Sample records for reflect climate variability

  1. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time series analysis of the PC scores using techniques such as Singular Spectrum Analysis (SSA) and Multichannel SSA will provide information about the temporal variability of the dominant variables. Quantitative comparison techniques can evaluate how well the OSSE reproduces the temporal variability observed by SCIAMACHY spectral reflectance measurements during the first decade of the 21st century. PCA of OSSE-simulated reflectance can also be used to study how the dominant spectral variables change on centennial scales for forced and unforced climate change scenarios. To have confidence in OSSE predictions of the spectral variability of hyperspectral reflectance, it is first necessary for us to evaluate the degree to which the OSSE simulations are able to reproduce the Earth?s present-day spectral variability.

  2. Quantitative Comparison of the Variability in Observed and Simulated Shortwave Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda, L.; Pilewskie, P.; Kindel, B. C.; Feldman, D. R.; Collins, W. D.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system that has been designed to monitor the Earth's climate with unprecedented absolute radiometric accuracy and SI traceability. Climate Observation System Simulation Experiments (OSSEs) have been generated to simulate CLARREO hyperspectral shortwave imager measurements to help define the measurement characteristics needed for CLARREO to achieve its objectives. To evaluate how well the OSSE-simulated reflectance spectra reproduce the Earth s climate variability at the beginning of the 21st century, we compared the variability of the OSSE reflectance spectra to that of the reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Principal component analysis (PCA) is a multivariate decomposition technique used to represent and study the variability of hyperspectral radiation measurements. Using PCA, between 99.7%and 99.9%of the total variance the OSSE and SCIAMACHY data sets can be explained by subspaces defined by six principal components (PCs). To quantify how much information is shared between the simulated and observed data sets, we spectrally decomposed the intersection of the two data set subspaces. The results from four cases in 2004 showed that the two data sets share eight (January and October) and seven (April and July) dimensions, which correspond to about 99.9% of the total SCIAMACHY variance for each month. The spectral nature of these shared spaces, understood by examining the transformed eigenvectors calculated from the subspace intersections, exhibit similar physical characteristics to the original PCs calculated from each data set, such as water vapor absorption, vegetation reflectance, and cloud reflectance.

  3. Climate variability and plant response at the Santa Rita Experimental Range, Arizona

    Treesearch

    Michael A. Crimmins; Theresa M. Mau-Crimmins

    2003-01-01

    Climatic variability is reflected in differential establishment, persistence, and spread of plant species. Although studies have investigated these relationships for some species and functional groups, few have attempted to characterize the specific sequences of climatic conditions at various temporal scales (subseasonal, seasonal, and interannual) associated with...

  4. Pollen-based reconstruction of Holocene climate variability in the Eifel region evaluated with stable isotopes

    NASA Astrophysics Data System (ADS)

    Kühl, Norbert; Moschen, Robert; Wagner, Stefanie

    2010-05-01

    Pollen as well as stable isotopes have great potential as climate proxy data. While variability in these proxy data is frequently assumed to reflect climate variability, other factors than climate, including human impact and statistical noise, can often not be excluded as primary cause for the observed variability. Multiproxy studies offer the opportunity to test different drivers by providing different lines of evidence for environmental change such as climate variability and human impact. In this multiproxy study we use pollen and peat humification to evaluate to which extent stable oxygen and carbon isotope series from the peat bog "Dürres Maar" reflect human impact rather than climate variability. For times before strong anthropogenic vegetation change, isotope series from Dürres Maar were used to validate quantitative reconstructions based on pollen. Our study site is the kettle hole peat bog "Dürres Maar" in the Eifel low mountain range, Germany (450m asl), which grew 12m during the last 10,000 years. Pollen was analysed with a sum of at least 1000 terrestrial pollen grains throughout the profile to minimize statistical effects on the reconstructions. A recently developed probabilistic indicator taxa method ("pdf-method") was used for the quantitative climate estimates (January and July temperature) based on pollen. For isotope analysis, attention was given to use monospecific Sphagnum leaves whenever possible, reducing the potential of a species effect and any potential artefact that can originate from selective degradation of different morphological parts of Sphagnum plants (Moschen et al., 2009). Pollen at "Dürres Maar" reflect the variable and partly strong human impact on vegetation during the last 4000 years. Stable isotope time series were apparently not influenced by human impact at this site. This highlights the potential of stable isotope investigations from peat for climatic interpretation, because stable isotope series from lacustrine sediments might strongly react to anthropogenic deforestation, as carbon isotope time series from the adjacent Lake Holzmaar suggest. Reconstructions based on pollen with the pdf-method are robust to the human impact during the last 4000 years, but do not reproduce the fine scale climate variability that can be derived from the stable isotope series (Kühl et al., in press). In contrast, reconstructions on the basis of pollen data show relatively pronounced climate variability (here: January temperature) during the Mid-Holocene, which is known from many other European records. The oxygen isotope time series as available now indicate that at least some of the observed variability indeed reflects climate variability. However, stable carbon isotopes show little concordance. At this stage our results point in the direction that 1) the isotopic composition might reflect a shift in influencing factors during the Holocene, 2) climate trends can robustly be reconstructed with the pdf method and 3) fine scale climate variability can potentially be reconstructed using the pdf-method, given that climate sensitive taxa at their distribution limit are present. The latter two conclusions are of particular importance for the reconstruction of climatic trends and variability of interglacials older than the Holocene, when sites are rare and pollen is often the only suitable proxy in terrestrial records. Kühl, N., Moschen, R., Wagner, S., Brewer, S., Peyron, O., in press. A multiproxy record of Late Holocene natural and anthropogenic environmental change from the Sphagnum peat bog Dürres Maar, Germany: implications for quantitative climate reconstructions based on pollen. J. Quat. Sci., DOI: 10.1002/jqs.1342. Available online. Moschen, R., Kühl, N., Rehberger, I., Lücke, A., 2009. Stable carbon and oxygen isotopes in sub-fossil Sphagnum: Assessment of their applicability for palaeoclimatology. Chemical Geology 259, 262-272.

  5. Millennial-scale climate variations recorded in Early Pliocene colour reflectance time series from the lacustrine Ptolemais Basin (NW Greece)

    NASA Astrophysics Data System (ADS)

    Steenbrink, J.; Kloosterboer-van Hoeve, M. L.; Hilgen, F. J.

    2003-03-01

    Quaternary climate proxy records show compelling evidence for climate variability on time scales of a few thousand years. The causes for these millennial-scale or sub-Milankovitch cycles are still poorly understood, not least due to the complex feedback mechanisms of large ice sheets during the Quaternary. We present evidence of millennial-scale climate variability in Early Pliocene lacustrine sediments from the intramontane Ptolemais Basin in northwestern Greece. The sediments are well exposed in a series of open-pit lignite mines and exhibit a distinct millennial-scale sedimentary cyclicity of alternating lignites and lacustrine marl beds that resulted from precession-induced variations in climate. The higher-frequency, millennial-scale cyclicity is particularly prominent within the grey-coloured marl segment of individual cycles. A stratigraphic interval of ˜115 ka, covering five precession-induced sedimentary cycles, was studied in nine parallel sections from two open-pit lignite mines located several km apart. High-resolution colour reflectance records were used to quantify the within-cycle variability and to determine its lateral continuity. Much of the within-cycle variability could be correlated between the parallel sections, even in fine detail, which suggests that these changes reflect basin-wide variations in environmental conditions related to (regional) climate fluctuations. Interbedded volcanic ash beds demonstrate the synchronicity of these fluctuations and spectral analysis of the reflectance time series shows a significant concentration of within-cycle variability at periods of ˜11, ˜5.5 and ˜2 ka. The occurrence of variability at such time scales at times before the intensification of the Northern Hemisphere glaciation suggests that they cannot solely have resulted from internal ice-sheet dynamics. Possible candidates include harmonics or combination tones of the main orbital cycles, variations in solar output or periodic motions of the Earth and Moon.

  6. Landsat Surface Reflectance Climate Data Records

    USGS Publications Warehouse

    ,

    2014-01-01

    Landsat Surface Reflectance Climate Data Records (CDRs) are high level Landsat data products that support land surface change studies. Climate Data Records, as defined by the National Research Council, are a time series of measurements with sufficient length, consistency, and continuity to identify climate variability and change. The U.S. Geological Survey (USGS) is using the valuable 40-year Landsat archive to create CDRs that can be used to document changes to Earth’s terrestrial environment.

  7. Millennial-scale Climate Variations Recorded As Far Back As The Early Pliocene

    NASA Astrophysics Data System (ADS)

    Steenbrink, J.; Hilgen, F. J.; Lourens, L. J.

    Quaternary climate proxy records show compelling evidence for climate variability on time scales of a few thousand years. The causes for these millennial-scale or sub- Milankovitch cycles are yet poorly understood, not in the least due to the complex feedback mechanisms of large ice-sheets during the Quaternary. We present evidence of millennial-scale climate variability in Early Pliocene lacustrine sediments from the intramontane Ptolemais Basin in northwestern Greece. The sediments are well ex- posed in a series of open-pit lignite mines and exhibit a distinct m-scale sedimentary cyclicity of alternating lignites and lacustrine marl beds that result from precession- induced variations in climate. A higher-frequency cyclicity is particular prominent within the marl segment of individual cycles. A stratigraphic interval of~115 kyr, cov- ering five precession-induced sedimentary cycles, was studied in nine parallel sections from two quarries located several km apart. Colour reflectance records were used to quantify the within-cycle variability and to determine its lateral continuity. Much of the within-cycle variability could be correlated between the parallel sections, even in fine detail, which suggests that these changes reflect basin-wide variations in environ- mental conditions related to (regional) climate fluctuations. Interbedded volcanic ash beds demonstrate the synchronicity of these fluctuations and spectral analysis of the reflectance time series shows a significant concentration of variability at periods of ~11,~5.5 and~2 kyr. Their occurrence at times before the intensification of the North- ern Hemisphere glaciation suggests that they cannot solely have resulted from internal ice-sheet dynamics. Possible candidates include harmonics or combination tones of the main orbital cycles, variations in solar output or periodic motions of the Earth and moon.

  8. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  9. Ad hoc committee on global climate issues: Annual report

    USGS Publications Warehouse

    Gerhard, L.C.; Hanson, B.M.B.

    2000-01-01

    The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.

  10. Climate-driven vital rates do not always mean climate-driven population.

    PubMed

    Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel

    2016-12-01

    Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.

  11. Vegetation and climate variability in tropical and subtropical South America during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Behling, H.

    2013-05-01

    Detailed palynological studies from different ecosystems in tropical and subtropical South America reflect interesting vegetation and climate dynamics, in particular during glacial and late glacial times. Records from ecosystems such as the Amazon rainforest, savanna, Caatinga, Atlantic rainforest, Araucaria forest and grasslands provide interesting insight of past climate variability. The influence of events such as Dansgaard-Oeschger, Heinnrich stadials, changes in the thermohaline circulation (THC) will be discussed. In particular the Younger Dryas (YD) period shows at different places distinct vegetational changes, revealing unexpected past climatic conditions.

  12. Centennial-scale winter climate variability over the last two millennia in the northern Gulf of Mexico based on paired δ18O and Mg/Ca in Globorotalia truncatulinoides

    NASA Astrophysics Data System (ADS)

    Fortiz, V.; Thirumalai, K.; Richey, J. N.; Quinn, T. M.

    2014-12-01

    We present a replicated record of paired foraminiferal δ18O and Mg/Ca variations in multi-cores collected from the Garrison Basin (26º43'N, 93º55'W) in the northern Gulf of Mexico (GOM). Using δ18O (sea surface temperature, SST; sea surface salinity, SSS proxy) and Mg/Ca (SST proxy) variations in non-encrusted planktic foraminifer Globorotalia truncatulinoides we produce time series spanning the last two millennia that is characterized by centennial-scale climate variability. We interpret geochemical variations in G. truncatulinoides to reflect winter climate variability because data from a sediment trap, located ~350 km east of the core site, reveal that annual flux of G. truncatulinoides is heavily weighted towards winter (peak production in January-February; Spear et al., 2011). Similar centennial-scale variability is also observed in the foraminiferal geochemistry of Globigerinoides ruber in the same multi-cores, which likely reflect mean annual climate variations. Our replicated results and comparisons to other SST reconstructions from the region lend confidence that the northern GOM surface ocean underwent large, centennial-scale variability, most likely dominated by changes in winter climate. This variability occurred in a time period where climate forcing is small and background conditions are similar to pre-industrial times. References: Spear, J.W.; Poore, R.Z., and Quinn, T.M., 2011, Globorotalia truncatulinoides (dextral) Mg/Ca as a proxy for Gulf of Mexico winter mixed-layer temperature: Evidence from a sediment trap in the northern Gulf of Mexico. Marine Micropaleontology, 80, 53-61.

