material were measured using different pin contact techniques. The experimental Hugoniot appears smooth, with no indication of a phase change. The shock Hugoniot of liq. hydrazine was compared against 3 other liquid Hugoniots (liq. NH3, water, CCl4) and is closest to that for water and in between NH3 and CCl4. The hydrazine Hugoniot was alsomore » compared to the ``Universal`` Hugoniot for liquids. This universal Hugoniot is not a good approximation for the liq. hydrazine in this pressure range.« less
NASA Astrophysics Data System (ADS)
Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard
2018-06-01
Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.
Marinsky, J.A.; Reddy, M.M.
1990-01-01
The molecular weight and aggregation tendency of a reference-soil fulvic acid in Armadale horizon Bh were determined by vapor-pressure osmometry using tetrahydrofuran and water as solvents. With tetrahydrofuran, number-average molecular weight values of 767 ?? 34 and 699 ?? 8 daltons were obtained from two separate sets of measurements. Two sets of measurements with water also yielded values within this range (754 ?? 70 daltons) provided that the fulvic acid concentration in water did not exceed 7 mg ml-1; at higher concentrations (9.1-13.7 mg ml-1) a number-average molecular weight of 956 ?? 25 daltons was resolved, providing evidence of molecular aggregation. Extension of these studies to 80% neutralized fulvic acid showed that a sizeable fraction of the sodium counter ion is not osmotically active.
Are the measurements of water-filled and air-charged catheters the same in urodynamics?
Digesu, G Alessandro; Derpapas, Alexandros; Robshaw, Penny; Vijaya, Gopalan; Hendricken, Caroline; Khullar, Vik
2014-01-01
The aim of our study was to compare air-charged and water-filled catheters simultaneously in the measurement of the intravesical, abdominal and detrusor pressure during urodynamic investigations. Consecutive women with lower urinary tract symptoms, referred for urodynamics were prospectively studied. Readings of intravesical pressure (p(ves)), abdominal pressure (p(abd)) and detrusor pressure (p(det)), recorded by both the air-charged and water-filled catheters, were displayed simultaneously and compared at the end of filling, on standing, on sitting prior to voiding and at the maximum involuntary detrusor contraction. The signals (pressures) recorded by both types of catheter were compared using the Bland-Altman plot and paired samples t test. Twenty women with a mean age of 49 (range 36-72) were recruited. One patient with normal urodynamics was excluded in view of the poor quality trace. At each of the four comparison points, the air-charged catheters consistently produced higher mean pressures than the water-filled catheters. There were wide variations in the difference between the readings produced by the two types of catheter. Pressures measured using air-charged catheters are not comparable with water-filled catheters and are therefore not interchangeable. Caution must be used when comparing urodynamic parameters using air-charged and water-filled catheters.
Methods are described for measuring changes in atmospheric O2 concentration with emphasis on gas handling procedures. Cryogenically dried air samples are collected in 5 L glass flasks at ambient pressure and analyzed against reference gases derived from high-pressure aluminum tan...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... PWR [Pressurized-Water Reactor] Steam Generator Tubes'' (Reference 32) and [Nuclear Energy Institute... maintains the required structural margins of the SG tubes for both normal and accident conditions. Nuclear Energy Institute 97-06, ``Steam Generator Program Guidelines'' (Reference 8), and NRC Regulatory Guide 1...
Modeling of wave-coherent pressures in the turbulent boundary layer above water waves
NASA Technical Reports Server (NTRS)
Papadimitrakis, Yiannis ALEX.
1988-01-01
The behavior of air pressure fluctuations induced by progressive water waves generated mechanically in a laboratory tank was simulated by solving a modified Orr-Sommerfeld equation in a transformed Eulerian wave-following frame of reference. Solution is obtained by modeling the mean and wave-coherent turbulent Reynolds stresses, the behavior of which in the turbulent boundary layer above the waves was simulated using a turbulent kinetic energy-dissipation model, properly modified to account for free-surface proximity and favorable pressure gradient effects. The distribution of both the wave-coherent turbulent Reynolds stress and pressure amplitudes and their corresponding phase lags was found to agree reasonably well with available laboratory data.
Mojto, V; Gvozdjakova, A; Kucharska, J; Rausova, Z; Vancova, O; Valuch, J
2018-01-01
The aim of the study was to observe the influence of 11-days complete water fasting (WF) and regeneration diet (RD) on renal function, body weight, blood pressure and oxidative stress. Therapeutic WF is considered a healing method. Ten volunteers drank only water for 11 days, followed by RD for the next 11 days. Data on body weight, blood pressure, kidney functions, antioxidants, lipid peroxidation, cholesterols, triacylglycerols and selected biochemical parameters were obtained. WF increased uric acid and creatinine and decreased glomerular filtration rate. After RD, the parameters were comparable to baseline values. Urea was not affected. Lipid peroxidation (TBARS) decreased and maintained stable after RD. Fasting decreased α-tocopherol and increased γ-tocopherol, no significant changes were found after RD. Coenzyme Q10 decreased after RD. HDL-cholesterol decreased in WF. Total- and LDL-cholesterol decreased after RD. Other biochemical parameters were within the range of reference values. The effect of the complete fasting on kidney function was manifested by hyperuricemia. Renal function was slightly decreased, however maintained within the reference values. After RD, it returned to baseline values. The positive effect of the complete water fasting was in the reduction of oxidative stress, body weight and blood pressure (Tab. 3, Ref. 25).
Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio
2007-01-01
The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier. PMID:17660257
Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio
2007-09-01
The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.
Time Series Analysis of Water Level and Temperature in the St Louis River Estuary
Pressure and temperature loggers were deployed at 9 sites in the St Louis River estuary between 6/23 10/31 2011. A reference sensor was place on the shore to correct pressure data. Sensors were paced at <1 m depth in Allouez Bay, Superior Bay, near Hearding Island, WLSSD Bay, th...
Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis
NASA Astrophysics Data System (ADS)
Pratt, D.; Orlowski, N.; McDonnell, J.
2016-12-01
The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luettge, U.; Nobel, P.S.
1984-07-01
Malate concentration and stem osmotic pressure concomitantly increase during nighttime CO/sub 2/ fixation and then decrease during the daytime in the obligate Crassulacean acid metabolism (CAM) plant, Cereus validus (Cactaceae). Changes in malate osmotic pressure calculated using the Van't Hoff relation match the changes in stem osmotic pressure, indicating that changes in malate level affected the water relations of the succulent stems. In contrast to stem osmotic pressure, stem water potential showed little day-night changes, suggesting that changes in cellular hydrostatic pressure occurred. This was corroborated by direct measurements of hydrostatic pressure using the Juelich pressure probe where a smallmore » oil-filled micropipette is inserted directly into chlorenchyma cells, which indicated a 4-fold increase in hydrostatic pressure from dusk to dawn. A transient increase of hydrostatic pressure at the beginning of the dark period was correlated with a short period of stomatal closing between afternoon and nighttime CO/sub 2/ fixation, suggesting that the rather complex hydrostatic pressure patterns could be explained by an interplay between the effects of transpiration and malate levels. A second CAM plant, Agave deserti, showed similar day-night changes in hydrostatic pressure in its succulent leaves. It is concluded that, in addition to the inverted stomatal rhythm, the oscillations of malate markedly affect osmotic pressures and hence water relations of CAM plants. 13 references, 4 figures.« less
Fabrication of a superhydrophobic polyurethane foam and its application for continuous oil removal
NASA Astrophysics Data System (ADS)
Liu, Hai-Dong; Gu, Bin; Yuan, Wei-Feng; He, Qi
2018-02-01
A new polyurethane foam with superhydrophobicity and excellent lipophilicity is presented and demonstrated experimentally in this work. The superhydrophobic foam is synthesized by dip coating the polyurethane foam with a mixture solution of silicone resine and silicon dioxide nanoparticles. Its superhydrophobic and oleophilic capacity is characterized and verified via the SEM images, the water contact angle measurement, the adsorption tests and recyclability tests for water and some typical oils. Combining with the vacuum assisted oil-water separation technology (VAST), continuous recovery of oil spill at the lab scale is realized on the new superhydrophobic foam. Moreover, the break through pressure for water penetrating through the superhydrophobic foam is determined experimentally and referred as the maximum operation pressure in the VAST.
Hurricane Rita surge data, southwestern Louisiana and southeastern Texas, September to November 2005
McGee, Benton D.; Goree, Burl B.; Tollett, Roland W.; Woodward, Brenda K.; Kress, Wade H.
2006-01-01
Pressure transducers and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network consisting of 47 pressure transducers (sensors) was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast. Quality-assurance measures were used to assess the variability and accuracy of the water-level data recorded by the sensors. Water-level data from sensors were similar to data from co-located sensors, permanent U.S. Geological Survey streamgages, and water-surface elevations performed by field staff. Water-level data from sensors at selected locations were compared to corresponding high-water mark elevations. In general, the water-level data from sensors were similar to elevations of high quality high-water marks, while reporting consistently higher than elevations of lesser quality high-water marks.
Pfeifer, O; Lohmann, U; Ballschmiter, K
2001-11-01
Halogenated methyl-phenyl ethers (methoxybenzenes, anisoles) are ubiquitous organics in the environment although they are not produced in industrial quantities. Modelling the fate of organic pollutants such as halogenated anisoles requires a knowledge of the fundamental physico-chemical properties of these compounds. The isomer-specific separation and detection of 60 of the 134 possible congeners allowing an environmental fingerprinting are reported in this study. The vapor pressure p0(L) of more than 60 and further physico-chemical properties of 26 available congeners are given. Vapor pressures p0(L), water solubilities S(L)W, and n-octanol/water partition coefficients Kow were determined by capillary HR-GC (High Resolution Gas Chromatography) on a non-polar phase and by RP-HPLC (Reversed Phase High Performance Liquid Chromatography) on a C18 phase with chlorobenzenes as reference standards. From these experimental data the Henry's law constants H, and the gas/water Kgw and gas/n-octanol Kgo partition coefficients were calculated. We found that vapor pressures, water solubilities, and n-octanol/water partition coefficients of the halogenated anisoles are close to those of the chlorobenzenes. A similar environmental fate of both groups can, therefore, be predicted.
46 CFR 153.602 - Special requirements for cargoes reactive with water.
Code of Federal Regulations, 2012 CFR
2012-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section, the air inlet to the pressure-vacuum valve for the cargo tank must...
46 CFR 153.602 - Special requirements for cargoes reactive with water.
Code of Federal Regulations, 2011 CFR
2011-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section, the air inlet to the pressure-vacuum valve for the cargo tank must...
46 CFR 153.602 - Special requirements for cargoes reactive with water.
Code of Federal Regulations, 2013 CFR
2013-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section, the air inlet to the pressure-vacuum valve for the cargo tank must...
Hubbell, Joel M.; Sisson, James B.
1999-01-01
A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.
Flow tests of a single fuel element coolant channel for a compact fast reactor for space power
NASA Technical Reports Server (NTRS)
Springborn, R. H.
1971-01-01
Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.
Jiang, Jieying; Liu, Mengling; Parvez, Faruque; Wang, Binhuan; Wu, Fen; Eunus, Mahbub; Bangalore, Sripal; Newman, Jonathan D; Ahmed, Alauddin; Islam, Tariqul; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Levy, Diane; Slavkovich, Vesna; Argos, Maria; Scannell Bryan, Molly; Farzan, Shohreh F; Hayes, Richard B; Graziano, Joseph H; Ahsan, Habibul; Chen, Yu
2015-08-01
Cross-sectional studies have shown associations between arsenic exposure and prevalence of high blood pressure; however, studies examining the relationship of arsenic exposure with longitudinal changes in blood pressure are lacking. We evaluated associations of arsenic exposure in relation to longitudinal change in blood pressure in 10,853 participants in the Health Effects of Arsenic Longitudinal Study (HEALS). Arsenic was measured in well water and in urine samples at baseline and in urine samples every 2 years after baseline. Mixed-effect models were used to estimate the association of baseline well and urinary creatinine-adjusted arsenic with annual change in blood pressure during follow-up (median, 6.7 years). In the HEALS population, the median water arsenic concentration at baseline was 62 μg/L. Individuals in the highest quartile of baseline water arsenic or urinary creatinine-adjusted arsenic had a greater annual increase in systolic blood pressure compared with those in the reference group (β = 0.48 mmHg/year; 95% CI: 0.35, 0.61, and β = 0.43 mmHg/year; 95% CI: 0.29, 0.56 for water arsenic and urinary creatinine-adjusted arsenic, respectively) in fully adjusted models. Likewise, individuals in the highest quartile of baseline arsenic exposure had a greater annual increase in diastolic blood pressure for water arsenic and urinary creatinine-adjusted arsenic, (β = 0.39 mmHg/year; 95% CI: 0.30, 0.49, and β = 0.45 mmHg/year; 95% CI: 0.36, 0.55, respectively) compared with those in the lowest quartile. Our findings suggest that long-term arsenic exposure may accelerate age-related increases in blood pressure. These findings may help explain associations between arsenic exposure and cardiovascular disease.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods...: atmospheric or pressurized fluidized bed combustion, integrated gasification combined cycle...
Environmental quality of transitional waters: the lagoon of Venice case study.
Micheletti, C; Gottardo, S; Critto, A; Chiarato, S; Marcomini, A
2011-01-01
The health status of European aquatic environments, including transitional waters such as coastal lagoons, is regulated by the Water Framework Directive (WFD), which requires the classification of the water bodies' environmental quality and the achievement of a good ecological status by 2015. In the Venice lagoon, a transitional water body located in the northeastern part of Italy, the achievement of a good ecological status is hampered by several anthropogenic and natural pressures, such as sediment and water chemical contamination, and sediment erosion. In order to evaluate the lagoon's environmental quality according to the WFD (i.e. 5 quality classes, from High to Bad), an integrated Weight-of-Evidence methodology was developed and applied to classify the quality of the lagoon water bodies, integrating biological, physico-chemical, chemical, ecotoxicological, and hydromorphological data (i.e. Lines of Evidence, LOE). The quality assessment was carried out in two lagoon habitat typologies (previously defined on the basis of morphological, sediment, and hydrodynamic characteristics) which were selected taking into account the ecological gradient from sea to land, and the differences in anthropogenic pressure and contamination levels. The LOE classification was carried out by using indicators scored by comparing site specific conditions to reference conditions measured in lagoon reference sites, or provided by local, national or European regulations (e.g. Environmental Quality Standards, EQS, for chemicals). Finally, the overall quality status for each water body was calculated by a probabilistic approach, i.e. by reporting the final result as the frequency distribution of quality classes. The developed procedure was applied by using data and information concerning selected LOE and collected from monitoring programs and research studies carried out in the last 15 years in the lagoon of Venice. A set of sampling stations characterized by spatially and temporally coherent information for each LOE was selected, and among these stations, potential reference sites for each water body typology were identified. The quality assessment highlighted that there are specific lagoon areas, especially those located near the industrially developed area, which are highly affected by anthropogenic activities, and that chemical contamination is one of the main pressures affecting ecological status (e.g. macro-benthonic biodiversity) in the Venice lagoon. The integrated quality assessment procedure that was developed provided a new tool supporting decision making, as well as lagoon assessment and management. Copyright © 2010 Elsevier Ltd. All rights reserved.
Monitoring the Storm Tide of Hurricane Wilma in Southwestern Florida, October 2005
Soderqvist, Lars E.; Byrne, Michael J.
2007-01-01
Temporary monitoring stations employing non-vented pressure transducers were used to augment an existing U.S. Geological Survey coastal monitoring network to document the inland water levels related to the storm tide of Hurricane Wilma on the southwestern coast of Florida. On October 22, 2005, an experimental network consisting of 30 temporary stations was deployed over 90 miles of coastline to record the magnitude, extent, and timing of hurricane storm tide and coastal flooding. Sensors were programmed to record time, temperature, and barometric or water pressure. Water pressure was adjusted for changes in barometric pressure and salinity, and then converted to feet of water above the sensor. Elevation surveys using optical levels were conducted to reference storm tide water-level data and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). Storm tide water levels more than 5 feet above NAVD 88 were recorded by sensors at several locations along the southwestern Florida coast. Temporary storm tide monitoring stations used for this effort have demonstrated their value in: (1) furthering the understanding of storm tide by allowing the U.S. Geological Survey to extend the scope of data collection beyond that of existing networks, and (2) serving as backup data collection at existing monitoring stations by utilizing nearby structures that are more likely to survive a major hurricane.
Shockwave generation by a semiconductor bridge operation in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zvulun, E.; Toker, G.; Gurovich, V. Tz.
2014-05-28
A semiconductor bridge (SCB) is a silicon device, used in explosive systems as the electrical initiator element. In recent years, SCB plasma has been extensively studied, both electrically and using fast photography and spectroscopic imaging. However, the value of the pressure buildup at the bridge remains unknown. In this study, we operated SCB devices in water and, using shadow imaging and reference beam interferometry, obtained the velocity of the shock wave propagation and distribution of the density of water. These results, together with a self-similar hydrodynamic model, were used to calculate the pressure generated by the exploding SCB. In addition,more » the results obtained showed that the energy of the water flow exceeds significantly the energy deposited into the exploded SCB. The latter can be explained by the combustion of the aluminum and silicon atoms released in water, which acts as an oxidizing medium.« less
Spontaneous Imbibition in Low Permeability Medium, SUPRI TR-114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, Anthony R.; Schembre, Josephina
1999-08-09
A systematic experimental investigation of capillary pressure characteristics and fluid flow in diatomite was begun. Using an X-ray CT scanner and a specially constructed imbibition cell, we study spontaneous water imbibition processes in diatomite and, for reference, Berea sandstone and chalk. The mass of water imbibed as a function of time is also measured. Imbibition is restricted to concurrent flow. Despite a marked difference in rock properties such as permeability and porosity, we find similar trends in saturation profiles and weight gain versus time functions. Imbibition in diatomote is relatively rapid when initial water saturation is low due to largemore » capillary forces. Using a non-linear regression analysis together with the experimental data, the capillary pressure and water relative permeability curves are determined for the diatomite in the water-air system. The results given for displacement profiles by numerical simulation match the experimental results.« less
Calibrating/testing meters in hot water test bench VM7
NASA Astrophysics Data System (ADS)
Kling, E.; Stolt, K.; Lau, P.; Mattiasson, K.
A Hot Water Test Bench, VM7, has been developed and constructed for the calibration and testing of volume and flowmeters, in a project at the National Volume Measurement Laboratory at the Swedish National Testing and Research Institute. The intended area of use includes use as a reference at audit measurements, e.g. for accredited laboratories, calibration of meters for the industry and for the testing of hot water meters. The objective of the project, which was initiated in 1989, was to design equipment with stable flow and with a minimal temperature drop even at very low flow rates. The principle of the design is a closed system with two pressure tanks at different pressures. The water is led from the high pressure tank through the test object and the volume standard, in the form of master meters or a piston prover alternatively, to the low pressure tank. Calibrations/tests are made comparing the indication of the test object to that of master meters covering the current flow rate. These are, in the same test cycle, calibrated to the piston prover. Alternatively, the test object can be calibrated directly to the piston prover.
Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site.
Takizawa, M; Straube, W L; Hill, R T; Colwell, R R
1993-10-01
The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. The results of hybridization experiments in which DNAs extracted directly from the water overlying sediment core samples were used indicate that the reference site epibenthic community, the disposal site epibenthic community, and the community in a surface sludge plume share many members. Decreased culturability of reference site mixed cultures in the presence of sewage sludge was observed. Thus, the culturable portions of both the autochthonous and allochthonous bacterial communities at the disposal site may be inhibited in situ, the former by sewage sludge and the latter by high pressure and low temperature.
Cape Canaveral, Florida range reference atmosphere 0-70 km altitude
NASA Technical Reports Server (NTRS)
Tingle, A. (Editor)
1983-01-01
The RRA contains tabulations for monthly and annual means, standard deviations, skewness coefficients for wind speed, pressure temperature, density, water vapor pressure, virtual temperature, dew-point temperature, and the means and standard deviations for the zonal and meridional wind components and the linear (product moment) correlation coefficient between the wind components. These statistical parameters are tabulated at the station elevation and at 1 km intervals from sea level to 30 km and at 2 km intervals from 30 to 90 km altitude. The wind statistics are given at approximately 10 m above the station elevations and at altitudes with respect to mean sea level thereafter. For those range sites without rocketsonde measurements, the RRAs terminate at 30 km altitude or they are extended, if required, when rocketsonde data from a nearby launch site are available. There are four sets of tables for each of the 12 monthly reference periods and the annual reference period.
Negative Pressures and the First Water Siphon Taller than 10.33 Meters
Vera, Francisco; Rivera, Rodrigo; Romero-Maltrana, Diego; Villanueva, Jaime
2016-01-01
A siphon is a device that is used to drain a container, with water rising inside a hose in the form of an inverted U and then going down towards a discharge point placed below the initial water level. The siphon is the first of a number of inventions of the ancients documented about 2.000 years ago by Hero of Alexandria in his treatise Pneumatics, and although the explanation given by Hero was essentially correct, there is nowadays a controversy about the underlying mechanism that explains the working of this device. Discussions concerning the physics of a siphon usually refer to concepts like absolute negative pressures, the strength of liquid’s cohesion and the possibility of a siphon working in vacuum or in the presence of bubbles. Torricelli understood the working principle of the barometer and the impossibility of pumping water out of wells deeper than 10.33 m. Following Torricelli’s ideas it would also not be possible to build a siphon that drives pure water to ascend higher than 10.33 m. In this work, we report the first siphon that drives water (with surfactant) to ascend higher than the Torricellian limit. Motivated by the rising of sap in trees, we built a 15.4 m siphon that shows that absolute negative pressures are not prohibited, that cohesion plays an important role in transmitting forces through a fluid, and that surfactants can help to the transport of water in a metastable regime of negative pressures. PMID:27054847
NASA Astrophysics Data System (ADS)
Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.
2012-09-01
During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.
Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis
NASA Technical Reports Server (NTRS)
Cadenhead, D. A.; Mikhail, R. S.
1975-01-01
A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.
Shu, Y Y; Lao, R C; Chiu, C H; Turle, R
2000-12-01
The microwave-assisted extraction (MAE) of polycyclic aromatic hydrocarbons (PAHs) from harbor sediment reference material EC-1, marine sediment reference material HS-2 and PAH-spiked river bed soil was conducted. The extraction conditions for EC-1 were carried out at 70 degrees C and 100 degrees C under pressure in closed vessels with cyclohexane acetone (1:1), cyclohexane-water (3:1), hexane acetone (1:1), and hexane-water (3:1) for 10 min. A comparison between MAE and a 16-h Soxhlet extraction (SX) method showed that both techniques gave comparable results with certified values. MAE has advantages over the currently used Soxhlet technique due to a faster extraction time and lower quantity of solvent used. The consumption of organic solvent of the microwave method was less than one-tenth compared to Soxhlet.
In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory
NASA Astrophysics Data System (ADS)
Garavito, A. M.; De Cannière, P.; Kooi, H.
Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest for osmosis-induced effects in this reference formation in Belgium. Indeed, water flow and solute transport may be associated with several types of driving forces, or gradients (chemical, electrical, thermal), in addition to the hydraulic forces, resulting in the so-called coupled flows. Fluid flow caused by driving forces different than hydraulic gradients is referred to as osmosis. Chemical osmosis, the water flow induced by a chemical gradient across a semi-permeable membrane, can generate pressure increase. The question thus arises if there is a risk to create high pore pressures that could damage the near-field of medium-level waste (MLW) galleries, if osmotically driven water flows towards the galleries are produced by the release of large amounts of NaNO 3 (750 t) in the formation. To what extent a low-permeability clay formation such as the Boom Clay acts as an osmotic membrane is thus a key issue to assess the relevance of osmosis phenomena for the disposal of medium-level waste. An in situ osmosis experiment has been conducted at the H ADES underground research laboratory to determine the osmotic efficiency of Boom Clay at the field scale. A recently developed chemical osmosis flow continuum model has been used to design the osmosis experiment, and to interpret the water pressure measurements. Experimental data could be reproduced quite accurately by the model, and the inferred parameter values are consistent with independent determinations for Boom Clay. A rapid water pressure increase (but limited to about a 2 m water column) was observed after 12 h in the filter containing the more saline water. Then, the osmotically induced water pressure slowly decays on several months. So, the experimental results obtained in situ confirm the occurrence of non-hydraulic flow phenomena (chemical osmosis) in a low-permeability plastic formation such as the Boom Clay. The osmotic efficiency of Boom Clay is high under undisturbed chemical conditions ( σ = 0.41 at 0.014 M NaHCO 3), but rapidly decreases when the dissolved salts concentration increases ( σ = 0.07 at 0.14 M NaHCO 3). A semi-permeable membrane behaviour of the Boom Clay (high efficiencies) may be expected for the disposal of nitrate-bearing radioactive waste. However, the presently observed osmotically induced pressure is too low to have a significant mechanical impact on the host rock. Finally, the short duration of the osmosis test performed suggests that the shut-in test method used is effective for osmosis testing.
Measurement of Capillary Radius and Contact Angle within Porous Media.
Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed
2015-12-01
The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.
NASA Astrophysics Data System (ADS)
van Loon, W. M. G. M.; Boon, A. R.; Gittenberger, A.; Walvoort, D. J. J.; Lavaleye, M.; Duineveld, G. C. A.; Verschoor, A. J.
2015-09-01
The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI, as in the multivariate m-AMBI. The latter MMI has been adopted by several European countries in the context of WFD implementation. In contrast to m-AMBI, the BEQI2 calculation procedure has been strongly simplified and consists of two steps, i.e. the separate indicator values are normalized using their long-term reference values resulting in three Ecological Quality Ratios (EQRs), which are subsequently averaged to give one BEQI2 value. Using this method only small numbers of samples need to be analysed by Dutch benthos laboratories annually, without the necessity to co-analyse a larger historical dataset. BEQI2 EQR values appeared to correlate quantitatively very well with m-AMBI EQR values. In addition, a data pooling procedure has been added to the BEQI2 tool which enables the pooling of small core samples (0.01-0.025 m2) into larger standardized data pools of 0.1 m2 in order to meet the data requirements of the AMBI indicator and to obtain comparable reference values. Furthermore, the BEQI2 tool automatically and efficiently converts species synonym names into standardized species names. The BEQI2 tool has been applied to all Dutch benthos data monitored by Rijkswaterstaat in the period of 1991-2010 in the transitional and coastal waters and salt lakes and these results are reported here for the first time. Reference values for species richness and Shannon index (99 percentile values) and AMBI reference values (1 percentile values) were estimated for all water body-ecotopes and are discussed. BEQI2 results for all these water bodies are discussed in view of natural and human pressures. The pressure sensitivity of the BEQI2 for sewage and dredging/dumping, via the state variables oxygen and suspended matter respectively, was demonstrated.
Investigation and Characterization of Water-Recrystallized Croconic Acid
2016-12-01
high- pressure synthesis. Thermal analysis, bomb calorimetry, X-ray diffraction, and Raman spectroscopy were performed on water- recrystallized...3.2.3 Raman Spectroscopy and X-ray Diffraction 12 3.2.4 Bomb Calorimetry 13 4. Conclusions 15 5. References 16 List of Symbols, Abbreviations, and...and is called the β-phase (the as-received [AR] material is also known as the α-phase). Bomb calorimeter testing of the β-CA indicated a heat of
Performance of heat exchangers used in whole body perfusion circuits.
Bethune, D W; Gill, R D; Wheeldon, D R
1975-01-01
The performance of some commonly used heat exchangers has been investigated with particular reference to the effect of varying the water flow. The results demonstrate that there is considerable variation in the performance of most units when the water flow is changed. It is suggested that more information should be provided by the manufacturers of heat exchangers and that there should be a supply of water in cardiothoracic theatres at a sufficient pressure to allow the full performance of the heat exchangers to be realized. PMID:1198400
NASA Astrophysics Data System (ADS)
Iyer, S. K.; Heitsenrether, R.
2015-12-01
Waves can have a significant impact on many coastal operations including navigational safety, recreation, and even the economy. Despite this, as of 2009, there were only 181 in situ real-time wave observation networks nationwide (IOOS 2009). There has recently been interest in adding real-time wave measurement systems to already existing NOAA Center for Operational Oceanographic Products and Services (CO-OPS) stations. Several steps have already been taken in order to achieve this, such as integrating information from existing wave measurement buoys and initial testing of multiple different wave measurement systems (Heitsenrether et al. 2012). Since wave observations can be derived from high frequency water level changes, we will investigate water level sensors' capability to measure waves. Recently, CO-OPS has been transitioning to new microwave radar water level (MWWL) sensors which have higher resolution and theoretically a greater potential wave measurement capability than the acoustic sensors in stilling wells. In this study, we analyze the wave measurement capability of MWWL sensors at two high energy wave environments, Duck, NC and La Jolla, CA, and compare results to two "reference" sensors (A Nortek acoustic waves and currents profiler (AWAC) at Duck and a single point pressure sensor at La Jolla). A summary of results from the two field test sites will be presented, including comparisons of wave energy spectra, significant wave height, and peak period measured by the test MWWL sensors and both reference AWAC and pressure sensors. In addition, relationships between MWWL versus reference wave sensor differences and specific wave conditions will be discussed. Initial results from spectral analysis and the calculation of bulk wave parameters indicate that MWWL sensors set to the "NoFilter" processing setting can produce wave measurements capability that compare well to the two reference sensors. These results support continued development to enable the installation of MWWL sensors at CO-OPS locations as a method of measuring waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, P.K.; Logsdon, W.A.; Begley, J.A.
1989-10-01
The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288{degrees} C (550{degrees} F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288{degrees} C (550{degrees} F) base line air environment. Themore » growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, Richard K.; Mendola, Pauline; Liu Zhiyi
2007-08-01
The extremely high exposure levels evaluated in prior investigations relating elevated levels of drinking water arsenic and hypertension prevalence make extrapolation to potential vascular effects at lower exposure levels very difficult. A cross-sectional study was conducted on 8790 women who had recently been pregnant in an area of Inner Mongolia, China known to have a gradient of drinking water arsenic exposure. This study observed increased systolic blood pressure levels with increasing drinking water arsenic, at lower exposure levels than previously reported in the literature. As compared to the referent category (below limit of detection to 20 {mu}g of As/L), themore » overall population mean systolic blood pressure rose 1.29 mm Hg (95% CI 0.82, 1.75), 1.28 mm Hg (95% CI 0.49, 2.07), and 2.22 mm Hg (95% CI 1.46, 2.97) as drinking water arsenic concentration increased from 21 to 50, 51 to 100, and > 100 {mu}g of As/L, respectively. Controlling for age and body weight (n = 3260), the population mean systolic blood pressure rose 1.88 mm Hg (95% CI 1.03, 2.73), 3.90 mm Hg (95% CI 2.52, 5.29), and 6.83 mm Hg (95% CI 5.39, 8.27) as drinking water arsenic concentration increased, respectively. For diastolic blood pressure effect, while statistically significant, was not as pronounced as systolic blood pressure. Mean diastolic blood pressure rose 0.78 mm Hg (95% CI 0.39, 1.16), 1.57 mm Hg (95% CI 0.91, 2.22) and 1.32 mm Hg (95% CI 0.70, 1.95), respectively, for the overall population and rose 2.11 mm Hg (95% CI 1.38, 2.84), 2.74 mm Hg (95% CI 1.55, 3.93), and 3.08 mm Hg (95% CI 1.84, 4.31), respectively, for the adjusted population (n = 3260) at drinking water arsenic concentrations of 21 to 50, 51 to 100, and > 100 {mu}g of As/L. If our study results are confirmed in other populations, the potential burden of cardiovascular disease attributable to drinking water arsenic is significant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonen, F.A.; Johnson, K.I.; Liebetrau, A.M.
The VISA-II (Vessel Integrity Simulation Analysis code was originally developed as part of the NRC staff evaluation of pressurized thermal shock. VISA-II uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics methods are used to model crack initiation and propagation. Parameters for initial crack size and location, copper content, initial reference temperature of the nil-ductility transition, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents an upgraded version of themore » original VISA code as described in NUREG/CR-3384. Improvements include a treatment of cladding effects, a more general simulation of flaw size, shape and location, a simulation of inservice inspection, an updated simulation of the reference temperature of the nil-ductility transition, and treatment of vessels with multiple welds and initial flaws. The code has been extensively tested and verified and is written in FORTRAN for ease of installation on different computers. 38 refs., 25 figs.« less
Awada, Hassan K; Fletter, Paul C; Zaszczurynski, Paul J; Cooper, Mitchell A; Damaser, Margot S
2015-08-01
The objective of this study was to compare the simultaneous responses of water-filled (WFC) and air-charged (ACC) catheters during simulated urodynamic pressures and develop an algorithm to convert peak pressures measured using an ACC to those measured by a WFC. Examples of cough leak point pressure and valsalva leak point pressure data (n = 4) were obtained from the literature, digitized, and modified in amplitude and duration to create a set of simulated data that ranged in amplitude from 15 to 220 cm H2 O (n = 25) and duration from 0.1 to 3.0 sec (n = 25) for each original signal. Simulated pressure signals were recorded simultaneously by WFCs, ACCs, and a reference transducer in a specially designed pressure chamber. Peak pressure and time to peak pressure were calculated for each simulated pressure signal and were used to develop an algorithm to convert peak pressures recorded with ACCs to corresponding peak pressures recorded with WFCs. The algorithm was validated with additional simulated urodynamic pressure signals and additional catheters that had not been utilized to develop the algorithm. ACCs significantly underestimated peak pressures of more rapidly changing pressures, as in coughs, compared to those measured by WFCs. The algorithm corrected 90% of peak pressures measured by ACCs to within 5% of those measured by WFCs when simultaneously exposed to the same pressure signals. The developed algorithm can be used to convert rapidly changing urodynamic pressures, such as cough leak point pressure, obtained using ACC systems to corresponding values expected from WFC systems. © 2014 Wiley Periodicals, Inc.
36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... that have been incorporated to minimize loss. The report should make specific reference to appropriate.... Retrofitting may require modifications to the piping system to ensure that adequate water capacity and pressure... storage facilities, boiler rooms or rooms containing equipment operating with a fuel supply (such as...
Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C
2018-01-09
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
NASA Astrophysics Data System (ADS)
Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
Rapid depressurization event analysis in BWR/6 using RELAP5 and contain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueftueoglu, A.K.; Feltus, M.A.
1995-09-01
Noncondensable gases may become dissolved in Boiling Water Reactor (BWR) water level instrumentation during normal operations. Any dissolved noncondensable gases inside these water columns may come out of solution during rapid depressurization events, and displace water from the reference leg piping resulting in a false high level. These water level errors may cause a delay or failure in actuation, or premature shutdown of the Emergency Core Cooling System. (ECCS). If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response and othermore » signals for automatic actuation such as high drywell pressure. It is also important to determine the effect of the level signal on ECCS operation after it is being actuated. The objective of this study is to determine the detailed coupled containment/NSSS response during this rapid depressurization events in BWR/6. The selected scenarios involve: (a) inadvertent opening of all ADS valves, (b) design basis (DB) large break loss of coolant accident (LOCA), and (c) main steam line break (MSLB). The transient behaviors are evaluated in terms of: (a) vessel pressure and collapsed water level response, (b) specific transient boundary conditions, (e.g., scram, MSIV closure timing, feedwater flow, and break blowdown rates), (c) ECCS initiation timing, (d) impact of operator actions, (e) whether indications besides low-low water level were available. The results of the analysis had shown that there would be signals to actuate ECCS other than low reactor level, such as high drywell pressure, low vessel pressure, high suppression pool temperature, and that the plant operators would have significant indications to actuate ECCS.« less
Devlin, Michelle; Painting, Suzanne; Best, Mike
2007-01-01
The EU Water Framework Directive recognises that ecological status is supported by the prevailing physico-chemical conditions in each water body. This paper describes an approach to providing guidance on setting thresholds for nutrients taking account of the biological response to nutrient enrichment evident in different types of water. Indices of pressure, state and impact are used to achieve a robust nutrient (nitrogen) threshold by considering each individual index relative to a defined standard, scale or threshold. These indices include winter nitrogen concentrations relative to a predetermined reference value; the potential of the waterbody to support phytoplankton growth (estimated as primary production); and detection of an undesirable disturbance (measured as dissolved oxygen). Proposed reference values are based on a combination of historical records, offshore (limited human influence) nutrient concentrations, literature values and modelled data. Statistical confidence is based on a number of attributes, including distance of confidence limits away from a reference threshold and how well the model is populated with real data. This evidence based approach ensures that nutrient thresholds are based on knowledge of real and measurable biological responses in transitional and coastal waters.
Marks, N J; Mills, R P
1983-01-01
The dictum that patients who have plastic ventilation tubes (grommets) inserted in their tympanic membranes should not go swimming is questioned. A theoretical assessment is made of the pressure necessary to push water through a grommet. This value is compared with practical observations. These values are discussed with reference to chemical and bacteriological hazards and it is concluded that water is unlikely to enter the middle ear in surface swimming, and even when diving underwater the chances of setting up an otitis media must be small. PMID:6827495
NASA Technical Reports Server (NTRS)
Schnitzer, Emanuel; Hathaway, Melvin E
1953-01-01
An approximate method for computing water loads and pressure distributions on lightly loaded elliptical cylinders during oblique water impacts is presented. The method is of special interest for the case of emergency water landings of helicopters. This method makes use of theory developed and checked for landing impacts of seaplanes having bottom cross sections of V and scalloped contours. An illustrative example is given to show typical results obtained from the use of the proposed method of computation. The accuracy of the approximate method was evaluated through comparison with limited experimental data for two-dimensional drops of a rigid circular cylinder at a trim of 0 degrees and a flight -path angle of 90 degrees. The applicability of the proposed formulas to the design of rigid hulls is indicated by the rough agreement obtained between the computed and experimental results. A detailed computational procedure is included as an appendix.
The Influence of the In-Situ Clad Staining on the Corrosion of Zircaloy in PWR Water Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammenzind, B.F., Eklund, K.L. and Bajaj, R.
Zircaloy cladding tubes strain in-situ during service life in the corrosive environment of a Pressurized Water Reactor for a variety of reasons. First, the tube undergoes stress free growth due to the preferential alignment of irradiation induced vacancy loops on basal planes. Positive strains develop in the textured tubes along prism orientations while negative strains develop along basal orientations (Reference (a)). Second, early in life, free standing tubes will often shrink by creep in the diametrical direction under the external pressure of the water environment, but potentially grow later in life in the diametrical direction once the expanding fuel pelletmore » contacts the cladding inner wall (Reference (b)). Finally, the Zircaloy cladding absorbs hydrogen as a by product of the corrosion reaction (Reference (c)). Once above the solubility limit in Zircaloy, the hydride precipitates as zirconium hydride (References (c) through (j)). Both hydrogen in solid solution and precipitated as Zirconium hydride cause a volume expansion of the Zircaloy metal (Reference (k)). Few studies are reported on that have investigated the influence that in-situ clad straining has on corrosion of Zircaloy. If Zircaloy corrosion rates are governed by diffusion of anions through a thin passivating boundary layer at the oxide-to-metal interface (References (l) through (n)), in-situ straining of the cladding could accelerate the corrosion process by prematurely breaking that passivating oxide boundary layer. References (o) through (q) investigated the influence that an applied tensile stress has on the corrosion resistance of Zircaloy. Knights and Perkins, Reference (o), reported that the applied tensile stress increased corrosion rates above a critical stress level in 400 C and 475 C steam, but not at lower temperatures nor in dry oxygen environments. This latter observation suggested that hydrogen either in the oxide or at the oxide-to-metal interface is involved in the observed stress effect. Kim et al. (Reference (p)) and Kim and Kim (Reference (q)) more recently investigated the influence that an applied hoop stress has on the corrosion resistance of Zircaloy tubes in a 400 C steam and in a 350 C concentrated lithia water environment. Both of these studies found the applied tensile hoop stress to have no effect on cladding corrosion rates in the 400 C steam environment but to have accelerated corrosion in the lithiated water environment. In both cases, the corrosion acceleration in the lithiated water environment was attributed to the accumulation of the increased hydrogen picked up in the lithiated environment into the tensile regions of the test specimen. Dense hydride rims have been shown, independent of clad strain, to accelerate the corrosion of Zirconium alloys (References (r) and (s)), suggesting that the primary effect of applied stresses on the corrosion of Zircaloy in the above studies is through the accumulation of hydrogen at the oxide-to-metal interface and not through a direct mechanical breakdown of the passivating boundary layer. To further investigate the potential role of in-situ clad straining (or stress) on Zircaloy corrosion rates, two experimental studies were performed. First, several samples that were irradiated with and without an applied stress were destructively examined for the extent of corrosion occurring in strained and nonstrained regions of the test samples. The extent of corrosion was determined, posttest, by metallographic examination. Second, the corrosion process was monitored in-situ using electrochemical impedance spectroscopy on samples exposed out-of-reactor with and without an applied stress. Post test, these autoclave samples were also metallographically examined.« less
NASA Astrophysics Data System (ADS)
Liaw, P. K.; Logsdon, W. A.; Begley, J. A.
1989-10-01
The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.