  13. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  14. 1,500 Year Periodicity in Central Texas Moisture Source Variability Reconstructed from Speleothems

    NASA Astrophysics Data System (ADS)

    Wong, C. I.; James, E. W.; Silver, M. M.; Banner, J. L.; Musgrove, M.

    2014-12-01

    Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. Presently, there are few high-resolution Holocene climate records for this region, which limits the assessment of precipitation variability during a relatively stable climatic interval that comprises the closest analogue to the modern climate state. To address this, we present speleothem growth rate and δ18O records from two central Texas caves that span the mid to late Holocene, and assess hypotheses about the climate processes that can account for similarity in the timing and periodicity of variability with other regional and global records. A key finding is the independent variation of speleothem growth rate and δ18O values, suggesting the decoupling of moisture amount and source. This decoupling likely occurs because i) the often direct relation between speleothem growth rate and moisture availability is complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and ii) speleothem δ18O variations reflect changes in moisture source (i.e., proportion of Pacific- vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount. Furthermore, we document a 1,500-year periodicity in δ18O values that is consistent with variability in the percent of hematite-stained grains in North Atlantic sediments, North Pacific SSTs, and El Nino events preserved in an Ecuadorian lake. Previous modeling experiments and analysis of observational data delineate the coupled atmospheric-ocean processes that can account for the coincidence of such variability in climate archives across the northern hemisphere. Reduction of the thermohaline circulation results in North Atlantic cooling, which translates to cooler North Pacific SSTs. The resulting reduction of the meridional SST gradient in the Pacific weakens the air-sea coupling that modulates ENSO activity, resulting in faster growth of interannual anomalies and larger mature El Niño relative to La Niña events. The asymmetrically enhanced ENSO variability can account for a greater portion of Pacific-derived moisture reflected by speleothem δ18O values.

  15. Climate Quality Broadband and Narrowband Solar Reflected Radiance Calibration Between Sensors in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Doelling, David R.; Young, David F.; Loeb, Norman G.; Garber, Donald P.; MacDonnell, David G.

    2008-01-01

    vAs the potential impacts of global climate change become more clear [1], the need to determine the accuracy of climate prediction over decade-to-century time scales has become an urgent and critical challenge. The most critical tests of climate model predictions will occur using observations of decadal changes in climate forcing, response, and feedback variables. Many of these key climate variables are observed by remotely sensing the global distribution of reflected solar spectral and broadband radiance. These "reflected solar" variables include aerosols, clouds, radiative fluxes, snow, ice, vegetation, ocean color, and land cover. Achieving sufficient satellite instrument accuracy, stability, and overlap to rigorously observe decadal change signals has proven very difficult in most cases and has not yet been achieved in others [2]. One of the earliest efforts to make climate quality observations was for Earth Radiation Budget: Nimbus 6/7 in the late 1970s, ERBE in the 1980s/90s, and CERES in 2000s are examples of the most complete global records. The recent CERES data products have carried out the most extensive intercomparisons because if the need to merge data from up to 11 instruments (CERES, MODIS, geostationary imagers) on 7 spacecraft (Terra, Aqua, and 5 geostationary) for any given month. In order to achieve climate calibration for cloud feedbacks, the radiative effect of clear-sky, all-sky, and cloud radiative effect must all be made with very high stability and accuracy. For shortwave solar reflected flux, even the 1% CERES broadband absolute accuracy (1-sigma confidence bound) is not sufficient to allow gaps in the radiation record for decadal climate change. Typical absolute accuracy for the best narrowband sensors like SeaWiFS, MISR, and MODIS range from 2 to 4% (1-sigma). IPCC greenhouse gas radiative forcing is approx. 0.6 W/sq m per decade or 0.6% of the global mean shortwave reflected flux, so that a 50% cloud feedback would change the global reflected flux by approx. 0.3 W/sq m or 0.3% per decade in broadband SW calibration change. Recent results comparing CERES reflected flux changes with MODIS, MISR, and SeaWiFS narrowband changes concluded that only SeaWiFS and CERES were approaching sufficient stability in calibration for decadal climate change [3]. Results using deep convective clouds in the optically thick limit as a stability target may prove very effective for improving past data sets like ISCCP. Results for intercalibration of geostationary imagers to CERES using an entire month of regional nearly coincident data demonstrates new approaches to constraining the calibration of current geostationary imagers. The new Decadal Survey Mission CLARREO is examining future approaches to a "NIST-in-Orbit" approach of very high absolute accuracy reference radiometers that cover the full solar and infrared spectrum at high spectral resolution but at low spatial resolution. Sampling studies have shown that a precessing CLARREO mission could calibrate other geo and leo reflected solar radiation and thermal infrared sensors.

  16. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record

    NASA Astrophysics Data System (ADS)

    Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn

    2015-11-01

    Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate variability, however, is poorly constrained owing to considerable variability among the different records. To help address this, we present a new speleothem (NBJ) reconstruction from a central Texas cave that comprises the highest resolution proxy record to date, spanning the mid to late Holocene. NBJ trace-element concentrations indicate variable moisture conditions with no clear temporal trend. There is a decoupling between NBJ growth rate, trace-element concentrations, and δ18O values, which indicate that (i) the often direct relation between speleothem growth rate and moisture availability is likely complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and (ii) speleothem δ18O variations likely reflect changes in moisture source (i.e., proportion of Pacific-vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount.

  17. Preview of Our Changing Planet. The U.S. Climate Change Science Program for Fiscal Year 2008

    DTIC Science & Technology

    2007-04-01

    reduce the uncertainty in predictions of the global and regional water cycle and surface climate. Sunlight not reflected back to space provides the...research elements include atmospheric composition, climate variability and change, the global water cycle , land-use and land-cover change, the global...entire planet, and researchers with the ability to better explain observed changes in the climate system. Global Water Cycle – Research associated with

  18. Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography

    NASA Astrophysics Data System (ADS)

    Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.

    2018-02-01

    The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean-atmosphere climate dynamics. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño-Southern Oscillation, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene.

  19. 300 Years of East African Climate Variability from Oxygen Isotopes in a Kenya Coral

    NASA Astrophysics Data System (ADS)

    Dunbar, R.

    2003-04-01

    Instrumental records of climate variability from the western Indian Ocean are relatively scarce and short. Here I present a monthly resolution stable isotopic record acquired from a large living coral head (Porites) from the Malindi Marine Reserve, Kenya (3^oS, 40^oE). The annual chronology is precise and is based on exceptionally clear high and low density growth band couplets. The record extends from 1696 to 1996 A.D., making it the longest coral climate record from the Indian Ocean and one of the longest available worldwide. We have analyzed the uppermost portion of the coral colony in triplicate, using 3 separate cores. This upper section, used for calibration purposes, also provides estimates of signal fidelity and noise in the climate recording system internal to the colony. Coral δ18O at this site primarily records SST; linear regression of monthly coral δ18O vs. SST yields a slope of -0.26 ppm δ18O per ^oC, and δ18O explains ˜57% of the SST variance. Additional isotopic variability may result from changes in seawater δ18O due to local runoff or regional evaporation/precipitation balance, but these changes are likely to be small because local rainfall δ18O is not strongly depleted relative to seawater and salinity gradients are small. The coral record indicates a clear warming trend of about 1.5^oC that accelerates in the latest 20th century, superimposed on strong decadal variability that persists throughout the record. In fact, δ18O values in the 1990's exceed the 300 year envelope (they are lower) and correspond with apparently unprecedented coral bleaching in coastal East Africa. The decadal component of the Malindi coral record reflects a regional climate signal spanning much of the western equatorial Indian Ocean. In general, East African SST and rainfall are better correlated with Pacific ENSO indicators than with the Indian Monsoon at all periods (inter-annual through multi-decadal) but the correlation weakens after 1975. One dramatic new result we report here is a strong indication of a major cool and dry period from 1750--1820 A.D. This is the single largest multi-decadal anomaly of the past 300 years and correlates perfectly in time with the historically and anecdotally defined Lapanarat Drought. Our results indicate a strong link between multi-decadal tropical cold SST anomalies And far-reaching continental droughts in East Africa. Causes and links to other climate recording systems will be explored. Interannual-decadal SST variations are strongly coherent with ENSO indices and other ENSO-sensitive coral records on decadal and interannual time scales. The decadal component of the Malindi coral record reflects a regional climate signal spanning much of the western equatorial Indian Ocean. Previous work has argued that this component likely reflects a monsoonal influence. However, decadal variance in both Malindi and Seychelles (Charles et al. 1997) coral records is more strongly coherent with ENSO indices than with the India or East Africa rain indices. The coherency of both coral records with Pacific indicators suggests instead that Indian Ocean variability reflects decadal ENSO-like variability originating in the Pacific. These records don't correlate significantly with the Pacific Decadal Oscillation implying a dominant role for the tropical Pacific (as opposed to extra-tropical regions) as a source of regional decadal variability in the western Indian Ocean. This work confirms that the tropical Pacific can act as an agent of decadal climate variability over a very large spatial scale.

  20. Community benthic paleoecology from high-resolution climate records: Mollusca and foraminifera in post-glacial environments of the California margin

    NASA Astrophysics Data System (ADS)

    Myhre, Sarah E.; Kroeker, Kristy J.; Hill, Tessa M.; Roopnarine, Peter; Kennett, James P.

    2017-01-01

    Paleoecological reconstructions of past climate are often based on a single taxonomic group with a consistent presence. Less is known about the relationship between multi-taxon community-wide change and climate variability. Here we reconstruct paleoecological change in a Late Quaternary (16.1-3.4 ka) sediment core from the California margin (418 m below sea level) of Santa Barbara Basin (SBB), USA, using Mollusca (Animalia) and Foraminifera (Rhizaria) microfossils. Building upon previous investigations, we use multivariate ordination and cluster analyses to interpret community-scale changes in these distinctly different taxonomic groups across discrete climate episodes. The strongest differences between seafloor biological communities occurred between glacial (prior to Termination IA, 14.7 ka) and interglacial climate episodes. Holocene communities were well partitioned, indicating that sub-millennial oceanographic variability was recorded by these microfossils. We document strong evidence of chemosynthetic trophic webs and sulfidic environments (from gastropod Alia permodesta and bivalve Lucinoma aequizonata), which characterized restricted intervals previously interpreted as well oxygenated (such as the Pre-Bølling Warming). Mollusc records indicate first-order trophic energetic shifts between detrital and chemosynthetically-fixed carbon. Molluscs associated with widely different physiological preferences occur here within single, decadal intervals of sediment, and as such mollusc assemblages may reflect significant inter-decadal oceanographic variability. Foraminifera assemblages provide exceptional records of the sequential, chronological progression of the deglacial climatic and oceanographic events, whereas mollusc assemblages reflect non-chronological similarities in reoccurring communities. Foraminifera taxa that drive community similarity here are also independently recognized as marker species for seafloor hypoxia regimes, which provides support for the idea that oxygenation change is a principal driver of seafloor environmental variability.

  1. Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record

    USGS Publications Warehouse

    Wong, Corinne I.; Banner, Jay L.; Musgrove, MaryLynn

    2015-01-01

    Delineating the climate processes governing precipitation variability in drought-prone Texas is critical for predicting and mitigating climate change effects, and requires the reconstruction of past climate beyond the instrumental record. We synthesize existing paleoclimate proxy data and climate simulations to provide an overview of climate variability in Texas during the Holocene. Conditions became progressively warmer and drier transitioning from the early to mid Holocene, culminating between 7 and 3 ka (thousand years ago), and were more variable during the late Holocene. The timing and relative magnitude of Holocene climate variability, however, is poorly constrained owing to considerable variability among the different records. To help address this, we present a new speleothem (NBJ) reconstruction from a central Texas cave that comprises the highest resolution proxy record to date, spanning the mid to late Holocene. NBJ trace-element concentrations indicate variable moisture conditions with no clear temporal trend. There is a decoupling between NBJ growth rate, trace-element concentrations, and δ18O values, which indicate that (i) the often direct relation between speleothem growth rate and moisture availability is likely complicated by changes in the overlying ecosystem that affect subsurface CO2 production, and (ii) speleothem δ18O variations likely reflect changes in moisture source (i.e., proportion of Pacific-vs. Gulf of Mexico-derived moisture) that appear not to be linked to moisture amount.

  2. Satellite-based trends of solar radiation and cloud parameters in Europe

    NASA Astrophysics Data System (ADS)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  3. MALIBU: A High Spatial Resolution Multi-Angle Imaging Unmanned Airborne System to Validate Satellite-derived BRDF/Albedo Products

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.

    2016-12-01

    Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and international partners.

  4. A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly.

    PubMed

    Smirnov, D A; Breitenbach, S F M; Feulner, G; Lechleitner, F A; Prufer, K M; Baldini, J U L; Marwan, N; Kurths, J

    2017-09-11

    Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.

  5. Drastic shifts in the Levant hydroclimate during the last interglacial indicate changes in the tropical climate and winter storm tracks

    NASA Astrophysics Data System (ADS)

    Kiro, Y.; Goldstein, S. L.; Kushnir, Y.; Lazar, B.; Stein, M.

    2017-12-01

    Marine Isotope Stage (MIS) 5e was a warm interglacial with where with significantly varying insolation and hence varied significantly throughout this time suggesting highly variable climate. The ICDP Dead Sea Deep Drilling Project recovered a 460m record of the past 220ka, reflecting the variable climate along MIS 5e. This time interval is reflected by alternating halite and detritus sequences, including 20m of halite-free detritus during the peak insolation at 125 ka. The Dead Sea salt budget indicates that the Levant climate was extremely arid when halite formed, reaching 20% of the present runoff. The halite-free detritus layer reflects increased precipitation to levels similar to present day, assuming similar spatial and temporal rainfall patterns. However, the 234U/238U activity ratio in the lake, reflected by authigenic minerals (aragonite, gypsum and halite), shifts from values of 1.5 (reflecting the Jordan River, the present main water source) down to 1.3 at 125-122ka during the MIS5e insolation peak and 1.0 at 118-116ka. The low 234U/238U reflects increased flash floods and eastern water sources (234U/238U 1.05-1.2) from the drier part of the watershed in the desert belt. The intermediate 234U/238U of 1.3 suggests that the Jordan River, fed from Mediterranean-sourced storm tracks, continued to flow along with an increase in southern and eastern water sources. NCAR CCSM3 climate model runs for 125ka indicate increases in both Summer and Winter precipitation. The drastic decrease to 234U/238U 1.0 occurs during the driest period, indicating a near shutdown of Jordan River flow, and water input only through flash floods and southern and eastern sources. The 120ka climate model runs shows a decrease in Winter and increase in Fall precipitation as a result of an increased precipitation in the tropics. The extreme aridity, associated with increased flooding is similar to patterns expected due to future warming. The increase in aridity is the result of expansion of the desert-belt and increases in southern precipitation and indicates an important link between the tropical and mid-latitude climate.