Deformation analysis and prediction of bank protection structure with river level fluctuations
NASA Astrophysics Data System (ADS)
Hu, Rui; Xing, Yixuan
2017-04-01
Bank structure is an important barrier to maintain the safety of the embankment. The deformation of bank protection structure is not only affected by soil pressure caused by the excavation of the riverway, but also by the water pressure caused river water level fluctuations. Thus, it is necessary to establish a coupled soil-water model to analyze the deformation of bank structure. Based on Druck-Prager failure criteria and groundwater seepage theory, a numerical model of bank protection structure with consideration of the pore water pressure of soil mass is established. According to the measured river level data with seasonal fluctuating, numerical analysis of the deformation of bank protection structure is implemented. The simulation results show that the river water level fluctuation has clear influence on the maximum lateral displacement of the pile. Meanwhile, the distribution of plastic zone is related to the depth of groundwater level. Finally, according to the river water level data of the recent ten years, we analyze the deformation of the bank structure under extreme river level. The result shows that, compared with the scenario of extreme high river level, the horizontal displacement of bank protection structure is larger (up to 65mm) under extreme low river level, which is a potential risk to the embankment. Reference Schweiger H F. On the use of drucker-prager failure criteria for earth pressure problems[J]. Computers and Geotechnics, 1994, 16(3): 223-246. DING Yong-chun,CHENG Ze-kun. Numerical study on performance of waterfront excavation[J]. Chinese Journal of Geotechnical Engineering,2013,35(2):515-521. Wu L M, Wang Z Q. Three gorges reservoir water level fluctuation influents on the stability of the slope[J]. Advanced Materials Research. Trans Tech Publications, 2013, 739: 283-286.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... entire radioactive surface of the source shall be wiped with filter paper, moistened with water, with the... wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or by...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... rule's compliance date for all operating nuclear power plants, but noted that the Commission's... compliance date (Reference: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy... Commission (NRC, the Commission) now or hereafter in effect. The facility consists of one pressurized-water...
Discussion of pore pressure transmission under rain infiltration in a soil layer
NASA Astrophysics Data System (ADS)
Yang, S. Y.; Jan, C. D.
2017-12-01
The vadose zone (or unsaturated zone) denotes the geologic media between ground surface and the water table in situ where the openings, or pores, in the soil (rock) layers are partially filled with water and air. In this landscape, rainwater infiltrates into soils advancing through this vadose zone and could generates a shallow saturation zone at soil bedrock boundary due to permeability contrast. This saturation zone leads to downslope shallow subsurface storm runoff that contributes to a part of saturation overland flow, dominating water reaching river channels. Hence, unsaturated processes (e.g., rain infiltration) is an important issue that can determine the timing and magnitude of positive pore pressure and discharge peaks, and the characteristics of runoff, water chemistry, hillslope stability is also tie to the processes. In this study, we investigated the transmission of pore pressure evolution in the vadose zone for diverse soil materials based on poroelasticity theory. Commonly, a traditional way is to utilize the Richard's equation to predict pore pressure evolution under unsaturated rain infiltration, ignoring the inertial effect on the process. Here we relax this limitation and propose two reference time tk and tep that can represent the arriving time at a certain depth of wave propagation and dissipation, respectively. Form ground surface to a depth of 1 m, tk has significant differences under nearly unsaturated conditions for diverse soil properties; however, no evident variations in tk can be observed under nearly saturated conditions. Values of tep for loose, cohesionless soils are much greater but decreases to the smallest one (within 1 day) than those for other soil properties under a nearly saturated condition. Results indicate that transient pore pressure transmission is mainly dominated by dynamic wave propagation but the effect of dissipation could become more important with increase in water saturation.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Experimental Evidence of Low Density Liquid Water under Decompression
NASA Astrophysics Data System (ADS)
Shen, G.; Lin, C.; Sinogeikin, S. V.; Smith, J.
2017-12-01
Water is not only the most important substance for life, but also plays important roles in liquid science for its anomalous properties. It has been widely accepted that water's anomalies are not a result of simple thermal fluctuation, but are connected to the formation of various structural aggregates in the hydrogen bonding network. Among several proposed scenarios, one model of fluctuations between two different liquids has gradually gained traction. These two liquids are referred to as a low-density liquid (LDL) and a high-density liquid (HDL) with a coexistence line in the deeply supercooled regime at elevated pressure. The LDL-HDL transition ends with decreasing pressure at a liquid-liquid critical point (LLCP) with its Widom line extending to low pressures. Above the Widom line lies mostly HDL which is favored by entropy, while LDL, mostly lying below the Widom line, is favored by enthalpy in the tetrahedral hydrogen bonding network. The origin of water's anomalies can then be explained by the increase in structural fluctuations, as water is cooled down to deeply supercooled temperatures approaching the Widom line. Because both the LLCP and the LDL-HDL transition line lie in water's "no man's land" between the homogeneous nucleation temperature (TH, 232 K) and the crystallization temperature (TX, 150 K), the success of experiments exploring this region has been limited thus far. Using a rapid decompression technique integrated with in situ x-ray diffraction, we observe that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. The change in crystallization rate with temperature indicates that the LDN is a LDL with its tetrahedrally-coordinated network fully developed and clearly linked to low-density amorphous ices. The observation of the tetrahedral LDL supports the two-liquid model for water including the existence of a LLCP.
Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu
2016-11-15
This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.
Molinos-Senante, María; Maziotis, Alexandros; Sala-Garrido, Ramón
2016-01-01
Service quality to customers is an aspect that cannot be ignored in the performance assessment of water companies. Nowadays water regulators introduce awards or penalties to incentivize companies to improve service quality to customers when setting prices. In this study, the directional distance function is employed to estimate the shadow prices of variables indicating the lack of service quality to customers in the water industry i.e., written complaints, unplanned interruptions and properties below the reference level. To calculate the shadow price of each undesirable output for each water company, it is needed to ascribe a reference price for the desirable output which is the volume of water delivered. An empirical application is carried out for water companies in England and Wales. Hence, the shadow price of each undesirable output is expressed both as a percentage of the price of the desirable output and in pence per cubic meter of water delivered The estimated results indicate that on average, each additional written complaint that needs to be dealt with by the water company includes a service quality cost of 0.399p/m(3). As expected, when looking at the other service quality variables which involve network repair or replacement, these values are considerably higher. On average, the water company must spend an extra 0.622p/m(3) to prevent one unplanned interruption and 0.702p/m(3) to avoid one water pressure below the reference level. The findings of this study are of great importance for regulated companies and regulators as it has been illustrated that improvements in the service quality in terms of customer service could be challenging and therefore ongoing investments will be required to address these issues. Copyright © 2015 Elsevier B.V. All rights reserved.
A Seafloor Test of the A-0-A Approach to Calibrating Pressure Sensors for Vertical Geodesy
NASA Astrophysics Data System (ADS)
Wilcock, W. S. D.; Manalang, D.; Harrington, M.; Cram, G.; Tilley, J.; Burnett, J.; Martin, D.; Paros, J. M.
2017-12-01
Seafloor geodetic observations are critical for understanding the locking and slip of the megathrust in Cascadia and other subduction zones. Differences of bottom pressure time series have been used successfully in several subduction zones to detect slow-slip earthquakes centered offshore. Pressure sensor drift rates are much greater than the long-term rates of strain build-up and thus, in-situ calibration is required to measure secular strain. One approach to calibration is to use a dead-weight tester, a laboratory apparatus that produces an accurate reference pressure, to calibrate a pressure sensor deployed on the seafloor by periodically switching between the external pressure and the deadweight tester (Cook et al, this session). The A-0-A method replaces the dead weight tester by using the internal pressure of the instrument housing as the reference pressure. We report on the first non-proprietary ocean test of this approach on the MARS cabled observatory at a depth of 900 m depth in Monterey Bay. We use the Paroscientific Seismic + Oceanic Sensors module that is designed for combined geodetic, oceanographic and seismic observations. The module comprises a three-component broadband accelerometer, two pressure sensors that for this deployment measure ocean pressures, A, up to 2000 psia (14 MPa), and a barometer to measure the internal housing reference pressure, 0. A valve periodically switches between external and internal pressures for 5 minute calibrations. The seafloor test started in mid-June and the results of 30 calibrations collected over the first 6 weeks of operation are very encouraging. After correcting for variations in the internal temperature of the housing, the offset of the pressure sensors from the barometer reading as a function of time, can be fit with a straight line for each sensor with a rms misfit of 0.1 hPa (1 mm of water). The slopes of these lines (-4 cm/yr and -0.4 cm/yr) vary by an order of magnitude but the difference in the span (external minus internal pressure) of the two sensors is constant to 0.05 hPa. We will present the results for the first 6 months of A-0-A calibrations for vertical geodesy and also discuss the performance of the pressure sensors and accelerometer for monitoring seismic activity, tilt and ocean infragravity waves.
NASA Astrophysics Data System (ADS)
Davis, Sean M.; Rosenlof, Karen H.; Hassler, Birgit; Hurst, Dale F.; Read, William G.; Vömel, Holger; Selkirk, Henry; Fujiwara, Masatomo; Damadeo, Robert
2016-09-01
In this paper, we describe the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and water vapor data from a subset of the limb profiling satellite instruments operating since the 1980s. The primary SWOOSH products are zonal-mean monthly-mean time series of water vapor and ozone mixing ratio on pressure levels (12 levels per decade from 316 to 1 hPa). The SWOOSH pressure level products are provided on several independent zonal-mean grids (2.5, 5, and 10°), and additional products include two coarse 3-D griddings (30° long × 10° lat, 20° × 5°) as well as a zonal-mean isentropic product. SWOOSH includes both individual satellite source data as well as a merged data product. A key aspect of the merged product is that the source records are homogenized to account for inter-satellite biases and to minimize artificial jumps in the record. We describe the SWOOSH homogenization process, which involves adjusting the satellite data records to a "reference" satellite using coincident observations during time periods of instrument overlap. The reference satellite is chosen based on the best agreement with independent balloon-based sounding measurements, with the goal of producing a long-term data record that is both homogeneous (i.e., with minimal artificial jumps in time) and accurate (i.e., unbiased). This paper details the choice of reference measurements, homogenization, and gridding process involved in the construction of the combined SWOOSH product and also presents the ancillary information stored in SWOOSH that can be used in future studies of water vapor and ozone variability. Furthermore, a discussion of uncertainties in the combined SWOOSH record is presented, and examples of the SWOOSH record are provided to illustrate its use for studies of ozone and water vapor variability on interannual to decadal timescales. The version 2.5 SWOOSH data are publicly available at doi:10.7289/V5TD9VBX.
Davis, Sean M; Rosenlof, Karen H; Hassler, Birgit; Hurst, Dale F; Read, William G; Vömel, Holger; Selkirk, Henry; Fujiwara, Masatomo; Damadeo, Robert
2016-01-01
In this paper, we describe the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and water vapor data from a subset of the limb profiling satellite instruments operating since the 1980s. The primary SWOOSH products are zonal-mean monthly-mean time series of water vapor and ozone mixing ratio on pressure levels (12 levels per decade from 316 to 1 hPa). The SWOOSH pressure level products are provided on several independent zonal-mean grids (2.5, 5, and 10°), and additional products include two coarse 3-D griddings (30° long × 10° lat, 20° × 5°) as well as a zonal-mean isentropic product. SWOOSH includes both individual satellite source data as well as a merged data product. A key aspect of the merged product is that the source records are homogenized to account for inter-satellite biases and to minimize artificial jumps in the record. We describe the SWOOSH homogenization process, which involves adjusting the satellite data records to a "reference" satellite using coincident observations during time periods of instrument overlap. The reference satellite is chosen based on the best agreement with independent balloon-based sounding measurements, with the goal of producing a long-term data record that is both homogeneous (i.e., with minimal artificial jumps in time) and accurate (i.e., unbiased). This paper details the choice of reference measurements, homogenization, and gridding process involved in the construction of the combined SWOOSH product and also presents the ancillary information stored in SWOOSH that can be used in future studies of water vapor and ozone variability. Furthermore, a discussion of uncertainties in the combined SWOOSH record is presented, and examples of the SWOOSH record are provided to illustrate its use for studies of ozone and water vapor variability on interannual to decadal timescales. The version 2.5 SWOOSH data are publicly available at doi:10.7289/V5TD9VBX.
NASA Astrophysics Data System (ADS)
Amarasinghe, Pradeep; Liu, An; Egodawatta, Prasanna; Barnes, Paul; McGree, James; Goonetilleke, Ashantha
2016-09-01
A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system's stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.
The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins.
Frach, Roland; Kibies, Patrick; Böttcher, Saraphina; Pongratz, Tim; Strohfeldt, Steven; Kurrmann, Simon; Koehler, Joerg; Hofmann, Martin; Kremer, Werner; Kalbitzer, Hans Robert; Reiser, Oliver; Horinek, Dominik; Kast, Stefan M
2016-07-18
High-pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for the analysis of the shifts it is mandatory to understand the origin of the observed pressure dependence. Here we present experimental HP NMR data on the (15) N-enriched peptide bond model, N-methylacetamide (NMA), in water, combined with quantum-chemical computations of the magnetic parameters using a pressure-sensitive solvation model. Theoretical analysis of NMA and the experimentally used internal reference standard 4,4-dimethyl-4-silapentane-1-sulfonic (DSS) reveal that a substantial part of observed shifts can be attributed to purely solvent-induced electronic polarization of the backbone. DSS is only marginally responsive to pressure changes and is therefore a reliable sensor for variations in the local magnetic field caused by pressure-induced changes of the magnetic susceptibility of the solvent. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Equations for calculating the properties of dissociated steam
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Gudym, A. A.
2017-08-01
The equations of state for dissociated steam have been developed in the temperature and pressure ranges of 1250-2300 K and 0.01-10.00 MPa for calculating thermodynamic processes in thermal power units operating on high-temperature steam. These equations are based on the property tables for dissociated steam derived at a reference temperature of 0 K. It is assumed that the initial substance is steam, the dissociation of which—in accordance with the most likely chemical reactions—results in formation of molecules of hydrogen, oxygen, steam, hydroxyl, and atoms of oxygen and hydrogen. Differential thermodynamic correlations, considering a change in the chemical potential and the composition of the mixture, during the steam dissociation are used. A reference temperature of 0.01°C used in the calculation of parameters of nondissociated steam has been adopted to predict processes in thermal power units without matching the reference temperatures and to account for transformation of dissociated steam into its usual form for which there is the international system of equations with the water triple point of 0.01°C taken as the reference. In the investigated region, the deviation of dissociated steam properties from those of nondissociated steam, which increases with decreasing the pressure or increasing the temperature, was determined. For a pressure of 0.02 MPa and a temperature of 2200 K, these deviations are 512 kJ/kg for the enthalpy, 0.2574 kJ/(kg K) for the entropy, and 3.431 kJ/(kg K) for the heat capacity at constant pressure. The maximum deviation of the dissociated steam properties calculated by the developed equations from the handbook values that these equations are based on does not exceed 0.03-0.05%.
Ceramic membrane ultrafiltration of natural surface water with ultrasound enhanced backwashing.
Boley, A; Narasimhan, K; Kieninger, M; Müller, W-R
2010-01-01
Ultrafiltration membrane cleaning with ultrasound enhanced backwashing was investigated with two ceramic membrane systems in parallel. One of them was subjected to ultrasound during backwashing, the other acted as a reference system. The feed water was directly taken from a creek with a sedimentation process as only pre-treatment. The cleaning performance was improved with ultrasound but after 3 weeks of operation damages occurred on the membranes. These effects were studied with online measurements of flux, trans-membrane-pressure and temperature, but also with integrity tests, turbidity measurements and visual examination.
Liquefaction of Saturated Soil and the Diffusion Equation
NASA Astrophysics Data System (ADS)
Sawicki, Andrzej; Sławińska, Justyna
2015-06-01
The paper deals with the diffusion equation for pore water pressures with the source term, which is widely promoted in the marine engineering literature. It is shown that such an equation cannot be derived in a consistent way from the mass balance and the Darcy law. The shortcomings of the artificial source term are pointed out, including inconsistencies with experimental data. It is concluded that liquefaction and the preceding process of pore pressure generation and the weakening of the soil skeleton should be described by constitutive equations within the well-known framework of applied mechanics. Relevant references are provided
Guo, Henan; Yang, Xuedong; Liu, Jun; Zheng, Wenfeng
2012-07-01
Flavonoid reference standards were targeted-prepared from Scutellariae Radix under the guidance of high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. With HPLC-MS analysis of Scutellariae Radix, 19 flavonoid components were identified by analyzing and comparing their retention times, ultraviolet spectra, and mass spectrometry data with literature. The separation and purification protocols of all targeted flavonoid reference standards were optimally designed according to the results of HPLC-MS analysis and related literature. The ethanol extract of Scutellariae Radix was suspended in water and extracted with petroleum ether, ethyl acetate, and n-butanol successively. The ethyl acetate extract and n-butanol extract were separately subjected to primary separation by low pressure reverse phase preparative chromatography. Then the fractions containing targeted compounds were further purified by low pressure reverse and normal phases preparative chromatography. Finally, baicalin and wogonoside reference standards were obtained from n-butanol extract; baicaelin, wogonin, and oroxylin A reference standards were obtained from ethyl acetate extract. The structures of the 5 reference standards were identified by mass spectrometry (MS) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The HPLC analytical results showed that the purities of the 5 reference standards were all above 98%. It is demonstrated that the rapid targeted-preparation method under the guidance of the HPLC-MS analysis is applicable for the isolation and preparation of chemical components in traditional Chinese medicines.
Initial conceptual design study of self-critical nuclear pumped laser systems
NASA Technical Reports Server (NTRS)
Rodgers, R. J.
1979-01-01
An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.
PETher - Physical Properties of Thermal Water under In-situ-Conditions
NASA Astrophysics Data System (ADS)
Herfurth, Sarah; Schröder, Elisabeth
2016-04-01
The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically designed in-house to meet any geothermal reservoir conditions present in Germany. The obtained results will be compared with standard analytical methods as well as used to calibrate laboratory measurements that simulate the encountered in-situ conditions. A series of measurements will be performed to create a data base. In addition, these data can be used as reference data for developing and validating numerical models. In-situ measurements - in contrast to laboratory measurements - record the data online and instantaneously during normal operation of the plant and without changing the properties of the investigated fluid (pressure, temperature, etc.). Due to this, the uncertainties in the thermo-physical properties caused by degassing and precipitation are studiously avoided. As a result, the thermo-physical properties density, specific isobaric heat capacity, kinematic viscosity and thermal conductivity have been measured as functions of the geothermal water temperature, pressure and salinity at five sites, up to now. The measurements show that the thermo-physical properties correlate strongly with the salinity and therefore differ considerably from pure water values when a significant salt content is present.
Vitton, V; Ben Hadj Amor, W; Baumstarck, K; Grimaud, J-C; Bouvier, M
2013-12-01
Our aim was to compare for the first time measurements obtained with water-perfused catheter anorectal manometry and three-dimensional (3D) high-resolution manometry in patients with anorectal disorders. Consecutive patients referred to our centre for anorectal manometry (ARM) were recruited to undergo the two procedures successively. Conventional manometry was carried out using a water-perfused catheter (WPAM) and high-resolution manometry was achieved with a 3D probe (3DHRAM). For each procedure, parameters recorded included the following: anal canal length, resting pressure, squeeze pressure and rectal sensitivity. Two hundred and one patients were included in this study. The mean values for resting and squeeze pressures were correlated and found to be significantly higher when measured with 3DHRAM than with WPAM. However, the length of the anal canal was not significantly different when measured by the two techniques without correlation between the two mean values obtained. The presence of the rectoanal inhibitory reflex was systematically assessed by both WPAM and 3DHRAM and anismus was also systematically diagnosed by both WPAM and 3DHRAM. The pressure values obtained with 3DHRAM are correlated with those measured with conventional manometry but are systematically higher. 3DHRAM has the advantage of providing a pressure recording over the entire length and circumference of the anal canal, allowing a more useful physiological assessment of anorectal function. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.
NASA Astrophysics Data System (ADS)
Fumagalli, P.; Mookherjee, M.; Stixrude, L. P.
2006-12-01
Serpentine, talc and brucite occur in oceanic crust as alteration products of ultramafic rocks. As mineral phases occurring in the subduction zone setting, both along the slab and within the mantle wedge, they are possible candidates for carrying and tranfer of water to the deep earth. This is manifested by serpentine mud volcanoes, high electrical conductivities, magnetic and seismic anomalies. At high pressure talc transforms to the 10 Å phase. Both the 10 Å phase and serpentine eventually transfer their water content to other dense hydrous magnesium silicates stable at depth greater than 200 km. Most of the mantle's water budget may be contained in nominally anhydrous phases in which hydrogen occurs as non-stoichiometric defects. In order to evaluate the potential for remote detection of mantle water via seismology, we have investigated the elasticity systematics of hydrous phases, supplementing literature data with a new ab initio theoretical study of serpentine. Serpentine shows unusual high-pressure behavior. We predict a symmetry preserving phase transformation involving a proton flip near 25 GPa, and elastic instability at somewhat higher pressures that may be related with experimentally observed amorphization. Results of compression for the low-pressure phase is well represented by a fourth order Birch-Murnaghan finite strain expression with Ko= 81 GPa, Ko'= 9.12 and KoKo"= -142, where K is the bulk modulus, prime indicates pressure derivatives, and O refers to zero pressure. The elastic constant tensor reveals large acoustic anisotropy (41 % in VP) and seismic wave velocities that are significantly higher than those inferred from experiments on serpentinites. We find that serpentine and many other hydrous and nominally anhydrous phases conform closely to generalized Birch's laws in VP, VS, and VB versus density space. Coherent patterns emerge only if hydroxyls are treated as single "atomic" units in the computation of mean atomic weight, suggesting important implications for the understanding of the influence of hydrogen on mineral elasticity.
An occultation satellite system for determining pressure levels in the atmosphere
NASA Technical Reports Server (NTRS)
Ungar, S. G.; Lusignan, B. B.
1972-01-01
An operational two-satellite microwave occultation system will establish a pressure reference level to be used in fixing the temperature-pressure profile generated by the SIRS infrared sensor as a function of altitude. In the final error analysis, simulated data for the SIRS sensor were used to test the performance of the occultation system. The results of this analysis indicate that the occultation system is capable of measuring the altitude of the 300-mb level to within 24 mrms, given a maximum error of 2 K in the input temperature profile. The effects of water vapor can be corrected by suitable climatological profiles, and improvements in the accuracy of the SIRS instrument should yield additional improvements in the performance of the occultation system.
Book review: Estimating groundwater recharge
Stonestrom, David A.
2011-01-01
Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier “saturated” indicating that the pressure of the pore water is greater than atmospheric. Briefly stated, recharge is downward flux across the water table. The term “groundwater recharge” can refer either to the multiple interacting processes generating and controlling the flux or to the fluxR itself. When referring to flux, R can represent either (1) a value integrated over large areas and long periods of time or (2) a point value, or instantaneous flux density, that varies erratically as well as continuously in time and space. Knowing how R is distributed through space and time is required for understanding the dynamics of groundwater flow and transport in any watershed, aquifer, or selected domain of interest and for understanding heads, flow paths, and discharges to streams, wetlands, and other surface water bodies. Clearly among the most important of hydrologic fluxes, R is also one of the most difficult to measure. Advancements in hydrologic science have proceeded surprisingly in lockstep with advances in determining R.
Simulation of floods caused by overloaded sewer systems: extensions of shallow-water equations
NASA Astrophysics Data System (ADS)
Hilden, Michael
2005-03-01
The outflow of water from a manhole onto a street is a typical flow problem within the simulation of floods in urban areas that are caused by overloaded sewer systems in the event of heavy rains. The reliable assessment of the flood risk for the connected houses requires accurate simulations of the water flow processes in the sewer system and in the street.The Navier-Stokes equations (NSEs) describe the free surface flow of the fluid water accurately, but since their numerical solution requires high CPU times and much memory, their application is not practical. However, their solutions for selected flow problems are applied as reference states to assess the results of other model approaches.The classical shallow-water equations (SWEs) require only fractions (factor 1/100) of the NSEs' computational effort. They assume hydrostatic pressure distribution, depth-averaged horizontal velocities and neglect vertical velocities. These shallow-water assumptions are not fulfilled for the outflow of water from a manhole onto the street. Accordingly, calculations show differences between NSEs and SWEs solutions.The SWEs are extended in order to assess the flood risks in urban areas reliably within applicable computational efforts. Separating vortex regions from the main flow and approximating vertical velocities to involve their contributions into a pressure correction yield suitable results.
Surface properties of thermally treated composite wood panels
NASA Astrophysics Data System (ADS)
Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru
2018-04-01
Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.
Wang, Lixin; Caylor, Kelly K; Dragoni, Danilo
2009-02-01
The (18)O and (2)H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor delta(18)O and delta(2)H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring delta(18)O and delta(2)H which achieve accuracy levels similar to those of lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long-term field deployment at remote field sites. A new method called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) has been developed which requires extremely low-energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS-based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT-100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas-sampling systems. The precisions of this instrument and the associated calibration method can reach approximately 0.08 per thousand for delta(18)O and approximately 0.4 per thousand for delta(2)H. Compared with conventional mass spectrometry and other LAS-based methods, the OA-ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments. Copyright 2009 John Wiley & Sons, Ltd.
Slugging Flow of Water Draining from the Bottom of a Non-Vented Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles W. Solbrig
2010-06-01
Experiments were run to observe the behavior of water exiting through an orifice at the bottom of an non-vented container. Initially, the container is nearly full of water with a small air space on top. Once the orifice was uncovered, the slugging rate and the drain rate of the water leaving the container were measured. Upon initially opening the orifice, water drains out until the air pressure above the water reduces enough that the air pressure drop from inside to outside of the container supports the water column and the water stops flowing. Air then enters the container through themore » orifice forming a bubble, which grows until it detaches and bubbles through the water to reach the air space. Once the bubble enters, this added air increases the pressure in the air space enough to allow the water to start flowing out again. This cycle of flow out, flow stoppage, air inflow, and bubble breakoff continues over and over until the hole is closed or the container empties. This is referred to as the “slugging cycle.” A mechanism is proposed to describe the slugging cycle which is modeled analytically. This paper presents the description of the experiments, data obtained, the mechanistic model, and comparison of the model to the experimental data. The model predicts outflow rates close to experimental values. Flow rates from non-vented containers are more than 10 to 20 less than vented containers. The bubbles which must enter the container periodically to increase the internal air pressure stop the water flow momentarily so are responsible for this large decrease in flow rate. Swirl induced in the non-vented container causes the flow rates to increase by a factor of two. The flow rate out of a non-vented container is independent of water height which is in direct contrast to a vented container where the flow rate is proportional to the square root of the water height. The constant rate is due to the container pressure. The higher the water level, the lower the air pressure is in the container. This analytical model requires input of the bubble size. The volume recommended is the volume of a cylinder with the base of the orifice area and length of 3.3 cm. Slugging rate varies only a small amount falling in the range to 2 to 4 cycles/sec. Preliminary work with other containers indicates larger containers, larger orifices and nozzle exit shapes produce higher specific flow rates. The standard multiphase flow equations could not be used to analyze this situation because the two phases are not interpenetrating. Instead one phase must fully stop before the other can flow. Interpenetrating phases allow can pass one another each affecting the other with friction and virtual mass. An interesting observation: The negative air pressure in the container is observable. It equals the water height.« less
NASA Astrophysics Data System (ADS)
Manha, William D.
2010-09-01
Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of leakage into the reference cavity. Since the burst discs are DFMR, a single burst disc would suffice, without adding the two leak-into-reference cavity failure modes. A single DFMR burst disc is preferable. An Alpha Magnetic Spectrometer - 02 burst disc assembly, with three-in-series burst discs test failure, necessitated the deletion of one of the burst discs, will be presented. Payload relief valves require periodic retests were extended significantly beyond the normal one year retest period because of the reduced ISS down mass capability which followed the Columbia accident. The acceptability of the extended retest period was determined by analysis, materials stability, benign environment, relatively inert fluid exposure, etc.(The policy letter, NC4-02-205 Guidelines for Certification and Verification of Pressure System Control Hardware, that permitted this action will be provided even though this application is not recommended for extending relief valve annual retest requirements.) The first crack pressure of a relief valve after an extended inactive period can be higher than the set crack pressure. Extrapolation of the extended inactive period and increased crack pressure could result in ineffective over pressure protection. Thus, relief valves with a ring or lever for activation are recommended so the relief valve can periodically be verified to open, functionality verified and the extended relief valve retest period should be discouraged. Stainless Steel cylindrical poppet-in-cylindrical housing check valves should never be used in a fluid with ions for an extended period of time, because the poppet is vulnerable to seizing or not functioning as a relief valve, even though the specifications, crack pressure, reseat pressure, maximum flow, and reseat leak look very much like the specifications for a relief valve. The technical reasons for this avoidance of using check valves as a relief valve will be discussed. The presentation will be summarized and recommendations made.
NASA Astrophysics Data System (ADS)
Turner, D. P.; Conklin, D. R.; Vache, K. B.; Schwartz, C.; Nolin, A. W.; Chang, H.; Watson, E.; John, B.
2016-12-01
Projected changes in air temperature, precipitation, and vapor pressure for the Willamette River Basin (Oregon, USA) over the next century will have significant impacts on the river basin water balance, notably on the amount of evapotranspiration (ET). Mechanisms of impact on ET will be both direct and indirect, but there is limited understanding of their absolute and relative magnitudes. Here we developed a spatially-explicit, daily time-step, modeling infrastructure to simulate the basin-wide water balance that accounts for meteorological influences, as well as effects mediated by changing vegetation cover type, leaf area, and ecophysiology. Three CMIP5 climate scenarios (LowClim, Reference, HighClim) were run for the 2010 to 2100 period. Besides warmer temperatures, the climate scenarios were characterized by wetter winters and increasing vapor pressure deficits. In the mid-range Reference scenario, our landscape simulation model (Envision) projected a continuation of forest cover on the uplands but a 3-fold increase in area burned per year. A decline (12-30%) in basin-wide mean leaf area index (LAI) in forests was projected in all scenarios. The lower LAIs drove a corresponding decline in ET. In a sensitivity test, the effect of increasing CO2 on stomatal conductance induced a further substantial decrease (11-18%) in basin-wide mean ET. The net effect of decreases in ET and increases in winter precipitation was an increase in annual streamflow. These results support the inclusion of changes in land cover, land use, LAI, and ecophysiology in efforts to anticipate impacts of climate change on basin-scale water balances.
Tetrahedrality and hydrogen bonds in water
NASA Astrophysics Data System (ADS)
Székely, Eszter; Varga, Imre K.; Baranyai, András
2016-06-01
We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.
Effects of acute hyperthermia on the carotid baroreflex control of heart rate in humans
NASA Astrophysics Data System (ADS)
Yamazaki, F.; Sagawa, S.; Torii, R.; Endo, Y.; Shiraki, K.
The purpose of this study was to examine the effect of hyperthermia on the carotid baroreceptor-cardiac reflexes in humans. Nine healthy males underwent acute hyperthermia (esophageal temperature 38.0° C) produced by hot water-perfused suits. Beat-to-beat heart rate (HR) responses were determined during positive and negative R-wave-triggered neck pressure steps from +40 to -65 mm Hg during normothermia and hyperthermia. The carotid baroreceptor-cardiac reflex sensitivity was evaluated from the maximum slope of the HR response to changes in carotid distending pressure. Buffering capacity of the HR response to carotid distending pressure was evaluated in % from a reference point calculated as (HR at 0 mm Hg neck pressure-minimum HR)/HR range ×100. An upward shift of the curve was evident in hyperthermia because HR increased from 57.7+/-2.4 beats/min in normothermia to 88.7+/-4.1 beats/min in hyperthermia (P<0.05) without changes in mean arterial pressure. The maximum slope of the curve in hyperthermia was similar to that in normothermia. The reference point was increased (P<0.05) during hyperthermia. These results suggest that the sensitivity of the carotid baroreflex of HR remains unchanged in hyperthermia. However, the capacity for tachycardia response to rapid onset of hypotension is reduced and the capacity for bradycardia response to sudden hypertension is increased during acute hyperthermia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talati, Shuchi; Zhai, Haibo; Kyle, G. Page
This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% overmore » the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.« less
Indicator system provides complete data of engine cylinder pressure variation
NASA Technical Reports Server (NTRS)
Mc Jones, R. W.; Morgan, N. E.
1966-01-01
Varying reference pressure used together with a balanced pressure pickup /a diaphragm switch/ to switch the electric output of the pressure transducer in a reference pressure line obtains precise engine cylinder pressure data from a high speed internal combustion engine.
Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems
NASA Astrophysics Data System (ADS)
Liljestrand, Howard M.
The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.
Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe
NASA Astrophysics Data System (ADS)
Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.
2014-03-01
Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.
Flowsheets and source terms for radioactive waste projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.
1985-03-01
Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia.
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning ( P =0.007 and P =0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect ( P >0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation ( P =0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus ( P =0.269). The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Introduction Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Methods Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. Results In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning (P=0.007 and P=0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect (P>0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation (P=0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus (P=0.269). Conclusion The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls. PMID:27713648
A database for the static dielectric constant of water and steam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, D.P.; Mulev, Y.; Goodwin, A.R.H.
All reliable sources of data for the static dielectric constant or relative permittivity of water and steam, many of them unpublished or inaccessible, have been collected, evaluated, corrected when required, and converted to the ITS-90 temperature scale. The data extend over a temperature range from 238 to 873 K and over a pressure range from 0.1 MPa up to 1189 MPa. The evaluative part of this work includes a review of the different types of measurement techniques, and the corrections for frequency dependence due to the impedance of circuit components, and to electrode polarization. It also includes a detailed assessmentmore » of the uncertainty of each particular data source, as compared to other sources in the same range of pressure and temperature. Both the raw and the corrected data have been tabulated, and are also available on diskette. A comprehensive list of references to the literature is included.« less
Magee, Joseph W.; Deal, Renee J.; Blanco, John C.
1998-01-01
A high-temperature adiabatic calorimeter has been developed to measure the constant-volume specific heat capacities (cV) of both gases and liquids, especially fluids of interest to emerging energy technologies. The chief design feature is its nearly identical twin bomb arrangement, which allows accurate measurement of energy differences without large corrections for energy losses due to thermal radiation fluxes. Operating conditions for the calorimeter cover a range of temperatures from 250 K to 700 K and at pressures up to 20 MPa. Performance tests were made with a sample of twice-distilled water. Heat capacities for water were measured from 300 K to 420 K at pressures to 20 MPa. The measured heat capacities differed from those calculated with an independently developed standard reference formulation with a root-mean-square fractional deviation of 0.48 %. PMID:28009375
The Geomorphology of Puget Sound Beaches
2006-10-01
of longer-term climate variations it is referred to as a meteorological residual. An analysis of regional air pressure and water level observations...wave and tidal climate . For further details on the analy- sis rational and methods, see Finlayson (2006) The clustering analysis resulted in four profile...energy compared with incident waves on the Pacific Coast, and (2) the wave climate is tightly coupled with local wind patterns. The direction of
Ecological quality boundary-setting procedures: the Gulf of Riga case study.
Aigars, Juris; Müller-Karulis, Bärbel; Martin, Georg; Jermakovs, Vadims
2008-03-01
Two approaches for setting ecological class boundaries, response curves and a simplified mathematical boundary-setting protocol, were tested for coastal, transitional and open waters in the Gulf of Riga, Baltic Sea. The simplified mathematical boundary-setting protocol defines acceptable ecological status based on expert judgment by a uniform relative deviation from reference conditions. In contrast, response curves derive class boundary definitions from observed changes in biological quality elements along environmental pressure gradients for class boundary definitions. Identification of relevant environmental pressures for the construction of response curves was based on a conceptual model of eutrophication in the Gulf of Riga. Response curves were successfully established for summer chlorophyll a and transparency, as well as for macrozoobenthos abundance in the Central Gulf, macrozoobenthos biotic coefficient in the Southern Gulf, and maximum depth of phytobenthos in the Northern Gulf. In the Gulf of Riga response curves almost always permitted a larger deviation from reference conditions than the 50% deviation applied for the simplified mathematical boundary-setting protocol. The case study clearly demonstrated that class boundary definitions should take into account the sensitivity of the target water body. Also, the class boundaries for different ecological quality elements were internally more consistent than those derived by the simplified mathematical boundary-setting protocol.
On-Line Analyzer For Monitoring Trace Amounts Of Oil In Turbid Waters
NASA Astrophysics Data System (ADS)
Niemela, P.; Jaatinen, J.
1986-05-01
This report presents an automated analyzer which continuously monitors oil content of a sample water stream that flows through the analyzer. The measuring principle is based on the absorption of infrared radiation by oil molecules contained in the sample water. The wavelength band that is used in the measurement is at 3.4 μm, where different types of oils show nearly equal absorption. Another wavelength band of 3.6 μm, where oil has no absorption, is used to compensate the effect of turbidity, which is due to solid particles and oil droplets contained in the sample water. Before entering the analyzer the sample water flow is properly homogenized. To compensate the strong absorption by water molecules in these wavelength bands the sample water is compared with reference water. This is done by directing them alternately through the same measuring cell. The reference water is obtained from the sample water by ultrafiltration and it determines the base line for the contaminated sample water. To ensure the stability of the base line, temperature and pressure differences of the two waters are kept within adequate ranges. Areas of application of the analyzer are wide ranging i.a. from ships' discharge waters to waste waters of industrial processes. The first application of the analyzer is on board oil tankers to control the discharge process of bilge and ballast waters. The analyzer is the first that fully corresponds to the stringent regulations for oil content monitors by the International Maritime Organization (IMO). Pilot installations of the analyzer are made on industrial plants.
NASA Astrophysics Data System (ADS)
Kumar, Vaibhav; Ng, Ivan; Sheard, Gregory J.; Brocher, Eric; Hourigan, Kerry; Fouras, Andreas
2011-08-01
This paper examines the shock cell structure, vorticity and velocity field at the exit of an underexpanded jet nozzle using a hydraulic analogy and the Reference Image Topography technique. Understanding the flow in this region is important for the mitigation of screech, an aeroacoustic problem harmful to aircraft structures. Experiments are conducted on a water table, allowing detailed quantitative investigation of this important flow regime at a greatly reduced expense. Conventional Particle Image Velocimetry is employed to determine the velocity and vorticity fields of the nozzle exit region. Applying Reference Image Topography, the wavy water surface is reconstructed and when combined with the hydraulic analogy, provides a pressure map of the region. With this approach subtraction of surfaces is used to highlight the unsteady regions of the flow, which is not as convenient or quantitative with conventional Schlieren techniques. This allows a detailed analysis of the shock cell structures and their interaction with flow instabilities in the shear layer that are the underlying cause of jet screech.
NASA Technical Reports Server (NTRS)
1980-01-01
The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip E. MacDonald
2005-01-01
The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission ofmore » the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.« less
NASA Astrophysics Data System (ADS)
Tailleux, R.
2016-02-01
A new materially-conserved quasi-neutral density variable has been constructed, called thermodynamic neutral density. It is composed of two parts. The first part is the Lorenz reference density entering Lorenz theory of available potential energy, which can be interpreted as the potential density of a fluid parcel referenced to the pressure it would have in Lorenz reference state of minimum potential energy. The second part is an empirical correction for pressure, which can be suitably chosen to make thermodynamic neutral density a very good approximation of Jackett and McDougall (1997) neutral density over most of the ocean water masses for which the latter is defined. Thermodynamic neutral density possesses many advantages over the empirically constructed Jackett and McDougall (1997) neutral density: 1) it is physically-based; 2) it is easily computed using fast and efficient methods for arbitrary states of the ocean, not just the present state, using the recently developed methodology by Saenz et al. (2015); 3) it is exactly neutral in a state of rest, and approximately neutral in the present ocean; 4) it is exactly materially conserved (it is a function of salinity and potential temperature only) and not plagued by unphysical nonmaterial effects, so can be used unambiguously to define and diagnose diapycnal and isopycnal mixing; 5) it is based on available potential energy, and therefore is the most suitable variable to discuss the energy cost of adiabatic stirring; 6) it is the variable that should be used to define the isopycnal and diapycnal directions in rotated diffusion tensor, as it can be shown that using the directions defined by the local neutral tangent plane as currently done causes spurious destruction of water masses. References: J. A. Saenz, R. Tailleux, E.D. Butler, G.O. Hughes, and K.I.C. Oliver, 2015: Estimating Lorenz's reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 1242—1257
Benninger, Emanuel; Labler, Ludwig; Seifert, Burkhardt; Trentz, Otmar; Menger, Michael D; Meier, Christoph
2008-01-01
To compare volume reserve capacity (VRC) and development of intra-abdominal hypertension after different in vitro temporary abdominal closure (TAC) techniques. A model of the abdomen was designed. The abdominal wall was simulated with polychloroprene, a synthetic rubber compound. A lentil-shaped defect of 150 cm(2) was cut into the anterior aspect of the abdominal wall. TAC of this defect was performed by a zipper system (ZS), a bag silo closure (BSC), or a vacuum assisted closure (VAC) with subatmospheric pressures ranging from 0- to 200 mmHg. The model with intact abdominal wall served as reference. The model was filled with water to baseline level. The intra-abdominal pressure was increased in 2 mmHg steps from baseline level (6 mmHg) to 40 mmHg by adding volume to the system according to a standardized protocol. VRC with corresponding intra-abdominal pressure were analyzed and compared for the different TAC techniques. VRC was the highest after BSC at all pressure levels studied (P < 0.05). VAC and ZS resulted in significantly lower VRC compared with BSC and reference (P < 0.05). The magnitude of negative pressure on the VAC did not significantly influence the VRC. In the present in vitro model, BSC demonstrated the highest VRC of all evaluated TAC techniques. Different levels of subatmospheric pressures applied to the VAC did not affect VRC. The results for ZS and VAC indicate that these TAC techniques may increase the risk for recurrent intra-abdominal hypertension and should therefore not be used in high-risk patients during the initial phase after abdominal decompression.