  6. Pronounced differences between observed and CMIP5-simulated multidecadal climate variability in the twentieth century

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey

    2017-06-01

    Identification and dynamical attribution of multidecadal climate undulations to either variations in external forcings or to internal sources is one of the most important topics of modern climate science, especially in conjunction with the issue of human-induced global warming. Here we utilize ensembles of twentieth century climate simulations to isolate the forced signal and residual internal variability in a network of observed and modeled climate indices. The observed internal variability so estimated exhibits a pronounced multidecadal mode with a distinctive spatiotemporal signature, which is altogether absent in model simulations. This single mode explains a major fraction of model-data differences over the entire climate index network considered; it may reflect either biases in the models' forced response or models' lack of requisite internal dynamics, or a combination of both.Plain Language SummaryGlobal and regional warming trends over the course of the twentieth century have been nonuniform, with decadal and longer periods of faster or slower warming, or even cooling. Here we show that state-of-the-art global models used to predict climate fail to adequately reproduce such multidecadal climate variations. In particular, the models underestimate the magnitude of the observed variability and misrepresent its spatial pattern. Therefore, our ability to interpret the observed climate change using these models is limited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110022504','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110022504"><span>Preliminary Error Budget for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thome, Kurtis; Gubbels, Timothy; Barnes, Robert</p> <p>2011-01-01</p> <p>The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those in the IPCC Report. A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO Project will implement a spaceborne earth observation mission designed to provide rigorous SI traceable observations (i.e., radiance, reflectance, and refractivity) that are sensitive to a wide range of key decadal change variables, including: 1) Surface temperature and atmospheric temperature profile 2) Atmospheric water vapor profile 3) Far infrared water vapor greenhouse 4) Aerosol properties and anthropogenic aerosol direct radiative forcing 5) Total and spectral solar irradiance 6) Broadband reflected and emitted radiative fluxes 7) Cloud properties 8) Surface albedo There are two methods the CLARREO mission will rely on to achieve these critical decadal change benchmarks: direct and reference inter-calibration. A quantitative analysis of the strengths and weaknesses of the two methods has led to the recommended CLARREO mission approach. The project consists of two satellites launched into 90-degree, precessing orbits separated by 90 degrees. The instrument suite receiver on each spacecraft includes one emitted infrared spectrometer, two reflected solar spectrometers: dividing the spectrum from ultraviolet through near infrared, and one global navigation receiver for radio occultation. The measurements will be acquired for a period of three years minimum, with a five-year lifetime goal, enabling follow-on missions to extend the climate record over the decades needed to understand climate change. The current work concentrates on the reflected solar instrument giving an overview of its design and calibration approach. The calibration description includes the approach to achieving an SI-traceable system on orbit. The calibration overview is followed by a preliminary error budget based on techniques currently in place at the National Institute of Standards and Technology (NIST).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044362','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044362"><span>Climate variability during the Medieval Climate Anomaly and Little Ice Age based on ostracod faunas and shell geochemistry from Biscayne Bay, Florida: Chapter 14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cronin, Thomas M.; Wingard, G. Lynn; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica</p> <p>2012-01-01</p> <p>An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27846412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27846412"><span>Examining for any impact of climate change on the association between seasonality and hospitalization for mania.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parker, Gordon B; Hadzi-Pavlovic, Dusan; Graham, Rebecca K</p> <p>2017-01-15</p> <p>Studies have established higher rates of hospitalization for mania in spring and summer and posit various explanatory climatic variables. As the earth's climate is changing, we pursue whether this is reflected in the yearly seasonal variation in hospitalizations for mania. This would be indicated by the presence of secular changes in both the hospitalization seasonal pattern and climatic variables, and associations between both variable sets. Data were obtained for 21,882 individuals hospitalized to psychiatric hospitals in the Australian state of New South Wales (NSW) over a 14-year period (2000-2014) with ICD-diagnosed mania - and with NSW population figures and salient climatic variables collected for the same period. Regression analyses were conducted to examine the predictive value of climate variables on hospital admissions. Data quantified a peak for manic admissions in spring of the southern hemisphere, in the months of October and November. There was a significant linear increase in manic admissions (0.5%/year) over the 14-year time period, with significant variation across years. In terms of climatic variables, there was a significant linear trend over the interval for solar radiation, although the trend indicated a decrease rather than an increase. Seasonal variation in admissions was most closely associated with two climate variables - evaporation in the current month and temperature in the previous month. Hospitalization rates do not necessarily provide an accurate estimate of the onset of manic episodes and findings may be limited to the southern hemisphere, or New South Wales. While overall findings do not support the hypothesis that climate change is leading to a higher seasonal impact for manic hospital admissions in the southern hemisphere, analyses identified two climate/weather variables - evaporation and temperature - that may account for the yearly spring excess. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMGC53A..09S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMGC53A..09S"><span>Paleoenvironmental and Paleoclimate Changes Since 21,000 Cal Years BP in the Northeastern part of Brazil Inferred From Sediment Records in Lagoa do Caco (Maranhao State, Brazil)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sifeddine, A.; Meyers, P. A.; Gustavo, A.; Spadano Albuquerque, A. L.; Turcq, B.; Campbello Cordeiro, R.; Abrao, J. J.</p> <p>2004-12-01</p> <p>Two cores from Caco Lake, Maranhao State (North Brazil) record different histories of sediment accumulation on the margin and center of the lake that reflect changes in lake level. Seismic profiles, mineralogy and organic geochemical studies, backed by radiocarbon dating, reveal variable climatic and environmental conditions over the last 21 Cal Kyr BP. During the Last Glacial Maximum, regional climate was predominantly dry but was interrupted by short humid phases as reflected by a succession of very thin layers of sand and organic matter. The late glacial climate was relatively wet and included two rapid lake-level increases accompanied by forest expansion. The two wet phases were separated by a phase where the lake level remained stable and the forest changes were marked by the development of cool "Podocarpus" forest. These humid climate periods differed significantly from present warm tropical conditions.. The Holocene period is characterized by progressive increase of lake level, which reaches his maximum at around 7,000 Cal years BP. The period between 4,000 Cal years BP and the present shows high variability in lake level. Comparing with other South American and African records, we conclude that Late Glacial humid conditions were controlled by intensification of the ITCZ or shifts of its position, resulting in southeasterly trade wind variations and in interconnection between northern South America and the Atlantic tropical ocean-atmosphere system. The climatic variability during the Holocene is probably the result of sub-Milankovitch solar cycles and regional responses to these global forcings that are related to Atlantic and Pacific variability and their interconnections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410858G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410858G"><span>Mid-late Holocene climatic changes in the Southwestern Iberian shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomes, S.; Naughton, F.; Rodrigues, T.; Drago, T.; Sanchez-Goñi, M.; Freitas, C.</p> <p>2012-04-01</p> <p>Vegetation (pollen analysis) and alkenone-derived Sea Surface Temperature (SST) reconstructions from a south western Iberian shelf core (POPEI VC2B) (36°53'12,99'' N, 8°03'57,98'' W) show orbital and suborbital climate variability at extremely high resolution for the last 6000 years in this region. In particular, the mid-late Holocene is marked by a long-term cooling revealed by the gradual decrease of arboreal pollen (AP) percentages and SST which parallels the general decreasing trend of the δ18-O isotope composition recorded in Greenland ice records and the decrease of the mid-latitudes summer insolation. The short-term vegetation changes, reflecting millennial scale climatic variability, are clearly identified in the POPEI VC2B over the last 6000 years. In particular, the basement of this record is marked by the presence of semi-desert plants (Chenopodiaceae, Artemisia and Ephedra) reflecting dry conditions. These particular dry conditions have been detected elsewhere in the southern Iberian Peninsula and in North African records. Following the particularly dry period, there is a decline of semi-desert plants and an increase of Ericaceae and Pinus associated with establishment of an incipient forest of Quercus deciduous type reflecting temperate and humid conditions. This period was followed by a decrease of arboreal pollen percentages, suggesting a relative climate cooling. Finally, the last 2500/2000 years, are marked by the presence of anthropogenic associations (including Cerealia-type, Plantago lanceolata-coronopus type, and Olea) and are characterized by several vegetation and climate oscillations associated with the Roman Period (RP), the Dark Ages (DA), the Medieval Climatic Anomaly (MCA), and the Little Ice Age (LIA).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QuRes..86....1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QuRes..86....1W"><span>Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Qian; Yang, Xiangdong; Anderson, Nicholas John; Dong, Xuhui</p> <p>2016-07-01</p> <p>The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climate-diatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake's thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climate-catchment-vegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9264L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9264L"><span>Mid- to Late Holocene climate development in Central Asia as revealed from multi-proxy analyses of sediments from Lake Son Kol (Kyrgyzstan)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauterbach, Stefan; Dulski, Peter; Gleixner, Gerd; Hettler-Riedel, Sabine; Mingram, Jens; Plessen, Birgit; Prasad, Sushma; Schwalb, Antje; Schwarz, Anja; Stebich, Martina; Witt, Roman</p> <p>2013-04-01</p> <p>A mid-Holocene shift from predominantly wet to significantly drier climate conditions, attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, Holocene climate development in the arid regions of mid-latitude Central Asia, located north and northwest of the Tibetan Plateau, is less well-constrained but supposed to have been influenced by a complex interaction between the mid-latitude Westerlies and the ASM. Hence, well-dated and highly resolved palaeoclimate records from Central Asia might provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, several sediment cores were recovered from alpine Lake Son Kol (41° 48'N, 75° 12'E, 3016 m a. s. l.) in the Central Tian Shan of Kyrgyzstan. A radiocarbon-dated sediment sequence of 154.5 cm length, covering approximately the last 6000 years, was investigated by using a multi-proxy approach, including sedimentological, (bio)geochemical, isotopic and micropalaeontological analyses. Preliminary proxy data indicate hydrologically variable but predominantly wet conditions until ca. 5100 cal. a BP, characterized by the deposition of finely laminated organic-carbonatic sediments. In contrast to monsoonal Asia, where a distinct trend towards drier conditions is observed since the mid-Holocene, the hydrologically variable interval at Lake Son Kol was apparently followed by an only short-term dry episode between ca. 5100 and 4200 cal. a BP. This is characterized by a higher δD of the C29 n-alkanes, probably reflecting increased evapotranspiration. Also pollen, diatom and ostracod data point towards drier climate conditions. Higher δ15N values during this period may also reflect increased evaporation but could also be related to dust input of NOx, being in agreement with high amounts of fine-grained minerogenic material. Further periods of higher δ15N values and contents of fine-grained minerogenic material occurred at 3600-3000 and 2000-1600 cal. a BP. However, as biogeochemical data indicate no further distinct dry episodes since about 4200 cal. a BP, these intervals most probably reflect increased dust deposition. Finally, a trend towards wetter climate conditions can be observed during the last ca. 1500 years, reflected by high ostracod and diatom diversity and (bio)geochemical data. The absence of a pronounced drying trend since the mid-Holocene, as observed in monsoonal Asia, is largely consistent with results from other regional palaeoclimate records and might reflect the predominant influence of the strengthening mid-latitude Westerlies on regional climate since this time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022555','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022555"><span>Global characteristics of stream flow seasonality and variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dettinger, M.D.; Diaz, Henry F.</p> <p>2000-01-01</p> <p>Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of maximum precipitation, evapotranspiration, and contributions from snow and ice. Lags between peaks of precipitation and stream flow vary smoothly from long delays in high-latitude and mountainous regions to short delays in the warmest sectors. Stream flow is most variable from year to year in dry regions of the southwest United States and Mexico, the Sahel, and southern continents, and it varies more (relatively) than precipitation in the same regions. Tropical rivers have the steadiest flows. El Nin??o variations are correlated with stream flow in many parts of the Americas, Europe, and Australia. Many stream flow series from North America, Europe, and the Tropics reflect North Pacific climate, whereas series from the eastern United States, Europe, and tropical South America and Africa reflect North Atlantic climate variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005178&hterms=budget&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbudget','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005178&hterms=budget&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbudget"><span>Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan</p> <p>2016-01-01</p> <p>The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=309901','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=309901"><span>An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth’s radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-reso...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4799372','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4799372"><span>Contrasting scaling properties of interglacial and glacial climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shao, Zhi-Gang; Ditlevsen, Peter D.</p> <p>2016-01-01</p> <p>Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard–Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53D0550K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53D0550K"><span>Climate Controls AM Fungal Distributions from Global to Local Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.</p> <p>2016-12-01</p> <p>Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal composition and root colonization, with weaker influences of plant identity and soil nutrients. These two studies across scales suggest prevailing effects of climate on AM fungal distributions. Thus, incorporating climate when forecasting future ranges of AM fungi will enhance predictions of AM fungal abundance and associated ecosystem functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25644630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25644630"><span>Importance of anthropogenic climate impact, sampling error and urban development in sewer system design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Egger, C; Maurer, M</p> <p>2015-04-15</p> <p>Urban drainage design relying on observed precipitation series neglects the uncertainties associated with current and indeed future climate variability. Urban drainage design is further affected by the large stochastic variability of precipitation extremes and sampling errors arising from the short observation periods of extreme precipitation. Stochastic downscaling addresses anthropogenic climate impact by allowing relevant precipitation characteristics to be derived from local observations and an ensemble of climate models. This multi-climate model approach seeks to reflect the uncertainties in the data due to structural errors of the climate models. An ensemble of outcomes from stochastic downscaling allows for addressing the sampling uncertainty. These uncertainties are clearly reflected in the precipitation-runoff predictions of three urban drainage systems. They were mostly due to the sampling uncertainty. The contribution of climate model uncertainty was found to be of minor importance. Under the applied greenhouse gas emission scenario (A1B) and within the period 2036-2065, the potential for urban flooding in our Swiss case study is slightly reduced on average compared to the reference period 1981-2010. Scenario planning was applied to consider urban development associated with future socio-economic factors affecting urban drainage. The impact of scenario uncertainty was to a large extent found to be case-specific, thus emphasizing the need for scenario planning in every individual case. The results represent a valuable basis for discussions of new drainage design standards aiming specifically to include considerations of uncertainty. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP43B1818N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP43B1818N"><span>Coral Records of 20th Century Central Tropical Pacific SST and Salinity: Signatures of Natural and Anthropogenic Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.</p> <p>2011-12-01</p> <p>Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century. However, the most prominent feature of the new coral records is an unprecedented freshening trend since the mid-20th century, in line with global climate models (GCMs) projections of enhanced hydrological patterns (wet areas are getting wetter and vice versa) under greenhouse forcing. Taken together, the coral records provide key constraints on tropical Pacific climate trends that may improve regional climate projections in areas affected by tropical Pacific climate variability.<br />Central Tropical Pacific SST and Salinity Proxy Records<img class="jpg" border=0 width=600px src="/meetings/fm11/program/tables/PP43B-1818_T1.jpg"></p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...815875A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...815875A"><span>Skillful prediction of northern climate provided by the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Årthun, Marius; Eldevik, Tor; Viste, Ellen; Drange, Helge; Furevik, Tore; Johnson, Helen L.; Keenlyside, Noel S.</p> <p>2017-06-01</p> <p>It is commonly understood that a potential for skillful climate prediction resides in the ocean. It nevertheless remains unresolved to what extent variable ocean heat is imprinted on the atmosphere to realize its predictive potential over land. Here we assess from observations whether anomalous heat in the Gulf Stream's northern extension provides predictability of northwestern European and Arctic climate. We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean. Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981-2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025427','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025427"><span>Millennial- to century-scale variability in Gulf of Mexico Holocene climate records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poore, R.Z.; Dowsett, H.J.; Verardo, S.; Quinn, T.M.</p> <p>2003-01-01</p> <p>Proxy records from two piston cores in the Gulf of Mexico (GOM) provide a detailed (50-100 year resolution) record of climate variability over the last 14,000 years. Long-term (millennial-scale) trends and changes are related to the transition from glacial to interglacial conditions and movement of the average position of the Intertropical Convergence Zone (ITCZ) related to orbital forcing. The ??18O of the surface-dwelling planktic foraminifer Globigerinoides ruber show negative excursions between 14 and 10.2 ka (radiocarbon years) that reflect influx of meltwater into the western GOM during melting of the Laurentide Ice Sheet. The relative abundance of the planktic foraminifer Globigerinoides sacculifer is related to transport of Caribbean water into the GOM. Maximum transport of Caribbean surface waters and moisture into the GOM associated with a northward migration of the average position of the ITCZ occurs between about 6.5 and 4.5 ka. In addition, abundance variations of G. sacculifer show century-scale variability throughout most of the Holocene. The GOM record is consistent with records from other areas, suggesting that century-scale variability is a pervasive feature of Holocene climate. The frequency of several cycles in the climate records is similar to cycles identified in proxy records of solar variability, indicating that at least some of the century-scale climate variability during the Holocene is due to external (solar) forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP41C2274M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP41C2274M"><span>Climate variability reflected by tree-ring width and δ18O in a heavily glaciated area of the Patagonian Andes since the Little Ice Age</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, W. J. H.; Wernicke, J., Jr.; Braun, M.; Aravena, J. C.; Jaña, R.; Griessinger, J.</p> <p>2016-12-01</p> <p>Since the end of the Little Ice Age, the area of the Northern and Southern Patagonian ice sheet decreased by more than 14% and 11%, respectively. The melting increased since the last decade by 2.3%. The glaciers of Cordillera Darwin recorded a surface decrease of approximately 14% for the last 140 years. The reason for the excessive glacial change is often explained through the rise in temperature combined with a decrease in precipitation or a change in seasonality. Since a spatially coherent coverage of climatological measurement is lacking it is not possible to verify this assumption in a differentiated manner. Hence, the German- Chilean joint project "Responses of GlAciers, Biosphere and hYdrology to climate Variability and climate chAnge across the Southern Andes (GABY-VASA)" aims to determine the influence of long and short term climate variabilities (El Niño-Southern Oscillation (ENSO), Southern Hemisphere Annular Mode (SAM)) on the cryo- and biosphere. Trees growing at the glacier margins and at the natural treeline were sampled at four different locations ranging from the humid western part of the southern Andes (annual precipitation > 10.000mma-1) to the distinct dryer eastern part (annual precipitation < 500mma-1). Besides the tree-ring width based temperature reconstruction the precipitation variability reflected by δ18O in tree-rings is a promising approach to obtain detailed information of small-scaled hydro climatic conditions. Furthermore the use of δ18O as a proxy in combination with tree-ring width offers the opportunity of meteorological back trajectories and the derivation of air masses since the Little Ice Age. It thus interlinks past and present climate and allows to draw conclusions about the driving forces of glacial change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....9175S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....9175S"><span>Is modern climate variability reflected in compund specific hydrogen isotope ratios of sedimentary biomarkers?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sachse, D.; Radke, J.; Gleixner, G.</p> <p>2003-04-01</p> <p>Compound specific hydrogen isotope ratios are emerging as a new palaeoclimatic and palaeohydrological proxy. First reconstructions of palaeoclimate using D/H ratios from n-alkanes are available (Andersen et al. 2001, Sauer et al. 2001, Sachse et al. 2003). However, a systematic approach comparing recent sedimentary biomarkers with climate data is still lacking. We are establishing an ecosystem study of small, ground water fed lakes with known limnology. Nearly all lakes are close to a long-term climate-monitoring site (CARBOEUROPE flux tower site, IAEA precipitation monitoring) delivering ecophysiological and climatic data as temperature, precipitation, evapotranspiration etc. Water, primary biomass, plant, soil and sediment were sampled from lakes and the surrounding ecosystem along a climatic and isotopic gradient in meteoric waters from northern Finland (deltaD: -130 permil vs. VSMOW) to southern Italy (deltaD: -30 permil vs. VSMOW, IAEA 2001). Biomarkers were extracted from the samples to test if climatic variability is reflected in their D/H ratios. First results of the factors influencing the hydrogen isotope composition of sedimentary biomarkers and their use as palaeoclimatic and palaeohydrological proxy will be presented. Andersen N, Paul HA, Bernasconi SM, McKenzie JA, Behrens A, Schaeffer P, Albrecht P (2001) Large and rapid climate variability during the Messinian salinity crisis: Evidence from deuterium concentrations of individual biomarkers. Geology 29:799-802 IAEA (2001) GNIP Maps and Animations. International Atomic Energy Agency, Vienna. Accessible at http://isohis.iaea.org Sachse D, Radke J, Gaupp R, Schwark L, Lüniger G, Gleixner G (2003) Reconstruction of palaeohydrological conditions in a lagoon during the 2nd Zechstein cycle through simultaneous use of deltaD values of individual n-alkanes and delta18O and delta13C values of carbonates. International Journal of Earth Sciences, submitted Sauer PE, Eglington TI, Hayes JM, Schimmelman A, Sessions AL (2001) Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta 65:213-222</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=322775','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=322775"><span>Geographic variation of Chaetosiphella stipae stipae Hille Ris Lambers, 1947 (Hemiptera: Aphididae: Chaitophorinae) and the potential impact of climate change on its habitat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>This paper concentrates on Chaetosiphella stipae stipae Hille Ris Lambers (Hemiptera: Aphididae: Chaitophorinae) and determined all studied individuals of C. stipae stipae are one species, characterized by high morphological variability, reflected mostly in the variability of the number and the sha...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27144929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27144929"><span>Adaptation to climate through flowering phenology: a case study in Medicago truncatula.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle</p> <p>2016-07-01</p> <p>Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA613138','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA613138"><span>Climate Change, Growth, and Poverty in Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-06-01</p> <p>agricultural effects of global warming, reflecting their disadvantaged geographic location Higher evaporation and reduced soil moisture can damage crops...Ringler (2007) 5 Temperature, radiation, rainfall, soil moisture , and carbon dioxide (CO2) concentration are important variables that can proxy...iii) rainfall can affect other proxies of climate change in the literature such as soil moisture 6 This is based on FAOstat database 7 According to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=128566','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=128566"><span>What might we learn from climate forecasts?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smith, Leonard A.</p> <p>2002-01-01</p> <p>Most climate models are large dynamical systems involving a million (or more) variables on big computers. Given that they are nonlinear and not perfect, what can we expect to learn from them about the earth's climate? How can we determine which aspects of their output might be useful and which are noise? And how should we distribute resources between making them “better,” estimating variables of true social and economic interest, and quantifying how good they are at the moment? Just as “chaos” prevents accurate weather forecasts, so model error precludes accurate forecasts of the distributions that define climate, yielding uncertainty of the second kind. Can we estimate the uncertainty in our uncertainty estimates? These questions are discussed. Ultimately, all uncertainty is quantified within a given modeling paradigm; our forecasts need never reflect the uncertainty in a physical system. PMID:11875200</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008664','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008664"><span>Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro</p> <p>2013-01-01</p> <p>Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1999/0413/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1999/0413/report.pdf"><span>Sediment color and reflectance record from Ocean Drilling Program Hole 625B, Gulf of Mexico (marine isotope stage 5 interval)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dowsett, Harry J.</p> <p>1999-01-01</p> <p>Analysis of climate indicators from the North Atlantic, California Margin, and ice cores from Greenland suggest millennial scale climate variability is a component of earth's climate system during the last interglacial period (marine oxygen isotope stage 5). The USGS is involved in a survey of high resolution marine records covering the last interglacial period (MIS 5) to further document the variability of climate and assess the rate at which climate can change during warm intervals. The Gulf of Mexico (GOM) is an attractive area for analysis of climate variability and rapid change. Changes in the Mississippi River Basin presumably are translated to the GOM via the river and its effect on sediment distribution and type. Likewise, the summer monsoon in the southwestern US is driven by strong southerly winds. These winds may produce upwelling in the GOM which will be recorded in the sedimentary record. Several areas of high accumulation rate have been identified in the GOM. Ocean Drilling Program (ODP) Site 625 appears to meet the criteria of having a well preserved carbonate record and accumulation rate capable of discerning millennial scale changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PrOce..86..276C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PrOce..86..276C"><span>Patterns of variations in large pelagic fish: A comparative approach between the Indian and the Atlantic Oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.</p> <p>2010-07-01</p> <p>Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2854826','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2854826"><span>Lakes as sentinels of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Adrian, Rita; O’Reilly, Catherine M.; Zagarese, Horacio; Baines, Stephen B.; Hessen, Dag O.; Keller, Wendel; Livingstone, David M.; Sommaruga, Ruben; Straile, Dietmar; Van Donk, Ellen; Weyhenmeyer, Gesa A.; Winder, Monika</p> <p>2010-01-01</p> <p>While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment. PMID:20396409</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171430','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171430"><span>Sensitivity of ground - water recharge estimates to climate variability and change, Columbia Plateau, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vaccaro, John J.</p> <p>1992-01-01</p> <p>The sensitivity of groundwater recharge estimates was investigated for the semiarid Ellensburg basin, located on the Columbia Plateau, Washington, to historic and projected climatic regimes. Recharge was estimated for predevelopment and current (1980s) land use conditions using a daily energy-soil-water balance model. A synthetic daily weather generator was used to simulate lengthy sequences with parameters estimated from subsets of the historical record that were unusually wet and unusually dry. Comparison of recharge estimates corresponding to relatively wet and dry periods showed that recharge for predevelopment land use varies considerably within the range of climatic conditions observed in the 87-year historical observation period. Recharge variations for present land use conditions were less sensitive to the same range of historical climatic conditions because of irrigation. The estimated recharge based on the 87-year historical climatology was compared with adjustments to the historical precipitation and temperature records for the same record to reflect CO2-doubling climates as projected by general circulation models (GCMs). Two GCM scenarios were considered: an average of conditions for three different GCMs with CO2 doubling, and a most severe “maximum” case. For the average GCM scenario, predevelopment recharge increased, and current recharge decreased. Also considered was the sensitivity of recharge to the variability of climate within the historical and adjusted historical records. Predevelopment and current recharge were less and more sensitive, respectively, to the climate variability for the average GCM scenario as compared to the variability within the historical record. For the maximum GCM scenario, recharge for both predevelopment and current land use decreased, and the sensitivity to the CO2-related climate change was larger than sensitivity to the variability in the historical and adjusted historical climate records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........63F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........63F"><span>Vegetation coupling to global climate: Trajectories of vegetation change and phenology modeling from satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, Jeremy Isaac</p> <p></p> <p>Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat) and 500m Moderate Resolution Imaging Spectrometer (MODIS). A robust logistic-growth model of canopy cover was employed to determine phenological characteristics at each forest stand. The duel analyses revealed important findings: (a) local phenological gradients from microclimatic structures are highly influential in broad-scale phenological observations; (b) satellite observed phenology reflects observations of canopy growth from field studies; (c) phenological anomalies in urban areas which were previously attributed to urban heat may be a function of urban-specific land cover (i.e. green lawns); and (d) patterns of interannual variability in phenology at the regional scale have high spatial coherency and appear to be driven by broad-scale climatic change. Satellite-observed phenology may reflect temperatures during spring and provides a proxy of climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/35409','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/35409"><span>Influences of climate, fire, and topography on contemporary age structure patterns of Douglas-fir at 205 old forest sites in western Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Nathan J. Poage; Peter J. Weisberg; Peter C. Impara; John C. Tappeiner; Thomas S. Sensenig</p> <p>2009-01-01</p> <p>Knowledge of forest development is basic to understanding the ecology, dynamics, and management of forest ecosystems. We hypothesized that the age structure patterns of Douglas-fir at 205 old forest sites in western Oregon are extremely variable with long and (or) multiple establishment periods common, and that these patterns reflect variation in regional-scale climate...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4315D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4315D"><span>Contrasting scaling properties of interglacial and glacial climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ditlevsen, Peter; Shao, Zhi-Gang</p> <p>2017-04-01</p> <p>Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H˜0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H˜1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. Ref: Zhi-Gang Shao and Peter Ditlevsen, Nature Comm. 7, 10951, 2016</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4136776','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4136776"><span>Region-Specific Sensitivity of Anemophilous Pollen Deposition to Temperature and Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Donders, Timme H.; Hagemans, Kimberley; Dekker, Stefan C.; de Weger, Letty A.; de Klerk, Pim; Wagner-Cremer, Friederike</p> <p>2014-01-01</p> <p>Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect annual past climate variability, and can be used in palaeoecological and -climatological studies to bridge between population- and species-scale responses to climate forcing. PMID:25133631</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG41B..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG41B..07D"><span>Decoding the spatial signatures of multi-scale climate variability - a climate network perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.</p> <p>2017-12-01</p> <p>During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....5310231W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....5310231W"><span>Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilusz, Daniel C.; Harman, Ciaran J.; Ball, William P.</p> <p>2017-12-01</p> <p>Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about the influence of rainfall variability on catchment transit times, a reflection of water velocities that control solute transport. This work uses catchment-scale lumped parameter models to decompose the relationship between rainfall variability and an important metric of transit times, the time-varying fraction of young water (<90 days old) in streams (FYW). A coupled rainfall-runoff model and rank StorAge Selection (rSAS) transit time model were calibrated to extensive hydrometric and environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999 to 2008. At both sites, the mean annual FYW increased more than 13 percentage points from the driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain signatures of rainfall pattern were also associated with higher FYW including: more clustered storms, more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show that these signatures are symptomatic of an "inverse storage effect" that may be common among watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at these sites, with concomitant impacts on water quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H12D..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H12D..03L"><span>Long term, non-anthropogenic groundwater storage changes simulated by a global land surface model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, B.; Rodell, M.; Sheffield, J.; Wood, E. F.</p> <p>2017-12-01</p> <p>Groundwater is crucial for meeting agricultural, industrial and municipal water needs, especially in arid, semi-arid and drought impacted regions. Yet, knowledge on groundwater response to climate variability is not well understood due to lack of systematic and continuous in situ measurements. In this study, we investigate global non-anthropogenic groundwater storage variations with a land surface model driven by a 67-year (1948-204) meteorological forcing data set. Model estimates were evaluated using in situ groundwater data from the central and northeastern U.S. and terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) satellites and found to be reasonable. Empirical orthogonal function (EOF) analysis was employed to examine modes of variability of groundwater storage and their relationship with atmospheric effects such as precipitation and evapotranspiration. The result shows that the leading mode in global groundwater storage reflects the influence of the El Niño Southern Oscillation (ENSO). Consistent with the EOF analysis, global total groundwater storage reflected the low frequency variability of ENSO and decreased significantly over 1948-2014 while global ET and precipitation did not exhibit statistically significant trends. This study suggests that while precipitation and ET are the primary drivers of climate related groundwater variability, changes in other forcing fields than precipitation and temperature are also important because of their influence on ET. We discuss the need to improve model physics and to continuously validate model estimates and forcing data for future studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120014254','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120014254"><span>Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas</p> <p>2012-01-01</p> <p>The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration system for the reflected solar portion of CLARREO. SOLARIS provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000777','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000777"><span>Assessment of Satellite Radiometry in the Visible Domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melin, Frederick; Franz, Bryan A.</p> <p>2014-01-01</p> <p>Marine reflectance and chlorophyll-a concentration are listed among the Essential Climate Variables by the Global Climate Observing System. To contribute to climate research, the satellite ocean color data records resulting from successive missions need to be consistent and well characterized in terms of uncertainties. This chapter reviews various approaches that can be used for the assessment of satellite ocean color data. Good practices for validating satellite products with in situ data and the current status of validation results are illustrated. Model-based approaches and inter-comparison techniques can also contribute to characterize some components of the uncertainty budget, while time series analysis can detect issues with the instrument radiometric characterization and calibration. Satellite data from different missions should also provide a consistent picture in scales of variability, including seasonal and interannual signals. Eventually, the various assessment approaches should be combined to create a fully characterized climate data record from satellite ocean color.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoRL..3921705A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoRL..3921705A"><span>The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ault, T. R.; Cole, J. E.; St. George, S.</p> <p>2012-11-01</p> <p>We assess the magnitude of decadal to multidecadal (D2M) variability in Climate Model Intercomparison Project 5 (CMIP5) simulations that will be used to understand, and plan for, climate change as part of the Intergovernmental Panel on Climate Change's 5th Assessment Report. Model performance on D2M timescales is evaluated using metrics designed to characterize the relative and absolute magnitude of variability at these frequencies. In observational data, we find that between 10% and 35% of the total variance occurs on D2M timescales. Regions characterized by the high end of this range include Africa, Australia, western North America, and the Amazon region of South America. In these areas D2M fluctuations are especially prominent and linked to prolonged drought. D2M fluctuations account for considerably less of the total variance (between 5% and 15%) in the CMIP5 archive of historical (1850-2005) simulations. The discrepancy between observation and model based estimates of D2M prominence reflects two features of the CMIP5 archive. First, interannual components of variability are generally too energetic. Second, decadal components are too weak in several key regions. Our findings imply that projections of the future lack sufficient decadal variability, presenting a limited view of prolonged drought and pluvial risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1056147-multi-year-lags-between-forest-browning-soil-respiration-high-northern-latitudes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1056147-multi-year-lags-between-forest-browning-soil-respiration-high-northern-latitudes"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bond-Lamberty, Benjamin; Bunn, Andrew G.; Thomson, Allison M.</p> <p></p> <p>High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these ecosystems is soil respiration (RS, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to atmosphere), and any change in the high-latitude carbon cycle might thus be reflected in RS observed in the field. This study used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy greenness (NDVI), climate, and other variables are coupled tomore » annual RS based on 105 observations from 64 circumpolar sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models explaining ~62% of observed RS variability« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160011326&hterms=energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Denergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160011326&hterms=energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Denergy"><span>Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.</p> <p>2015-01-01</p> <p>NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5481837','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5481837"><span>Skillful prediction of northern climate provided by the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Årthun, Marius; Eldevik, Tor; Viste, Ellen; Drange, Helge; Furevik, Tore; Johnson, Helen L.; Keenlyside, Noel S.</p> <p>2017-01-01</p> <p>It is commonly understood that a potential for skillful climate prediction resides in the ocean. It nevertheless remains unresolved to what extent variable ocean heat is imprinted on the atmosphere to realize its predictive potential over land. Here we assess from observations whether anomalous heat in the Gulf Stream's northern extension provides predictability of northwestern European and Arctic climate. We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean. Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981–2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020. PMID:28631732</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17075844','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17075844"><span>Human cranial anatomy and the differential preservation of population history and climate signatures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harvati, Katerina; Weaver, Timothy D</p> <p>2006-12-01</p> <p>Cranial morphology is widely used to reconstruct evolutionary relationships, but its reliability in reflecting phylogeny and population history has been questioned. Some cranial regions, particularly the face and neurocranium, are believed to be influenced by the environment and prone to convergence. Others, such as the temporal bone, are thought to reflect more accurately phylogenetic relationships. Direct testing of these hypotheses was not possible until the advent of large genetic data sets. The few relevant studies in human populations have had intriguing but possibly conflicting results, probably partly due to methodological differences and to the small numbers of populations used. Here we use three-dimensional (3D) geometric morphometrics methods to test explicitly the ability of cranial shape, size, and relative position/orientation of cranial regions to track population history and climate. Morphological distances among 13 recent human populations were calculated from four 3D landmark data sets, respectively reflecting facial, neurocranial, and temporal bone shape; shape and relative position; overall cranial shape; and centroid sizes. These distances were compared to neutral genetic and climatic distances among the same, or closely matched, populations. Results indicate that neurocranial and temporal bone shape track neutral genetic distances, while facial shape reflects climate; centroid size shows a weak association with climatic variables; and relative position/orientation of cranial regions does not appear correlated with any of these factors. Because different cranial regions preserve population history and climate signatures differentially, caution is suggested when using cranial anatomy for phylogenetic reconstruction. Copyright (c) 2006 Wiley-Liss, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70046338','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70046338"><span>The continuum of hydroclimate variability in western North America during the last millennium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ault, Toby R.; Cole, Julia E.; Overpeck, Jonathan T.; Pederson, Gregory T.; St. George, Scott; Otto-Bliesner, Bette; Woodhouse, Connie A.; Deser, Clara</p> <p>2013-01-01</p> <p>The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here we estimate power spectra and power laws (ß) from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). We test the significance of our estimates of spectral densities and ß against the null hypothesis that they reflect solely the effects of local (non-climate) sources of autocorrelation at the monthly timescale. Although tree-ring based hydroclimate reconstructions are generally consistent with this null hypothesis, values of ß calculated from long-moisture sensitive chronologies (as opposed to reconstructions), and other types of hydroclimate proxies, exceed null expectations. We therefore argue that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of the Climate Model Intercomparison Project 5 (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal to multidecadal timescales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GPC...133...49H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GPC...133...49H"><span>A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodell, D.; Lourens, L.; Crowhurst, S.; Konijnendijk, T.; Tjallingii, R.; Jiménez-Espejo, F.; Skinner, L.; Tzedakis, P. C.; Abrantes, Fatima; Acton, Gary D.; Alvarez Zarikian, Carlos A.; Bahr, André; Balestra, Barbara; Barranco, Estefanìa Llave; Carrara, Gabriela; Ducassou, Emmanuelle; Flood, Roger D.; Flores, José-Abel; Furota, Satoshi; Grimalt, Joan; Grunert, Patrick; Hernández-Molina, Javier; Kim, Jin Kyoung; Krissek, Lawrence A.; Kuroda, Junichiro; Li, Baohua; Lofi, Johanna; Margari, Vasiliki; Martrat, Belen; Miller, Madeline D.; Nanayama, Futoshi; Nishida, Naohisa; Richter, Carl; Rodrigues, Teresa; Rodríguez-Tovar, Francisco J.; Roque, Ana Cristina Freixo; Sanchez Goñi, Maria F.; Sierro Sánchez, Francisco J.; Singh, Arun D.; Sloss, Craig R.; Stow, Dorrik A. V.; Takashimizu, Yasuhiro; Tzanova, Alexandrina; Voelker, Antje; Xuan, Chuang; Williams, Trevor</p> <p>2015-10-01</p> <p>We produced a composite depth scale and chronology for Site U1385 on the SW Iberian Margin. Using log(Ca/Ti) measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to 166.5 meter composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopes of benthic foraminifera were correlated to a stacked δ18O reference signal (LR04) to produce an oxygen isotope stratigraphy and age model. Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic δ18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene ('41-kyr world') when boundary conditions differed significantly from those of the late Pleistocene ('100-kyr world'). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ18O surpassed 3.3-3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21756317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21756317"><span>Climate forcing and desert malaria: the effect of irrigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baeza, Andres; Bouma, Menno J; Dobson, Andy P; Dhiman, Ramesh; Srivastava, Harish C; Pascual, Mercedes</p> <p>2011-07-14</p> <p>Rainfall variability and associated remote sensing indices for vegetation are central to the development of early warning systems for epidemic malaria in arid regions. The considerable change in land-use practices resulting from increasing irrigation in recent decades raises important questions on concomitant change in malaria dynamics and its coupling to climate forcing. Here, the consequences of irrigation level for malaria epidemics are addressed with extensive time series data for confirmed Plasmodium falciparum monthly cases, spanning over two decades for five districts in north-west India. The work specifically focuses on the response of malaria epidemics to rainfall forcing and how this response is affected by increasing irrigation. Remote sensing data for the Normalized Difference Vegetation Index (NDVI) are used as an integrated measure of rainfall to examine correlation maps within the districts and at regional scales. The analyses specifically address whether irrigation has decreased the coupling between malaria incidence and climate variability, and whether this reflects (1) a breakdown of NDVI as a useful indicator of risk, (2) a weakening of rainfall forcing and a concomitant decrease in epidemic risk, or (3) an increase in the control of malaria transmission. The predictive power of NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to study the association of NDVI and malaria variability in the time and in the frequency domain respectively. The results show that irrigation dampens the influence of climate forcing on the magnitude and frequency of malaria epidemics and, therefore, reduces their predictability. At low irrigation levels, this decoupling reflects a breakdown of local but not regional NDVI as an indicator of rainfall forcing. At higher levels of irrigation, the weakened role of climate variability may be compounded by increased levels of control; nevertheless this leads to no significant decrease in the actual risk of disease. This implies that irrigation can lead to more endemic conditions for malaria, creating the potential for unexpectedly large epidemics in response to excess rainfall if these climatic events coincide with a relaxation of control over time. The implications of our findings for control policies of epidemic malaria in arid regions are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3431539','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3431539"><span>Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>An, Zhisheng; Colman, Steven M.; Zhou, Weijian; Li, Xiaoqiang; Brown, Eric T.; Jull, A. J. Timothy; Cai, Yanjun; Huang, Yongsong; Lu, Xuefeng; Chang, Hong; Song, Yougui; Sun, Youbin; Xu, Hai; Liu, Weiguo; Jin, Zhangdong; Liu, Xiaodong; Cheng, Peng; Liu, Yu; Ai, Li; Li, Xiangzhong; Liu, Xiuju; Yan, Libin; Shi, Zhengguo; Wang, Xulong; Wu, Feng; Qiang, Xiaoke; Dong, Jibao; Lu, Fengyan; Xu, Xinwen</p> <p>2012-01-01</p> <p>Two atmospheric circulation systems, the mid-latitude Westerlies and the Asian summer monsoon (ASM), play key roles in northern-hemisphere climatic changes. However, the variability of the Westerlies in Asia and their relationship to the ASM remain unclear. Here, we present the longest and highest-resolution drill core from Lake Qinghai on the northeastern Tibetan Plateau (TP), which uniquely records the variability of both the Westerlies and the ASM since 32 ka, reflecting the interplay of these two systems. These records document the anti-phase relationship of the Westerlies and the ASM for both glacial-interglacial and glacial millennial timescales. During the last glaciation, the influence of the Westerlies dominated; prominent dust-rich intervals, correlated with Heinrich events, reflect intensified Westerlies linked to northern high-latitude climate. During the Holocene, the dominant ASM circulation, punctuated by weak events, indicates linkages of the ASM to orbital forcing, North Atlantic abrupt events, and perhaps solar activity changes. PMID:22943005</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150023302','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150023302"><span>Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan</p> <p>2013-01-01</p> <p>A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011E%26PSL.310..319L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011E%26PSL.310..319L"><span>Pacific/North American teleconnection controls on precipitation isotope ratios across the contiguous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Zhongfang; Kennedy, Casey D.; Bowen, Gabriel J.