NASA Astrophysics Data System (ADS)
Morales-Muñoz, S.; Luque-García, J. L.; Luque de Castro, M. D.
2003-01-01
Acidified and pressurized hot water is proposed for the continuous leaching of Cd and Pb from plants prior to determination by electrothermal atomic absorption spectrometry. Beech leaves (a certified reference material—CRM 100—where the analytes were not certified) were used for optimizing the method by a multivariate approach. The samples (0.5 g) were subjected to dynamic extraction with water modified with 1% v/v HNO 3 at 250 °C as leachant. A kinetics study was performed in order to know the pattern of the extraction process. The method was validated with a CRM (olive leaves, 062 from the BCR) where the analytes had been certified. The agreement between the certified values and those found using the proposed method demonstrates its usefulness. The repeatability and within-laboratory reproducibility were 3.7 and 2.3% for Cd and 1.04% and 6.3% for Pb, respectively. The precision of the method, together with its efficiency, rapidity, and environmental acceptability, makes it a good alternative for the determination of trace metals in plant material.
Numerical Analysis of Infiltration Into a Sand Profile Bounded by a Capillary Fringe
NASA Astrophysics Data System (ADS)
Curtis, Alan A.; Watson, Keith K.
1980-04-01
The rapid response sometimes observed in a tile drain system following surface ponding of water is discussed in terms of the air compressibility effect. An earlier numerical study describing water movement into a bounded profile with a lower boundary impermeable to the passage of both air and water is reviewed with particular reference to the validity of the time-dependent boundary condition transformation used in simulating the inhibiting effects of the air pressure increase on infiltration. The extension of the transformation approach to a profile bounded by a capillary fringe is then considered in detail, and the results of numerical analyses are presented for infiltration into two columns of a fine sand initially in hydraulic equilibrium from a prior gravity drainage regime. The shorter column develops a steady state flow condition at short times which is consistent with earlier experimental findings. In contrast, the pressure of the entrapped air in the longer column gradually increases as infiltration proceeds until the analysis is terminated when air escape through the lower boundary is imminent.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.
Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system
NASA Astrophysics Data System (ADS)
Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole
2013-04-01
Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump. This setup ensures full compatibility with the future deployment of the analyser within IAGOS. For the initial water calibration of the instrument, a calibration of a similar instrument performed at MPI-BGC Jena against a dew point mirror (Dewmet, Michell instruments Ltd., UK) in the range from 0.7 to 3.0% was transferred to all subsequently manufactured CRDS instruments by Picarro. During the campaign the analyzer was compared against a reference frost point hygrometer, which is also used for calibration of the reference instrument FISH. The dew point mirror calibration was within 0.7 % of the FISH calibrator, but showed an offset of 14.45 ppm, which is consistent with the H2O content of dry tank air and diffusion effects through the inlet line (FEP). Furthermore, a new independent calibration method, based on the dilution effect of water vapour on CO2, was tested. It showed a 9 % low bias compared to the dew point mirror calibration. Comparison of the in-flight data against the reference systems showed that the analyzer is reliable and has a good long-term stability. Flight data from the DENCHAR campaign suggest a conservative precision estimate for measurements made at 0.4 Hz of 4 ppm for H2O < 100 ppm, and 4 % (relative) for H2O > 100 ppm. Accuracy at mixing ratios below 50 ppm was difficult to assess, as the reference instruments suffered from lack of stability. We present the results of the campaign flights and comparison with the reference instruments. The different calibration methods will be discussed.
Method and Apparatus for Non-Invasive Measurement of Changes in Intracranial Pressure
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)
2004-01-01
A method and apparatus for measuring intracranial pressure. In one embodiment, the method comprises the steps of generating an information signal that comprises components (e.g., pulsatile changes and slow changes) that are related to intracranial pressure and blood pressure, generating a reference signal comprising pulsatile components that are solely related to blood pressure, processing the information and reference signals to determine the pulsatile components of the information signal that have generally the same phase as the pulsatile components of the reference signal, and removing from the information signal the pulsatile components determined to have generally the same phase as the pulsatile components of the reference signal so as to provide a data signal having components wherein substantially all of the components are related to intracranial pressure.
Residual water bactericide monitor development program
NASA Technical Reports Server (NTRS)
1973-01-01
A silver-ion bactericidal monitor is considered for the Space Shuttle Potable Water System. Potentiometric measurement using an ion-selective electrode is concluded to be the most feasible of available techniques. Four commercially available electrodes and a specially designed, solid-state, silver-sulfide electrode were evaluated for their response characteristics and suitability for space use. The configuration of the solid-state electrode with its Nernstian response of 10 to 10,000 ppb silver shows promise for use in space. A pressurized double-junction reference electrode with a quartz-fiber junction and a replaceable bellows electrolyte reservoir was designed verification-tested, and paired with a solid-state silver-sulfide electrode in a test fixture.
NASA Technical Reports Server (NTRS)
Mcfeters, Gordon A.; Pyle, Barry H.; Watters, Shelley K.; Cargill, Kari L.; Yu, Feipeng P.
1991-01-01
The sensitivity of waterborne bacteria from iodinated systems to iodine is examined with particular attention to the recovery of the organisms. The use of iodine as a disinfectant for space-vehicle water is described, and references are made to studies of iodine sensitivity and the relationship between growth rate and iodine sensitivity. Growth following iodination is discussed, and bacterial responses to nutrient restriction are examined for both P aeruginosa and Legionella pneumophila. The low level of organic nutrients in spacecraft water allows the selection for bacteria that are less sensitive to halogens. The formation of biofilms within the water-treatment system enhances bacterial resistance to iodine, and in the case of high-quality water it is shown that sublethal doses of iodine can stimulate bacterial growth. Water treatment should therefore be based on antecedent growth conditions, nutrient limitation, biofilm formation, and ambient selective pressures.
NASA Astrophysics Data System (ADS)
Guillevic, Myriam; Pascale, Céline; Mutter, Daniel; Wettstein, Sascha; Niederhauser, Bernhard
2017-04-01
In the framework of METAS' AtmoChem-ECV project, new facilities are currently being developed to generate reference gas mixtures for water vapour at concentrations measured in the high troposphere and polar regions, in the range 1-20 µmol/mol (ppm). The generation method is dynamic (the mixture is produced continuously over time) and SI-traceable (i.e. the amount of substance fraction in mole per mole is traceable to the definition of SI-units). The generation process is composed of three successive steps. The first step is to purify the matrix gas, nitrogen or synthetic air. Second, this matrix gas is spiked with the pure substance using a permeation technique: a permeation device contains a few grams of pure water in liquid form and loses it linearly over time by permeation through a membrane. In a third step, to reach the desired concentration, the first, high concentration mixture exiting the permeation chamber is then diluted with a chosen flow of matrix gas with one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. The mixture can eventually be directly used to calibrate an analyser. The standard mixture produced by METAS' dynamic setup was injected into a chilled mirror from MBW Calibration AG, the designated institute for absolute humidity calibration in Switzerland. The used chilled mirror, model 373LX, is able to measure frost point and sample pressure and therefore calculate the water vapour concentration. This intercomparison of the two systems was performed in the range 4-18 ppm water vapour in synthetic air, at two different pressure levels, 1013.25 hPa and 2000 hPa. We present here METAS' dynamic setup, its uncertainty budget and the first results of the intercomparison with MBW's chilled mirror.
1975-01-29
will shut down automatically when condenser high pressure causes Pressure Limit Control high pressure switch to release. Press START switch (3...power cable (1) from facility pow- er. Troubleshoot cooling unit, for HI-LOW pressure switch repeated cutout. Refer to AGE ECU Cooling Unit...acti- vate when loss of air flow oc- curred, the pressure switch (3) failed to open circuit. Adjust or replace pressure switch . Refer to
Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.
2015-01-01
A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963
Wang, Yujie; Pan, Ruihua; Tyree, Melvin T
2015-06-01
A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. © 2015 American Society of Plant Biologists. All Rights Reserved.
New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih
NASA Astrophysics Data System (ADS)
Wagner, Wolfgang; Riethmann, Thomas; Feistel, Rainer; Harvey, Allan H.
2011-12-01
New reference equations, adopted by the International Association for the Properties of Water and Steam (IAPWS), are presented for the sublimation pressure and melting pressure of ice Ih as a function of temperature. These equations are based on input values derived from the phase-equilibrium condition between the IAPWS-95 scientific standard for thermodynamic properties of fluid H2O and the equation of state of H2O ice Ih adopted by IAPWS in 2006, making them thermodynamically consistent with the bulk-phase properties. Compared to the previous IAPWS formulations, which were empirical fits to experimental data, the new equations have significantly less uncertainty. The sublimation-pressure equation covers the temperature range from 50 K to the vapor-liquid-solid triple point at 273.16 K. The ice Ih melting-pressure equation describes the entire melting curve from 273.16 K to the ice Ih-ice III-liquid triple point at 251.165 K. For completeness, we also give the IAPWS melting-pressure equation for ice III, which is slightly adjusted to agree with the ice Ih melting-pressure equation at the corresponding triple point, and the unchanged IAPWS melting-pressure equations for ice V, ice VI, and ice VII.
An occultation satellite system for determining pressure levels in the atmosphere
NASA Technical Reports Server (NTRS)
Morrison, A. R.; Vngar, S. G.; Lusignan, B. B.
1974-01-01
A two-satellite microwave occultation system is described that will fix, as an absolute function of altitude, the pressure-temperature profile generated by a passive infrared sounder. The 300 mb pressure level is determined to within 24 m rms, assuming the temperture errors produced by the infrared sensor are not greater than 2 K rms. Error caused by water vapor in the radio path is corrected by climatological adjustments. A ground test of the proposed system is described. A microwave signal propagating between two mountain tops was found to be subject to periods of intense fading. Computer analysis of the raypath between the transmitting and receiving stations indicates that multipath and defocusing were responsible for this fading. It is unlikely that an operational pressure-reference-level system will be subject to the deep fades observed in the ground test, because the phenomena are associated with lower altitudes than the closest approach altitude of an occultation-system raypath.
Wellbore stability in oil and gas drilling with chemical-mechanical coupling.
Yan, Chuanliang; Deng, Jingen; Yu, Baohua
2013-01-01
Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.
Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling
Deng, Jingen
2013-01-01
Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430
Imai, Takashi; Kovalenko, Andriy; Hirata, Fumio
2005-04-14
The three-dimensional reference interaction site model (3D-RISM) theory is applied to the analysis of hydration effects on the partial molar volume of proteins. For the native structure of some proteins, the partial molar volume is decomposed into geometric and hydration contributions using the 3D-RISM theory combined with the geometric volume calculation. The hydration contributions are correlated with the surface properties of the protein. The thermal volume, which is the volume of voids around the protein induced by the thermal fluctuation of water molecules, is directly proportional to the accessible surface area of the protein. The interaction volume, which is the contribution of electrostatic interactions between the protein and water molecules, is apparently governed by the charged atomic groups on the protein surface. The polar atomic groups do not make any contribution to the interaction volume. The volume differences between low- and high-pressure structures of lysozyme are also analyzed by the present method.
Brown, Jeb E.; Gray, John R.; Hornewer, Nancy J.
2015-01-01
Surrogate measurements of suspended-sediment concentration (SSC) are increasingly used to provide continuous, high-resolution, and demonstrably accurate data at a reasonable cost. Densimetric data, calculated from the difference between two in situ pressure measurements, exploit variations in real-time streamflow densities to infer SSCs. Unlike other suspendedsediment surrogate technologies based on bulk or digital optics, laser, or hydroacoustics, the accuracy of SSC data estimated using the pressure-difference (also referred to as densimetric) surrogate technology theoretically improves with increasing SCCs. Coupled with streamflow data, continuous suspended-sediment discharges can be calculated using SSC data estimated in real-time using the densimetric technology. The densimetric technology was evaluated at the Rio Puerco in New Mexico, a stream where SSC values regularly range from 10,000-200,000 milligrams per liter (mg/L) and have exceeded 500,000 mg/L. The constant-flow dual-orifice bubbler measures pressure using two precision pressure-transducer sensors at vertically aligned fixed locations in a water column. Water density is calculated from the temperature-compensated differential pressure and SSCs are inferred from the density data. A linear regression model comparing density values to field-measured SSC values yielded an R² of 0.74. Although the application of the densimetric surrogate is likely limited to fluvial systems with SSCs larger than about 10,000 mg/L, based on this and previous studies, the densimetric technology fills a void for monitoring streams with high SSCs.
Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough, Japan
NASA Astrophysics Data System (ADS)
Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.
2013-12-01
Effective and absolute permeability are key parameters for gas production from methane-hydrate-bearing sandy sediments. Effective and/or absolute permeability have been measured using methane-hydrate-bearing sandy cores and clayey and silty cores recovered from Daini Atsumi Knoll in the Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. Liquid-nitrogen-immersed cores were prepared by rapid depressurization of pressure cores recovered by a pressure coring system referred to as the Hybrid PCS. Cores were shaped cylindrically on a lathe with spraying of liquid nitrogen to prevent hydrate dissociation. Permeability was measured by a flooding test or a pressure relaxation method under near in-situ pressure and temperature conditions. Measured effective permeability of hydrate-bearing sediments is less than tens of md, which are order of magnitude less than absolute permeability. Absolute permeability of clayey cores is approximately tens of μd, which would perform a sealing function as cap rocks. Permeability reduction due to a swelling effect was observed for a silty core during flooding test of pure water mimicking hydrate-dissociation-water. Swelling effect may cause production formation damage especially at a later stage of gas production from methane hydrate deposits. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).
NASA Astrophysics Data System (ADS)
Ballu, V.; Bonnefond, P.; Calmant, S.; Bouin, M.-N.; Pelletier, B.; Laurain, O.; Crawford, W. C.; Baillard, C.; de Viron, O.
2013-04-01
Measuring ground deformation underwater is essential for understanding Earth processes at many scales. One important example is subduction zones, which can generate devastating earthquakes and tsunamis, and where the most important deformation signal related to plate locking is usually offshore. We present an improved method for making offshore vertical deformation measurements, that involve combining tide gauge and altimetry data. We present data from two offshore sites located on either side of the plate interface at the New Hebrides subduction zone, where the Australian plate subducts beneath the North Fiji basin. These two sites have been equipped with pressure gauges since 1999, to extend an on-land GPS network across the plate interface. The pressure series measured at both sites show that Wusi Bank, located on the over-riding plate, subsides by 11 ± 4 mm/yr with respect to Sabine Bank, which is located on the down-going plate. By combining water depths derived from the on-bottom pressure data with sea surface heights derived from altimetry data, we determine variations of seafloor heights in a global reference frame. Using altimetry data from TOPEX/Poseidon, Jason-1, Jason-2 and Envisat missions, we find that the vertical motion at Sabine Bank is close to zero and that Wusi Bank subsides by at least 3 mm/yr and probably at most 11 mm/yr.This paper represents the first combination of altimetry and pressure data to derive absolute vertical motions offshore. The deformation results are obtained in a global reference frame, allowing them to be integrated with on-land GNSS data.
NASA Astrophysics Data System (ADS)
Ibisate, Askoa; Ollero, Alfredo; Sáenz de Olazagoitia, Ana; Acín, Vanesa; Granado, David; Herrero, Xabier; Horacio, Jesús
2017-04-01
The application of hydrogeomorphology as a tool for river management and decision making on reference condition definition for river restoration is presented. Water Framework Directive (2000/60/CE) requires the identification of reference conditions and attainable target images, to achieve the good ecological status, taking into account the direct and indirect changes in the basin and river course. Data collection was done through an exhaustive fieldwork and GIS tools. Based on geomorphological homogeneous river reaches identification (waterfall, bedrock, step-pool, cascade, coluvial, run, riffle-pool, heavily modified), the hydrogeomorphological assessment of all of them in relation to its "natural" condition allowed the identification of those with a good or very good hydrogeomorphological condition, considered as reference condition. The loss of hydrogeomorphological quality was closely linked to sociodemographical pressure, due to artificial elements in the river course, floodplain and land use changes on the basin. The assessment done based on pressures and impacts allowed the proposal of specific restoration objectives which facilitated the identification of the elements that degrade the hydrogeomorphological quality of the reaches, and helped the identification of specific restoration actions. In addition it was possible to set the reaches with the potentiality of being restored, those reversible and those that due to its high degradation were considered irreversible, and therefore not able to be restored, except for some rehabilitation or mitigation measures. The application in two basins, Oria and Oiartzun, concluded that 36% of the reaches could recover their geomorphological good status and a 40% could be considered as reference condition for other reaches. This geomorphological based reference condition definition could be linked and complete with ecological data.
Blaedel, K.L.; Lord, S.C.; Murray, I.
1986-07-17
A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.
Hubbell, Joel M.; Sisson, James B.
2001-01-01
A deep tensiometer is configured with an outer guide tube having a vented interval along a perforate section at its lower end, which is isolated from atmospheric pressure at or above grade. A transducer having a monitoring port and a reference port is located within a coaxial inner guide tube. The reference port of the transducer is open to the vented interval of the outer guide tube, which has the same gas pressure as in the sediment surrounding the tensiometer. The reference side of the pressure transducer is thus isolated from the effects of atmospheric pressure changes and relative to pressure changes in the material surrounding the tensiometer measurement location and so it is automatically compensated for such pressure changes.
Stability limit of liquid water in metastable equilibrium with subsaturated vapors.
Wheeler, Tobias D; Stroock, Abraham D
2009-07-07
A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair
Pekar, Heidi; Westerberg, Erik; Bruno, Oscar; Lääne, Ants; Persson, Kenneth M; Sundström, L Fredrik; Thim, Anna-Maria
2016-01-15
Freshwater blooms of cyanobacteria (blue-green algae) in source waters are generally composed of several different strains with the capability to produce a variety of toxins. The major exposure routes for humans are direct contact with recreational waters and ingestion of drinking water not efficiently treated. The ultra high pressure liquid chromatography tandem mass spectrometry based analytical method presented here allows simultaneous analysis of 22 cyanotoxins from different toxin groups, including anatoxins, cylindrospermopsins, nodularin and microcystins in raw water and drinking water. The use of reference standards enables correct identification of toxins as well as precision of the quantification and due to matrix effects, recovery correction is required. The multi-toxin group method presented here, does not compromise sensitivity, despite the large number of analytes. The limit of quantification was set to 0.1 μg/L for 75% of the cyanotoxins in drinking water and 0.5 μg/L for all cyanotoxins in raw water, which is compliant with the WHO guidance value for microcystin-LR. The matrix effects experienced during analysis were reasonable for most analytes, considering the large volume injected into the mass spectrometer. The time of analysis, including lysing of cell bound toxins, is less than three hours. Furthermore, the method was tested in Swedish source waters and infiltration ponds resulting in evidence of presence of anatoxin, homo-anatoxin, cylindrospermopsin and several variants of microcystins for the first time in Sweden, proving its usefulness. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel
2015-07-15
Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less
Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Brinker, David
2010-01-01
The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.
Rodil, Rosario; Popp, Peter
2006-08-18
An analytical method for the determination of several organochlorine pesticides (OCPs) like hexachlorocyclohexanes (HCHs), cyclodiene derivates (dieldrin, aldrin, endrin, heptachlor, heptachlor epoxide, endrin aldehyde, endosulfan and ensodulfan sulphate) and DDX compounds (p,p'-DDE, p,p'-DDD and p,p'-DDT) as well as chlorobenzenes in soils has been developed. The procedure is based on pressurized subcritical water extraction (PSWE) followed by stir bar sorptive extraction (SBSE) and subsequent thermodesorption-gas chromatography/mass spectrometry analysis. Significant PSWE and SBSE parameters were optimized using spiked soil and water samples. For the PSWE of the organochlorine compounds, water modified with acetonitrile as the extraction solvent, at an extraction temperature of 120 degrees C, and three cycles of 10 min extraction proved to be optimal. Under optimized conditions, the figures of merit, such as precision, accuracy and detection limits were evaluated. The detection limits obtained for soil samples were in the range 0.002-4.7 ng/g. Recoveries between 4.1 and 85.2% were achieved from samples spiked at a concentration level of 25-155 ng/g. The main advantages of this method are the avoidance of clean-up and concentration procedures as well as the significant reduction of the required volume of organic solvents. The described method was applied to the determination of the pollutants in soil samples collected from a polluted area, the Bitterfeld region (Germany). The results obtained by PSWE-SBSE were in a good agreement with those obtained by a reference method, a conventional pressurized liquid extraction (PLE).
Performance of a Splittered Transonic Rotor with Several Tip Clearances
2015-06-15
θ Ratio of inlet to reference pressure and γ [-] ρ Density [kg/m3] ω Humidity ratio [-] Subscripts 1 Inlet 3 Outlet a Air gas l Water liquid ...has a large influence on the performance and efficiency of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to...of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to blade height or span usually increases in the direction of
Wang, Jian; Zhang, Chao-Xing; Yu, Ying-Tan; Li, Fa-Yun; Ma, Fang
2012-08-01
Water resources ecological footprint can directly reflect the pressure of human social and economic activities to water resources, and provide important reference for the rational utilization of water resources. Based on the existing ecological footprint models and giving full consideration of the water resources need of urban ecological system, this paper established a new calculation model of urban water resources ecological footprint, including domestic water account, process water account, public service water account, and ecological water requirement account. According to the actual situation of Shenyang City, the key parameters of the model were determined, and the water resources ecological footprint and ecological carrying capacity of the City were calculated and analyzed. From 2000 to 2009, the water resources ecological footprint per capita of the City presented an overall decreasing trend, but still had an annual ecological deficit. As compared to that in 2000, the water resources ecological footprint per capita was decreased to 0.31 hm2 in 2005, increased slightly in 2006 and 2007, and remained stable in 2008 and 2009, which suggested that the sustainable utilization of water resources in Shenyang City had definite improvement, but was still in an unsustainable development situation.
Proton behaviour, structure and elasticity of serpentine at high-pressure
NASA Astrophysics Data System (ADS)
Mookherjee, Mainak; Stixrude, Lars
2007-03-01
Serpentine occurs in oceanic crust as the alteration product of ultramafic rocks and is a possible candidate for carrying water to the deep earth. The presence of sub-surface serpentine may be manifested by mud volcanoes, high electrical conductivities, and seismic anomalies. Using density functional theory, we predict a phase transition in serpentine near 22 GPa. The phase transition is caused by a re-orientation of the hydroxyl vector coupled with changes in the di-trigonal rings of SiO4 tetrahedra. The symmetry of the crystal-structure remains unaffected. Evidence of pressure-induced hydrogen bonding is absent in serpentine, as evident from the reduction of O-H bond length upon compression. Results of compression for the low-pressure phase is well represented by a fourth order Birch-Murnaghan finite strain expression with KO= 63 GPa, K'O= 10.2 and KOK''O = -120, where K is the bulk modulus, prime indicates pressure derivatives, and O refers to zero pressure. At low pressures, the elastic constant tensor is highly anisotropic with C11^o ˜2.4xC33^o , and becomes more isotropic with compression. We find an elastic instability near 36 GPa that may be related to experimentally observed amorphization.
Davis, Sean M.; Rosenlof, Karen H.; Hassler, Birgit; Hurst, Dale F.; Read, William G.; Vömel, Holger; Selkirk, Henry; Fujiwara, Masatomo; Damadeo, Robert
2017-01-01
In this paper, we describe the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and water vapor data from a subset of the limb profiling satellite instruments operating since the 1980s. The primary SWOOSH products are zonal-mean monthly-mean time series of water vapor and ozone mixing ratio on pressure levels (12 levels per decade from 316 to 1 hPa). The SWOOSH pressure level products are provided on several independent zonal-mean grids (2.5, 5, and 10°), and additional products include two coarse 3-D griddings (30° long × 10° lat, 20° × 5°) as well as a zonal-mean isentropic product. SWOOSH includes both individual satellite source data as well as a merged data product. A key aspect of the merged product is that the source records are homogenized to account for inter-satellite biases and to minimize artificial jumps in the record. We describe the SWOOSH homogenization process, which involves adjusting the satellite data records to a “reference” satellite using coincident observations during time periods of instrument overlap. The reference satellite is chosen based on the best agreement with independent balloon-based sounding measurements, with the goal of producing a long-term data record that is both homogeneous (i.e., with minimal artificial jumps in time) and accurate (i.e., unbiased). This paper details the choice of reference measurements, homogenization, and gridding process involved in the construction of the combined SWOOSH product and also presents the ancillary information stored in SWOOSH that can be used in future studies of water vapor and ozone variability. Furthermore, a discussion of uncertainties in the combined SWOOSH record is presented, and examples of the SWOOSH record are provided to illustrate its use for studies of ozone and water vapor variability on interannual to decadal timescales. The version 2.5 SWOOSH data are publicly available at doi:10.7289/V5TD9VBX. PMID:28966693
NASA Astrophysics Data System (ADS)
Awada, H.; Ciraolo, G.; Maltese, A.; Moreno Hidalgo, M. A.; Provenzano, G.; Còrcoles, J. I.
2017-10-01
Satellite imagery provides a dependable basis for computational models that aimed to determine actual evapotranspiration (ET) by surface energy balance. Satellite-based models enables quantifying ET over large areas for a wide range of applications, such as monitoring water distribution, managing irrigation and assessing irrigation systems' performance. With the aim to evaluate the energy and water consumption of a large scale on-turn pressurized irrigation system in the district of Aguas Nuevas, Albacete, Spain, the satellite-based image-processing model SEBAL was used for calculating actual ET. The model has been applied to quantify instantaneous, daily, and seasonal actual ET over high- resolution Landsat images for the peak water demand season (May to September) and for the years 2006 - 2008. The model provided a direct estimation of the distribution of main energy fluxes, at the instant when the satellite overpassed over each field of the district. The image acquisition day Evapotranspiration (ET24) was obtained from instantaneous values by assuming a constant evaporative fraction (Λ) for the entire day of acquisition; then, monthly and seasonal ET were estimated from the daily evapotranspiration (ETdaily) assuming that ET24 varies in proportion to reference ET (ETr) at the meteorological station, thus accounting for day to day variation in meteorological forcing. The comparison between the hydrants water consumption and the actual evapotranspiration, considering an irrigation efficiency of 85%, showed that a considerable amount of water and energy can be saved at district level.
Lee, Joonnyong; Sohn, JangJay; Park, Jonghyun; Yang, SeungMan; Lee, Saram; Kim, Hee Chan
2018-06-18
Non-invasive continuous blood pressure monitors are of great interest to the medical community due to their value in hypertension management. Recently, studies have shown the potential of pulse pressure as a therapeutic target for hypertension, but not enough attention has been given to non-invasive continuous monitoring of pulse pressure. Although accurate pulse pressure estimation can be of direct value to hypertension management and indirectly to the estimation of systolic blood pressure, as it is the sum of pulse pressure and diastolic blood pressure, only a few inadequate methods of pulse pressure estimation have been proposed. We present a novel, non-invasive blood pressure and pulse pressure estimation method based on pulse transit time and pre-ejection period. Pre-ejection period and pulse transit time were measured non-invasively using electrocardiogram, seismocardiogram, and photoplethysmogram measured from the torso. The proposed method used the 2-element Windkessel model to model pulse pressure with the ratio of stroke volume, approximated by pre-ejection period, and arterial compliance, estimated by pulse transit time. Diastolic blood pressure was estimated using pulse transit time, and systolic blood pressure was estimated as the sum of the two estimates. The estimation method was verified in 11 subjects in two separate conditions with induced cardiovascular response and the results were compared against a reference measurement and values obtained from a previously proposed method. The proposed method yielded high agreement with the reference (pulse pressure correlation with reference R ≥ 0.927, diastolic blood pressure correlation with reference R ≥ 0.854, systolic blood pressure correlation with reference R ≥ 0.914) and high estimation accuracy in pulse pressure (mean root-mean-squared error ≤ 3.46 mmHg) and blood pressure (mean root-mean-squared error ≤ 6.31 mmHg for diastolic blood pressure and ≤ 8.41 mmHg for systolic blood pressure) over a wide range of hemodynamic changes. The proposed pulse pressure estimation method provides accurate estimates in situations with and without significant changes in stroke volume. The proposed method improves upon the currently available systolic blood pressure estimation methods by providing accurate pulse pressure estimates.
NASA Astrophysics Data System (ADS)
Wu, Lei; Yang, De-Bin; Liu, Jun-Xiu; Hu, Bo; Xie, Hong-Sen; Li, Fang-Fei; Yu, Yang; Xu, Wen-Liang; Gao, Chun-Xiao
2017-06-01
Hydrous basalt glasses with water contents of 0-6.82% were synthesized using a multi-anvil press at 1.0-2.0 GPa and 1200-1400 °C. The starting materials were natural Mesozoic basalts from the eastern North China Craton (NCC). Their sound velocities and elastic properties were measured by Brillouin scattering spectroscopy. The longitudinal ( V P) and shear ( V S) wave velocities decreased with increasing water content. Increasing the synthesis pressure resulted in the glass becoming denser, and finally led to an increase in V P. As the degree of depolymerization increased, the V P, V S, and shear and bulk moduli of the hydrous basalt glasses decreased, whereas the adiabatic compressibility increased. The partial molar volumes of water (ν) under ambient conditions were independent of composition, having values of 11.6 ± 0.8, 10.9 ± 0.6 and 11.5 ± 0.5 cm3/mol for the FX (Feixian), FW (Fuxin), and SHT (Sihetun) basalt glasses, respectively. However, the {{V}_{{{{H}}_{{2}}}{O}}} values measured at elevated temperatures and pressures are increasing with increasing temperature or decreasing pressure. The contrasting densities of these hydrous basalt melts with those previously reported for mid-ocean ridge basalt and preliminary reference Earth model data indicate that hydrous basalt melts may not maintain gravitational stability at the base of the upper mantle.
Roles of water in protein structure and function studied by molecular liquid theory.
Imai, Takashi
2009-01-01
The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.
Comparison of ambulatory blood pressure reference standards in children evaluated for hypertension.
Jones, Deborah P; Richey, Phyllis A; Alpert, Bruce S
2009-06-01
The purpose of this study was to systematically compare methods for standardization of blood pressure levels obtained by ambulatory blood pressure monitoring (ABPM) in a group of 111 children studied at our institution. Blood pressure indices, blood pressure loads and standard deviation scores were calculated using the original ABPM and the modified reference standards. Bland-Altman plots and kappa statistics for the level of agreement were generated. Overall, the agreement between the two methods was excellent; however, approximately 5% of children were classified differently by one as compared with the other method. Depending on which version of the German Working Group's reference standards is used for interpretation of ABPM data, the classification of the individual as having hypertension or normal blood pressure may vary.
Comparison of ambulatory blood pressure reference standards in children evaluated for hypertension
Jones, Deborah P.; Richey, Phyllis A.; Alpert, Bruce S.
2009-01-01
Objective The purpose of this study was to systematically compare methods for standardization of blood pressure levels obtained by ambulatory blood pressure monitoring (ABPM) in a group of 111 children studied at our institution. Methods Blood pressure indices, blood pressure loads and standard deviation scores were calculated using he original ABPM and the modified reference standards. Bland—Altman plots and kappa statistics for the level of agreement were generated. Results Overall, the agreement between the two methods was excellent; however, approximately 5% of children were classified differently by one as compared with the other method. Conclusion Depending on which version of the German Working Group’s reference standards is used for interpretation of ABPM data, the classification of the individual as having hypertension or normal blood pressure may vary. PMID:19433980
Application of simple adaptive control to water hydraulic servo cylinder system
NASA Astrophysics Data System (ADS)
Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji
2012-09-01
Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.
Sound wave energy emitted by water drop during the splash on the soil surface
NASA Astrophysics Data System (ADS)
Bieganowski, Andrzej; Ryżak, Magdalena; Korbiel, Tomasz
2017-04-01
A drop of rain falling on the surface of bare soil not only moisturizes but also can cause splash or compaction, depending on the energy of incident drops and the condition of the surface on which it falls. The splash phenomenon can be characterized by the weight of detached soil material (using splash cups) as well as the number and trajectory of splashed particles (using high-speed cameras). The study presents a new aspect of the analysis of the splash phenomenon by measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out in an anechoic chamber. Three soils (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol, and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa, and 16 kPa) were tested. Drops of 4.2 mm diameter were falling from a height of 1.5m. The sound pressure level was recorded after 10 consecutive water drop impacts using a special set of microphones. In all measuring conditions with 1m distance, the sound pressure level ranged from 27 to 42dB. The impact of water drops on the ground created sound pulses, which were recalculated to the energy emitted in the form of sound waves. For all soil samples, the sound wave energy was within the range of 0.14 μJ to 5.26 μJ, which corresponds to 0.03-1.07% of the energy of the incident drops (Ryżak et al., 2016). This work was partly financed from the National Science Centre, Poland; project no. 2014/14/E/ST10/00851. References Ryżak M., Bieganowski A., Korbiel T.: Sound wave Energy resulting from the impact of water drops on the soil surface. PLoS One 11(7):e0158472. doi:10.1371/journal.pone.0158472, 2016
Performance of a Model Rich Burn-quick Mix-lean Burn Combustor at Elevated Temperature and Pressure
NASA Technical Reports Server (NTRS)
Peterson, Christopher O.; Sowa, William A.; Samuelsen, G. S.
2002-01-01
As interest in pollutant emission from stationary and aero-engine gas turbines increases, combustor engineers must consider various configurations. One configuration of increasing interest is the staged, rich burn - quick mix - lean burn (RQL) combustor. This report summarizes an investigation conducted in a recently developed high pressure gas turbine combustor facility. The model RQL combustor was plenum fed and modular in design. The fuel used for this study is Jet-A which was injected from a simplex atomizer. Emission (CO2, CO, O2, UHC, NOx) measurements were obtained using a stationary exit plane water-cooled probe and a traversing water-cooled probe which sampled from the rich zone exit and the lean zone entrance. The RQL combustor was operated at inlet temperatures ranging from 367 to 700 K, pressures ranging from 200 to 1000 kPa, and combustor reference velocities ranging from 10 to 20 m/s. Variations were also made in the rich zone and lean zone equivalence ratios. Several significant trends were observed. NOx production increased with reaction temperature, lean zone equivalence ratio and residence time and decreased with increased rich zone equivalence ratio. NOx production in the model RQL combustor increased to the 0.4 power with increased pressure. This correlation, compared to those obtained for non-staged combustors (0.5 to 0.7), suggests a reduced dependence on NOx on pressure for staged combustors. Emissions profiles suggest that rich zone mixing is not uniform and that the rich zone contributes on the order of 16 percent to the total NOx produced.
Seasonal Forecasting of Reservoir Inflow for the Segura River Basin, Spain
NASA Astrophysics Data System (ADS)
de Tomas, Alberto; Hunink, Johannes
2017-04-01
A major threat to the agricultural sector in Europe is an increasing occurrence of low water availability for irrigation, affecting the local and regional food security and economies. Especially in the Mediterranean region, such as in the Segura river basin (Spain), drought epidodes are relatively frequent. Part of the irrigation water demand in this basin is met by a water transfer from the Tagus basin (central Spain), but also in this basin an increasing pressure on the water resources has reduced the water available to be transferred. Currently, Drought Management Plans in these Spanish basins are in place and mitigate the impact of drought periods to some extent. Drought indicators that are derived from the available water in the storage reservoirs impose a set of drought mitigation measures. Decisions on water transfers are dependent on a regression-based time series forecast from the reservoir inflows of the preceding months. This user-forecast has its limitations and can potentially be improved using more advanced techniques. Nowadays, seasonal climate forecasts have shown to have increasing skill for certain areas and for certain applications. So far, such forecasts have not been evaluated in a seasonal hydrologic forecasting system in the Spanish context. The objective of this work is to develop a prototype of a Seasonal Hydrologic Forecasting System and compare this with a reference forecast. The reference forecast in this case is the locally used regression-based forecast. Additionally, hydrological simulations derived from climatological reanalysis (ERA-Interim) are taken as a reference forecast. The Spatial Processes in Hydrology model (SPHY - http://www.sphy.nl/) forced with the ECMWF- SFS4 (15 ensembles) Seasonal Forecast Systems is used to predict reservoir inflows of the upper basins of the Segura and Tagus rivers. The system is evaluated for 4 seasons with a forecasting lead time of 3 months. First results show that only for certain initialization months and lead times, the developed system outperforms the reference forecast. This research is carried out within the European research project IMPREX (www.imprex.eu) that aims at investigating the value of improving predictions of hydro-meteorological extremes in a number of water sectors, including agriculture . The next step is to integrate improved seasonal forecasts into the system and evaluate these. This should finally lead to a more robust forecasting system that allows water managers and irrigators to better anticipate to drought episodes and putting into practice more effective water allocation and mitigation practices.
Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2000-01-01
This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.
Ripollés, Cristina; Pitarch, Elena; Sancho, Juan V; López, Francisco J; Hernández, Félix
2011-09-19
In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d(6) and NDPA-d(14)) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L(-1)) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD<20%). Limits of detection were found to be in the range of 1-8 ng L(-1). The described methodology has been applied to different types of water samples: chlorinated from drinking water and wastewater treatment plants (DWTP and WWTP, respectively), wastewaters subjected to ozonation and tap waters. Copyright © 2011 Elsevier B.V. All rights reserved.
Gal, Jean-Yves; Fovet, Yannick; Gache, Nathalie
2002-02-01
In the first part, we have designed a new model of evolution for the calco-carbonic system which includes the hydrated forms of CaCO3: CaCO3 amorphous, CaCO3 x 6H2O (ikaite) and CaCO3 x H2O (monohydrate) (J. Eur. Hydr. 30 (1999) 47). According to this model, it is the precipitation of one or other of these hydrated forms which could be responsible for the breakdown of the metastable state. After this first step, the precipitates evolve to dehydrated solid forms. Through the elaboration of computer programs in which the CaCO3(0) (aq) ion pair formation was considered, this model was compared to experimental data obtained by the critical pH method applied to synthetic solutions. In the present article, the same method was applied for four French mineral waters, at 25 degrees C under study. Three samples formed a precipitation during the sodium hydroxide addition. For these three cases, this precipitation began for the CaCO3 H2O saturation. The added volume of sodium hydroxide was more than what was required for neutralizing free CO2 initially in solution. These results indicate that during a spontaneous scaling phenomenon, the pH rises at the same time by loss of the initial free CO2 and of the one produced by the hydrogen carbonate ions decomposition. Then we calculated, at various temperatures for the three studied scaling waters: CO2 partial pressures and loss of total carbon corresponding to the solubility products of CaCO3 hydrated forms. The results show that the partial pressure monitoring of the carbon dioxide is important in managing the behavior of scaling waters.
Using materials research results in new regulations -- The Swedish approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gott, K.
1995-12-31
Swedish regulations are normally divided into two sections: the first part is the compulsory text and the second part explains very briefly the ideas behind the regulations and section consists of an interpretive text. This second part explains very briefly the ideas behind the regulations and gives advice as to how to apply the regulations, acceptable testing and analysis methods, and references to other standards and relevant documents. In the new regulations, which were approved by the Board of SKI in September 1994 and are effective from 1st January 1995, a number of innovations have been included concerning chemistry andmore » environmental degradation of the primary pressure boundary in Light Water Reactors. With regard to chemistry SKI will no longer approve the various parameters in the technical specifications (such as conductivity and impurity concentrations) but will require that the utilities have a chemistry control program in place which ensures the integrity of the primary pressure boundary and does not expose it to environments (such as impurities and decontamination chemicals) for which it was not designed. SKI can at any time control that such a program exists and assess its compatibility with these goals, either during routine inspections or as part of special theme inspections. Crack growth rates have been specified for different materials stainless steels, and the nickel base alloy types 600 and 182. Different environments have also been specified: water chemistry within and outside plant specifications as well as normal and hydrogen water chemistry conditions. Stress corrosion cracking in pressurized water reactor systems is also treated separately in the regulations, but not discussed specifically here.« less
A set of constitutive relationships accounting for residual NAPL in the unsaturated zone.
Wipfler, E L; van der Zee, S E
2001-07-01
Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.
Li, Sijia; Zhang, Jiquan; Guo, Enliang; Zhang, Feng; Ma, Qiyun; Mu, Guangyi
2017-10-01
The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by-products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force-pressure-state-impact-response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self-resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. Copyright © 2017. Published by Elsevier Inc.
De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2016-08-12
When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of steam generator tube rupture transients with single failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trambauer, K.