</p> <p>2011-10-01</p> <p>Large-scale climate teleconnections such as the Pacific/North American (PNA) pattern strongly influence atmospheric processes and continental climate. Here we show that precipitation δ 18O values in the contiguous United States are correlated with an index of the PNA pattern. The δ 18O/PNA relationship varies across the study region and exhibits two prominent modes, with positive correlation in the western USA and negative correlation in the east. This spatial pattern appears not to reflect variation in local climate variables, but rather primarily reflects differences in atmospheric circulation and moisture sources associated with PNA. Our results suggest that strong antiphase variation in paired paleo-water δ 18O proxy records from regions characterized by the two modes of δ 18O/PNA correlation, especially in the Midwest and southwestern USA, may provide a robust basis for reconstruction of past variation in the PNA pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24421221','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24421221"><span>Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hunter, Mark D; Kozlov, Mikhail V; Itämies, Juhani; Pulliainen, Erkki; Bäck, Jaana; Kyrö, Ella-Maria; Niemelä, Pekka</p> <p>2014-06-01</p> <p>Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time-series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations appear buffered at present from potential deleterious effects of climate change by other ecological forces. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP23A1289T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP23A1289T"><span>A Compound-Specific Hydrogen Isotope Record at the Onset of Ocean Anoxic Event 2, Kaiparowits Plateau, Southern Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Todes, J.; Jones, M. M.; Sageman, B. B.; Osburn, M. R.</p> <p>2017-12-01</p> <p>Rhythmic lithologic variations (limestone-shale couplets) interpreted to reflect Milankovitch cycles occur at the onset of Ocean Anoxic Event 2 (OAE2) in deposits of the Western Interior Seaway. These couplets have been interpreted to reflect climate cycles: however, the physical mechanism(s) through which climate cycles were translated to the sedimentary record during peak greenhouse conditions remain unsettled. Although glacioeustasy has been considered, variance in surface ocean temperature, ocean circulation, or local hydrology may be more plausible options. Compound-specific hydrogen isotope ratios (δ2H) of n-alkanes and other biomarkers may provide a means to evaluate such mechanisms. Since sedimentary alkanes are direct products of plants and membrane lipid diagenesis and are resistant to secondary hydrogen exchange during thermal maturation at low (<100 oC) temperatures, they have the potential to reflect the isotopic composition of primary waters. The Tropic Shale of the Kaiparowits Plateau (Southern Utah) provides an exceptional opportunity to explore δ2H variability in this interval. Outcrop samples of three couplets have been extracted, separated, and analyzed to ascertain facies-specific δ2H variability. Strong odd-over-even n-alkane chain length distributions suggest low thermal maturity and the possible preservation of primary δ2H values. Short and long chain ­n-alkanes are potentially sourced from planktonic biomass and terrestrial plants, respectively, enabling a comparison of climatic processes between marine and terrestrial settings. Biomarkers, including both steranes and hopanes, are also preserved and reflect putative source organisms and local paleoenvironmental conditions. Facies-specific δ2H analysis will allow for evaluation of changes in the dominant source of atmospheric moisture in the Western Interior during orbitally-forced climate cycles. Organic matter deposited during periods of northerly Boreal influence would have a depleted 2H-isotope composition relative to those deposited during periods of more southerly Tethys influence. In this model, these variations are reflected by lithology - limestone deposition would occur during warm, evaporative Tethys-dominated times, while cooler, wetter Boreal periods would promote shale deposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H23M..05J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H23M..05J"><span>Spatio-temporal variation in the tap water isotope ratios of Salt Lake City: a novel indicator of urban water system structure and dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jameel, M. Y.; Bowen, G. J.</p> <p>2015-12-01</p> <p>Public water supply systems are the life-blood of urban areas. How we use urban water systems affects more than human health and well-being. Our water use can alter a city's energy balance, including how much solar energy is absorbed as heat or reflected back into space. The severity of these effects, and the need to better understand connections between climate, water extraction, water use, and water use impacts, is strongest in areas of climatic aridity and substantial land-use change, such as the rapidly urbanizing areas of Utah. We have gathered and analyzed stable water isotope data from a series of semi-annual hydrological surveys (spring and fall, 2013 and 2014) in urban tap water sampled across the Salt Lake Valley. Our study has led to four major findings thus far: 1) Clear and substantial variation in tap water isotopic composition in space and time that can be linked to different water sources and management practices within the urban area, 2) There is a strong correlation between the range of observed isotope values and the population of water districts, reflecting use of water from multiple local and non-local sources in districts with high water demand, 3) Water isotopes reflect significant and variable loss of water due to evaporation of surface water resources and 4) Overall, tap water contains lower concentrations of the heavy H and O isotopes than does precipitation within the basin, reflecting the connection between city water supplies and mountain water sources. Our results highlight the utility of isotopic data as an indicator of heterogeneities within urban water systems, management practices and their variation across a major metropolitan area, and effects of climate variability on urban water supplies</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16079845','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16079845"><span>Refractory periods and climate forcing in cholera dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koelle, Katia; Rodó, Xavier; Pascual, Mercedes; Yunus, Md; Mostafa, Golam</p> <p>2005-08-04</p> <p>Outbreaks of many infectious diseases, including cholera, malaria and dengue, vary over characteristic periods longer than 1 year. Evidence that climate variability drives these interannual cycles has been highly controversial, chiefly because it is difficult to isolate the contribution of environmental forcing while taking into account nonlinear epidemiological dynamics generated by mechanisms such as host immunity. Here we show that a critical interplay of environmental forcing, specifically climate variability, and temporary immunity explains the interannual disease cycles present in a four-decade cholera time series from Matlab, Bangladesh. We reconstruct the transmission rate, the key epidemiological parameter affected by extrinsic forcing, over time for the predominant strain (El Tor) with a nonlinear population model that permits a contributing effect of intrinsic immunity. Transmission shows clear interannual variability with a strong correspondence to climate patterns at long periods (over 7 years, for monsoon rains and Brahmaputra river discharge) and at shorter periods (under 7 years, for flood extent in Bangladesh, sea surface temperatures in the Bay of Bengal and the El Niño-Southern Oscillation). The importance of the interplay between extrinsic and intrinsic factors in determining disease dynamics is illustrated during refractory periods, when population susceptibility levels are low as the result of immunity and the size of cholera outbreaks only weakly reflects climate forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5731736','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5731736"><span>Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.</p> <p>2017-01-01</p> <p>Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29244839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29244839"><span>Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W</p> <p>2017-01-01</p> <p>Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23958789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23958789"><span>Berry composition and climate: responses and empirical models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barnuud, Nyamdorj N; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson</p> <p>2014-08-01</p> <p>Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJBm...58.1207B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJBm...58.1207B"><span>Berry composition and climate: responses and empirical models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson</p> <p>2014-08-01</p> <p>Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070023671&hterms=climate+change+rainfall&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dclimate%2Bchange%2Brainfall','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070023671&hterms=climate+change+rainfall&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dclimate%2Bchange%2Brainfall"><span>Toward a Global Map of Raindrop Size Distributions. Part 1; Rain-Type Classification and Its Implications for Validating Global Rainfall Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>L'Ecuyer, Tristan S.; Kummerow, Christian; Berg,Wesley</p> <p>2004-01-01</p> <p>Variability in the global distribution of precipitation is recognized as a key element in assessing the impact of climate change for life on earth. The response of precipitation to climate forcings is, however, poorly understood because of discrepancies in the magnitude and sign of climatic trends in satellite-based rainfall estimates. Quantifying and ultimately removing these biases is critical for studying the response of the hydrologic cycle to climate change. In addition, estimates of random errors owing to variability in algorithm assumptions on local spatial and temporal scales are critical for establishing how strongly their products should be weighted in data assimilation or model validation applications and for assigning a level of confidence to climate trends diagnosed from the data. This paper explores the potential for refining assumed drop size distributions (DSDs) in global radar rainfall algorithms by establishing a link between satellite observables and information gleaned from regional validation experiments where polarimetric radar, Doppler radar, and disdrometer measurements can be used to infer raindrop size distributions. By virtue of the limited information available in the satellite retrieval framework, the current method deviates from approaches adopted in the ground-based radar community that attempt to relate microphysical processes and resultant DSDs to local meteorological conditions. Instead, the technique exploits the fact that different microphysical pathways for rainfall production are likely to lead to differences in both the DSD of the resulting raindrops and the three-dimensional structure of associated radar reflectivity profiles. Objective rain-type classification based on the complete three-dimensional structure of observed reflectivity profiles is found to partially mitigate random and systematic errors in DSDs implied by differential reflectivity measurements. In particular, it is shown that vertical and horizontal reflectivity structure obtained from spaceborne radar can be used to reproduce significant differences in Z(sub dr) between the easterly and westerly climate regimes observed in the Tropical Rainfall Measuring Mission Large-scale Biosphere-Atmosphere (TRMM-LBA) field experiment as well as the even larger differences between Amazonian rainfall and that observed in eastern Colorado. As such, the technique offers a potential methodology for placing locally observed DSD information into a global framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6166R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6166R"><span>Climate during the Roman and early-medieval periods in North-western Europe: a review of climate reconstructions from terrestrial archives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reichelmann, Dana F. C.; Gouw-Bouman, Marjolein T. I. J.; Hoek, Wim Z.; van Lanen, Rowin J.; Stouthamer, Esther; Jansma, Esther</p> <p>2016-04-01</p> <p>High-resolution palaeoclimate reconstructions are essential to identify possible influences of climate variability on landscape evolution and landscape-related cultural changes (e.g., shifting settlement patterns and long-distance trade relations). North-western Europe is an ideal research area for comparison between climate variability and cultural transitions given its geomorphological diversity and the significant cultural changes that took place in this region during the last two millennia (e.g., the decline of the Roman Empire and the transition to medieval kingdoms). Compared to more global climate records, such as ice cores and marine sediments, terrestrial climate proxies have the advantage of representing a relatively short response time to regional climatic change. Furthermore for this region large quantity of climate reconstructions is available covering the last millennium, whereas for the first millennium AD only few high resolution climate reconstructions are available. We compiled climate reconstructions for sites in North-western Europe from the literature and its underlying data. All these reconstructions cover the time period of AD 1 to 1000. We only selected data with an annual to decadal resolution and a minimum resolution of 50 years. This resulted in 18 climate reconstructions from different archives such as chironomids (1), pollen (4), Sphagnum cellulose (1), stalagmites (6), testate amoebae (4), and tree-rings (2). The compilation of the different temperature reconstructions shows similar trends in most of the records. Colder conditions since AD 300 for a period of approximately 400 years and warmer conditions after AD 700 become apparent. A contradicting signal is found before AD 300 with warmer conditions indicated by most of the records but not all. This is likely the result of the use of different proxies, reflecting temperatures linked to different seasons. The compilation of the different precipitation reconstructions also show similar trends. Dry periods are indicated by all records around AD 400 and 600, although precipitation records do not show the same spatial continuity as the temperature proxies. This study shows that clear climate changes occurred over North-western Europe in the period between AD 300 and 700, which are partly reflected by changes in seasonality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8426','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8426"><span>Residential expansion as a continental threat to U.S. coastal ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>J.G. Bartlett; D.M. Mageean; R.J. O' Connor</p> <p>2000-01-01</p> <p>Spatially extensive analysis of satellite, climate, and census data reveals human-environment interactions of regional or continental concern in the United States. A grid-based principal components analysis of Bureau of Census variables revealed two independent demographic phenomena, a-settlement reflecting traditional human settlement patterns and p-settlement...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/52177','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/52177"><span>Characterizing drought for forested landscapes and streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Charlie Luce; Neil Pederson; John Campbell; Connie Millar; Patrick Kormos; James M. Vose; Ross Woods</p> <p>2016-01-01</p> <p>The purpose of this chapter is to explore drought as a hydrometeorological phenomenon and reflect broadly on the characteristics of drought that influence forests, rangelands, and streams. It is a synthesis of understanding about drought processes, hydrology, paleoclimatology, and historical climate variability, and how this understanding can help predict potential...