The Gesellschaft fuer Reaktorsicherheit is engaged in the collection and evaluation of light water reactor operating experience as well as analyses for the risk study of the pressurized water reactor (PWR). Within these activities, thermohydraulic calculations have been performed to show the influence of different boundary conditions and disturbances on the steam generator tube rupture (SGTR) transients. The analyses of these calculations have focused on the measures and systems needed to cope with an SGTR. The reference plant for this analysis is a 1300-MW(e) PWR of Kraftwerk Union design with four loops, each containing a U-tube steam generator (SG) andmore » a reactor cooling pump (RCP). The thermal-hydraulic code DRUFAN-02 was used for the transient calculations.« less
Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.
2009-09-01
Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yi-Hsiang; Jenne, Dale S
A wave energy converter (WEC) system has the potential to convert the wave energy resource directly into the high-pressure flow that is needed by the desalination system to permeate saltwater through the reverse-osmosis membrane to generate clean water. In this study, a wave-to-water numerical model was developed to investigate the potential use of a wave-powered desalination system (WPDS) for water production in the United States. The model was developed by coupling a time-domain radiation-and-diffraction-method-based numerical tool (WEC-Sim) for predicting the hydrodynamic performance of WECs with a solution-diffusion model that was used to simulate the reverse-osmosis process. To evaluate the feasibilitymore » of the WPDS, the wave-to-water numerical model was applied to simulate a desalination system that used an oscillating surge WEC device to pump seawater through the system. The annual water production was estimated based on the wave resource at a reference site on the coast of northern California to investigate the potential cost of water in that area, where the cost of water and electricity is high compared to other regions. In the scenario evaluated, for a 100-unit utility-scale array, the estimated levelized cost of energy for these WECs is about 3-6 times the U.S.'s current, unsubsidized electricity rates. However, with clean water as an end product and by directly producing pressurized water with WECs, rather than electricity as an intermediary, it is presently only 12% greater than typical water cost in California. This study suggests that a WEC array that produces water may be a viable, near-term solution to the nation's water supply, and the niche application of the WPDS may also provide developers with new opportunities to further develop technologies that benefit both the electric and drinking water markets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yi-Hsiang; Jenne, Dale S
A wave energy converter (WEC) system has the potential to convert the wave energy resource directly into the high-pressure flow that is needed by the desalination system to permeate saltwater through the reverse-osmosis membrane to generate clean water. In this study, a wave-to-water numerical model was developed to investigate the potential use of a wave-powered desalination system (WPDS) for water production in the United States. The model was developed by coupling a time-domain radiation-and-diffraction-method-based numerical tool (WEC-Sim) for predicting the hydrodynamic performance of WECs with a solution-diffusion model that was used to simulate the reverse-osmosis process. To evaluate the feasibilitymore » of the WPDS, the wave-to-water numerical model was applied to simulate a desalination system that used an oscillating surge WEC device to pump seawater through the system. The annual water production was estimated based on the wave resource at a reference site on the coast of northern California to investigate the potential cost of water in that area, where the cost of water and electricity is high compared to other regions. In the scenario evaluated, for a 100-unit utility-scale electricity-producing array, the estimated levelized cost of energy for these WECs is about 3-6 times the U.S.'s current, unsubsidized electricity rates. However, with clean water as an end product and by directly producing pressurized water with WECs, rather than electricity as an intermediary, it is presently only 12 percent greater than typical water cost in California. This study suggests that a WEC array that produces water may be a viable, near-term solution to the nation's water supply, and the niche application of the WPDS may also provide developers with new opportunities to further develop technologies that benefit both the electric and drinking water markets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de; Kibies, Patrick
Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatmentmore » of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.« less
Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M
2016-04-14
Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.
Rotating pressure measurement system using an on board calibration standard
NASA Technical Reports Server (NTRS)
Senyitko, Richard G.; Blumenthal, Philip Z.; Freedman, Robert J.
1991-01-01
A computer-controlled multichannel pressure measurement system was developed to acquire detailed flow field measurements on board the Large Low Speed Centrifugal Compressor Research Facility at the NASA Lewis Research Center. A pneumatic slip ring seal assembly is used to transfer calibration pressures to a reference standard transducer on board the compressor rotor in order to measure very low differential pressures with the high accuracy required. A unique data acquisition system was designed and built to convert the analog signal from the reference transducer to the variable frequency required by the multichannel pressure measurement system and also to provide an output for temperature control of the reference transducer. The system also monitors changes in test cell barometric pressure and rotating seal leakage and provides an on screen warning to the operator if limits are exceeded. The methods used for the selection and testing of the the reference transducer are discussed, and the data acquisition system hardware and software design are described. The calculated and experimental data for the system measurement accuracy are also presented.
Searles, James A; Aravapalli, Sridhar; Hodge, Cody
2017-10-01
Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.
NASA Astrophysics Data System (ADS)
Wang, Chaolin; Zhong, Shaobo; Zhang, Fushen; Huang, Quanyi
2016-11-01
Precipitation interpolation has been a hot area of research for many years. It had close relation to meteorological factors. In this paper, precipitation from 91 meteorological stations located in and around Yunnan, Guizhou and Guangxi Zhuang provinces (or autonomous region), Mainland China was taken into consideration for spatial interpolation. Multivariate Bayesian maximum entropy (BME) method with auxiliary variables, including mean relative humidity, water vapour pressure, mean temperature, mean wind speed and terrain elevation, was used to get more accurate regional distribution of annual precipitation. The means, standard deviations, skewness and kurtosis of meteorological factors were calculated. Variogram and cross- variogram were fitted between precipitation and auxiliary variables. The results showed that the multivariate BME method was precise with hard and soft data, probability density function. Annual mean precipitation was positively correlated with mean relative humidity, mean water vapour pressure, mean temperature and mean wind speed, negatively correlated with terrain elevation. The results are supposed to provide substantial reference for research of drought and waterlog in the region.
Ichihara, Noriko; Namba, Kazuyoshi; Ishikawa-Takata, Kazuko; Sekine, Kazunori; Takase, Mitsunori; Kamada, Yuko; Fujii, Seigo
2012-10-01
This study aimed to clarify the energy requirement in patients with amyotrophic lateral sclerosis (ALS) undergoing tracheostomy positive pressure ventilation with tracheostomy. Total energy expenditure (TEE) was measured in 10 hospitalized bedridden ALS patients using the doubly-labeled water (DLW) method. The mean TEE/day and TEE/fat- free mass estimated by DLW method were 934 ± 201 kcal/day and 34.8 ± 5.5 kcal/kg/day, respectively. The mean TEE/resting metabolic rate (RMR) was 0.85 when RMR was estimated by the Harris-Benedict equation, 0.91 by Dietary Reference Intake (DRI), and 0.97 by Ganpule's equation using fat-free mass (FFM). The ratios of TEE to measured RMR were 1.05, 1.15 and 1.23 in three patients. In conclusion, multiplying measured RMR by 1.1 to 1.2 is considered to be appropriate to estimate energy need. However, because it is difficult to measure RMR directly in a clinical setting, an appropriate equation for estimating RMR for ALS patient should be developed.
Tenderizing Meat with Explosives
NASA Astrophysics Data System (ADS)
Gustavson, Paul K.; Lee, Richard J.; Chambers, George P.; Solomon, Morse B.; Berry, Brad W.
2001-06-01
Investigators at the Food Technology and Safety Laboratory have had success tenderizing meat by explosively shock loading samples submerged in water. This technique, referred to as the Hydrodynamic Pressure (HDP) Process, is being developed to improve the efficiency and reproducibility of the beef tenderization processing over conventional aging techniques. Once optimized, the process should overcome variability in tenderization currently plaguing the beef industry. Additional benefits include marketing lower quality grades of meat, which have not been commercially viable due to a low propensity to tenderization. The simplest and most successful arrangement of these tests has meat samples (50 to 75 mm thick) placed on a steel plate at the bottom of a plastic water vessel. Reported here are tests which were instrumented by Indian Head investigators. Carbon-composite resistor-gauges were used to quantify the shock profile delivered to the surface of the meat. PVDF and resistor gauges (used later in lieu of PVDF) provided data on the pressure-time history at the meat/steel interface. Resulting changes in tenderization were correlated with increasing shock duration, which were provided by various explosives.
Open-path FTIR data reduction algorithm with atmospheric absorption corrections: the NONLIN code
NASA Astrophysics Data System (ADS)
Phillips, William; Russwurm, George M.
1999-02-01
This paper describes the progress made to date in developing, testing, and refining a data reduction computer code, NONLIN, that alleviates many of the difficulties experienced in the analysis of open path FTIR data. Among the problems that currently effect FTIR open path data quality are: the inability to obtain a true I degree or background, spectral interferences of atmospheric gases such as water vapor and carbon dioxide, and matching the spectral resolution and shift of the reference spectra to a particular field instrument. This algorithm is based on a non-linear fitting scheme and is therefore not constrained by many of the assumptions required for the application of linear methods such as classical least squares (CLS). As a result, a more realistic mathematical model of the spectral absorption measurement process can be employed in the curve fitting process. Applications of the algorithm have proven successful in circumventing open path data reduction problems. However, recent studies, by one of the authors, of the temperature and pressure effects on atmospheric absorption indicate there exist temperature and water partial pressure effects that should be incorporated into the NONLIN algorithm for accurate quantification of gas concentrations. This paper investigates the sources of these phenomena. As a result of this study a partial pressure correction has been employed in NONLIN computer code. Two typical field spectra are examined to determine what effect the partial pressure correction has on gas quantification.
Open-cell cloud formation over the Bahamas
NASA Technical Reports Server (NTRS)
2002-01-01
What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
40 CFR 1065.645 - Amount of water in an ideal gas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... vapor pressure of water in paragraph (a) of this section or another appropriate equation and, depending... converting the last term in each equation. (a) Vapor pressure of water. Calculate the vapor pressure of water... use a different relationship of the vapor pressure of water to a given saturation temperature...
40 CFR 1065.645 - Amount of water in an ideal gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vapor pressure of water in paragraph (a) of this section or another appropriate equation and, depending...) or (c) of this section. (a) Vapor pressure of water. Calculate the vapor pressure of water for a... different relationship of the vapor pressure of water to a given saturation temperature condition: (1) For...
Gluntz, Douglas M.; Taft, William E.
1994-01-01
A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.
Steinberg, S L; Henninger, D L
1997-12-01
Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.
NASA Technical Reports Server (NTRS)
Steinberg, S. L.; Henninger, D. L.
1997-01-01
Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.
Agricultural Green And Blue Water Uses And Their Impact on the Water System in China
NASA Astrophysics Data System (ADS)
Mu, M.; Tang, Q.; Cai, X.
2016-12-01
Both agricultural green and blue water uses in China were estimated using the H08 global hydrological model. The blue water use here refers to the water withdrawn for irrigation in irrigated croplands from rivers, reservoirs and aquifers. The green water use refers to precipitation directly supplied to croplands and natural ecosystems. The H08 model was used to trace water sources of crop water use. Total evapotranspiration of varied crops, namely barley, corn, rice, soy, and wheat, was divided into blue and green water resources based on their origins. Model results indicated that in southern China, green water, representing 78% of crop water use, was found to be a dominant component in the total crop water use, whereas in northern China, blue water occupied about half (52%) of total crop water use. The Mann-Kendall test was utilized to analyze the trends of water uses. At the national level, green water use experienced a significant decrease during 1981-2000 and then a significant increase in 2001-2010, while blue water use experienced a slight increase during 1981-2000 and then a significant decrease in 2001-2010. Monthly mean green and blue water uses at the national level showed that the demand for blue water reached peak during May, although the peak came earlier or later in some individual basins. Some variables including green and blue water uses were mapped to observe nonnegligible spatial heterogeneity. Impact analysis showed that almost one third of runoff volumes was withdrawn as agricultural blue water in most arid and semi-arid river basins during crop growing season (generally from March to August in China), suggesting that water demand for food production has imposed great pressure on blue water resources in these regions. The situation got worse if the study period was narrowed to one certain month, when river channels in some basins, e.g. Hai River basin, would run dry if the demand for irrigation was fully satisfied. Our research provides insight for large-scale agricultural water resource management.
Savage, Michael J.
2010-01-01
The possibility of reliable, reasonably accurate and relatively inexpensive estimates of sensible heat and latent energy fluxes was investigated using a commercial combination thin-film polymer capacitive relative humidity and adjacent temperature sensor instrument. Long-term and unattended water vapour pressure profile difference measurements using low-power combination instruments were compared with those from a cooled dewpoint mirror hygrometer, the latter often used with Bowen ratio energy balance (BREB) systems. An error analysis, based on instrument relative humidity and temperature errors, was applied for various capacitive humidity instrument models. The main disadvantage of a combination capacitive humidity instrument is that two measurements, relative humidity and temperature, are required for estimation of water vapour pressure as opposed to one for a dewpoint hygrometer. In a laboratory experiment using an automated procedure, water vapour pressure differences generated using a reference dewpoint generator were measured using a commercial model (Dew-10) dewpoint hygrometer and a combination capacitive humidity instrument. The laboratory measurement comparisons showed that, potentially, an inexpensive model combination capacitive humidity instrument (CS500 or HMP50), or for improved results a slightly more expensive model (HMP35C or HMP45C), could substitute for the more expensive dewpoint hygrometer. In a field study, in a mesic grassland, the water vapour pressure measurement noise for the combination capacitive humidity instruments was greater than that for the dewpoint hygrometer. The average water vapour pressure profile difference measured using a HMP45C was highly correlated with that from a dewpoint hygrometer with a slope less than unity. Water vapour pressure measurements using the capacitive humidity instruments were not as accurate, compared to those obtained using a dewpoint hygrometer, but the resolution magnitudes for the profile difference measurements were less than the minimum of 0.01 kPa required for BREB measurements when averaged over 20 min. Furthermore, the longer-term capacitive humidity measurements are more reliable and not dependent on a sensor bias adjustment as is the case for the dewpoint hygrometer. A field comparison of CS500 and HMP45C profile water vapour pressure differences yielded a slope of close to unity. However, the CS500 exhibited more variable water vapour pressure measurements mainly due to its increased variation in temperature measurements compared to the HMP45C. Comparisons between 20-min BREB sensible heat fluxes obtained using a HMP45C and a dewpoint hygrometer yielded a slope of almost unity. BREB sensible heat fluxes measured using a HMP45C were reasonably well correlated with those obtained using a surface-layer scintillometer and eddy covariance (slope of 0.9629 and 0.9198 respectively). This reasonable agreement showed that a combination capacitive humidity instrument, with similar relative humidity (RH) and temperature error magnitudes of at most 2% RH and 0.3 °C respectively, and similar measurement time response, would be an adequate and less expensive substitute for a dewpoint hygrometer. Furthermore, a combination capacitive humidity instrument requires no servicing compared to a dewpoint hygrometer which requires a bias adjustment and mirror cleaning each week. These findings make unattended BREB measurements of sensible heat flux and evaporation cheaper and more reliable with the system easier to assemble and service and with reduced instrument power. PMID:22163625
2009-07-01
FA9550- 04-1-0367. References 1 Erdemir, A., Eryilmaz, O. L., Nilufer, I. B., and Fenske , G. R., 2000, “Syn- thesis of Superlow-Friction Carbon... Fenske , G. R., 2000, “Effect of Source Gas Chemistry on Tribological Performance of Diamond-Like Car- bon Films,” Diamond Relat. Mater., 9, pp. 632–637...ASME J. Tribol., 127, pp. 82–88. 12 Johnson, J. A., Woodford, J. B., Erdemir, A., and Fenske , G. R., 2003, “Near- Surface Characterization of
Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay
NASA Astrophysics Data System (ADS)
Cui, D.; Xiang, W.
2011-12-01
The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film
Yang, Lei; Guo, Yanjie; Diao, Dongfeng
2017-05-31
Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.
NASA Technical Reports Server (NTRS)
Joerns, J. C.
1986-01-01
Pressure regulated and flow timed to control amount dispensed. Dispenser provides measured amount of water for reconstituting dehydrated foods and beverages. Dispenser holds food or beverage package while being filled with either cold or room-temperature water. Other uses might include dispensing of fluids or medicine. Pressure regulator in dispenser reduces varying pressure of water supply to constant pressure. Electronic timer stops flow after predetermined length of time. Timed flow at regulated pressure ensures controlled volume of water dispensed.
Documentation of a spreadsheet for time-series analysis and drawdown estimation
Halford, Keith J.
2006-01-01
Drawdowns during aquifer tests can be obscured by barometric pressure changes, earth tides, regional pumping, and recharge events in the water-level record. These stresses can create water-level fluctuations that should be removed from observed water levels prior to estimating drawdowns. Simple models have been developed for estimating unpumped water levels during aquifer tests that are referred to as synthetic water levels. These models sum multiple time series such as barometric pressure, tidal potential, and background water levels to simulate non-pumping water levels. The amplitude and phase of each time series are adjusted so that synthetic water levels match measured water levels during periods unaffected by an aquifer test. Differences between synthetic and measured water levels are minimized with a sum-of-squares objective function. Root-mean-square errors during fitting and prediction periods were compared multiple times at four geographically diverse sites. Prediction error equaled fitting error when fitting periods were greater than or equal to four times prediction periods. The proposed drawdown estimation approach has been implemented in a spreadsheet application. Measured time series are independent so that collection frequencies can differ and sampling times can be asynchronous. Time series can be viewed selectively and magnified easily. Fitting and prediction periods can be defined graphically or entered directly. Synthetic water levels for each observation well are created with earth tides, measured time series, moving averages of time series, and differences between measured and moving averages of time series. Selected series and fitting parameters for synthetic water levels are stored and drawdowns are estimated for prediction periods. Drawdowns can be viewed independently and adjusted visually if an anomaly skews initial drawdowns away from 0. The number of observations in a drawdown time series can be reduced by averaging across user-defined periods. Raw or reduced drawdown estimates can be copied from the spreadsheet application or written to tab-delimited ASCII files.
Initial comparison of single cylinder Stirling engine computer model predictions with test results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.
Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.
Bandyopadhyay, Amitava; Biswas, Manindra Nath
2008-08-01
The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.
A simplified scheme for computing radiation transfer in the troposphere
NASA Technical Reports Server (NTRS)
Katayama, A.
1973-01-01
A scheme is presented, for the heating of clear and cloudy air by solar and infrared radiation transfer, designed for use in tropospheric general circulation models with coarse vertical resolution. A bulk transmission function is defined for the infrared transfer. The interpolation factors, required for computing the bulk transmission function, are parameterized as functions of such physical parameters as the thickness of the layer, the pressure, and the mixing ratio at a reference level. The computation procedure for solar radiation is significantly simplified by the introduction of two basic concepts. The first is that the solar radiation spectrum can be divided into a scattered part, for which Rayleigh scattering is significant but absorption by water vapor is negligible, and an absorbed part for which absorption by water vapor is significant but Rayleigh scattering is negligible. The second concept is that of an equivalent cloud water vapor amount which absorbs the same amount of radiation as the cloud.
Gluntz, D.M.; Taft, W.E.
1994-12-20
A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.
Use of Positive Pressures to Establish Vulnerability Curves 1
Cochard, Hervé; Cruiziat, Pierre; Tyree, Melvin T.
1992-01-01
Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using “pressure-volume” analysis. PMID:16652947
NASA Astrophysics Data System (ADS)
Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi
2014-09-01
Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid-liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (ΔtrsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ΔtrsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid-liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.
Uniform corrosion of FeCrAl alloys in LWR coolant environments
NASA Astrophysics Data System (ADS)
Terrani, K. A.; Pint, B. A.; Kim, Y.-J.; Unocic, K. A.; Yang, Y.; Silva, C. M.; Meyer, H. M.; Rebak, R. B.
2016-10-01
The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation of very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. The maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ∼2 μm, which is inconsequential for a ∼300-500 μm thick cladding.
Uniform corrosion of FeCrAl alloys in LWR coolant environments
Terrani, K. A.; Pint, B. A.; Kim, Y. -J.; ...
2016-06-29
The corrosion behavior of commercial and model FeCrAl alloys and type 310 stainless steel was examined by autoclave tests and compared to Zircaloy-4, the reference cladding materials in light water reactors. The corrosion studies were carried out in three distinct water chemistry environments found in pressurized and boiling water reactor primary coolant loop conditions for up to one year. The structure and morphology of the oxides formed on the surface of these alloys was consistent with thermodynamic predictions. Spinel-type oxides were found to be present after hydrogen water chemistry exposures, while the oxygenated water tests resulted in the formation ofmore » very thin and protective hematite-type oxides. Unlike the alloys exposed to oxygenated water tests, the alloys tested in hydrogen water chemistry conditions experienced mass loss as a function of time. This mass loss was the result of net sum of mass gain due to parabolic oxidation and mass loss due to dissolution that also exhibits parabolic kinetics. Finally, the maximum thickness loss after one year of LWR water corrosion in the absence of irradiation was ~2 μm, which is inconsequential for a ~300–500 μm thick cladding.« less
Wildemann, Tanja M; Siciliano, Steven D; Weber, Lynn P
2016-01-02
Hypertension is considered to be the most important risk factor for the development of cardiovascular diseases. Beside life-style risk factors, exposure to lead and mercury species are increasingly discussed as potential risk factors. Although there are a few previous studies, the underlying mechanism by which exposure to lead and mercury disturb blood pressure regulation is not currently understood. Potential mechanisms are oxidative stress production, kidney damage and activation of the renin-angiotensin system (RAS), all of which can interact to cause dysregulation of blood pressure. Male rats (Wistar) were exposed to lead, inorganic mercury, methylmercury or two mixtures of all three metals for four weeks through the drinking water. The two mixture ratios were based on ratios of known reference values or environmental exposure from the literature. To investigate the potential mechanism of actions, blood pressure was measured after four weeks and compared to plasma nitrotyrosine or reduced/oxidized glutathione levels in liver as markers for oxidative stress. Plasma renin and angiotensin II levels were used as markers for RAS activation. Finally, kidney function and injury were assessed via urinary and plasma creatinine levels, creatinine clearance and urinary kidney-injury molecule (KIM-1). While exposure to lead by itself increased oxidative stress and kidney damage along with blood pressure, inorganic mercury did not affect blood pressure or any end-point examined. Conversely, methylmercury instead increased RAS activation along with blood pressure. Surprisingly, when administered as mixtures, lead no longer increased oxidative stress or altered kidney function. Moreover, the mixture based on an environmental ratio no longer had an effect on blood pressure, while the reference value ratio still retained an increase in blood pressure. Based on our results, the prominent mechanism of action associated with the development of hypertension seems to be oxidative stress and kidney damage for lead, while increased RAS activation links methylmercury to hypertension, but these mechanisms along with hypertension disappear when metals are present in some mixtures. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-08-01
The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).
Development of Ren Qiou fractured carbonate oil pools by water injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Z.; Li, G.
1982-01-01
This work gives a brief description on the geologic characteristics of Ren Qiou oil field and its development. Different methods have been used in its reservoir engineering study such as outcrop investigation, fracture and crevice description in tunnels, observation on core samples and their statistical data, thin section observation, casting section, fluorescence section, scanning electron microscope, mercury injection and withdrawal, down-hole television, and geophysical well logging. Physical modeling, 3-dimensional numeric simulation and reservoir performance analysis, and production profiles by production logging in an open hole, have been used to study mechanics of displacing oil by water and the movement ofmore » oil and water in reservoir pools production technologies with double-porosity. Pressure maintenance by bottomwater injection to keep producing wells flowing, acidization with emulsifying acid to penetrate deeply into the reservoir formation, and water plugging with chemical agent, have been used to maintain a consistent annual recovery rate. 11 references.« less
Numerical modelling of volatiles in the deep mantle
NASA Astrophysics Data System (ADS)
Eichheimer, Philipp; Thielmann, Marcel; Golabek, Gregor J.
2017-04-01
The transport and storage of water in the mantle significantly affects several material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.). The processes driving transport and circulation of H2O in subduction zones remain a debated topic. Geological and seismological observations suggest different inflow mechanisms of water e.g. slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017), followed by dehydration of the slab. On Earth both shallow and steep subduction can be observed (Li et al., 2011). However most previous models (van Keken et al., 2008; Wilson et al., 2014) did not take different dip angles and subduction velocities of slabs into account. To which extent these parameters and processes influence the inflow of water still remains unclear. We present 2D numerical models simulating the influence of the various water inflow mechanisms on the mantle with changing dip angle and subduction velocity of the slab over time. The results are used to make predictions regarding the rheological behavior of the mantle wedge, dehydration regimes and volcanism at the surface. References: van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Wilson, C. R., et al. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401, 261-274 (2014). Li, Z. H., Z. Q. Xu, and T. V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011).
Joung, In Suk; Luchko, Tyler; Case, David A.
2013-01-01
Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564
Study on hydraulic characteristics of mine dust-proof water supply network
NASA Astrophysics Data System (ADS)
Deng, Quanlong; Jiang, Zhongan; Han, Shuo; Fu, Enqi
2018-01-01
In order to study the hydraulic characteristics of mine dust-proof water supply network and obtain the change rule of water consumption and water pressure, according to the similarity principle and the fluid continuity equation and energy equation, the similarity criterion of mine dust-proof water supply network is deduced, and a similar model of dust-proof water supply network is established based on the prototype of Kailuan Group, the characteristics of hydraulic parameters in water supply network are studied experimentally. The results show that water pressure at each point is a dynamic process, and there is a negative correlation between water pressure and water consumption. With the increase of water consumption, the pressure of water points show a decreasing trend. According to the structure of the pipe network and the location of the water point, the influence degree on the pressure of each point is different.
Kondo, A; Kapoor, R; Ohmura, M; Saito, M
1994-01-01
A 20-year-old woman and 3 girls were referred to our urodynamic unit because of refractory bed wetting, recurrent urinary tract infection, and/or weak stream. All patients required extremely high detrusor pressure to evacuate urine, a mean of 116 cm of water. Urethral configuration was either a ballooning or a spinning-top shape. Organic stenosis of the urethra was not detected by bougie à boule. Urodynamically, functional obstruction at the distal urethra was found to be an etiology of these symptoms. When the urethra was dilated with the Otis urethrotome, all patients were greatly benefitted both symptomatically and urodynamically without an adverse effect of urinary incontinence. We stress clinical importance of pressure flow study and fluoroscopic monitoring of the bladder and urethra when one encounters female patients with long histories of above symptoms.
Vulgamott, J C; Clark, R G
1980-08-01
A 5-year-old spayed female Doberman Pinscher was referred for clinical evaluation following two acute episodes of lameness, lethargy, and respiratory dyspnea. The femoral pulse had a bounding "water-hammer" quality. Arterial blood pressures were 280 mm of Hg to greater than 300 mm of Hg during systole and approximately 40 mm of Hg during diastole. Systolic blood pressure was lowered to 210 mm of Hg, using prazosin. Radiography revealed extensive pulmonary interstitial markings and smooth subperiosteal expansions of the long bones indicative of hypertrophic pulmonary osteopathy. Despite symptomatic treatment, the dog's health gradually deteriorated, and it died 9 days after referral. Necropsy revealed vegetative endocarditis of the aortic valve. Insufficiency of the aortic valve was believed to be responsible for the systolic hypertension and the hypertrophic pulmonary osteopathy.
40 CFR 86.344-79 - Humidity calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... = Molecular weight of air = 28.9645 M H2O = Molecular weight of water = 18.01534 P DB = Saturation vapor pressure of water at the dry bulb temperature (Pa) P DP = saturation vapor pressure of water at the dewpoint temperature (Pa) P v = partial pressure of water vapor (Pa) P WB = saturation vapor pressure of...
40 CFR 86.344-79 - Humidity calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... = Molecular weight of air = 28.9645 M H2O = Molecular weight of water = 18.01534 P DB = Saturation vapor pressure of water at the dry bulb temperature (Pa) P DP = saturation vapor pressure of water at the dewpoint temperature (Pa) P v = partial pressure of water vapor (Pa) P WB = saturation vapor pressure of...
NASA Astrophysics Data System (ADS)
Sarma, Rahul; Paul, Sandip
2012-03-01
Molecular dynamics simulations are performed to study the effects of pressure on the hydrophobic interactions between neopentane molecules immersed in water. Simulations are carried out for five different pressure values ranging from 1 atm to 8000 atm. From potential of mean force calculations, we find that with enhancement of pressure, there is decrease in the well depth of contact minimum (CM) and the relative stability of solvent separated minimum over CM increases. Lower clustering of neopentane at high pressure is also observed in association constant and cluster-structure analysis. Selected site-site radial distribution functions suggest efficient packing of water molecules around neopentane molecules at elevated pressure. The orientational profile calculations of water molecules show that the orientation of water molecules in the vicinity of solute molecule is anisotropic and this distribution becomes flatter as we move away from the solute. Increasing pressure slightly changes the water distribution. Our hydrogen bond properties and dynamics calculations reveal pressure-induced formation of more and more number of water molecules with five and four hydrogen bond at the expense of breaking of two and three hydrogen bonded water molecules. We also find lowering of water-water continuous hydrogen bond lifetime on application of pressure. Implication of these results for relative dispersion of hydrophobic molecules at high pressure are discussed.
DeLacy, Brendan G; Bandy, Alan R
2008-01-01
An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.
Carnley, Mark V.
2015-01-01
The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.
Spent fuel burnup estimation by Cerenkov glow intensity measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuribara, Masayuki
1994-10-01
The Cerenkov glow images from irradiated fuel assemblies of boiling-water reactors (BWR) and pressurized-water reactors (PWR) are generally used for inspections. For this purpose, a new UV-I.I. CVD (ultra-violet light image intensifier Cerenkov viewing device), has been developed. This new device can measure the intensity of the Cerenkov glow from a spent fuel assembly, thus making it possible to estimate the burnup of the fuel assembly by comparing the Cerenkov glow intensity to the reference intensity. The experiment was carried out on BWR spent fuel assemblies and the results show that burnups are estimated within 20% accuracy compared to themore » declared burnups for the tested spent fuel assemblies for cooling times ranging from 900--2.000 d.« less
Laboratory meter-scale seismic monitoring of varying water levels in granular media
NASA Astrophysics Data System (ADS)
Pasquet, S.; Bodet, L.; Bergamo, P.; Guérin, R.; Martin, R.; Mourgues, R.; Tournat, V.
2016-12-01
Laboratory physical modelling and non-contacting ultrasonic techniques are frequently proposed to tackle theoretical and methodological issues related to geophysical prospecting. Following recent developments illustrating the ability of seismic methods to image spatial and/or temporal variations of water content in the vadose zone, we developed laboratory experiments aimed at testing the sensitivity of seismic measurements (i.e., pressure-wave travel times and surface-wave phase velocities) to water saturation variations. Ultrasonic techniques were used to simulate typical seismic acquisitions on small-scale controlled granular media presenting different water levels. Travel times and phase velocity measurements obtained at the dry state were validated with both theoretical models and numerical simulations and serve as reference datasets. The increasing water level clearly affects the recorded wave field in both its phase and amplitude, but the collected data cannot yet be inverted in the absence of a comprehensive theoretical model for such partially saturated and unconsolidated granular media. The differences in travel time and phase velocity observed between the dry and wet models show patterns that are interestingly coincident with the observed water level and depth of the capillary fringe, thus offering attractive perspectives for studying soil water content variations in the field.
The Recovery of Water and Nitrogen from Urine in BLSS
NASA Astrophysics Data System (ADS)
Xie, Beizhen; Liu, Hong; Deng, Shengda
The recycle and reuse of the wastewater is one of the main factors for realizing a higher closure degree of bioregenerative life support system (BLSS), and the treatment and recovery of the crew’s urine are the most difficult and critical issues. Urine contains a lot of water and high concentrations of urea and salts. Water can be used for the irrigation of the plants in BLSS, and the nitrogen is also the necessary nutrient for plant growth. Therefore, if the nitrogen could be recycled simultaneously while desalting the urine, the substance circulation and the closure of BLSS could be improved significantly. In this study, two-step method was conducted to treat the urine and recycle the water and nitrogen. The urea was hydrolyzed firstly, and then the water vapor and ammonia gas were cooled and collected by using reduced pressure distillation in alkaline condition. High temperature acidification and urease processing methods were studied during the urea hydrolysis step. The treatment conditions of both methods were optimized and the degrees of hydrolysis were compared. This investigation may provide a reference for the establishment of the urine recycle in BLSS.
Simulation of low pressure water hammer
NASA Astrophysics Data System (ADS)
Himr, D.; Habán, V.
2010-08-01
Numerical solution of water hammer is presented in this paper. The contribution is focused on water hammer in the area of low pressure, which is completely different than high pressure case. Little volume of air and influence of the pipe are assumed in water, which cause sound speed change due to pressure alterations. Computation is compared with experimental measurement.
Implanted Blood-Pressure-Measuring Device
NASA Technical Reports Server (NTRS)
Fischell, Robert E.
1988-01-01
Arterial pressure compared with ambient bodily-fluid pressure. Implanted apparatus, capable of measuring blood pressure of patient, includes differential-pressure transducer connected to pressure sensor positioned in major artery. Electrical signal is function of differential pressure between blood-pressure sensor and reference-pressure sensor transmitted through skin of patient to recorder or indicator.
76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...
Water Loss Reduction as the Basis of Good Water Supply Companies' Management
NASA Astrophysics Data System (ADS)
Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof
2017-10-01
Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.
Morado Piñeiro, Andrés; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío
2013-02-15
Analytical methods for the determination of total arsenic and arsenic species (mainly As(III) and As(V)) in human scalp hair have been developed. Inductively coupled plasma-mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) coupled to ICP-MS have been used for total arsenic and arsenic species determination, respectively. The proposed methods include a "green", fast, high efficient and automated species leaching procedure by pressurized hot water extraction (PHWE). The operating parameters for PHWE including modifier concentration, extraction temperature, static time, extraction steps, pressure, mean particle size, diatomaceous earth (DE) mass/sample mass ratio and flush volume were studied using design of experiments (Plackett-Burman design PBD). Optimum condition implies a modifier concentration (acetic acid) of 150 mM and powdered hair samples fully mixed with diatomaceous earth (DE) as a dispersing agent at a DE mass/sample mass ratio of 5. The extraction has been carried out at 100°C and at an extraction pressure of 1500 psi for 5 min in four extraction step. Under optimised conditions, limits of quantification of 7.0, 6.3 and 50.3 ng g(-1) for total As, As(III) and As(V), respectively were achieved. Repeatability of the overall procedure (4.4, 7.2 and 2.1% for total As, As(III) and As(V), respectively) was achieved. The analysis of GBW-07601 (human hair) certified reference material was used for validation. The optimised method has been finally applied to several human scalp hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Leaf water potentials measured with a pressure chamber.
Boyer, J S
1967-01-01
Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within +/- 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements.The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer.
Leaf Water Potentials Measured with a Pressure Chamber
Boyer, J. S.
1967-01-01
Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within ± 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements. The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer. PMID:16656476
Focus control system for stretched-membrane mirror module
Butler, B.L.; Beninga, K.J.
1991-05-21
A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.
Focus control system for stretched-membrane mirror module
Butler, Barry L.; Beninga, Kelly J.
1991-01-01
A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.
Atmospheric Science Data Center
2013-05-20
... Surface Emissivity Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Impact location of objects hitting the water surface
NASA Astrophysics Data System (ADS)
Kadri, Usama
2017-04-01
Analysis of data, recorded on March 8th 2014 at the Comprehensive Test ban Treaty Organisation's hydroacoustic station off Cape Leeuwin Western Australia, reveal pressure signatures of objects impacting at the sea surface which could be associated with falling meteorites as well as the missing Malaysian MH370 airplane. The location of the sources are identified analytically by an inverse solution based on acoustic-gravity wave theory (e.g. see references below) which have been developed and validated experimentally. Apart from the direct contribution to the search efforts after the missing airplane, the method we describe here is very efficient for identifying the location of sources that result in a sudden change in the water pressure in general. References 1. T.Yamamoto,1982.Gravity waves and acoustic waves generated by submarine earthquakes, Soil Dyn. Earthquake Eng., 1, 75-82. 2. M. Stiassnie, 2010. Tsunamis and acoustic-gravity waves from underwater earthquakes, J. Eng. Math., 67, 23-32, doi:10.1007/s10665-009-9323-x. 3. U. Kadri and M. Staissnie, 2012. Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res., 117, C03035, doi: 10.1029/2011JC007674. 4. E. Eyov, A. Klar, U. Kadri and M. Stiassnie, 2013. Progressive waves in a compressible ocean with elastic bottom, Wave Motion 50, 929-939. doi: 10.1016/j.wavemoti.2013.03.003 5. G. Hendin and M. Stiassnie, 2013. Tsunami and acoustic-gravity waves in water of constant depth, Phys. Fluids 25, 086103, doi: 10.1063/1.481799. 6. U. Kadri, 2016. Acoustic-gravity waves from an oscillating ice-block in arctic zones. Advances in Acoustics and Vibration, 8076108, http://dx.doi.org/10.1155/2016/8076108 7. T.C.A. Oliveira, U. Kadri, 2016. Acoustic-gravity waves from the 2004 Indian Ocean earthquake and tsunami. Journal of Geophysical Research: Oceans. doi: 10.1002/2016JC011742
Grosser, Katharina; van Dam, Nicole M
2017-03-15
Glucosinolates are a well-studied and highly diverse class of natural plant compounds. They play important roles in plant resistance, rapeseed oil quality, food flavoring, and human health. The biological activity of glucosinolates is released upon tissue damage, when they are mixed with the enzyme myrosinase. This results in the formation of pungent and toxic breakdown products, such as isothiocyanates and nitriles. Currently, more than 130 structurally different glucosinolates have been identified. The chemical structure of the glucosinolate is an important determinant of the product that is formed, which in turn determines its biological activity. The latter may range from detrimental (e.g., progoitrin) to beneficial (e.g., glucoraphanin). Each glucosinolate-containing plant species has its own specific glucosinolate profile. For this reason, it is important to correctly identify and reliably quantify the different glucosinolates present in brassicaceous leaf, seed, and root crops or, for ecological studies, in their wild relatives. Here, we present a well-validated, targeted, and robust method to analyze glucosinolate profiles in a wide range of plant species and plant organs. Intact glucosinolates are extracted from ground plant materials with a methanol-water mixture at high temperatures to disable myrosinase activity. Thereafter, the resulting extract is brought onto an ion-exchange column for purification. After sulfatase treatment, the desulfoglucosinolates are eluted with water and the eluate is freeze-dried. The residue is taken up in an exact volume of water, which is analyzed by high-pressure liquid chromatography (HPLC) with a photodiode array (PDA) or ultraviolet (UV) detector. Detection and quantification are achieved by conducting comparisons of the retention times and UV spectra of commercial reference standards. The concentrations are calculated based on a sinigrin reference curve and well-established response factors. The advantages and disadvantages of this straightforward method, when compared to faster and more technologically advanced methods, are discussed here.
Grosser, Katharina; van Dam, Nicole M.
2017-01-01
Glucosinolates are a well-studied and highly diverse class of natural plant compounds. They play important roles in plant resistance, rapeseed oil quality, food flavoring, and human health. The biological activity of glucosinolates is released upon tissue damage, when they are mixed with the enzyme myrosinase. This results in the formation of pungent and toxic breakdown products, such as isothiocyanates and nitriles. Currently, more than 130 structurally different glucosinolates have been identified. The chemical structure of the glucosinolate is an important determinant of the product that is formed, which in turn determines its biological activity. The latter may range from detrimental (e.g., progoitrin) to beneficial (e.g., glucoraphanin). Each glucosinolate-containing plant species has its own specific glucosinolate profile. For this reason, it is important to correctly identify and reliably quantify the different glucosinolates present in brassicaceous leaf, seed, and root crops or, for ecological studies, in their wild relatives. Here, we present a well-validated, targeted, and robust method to analyze glucosinolate profiles in a wide range of plant species and plant organs. Intact glucosinolates are extracted from ground plant materials with a methanol-water mixture at high temperatures to disable myrosinase activity. Thereafter, the resulting extract is brought onto an ion-exchange column for purification. After sulfatase treatment, the desulfoglucosinolates are eluted with water and the eluate is freeze-dried. The residue is taken up in an exact volume of water, which is analyzed by high-pressure liquid chromatography (HPLC) with a photodiode array (PDA) or ultraviolet (UV) detector. Detection and quantification are achieved by conducting comparisons of the retention times and UV spectra of commercial reference standards. The concentrations are calculated based on a sinigrin reference curve and well-established response factors. The advantages and disadvantages of this straightforward method, when compared to faster and more technologically advanced methods, are discussed here. PMID:28362416
Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler
NASA Astrophysics Data System (ADS)
Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen
2018-01-01
Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.
Sensitivity analysis of water consumption in an office building
NASA Astrophysics Data System (ADS)
Suchacek, Tomas; Tuhovcak, Ladislav; Rucka, Jan
2018-02-01
This article deals with sensitivity analysis of real water consumption in an office building. During a long-term real study, reducing of pressure in its water connection was simulated. A sensitivity analysis of uneven water demand was conducted during working time at various provided pressures and at various time step duration. Correlations between maximal coefficients of water demand variation during working time and provided pressure were suggested. The influence of provided pressure in the water connection on mean coefficients of water demand variation was pointed out, altogether for working hours of all days and separately for days with identical working hours.
Atmospheric Science Data Center
2013-05-20
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Atmospheric Science Data Center
2013-05-17
... Flux - Down Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
Development and Test of an Infrastructure Free Real-Time Water Level Measurement System
NASA Astrophysics Data System (ADS)
Breuer, E. R.; Heitsenrether, R.; Hensley, W., III; Krug, W.; Wolcott, D.
2016-02-01
NOAA's Center for Operational Oceanographic Products and Services (CO-OPS) is responsible for developing and maintaining the National Water Level Observation Network (NWLON). NWLON consists of over 200 long term observatories that provide near real-time, 6 minute average, water level observations from locations throughout all U.S. coasts. CO-OPS continually analyzes state-of-the-art and emerging technologies to identify potential improvements in data quality and operating efficiency. NOAA, recognizing the changing conditions, anticipates a critical need for real time oceanographic and meteorological observations where traditional approaches are less feasible. CO-OPS is working on the design, development and testing of a real-time tidal measurement system, "The Hermit," for use in coastal regions. The latest prototype has recently completed a successful 3 month field test deployment in the St Andrews Sound region of Georgia, a location where relatively few long term water level records have been collected to date. The test location provided unique challenges such as having a very limited coastal infrastructure and experiencing a 7-8 foot tidal range. The Hermit consists of a bottom mounted pressure/conductivity/temperature sensor (Seabird SBE 26+) and a surface communications buoy which are linked via acoustic modems (Link Quest). The surface buoy relays data back to the CO-OPS database in near-real time using an Iridium satellite based communication system. Additionally, the buoy includes an AirMar all-in-one meteorological sensor. In addition to The Hermit deployment, three test GPS bench marks and a tide staff were installed on a nearby coastline to vertically reference water level measurements. During this deployment, The Hermit successfully provided near real-time measurements of bottom pressure, water conductivity and temperature, wind speed and direction, air temperature, and barometric pressure over the 3 month deployment. During the test period, several high wind storm surge events were captured, along with a perigean spring tide. Details of these data along with the system design will be presented along with CO-OPS plans for future operational applications.
NASA Astrophysics Data System (ADS)
Hu, Han; Sun, Ying
2013-11-01
Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.
Atmospheric Science Data Center
2013-05-17
... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...
High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase
Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa
2012-01-01
Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH. PMID:22349232
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.
NASA Astrophysics Data System (ADS)
Pereira, Juliana S. F.; Mello, Paola A.; Moraes, Diogo P.; Duarte, Fábio A.; Dressler, Valderi L.; Knapp, Guenter; Flores, Érico M. M.
2009-06-01
In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l - 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l - 1 H 2O 2, 10 to 100 mmol l - 1 (NH 4) 2CO 3 or 0.1 to 14 mol l - 1 HNO 3) were studied. The influence of sample mass, O 2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l - 1 (NH 4) 2CO 3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g - 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g - 1 . Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.
Hydrogen isotope fractionation between C-H-O species in magmatic fluids
NASA Astrophysics Data System (ADS)
Foustoukos, D. I.; Mysen, B. O.
2012-12-01
Constraining the hydrogen isotope fractionation between H-bearing volatiles (e.g. H2, CH4, hydrocarbons, H2O) as function of temperature and pressure helps to promote our understanding of the isotopic composition of evolved magmatic fluids and the overall mantle-cycling of water and reduced C-O-H volatiles. To describe the thermodynamics of the exchange reactions between the different H/D isotopologues of H2 and CH4 under supercritical water conditions, a novel experimental technique has been developed by combining vibrational Raman spectroscopy with hydrothermal diamond anvil cell designs (HDAC), which offers a method to monitor the in-situ evolution of H/D containing species. To this end, the equilibrium relationship between H2-D2-HD in supercritical fluid was investigated at temperatures ranging from 300 - 800 oC and pressures ~ 0.3 - 1.3 GPa [1]. Experimental results obtained in-situ and ex-situ show a significant deviation from the theoretical values of the equilibrium constant predicted for ideal-gas reference state, and with an apparent negative temperature effect triggered by the enthalpy contributions due to mixing in supercritical water. Here, we present a series of HDAC experiments conducted to evaluate the role of supercritical water on the isotopic equilibrium between H/D methane isotopologues at 600 - 800 oC and 409 - 1622 MPa. In detail, tetrakis-silane (Si5C12H36) was reacted with H2O-D2O aqueous solution in the presence of either Ni or Pt metal catalyst, resulting to the formation of deuterated methane species such as CH3D, CHD3, CH2D2 and CD4. Two distinctly different set of experiments ("gas phase"; "liquid phase") were performed by adjusting the silane/water proportions. By measuring the relative intensities of Raman vibrational modes of species, experimental results demonstrate distinctly different thermodynamic properties for the CH4-CH3D-CHD3-CH2D2 equilibrium in gas and liquid-water-bearing systems. In addition, the D/H molar ratio of methane in the liquid is twice that recorded in the gas phase. Accordingly, condensed-phase isotope effects are inferred to govern the evolution of H/D isotopologues, induced by differences in the solubility of the isotopic molecules driven by excess energy/entropy developed during the mixing of non-polar species in the supercritical water structure. On the contrary, at such high temperatures/-pressures statistical thermodynamic models, based on the vibrational zero point energy distributions and high-temperature anharmonicity for isotopic molecules in ideal-gas reference state, predict minimal isotope exchange. Data, therefore, demonstrate that the solvation mechanism of H-D-bearing species in magmatic fluids can impose substantial D/H fractionation effects governing the δD composition of coexisting species even at lower-crust/upper-mantle temperature conditions. 1. Foustoukos D.I. and B.O. Mysen, (2012) D/H isotopic fractionation in the H2-H2O system at supercritical water conditions: Composition and hydrogen bonding effects, Geochim. Cosmochim. Acta, 86, 88-102.
Non-Invasive Method of Determining Absolute Intracranial Pressure
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)
2004-01-01
A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...
2017-04-18
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
Pan, Zhiran; Liang, Hailong; Liang, Chabhufi; Xu, Wen
2015-01-01
A method for qualitative analysis of constituents in Polygonum cuspidatum by ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS) has been established. The methanol extract of Polygonum cuspidatumrn was separated on a Waters UPLC C18 column using acetonitrile-water (containing formic acid) eluting system and detected by LTQ-Orbitrap hybrid mass spectrometer in negative mode. The targeted components were further fragmented in LTQ and high accuracy data were acquired by Orbitrap MS. The summarized fragmentation pathways of typical reference components and a diagnostic fragment ions-searching-based strategy were used for detection and identification of the main phenolic components in Polygonum cuspidatum. Other clues such as nitrogen rule, even electron rule, degree of unsaturation rule and isotopic peak data were included for the structural elucidation as well. The whole analytical procedure was within 10 min and more than 30 components were identified or tentatively identified. This method is helpful for further phytochemical research and quality control on Polygonum cuspidatum and related preparations.
NASA Astrophysics Data System (ADS)
Krieger, Ulrich; Marcolli, Claudia; Siegrist, Franziska
2015-04-01
The production of secondary organic aerosol (SOA) by gas-to-particle partitioning is generally represented by an equilibrium partitioning model. A key physical parameter which governs gas-particle partitioning is the pure component vapor pressure, which is difficult to measure for low- and semivolatile compounds. For typical atmospheric compounds like e.g. citric acid or tartaric acid, vapor pressures have been reported in the literature which differ by up to six orders of magnitude [Huisman et al., 2013]. Here, we report vapor pressures of a homologous series of polyethylene glycols (triethylene glycol to octaethylene glycol) determined by measuring the evaporation rate of single, levitated aerosol particles in an electrodynamic balance. We propose to use those as a reference data set for validating different vapor pressure measurement techniques. With each addition of a (O-CH2-CH2)-group the vapor pressure is lowered by about one order of magnitude which makes it easy to detect the lower limit of vapor pressures accessible with a particular technique down to a pressure of 10-8 Pa at room temperature. Reference: Huisman, A. J., Krieger, U. K., Zuend, A., Marcolli, C., and Peter, T., Atmos. Chem. Phys., 13, 6647-6662, 2013.
Lorenz, Jennifer M.; Tarbox, Lauren V.; Buck, Bryan; Qi, Haiping; Coplen, Tyler B.
2014-01-01
RATIONALE As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from drinking water collected from the Biscayne aquifer in Ft. Lauderdale, Florida. METHODS This isotopic reference water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available by the case of 144 glass ampoules containing either 4 mL or 5 mL of water in each ampoule. RESULTS The δ2H and δ18O values of this reference material are –10.3 ± 0.4 ‰ and –2.238 ± 0.011 ‰, respectively, relative to VSMOW, on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. CONCLUSIONS This isotopic reference material, designated as USGS45, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer.
Pneumatic pressure wave generator provides economical, simple testing of pressure transducers
NASA Technical Reports Server (NTRS)
Gaal, A. E.; Weldon, T. P.
1967-01-01
Testing device utilizes the change in pressure about a bias or reference pressure level produced by displacement of a center-driven piston in a closed cylinder. Closely controlled pneumatic pressure waves allow testing under dynamic conditions.
Wan, J B; Lai, C M; Li, S P; Lee, M Y; Kong, L Y; Wang, Y T
2006-04-11
A HPLC and pressurized liquid extraction (PLE) method was developed for simultaneous determination of nine saponins, including notoginsenoside R1, ginsenoside Rg1, Re, Rf, Rb1, Rc, Rb2, Rb3 and Rd in Panax notoginseng. The analysis was performed on C18 column with water-acetonitrile gradient elution and the investigated saponins were authenticated by comparing retention time and mass spectra with their reference compounds. Several methods including PLE, ultrasonication, soxhlet extraction and immersion were used for sample preparation and their extraction efficiency was compared. The results showed that PLE has the highest extraction efficiency and repeatability, which would be valuable on standardization of sample preparation for quality control of Chinese medicines. The developed HPLC and PLE is an effective approach for simultaneously quantitative determination of sapoinins in P. notoginseng, which could be used for quality control of P. notoginseng and its preparations.
Contribution of water vapor pressure to pressurization of plutonium dioxide storage containers
NASA Astrophysics Data System (ADS)
Veirs, D. Kirk; Morris, John S.; Spearing, Dane R.
2000-07-01
Pressurization of long-term storage containers filled with materials meeting the US DOE storage standard is of concern.1,2 For example, temperatures within storage containers packaged according to the standard and contained in 9975 shipping packages that are stored in full view of the sun can reach internal temperatures of 250 °C.3 Twenty five grams of water (0.5 wt.%) at 250 °C in the storage container with no other material present would result in a pressure of 412 psia, which is limited by the amount of water. The pressure due to the water can be substantially reduced due to interactions with the stored material. Studies of the adsorption of water by PuO2 and surface interactions of water with PuO2 show that adsorption of 0.5 wt.% of water is feasible under many conditions and probable under high humidity conditions.4,5,6 However, no data are available on the vapor pressure of water over plutonium dioxide containing materials that have been exposed to water.
Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong
2018-06-01
Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P < 0.05). In residential buildings, genes of L. pneumomhila, Acanthamoeba and Vermamoeba vermiformis were primarily detected in tanks and taps compared to the mains. Long water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tradeoffs between water requirements and yield stability in annual vs. perennial crops
NASA Astrophysics Data System (ADS)
Vico, Giulia; Brunsell, Nathaniel A.
2018-02-01
Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.
Sheu, Ming-Jyh; Chou, Pei-Yu; Lin, Wen-Hsin; Pan, Chun-Hsu; Chien, Yi-Chung; Chung, Yun-Lung; Liu, Fon-Chang; Wu, Chieh-Hsi
2013-06-17
Deep sea water (DSW), originally pumped from the Pacific Rim off the coast of Hualien County (Taiwan), and its mineral constituents, were concentrated by a low-temperature vacuum evaporation system to produce a hardness of approximately 400,000 mg/L of seawater mineral concentrate. The primary composition of this seawater mineral concentrate was ionic magnesium (Mg²⁺), which was approximately 96,000 mg/L. Referring to the human recommended daily allowance (RDA) of magnesium, we diluted the mineral concentrate to three different dosages: 0.1 × DSW (equivalent to 3.75 mg Mg²⁺/kg DSW); 1 × DSW (equivalent to 37.5 mg Mg²⁺/kg DSW); and 2 × DSW (equivalent to 75 mg Mg²⁺/kg DSW). Additionally, a magnesium chloride treatment was conducted for comparison with the DSW supplement. The study indicated that 0.1 × DSW, 1 × DSW and 2 × DSW decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment. DSW has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. Our results demonstrated that 1 × DSW and 2 × DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks. These findings indicated that the antiatherogenic effects of DSW are associated with 5'-adenosine monophosphate-activated protein kinase (AMPK) stimulation and the consequent inhibition of phosphorylation of acetyl-CoA carboxylase (ACC) in atherosclerotic rabbits. We hypothesize that DSW could potentially be used as drinking water because it modulates blood pressure, reduces lipids, and prevents atherogenesis.
Water-Based Pressure-Sensitive Paints
NASA Technical Reports Server (NTRS)
Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.
2006-01-01
Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).
Water Pressure Distribution on a Flying Boat Hull
NASA Technical Reports Server (NTRS)
Thompson, F L
1931-01-01
This is the third in a series of investigations of the water pressures on seaplane floats and hulls, and completes the present program. It consisted of determining the water pressures and accelerations on a Curtiss H-16 flying boat during landing and taxiing maneuvers in smooth and rough water.
Treatment methods for breaking certain oil and water emulsions
Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.
1992-01-01
Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.
Use of submersible pressure transducers in water-resources investigations
Freeman, Lawrence A.; Carpenter, Michael C.; Rosenberry, Donald O.; Rousseau, Joseph P.; Unger, Randy; McLean, John S.
2004-01-01
Submersible pressure transducers, developed in the early 1960s, have made the collection of water-level and pressure data much more convenient than former methods. Submersible pressure transducers, when combined with electronic data recorders have made it possible to collect continuous or nearly continuous water-level or pressure data from wells, piezometers, soil-moisture tensiometers, and surface water gages. These more frequent measurements have led to an improved understanding of the hydraulic processes in streams, soils, and aquifers. This manual describes the operational theory behind submersible pressure transducers and provides information about their use in hydrologic investigations conducted by the U.S. Geological Survey.
Water loss control using pressure management: life-cycle energy and air emission effects.
Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard
2013-10-01
Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.
Embedded infrared fiber-optic sensor for thermometry in a high temperature/pressure environment
NASA Astrophysics Data System (ADS)
Yoo, Wook Jae; Jang, Kyoung Won; Moon, Jinsoo; Han, Ki-Tek; Jeon, Dayeong; Lee, Bongsoo; Park, Byung Gi
2012-11-01
In this study, we developed an embedded infrared fiber-optic temperature sensor for thermometry in high temperature/pressure and water-chemistry environments by using two identical silver-halide optical fibers. The performance of the fabricated temperature sensor was assessed in an autoclave filled with an aqueous coolant solution containing boric acid and lithium hydroxide. We carried out real-time monitoring of the infrared radiation emitted from the signal and reference probes for various temperatures over a temperature range from 95 to 225 °C. In order to decide the temperature of the synthetic coolant solution, we measured the difference between the infrared radiation emitted from the two temperature-sensing probes. Thermometry with the proposed sensor is immune to any changes in the physical conditions and the emissivity of the heat source. From the experimental results, the embedded infrared fiber-optic temperature sensor can withstand, and normally operate in a high temperature/pressure test loop system corresponding to the coolant system used for nuclear power plant simulation. We expect that the proposed sensor can be developed to accurately monitor temperatures in harsh environments.
Florencio, L; Kato, M T; de Lima, E S
2001-06-01
The Lagoon Olho d'Agua in Pernambuco State, Northeast Brazil has received increasing environmental concern due to significant stress from pollution in the catchment. The existing environmental problems are the result of great pressure from a broad range of human activities, especially in the last 10 years. Serious pollution exists mainly from some industrial and urban activities, which increased intensively after the eighties. There is a strong social and economical pressure for housing and construction near the lagoon, due to the available land nearby beaches and estuarine zone, and recently by growing tourism activities. Uncontrolled land use by low-income communities and the pressure for construction by developers have led to landfilling and to deterioration of water quality in the lagoon catchment. Improvement of the environmental conditions in the catchment needs integrated measures. Guidelines and some specific actions involving several institutions have been established and refer to sanitation and urban infrastructure as the main priorities. A main target is the construction of low-cost sewage system with smaller and decentralised treatment plants.
Feng, Chao-Hui; Drummond, Liana; Zhang, Zhi-Hang; Sun, Da-Wen
2013-10-01
The effects of agitation (1002 rpm), different pressure reduction rates (60 and 100 mbar/min), as well as employing cold water with different initial temperatures (IWT: 7 and 20°C) on immersion vacuum cooling (IVC) of cooked pork hams were experimentally investigated. Final pork ham core temperature, cooling time, cooling loss, texture properties, colour and chemical composition were evaluated. The application for the first time of agitation during IVC substantially reduced the cooling time (47.39%) to 4.6°C, compared to IVC without agitation. For the different pressure drop rates, there was a trend that shorter IVC cooling times were achieved with lower cooling rate, although results were not statistically significant (P>0.05). For both IWTs tested, the same trend was observed: shorter cooling time and lower cooling loss were obtained under lower linear pressure drop rate of 60 mbar/min (not statistically significant, P>0.05). Compared to the reference cooling method (air blast cooling), IVC achieved higher cooling rates and better meat quality. Copyright © 2013 Elsevier Ltd. All rights reserved.
From Hills to Holes: How Climate Change and Mining are Altering Runoff Processes in Canada
NASA Astrophysics Data System (ADS)
Carey, S. K.
2015-12-01
Canadian environments are under considerable pressure from both climate and land-use change. While warming temperatures are widespread and amplified in the north, surface mining has resulted in large-scale landscape disturbance. How these changes affect catchment response is profound, fundamentally altering the cycling and delivery of water and geochemicals to the drainage network. In permafrost-underlain environments, coupled mass and energy processes control runoff response, and as ground thaw increases, new subsurface pathways become accessible while changing overall catchment storage. With surface mining, watersheds are altered such that they bare little resemblance to what existed prior to mining. In this presentation, data will be presented from long-term experiments exploring the impact of climate and mining on runoff processes in cold catchments using stable isotopes of water and associated hydrometric measurements. In southern Yukon, results from the Wolf Creek Research Basin highlights the influence of surface energy balances on controlling the timing and magnitude of flow response, with inter-annual variability largely driven by how atmospheric forcing interacts with permafrost-underlain areas of the catchment. In mountainous areas of southern British Columbia, surface mining reconfigures landscapes as valleys are filled with waste-rock. Mine-influenced catchments exhibit attenuated flows with delays in spring freshet and a more muted to precipitation. Stable isotopes in stream water suggests that both waste-rock and reference catchments are well mixed, however reference catchments are more responsive to enrichment and depletion events and that mine-influenced catchments had a heavier isotope signature than reference watersheds, suggesting enhanced influence of rainfall on recharge. In both cases, snow storage and release exerts considerable control on streamflow responses, and future changes in streamflow regimes will reflect both a changes in the snow regime and inherent catchment storage properties that are dynamic with time.
Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks
ERIC Educational Resources Information Center
Brimhall, James; Naga, Sundar
2007-01-01
Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…
NASA Astrophysics Data System (ADS)
Kessels, W.; Kuhlmann, S.; Li, X.
2006-12-01
Hydraulic investigations in and between the two KTB boreholes have shown that groundwater flow is possible at great depth in the crystalline crust. Remarkable permeability was found particularly in the SE1 and SE2 fault zones. The results from a long term pump and injection test, and the related three-dimensional groundwater modelling (Graesle et al., 2006), document the existence of a large-scale (more than 10 km) hydraulic reservoir in the crystalline crust. According to this calculation, an overpressure of 0.4 MPa can be still be expected in KTB-HB in 2009, 4 years after the end of the injection. The good match with the measurement data confirms groundwater pathways at a scale of more than 10 km. The isotopic water composition recovered from the KTB pilot hole indicates a downward water flow along the SE2 fault zone, which is in contact with the Franconian Line. Moreover, there is a deep upward groundwater flow 60 km away in the western Eger Rift Valley as indicated e.g. by the temperature signature and gas flow observations. Therefore, the demand for fluid mass continuity means that water is being supplied by a downstream groundwater flow, probably from the Franconian Line. The question of potential driving processes must be answered to understand and quantify the flow in the deeper crust at a scale of 10 km to 100 km. The processes must result in a sufficient horizontal pressure gradient to allow groundwater flow at great depth. The density variations of groundwater with depth are highly relevant for the calculation of horizontal pressure differences. The two independent potential fields of gravity and pressure have to be considered. Differentiation into 4 relevant driving processes is required: \\bullet The groundwater surface topography related to the groundwater recharge and mean regional distance between neighbouring valleys \\bullet Geothermal gradient and water density depending on temperature and pressure \\bullet Different salt contents in adjacent geological formations \\bullet Gas content in the water and gas dissolution The interpretation of these processes for the Eger Rift Franconian Line area results in horizontal pressure gradients up to 0.5 MPa/km. With these pressure gradients in deep fault zones similar to the KTB fault zones SE1 and SE2, a remarkable groundwater flow is also possible in the deep crystalline crust. For only a 1 MPa pressure difference between the Franconian Line and the Eger Rift Valley, which lie nearly 60 km apart, we get a tracer velocity of 1.0 to 5.0 m/a (using the Darcy relation and porosities for the hydraulic KTB data). The flow system at great depth is determined mainly by the counteractive forces of salinity and temperature with a nonlinear relation to the water density. References GRAESLE, W., KESSELS, W., KUEMPEL, H.-J., LI, XUAN (2006): HYDRAULIC OBSERVATIONS FROM A ONE YEAR FLUID PRODUCTION TEST IN THE 4000 M DEEP KTB PILOT BOREHOLE. GEOFLUIDS, 6, 8 23 KESSELS, W., KUECK, J. (1995): HYDRAULIC COMMUNICATION IN CRYSTALLINE ROCK BETWEEN THE TWO BOREHOLES OF THE CONTINENTAL DEEP DRILLING PROJECT IN GERMANY. INT. J. ROCK MECH. MIN. SCI. &GEOMECH. ABSTR., 32, 37 47
WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1979-01-01
A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.
Diffusivity anomaly in modified Stillinger-Weber liquids
NASA Astrophysics Data System (ADS)
Sengupta, Shiladitya; Vasisht, Vishwas V.; Sastry, Srikanth
2014-01-01
By modifying the tetrahedrality (the strength of the three body interactions) in the well-known Stillinger-Weber model for silicon, we study the diffusivity of a series of model liquids as a function of tetrahedrality and temperature at fixed pressure. Previous work has shown that at constant temperature, the diffusivity exhibits a maximum as a function of tetrahedrality, which we refer to as the diffusivity anomaly, in analogy with the well-known anomaly in water upon variation of pressure at constant temperature. We explore to what extent the structural and thermodynamic changes accompanying changes in the interaction potential can help rationalize the diffusivity anomaly, by employing the Rosenfeld relation between diffusivity and the excess entropy (over the ideal gas reference value), and the pair correlation entropy, which provides an approximation to the excess entropy in terms of the pair correlation function. We find that in the modified Stillinger-Weber liquids, the Rosenfeld relation works well above the melting temperatures but exhibits deviations below, with the deviations becoming smaller for smaller tetrahedrality. Further we find that both the excess entropy and the pair correlation entropy at constant temperature go through maxima as a function of the tetrahedrality, thus demonstrating the close relationship between structural, thermodynamic, and dynamical anomalies in the modified Stillinger-Weber liquids.
The low salinity effect at high temperatures
Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan; ...
2017-04-05
The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less
The low salinity effect at high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan
The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less
Water cooling system for an air-breathing hypersonic test vehicle
NASA Technical Reports Server (NTRS)
Petley, Dennis H.; Dziedzic, William M.
1993-01-01
This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.
Acclimation of photosynthesis to low leaf water potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, M.A.; Boyer, J.S.
1984-01-01
Photosynthesis is reduced at low leaf water potentials (PSI/sub l/) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. The authors evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and PSI/sub l/, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower PSI/sub l/ in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantummore » yield and the capacity to fix CO/sub 2/ at all partial pressures of CO/sub 2/, and in vitro by photosystem II activity of isolated organelles, was inhibited at low PSI/sub l/ but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low PSI/sub l/. 32 references, 8 figures.« less
Defining relative humidity in terms of water activity. Part 1: definition
NASA Astrophysics Data System (ADS)
Feistel, Rainer; Lovell-Smith, Jeremy W.
2017-08-01
Relative humidity (RH) is a quantity widely used in various fields such as metrology, meteorology, climatology or engineering. However, RH is neither uniformly defined, nor do some definitions properly account for deviations from ideal-gas properties, nor is the application range of interest fully covered. In this paper, a new full-range definition of RH is proposed that is based on the thermodynamics of activities in order to include deviations from ideal-gas behaviour. Below the critical point of pure water, at pressures p < 22.064 MPa and temperatures T < 647.096 K, RH is rigorously defined as the relative activity (or relative fugacity) of water in humid air. For this purpose, reference states of the relative activity are specified appropriately. Asymptotically, the ideal-gas limit of the new definition is consistent with de-facto standard RH definitions published previously and recommended internationally. Virial approximations are reported for estimating small corrections to the ideal-gas equations.
Qi, Haiping; Lorenz, Jennifer M.; Coplen, Tyler B.; Tarbox, Lauren V.; Mayer, Bernhard; Taylor, Steve
2014-01-01
RESULTS: The δ2H and δ18O values of this reference water are –150.2 ± 0.5 ‰ and –19.80 ± 0.02 ‰, respectively, relative to VSMOW on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. CONCLUSION: This isotopic reference material, designated as USGS47, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and stable oxygen isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. "
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...
Qi, Haiping; Coplen, Tyler B.; Tarbox, Lauren V.; Lorenz, Jennifer M.; Scholl, Martha A.
2014-01-01
A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ2H and δ18O values of this reference water are−2.0±0.4 and−2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ2H and δ18O values of Standard Light Antarctic Precipitation reference water are−428 and−55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.
Evaluation of the Environmental Instruments, Incorporated Series 200 Dual Component Wind Set.
1980-09-01
elements is sensed to derive the sign (+ or -), which indicates the wind direction across the element pair. The reference arm of the Wheatstone bridge...Csine a for the crosswind axis, r and PF=a Vw Sine a for the headwind axis, r where Pa is the ambient air density, Pr is reference density at standard...pressure transducer is a hybrid linear silicon device which consists of a diaphragm and pressure reference , piezoresistive sensor, signal discriminator
Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe
NASA Astrophysics Data System (ADS)
Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.
2018-03-01
The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.
Lattuce growth and water use in closed, low pressure environment
NASA Astrophysics Data System (ADS)
Fowler, P.; Rygalov, V.; Wheeler, R.; Bucklin, R.; Schumacher, N.
Lettuce (Lactuca sativa L.) cv. Waldmann's Green plants were grown in a clear, hemispherical enclosure at a reduced atmospheric pressure to study the potential for using low pressure greenhouses on planetary missions. The atmosphere was maintained at 25 kPa total pressure, with ˜20 kPa of N_2, ˜5 kPa of O_2, and between 0.1 and 0.2 kPa of CO_2, supplied by CO_2 injection and a feed-back control system. A closed water cycle was maintained inside the low pressure greenhouse by recycling condensed humidity back to the plants, and only adding external water to offset water vapor leakage and uptake in the plant tissue. All plants were grown in a granular, arcillite medium (calcined clay chips), with nutrients supplied by adding time-release fertilizer (Osmocote 20-20-20). Plants were harvested after 45 days, averaging 237 g fresh mass, and 23.7 g dry mass. No obvious adverse effects were noted on the plants, with the exception of some minor "tip-burn" injury to some leaves. Additional studies are planned to compare growth and water flux (evapotranspiration) rates at higher pressures. Preliminary results suggest that water fluxes should be lower at the higher pressures provided equal vapor pressure deficits can be maintained. The results suggest that vegetative crops such as lettuce should grow well at reduced pressures if adequate water, nutrients, and CO_2 are provided.
Direct characterization of hydrophobic hydration during cold and pressure denaturation.
Das, Payel; Matysiak, Silvina
2012-05-10
Cold and pressure denaturation are believed to have their molecular origin in hydrophobic interactions between nonpolar groups and water. However, the direct characterization of the temperature- and pressure-dependent variations of those interactions with atomistic simulations remains challenging. We investigated the role of solvent in the cold and pressure denaturation of a model hydrophobic 32-mer polymer by performing extensive coarse-grained molecular dynamics simulations including explicit solvation. Our simulations showed that the water-excluded folded state of this polymer is marginally stable and can be unfolded by heating or cooling, as well as by applying pressure, similar to globular proteins. We further detected essential population of a hairpin-like configuration prior to the collapse, which is consistently accompanied by a vapor bubble at the elbow of the kink. Increasing pressure suppresses formation of this vapor bubble by reducing water fluctuations in the hydration shell of the polymer, thus promoting unfolding. Further analysis revealed a slight reduction of water tetrahedrality in the polymer hydration shell compared to the bulk. Cold denaturation is driven by an enhanced tetrahedral ordering of hydration shell water than bulk water. At elevated pressures, the strikingly reduced fluctuations combined with the increase in interstitial water molecules in the polymer hydration shell contribute to weakening of hydrophobic interactions, thereby promoting pressure unfolding. These findings provide critical molecular insights into the changes in hydrophobic hydration during cold and pressure unfolding of a hydrophobic polymer, which is strongly related to the cold and pressure denaturation of globular proteins.
Suka, Machi; Yoshida, Katsumi; Kawai, Tadashi; Aoki, Yoshikazu; Yamane, Noriyuki; Yamauchi, Kuniaki
2005-07-01
To determine age- and sex-specific reference intervals for 10 health examination items in Japanese adults. Health examination data were accumulated from 24 different prefectural health service associations affiliated with the Japan Association of Health Service. Those who were non-smokers, drank less than 7 days/week, and had a body mass index of 18.5-24.9kg/m2 were sampled as a reference population (n = 737,538; 224,947 men and 512,591 women). After classified by age and sex, reference intervals for 10 health examination items (systolic blood pressure, diastolic blood pressure, total cholesterol, triglyceride, glucose, uric acid, AST, ALT, gamma-GT, and hemoglobin) were estimated using the parametric and nonparametric methods. In every item except for hemoglobin, men had higher reference intervals than women. Systolic blood pressure, total cholesterol, and glucose showed an upward trend in values with increasing age. Hemoglobin showed a downward trend in values with increasing age. Triglyceride, ALT, and gamma-GT reached a peak in middle age. Overall, parametric estimates showed narrower reference intervals than non-parametric estimates. Reference intervals vary with age and sex. Age- and sex-specific reference intervals may contribute to better assessment of health examination data.
Formulation of blade-flutter spectral analyses in stationary reference frame
NASA Technical Reports Server (NTRS)
Kurkov, A. P.
1984-01-01
Analytic representations are developed for the discrete blade deflection and the continuous tip static pressure fields in a stationary reference frame. Considered are the sampling rates equal to the rotational frequency, equal to blade passing frequency, and for the pressure, equal to a multiple of the blade passing frequency. For the last two rates the expressions for determining the nodal diameters from the spectra are included. A procedure is presented for transforming the complete unsteady pressure field into a rotating frame of reference. The determination of the true flutter frequency by using two sensors is described. To illustrate their use, the developed procedures are used to interpret selected experimental results.
NASA Astrophysics Data System (ADS)
Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro
2017-04-01
A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.
Adams, Ryan F.; Koebel, Carolyn M.; Morrow, William S.
2018-02-13
Multiple geophysical sensors were used to characterize the underwater pressure field and ground vibrations of a seismic water gun and its suitability to deter the movement of Asian carps (particularly the silver [Hypophthalmichthys molitrix] and bighead [Hypophthalmichthys nobilis] carps) while ensuring the integrity of surrounding structures. The sensors used to collect this information were blast-rated hydrophones, surface- and borehole-mounted geophones, and fixed accelerometers.Results from two separate studies are discussed in this report. The Brandon Road study took place in May 2014, in the Des Plaines River, in a concrete-walled channel downstream of the Brandon Road Lock and Dam near Joliet, Illinois. The Lemont study took place in June 2014, in a segment of the dolomite setblock-lined Chicago Sanitary and Ship Canal near Lemont, Illinois.Two criteria were evaluated to assess the potential deterrence to carp migration, and to minimize the expected effect on nearby structures from discharge of the seismic water gun. The first criterion was a 5-pound-per-square-inch (lb/in2) limit for dynamic underwater pressure variations. The second criterion was a maximum velocity and acceleration disturbance of 0.75 inch per second (in/s) for sensitive machinery (such as the lock gates and pumps) and 2.0 in/s adjacent to canal walls, respectively. The criteria were based on previous studies of fish responses to dynamic pressure variations, and effects of vibrations on the structural integrity of concrete walls.The Brandon Road study evaluated the magnitude and extent of the pressure field created by two water gun configurations in the concrete-walled channel downstream of the lock where channel depths ranged from 11 to 14 feet (ft). Data from a single 80-cubic-inch (in³) water gun set at 6 ft below water surface (bws) produced a roughly cylindrical 5-lb/in2 pressure field 20 ft in radius, oriented vertically, with the radius decreasing to less than 15 ft at the water surface. A combination of two 80-in3 water guns set at 6 and 8 ft, respectively, produced a similarly shaped 5 lb/in2 pressure field 30 ft in radius. Neither of the water gun configurations exceeded the given threshold of 5 lb/in2 above the static pressure along the walls of the canal at the 700 lb/in2 water gun input pressure. Velocity and acceleration data were collected simultaneously with the underwater pressure data to understand the response of adjacent canal walls to the water gun firings. Maximum velocity and acceleration were 0.239 in/s and 0.0188 feet per second squared (ft/s2), respectively.The Lemont study replicated and expanded upon work done in 2011. The pressure field created by the water gun was evaluated in a deeper environment (about 25 ft of water depth) than that of the Brandon Road study. To replicate the 2011 study, data were collected with the same water gun placements and input pressure, but static underwater pressure monitoring was added. Two 80-in3 water guns were suspended below a platform at depths of 4 and 14 ft bws. Pressure was lower when the gun suspended at 4 ft bws was fired as compared to firing the single gun suspended at 14 ft bws. Firing both guns simultaneously produced similar pressures to the single gun suspended at 14 ft bws. Data were collected to assess the pressure field produced by two 80-in3 water guns separated by 80 ft and suspended at a depth of 14 ft bws. The spatial extent of the 5-lb/in2 threshold varied substantially with gun input air pressure. Firing the water gun with an air pressure of 2,000 lb/in2 generated a pressure field greater than the threshold at all but one location in the measured region. Additionally, the water gun with an air pressure of 1,000 lb/in2 did not reach the threshold anywhere in the measured region. Maximum velocity and acceleration were 0.304 in/s and 0.015 ft/s2, respectively.
Singh, Lokendra P.; Issenmann, Bruno; Caupin, Frédéric
2017-01-01
The anomalous decrease of the viscosity of water with applied pressure has been known for over a century. It occurs concurrently with major structural changes: The second coordination shell around a molecule collapses onto the first shell. Viscosity is thus a macroscopic witness of the progressive breaking of the tetrahedral hydrogen bond network that makes water so peculiar. At low temperature, water at ambient pressure becomes more tetrahedral and the effect of pressure becomes stronger. However, surprisingly, no data are available for the viscosity of supercooled water under pressure, in which dramatic anomalies are expected based on interpolation between ambient pressure data for supercooled water and high pressure data for stable water. Here we report measurements with a time-of-flight viscometer down to 244K and up to 300MPa, revealing a reduction of viscosity by pressure by as much as 42%. Inspired by a previous attempt [Tanaka H (2000) J Chem Phys 112:799–809], we show that a remarkably simple extension of a two-state model [Holten V, Sengers JV, Anisimov MA (2014) J Phys Chem Ref Data 43:043101], initially developed to reproduce thermodynamic properties, is able to accurately describe dynamic properties (viscosity, self-diffusion coefficient, and rotational correlation time) as well. Our results support the idea that water is a mixture of a high density, “fragile” liquid, and a low density, “strong” liquid, the varying proportion of which explains the anomalies and fragile-to-strong crossover in water. PMID:28404733
Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Myers, Dwight L.
2003-01-01
The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.
40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...
40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...
40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...
40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...
40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...
Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; ...
2017-02-06
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flatmore » surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Here, our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. Lastly, the omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flatmore » surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Here, our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. Lastly, the omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.« less
Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu
2017-01-01
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of −2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups. PMID:28220128
Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu
2017-01-01
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.
10 CFR 32.55 - Same: Quality assurance; prohibition of transfer.
Code of Federal Regulations, 2010 CFR
2010-01-01
... water for 24 hours and shall show no visible evidence of water entry. Absolute pressure of the air above the water shall then be reduced to 1 inch of mercury. Lowered pressure shall be maintained for 1 minute or until air bubbles cease to be given off by the water, whichever is the longer. Pressure shall...
Acoustic gravity microseismic pressure signal at shallow stations
NASA Astrophysics Data System (ADS)
Peureux, Charles; Ardhuin, Fabrice; Royer, Jean-Yves
2017-04-01
It has been known for decades that the background permanent seismic noise, the so-called microseimic signal, is generated by the nonlinear interaction of oppositely travelling ocean surface waves [Longuet-Higgins 1951]. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean. The pressure field at depths less than an acoustic wave length to the surface is made of evanescent acoustic-gravity modes [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, at the ocean bottom and 100 m below sea-surface and in the upper part of the water column respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modelling framework help assessing its performances and can be used to help future model improvements. References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, The Royal Society, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.
L.R. Ahuja; S. A. El-Swaify
1979-01-01
Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...
30 CFR 250.1003 - Installation, testing, and repair requirements for DOI pipelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (a)(1) Pipelines greater than 8-5/8 inches in diameter and installed in water depths of less than 200... shall be pressure tested with water at a stabilized pressure of at least 1.25 times the MAOP for at... pressure tested with water or processed natural gas at a minimum stabilized pressure of at least 1.25 times...
Mechanisms affecting water quality in an intermittent piped water supply.
Kumpel, Emily; Nelson, Kara L
2014-01-01
Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.
Tensiometer for shallow or deep measurements including vadose zone and aquifers
Faybishenko, B.
1999-08-24
A two cell tensiometer is described in which water level in the lower cell is maintained at a relatively constant height, and in equilibrium with the water pressure of materials that surround the tensiometer. An isolated volume of air in the lower cell changes pressure proportionately to the changing water pressure of the materials that surround the tensiometer. The air pressure is measured remotely. The tensiometer can be used in drying as well as wetting cycles above and below the water table. 8 figs.
Tensiometer for shallow or deep measurements including vadose zone and aquifers
Faybishenko, Boris
1999-01-01
A two cell tensiometer is described in which water level in the lower cell is maintained at a relatively constant height, and in equilibrium with the water pressure of materials that surround the tensiometer. An isolated volume of air in the lower cell changes pressure proportionately to the changing water pressure of the materials that surround the tensiometer. The air pressure is measured remotely. The tensiometer can be used in drying as well as wetting cycles above and below the water table.
Sorptivity of rocks and soils of the van Genuchten-Mualem type
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.W.; Bodvarsson, G.S.
1991-06-01
One hydrological process that will have great relevance to the performance of the proposed underground radioactive waste repository at Yucca Mountain, Nevada, is that of the absorption of water from a water-filled fracture into the adjacent unsaturated rock formation. The rate at which water is imbibed by a rock depends on the hydrological properties of the rock and on the initial saturation (or initial capillary suction) of the formation. The hydrological properties that affect imbibition are the relative permeability function and the capillary pressure function. These functions are often collectively referred to as the `characteristic functions` of the porous medium.more » For one-dimensional absorption, it can be shown that, regardless of the details of the characteristic functions, the total amount of water imbibed by the formation, per unit surface area, will be proportional to the square root of the elapsed time. Hence the ability of a rock or soil to imbibe water can be quantified by a parameter known as the sorptivity S, which is defined such that the cumulative volumetric liquid influx per unit area is given by Q = S{radical}t. The paper discusses the simplification of these characteristic functions of porous medium.« less
Lorenz, Jennifer M; Tarbox, Lauren; Buck, Bryan; Qi, Haiping; Coplen, Tyler B
2014-10-15
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from drinking water collected from the Biscayne aquifer in Ft. Lauderdale, Florida. This isotopic reference water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available by the case of 144 glass ampoules containing either 4 mL or 5 mL of water in each ampoule. The δ(2)H and δ(18)O values of this reference material are -10.3 ± 0.4‰ and -2.238 ± 0.011‰, respectively, relative to VSMOW, on scales normalized such that the δ(2)H and δ(18)O values of SLAP reference water are, respectively, -428 and -55.5‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc ) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material, designated as USGS45, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
The phase diagram of water at negative pressures: virtual ices.
Conde, M M; Vega, C; Tribello, G A; Slater, B
2009-07-21
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.
On-line calibration of high-response pressure transducers during jet-engine testing
NASA Technical Reports Server (NTRS)
Armentrout, E. C.
1974-01-01
Jet engine testing is reported concerned with the effect of inlet pressure and temperature distortions on engine performance and involves the use of numerous miniature pressure transducers. Despite recent improvements in the manufacture of miniature pressure transducers, they still exhibit sensitivity change and zero-shift with temperature and time. To obtain meaningful data, a calibration system is needed to determine these changes. A system has been developed which provides for computer selection of appropriate reference pressures selected from nine different sources to provide a two- or three-point calibration. Calibrations are made on command, before and sometimes after each data point. A unique no leak matrix valve design is used in the reference pressure system. Zero-shift corrections are measured and the values are automatically inserted into the data reduction program.
Forecasting Frost Damage: Follow the Water
NASA Astrophysics Data System (ADS)
Rempel, A. W.
2015-12-01
Frost damage takes place when the pressure exerted against pore walls exceeds the cohesive strength of water-infiltrated rock and causes cracks to extend. Elegant theoretical treatments supported by meticulous field and laboratory observations have combined to unravel the basic mechanical and thermodynamic controls in idealized systems. Frost damage is most vigorous when conditions are cold enough that the net pressure exerted against the pore walls can cause crack extension, yet warm enough to enable the flow that supplies further ice growth in the newly opened space. This insight is applied here to develop practical geomorphic process laws for the effects of frost damage at the larger scales that are relevant for describing the evolution of landscapes. To this end, a direct connection is made between the intensity of frost damage and the porosity increase that results from gradients in water flux under conditions that are cold enough for ice-rock interactions to propagate cracks. This implies that the annual temperature variation at the ground surface can be combined with considerations of heat and mass transport to derive rigorous forecasts of the potential for frost damage that are tied to the increases in water mass that accompany solidification in porous rock. As an example, the image shows the depth-integrated porosity change λ promoted by crack growth at temperatures colder than -ΔTc over an annual cycle for different choices of mean annual temperature MAT and surface amplitude A (assuming a thermal diffusivity of 1 mm2/s and a power-law relationship between permeability and undercooling with exponent α=4, such that a base value of 10-14m2 is reached at a reference undercooling of 0.1 ºC). The abrupt onset in cracking once MAT decreases below a threshold is produced by the requirement that undercooling surpass ΔTc in order to generate sufficient pressures to propagate cracks. The eventual reduction and gradual tail in λ at colder MAT is produced by the clogging of the permeable pathways needed to supply additional water to propmote crack growth.
Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E
2014-07-18
Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.
Activity of water in aqueous systems; a frequently neglected property.
Blandamer, Mike J; Engberts, Jan B F N; Gleeson, Peter T; Reis, Joao Carlos R
2005-05-01
In this critical review, the significance of the term 'activity' is examined in the context of the properties of aqueous solutions. The dependence of the activity of water(l) at ambient pressure and 298.15 K on solute molality is examined for aqueous solutions containing neutral solutes, mixtures of neutral solutes and salts. Addition of a solute to water(l) always lowers its thermodynamic activity. For some solutes the stabilisation of water(l) is less than and for others more than in the case where the thermodynamic properties of the aqueous solution are ideal. In one approach this pattern is accounted for in terms of hydrate formation. Alternatively the pattern is analysed in terms of the dependence of practical osmotic coefficients on the composition of the aqueous solution and then in terms of solute-solute interactions. For salt solutions the dependence of the activity of water on salt molalities is compared with that predicted by the Debye-Hückel limiting law. The analysis is extended to consideration of the activities of water in binary aqueous mixtures. The dependence on mole fraction composition of the activity of water in binary aqueous mixtures is examined. Different experimental methods for determining the activity of water in aqueous solutions are critically reviewed. The role of water activity is noted in a biochemical context, with reference to the quality, stability and safety of food and finally with regard to health science.
Turner, Neil C.; Spurway, R. A.; Schulze, E.-D.
1984-01-01
Leaf water potentials measured by in situ psychrometry were compared with leaf water potentials measured by the pressure chamber technique at various values of water potential in Helianthus annuus, Helianthus nuttallii, Vigna unguiculata, Nerium oleander, Pistacia vera, and Corylus avellana. In V. unguiculata, the leaf water potentials measured by the in situ psychrometer oscillated at the same periodicity as, and proportional to, the leaf conductance. In all species, potentials measured by in situ psychrometers operating in the psychrometric mode were linearly correlated with potentials measured with the pressure chamber. However, the in situ psychrometers underestimated the leaf water potential in the two Helianthus species at low water potentials and overestimated the water potential in P. vera, N. oleander, and C. avellana. The underestimation in the two Helianthus species at low water potentials resulted from differences in water potential across the leaf. The overestimation in P. vera, N. oleander, and C. avellana was considered to arise from low epidermal conductances in these species even after abrasion of the cuticle. Pressure-volume studies with Lycopersicon esculentum showed that less water was expressed from distal than proximal leaflets when the whole leaf was slowly pressurized. The implication of this for water relations characteristics obtained by pressure-volume techniques is discussed. We conclude that in situ psychrometers are suitable for following dynamic changes in leaf water potential, but should be used with caution on leaves with low epidermal conductances. PMID:16663415
Turner, N C; Spurway, R A; Schulze, E D
1984-02-01
Leaf water potentials measured by in situ psychrometry were compared with leaf water potentials measured by the pressure chamber technique at various values of water potential in Helianthus annuus, Helianthus nuttallii, Vigna unguiculata, Nerium oleander, Pistacia vera, and Corylus avellana. In V. unguiculata, the leaf water potentials measured by the in situ psychrometer oscillated at the same periodicity as, and proportional to, the leaf conductance. In all species, potentials measured by in situ psychrometers operating in the psychrometric mode were linearly correlated with potentials measured with the pressure chamber. However, the in situ psychrometers underestimated the leaf water potential in the two Helianthus species at low water potentials and overestimated the water potential in P. vera, N. oleander, and C. avellana. The underestimation in the two Helianthus species at low water potentials resulted from differences in water potential across the leaf. The overestimation in P. vera, N. oleander, and C. avellana was considered to arise from low epidermal conductances in these species even after abrasion of the cuticle. Pressure-volume studies with Lycopersicon esculentum showed that less water was expressed from distal than proximal leaflets when the whole leaf was slowly pressurized. The implication of this for water relations characteristics obtained by pressure-volume techniques is discussed. We conclude that in situ psychrometers are suitable for following dynamic changes in leaf water potential, but should be used with caution on leaves with low epidermal conductances.
Estimated vapor pressure for WTP process streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, J.; Poirier, M.
Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused bymore » organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.« less
Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M
2012-04-23
A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)). © 2012 Optical Society of America
Spronck, Bart; Delhaas, Tammo; Butlin, Mark; Reesink, Koen D; Avolio, Alberto P
2018-03-01
Pulse wave velocity (PWV), a marker of arterial stiffness, is known to change instantaneously with changes in blood pressure. In this mini-review, we discuss two main approaches for handling the blood pressure dependence of PWV: (1) converting PWV into a pressure-independent index, and (2) correcting PWV per se for the pressure dependence. Under option 1, we focus on cardio-ankle vascular index (CAVI). CAVI is essentially a form of stiffness index β - CAVI is estimated for a (heart-to-ankle) trajectory, whereas β is estimated for a single artery from pressure and diameter measurements. Stiffness index β, and therefore also CAVI, have been shown to theoretically exhibit a slight residual blood pressure dependence due to the use of diastolic blood pressure instead of a fixed reference blood pressure. Additionally, CAVI exhibits pressure dependence due to the use of an estimated derivative of the pressure-diameter relationship. In this mini-review, we will address CAVI's blood pressure dependence theoretically, but also statistically. Furthermore, we review corrected indices (CAVI 0 and β 0 ) that theoretically do not show a residual blood pressure dependence. Under option 2, three ways of correcting PWV are reviewed: (1) using an exponential relationship between pressure and cross-sectional area, (2) by statistical model adjustment, and (3) through reference values or rule of thumb. Method 2 requires a population to be studied to characterise the statistical model, and method 3 requires a representative reference study. Given these limitations, method 1 seems preferable for correcting PWV per se for its blood pressure dependence. In summary, several options are available to handle the blood pressure dependence of PWV. If a blood pressure-independent index is sought, CAVI 0 is theoretically preferable over CAVI. If correcting PWV per se is required, using an exponential pressure-area relationship provides the user with a method to correct PWV on an individual basis.
Colten-Bradley, Virginia
1987-01-01
Evaluation of the effects of pressure on the temperature of interlayer water loss (dehydration) by smectites under diagenetic conditions indicates that smectites are stable as hydrated phases in the deep subsurface. Hydraulic and differential pressure conditions affect dehydration differently. The temperature of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration under differential-presssure conditions are inversely related to pressure and interlayer water density. The model presented assumes the effects of pore fluid composition and 2:1 layer reactivity to be negligible. Agreement between theoretical and experimental results validate this assumption. Additional aspects of the subject are discussed.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.
NASA Astrophysics Data System (ADS)
de Palézieux, Larissa; Loew, Simon; Zwahlen, Peter
2017-04-01
Within the scope of planning a hydropower pump storage plant in the Poschiavo valley by Lagobianco SA (Repower AG), numerous cored boreholes with depths of 50 to 300 m were drilled at elevations between 963 and 2538 m a.s.l.. In several boreholes Lugeon and transient pressure packer tests were executed at various depths and pore water pressure sensors were properly installed in short monitoring intervals. Several of the boreholes intersect large suspended rock slides showing the characteristic zones of highly fragmented rock mass above a kakirite layer of several tens of meters thickness. This study presents long term transient pressure records from these deep boreholes and relates them to seasonal recharge trends from snow melt and summer rainstorm events. Annual pore pressure amplitudes at depths between 45 and 278 meters, range between 4 and 40 meters. Recharge from snow melt water production is obtained from the Degree-Day Method (Rango and Martinec, 1995), despite a considerable distance between the meteorological station and the location of the boreholes. First estimations of storage properties of the aquifers intersected by the boreholes are determined by fitting a combined snow melt and precipitation pressure function to the observed (delayed and attenuated) pore pressure records using a convolution of the one-dimensional pressure diffusion equation for a semi-infinite aquifer of constant thickness (De Marsily, 1986). Initial hydraulic conductivity values were taken directly from hydraulic tests executed by Lagobianco SA in similar rock types (Figi et al., 2014). For most boreholes this strongly simplified approach yields impressively good fits of the transient pressure records and specific storage/yield values, which vary significantly as a function of sensor depth below the piezometric level. Values range from 1e-6 m-1 to 5e-4 m-1 for confined gneiss-schists aquifers and around 3e-2 m-1 for phreatic aquifers, where pore pressure sensors are located only 20-30 m below the phreatic surface. The obtained values for specific storage and the assumed values for hydraulic conductivity were then verified with a one-dimensional finite element free-surface hydraulic model under steady-state and transient conditions, again fitting the simulated values to the observed pore water pressure records. Boundary conditions were set to constant head at the foot of the column and to infiltration with seepage face review at the top of the column. The results support the observed values for hydraulic conductivity as obtained from the packer tests with low permeabilities in the intact rock mass (K=2e-8 - 3e-10 m/s) and a higher permeability in rock slide masses (around 2e-6 m/s). Furthermore, the values for specific storage found by convolution could be confirmed. Finally, the complex local hydrogeology of an alpine mountain slope with a large suspended rock slide was investigated with a 2D finite element model under steady state and transient conditions. Preliminary results support the theory of a hydraulic barrier at the base of large rock slides with a perched aquifer above and partially unsaturated conditions below the sliding plane. REFERENCES De Marsily, G. (1986), Quantitative Hydrogeology (pp. 198-199). Masson. Figi, D., Brunold, F. & Zwahlen, P. (2014), Felskennwerte - Kennwertebericht, Projekt Lagobianco. Büro für Technische Geologie AG, Sargans. Rango, A., & Martinec, J. (1995), Revisiting the Degree-Day Method for Snowmelt Computations. JAWRA Journal of the American Water Resources Association, 31(4), 657-669.
Wei, Chunfang; Tyree, Melvin T.; Steudle, Ernst
1999-01-01
The water relations of maize (Zea mays L. cv Helix) were documented in terms of hydraulic architecture and xylem pressure. A high-pressure flowmeter was used to characterize the hydraulic resistances of the root, stalk, and leaves. Xylem pressure measurements were made with a Scholander-Hammel pressure bomb and with a cell pressure probe. Evaporation rates were measured by gas exchange and by gravimetric measurements. Xylem pressure was altered by changing the light intensity, by controlling irrigation, or by gas pressure applied to the soil mass (using a root pressure bomb). Xylem pressure measured by the cell pressure probe and by the pressure bomb agreed over the entire measured range of 0 to −0.7 MPa. Experiments were consistent with the cohesion-tension theory. Xylem pressure changed rapidly and reversibly with changes in light intensity and root-bomb pressure. Increasing the root-bomb pressure increased the evaporation rate slightly when xylem pressure was negative and increased water flow rate through the shoots dramatically when xylem pressure was positive and guttation was observed. The hydraulic architecture model could predict all observed changes in water flow rate and xylem. We measured the cavitation threshold for oil- and water-filled pressure probes and provide some suggestions for improvement. PMID:10594106
Applications of the compensating pressure theory of water transport.
Canny, M
1998-07-01
Some predictions of the recently proposed theory of long-distance water transport in plants (the Compensating Pressure Theory) have been verified experimentally in sunflower leaves. The xylem sap cavitates early in the day under quite small water stress, and the compensating pressure P (applied as the tissue pressure of turgid cells) pushes water into embolized vessels, refilling them during active transpiration. The water potential, as measured by the pressure chamber or psychrometer, is not a measure of the pressure in the xylem, but (as predicted by the theory) a measure of the compensating pressure P. As transpiration increases, P is increased to provide more rapid embolism repair. In many leaf petioles this increase in P is achieved by the hydrolysis of starch in the starch sheath to soluble sugars. At night P falls as starch is reformed. A hypothesis is proposed to explain these observations by pressure-driven reverse osmosis of water from the ground parenchyma of the petiole. Similar processes occur in roots and are manifested as root pressure. The theory requires a pump to transfer water from the soil into the root xylem. A mechanism is proposed by which this pump may function, in which the endodermis acts as a one-way valve and a pressure-confining barrier. Rays and xylem parenchyma of wood act like the xylem parenchyma of petioles and roots to repair embolisms in trees. The postulated root pump permits a re-appraisal of the work done by evaporation during transpiration, leading to the proposal that in tall trees there is no hydrostatic gradient to be overcome in lifting water. Some published observations are re-interpreted in terms of the theory: doubt is cast on the validity of measurements of hydraulic conductance of wood; vulnerability curves are found not to measure the cavitation threshold of water in the xylem, but the osmotic pressure of the xylem parenchyma; if measures of xylem pressure and of hydraulic conductance are both suspect, the accepted view of the hydraulic architecture of trees needs drastic revision; observations that xylem feeding insects feed faster as the water potential becomes more negative are in accord with the theory; tyloses, which have been shown to form in vessels especially vulnerable to cavitation, are seen as necessary for the maintenance of P, and to conserve the supplementary refilling water. Far from being a metastable system on the edge of disaster, the water transport system of the xylem is ultrastable: robust and self-sustaining in response to many kinds of stress.
NASA Astrophysics Data System (ADS)
Kumpel, E.; Nelson, K. L.
2012-12-01
An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real-time measurements document variability in water quality throughout the 2-8 hour supply period. Our results show that piped water is not always safe water, but that safe water can be achieved in an intermittent supply under certain physical and operational conditions. Intermittent piped water supply is an important constraint on access to safe water in towns and cities in low-income countries, and strategies that improve these existing systems can help urban residents gain access to safe water. References van den Berg, C., and Danilenko, A. (2010). "The IBNET Water Supply and Sanitation Performance Blue Book: The International Benchmarking Network for Water and Sanitation Utilities Databook." World Bank Washington, DC.
Pressure Ratio to Thermal Environments
NASA Technical Reports Server (NTRS)
Lopez, Pedro; Wang, Winston
2012-01-01
A pressure ratio to thermal environments (PRatTlE.pl) program is a Perl language code that estimates heating at requested body point locations by scaling the heating at a reference location times a pressure ratio factor. The pressure ratio factor is the ratio of the local pressure at the reference point and the requested point from CFD (computational fluid dynamics) solutions. This innovation provides pressure ratio-based thermal environments in an automated and traceable method. Previously, the pressure ratio methodology was implemented via a Microsoft Excel spreadsheet and macro scripts. PRatTlE is able to calculate heating environments for 150 body points in less than two minutes. PRatTlE is coded in Perl programming language, is command-line-driven, and has been successfully executed on both the HP and Linux platforms. It supports multiple concurrent runs. PRatTlE contains error trapping and input file format verification, which allows clear visibility into the input data structure and intermediate calculations.
NASA Astrophysics Data System (ADS)
Asahara, Yuki; Murakami, Motohiko; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei
2010-01-01
We extended the pressure range of sound velocity measurements for liquid water to 25 GPa and 900 K along the melting curve using a laser heated diamond anvil cell with a combined system of Brillouin scattering and synchrotron X-ray diffraction. Experimental pressure and temperature were obtained by solving simultaneous equations: the melting curve of ice and the equation of state for gold. The sound velocities obtained in liquid water at high pressures and melting temperatures were converted to density using Murnaghan's equation of state by fitting a parameter of the pressure derivative of bulk modulus at 1 GPa. The results are in good agreement with the values predicted by a previously reported equation of state for water based on sound velocity measurements. The equation of state for water obtained in this study could be applicable to water released by dehydration reactions of dense hydrous magnesium silicate phases in cold subducting slabs at lower mantle conditions, although the validity of Murnaghan's equation of state for water should be evaluated in a wider pressure and temperature ranges. The present velocity data provides the basis for future improvement of the accurate thermodynamic model for water at high pressures.
Spontaneous ignition temperature limits of jet A fuel in research-combustor segment
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1974-01-01
The effects of inlet-air pressure and reference velocity on the spontaneous-ignition temperature limits of Jet A fuel were determined in a combustor segment with a primary-zone length of 0.076 m (3 in.). At a constant reference velocity of 21.4 m/sec (170 ft/sec), increasing the inlet-air pressure from 21 to 207 N/sq cm decreased the spontaneous-ignition temperature limit from approximately 700 to 555 K. At a constant inlet-air pressure of 41 N/sq cm, increasing the reference velocity from 12.2 to 30.5 m/sec increased the spontaneous-ignition temperature limit from approximately 575 to 800 K. Results are compared with other data in the literature.
Two-phase pressure drop in a helical coil flow boiling system
NASA Astrophysics Data System (ADS)
Hardik, B. K.; Prabhu, S. V.
2018-05-01
The objective of the present work is to study the two-phase pressure drop in helical coils. Literature on the two-phase pressure drop in a helical coil suggests the complexity in flow boiling inside a helical coil due to secondary flow. Most of correlations reported in the literature on the two-phase pressure drop in a helical coil are limited to a specific operating range. No general correlation is available for a helical coil which is applicable for all fluids. In the present study, an experimental databank collected containing a total of 832 data points includes the data from the present study and from the literature. The data includes diabatic pressure drop of two fluids namely water and R123. Data covers a range of parameters namely a mass flux of 120-2058 kg/m2 s, a heat flux of 18-2831 kW/m2, an exit quality of 0.03-1, a density ratio of 32-1404 and a coil to tube diameter ratio of 14-58. The databank is compared with eighteen empirical correlations which include well referred correlations of straight tubes and the available correlations of helical coils. The straight tube correlations are not working well for the present data set. The helical coil correlations work reasonably well for the present databank. A correlation is suggested to predict the two-phase pressure drop in helical coils. The present study suggests that the influence of a helical coil is completely included in the single phase pressure drop correlation for helical coils.
Improving flexibility characteristics of 200 MW unit
NASA Astrophysics Data System (ADS)
Taler, Jan; Trojan, Marcin; Taler, Dawid; Dzierwa, Piotr; Kaczmarski, Karol
2017-03-01
Calculations were performed of the thermal system of a power plant with installed water pressure tanks. The maximum rise in the block electric power resulting from the shut-off of low-pressure regenerative heaters is determined. At that time, the boiler is fed with hot water from water pressure tanks acting as heat accumulators. Accumulation of hot water in water tanks is also proposed in the periods of the power unit small load. In order to lower the plant electric power in the off-peak night hours, water heated in low-pressure regenerative heaters and feed water tank to the nominal temperature is directed to water pressure tanks. The water accumulated during the night is used to feed the boiler during the period of peak demand for electricity. Drops in the power block electric power were determined for different capacities of the tanks and periods when they are charged. A financial and economic profitability analysis (of costs and benefits) is made of the use of tanks for a 200 MW power unit. Operating in the automatic system of frequency and power control, the tanks may also be used to ensure a sudden increase in the electric power of the unit. The results of the performed calculations and analyses indicate that installation of water pressure tanks is well justified. The investment is profitable. Water pressure tanks may not only be used to reduce the power unit power during the off-peak night hours and raise it in the periods of peak demand, but also to increase the power capacity fast at any time. They may also be used to fill the boiler evaporator with hot water during the power unit start-up from the cold state.
Method and apparatus for monitoring oxygen partial pressure in air masks
NASA Technical Reports Server (NTRS)
Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)
2006-01-01
Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.
Greda, Krzysztof; Swiderski, Krzysztof; Jamroz, Piotr; Pohl, Pawel
2016-09-06
A novel atmospheric pressure glow discharge generated in contact with a flowing liquid anode (FLA-APGD) was developed as the efficient excitation source for the optical emission spectrometry (OES) detection. Differences in the appearance and the electrical characteristic of the FLA-APGD and a conventional system operated with a flowing liquid cathode (FLC-APGD) were studied in detail and discussed. Under the optimal operating conditions for the FLA-APGD, the emission from the analytes (Ag, Cd, Hg, Pb, Tl, and Zn) was from 20 to 120 times higher as compared to the FLC-APGD. Limits of detections (LODs) established with a novel FLA-APGD system were on average 20 times better than those obtained for the FLC-APGD. A further improvement of the LODs was achieved by reducing the background shift interferences and, as a result, the LODs for Ag, Cd, Hg, Pb, Tl, and Zn were 0.004, 0.040, 0.70, 1.7, 0.035, and 0.45 μg L(-1), respectively. The precision of the FLA-APGD-OES method was evaluated to be within 2-5% (as the relative standard deviation of the repeated measurements). The method found its application in the determination of the content of Ag, Cd, Hg, Pb, Tl, and Zn in a certified reference material (CRM) of Lobster hepatopancreas (TORT-2), four brass samples as well as mineral water and tea leaves samples spiked with the analytes. In the case of brass samples, a reference method, i.e., inductively coupled plasma optical emission spectrometry (ICP-OES) was used. A good agreement between the results obtained with FLA-APGD-OES and the certified values for the CRM TORT-2 as well as the reference values obtained with ICP-OES for the brass samples was revealed, indicating the good accuracy of the proposed method. The recoveries obtained for the spiked samples of mineral water and tea leaves were within the range of 97.5-102%.
Coplen, Tyler B.; Qi, Haiping; Tarbox, Lauren V.; Lorenz, Jennifer M.; Buck, Bryan
2015-01-01
Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were −235.8 ± 0.7‰ and −29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, −428 and −55.5‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95-percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.
High Pressure Industrial Water Facility
NASA Technical Reports Server (NTRS)
1992-01-01
In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.
Negative pressures and spallation in water drops subjected to nanosecond shock waves
Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...
2016-05-16
Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less
10 CFR 50.55a - Codes and standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... specified in § 50.55, except that each combined license for a boiling or pressurized water-cooled nuclear... boiling or pressurized water-cooled nuclear power facility is subject to the conditions in paragraphs (f... performed. (2) Systems and components of boiling and pressurized water-cooled nuclear power reactors must...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...
Evaluation of pressurized water cleaning systems for hardware refurbishment
NASA Technical Reports Server (NTRS)
Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.
1995-01-01
Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'
STUDY ON OPERATING CHARACTERISTECS OF WATER HAMMER GENERATING DEVICE FOR TREATMENT OF MICROORGANISM
NASA Astrophysics Data System (ADS)
Hamada, Tatsuhisa; Endo, Shigekatsu; Oda, Akira; Shimizu, Yasushi
The phenomenon that has been actualized due to the water quality deterioration because of the inflow of drainage and the industrial wastewater includes the phenomenon that is called water-bloom generated in the freshwater environment made a eutrophic. This is becoming a serious problem to secure the water.Mixing with the drinking water has already been confirmed, and the generation of water-bloom is becoming a big social problem, and fundamental measures have not been established yet.On the other hand, authors are proving the pressure to be a fast the pressure speed of the impact pressure by the water hammer and effective in the destruction of the blue-green algae.In this studies, the hydraulics flow characteristics of an effective water hammer pressure generator to the shredding of the water-bloom cell were examined.As a result, there was a boundary in the region where the water hammer was generated by length and the water supply head of conduit, and the water hammer pressure was able to be understood to be influenced according to the angle of the valve that generated the water hammer in addition in the water hammer generator.The demonstration in the locale was confirmed based on these and the scale etc. of an effective device to the doing water-bloom processing were able to be confirmed by continuous running.
McDermott, D.J.; Schrader, K.J.; Schulz, T.L.
1994-05-03
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.
1994-01-01
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
The Oxidation Rate of SiC in High Pressure Water Vapor Environments
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Robinson, R. Craig
1999-01-01
CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.
Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.
Di Mundo, Rosa; Palumbo, Fabio; d'Agostino, Riccardo
2010-04-06
In this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4). Measurements of wetting dynamics reveal a regime transition from adhesive-hydrophobic to slippery-superhydrophobic, i.e., from wet to non wet states, as the F-to-C rises at constant topography. Such achievements are strengthened by calculation of the solid fraction of surface water contact area applying Cassie-Baxter advancing and receding equations to water contact angle data of textured and flat reference surfaces.
Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao
2015-07-01
Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.
Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump
NASA Technical Reports Server (NTRS)
Skelley, Stephen; Zoladz, Thomas
2001-01-01
As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.
In Situ Raman Study of Liquid Water at High Pressure.
Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V
2018-06-01
A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).
Soper, Alan K
2015-07-23
A disordered atom molecular potential (DAMP) for water is described that accurately accounts for the observed neutron interference differential scattering cross sections for light water, heavy water, and two different mixtures of these liquids (x = 0.5 and x = 0.64, where x is the mole fraction of light water in the mixtures) at T = 283 K. This potential, when used in a NVT Monte Carlo computer simulation, produces an intermolecular pressure of ∼0 kbar and a configurational energy of approximately -50 kJ/mol, close to the values found in the ambient liquid at this temperature. The same potential is used as the reference potential in an empirical potential structure refinement of ice diffraction data at T = 258 K measured at the same time as the water data and under the same conditions. Particularly intriguing is the finding that the O···O-H angle in ice, which would be 0° for a linear hydrogen bond, is actually more disordered in ice than in the liquid. A rationalization of these findings is presented. It remains to be seen whether this potential has any value other than simply as a description of the ambient liquid structure.
Changes in entrapped gas content and hydraulic conductivity with pressure.
Marinas, Maricris; Roy, James W; Smith, James E
2013-01-01
Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi-saturated) hydraulic conductivity, K(quasi), thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand-packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi-saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding K(quasi) ranging between 2 and 6 times lower compared to the K(s) value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in K(quasi) by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in K(quasi) with compression-expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models. © Ground Water 2012 and © Her Majesty the Queen in Right of Canada 2012. Ground Water © 2012, National Ground Water Association.
Water solubility of synthetic pyrope at high temperature and pressure up to 12GPa
NASA Astrophysics Data System (ADS)
Huang, S.; Chen, J.
2012-12-01
Water can be incorporated into normally anhydrous minerals as OH- defects and transported into the mantle. Its existence in the mantle may affect property of minerals, such as elasticity, electrical conductivity and rheological properties. As the secondary mineral in the mantle, garnet has not been extensively studied for its water solubility and there is discrepancies among the existing experiments on the water solubility in the garnet change at pressures and temperatures. Geiger et al., 1991 investigated water content in synthetic pyrope and concluded 0.02wt% to 0.07wt% OH- substitution. Lu et al., 1997 found 198ppm water in the Dora Miara pyrope at 100Kbar and 1000°C. Withers et al., 1998 claimed that water solubility in pyrope reached 1000ppm at 5GPa and then decreased as pressure increasing; above 7GPa, no water was detected. Mookherjee et al., 2009 also explored pyrope-rich garnet, which contains water up to 0.1%wt at 5-9GPa and temperatures 1373K-1473K. Here we report a study of water solubility of synthetic single crystal pyrope at pressures 4-12GPa and temperature 1000°C. Single crystals of pyrope were synthesized using multi-anvil press and water contents in these samples were measured using FTIR. We have observed OH- peak at 3650 cm-1 along this pressure range, although Withers, 1998 reported water contents decrease to undetectable level above 7GPa. Water solubility in pyrope will be reported as a function of pressure up to 12 GPa at 1000°C.
Thermodynamic properties of sea air
NASA Astrophysics Data System (ADS)
Feistel, R.; Wright, D. G.; Kretzschmar, H.-J.; Hagen, E.; Herrmann, S.; Span, R.
2010-02-01
Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.
Thermodynamic properties of sea air
NASA Astrophysics Data System (ADS)
Feistel, R.; Kretzschmar, H.-J.; Span, R.; Hagen, E.; Wright, D. G.; Herrmann, S.
2009-10-01
Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as ''sea air'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.
NASA Astrophysics Data System (ADS)
de Rooij, G. H.
2010-09-01
Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.
Chen, Zhihao; Yang, Xiufeng; Teo, Ju Teng; Ng, Soon Huat
2013-01-01
A new all optical method for long term and continuous blood pressure measurement and monitoring without using cuffs is proposed by using Ballistocardiography (BCG) and Photoplethysmograph (PPG). Based on BCG signal and PPG signal, a time delay between these two signals is obtained to calculate both systolic blood pressure and diastolic blood pressure via linear regression analysis. The fabricated noninvasive blood pressure monitoring device consists of a fiber sensor mat to measure BCG signal and a SpO2 sensor to measure PPG signal. A commercial digital oscillometric blood pressure meter is used to obtain reference values and for calibration. It has been found that by comparing with the reference device, our prototype has typical means and standard deviations of 9+/-5.6 mmHg for systolic blood pressure, 1.8+/-1.3 mmHg for diastolic blood pressure and 0.6+/-0.9 bpm for pulse rate, respectively. If the fiber optic SpO2 probe is used, this new all fiber cuffless noninvasive blood pressure monitoring device will truly be a MRI safe blood pressure measurement and monitoring device.
Lorenz, Jennifer M.; Qi, Haiping; Coplen, Tyler B.
2017-01-01
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from ice-core water from the Amundsen–Scott South Pole Station. This isotopic reference material, designated as USGS49, was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity and measured by dual-inlet isotope-ratio mass spectrometry. The δ2H and δ18O values of USGS49 are −394.7 ± 0.4 and −50.55 ± 0.04 mUr (where mUr = 0.001 = ‰), respectively, relative to VSMOW, on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, −428 and −55.5 mUr. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material is intended as one of two isotopic reference waters for daily normalisation of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. It is available by the case of 144 glass ampoules or as a set of sixteen glass ampoules containing 5 ml of water in each ampoule.
Conditioned pain modulation (CPM) in children and adolescents: Effects of sex and age
Tsao, Jennie C. I.; Seidman, Laura C.; Evans, Subhadra; Lung, Kirsten C.; Zeltzer, Lonnie K.; Naliboff, Bruce D.
2013-01-01
Conditioned pain modulation (CPM) refers to the diminution of perceived pain intensity for a test stimulus following application of a conditioning stimulus to a remote area of the body, and is thought to reflect the descending inhibition of nociceptive signals. Studying CPM in children may inform interventions to enhance central pain inhibition within a developmental framework. We assessed CPM in 133 healthy children (mean age = 13 years; 52.6% girls) and tested the effects of sex and age. Participants were exposed to four trials of a pressure test stimulus before, during, and after the application of a cold water conditioning stimulus. CPM was documented by a reduction in pressure pain ratings during cold water administration. Older children (12–17 years) exhibited greater CPM than younger (8–11 years) children. No sex differences in CPM were found. Lower heart rate variability (HRV) at baseline and after pain induction was associated with less CPM controlling for child age. The findings of greater CPM in the older age cohort suggest a developmental improvement in central pain inhibitory mechanisms. The results highlight the need to examine developmental and contributory factors in central pain inhibitory mechanisms in children to guide effective, age appropriate, pain interventions. PMID:23541066
Preliminary test results of electrical charged particle generator for application to fog dispersal
NASA Technical Reports Server (NTRS)
Frost, W.
1982-01-01
A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.
Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells
NASA Astrophysics Data System (ADS)
He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.
2016-11-01
Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.
Pressure variations in the Monte Rosa nappe, Western Alps
NASA Astrophysics Data System (ADS)
Luisier, Cindy; Vaughan-Hammon, Joshua; Baumgartner, Lukas; Schmalholz, Stefan
2017-04-01
The Monte Rosa nappe is part of the Penninic nappe stack of the Western Alps. It represents the southern-most European continental basement involved in the alpine orogeny. It consists of a pre-Variscan basement complex, made of mostly metapelites and paragneisses, which were intruded by a Permian-age granitic body (Pawlig, 2001). The nappe is heterogeneously deformed, with localized high strain domains separating low strain domains. The metamorphic record is tightly linked to deformation. Different thermodynamic data bases and approaches were used in the past to estimate the peak alpine metamorphic conditions. They range from 1.2 to 2.7 GPa and 490 to 650˚C, based on metagranite, metapelite, metamafic and whiteschist assemblages. The peak alpine metamorphic assemblage of zoisite, phengite and albite symplectites pseudomorphing magmatic plagioclase is preserved only in the less deformed portions of the nappe. Phengite, garnet and titanite coronas surrounding biotite, quartz and igneous K-feldspar make up the rest of the rock. The metagranite locally grades into 10 to 50 meters whiteschist bodies, consisting of talc-chloritoid-kyanite-phengite-quartz, which can contain carbonate and garnet. Their chemistry is interpreted as a metasomatic product of the late magmatic hydrothermal alteration of the granite, whereas their mineralogy results from the alpine high pressure metamorphism (Pawlig and Baumgartner, 2001; Luisier et al., 2015). We performed a phase petrology and textural study to consistently estimate peak alpine metamorphic conditions in the granite and the related whiteschists. Textural observations were used to select the best-preserved high-pressure metagranite samples. Inherited magmatic feldspar textures indicate that jadeite was never formed in these granites, confirmed independently by Si in phengite barometer (1.2 to 1.5 GPa). Note that the granite contains the phengite buffer assemblage of Massonne and Schreyer (1987). Thermodynamic calculations using internally consistent thermodynamic database on whiteschists result in a minimum P of 2.2 GPa at T of 550 to 570˚C and a water activity close to 1, unlike previous water activities proposed (Le Bayon et al., 2006). Peak alpine pressures and temperatures calculated for the metagranite and associated whiteschists hence result in significant different pressure estimates, corroborating previous results from the literature. The possible explanations for such pressure variations are i) slight underestimation of the metagranite peak pressure, due to water-undersaturation conditions, however a pressure as high as 2 GPa is unlikely, or ii) heterogeneous stress conditions, due to rheologically contrasting lithologies, consisting of weak whiteschist inclusions within strong, undeformed metagranites. References Le Bayon et al., 2006: Contrib. Mineral. Petrol. 151, 395-412 Luisier et al., 2015: GSA conference abstract Massonne and Schreyer, 1987: Contrib. Mineral. Petrol. 96, 212-224 Pawlig, S. 2001: PhD thesis, University of Mainz (Germany) Pawlig and Baumgartner, 2001: SMPM 81,329-346
A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, Miguel A.; Department of Chemistry, Imperial College London, London SW7 2AZ; Valeriani, Chantal
2016-08-07
The striking behavior of water has deserved it to be referred to as an “anomalous” liquid. The water anomalies are greatly amplified in metastable (supercooled and/or stretched) regions. This makes difficult a complete experimental description since, beyond certain limits, the metastable phase necessarily transforms into the stable one. Theoretical interpretation of the water anomalies could then be based on simulation results of well validated water models. But the analysis of the simulations has not yet reached a consensus. In particular, one of the most popular theoretical scenarios—involving the existence of a liquid-liquid critical point (LLCP)—is disputed by several authors. Inmore » this work, we propose to use a number of exact thermodynamic relations which may shed light on this issue. Interestingly, these relations may be tested in a region of the phase diagram which is outside the LLCP thus avoiding the problems associated to the coexistence region. The central property connected to other water anomalies is the locus of temperatures at which the density along isobars attain a maximum (TMD line) or a minimum (TmD). We have performed computer simulations to evaluate the TMD and TmD for a successful water model, namely, TIP4P/2005. We have also evaluated the vapor-liquid (VL) spinodal in the region of large negative pressures. The shape of these curves and their connection to the extrema of some response functions, in particular the isothermal compressibility and heat capacity at constant pressure, provides very useful information which may help to elucidate the validity of the theoretical proposals. In this way, we are able to present for the first time a comprehensive scenario of the thermodynamic water anomalies for TIP4P/2005 and their relation to the vapor-liquid spinodal. The overall picture shows a remarkable similarity with the corresponding one for the ST2 water model, for which the existence of a LLCP has been demonstrated in recent years. It also provides a hint as to where the long-sought for extrema in response functions might become accessible to experiments.« less
A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model.
González, Miguel A; Valeriani, Chantal; Caupin, Frédéric; Abascal, José L F
2016-08-07
The striking behavior of water has deserved it to be referred to as an "anomalous" liquid. The water anomalies are greatly amplified in metastable (supercooled and/or stretched) regions. This makes difficult a complete experimental description since, beyond certain limits, the metastable phase necessarily transforms into the stable one. Theoretical interpretation of the water anomalies could then be based on simulation results of well validated water models. But the analysis of the simulations has not yet reached a consensus. In particular, one of the most popular theoretical scenarios-involving the existence of a liquid-liquid critical point (LLCP)-is disputed by several authors. In this work, we propose to use a number of exact thermodynamic relations which may shed light on this issue. Interestingly, these relations may be tested in a region of the phase diagram which is outside the LLCP thus avoiding the problems associated to the coexistence region. The central property connected to other water anomalies is the locus of temperatures at which the density along isobars attain a maximum (TMD line) or a minimum (TmD). We have performed computer simulations to evaluate the TMD and TmD for a successful water model, namely, TIP4P/2005. We have also evaluated the vapor-liquid (VL) spinodal in the region of large negative pressures. The shape of these curves and their connection to the extrema of some response functions, in particular the isothermal compressibility and heat capacity at constant pressure, provides very useful information which may help to elucidate the validity of the theoretical proposals. In this way, we are able to present for the first time a comprehensive scenario of the thermodynamic water anomalies for TIP4P/2005 and their relation to the vapor-liquid spinodal. The overall picture shows a remarkable similarity with the corresponding one for the ST2 water model, for which the existence of a LLCP has been demonstrated in recent years. It also provides a hint as to where the long-sought for extrema in response functions might become accessible to experiments.
Water Pressure Distribution on a Twin-Float Seaplane
NASA Technical Reports Server (NTRS)
Thompson, F L
1930-01-01
This is the second of a series of investigations to determine water pressure distribution on various types of seaplane floats and hulls, and was conducted on a twin-float seaplane. It consisted of measuring water pressures and accelerations on a TS-1 seaplane during numerous landing and taxiing maneuvers at various speeds and angles. The results show that water pressures as great as 10 lbs. per sq. in.may occur at the step in various maneuvers and that pressures of approximately the same magnitude occur at the stern and near the bow in hard pancake landings with the stern way down. At the other parts of the float the pressures are less and are usually zero or slightly negative for some distance abaft the step. A maximum negative pressure of 0.87 lb. Per square inch was measured immediately abaft the step. The maximum positive pressures have a duration of approximately one-twentieth to one-hundredth second at any given location and are distributed over a very limited area at any particular instant.
Forced-convection Heat Transfer to Water at High Pressures and Temperatures in the Nonboiling Region
NASA Technical Reports Server (NTRS)
Kaufman, S J; Henderson, R W
1951-01-01
Forced-convection heat-transfer data have been obtained for water flowing in an electrically heated tube of circular cross section at water pressures of 200 and 2000 pounds per square inch, and temperatures in the nonboiling region, for water velocities ranging between 5 and 25 feet per second. The results indicate that conventional correlations can be used to predict heat-transfer coefficients for water at pressures up to 2000 pounds per square inch and temperatures in the nonboiling region.
NASA Astrophysics Data System (ADS)
Yabuuchi, Satoshi; Kunimaru, Takanori; Kishi, Atsuyasu; Komatsu, Mitsuru
Japan Atomic Energy Agency has been conducting the Horonobe Underground Research Laboratory (URL) project in Horonobe, Hokkaido, as a part of the research and development program on geological disposal of high-level radioactive waste. Pore water pressure and water content around a horizontal drift in the URL have been monitored for over 18 months since before the drift excavation was started. During the drift excavation, both pore water pressure and water content were decreasing. Pore water pressure has been still positive though it continued to decrease with its gradient gradually smaller after excavation, while water content turned to increase about 6 months after the completion of the excavation. It turned to fall again about 5 months later. An unsaturated zone containing gases which were dissolved in groundwater may have been formed around the horizontal drift.
Explosion interaction with water in a tube
NASA Astrophysics Data System (ADS)
Homae, T.; Sugiyama, Y.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y.
2017-02-01
As proposed and legislated in Japan, subsurface magazines have an explosive storage chamber, a horizontal passageway, and a vertical shaft for a vent. The authors found that a small amount of water on the floor of the storage chamber mitigated blast pressure remarkably. The mitigation mechanism has been examined more closely. To examine the effect of water, the present study assesses explosions in a transparent, square cross section, and a straight tube. A high-speed camera used to observe the tube interior. Blast pressure in and around the tube was also measured. Images obtained using the high-speed camera revealed that water inside the tube did not move after the explosion. Differences between cases of tubes without water and with water were unclear. Along with blast pressure measurements, these study results suggest that blast pressure mitigation by water occurs because of interaction between the explosion and the water near the explosion point.
Water Vapor Effects on Silica-Forming Ceramics
NASA Technical Reports Server (NTRS)
Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)
2000-01-01
Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.
Propellant actuated nuclear reactor steam depressurization valve
Ehrke, Alan C.; Knepp, John B.; Skoda, George I.
1992-01-01
A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.
Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival
2014-01-01
UNCLASSIFIED UNCLASSIFIED Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival Clare...operational impacts and biosecurity risks. Approved for public release RELEASE LIMITATION UNCLASSIFIED...UNCLASSIFIED UNCLASSIFIED Biosecurity Management of Submarine Niche Areas: the Effect of Water Pressure on Biofouling Survival Executive Summary
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
Effect of water pressure on absorbency of hydroentangled greige cotton nonwoven fabrics
USDA-ARS?s Scientific Manuscript database
A studied has been conducted to determine the effect of water pressure in a commercial-grade Fleissner MiniJet hydroentanglement system on the absorbency of greige (non-bleached) cotton lint-based nonwoven fabric. The study has shown that a water pressure of 125 Bar or higher on only two high-pressu...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products, natural gas and other... high temperature service. They are intended for the low temperature and pressure conveyance of water...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to regulatory guide (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors.'' This RG is being revised to incorporate guidance for preoperational testing of new pressurized water reactor (PWR) designs.
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
42 CFR 84.91 - Breathing resistance test; exhalation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 25 mm. (1 inch) water-column height. (c) The exhalation resistance of pressure-demand apparatus shall not exceed the static pressure in the facepiece by more than 51 mm. (2 inches) water-column height. (d) The static pressure (at zero flow) in the facepiece shall not exceed 38 mm. (1.5 inches) water-column...
NASA Astrophysics Data System (ADS)
Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao
2018-03-01
The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.
Guan, Shane; Vignola, Joseph; Judge, John; Turo, Diego
2015-12-01
Offshore oil and gas exploration using seismic airguns generates intense underwater pulses that could cause marine mammal hearing impairment and/or behavioral disturbances. However, few studies have investigated the resulting multipath propagation and reverberation from airgun pulses. This research uses continuous acoustic recordings collected in the Arctic during a low-level open-water shallow marine seismic survey, to measure noise levels between airgun pulses. Two methods were used to quantify noise levels during these inter-pulse intervals. The first, based on calculating the root-mean-square sound pressure level in various sub-intervals, is referred to as the increment computation method, and the second, which employs the Hilbert transform to calculate instantaneous acoustic amplitudes, is referred to as the Hilbert transform method. Analyses using both methods yield similar results, showing that the inter-pulse sound field exceeds ambient noise levels by as much as 9 dB during relatively quiet conditions. Inter-pulse noise levels are also related to the source distance, probably due to the higher reverberant conditions of the very shallow water environment. These methods can be used to quantify acoustic environment impacts from anthropogenic transient noises (e.g., seismic pulses, impact pile driving, and sonar pings) and to address potential acoustic masking affecting marine mammals.
Changing the "Normal Range" for Blood Pressure from 140/90 to 130/Any Improves Risk Assessment.
Fulks, Michael; Stout, Robert L; Dolan, Vera F
2015-01-01
Objective .- Redefine the "normal" reference range for blood pressure from <140/90 to one that more effectively identifies individuals with increased mortality risk. Method .- Data from the recently published 2014 CRL blood pressure study was used. It includes 2,472,706 life insurance applicants tested by Clinical Reference Laboratory from 1993 to 2007 with follow-up for vital status using the September 2011 Social Security Death Master File. Various upper limits of blood pressure (BP in mm Hg) were evaluated to determine if any was superior to the current, commonly used limit of 140/90 in identifying individuals with increased mortality risk. Results .- An alternative reference range using a systolic BP (SBP) <130 with any diastolic BP (DBP) included 84% of life insurance applicants. It had a lower mortality rate and narrower range of relative risk than <140/90, including 89% as many applicants but only 68% as many deaths. This pattern of lives and deaths was consistent across age and sex. Conclusion .- Switching to a "normal" reference range of SBP <130 offers superior risk assessment relative to using BP <140/90 while still including a sufficient percentage of the population.
30 CFR 250.1611 - Blowout preventer systems tests, actuations, inspections, and maintenance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conducting high-pressure tests, all BOP systems shall be tested to a pressure of 200 to 300 psi. (b) Ram-type BOP's and the choke manifold shall be pressure tested with water to rated working pressure or as otherwise approved by the District Manager. Annular type BOP's shall be pressure tested with water to 70...
Tritiated Water on Molecular Sieve: Water Dynamics and Pressure Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, R.T.
1999-04-23
The production of fusion energy in a Tokamak using deuterium and tritium requires the safe handling and processing of exhaust gases that contain various amounts of tritium. Initial operation of the Tokamak Fusion Test Reactor (TFTR), Princeton Plasma Physics Laboratory, oxidized exhaust gases for tritium recovery or long-term storage. One of the most efficient and safest ways to contain tritiated water is to sorb it onto a pelletized 4A molecular sieve. A Disposable Molecular Sieve Bed (DMSB) was designed as a pressure vessel because of the possibility of pressure generation from the radiolysis of tritiated water on molecular sieve. Hydrogenmore » production contributes to the complexity of the containers used to transport and store tritiated water, and increases the fabrication costs. Two months after removing a DMSB from the process at TFTR, a pressure in excess of that predicted from self-radiolysis was observed. Interestingly, pressure measurements at longer times (up to 2.5 years) showed less pressure than expected. Pressure was not being generated in the DMSBs at the predicted rate. This was unexpected and prompted an investigation into the mechanism responsible for the anomalous pressure measurements.« less
Two innovative pore pressure calculation methods for shallow deep-water formations
NASA Astrophysics Data System (ADS)
Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei
2017-11-01
There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.
Quantifying patterns of change in marine ecosystem response to multiple pressures.
Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S
2015-01-01
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.
Salt power - Is Neptune's ole salt a tiger in the tank
NASA Astrophysics Data System (ADS)
Wick, G. S.
1980-02-01
Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.
DISINFECTION OF WATER: DRINKING WATER, RECREATIONAL WATER, AND WASTEWATER
This chapter describes and categorizes the methodology used for disinfection of drinking water, recreational water and wastewater including wastewater sludges. It largely is a literature summary and references articles covering the years of 1939 through 1999, with a few reference...
Selective serotonin reuptake inhibitors and intraoperative blood pressure.
van Haelst, Ingrid M M; van Klei, Wilton A; Doodeman, Hieronymus J; Kalkman, Cor J; Egberts, Toine C G
2012-02-01
The influence of selective serotonin reuptake inhibitors (SSRIs) on blood pressure is poorly understood. We hypothesized that if SSRIs have an influence on blood pressure, this might become manifest in changes in intraoperative blood pressure. We aimed to study the association between perioperative use of SSRIs and changes in intraoperative blood pressure by measuring the occurrence of intraoperative hyper- and hypotension. We conducted a retrospective observational follow-up study among patients who underwent elective primary total hip arthroplasty. The index group included users of SSRIs. The reference group included a random sample (ratio 1:3) of nonusers of an antidepressant agent. The outcome was the occurrence of intraoperative hypo- and hypertensive episodes (number, mean and total duration, and area under the curve (AUC)). The outcome was adjusted for confounding factors using regression techniques. The index group included 20 users of an SSRI. The reference group included 60 nonusers. Users of SSRIs showed fewer intraoperative hypotensive episodes, a shorter mean and total duration, and a smaller AUC when compared to the reference group. After adjustment for confounders, SSRI use was associated with a significantly shorter total duration of hypotension: mean difference of -29.4 min (95% confidence interval (CI) -50.4 to -8.3). Two users of an SSRI and two patients in the reference group had a hypertensive episode. Continuation of treatment with SSRIs before surgery was associated with a briefer duration of intraoperative hypotension.
Beltrán, Eduardo; Ibáñez, María; Sancho, Juan Vicente; Hernández, Félix
2012-11-30
Microcystins and nodularin are cyclic peptides hepatotoxins produced by cyanobacterial genera (blue-green algae). Toxic cyanobacterial blooms are a worldwide problem, as reported in several countries, like China, Australia, or the United States. Therefore, it is necessary to develop sensitive and reliable analytical methodology to determine this type of toxins in water at parts per billion levels, or even lower. In this work, the potential of solid-phase extraction coupled on-line to ultra-high-pressure liquid chromatography/electrospray tandem mass spectrometry (SPE-UHPLC-MS/MS) has been investigated for the efficient quantification and confirmation of microcystins LR, RR, YR, LY, LW, LF and nodularin in surface and drinking water samples, at sub-ppb levels. The method developed involves the injection of only 1 mL of water sample into the on-line SPE-UHPLC-MS/MS system and allows the rapid determination of the compounds selected (8 min of chromatographic run), avoiding laborious sample treatment. The method was validated in surface and drinking water by means of recovery experiments at 0.25 and 1 μg L(-1). Average recoveries (n=5) ranged from 71 to 116%, with relative standard deviations (RSDs) lower than 15%. For microcystins LR, RR, YR and nodularin, a third level was also assayed (0.1 μg L(-1)) obtaining satisfactory data too. Limits of detection between 0.002 and 0.0405 μg L(-1) were estimated (0.0005 μg L(-1) for nodularin). The developed method was applied to the analysis of water samples collected in the province of Castellón (Spain). The acquisition of three MS/MS transitions for each compound allowed the unequivocal confirmation of positive samples, which was supported by the accomplishment of ion intensity ratios and retention time when compared with reference standards. Copyright © 2012 Elsevier B.V. All rights reserved.
Farro, Ignacio; Bia, Daniel; Zócalo, Yanina; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Alallón, Walter; Lluberas, Ricardo; Armentano, Ricardo L.
2012-01-01
Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV) disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects represented the “reference population”; the group of subjects with optimal/normal blood pressures levels at study time represented the “normal population.” Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes. PMID:22666551
Koebel, Carolyn M.; Egly, Rachel M.
2016-09-27
Three different geophysical sensor types were used to characterize the underwater pressure waves and ground velocities generated by the underwater firing of seismic water guns. These studies evaluated the use of water guns as a tool to alter the movement of Asian carp. Asian carp are aquatic invasive species that threaten to move into the Great Lakes Basin from the Mississippi River Basin. Previous studies have identified a threshold of approximately 5 pounds per square inch (lb/in2) for behavioral modification and for structural limitation of a water gun barrier.Two studies were completed during August 2014 and May 2015 in a backwater pond connected to the Illinois River at a sand and gravel quarry near Morris, Illinois. The August 2014 study evaluated the performance of two 80-cubic-inch (in3) water guns. Data from the 80-in3 water guns showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 feet (ft). The maximum recorded pressure was 13.7 lb/in2, approximately 25 ft from the guns. The produced pressure field took the shape of a north-south-oriented elongated sphere with the 5-lb/in2 target value extending across the entire study area at a depth of 5 ft. Ground velocities were consistent over time, at 0.0067 inches per second (in/s) in the transverse direction, 0.031 in/s in the longitudinal direction, and 0.013 in/s in the vertical direction.The May 2015 study evaluated the performance of one and two 100-in3 water guns. Data from the 100-in3 water guns, fired both individually and simultaneously, showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 ft. The maximum pressure was 57.4 lb/in2, recorded at the underwater blast sensor closest to the water guns (at a horizontal distance of approximately 3 ft), as two guns fired simultaneously. Pressures and extent of the 5-lb/in2 target value decrease above and below this 5-ft depth, producing a relatively north-south-oriented pressure field shaped like an elongated sphere.
46 CFR 76.25-20 - Pressure tank.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Suitable check valves shall be installed to prevent salt water from entering the pressure tank, and low water and low pressure alarms shall be fitted. (b) [Reserved] ... 46 Shipping 3 2010-10-01 2010-10-01 false Pressure tank. 76.25-20 Section 76.25-20 Shipping COAST...
NASA Astrophysics Data System (ADS)
Reed, P. M.
2013-12-01
Water resources planning and management has always required the consideration of uncertainties and the associated system vulnerabilities that they may cause. Despite the long legacy of these issues, our decision support frameworks that have dominated the literature over the past 50 years have struggled with the strongly multiobjective and deeply uncertain nature of water resources systems. The term deep uncertainty (or Knightian uncertainty) refers to factors in planning that strongly shape system risks that maybe unknown and even if known there is a strong lack of consensus on their likelihoods over decadal planning horizons (population growth, financial stability, valuation of resources, ecosystem requirements, evolving water institutions, regulations, etc). In this presentation, I will propose and demonstrate the many-objective robust decision making (MORDM) framework for water resources management under deep uncertainty. The MORDM framework will be demonstrated using an urban water portfolio management test case. In the test case, a city in the Lower Rio Grande Valley managing population and drought pressures must cost effectively maintain the reliability of its water supply by blending permanent rights to reservoir inflows with alternative strategies for purchasing water within the region's water market. The case study illustrates the significant potential pitfalls in the classic Cost-Reliability conception of the problem. Moreover, the proposed MORDM framework exploits recent advances in multiobjective search, visualization, and sensitivity analysis to better expose these pitfalls en route to identifying highly robust water planning alternatives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false References. 236.3 Section 236.3 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE WATER... QUALITY § 236.3 References. (a) PL 89-72 (b) ER 1105-2-10 (c) ER 1105-2-200 ...
Pressure effects on collective density fluctuations in water and protein solutions
Russo, Daniela; Laloni, Alessio; Filabozzi, Alessandra; Heyden, Matthias
2017-01-01
Neutron Brillouin scattering and molecular dynamics simulations have been used to investigate protein hydration water density fluctuations as a function of pressure. Our results show significant differences between the pressure and density dependence of collective dynamics in bulk water and in concentrated protein solutions. Pressure-induced changes in the tetrahedral order of the water HB network have direct consequences for the high-frequency sound velocity and damping coefficients, which we find to be a sensitive probe for changes in the HB network structure as well as the wetting of biomolecular surfaces. PMID:29073065
The pressor response to water drinking in humans : a sympathetic reflex?
NASA Technical Reports Server (NTRS)
Jordan, J.; Shannon, J. R.; Black, B. K.; Ali, Y.; Farley, M.; Costa, F.; Diedrich, A.; Robertson, R. M.; Biaggioni, I.; Robertson, D.
2000-01-01
BACKGROUND: Water drinking increases blood pressure profoundly in patients with autonomic failure and substantially in older control subjects. The mechanism that mediates this response is not known. METHODS AND RESULTS: We studied the effect of drinking tap water on seated blood pressure in 47 patients with severe autonomic failure (28 multiple system atrophy [MSA], 19 pure autonomic failure patients [PAF]). Eleven older controls and 8 young controls served as control group. We also studied the mechanisms that could increase blood pressure with water drinking. Systolic blood pressure increased profoundly with water drinking, reaching a maximum of 33+/-5 mm Hg in MSA and 37+/-7 in PAF mm Hg after 30 to 35 minutes. The pressor response was greater in patients with more retained sympathetic function and was almost completely abolished by trimethaphan infusion. Systolic blood pressure increased by 11+/-2.4 mm Hg in elderly but not in young controls. Plasma norepinephrine increased in both groups. Plasma renin activity, vasopressin, and blood volume did not change in any group. CONCLUSIONS: Water drinking significantly and rapidly raises sympathetic activity. Indeed, it raises plasma norepinephrine as much as such classic sympathetic stimuli as caffeine and nicotine. This effect profoundly increases blood pressure in autonomic failure patients, and this effect can be exploited to improve symptoms due to orthostatic hypotension. Water drinking also acutely raises blood pressure in older normal subjects. The pressor effect of oral water is an important yet unrecognized confounding factor in clinical studies of pressor agents and antihypertensive medications.
Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
Hammel, H T; Schlegel, Whitney M
2005-01-01
In 1903, George Hulett explained how solute alters water in an aqueous solution to lower the vapor pressure of its water. Hulett also explained how the same altered water causes osmosis and osmotic pressure when the solution is separated from liquid water by a membrane permeable to the water only. Hulett recognized that the solute molecules diffuse toward all boundaries of the solution containing the solute. Solute diffusion is stopped at all boundaries, at an open-unopposed surface of the solution, at a semipermeable membrane, at a container wall, or at the boundary of a solid or gaseous inclusion surrounded by solution but not dissolved in it. At each boundary of the solution, the solute molecules are reflected, they change momentum, and the change of momentum of all reflected molecules is a pressure, a solute pressure (i.e., a force on a unit area of reflecting boundary). When a boundary of the solution is open and unopposed, the solute pressure alters the internal tension in the force bonding the water in its liquid phase, namely, the hydrogen bond. All altered properties of the water in the solution are explained by the altered internal tension of the water in the solution. We acclaim Hulett's explanation of osmosis, osmotic pressure, and lowering of the vapor pressure of water in an aqueous solution. His explanation is self-evident. It is the necessary, sufficient, and inescapable explanation of all altered properties of the water in the solution relative to the same property of pure liquid water at the same externally applied pressure and the same temperature. We extend Hulett's explanation of osmosis to include the osmotic effects of solute diffusing through solvent and dragging on the solvent through which it diffuses. Therein lies the explanations of (1) the extravasation from and return of interstitial fluid to capillaries, (2) the return of luminal fluid in the proximal and distal convoluted tubules of a kidney nephron to their peritubular capillaries, (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure.
Formation and characterization of simulated small droplet icing clouds
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1986-01-01
Two pneumatic two-fluid atomizers operating at high liquid and gas pressures produced water sprays that simulated small droplet clouds for use in studying icing effects on aircraft performance. To measure median volume diameter, MVD or D sub v.5, of small droplet water sprays, a scattered-light scanning instrument was developed. Drop size data agreed fairly well with calculated values at water and nitrogen pressures of 60 and 20 psig, respectively, and at water and nitrogen pressures of 250 and 100 psig, respectively, but not very well at intermediate values of water and nitrogen pressure. MVD data were correlated with D sub 0, W sub N, and W sub w, i.e., orifice diameter, nitrogen, and water flowrate, respectively, to give the expression for MVD in microns.
Water Drinking Test: Intraocular Pressure Changes after Tube Surgery and Trabeculectomy.
Razeghinejad, Mohammad Reza; Tajbakhsh, Zahra; Nowroozzadeh, Mohammad Hossein; Masoumpour, Masoumeh
2017-01-01
To study the effects of filtration surgeries (tube and trabeculectomy) on changes in intraocular pressure after a water-drinking test. In this prospective, non-randomized, comparative clinical study, 30 patients who had tube surgery and 30 age- and sex-matched trabeculectomy patients underwent a water-drinking test. Only one eye of each patient was included. The baseline intraocular pressure was ≤21 mmHg in all enrolled eyes with or without adjunctive topical medications. After the water-drinking test, the intraocular pressure was measured and recorded at 15, 30, 45, and 60 minutes and the results were compared between the two groups. In both groups, intraocular pressure significantly increased from baseline at all measured time-points ( P < 0.001). In the trabeculectomy group, the average intraocular pressure increased from 14.8 ± 2.9 to 18.8 ± 4.7 mmHg at 30 minutes, but decreased at 60 min (18.0 ± 5.2 mmHg). In the Tube group, intraocular pressure increased incrementally until the last measurement (14.2 ± 3.9, 18.8 ± 5.6, and 19.7 ± 6.0 mmHg at baseline, 30, and 60 minutes, respectively). The end-pressure difference (intraocular pressure at 60 minutes vs. baseline) was significantly greater in the tube group (5.6 ± 3.6 mmHg; 41% change) than in the trabeculectomy group (3.2 ± 4.7; 23% change; P = 0.03). Intraocular pressure significantly increased after the water-drinking test in both the groups. Intraocular pressure started to decline 30 minutes after the water-drinking test in the trabeculectomy group, while it continued to increase up to 60 minutes in the Tube group. This finding may have implications regarding the efficacy or safety of the procedures in advanced glaucoma patients.
The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels.
Clauss, Ralf; Mayes, Julian; Hilton, Paul; Lawrenson, Ross
2005-01-01
Previous publications have highlighted seasonal variations in the incidence of thrombosis and pulmonary embolism, and that weather patterns can influence these. While medical risk factors for pulmonary thrombo-embolism such as age, obesity, hypercoagulable states, cancer, previous thrombo-embolism, immobility, limb paralysis, surgery, major illness, trauma, hypotension, tachypnoea and right ventricular hypokinesis are not directly implicated regarding environmental factors such as weather, they could be influenced indirectly by these. This would be especially relevant in polluted areas that are associated with a higher pulmonary embolism risk. Routine nuclear medicine lung ventilation/perfusion studies (V/Q scans) of 2071 adult patients referred to the nuclear medicine department of the Royal Surrey County Hospital in Guildford, UK, between January 1998 and October 2002 were reviewed and 316 of these patients were classified as positive for pulmonary embolism with high probability scan on PIOPED criteria. The occurrence of positive scans was compared to environmental factors such as temperature, humidity, vapour pressure, air pressure and rainfall. Multiple linear regression was used to establish the significance of these relations. The incidence of pulmonary embolism was positively related to vapour pressure and rainfall. The most significant relation was to vapour pressure (p=0.010) while rainfall was less significant (p=0.017). There was no significant relation between pulmonary embolism and air pressure, humidity or temperature. It is postulated that rainfall and water vapour may be contributary factors in thrombosis and pulmonary embolism by way of pollutants that are carried as condensation nuclei in micro-droplets of water. In particular, fossil fuel pollutants are implicated as these condensation nuclei. Pollutants may be inhaled by populations exposed to windborne vapour droplets in cities or airports. Polluted vapour droplets may be absorbed by the lung to hasten coagulation cascades in the blood. This may lead to thrombosis and increased pulmonary embolism under high vapour pressure conditions. With combined factors such as pre-existing ill health or immobility on long flights, the risk of thrombosis and consequent embolism might increase substantially.
Kanno, H; Kajiwara, K; Miyata, K
2010-05-21
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R
NASA Astrophysics Data System (ADS)
Kanno, H.; Kajiwara, K.; Miyata, K.
2010-05-01
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.
Stygar, William A.; Reisman, David B.; Stoltzfus, Brian S.; ...
2016-07-07
In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load;more » hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.« less
NASA Astrophysics Data System (ADS)
Nishi, Masayuki; Tsuchiya, Jun; Arimoto, Takeshi; Kakizawa, Sho; Kunimoto, Takehiro; Tange, Yoshinori; Higo, Yuji; Irifune, Tetsuo
2018-06-01
Phase H (MgSiO4H2) is the high-pressure form of dense hydrous silicate that could deliver surface water into the lower mantle. In this study, we determined the thermal equations of the state of phase H using in situ X-ray diffraction measurements, under conditions ranging from 34 to 62 GPa and 300 and 1300 K, using a multianvil apparatus. Analysis of the data, based on the Mie-Grüneisen-Debye model using third-order Burch-Murnaghan equations at a reference pressure of 35 GPa, yielded the following results V ref = 49.61 ± 0.01 Å3, K ref = 344.6±4.1 GPa, K_{{{ref}}}^' } = 3.05 ± 0.32, θ ref = 974 ± 146 K, γ ref = 1.8 ± 0.1, and q = 1.79 ± 0.55. The compressibility of phase H observed in this study agrees well with that derived from theoretical calculations in pressure regions where hydrogen bond symmetrization is predicted. It was also found that the volume and compressibility of phase H and δ-AlOOH were similar.
33 CFR 159.109 - Pressure test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the tank, whichever is greater. The tank must hold the water at this pressure for 1 hour with no... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pressure test. 159.109 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.109 Pressure test. Any sewage...
Wedgworth, Jessica C.; Brown, Joe; Johnson, Pauline; Olson, Julie B.; Elliott, Mark; Forehand, Rick; Stauber, Christine E.
2014-01-01
Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts. PMID:25046635
24 CFR 3285.603 - Water supply.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...
24 CFR 3285.603 - Water supply.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...
24 CFR 3285.603 - Water supply.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...
24 CFR 3285.603 - Water supply.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...
24 CFR 3285.603 - Water supply.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home, a...
Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.
Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook
2016-03-01
Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.
A new magnetic coupling pump of residual pressure energy
NASA Astrophysics Data System (ADS)
Tong, Junjie; Ma, Xiaoqian; Fang, Yunhui
2017-10-01
A new method of magnetic coupling pump based on residual pressure is designed and the theoretical analysis and design calculation are carried out. The magnetic coupling pump device based on residual pressure is developed to achieve zero leakage during the energy conversion of two kinds of fluids. The results show that under the same displacement condition, the pressure head of the feed water is reduced with the increase of the feed water flow rate, the rotation speed of the axial impeller decreases gradually with the increase of the diameter of the drain pipe. In the case of the same water supply flow, the impeller speed increases with the increase of the displacement. When the available drainage increases, the pressure of the feed water supply increases.
Wilborn, Doris; Grittner, Ulrike; Dassen, Theo; Kottner, Jan
2010-12-01
The objective of this study was to describe the relationship between the German National Expert Standard Pressure Ulcer Prevention and the pressure ulcer prevalence in German nursing homes and hospitals. The patient outcome pressure ulcer does not only depend on individual characteristics of patients, but also on institutional factors. In Germany, National Expert Standards are evidence-based instruments that build the basis of continuing improvement in health care quality. It is expected that after having implemented the National Expert Standard Pressure Ulcer Prevention, the number of pressure ulcers should decrease in health care institutions. The analysed data were obtained from two cross-sectional studies from 2004-2005. A multilevel analysis was performed to show the impact of the National Expert Standard Pressure Ulcer Prevention on pressure ulcer prevalence. A total of 41.5% of hospitals and 38.8% of the nursing homes claimed to use the National Expert Standard in the process of developing their local protocols. The overall pressure ulcer prevalence grade 2-4 was 4.7%. Adjusted for hospital departments, survey year and individual characteristics, there was no significant difference in the prevalence of pressure ulcers between institutions that refer to the National Expert Standard or those referring to other sources in developing their local protocols (OR=1.14, 95% CI=0.90-1.44). There was no empirical evidence demonstrating that local protocols of pressure ulcer prevention based on the National Expert Standard were superior to local protocols which refer other sources of knowledge with regard to the pressure ulcer prevalence. The use of the National Expert Standard Pressure Ulcer Prevention can neither be recommended nor be refused. The recent definition of implementation of Expert Standards should be mandatory for all health care institutions which introduce Expert Standards. © 2010 Blackwell Publishing Ltd.
Frequency analysis of a step dynamic pressure calibrator.
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Frequency analysis of a step dynamic pressure calibrator
NASA Astrophysics Data System (ADS)
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A
2016-08-15
In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.
Roth, Michal
2016-12-06
High-pressure phase behavior of systems containing water, carbon dioxide and organics has been important in several environment- and energy-related fields including carbon capture and storage, CO 2 sequestration and CO 2 -assisted enhanced oil recovery. Here, partition coefficients (K-factors) of organic solutes between water and supercritical carbon dioxide have been correlated with extended linear solvation energy relationships (LSERs). In addition to the Abraham molecular descriptors of the solutes, the explanatory variables also include the logarithm of solute vapor pressure, the solubility parameters of carbon dioxide and water, and the internal pressure of water. This is the first attempt to include also the properties of water as explanatory variables in LSER correlations of K-factor data in CO 2 -water-organic systems. Increasing values of the solute hydrogen bond acidity, the solute hydrogen bond basicity, the solute dipolarity/polarizability, the internal pressure of water and the solubility parameter of water all tend to reduce the K-factor, that is, to favor the solute partitioning to the water-rich phase. On the contrary, increasing values of the solute characteristic volume, the solute vapor pressure and the solubility parameter of CO 2 tend to raise the K-factor, that is, to favor the solute partitioning to the CO 2 -rich phase.
Knipfer, Thorsten; Das, Debasish; Steudle, Ernst
2007-07-01
The effects of unstirred layers (USLs) at the endodermis of roots of young maize plants (Zea mays L.) were quantified, when measuring the water permeability of roots using a root pressure probe (RPP) in the pressure relaxation (PR) and pressure clamp (PC) modes. Different from PRs, PCs were performed by applying a constant pressure for certain periods of time. Experimental data were compared with results from simulations based on a convection versus diffusion (C/D) model, with the endodermis being the main barrier for solutes and water. Solute profiles in the stele were calculated as they occurred during rapid water flows across the root. The model quantitatively predicted the experimental finding of two distinct phases during PRs, in terms of a build-up of concentration profiles in the stele between endodermis and xylem vessels. It also predicted that, following a PC, half-times (T1/2) of PRs increased as the time used for clamping (and the build-up of USLs) increased. Following PCs of durations of 15, 30 and 60 s, T1/2 increased by factors of between 2.5 and 7.0, and water permeability of roots (root hydraulic conductivity, Lpr) was reduced by the same factors. When root pressure was immediately taken back to the original equilibrium root pressure following a PC, there was a transient uptake of water into the root stele (transient increase of root pressure), and the size of transients rose with time of clamping, as predicted by the model. The results indicated that the 'real' hydraulic conductivity of roots should be measured during initial water flows, such as during the rapid phase of PRs, when the effect of USLs was minimized. It was discussed that 'pressure-propagation effects' could not explain the finding of two phases during PRs. The results of USL effects threw some doubt on the use of PC and high-pressure flowmeter (HPFM) techniques with roots, where rigorous estimates of USLs were still missing despite the fact that large quantities of water were forced across the root.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, D.; Turton, R.; Zitney, S.
In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOLmore » acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid-life activity of the shift-catalyst. The SELEXOL unit consists of the H2S and CO2 absorbers that are designed to meet the stringent environmental limits and requirements of other associated units. The model also considers the stripper for recovering H2S that is sent as a feed to a split-flow Claus unit. The tail gas from the Claus unit is recycled to the SELEXOL unit. The cleaned syngas is sent to the GE 7FB gas turbine. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady-state simulation is solved in sequential-modular mode in Aspen Plus{reg_sign} and consists of more than 300 unit operations, 33 design specs, and 16 calculator blocks. The equation-oriented dynamic simulation consists of more than 100,000 equations solved using a multi-step Gear's integrator in Aspen Plus Dynamics{reg_sign}. The challenges faced in solving the dynamic model and key transient results from this dynamic model will also be discussed.« less
Gampe, David; Nikulin, Grigory; Ludwig, Ralf
2016-12-15
Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.
Comparative human health risk analysis of coastal community water and waste service options.
Schoen, Mary E; Xue, Xiaobo; Hawkins, Troy R; Ashbolt, Nicholas J
2014-08-19
As a pilot approach to describe adverse human health effects from alternative decentralized community water systems compared to conventional centralized services (business-as-usual [BAU]), selected chemical and microbial hazards were assessed using disability adjusted life years (DALYs) as the common metric. The alternatives included: (1) composting toilets with septic system, (2) urine-diverting toilets with septic system, (3) low flush toilets with blackwater pressure sewer and on-site greywater collection and treatment for nonpotable reuse, and (4) alternative 3 with on-site rainwater treatment and use. Various pathogens (viral, bacterial, and protozoan) and chemicals (disinfection byproducts [DBPs]) were used as reference hazards. The exposure pathways for BAU included accidental ingestion of contaminated recreational water, ingestion of cross-connected sewage to drinking water, and shower exposures to DBPs. The alternative systems included ingestion of treated greywater from garden irrigation, toilet flushing, and crop consumption; and ingestion of treated rainwater while showering. The pathways with the highest health impact included the ingestion of cross-connected drinking water and ingestion of recreational water contaminated by septic seepage. These were also among the most uncertain when characterizing input parameters, particularly the scale of the cross-connection event, and the removal of pathogens during groundwater transport of septic seepage. A comparison of the health burdens indicated potential health benefits by switching from BAU to decentralized water and wastewater systems.
Review: Moisture loading—the hidden information in groundwater observation well records
NASA Astrophysics Data System (ADS)
van der Kamp, Garth; Schmidt, Randy
2017-12-01
Changes of total moisture mass above an aquifer such as snow accumulation, soil moisture, and storage at the water table, represent changes of mechanical load acting on the aquifer. The resulting moisture-loading effects occur in all observation well records for confined aquifers. Deep observation wells therefore act as large-scale geological weighing lysimeters, referred to as "geolysimeters". Barometric pressure effects on groundwater levels are a similar response to surface loading and are familiar to every hydrogeologist dealing with the "barometric efficiency" of observation wells. Moisture-loading effects are small and generally not recognized because they are obscured by hydraulic head fluctuations due to other causes, primarily barometric pressure changes. For semiconfined aquifers, long-term moisture-loading effects may be dissipated and obscured by transient flow through overlying aquitards. Removal of barometric and earth tide effects from observation well records allows identification of moisture loading and comparison with hydrological observations, and also comparison with the results of numerical models that can account for transient groundwater flow.
Nonlinear vibration of a hemispherical dome under external water pressure
NASA Astrophysics Data System (ADS)
Ross, C. T. F.; McLennan, A.; Little, A. P. F.
2011-07-01
The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.
A National Trial on Differences in Cerebral Perfusion Pressure Values by Measurement Location.
McNett, Molly M; Bader, Mary Kay; Livesay, Sarah; Yeager, Susan; Moran, Cristina; Barnes, Arianna; Harrison, Kimberly R; Olson, DaiWai M
2018-04-01
Cerebral perfusion pressure (CPP) is a key parameter in management of brain injury with suspected impaired cerebral autoregulation. CPP is calculated by subtracting intracranial pressure (ICP) from mean arterial pressure (MAP). Despite consensus on importance of CPP monitoring, substantial variations exist on anatomical reference points used to measure arterial MAP when calculating CPP. This study aimed to identify differences in CPP values based on measurement location when using phlebostatic axis (PA) or tragus (Tg) as anatomical reference points. The secondary study aim was to determine impact of differences on patient outcomes at discharge. This was a prospective, repeated measures, multi-site national trial. Adult ICU patients with neurological injury necessitating ICP and CPP monitoring were consecutively enrolled from seven sites. Daily MAP/ICP/CPP values were gathered with the arterial transducer at the PA, followed by the Tg as anatomical reference points. A total of 136 subjects were enrolled, resulting in 324 paired observations. There were significant differences for CPP when comparing values obtained at PA and Tg reference points (p < 0.000). Differences remained significant in repeated measures model when controlling for clinical factors (mean CPP-PA = 80.77, mean CPP-Tg = 70.61, p < 0.000). When categorizing CPP as binary endpoint, 18.8% of values were identified as adequate with PA values, yet inadequate with CPP values measured at the Tg. Findings identify numerical differences for CPP based on anatomical reference location and highlight importance of a standard reference point for both clinical practice and future trials to limit practice variations and heterogeneity of findings.
NASA Technical Reports Server (NTRS)
Graf, John; Taylor, Dale; Martinez, James
2014-01-01
More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2]. Combined with a mechanical compressor, a Solid Electrolyte Oxygen Separator (SEOS) should be capable of producing ABO grade oxygen at pressures >2400 psia, on the space station. Feasibility tests using a SEOS integrated with a mechanical compressor identified an unexpected contaminant in the oxygen: water vapour was found in the oxygen product, sometimes at concentrations higher than 40 ppm (the ABO limit for water vapour is 7 ppm). If solid electrolyte membranes are really "infinitely selective" to oxygen as they are reported to be, where did the water come from? If water is getting into the oxygen, what other contaminants might get into the oxygen? Microscopic analyses of wafers, welds, and oxygen delivery tubes were performed in an attempt to find the source of the water vapour contamination. Hot and cold pressure decay tests were performed. Measurements of water vapour as a function of O2 delivery rate, O2 delivery pressure, and process air humidity levels were the most instructive in finding the source of water contamination (Fig 3). Water contamination was directly affected by oxygen delivery rate (doubling the oxygen production rate cut the water level in half). Water was affected by process air humidity levels and delivery pressure in a way that indicates the water was diffusing into the oxygen delivery system.
Yang, Dongmei; Pan, Shaoan; Tyree, Melvin T
2016-08-01
Pressure-volume (PV) curve analysis is the most common and accurate way of estimating all components of the water relationships in leaves (water potential isotherms) as summarized in the Höfler diagram. PV curve analysis yields values of osmotic pressure, turgor pressure, and elastic modulus of cell walls as a function of relative water content. It allows the computation of symplasmic/apoplastic water content partitioning. For about 20 years, cavitation in xylem has been postulated as a possible source of error when estimating the above parameters, but, to the best of the authors' knowledge, no one has ever previously quantified its influence. Results in this paper provide independent estimates of osmotic pressure by PV curve analysis and by thermocouple psychrometer measurement. An anatomical evaluation was also used for the first time to compare apoplastic water fraction estimates from PV analysis with anatomical values. Conclusions include: (i) PV curve values of osmotic pressure are underestimated prior to correcting osmotic pressure for water loss by cavitation in Metasequoia glyptostroboides; (ii) psychrometer estimates of osmotic pressure obtained in tissues killed by freezing or heating agreed with PV values before correction for apoplastic water dilution; (iii) after correction for dilution effects, a solute concentration enhancement (0.27MPa or 0.11 osmolal) was revealed. The possible sources of solute enhancement were starch hydrolysis and release of ions from the Donnan free space of needle cell walls. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Huder, Karin; Demore, William B.
1993-01-01
Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.
System Regulates the Water Contents of Fuel-Cell Streams
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Lazaroff, Scott
2005-01-01
An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.
NASA Astrophysics Data System (ADS)
Saiki, A.; Hashimoto, Y.
2015-12-01
Evolution of physical properties in subduction zone is a key to understand lithification processes, location of decollement, and stress distribution. In this study, we examined the physical properties of sediments using on-board data and laboratory experimental data on sediments obtained off Costa Rica margin. Target sites are in the Integrate Ocean Drilling Program (IODP) Expedition 344 off Costa Rica, including reference sites (U1381 and U1414), mid-slope site (U1378, U1380) and upper-slope site (U1413). Seven samples from reference sites were analyzed. Laboratory experiments for velocity and porosity measurements were conducted with variation of effective pressure. Velocity-porosity relationships from on-board data and from laboratory experiments are comparable. The porosity-effective pressure curves under isotropic condition were converted to the curves under uniaxial condition (Teeuw, 1971). Using the normal consolidation curves under uniaxial stress conditions, we converted onboard porosity to effective pressure and fluid pressure. In reference sites, hydrostatic fluid pressure was estimated as expected as a reference sites, suggesting that porosity-effective pressure relationship was obtained correctly by experiments and it can be adapted to estimation of fluid pressure for the wedge sites. The porosity-effective pressure relationship under isotropic conditions were used for the estimation in wedge sites. In wedge sites, estimated pore pressures show lower than hydrostatic pressure, suggesting that onboard porosity was lower than that under normal compaction. The lower porosity can be caused by relative uplift from deeper portion. The amount of relative uplift can be estimated by differences in porosity-depth relationships between onboard data and experimental data. The amount of relative uplift for each site shows more than ~1000m up to ~5000m. The small error in porosity depth curve from experimental data makes relative uplift larger or smaller exponentially in the deeper portion. The increment of relative uplift, however, starts from about 1Ma in each site, suggesting some events were occurred at the timing. Laboratory experiments under differential stress should be conducted in the near future because smaller porosity is expected under differential stress conditions.
Structure of ice crystallized from supercooled water
Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.
2012-01-01
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652
Structure of ice crystallized from supercooled water.
Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G
2012-01-24
The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.
Hillebrand, Olav; Nödler, Karsten; Sauter, Martin; Licha, Tobias
2015-02-15
The increasing pressure on drinking water resources necessitates an efficient management of potential and actual drinking water resources. Karst aquifers play a key role in the supply of the world's population with drinking water. Around one quarter of all drinking water is produced from these types of aquifers. Unfortunately due to the aquifer characteristics with extremely high hydraulic conductivities and short residence times, these systems are vulnerable to contamination. For successful management, a fundamental understanding of mass transport and attenuation processes with respect to potential contaminants is vital. In this study, a multitracer experiment was performed in a karst aquifer in SW-Germany for determining the attenuation capacity of a karst environment by assessing the environmental fate of selected relevant micropollutants. Uranine, acesulfame and carbamazepine were injected into a sinkhole as reference tracers together with the reactive compounds atenolol, caffeine, cyclamate, ibuprofen and paracetamol (also known as acetaminophen). The breakthrough of the tracers was monitored at a karst spring at a distance of ca. 3 km. The breakthrough curves of the reactive compounds were interpreted relative to the reference substances. No significant retardation was found for any of the investigated micropollutants. The determined half-lives of the reactive compounds range from 38 to 1,400 h (i.e. persistent within the investigation period) in the following order (from high to no observed attenuation): paracetamol>atenolol≈ibuprofen>caffeine≫cyclamate. The attenuation rates are generally in agreement with studies from other environmental compartments. The occurrence of the biotransformation product atenolol acid served as evidence for in-situ biodegradation within the aquifer system. Copyright © 2014 Elsevier B.V. All rights reserved.
Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid
NASA Astrophysics Data System (ADS)
Richardson, M. I.
2002-12-01
Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and southern caps. Similar climate-models of the water cycle also do not need much exchangeable adsorbed water in order to explain the observed vapour distributions. The possibility of liquid water is tantalizing, but difficult to definitively judge. On scales greater than a meter or so, Mars is most definitely well away from the water triple point--although the surface pressure can exceed 6.1 mbars, the partial pressure of water vapor (to which the triple point refers) is at best orders of magnitude lower. Several careful studies have shown, however, that locally transient (meta-stable) liquid is possible, if the net heating of ice deposits is high enough. This process is aided if the total surface pressure exceeds 6.1mbar (this prevents boiling, or the explosive loss of vapour into the atmosphere) or if the liquid is covered by a thin ice shell, and is only possible if surface temperatures exceed 273K (for pure water, or the appropriate eutectic for brines) and if ice is present. The former challenge is much easier to meet than the latter. The melt scenario requires that ice deposited in winter must be protected from sublimation as surface temperatures increase in spring, but then exposed to the peak of solar heating in summer. Available spacecraft observations of seasonal water will be discussed with the aid of GCM model simulations, and examined in the context of water distributions and phases.
Performance Evaluation of Pressure Transducers for Water Impacts
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean
2012-01-01
The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.
Taheri, Siavash; Lakmehsari, Muhammad Shadman; Soltanabadi, Azim
2017-08-01
The separation of the azeotropic ethanol-water mixture (95.57wt% ethanol) over a wide range of pressures (100-100000kPa) was studied on armchair SWCNTs, SWSiCNTs and SWBNNTs with different diameters at 351.30K using GCMC simulations. The GCMC results demonstrated that ethanol and water molecules form a monolayer single-file, chain together in the center of (6,6) SWCNT, while a spiral ring of ethanol and water is formed in the center of (8,8), (10,10) and (12,12) SWCNTs. It was found that in SWCNTs, the adsorption of ethanol reduces the function of pressure, while water adsorption increases its function. Water selectivity rises as a function of pressure. Also, in SWBNNTs, the adsorption of water increases as a function of pressure, while ethanol adsorption is almost constant. However, in the case of SWSiCNTs, ethanol and water adsorptions are very similar to those of SWBNNTs, whereas the adsorptivities of SWSiCNTs are more than those of SWBNNTs. Our findings regarding adsorption and slope of adsorption indicate that higher pressures are favorable for separating water and ethanol by SWCNTs, while SWBNNTs and SWSiCNTs are demonstrate higher ethanol adsorptivities in lower pressures. Also, MD simulations have been performed to study the microscopic structure and diffusion of binary mixtures of water and ethanol within SWCNTs, SWSiCNTs and SWBNNTs. The MD simulations imply that the oxygen atoms are highly well-organized around themselves. Also, the MD results illustrate a similar tendency for oxygen of water (OW) and oxygen of ethanol (OE) to the wall of the nanotubes in all the pressures. In addition, from the MD results, self-diffusion of water and ethanol in all nanotubes were calculated and discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Towards modelling of water inflow into the mantle
NASA Astrophysics Data System (ADS)
Thielmann, M.; Eichheimer, P.; Golabek, G.
2017-12-01
The transport and storage of water in the mantle significantly affects various material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.) Geological and seismological observations suggest different inflow mechanisms of water via the subducting slab like slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017). Most of the previous numerical models do not take different dip angles of the subduction slab and subduction velocities into account, while nature provides two different types of subduction regimes i.e. shallow and deep subduction (Li et al., 2011). To which extent both parameters influence the inflow and outflow of water in the mantle still remains unclear. For the investigation of the inflow and outflow of fluids e.g. water in the mantle, we use high resolution 2D finite element simulations, which allow us to resolve subducted sediments and crustal layers. For this purpose the finite element code MVEP2 (Kaus, 2010), is tested against benchmark results (van Keken et al., 2008). In a first step we reproduced the analytical cornerflow model (Batchelor, 1967) used in the benchmark of van Keken et al.(2008) as well as the steady state temperature field. Further steps consist of successively increasing model complexity, such as the incorporation of hydrogen diffusion, water transport and dehydration reactions. ReferencesBatchelor, G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK (1967) van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Li, Z. H., Xu, Z. Q., and T.V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011). Kaus, B. J. P. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophys. 484, 36-47 (2010). The transport and storage of water in the mantle significantly affects various material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.) Geological and seismological observations suggest different inflow mechanisms of water via the subducting slab like slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017). Most of the previous numerical models do not take different dip angles of the subduction slab and subduction velocities into account, while nature provides two different types of subduction regimes i.e. shallow and deep subduction (Li et al., 2011). To which extent both parameters influence the inflow and outflow of water in the mantle still remains unclear. For the investigation of the inflow and outflow of fluids e.g. water in the mantle, we use high resolution 2D finite element simulations, which allow us to resolve subducted sediments and crustal layers. For this purpose the finite element code MVEP2 (Kaus, 2010), is tested against benchmark results (van Keken et al., 2008). In a first step we reproduced the analytical cornerflow model (Batchelor, 1967) used in the benchmark of van Keken et al.(2008) as well as the steady state temperature field.Further steps consist of successively increasing model complexity, such as the incorporation of hydrogen diffusion, water transport and dehydration reactions. Systematic simulations are performed to assess the influence of different model parameters on various target parameters such as dehydration depth, volcanic line position etc., the ultimate goal being the derivation of scaling laws for water transport in the mantleReferencesBatchelor, G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK (1967)van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Li, Z. H., Xu, Z. Q., and T.V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011). Kaus, B. J. P. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophys. 484, 36-47 (2010).
Virtual water flows in the international trade of agricultural products of China.
Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun
2016-07-01
With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. Copyright © 2016 Elsevier B.V. All rights reserved.
The differences between soil grouting with cement slurry and cement-water glass slurry
NASA Astrophysics Data System (ADS)
Zhu, Mingting; Sui, Haitong; Yang, Honglu
2018-01-01
Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.
Pressure probe study of the water relations of Phycomyces blakesleeanus sporangiophores
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.; Ortega, J. K.; Shropshire, W. Jr
1987-01-01
The physical characteristics which govern the water relations of the giant-celled sporangiophore of Phycomyces blakesleeanus were measured with the pressure probe technique and with nanoliter osmometry. These properties are important because they govern water uptake associated with cell growth and because they may influence expansion of the sporangiophore wall. Turgor pressure ranged from 1.1 to 6.6 bars (mean = 4.1 bars), and was the same for stage I and stage IV sporangiophores. Sporangiophore osmotic pressure averaged 11.5 bars. From the difference between cell osmotic pressure and turgor pressure, the average water potential of the sporangiophore was calculated to be about -7.4 bars. When sporangiophores were submerged under water, turgor remained nearly constant. We propose that the low cell turgor pressure is due to solutes in the cell wall solution, i.e., between the cuticle and the plasma membrane. Membrane hydraulic conductivity averaged 4.6 x 10(-6) cm s-1 bar-1, and was significantly greater in stage I sporangiophores than in stage IV sporangiophores. Contrary to previous reports, the sporangiophore is separated from the supporting mycelium by septa which prevent bulk volume flow between the two regions. The presence of a wall compartment between the cuticle and the plasma membrane results in anomalous osmosis during pressure clamp measurements. This behavior arises because of changes in solute concentration as water moves into or out of the wall compartment surrounding the sporangiophore. Theoretical analysis shows how the equations governing transient water flow are altered by the characteristics of the cell wall compartment.
Assessment of water pipes durability under pressure surge
NASA Astrophysics Data System (ADS)
Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia
2017-10-01
Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.
SELF-REGULATING BOILING-WATER NUCLEAR REACTORS
Ransohoff, J.A.; Plawchan, J.D.
1960-08-16
A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.
[Microcystin safety study during Cyanobacteria removal by pressure enhanced coagulation process].
Jiang, Xin-Yue; Luan, Qing; Cong, Hai-Bing; Xu, Si-Tao; Liu, Yu-Jiao; Zhu, Xue-Yuan
2014-11-01
Pressure enhanced coagulation and sedimentation technique is an effective way for blue algae treatment. It is not clear whether Cyanobacteria balloon rupture will cause Cyanobacteria cells rupture, resulting in high intracellular concentrations of microcystin LR leak into the water, affecting drinking water safety. Therefore, in this study experimental comparative study of pressure and pre-oxidation of water containing Cyanobacteria was carried out to examine the microcystin LR concentration changes and Cyanobacteria removal efficiency. The results showed that microcystin concentration increase was not significant by the pre-treatment with Cyanobacteria water pressure, while the pre-oxidation process caused a significant increase in the concentration of microcystin. After 0.5-0.8 MPa pressure coagulation and sedimentation, removal of Cyanobacteria basically was over 90%, up to 93.5%, while the removal rate by pre-oxidation was low and unstable. Effluent turbidity is also significantly better in the pre-pressure method than the pre-oxidation. The results indicated that pressure enhanced coagulation is a safe and reliable method for Cyanobacteria removal.
LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E
2003-03-01
The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.
The lunar semidiurnal air pressure tide in in-situ data and ECMWF reanalyses
NASA Astrophysics Data System (ADS)
Schindelegger, Michael; Dobslaw, Henryk
2016-04-01
A gridded empirical model of the lunar semidiurnal air pressure tide L2 is deduced through multiquadric interpolation of more than 2000 globally distributed tidal estimates from land barometers and moored buoys. The resulting climatology serves as an independent standard to validate the barometric L2 oscillations that are present in ECMWF's (European Centre for Medium-Range Weather Forecasts) global atmospheric reanalyses despite the omission of gravitational forcing mechanisms in the involved forecast routines. Inconsistencies between numerical and empirical L2 solutions are found to be small even though the reanalysis models typically underestimate equatorial peak pressures by 10-20% and produce slightly deficient tidal phases in latitudes south of 30°N. Through using a time-invariant reference surface over both land and water and assimilating marine pressure data without accounting for vertical sensor movements due to the M2 ocean tide, ECMWF-based tidal solutions are also prone to strong local artifacts. Additionally, the dependency of the lunar tidal oscillation in atmospheric analysis systems on the meteorological input data is demonstrated based on a recent ECMWF twentieth-century reanalysis (ERA-20C) which draws its all of its observational constraints from in-situ registrations of pressure and surface winds. The L2 signature prior to 1950 is particularly indicative of distinct observing system changes, such as the paucity of marine data during both World Wars or the opening of the Panama Canal in 1914 and the associated adjustment of commercial shipping routes.
McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima
2018-04-01
Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.
Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction
NASA Astrophysics Data System (ADS)
Zhang, Li-wei; Li, Xin
2017-10-01
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.
Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A
2014-07-01
Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrostatic Paradox: Experimental Verification of Pressure Equilibrium
ERIC Educational Resources Information Center
Kodejška, C.; Ganci, S.; Ríha, J.; Sedlácková, H.
2017-01-01
This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical…
Variation of Pressure with Depth of Water: Working with High-Tech and Low-Cost Materials
ERIC Educational Resources Information Center
Ornek, Funda; Zziwa, Byansi Jude; Taganahan, Teresita D.
2013-01-01
When you dive underwater, you feel the pressure on your ears and, as you dive deeper, more pressure is felt. This article presents an activity that teachers might find useful for demonstrating the relationship between water depth and pressure. (Contains 5 figures and 1 table.)
Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.
Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I
2006-11-02
Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).
Water-Pressure Distribution on Seaplane Float
NASA Technical Reports Server (NTRS)
Thompson, F L
1929-01-01
The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)
30 CFR 250.1003 - Installation, testing, and repair requirements for DOI pipelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... installed in water depths of less than 200 feet shall be buried to a depth of at least 3 feet unless they... damage potential exists. (b)(1) Pipelines shall be pressure tested with water at a stabilized pressure of... repair, the pipeline shall be pressure tested with water or processed natural gas at a minimum stabilized...
14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., minus 47 mm. Hg, which is the tracheal pressure displaced by water vapor pressure when the breathed air becomes saturated with water vapor at 37 °C). (2) STPD means Standard, Temperature, and Pressure, Dry (which is, 0 °C at 760 mm. Hg with no water vapor). [Doc. No. 26344, 58 FR 18978, Apr. 9, 1993] § 23.1443...
Water dynamics and retrogradation of ultrahigh pressurized wheat starch.
Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol
2006-09-06
The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.
Study on the bearing capacity of embedded chute on shield tunnel segment
NASA Astrophysics Data System (ADS)
Fanzhen, Zhang; Jie, Bu; Zhibo, Su; Qigao, Hu
2018-05-01
The method of perforation and steel implantation is often used to fix and install pipeline, cables and other facilities in the shield tunnel, which would inevitably do damage to the precast segments. In order to reduce the damage and the resulting safety and durability problems, embedded chute was set at the equipment installation in one shield tunnel. Finite element models of segment concrete and steel are established in this paper. When water-soil pressure calculated separately and calculated together, the mechanical property of segment is studied. The bearing capacity and deformation of segment are analysed before and after embedding the chute. Research results provide a reference for similar shield tunnel segment engineering.
Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor
NASA Technical Reports Server (NTRS)
Marchionna, N. R.
1973-01-01
Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.
Ab initio simulation of particle momentum distributions in high-pressure water
NASA Astrophysics Data System (ADS)
Ceriotti, M.
2014-12-01
Applying pressure to water reduces the average oxygen-oxygen distance, and facilitates the delocalisation of protons along the hydrogen bond. This pressure-induced delocalisation is further enhanced by the quantum nature of hydrogen nuclei, which is very significant even well above room temperature. Here we will evaluate the quantum kinetic energy and the particle momentum distribution of hydrogen and oxygen nuclei in water at extreme pressure, using ab initio path integral molecular dynamics. We will show that (transient) dissociation of water molecules induce measurable changes in the kinetic energy hydrogen atoms, although current deep inelastic scattering experiments are probably unable to capture the heterogeneity of the sample.
The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence.
Prevenslik, T V
2003-06-01
Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature.
Perturbation theory for water with an associating reference fluid
NASA Astrophysics Data System (ADS)
Marshall, Bennett D.
2017-11-01
The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.
Assessing the Impact of Riparian Soil-Water Dynamics on Streambank Erosion
USDA-ARS?s Scientific Manuscript database
Occurrence of streambank failure is closely related to changes in pore-water pressure. Pore-water pressure in a streambank is affected, among others, by infiltrating rainfall, streambank-material texture, riparian vegetation, and interactions between surface water and groundwater. Also, the reduct...
THE EPANET WATER DISTRIBUTION SYSTEM MODEL
EPANET is a Windows program that performs extended period simulation of hydraulic and water-quality behavior within pressurized pipe networks. It tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank, and the concentration of a chemica...
Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions
Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.
2006-01-01
Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.
Granqvist, Svante; Simberg, Susanna; Hertegård, Stellan; Holmqvist, Sofia; Larsson, Hans; Lindestad, Per-Åke; Södersten, Maria; Hammarberg, Britta
2015-10-01
Phonation into glass tubes ('resonance tubes'), keeping the free end of the tube in water, has been a frequently used voice therapy method in Finland and more recently also in other countries. The purpose of this exploratory study was to investigate what effects tube phonation with and without water has on the larynx. Two participants were included in the study. The methods used were high-speed imaging, electroglottographic observations of vocal fold vibrations, and measurements of oral pressure during tube phonation. Results showed that the fluctuation in the back pressure during tube phonation in water altered the vocal fold vibrations. In the high-speed imaging, effects were found in the open quotient and amplitude variation of the glottal opening. The open quotient increased with increasing water depth (from 2 cm to 6 cm). A modulation effect by the water bubbles on the vocal fold vibrations was seen both in the high-speed glottal area tracings and in the electroglottography signal. A second experiment revealed that the increased average oral pressure was largely determined by the water depth. The increased open quotient can possibly be explained by an increased abduction of the vocal folds and/or a reduced transglottal pressure. The back pressure of the bubbles also modulates glottal vibrations with a possible 'massage' effect on the vocal folds. This effect and the well-defined average pressure increase due to the known water depth are different from those of other methods using a semi-occluded vocal tract.
Intrathoracic and venous pressure relationships during responses to changes in body position
NASA Technical Reports Server (NTRS)
Avasthey, P.; Wood, E. H.
1974-01-01
Simultaneous end-expiratory pressures, referred to midthoracic level, in the superior and abdominal venae cavae, pericardial space, and right and left heart, were recorded without thoracotomy in three anesthetized dogs during sudden changes from supine to vertical head-up or head-down body positions. Intrathoracic and dependent great vein pressures referred to midchest level (sixth thoracic vertebra) decreased and showed simple hydrostatic gradients in either vertical position. However, a discontinuity in the large vein hydrostatic gradient occurred just distal to the superior margin of the thorax in either body position and was resumed again above this level. It is concluded that, just as the cerebrospinal fluid and intraperitoneal pressures minimize the effects of gravitational and inertial forces on the cerebral and visceral circulations, the pericardial and pleural pressures have a similar role for the heart proper.
Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature
NASA Technical Reports Server (NTRS)
Yu, Ping; Nalette, Tim; Kayatin, Matthew
2016-01-01
The Water Processor Assembly (WPA) at International Space Station (ISS) processes a waste stream via multi-filtration beds, where inorganic and non-volatile organic contaminants are removed, and a catalytic reactor, where low molecular weight organics not removed by the adsorption process are oxidized at elevated pressure in the presence of oxygen and elevated temperature above the normal water boiling point. Operation at an elevated pressure requires a more complex system design compared to a reactor that could operate at ambient pressure. However, catalysts currently available have insufficient activity to achieve complete oxidation of the organic load at a temperature less than the water boiling point and ambient pressure. Therefore, it is highly desirable to develop a more active and efficient catalyst at ambient pressure and a moderate temperature that is less than water boiling temperature. This paper describes our efforts in developing high efficiency water processing catalysts. Different catalyst support structures and coating metals were investigated in subscale reactors and results were compared against the flight WPA catalyst. Detailed improvements achieved on alternate metal catalysts at ambient pressure and 200 F will also be presented in the paper.
When immiscible becomes miscible-Methane in water at high pressures.
Pruteanu, Ciprian G; Ackland, Graeme J; Poon, Wilson C K; Loveday, John S
2017-08-01
At low pressures, the solubility of gases in liquids is governed by Henry's law, which states that the saturated solubility of a gas in a liquid is proportional to the partial pressure of the gas. As the pressure increases, most gases depart from this ideal behavior in a sublinear fashion, leveling off at pressures in the 1- to 5-kbar (0.1 to 0.5 GPa) range with solubilities of less than 1 mole percent (mol %). This contrasts strikingly with the well-known marked increase in solubility of simple gases in water at high temperature associated with the critical point (647 K and 212 bar). The solubility of the smallest hydrocarbon, the simple gas methane, in water under a range of pressure and temperature is of widespread importance, because it is a paradigmatic hydrophobe and occurs widely in terrestrial and extraterrestrial geology. We report measurements up to 3.5 GPa of the pressure dependence of the solubility of methane in water at 100°C-well below the latter's critical temperature. Our results reveal a marked increase in solubility between 1 and 2 GPa, leading to a state above 2 GPa where the maximum solubility of methane in water exceeds 35 mol %.
Treatment method for emulsified petroleum wastes
Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.
1990-01-01
An improved reclamation process for treating petroleum oil and water emulsions derived from producing or processing crude oil is disclosed. The process comprises heating the emulsion to a predetermined temperature at or above about 300.degree. C. and pressurizing the emulsion to a predetermined pressure above the vapor pressure of water at the predetermined temperature. The emulsion is broken by containing the heated and pressurized fluid within a vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first, second and third phases. The three phases are then separately withdrawn from the vessel, preferably without any appreciable reduction in temperature and pressure, and at least above a withdraw temperature of about 300.degree. and above the vapor pressure of water at the withdraw temperature.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1981-01-01
Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.
Low internal pressure in femtoliter water capillary bridges reduces evaporation rates
Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook
2016-01-01
Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329
Acoustic wave propagation in high-pressure system.
Foldyna, Josef; Sitek, Libor; Habán, Vladimír
2006-12-22
Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.
Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.
Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred
2017-02-01
The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow nasal cannula oxygen, 0.742). The posterior 95% credible interval on the difference in mortality identified a future randomized controlled trial would be extremely unlikely to find a mortality benefit for high-flow nasal cannula oxygen over bubble continuous positive airway pressure, regardless of the scenario. Interpreting these findings using the "range of practical equivalence" framework would recommend rejecting the hypothesis that high-flow nasal cannula oxygen is superior to bubble continuous positive airway pressure for these children. For children younger than 5 years with pneumonia, high-flow nasal cannula oxygen has higher mortality than bubble continuous positive airway pressure. A future randomized controlled trial in this population is unlikely to find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure.
10 CFR 431.105 - Materials incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water... can purchase a copy of the standard incorporated by reference from Global Engineering Documents, 15...
Nelson, Michael A; Bedner, Mary; Lang, Brian E; Toman, Blaza; Lippa, Katrice A
2015-11-01
Given the critical role of pure, organic compound primary reference standards used to characterize and certify chemical Certified Reference Materials (CRMs), it is essential that associated mass purity assessments be fit-for-purpose, represented by an appropriate uncertainty interval, and metrologically sound. The mass fraction purities (% g/g) of 25-hydroxyvitamin D (25(OH)D) reference standards used to produce and certify values for clinical vitamin D metabolite CRMs were investigated by multiple orthogonal quantitative measurement techniques. Quantitative (1)H-nuclear magnetic resonance spectroscopy (qNMR) was performed to establish traceability of these materials to the International System of Units (SI) and to directly assess the principal analyte species. The 25(OH)D standards contained volatile and water impurities, as well as structurally-related impurities that are difficult to observe by chromatographic methods or to distinguish from the principal 25(OH)D species by one-dimensional NMR. These impurities have the potential to introduce significant biases to purity investigations in which a limited number of measurands are quantified. Combining complementary information from multiple analytical methods, using both direct and indirect measurement techniques, enabled mitigation of these biases. Purities of 25(OH)D reference standards and associated uncertainties were determined using frequentist and Bayesian statistical models to combine data acquired via qNMR, liquid chromatography with UV absorbance and atmospheric pressure-chemical ionization mass spectrometric detection (LC-UV, LC-ACPI-MS), thermogravimetric analysis (TGA), and Karl Fischer (KF) titration.
The effects of pulse pressure from seismic water gun technology on Northern Pike
Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.
2013-01-01
We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false References. 242.3 Section 242.3 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD PLAIN MANAGEMENT SERVICES PROGRAM ESTABLISHMENT OF FEES FOR COST RECOVERY § 242.3 References. The references in...
Models of a partially hydrated Titan interior with a clathrate crust
NASA Astrophysics Data System (ADS)
Lunine, J. I.; Castillo-Rogez, J. C.; Choukroun, M.; Sotin, C.
2012-04-01
We present a model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan’s history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consists of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the perched liquid water ocean. The most recent version of our model accounts for the likely presence of large amounts of methane in the upper crust invoked to explain methane’s persistence at present and through geologic time (Tobie et al. 2006). The methane-rich crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, the insulating effect of the methane clathrate crust could have delayed the formation of the high-pressure layer, resulting in the interaction of liquid water with the silicate core for extended periods of time. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach that layer. The implications of such a deep hydrothermal system for the later stages of the evolution of Titan’s interior and surface will be discussed. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References: Castillo-Rogez, J., Lunine, J.: “Evolution of Titan’s rocky core constrained by Cassini observations”. GRL, Vol. 37, L20205, 2010. Iess, L., et al.: “Gravity field, shape, and moment of inertia of Titan”. Science, Vol. 327, 1367-1369. Tobie, G., et al.: “Episodic outgassing as the origin of atmospheric methane on Titan”. Nature 440: 61-64, 2006.
Siddiqui, A; Lehmann, S; Bucs, Sz S; Fresquet, M; Fel, L; Prest, E I E C; Ogier, J; Schellenberg, C; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S
2017-03-01
Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar
Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA filmmore » and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.« less
Relationship between ultrasonically detected phasic antral contractions and antral pressure.
Hveem, K; Sun, W M; Hebbard, G; Horowitz, M; Doran, S; Dent, J
2001-07-01
The relationships between gastric wall motion and intraluminal pressure are believed to be major determinants of flows within and from the stomach. Gastric antral wall motion and intraluminal pressures were monitored in five healthy subjects by concurrent antropyloroduodenal manometry and transabdominal ultrasound for 60 min after subjects drank 500 ml of clear soup. We found that 99% of antral contractions detected by ultrasound were propagated aborally, and 68% of contractions became lumen occlusive at the site of the ultrasound marker. Of the 203 contractions detected by ultrasound, 53% were associated with pressure events in the manometric reference channel; 86% of contractions had corresponding pressure events detectable somewhere in the antrum. Contractions that occluded the lumen were more likely to be associated with a pressure event in the manometric reference channel (P < 0.01) and to be of greater amplitude (P < 0.01) than non-lumen-occlusive contractions. We conclude that heterogeneous pressure event patterns in the antrum occur despite a stereotyped pattern of contraction propagation seen on ultrasound. Lumen occlusion is more likely to be associated with higher peak antral pressure events.
Max, M.D.; Dillon, William P.
1998-01-01
Oceanic methane hydrates are mineral deposits formed from a crystalline 'ice' of methane and water in sea-floor sediments (buried to less than about 1 km) in water depths greater than about 500 m; economic hydrate deposits are probably restricted to water depths of between 1.5 km and 4 km. Gas hydrates increase a sediment's strength both by 'freezing' the sediment and by filling the pore spaces in a manner similar to water-ice in permafrost. Concentrated hydrate deposits may be underlain by significant volumes of methane gas, and these localities are the most favourable sites for methane gas extraction operations. Seismic reflection records indicate that trapped gas may blow-out naturally, causing large-scale seafloor collapse. In this paper, we consider both the physical properties and the structural integrity of the hydrate stability zone and the associated free gas deposits, with special reference to the Blake Ridge area, SE US offshore, in order to help establish a suitable framework for the safe, efficient, and economic recovery of methane from oceanic gas hydrates. We also consider the potential effects of the extraction of methane from hydrate (such as induced sea-floor faulting, gas venting, and gas-pocket collapse). We assess the ambient pressure effect on the production of methane by hydrate dissociation, and attempt to predict the likelihood of spontaneous gas flow in a production situation.Oceanic methane hydrates are mineral sits formed from a crystalline `ice' of methane and water in sea-floor sediments (buried to less than about 1 km) in water depths greater than about 500 m; economic hydrate deposits are probably restricted to water depths of between 1.5 km and 4 km. Gas hydrates increase a sediment's strength both by `freezing' the sediment and by filling the pore spaces in a manner similar to water-ice in permafrost. Concentrated hydrate deposits may be underlain by significant volumes of methane gas, and these localities are the most favourable sites for methane gas extraction operations. Seismic reflection records indicate that trapped gas may blow-out naturally, causing large-scale seafloor collapse. In this paper, we consider both the physical properties and the structural integrity of the hydrate stability zone and the associated free gas deposits, with special reference to the Blake Ridge area, SE US offshore, in order to help establish a suitable framework for the safe, efficient, and economic recovery of methane from oceanic gas hydrates. We also consider the potential effects of the extraction of methane from hydrate (such as induced sea-floor faulting, gas venting, and gas-pocket collapse). We assess the ambient pressure effect on the production of methane by hydrate dissociation, and attempt to predict the likelihood of spontaneous gas flow in a production situation.
Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal
2014-04-01
ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement
USE OF NATURAL WATERS AS U. S. GEOLOGICAL SURVEY REFERENCE SAMPLES.
Janzer, Victor J.
1985-01-01
The U. S. Geological Survey conducts research and collects hydrologic data relating to the Nation's water resources. Seven types of natural matrix reference water samples are prepared for use in the Survey's quality assurance program. These include samples containing major constituents, trace metals, nutrients, herbicides, insecticides, trace metals in a water and suspended-sediment mixture, and precipitation (snowmelt). To prepare these reference samples, natural water is collected in plastic drums and the sediment is allowed to settle. The water is then filtered, selected constituents are added, and if necessary the water is acidified and sterilized by ultraviolet irradiation before bottling in plastic or glass. These reference samples are distributed twice yearly to more than 100 laboratories for chemical analysis. The most probable values for each constituent are determined by evaluating the data submitted by the laboratories using statistical techniques recommended by ASTM.
Fortes, Matthew B; Owen, Julian A; Raymond-Barker, Philippa; Bishop, Claire; Elghenzai, Salah; Oliver, Samuel J; Walsh, Neil P
2015-03-01
Dehydration in older adults contributes to increased morbidity and mortality during hospitalization. As such, early diagnosis of dehydration may improve patient outcome and reduce the burden on healthcare. This prospective study investigated the diagnostic accuracy of routinely used physical signs, and noninvasive markers of hydration in urine and saliva. Prospective diagnostic accuracy study. Hospital acute medical care unit and emergency department. One hundred thirty older adults [59 males, 71 females, mean (standard deviation) age = 78 (9) years]. Participants with any primary diagnosis underwent a hydration assessment within 30 minutes of admittance to hospital. Hydration assessment comprised 7 physical signs of dehydration [tachycardia (>100 bpm), low systolic blood pressure (<100 mm Hg), dry mucous membrane, dry axilla, poor skin turgor, sunken eyes, and long capillary refill time (>2 seconds)], urine color, urine specific gravity, saliva flow rate, and saliva osmolality. Plasma osmolality and the blood urea nitrogen to creatinine ratio were assessed as reference standards of hydration with 21% of participants classified with water-loss dehydration (plasma osmolality >295 mOsm/kg), 19% classified with water-and-solute-loss dehydration (blood urea nitrogen to creatinine ratio >20), and 60% classified as euhydrated. All physical signs showed poor sensitivity (0%-44%) for detecting either form of dehydration, with only low systolic blood pressure demonstrating potential utility for aiding the diagnosis of water-and-solute-loss dehydration [diagnostic odds ratio (OR) = 14.7]. Neither urine color, urine specific gravity, nor saliva flow rate could discriminate hydration status (area under the receiver operating characteristic curve = 0.49-0.57, P > .05). In contrast, saliva osmolality demonstrated moderate diagnostic accuracy (area under the receiver operating characteristic curve = 0.76, P < .001) to distinguish both dehydration types (70% sensitivity, 68% specificity, OR = 5.0 (95% confidence interval 1.7-15.1) for water-loss dehydration, and 78% sensitivity, 72% specificity, OR = 8.9 (95% confidence interval 2.5-30.7) for water-and-solute-loss dehydration). With the exception of low systolic blood pressure, which could aid in the specific diagnosis of water-and-solute-loss dehydration, physical signs and urine markers show little utility to determine if an elderly patient is dehydrated. Saliva osmolality demonstrated superior diagnostic accuracy compared with physical signs and urine markers, and may have utility for the assessment of both water-loss and water-and-solute-loss dehydration in older individuals. It is particularly noteworthy that saliva osmolality was able to detect water-and-solute-loss dehydration, for which a measurement of plasma osmolality would have no diagnostic utility. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
An Analysis of the Impact of Valve Closure Time on the Course of Water Hammer
NASA Astrophysics Data System (ADS)
Kodura, Apoloniusz
2016-06-01
The knowledge of transient flow in pressure pipelines is very important for the designing and describing of pressure networks. The water hammer is the most common example of transient flow in pressure pipelines. During this phenomenon, the transformation of kinetic energy into pressure energy causes significant changes in pressure, which can lead to serious problems in the management of pressure networks. The phenomenon is very complex, and a large number of different factors influence its course. In the case of a water hammer caused by valve closing, the characteristic of gate closure is one of the most important factors. However, this factor is rarely investigated. In this paper, the results of physical experiments with water hammer in steel and PE pipelines are described and analyzed. For each water hammer, characteristics of pressure change and valve closing were recorded. The measurements were compared with the results of calculations perfomed by common methods used by engineers - Michaud's equation and Wood and Jones's method. The comparison revealed very significant differences between the results of calculations and the results of experiments. In addition, it was shown that, the characteristic of butterfly valve closure has a significant influence on water hammer, which should be taken into account in analyzing this phenomenon. Comparison of the results of experiments with the results of calculations? may lead to new, improved calculation methods and to new methods to describe transient flow.
Pressure-specific and multiple pressure response of fish assemblages in European running waters☆
Schinegger, Rafaela; Trautwein, Clemens; Schmutz, Stefan
2013-01-01
We classified homogenous river types across Europe and searched for fish metrics qualified to show responses to specific pressures (hydromorphological pressures or water quality pressures) vs. multiple pressures in these river types. We analysed fish taxa lists from 3105 sites in 16 ecoregions and 14 countries. Sites were pre-classified for 15 selected pressures to separate unimpacted from impacted sites. Hierarchical cluster analysis was used to split unimpacted sites into four homogenous river types based on species composition and geographical location. Classification trees were employed to predict associated river types for impacted sites with four environmental variables. We defined a set of 129 candidate fish metrics to select the best reacting metrics for each river type. The candidate metrics represented tolerances/intolerances of species associated with six metric types: habitat, migration, water quality sensitivity, reproduction, trophic level and biodiversity. The results showed that 17 uncorrelated metrics reacted to pressures in the four river types. Metrics responded specifically to water quality pressures and hydromorphological pressures in three river types and to multiple pressures in all river types. Four metrics associated with water quality sensitivity showed a significant reaction in up to three river types, whereas 13 metrics were specific to individual river types. Our results contribute to the better understanding of fish assemblage response to human pressures at a pan-European scale. The results are especially important for European river management and restoration, as it is necessary to uncover underlying processes and effects of human pressures on aquatic communities. PMID:24003262
Fire testing and computer modelling of rail tank-cars engulfed in fires : literature review
DOT National Transportation Integrated Search
2006-03-01
This literature review contains important references relating to fire effects on pressure : vessels. The specific pressure vessels of interest are rail tank-cars carrying pressure : liquefied gases such as LPG and anhydrous ammonia. The literature id...
NASA Astrophysics Data System (ADS)
Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco
2016-11-01
The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2010 CFR
2010-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2014 CFR
2014-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2014 CFR
2014-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2010 CFR
2010-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2013 CFR
2013-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Hospital visits for gastrointestinal Illness after a major water main break in 2010
Background/Aim Water main breaks can occur due to the stresses of an aging infrastructure and changing climate. Water main breaks are a public health concern because they can cause pressure transients (specifically, abrupt decreases in water pressure/flow in the pipeline), which ...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...
Water cycles in closed ecological systems: effects of atmospheric pressure.
Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A
2002-01-01
In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.
The use of pneumatically generated water pressure signals for aquifer characterization
NASA Astrophysics Data System (ADS)
Fort, M.; Roberts, R.; Chace, D.
2013-12-01
The use of pneumatically generated pressure signals for aquifer characterization Hydraulic tests are the most reliable method of obtaining estimates of hydrologic properties, such as conductivity, that are essential for flow and transport modeling. The use of a sinusoidal signal for hydraulic testing is well established, with Streltsova (1988), Rasmussen (2003) and others having developed analytic solutions. Sinusoidal tests provide a unique easily distinguished signal that reduces ambiguity during analysis and we show that a sinusoidal pressure signal propagates farther into the formation than a standard slug-test signal. If a sinusoidal test is combined with a slug and/or a constant rate test, it can further reduce uncertainty in the estimated parameter values. We demonstrate how pneumatic pressure can be used to generate all three of these signals. By positioning pressure transducers both below the water level and in the head space above the water, we can monitor the total pressure acting on the formation and the changes in water level. From the changes in water level, it is possible to calculate the flow rate in and out of the well, assuming that the well diameter and water density are known. Using gas flow controllers with a Supervisory Control And Data Acquisition (SCADA) system we are able to precisely control the pressures in the well. The use of pneumatic pressure has the advantage that it requires less equipment (no pumps) and produces no water. We also show how the numerical well test analysis program nSIGHTS can be used to analyze all three types of tests simultaneously and to assess the relative contribution of each type of test to the parameter estimation. nSIGHTS was recently released as open source by Sandia National Laboratories and is available for free.
Water cycles in closed ecological systems: effects of atmospheric pressure
NASA Technical Reports Server (NTRS)
Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)
2002-01-01
In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.
[The water content reference material of water saturated octanol].
Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan
2011-03-01
The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.
NASA Astrophysics Data System (ADS)
Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.
2012-12-01
Stable carbon isotope ratios (δ13C) are a powerful tool for inferring carbon sources and mixing ratios of injected and baseline CO2 in storage reservoirs. Furthermore, CO2 releasing and consuming processes can be deduced if the isotopic compositions of end-members are known. At low CO2 pressures (pCO2), oxygen isotope ratios (δ18O) of CO2 usually assume the δ18O of the water plus a temperature-dependent isotope fractionation factor. However, at very high CO2 pressures as they occur in CO2 storage reservoirs, the δ18O of the injected CO2 may in fact change the δ18O of the reservoir brine. Hence, changing δ18O of brine constitutes an additional tracer for reservoir-internal carbon dynamics and allows the determination of the amount of free phase CO2 present in the reservoir (Johnson et al. 2011). Further systematic research to quantify carbon and oxygen isotope fractionation between the involved inorganic carbon species (CO2, H2CO3, HCO3-, CO32-, carbonate minerals) and kinetic and equilibrium isotope effects during gas-water-rock interactions is necessary because p/T conditions and salinities in CO2 storage reservoirs may exceed the boundary conditions of typical environmental isotope applications, thereby limiting the accuracy of stable isotope monitoring approaches in deep saline formations (Becker et al. 2011). In doing so, it is crucial to compare isotopic patterns observed in laboratory experiments with artificial brines to similar experiments with original fluids from representative field sites to account for reactions of dissolved inorganic carbon (DIC) with minor brine components. In the CO2ISO-LABEL project, funded by the German Ministry for Education and Research, multiple series of laboratory experiments are conducted to determine the influence of pressure, temperature and brine composition on the δ13C of DIC and the δ18O of brines in water-CO2-rock reactions with special focus placed on kinetics and stable oxygen and carbon isotope fractionation factors. Laboratory experiments with original reservoir fluids from CO2 storage reservoirs in Canada using supercritical fluid extraction reactors are being conducted at temperatures of up to 200 °C and CO2 pressures of up to 20 MPa. Preliminary results show that equilibration times for δ18O in high saline waters increase by an order of magnitude compared to fresh water, with exact times depending on CO2 partial pressure, stirring and the contact area between the phases. References Becker, V. et al., 2011. Predicting δ13CDIC dynamics in CCS: A scheme based on a review of inorganic carbon chemistry under elevated pressures and temperatures. International Journal of Greenhouse Gas Control, 5, pp.1250-1258. Johnson, G. et al., 2011. Using oxygen isotope ratios to quantitatively assess trapping mechanisms during CO2 injection into geological reservoirs: The Pembina case study. Chemical Geology, 283(3-4), pp.185-193.
Pavlik, B M
2001-08-01
Measurements of xylem water potential, leaf conductance, and leaf pressure-volume characteristics on the geothermal endemic Dichanthelium lanuginosum var. thermale (DILA) were used to delineate operational ranges during wet and dry years and among several microsites at Little Geysers, Sonoma County, California, USA. Plants seldom experienced water potentials more negative that -1.5 MPa. Other nongeothermal, widespread species experienced the lower water potentials typical of chaparral and woodland plants. DILA was able to effectively utilize geothermal water while the widespread species could not and was able to keep stomata open during most of the year. There was evidence to suggest that DILA had some ability to acclimate with significant shifts in Pio and psio during the dry 1994 summer, especially in the upland microhabitat. Nevertheless, minimum leaf turgor values in the upland came very close to, or dropped below, the 0.2-0.3 MPa threshold thought necessary to maintain stomatal opening and photosynthesis. DILA thus depends upon the unique water status of fumarole soils in the vicinity of the Little Geysers to persist in an otherwise lethal regional mosaic of climate, soil, and vegetation. The physiological data were used to derive reference ranges for subsequent monitoring of DILA at Little Geysers. Such ranges are required to determine the future impact, if any, of geothermal development on the persistence of this rare grass and its complex ecosystem.
Dew-point hygrometry system for measurement of evaporative water loss in infants.
Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J
1997-03-01
Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.
Wesson, R.L.
1981-01-01
Quantitative calculations for the effect of a fault creep event on observations of changes in water level in wells provide an approach to the tectonic interpretation of these phenomena. For the pore pressure field associated with an idealized creep event having an exponential displacement versus time curve, an analytic expression has been obtained in terms of exponential-integral functions. The pore pressure versus time curves for observation points near the fault are pulselike; a sharp pressure increase (or decrease, depending on the direction of propagation) is followed by more gradual decay to the normal level after the creep event. The time function of the water level change may be obtained by applying the filter - derived by A.G.Johnson and others to determine the influence of atmospheric pressure on water level - to the analytic pore pressure versus time curves. The resulting water level curves show a fairly rapid increase (or decrease) and then a very gradual return to normal. The results of this analytic model do not reproduce the steplike changes in water level observed by Johnson and others. If the procedure used to obtain the water level from the pore pressure is correct, these results suggest that steplike changes in water level are not produced by smoothly propagating creep events but by creep events that propagate discontinuously, by changes in the bulk properties of the region around the well, or by some other mechanism.-Author