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ihdp.unu.edu/file/get/7722','USGSPUBS'); return false;" href="http://www.ihdp.unu.edu/file/get/7722"><span>Some guidelines for helping natural resources adapt to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad</p> <p>2008-01-01</p> <p>The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century – and especially in the last 30 years – is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......191W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......191W"><span>Complexity in Climatic Controls on Plant Species Distribution: Satellite Data Reveal Unique Climate for Giant Sequoia in the California Sierra Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waller, Eric Kindseth</p> <p></p> <p>A better understanding of the environmental controls on current plant species distribution is essential if the impacts of such diverse challenges as invasive species, changing fire regimes, and global climate change are to be predicted and important diversity conserved. Climate, soil, hydrology, various biotic factors fire, history, and chance can all play a role, but disentangling these factors is a daunting task. Increasingly sophisticated statistical models relying on existing distributions and mapped climatic variables, among others, have been developed to try to answer these questions. Any failure to explain pattern with existing mapped climatic variables is often taken as a referendum on climate as a whole, rather than on the limitations of the particular maps or models. Every location has a unique and constantly changing climate so that any distribution could be explained by some aspect of climate. Chapter 1 of this dissertation reviews some of the major flaws in species distribution modeling and addresses concerns that climate may therefore not be predictive of, or even relevant to, species distributions. Despite problems with climate-based models, climate and climate-derived variables still have substantial merit for explaining species distribution patterns. Additional generation of relevant climate variables and improvements in other climate and climate-derived variables are still needed to demonstrate this more effectively. Satellite data have a long history of being used for vegetation mapping and even species distribution mapping. They have great potential for being used for additional climatic information, and for improved mapping of other climate and climate-derived variables. Improving the characterization of cloud cover frequency with satellite data is one way in which the mapping of important climate and climate-derived variables can be improved. An important input to water balance models, solar radiation maps could be vastly improved with a better mapping of spatial and temporal patterns in cloud cover. Chapter 2 of this dissertation describes the generation of custom daily cloud cover maps from Advanced Very High Resolution Radiometer (AVHRR) satellite data from 1981-1999 at ~5 km resolution and Moderate Resolution Imagine Spectroradiomter (MODIS) satellite reflectance data at ~500 meter resolution for much of the western U.S., from 2000 to 2012. Intensive comparisons of reflectance spectra from a variety of cloud and snow-covered scenes from the southwestern United States allowed the generation of new rules for the classification of clouds and snow in both the AVHRR and MODIS data. The resulting products avoid many of the problems that plague other cloud mapping efforts, such as the tendency for snow cover and bright desert soils to be mapped as cloud. This consistency in classification across cover types is critically important for any distribution modeling of a plant species that might be dependent on cloud cover. In Chapter 3, monthly cloud frequencies derived from the daily classifications were used directly in species distribution models for giant sequoia and were found to be the strongest predictors of giant sequoia distribution. A high frequency of cloud cover, especially in the spring, differentiated the climate of the west slope of the southern Sierra Nevada, where giant sequoia are prolific, from central and northern parts of the range, where the tree is rare and generally absent. Other mapped cloud products, contaminated by confusion with high elevation snow, would likely not have found this important result. The result illustrates the importance of accuracy in mapping as well as the importance of previously overlooked aspects of climate for species distribution modeling. But it also raises new questions about why the clouds form where they do and whether they might be associated with other aspects of climate important to giant sequoia distribution. What are the exact climatic mechanisms governing the distribution? Detailed aspects of the local climate warranted more investigation. Chapter 4 investigates the climate associated with the frequent cloud formation over the western slopes of the southern Sierra Nevada: the "sequoia belt". This region is climatically distinct in a number of ways, all of which could be factors in influencing the distribution of giant sequoia and other species. Satellite and micrometeorological flux tower data reveal characteristics of the sequoia belt that were not evident with surface climate measurements and maps derived from them. Results have implications for species distributions everywhere, but especially in rugged mountains, where climates are complex and poorly mapped. Chapter 5 summarizes some of the main conclusions from the work and suggests directions for related future research. (Abstract shortened by UMI.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27814029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27814029"><span>The Atlantic Meridional Overturning Circulation and Abrupt Climate Change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lynch-Stieglitz, Jean</p> <p>2017-01-03</p> <p>Abrupt changes in climate have occurred in many locations around the globe over the last glacial cycle, with pronounced temperature swings on timescales of decades or less in the North Atlantic. The global pattern of these changes suggests that they reflect variability in the Atlantic meridional overturning circulation (AMOC). This review examines the evidence from ocean sediments for ocean circulation change over these abrupt events. The evidence for changes in the strength and structure of the AMOC associated with the Younger Dryas and many of the Heinrich events is strong. Although it has been difficult to directly document changes in the AMOC over the relatively short Dansgaard-Oeschger events, there is recent evidence supporting AMOC changes over most of these oscillations as well. The lack of direct evidence for circulation changes over the shortest events leaves open the possibility of other driving mechanisms for millennial-scale climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C13B0270U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C13B0270U"><span>Monitoring Climate Variability and Change in Northern Alaska: Updates to the U.S. Geological Survey (USGS) Climate and Permafrost Monitoring Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urban, F. E.; Clow, G. D.; Meares, D. C.</p> <p>2004-12-01</p> <p>Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29855515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29855515"><span>Changing flood frequencies under opposing late Pleistocene eastern Mediterranean climates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ben Dor, Yoav; Armon, Moshe; Ahlborn, Marieke; Morin, Efrat; Erel, Yigal; Brauer, Achim; Schwab, Markus Julius; Tjallingii, Rik; Enzel, Yehouda</p> <p>2018-05-31</p> <p>Floods comprise a dominant hydroclimatic phenomenon in aridlands with significant implications for humans, infrastructure, and landscape evolution worldwide. The study of short-term hydroclimatic variability, such as floods, and its forecasting for episodes of changing climate therefore poses a dominant challenge for the scientific community, and predominantly relies on modeling. Testing the capabilities of climate models to properly describe past and forecast future short-term hydroclimatic phenomena such as floods requires verification against suitable geological archives. However, determining flood frequency during changing climate is rarely achieved, because modern and paleoflood records, especially in arid regions, are often too short or discontinuous. Thus, coeval independent climate reconstructions and paleoflood records are required to further understand the impact of climate change on flood generation. Dead Sea lake levels reflect the mean centennial-millennial hydrological budget in the eastern Mediterranean. In contrast, floods in the large watersheds draining directly into the Dead Sea, are linked to short-term synoptic circulation patterns reflecting hydroclimatic variability. These two very different records are combined in this study to resolve flood frequency during opposing mean climates. Two 700-year-long, seasonally-resolved flood time series constructed from late Pleistocene Dead Sea varved sediments, coeval with significant Dead Sea lake level variations are reported. These series demonstrate that episodes of rising lake levels are characterized by higher frequency of floods, shorter intervals between years of multiple floods, and asignificantly larger number of years that experienced multiple floods. In addition, floods cluster into intervals of intense flooding, characterized by 75% and 20% increased frequency above their respective background frequencies during rising and falling lake-levels, respectively. Mean centennial precipitation in the eastern Mediterranean is therefore coupled with drastic changes in flood frequencies. These drastic changes in flood frequencies are linked to changes in the track, depth, and frequency of mid-latitude eastern Mediterranean cyclones, determining mean climatology resulting in wetter and drier regional climatic episodes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29375800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29375800"><span>Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J</p> <p>2018-01-01</p> <p>Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HydJ...26..593C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HydJ...26..593C"><span>Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David</p> <p>2018-03-01</p> <p>Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC53E1340S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC53E1340S"><span>Regional agricultural susceptibility to climate variability: A district level analysis of Maharashtra, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swami, D.; Parthasarathy, D.; Dave, P.</p> <p>2016-12-01</p> <p>Climate variability (CV) has adverse impact on crop production and inadequate research carried out to assess the impact of CV on crop production has aggravated the ability of farmers to adapt (Jones et al., 2000). A better understanding of CV is required to reduce the vulnerability of farmers towards existing and future CV. Further, a wide variation in policies related to climate change exists at global level and considering the state/nation as a single unit for policy formulations may lead to under-representation of regional problems. Hence, the present work chooses to focus on CVassessment at the regional/district level of Maharashtra state in India. Here, interannual variability of wet and dry spells from year 1951-2013, are used as a measure of CV. Statistical declining trend of wet spells for (12/34) districts was observed across all the districts of Maharashtra. Districts showing highest change in wet spell pre and post 1976/77 are Beed, Latur and Osmanabad belong to Central Maharashtra Plateau zone and Western Maharashtra scarcity zone. Dry spells for (8/34) districts were found to statistically increase across all the districts of Maharashtra. Washim, Yavatmal of Vidarbha zone; and Latur, Parbhani of Amravati division belonging to Central Maharashtra Plateau zone and Central Vidarbha zone are found to reflect the large variation in their behavior pre and post 1976/77. Findings reveal that districts from the same agro-climate zones respond differently to CV, indicating significant spatial heterogeneity within the region. Trend in monsoon variability was found to be prominent after 1976/77, suggesting an enhanced role of climate change on climate variability after 1977. It necessitates separate policy formulation related to CV and agriculture for each district to bring out the solution for regional issues (socio-political, farmers, agriculturalists, economical) more clearly. Further we have attempted to link agriculture vulnerability and crop sensitivity to CV. Results signify spatial and temporal variability of different agro-ecological and climate parameters; suitable adaptation measures to famers and policy makers need to address this change. The findings can be utilized by farmers and policy makers while formulating agricultural policies and adaptation measures related to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A31I3137R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A31I3137R"><span>Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.</p> <p>2014-12-01</p> <p>Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160006426','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160006426"><span>Climate Absolute Radiance and Refractivity Observatory (CLARREO)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leckey, John P.</p> <p>2015-01-01</p> <p>The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....12438A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....12438A"><span>Latest Holocene Climate Variability revealed by a high-resolution multiple Proxy Record off Lisbon (Portugal)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abrantes, F.; Lebreiro, S.; Ferreira, A.; Gil, I.; Jonsdottir, H.; Rodrigues, T.; Kissel, C.; Grimalt, J.</p> <p>2003-04-01</p> <p>The North Atlantic Oscillation (NAO) is known to have a major influence on the wintertime climate of the Atlantic basin and surrounding countries, determining precipitation and wind conditions at mid-latitudes. A comparison of Hurrel's NAO index to the mean winter (January-March) discharge of the Iberian Tagus River reveals a good negative correlation to negative NAO, while the years of largest upwelling anomalies, as referred in the literature, appear to be in good agreement with positive NAO. On this basis, a better understanding of the long-term variability of the NAO and Atlantic climate variability can be gained from high-resolution climate records from the Lisbon area. Climate variability of the last 2,000 years is assessed through a multiple proxy study of sedimentary sequences recovered from the Tagus prodelta deposition center, off Lisbon (Western Iberia). Physical properties, XRF and magnetic properties from core logging, grain size, δ18O, TOC, CaCO3, total alkenones, n-alkanes, alkenone SST, diatoms, benthic and planktonic foraminiferal assemblage compositions and fluxes are the proxies employed. The age model for site D13902 is based on AMS C-14 dates from mollusc and planktonic foraminifera shells, the reservoir correction for which was obtained by dating 3 pre-bomb, mollusc shells from the study area. Preliminary results indicate a Little Ice Age (LIA - 1300 - 1600 AD) alkenone derived SSTs around 15 degC followed by a sharp and rapid increase towards 19 degC. In spite the strong variability observed for most records, this low temperature interval is marked by a general increase in organic carbon, total alkenone concentration, diatom and foraminiferal abundances, as well as an increase in the sediment fine fraction and XRF determined Fe content, pointing to important river input and higher productivity. The Medieval Warm Period (1080 - 1300 AD) is characterized by 17-18 degC SSTs, increased mean grain size, but lower magnetic susceptibility and Fe contents, also accompanied by low values for total alkenone, n-alkanes and organic carbon concentration as well as low diatom abundance which may reflect decreased runoff and productivity. Major peaks in magnetic susceptibility and grain size occur at both periods and are interpreted as the record of flood-like events that are likely to reflect times of primarily negative NAO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29043046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29043046"><span>Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof</p> <p>2017-10-01</p> <p>Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long-suspected negative and positive feedback of climate change on stand dynamics at treeline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8367E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8367E"><span>RICE ice core: Black Carbon reflects climate variability at Roosevelt Island, West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellis, Aja; Edwards, Ross; Bertler, Nancy; Winton, Holly; Goodwin, Ian; Neff, Peter; Tuohy, Andrea; Proemse, Bernadette; Hogan, Chad; Feiteng, Wang</p> <p>2015-04-01</p> <p>The Roosevelt Island Climate Evolution (RICE) project successfully drilled a deep ice core from Roosevelt Island during the 2011/2012 and 2012/2013 seasons. Located in the Ross Ice Shelf in West Antarctica, the site is an ideal location for investigating climate variability and the past stability of the Ross Ice Shelf. Black carbon (BC) aerosols are emitted by both biomass burning and fossil fuels, and BC particles emitted in the southern hemisphere are transported in the atmosphere and preserved in Antarctic ice. The past record of BC is expected to be sensitive to climate variability, as it is modulated by both emissions and transport. To investigate BC variability over the past 200 years, we developed a BC record from two overlapping ice cores (~1850-2012) and a high-resolution snow pit spanning 2010-2012 (cal. yr). Consistent results are found between the snow pit profiles and ice core records. Distinct decadal trends are found with respect to BC particle size, and the record indicates a steady rise in BC particle size over the last 100 years. Differences in emission sources and conditions may be a possible explanation for changes in BC size. These records also show a significant increase in BC concentration over the past decade with concentrations rising over 1.5 ppb (1.5*10^-9 ng/g), suggesting a fundamental shift in BC deposition to the site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2428M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2428M"><span>Understanding Vegetation Response To Climate Variability From Space: The Scientific Objectives< The Approach and The Concept of The Spectra Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menenti, M.; Rast, M.; Baret, F.; Mauser, W.; Miller, J.; Schaepman, M.; Schimel, D.; Verstraete, M.</p> <p></p> <p>The response of vegetation to climate variability is a major scientific question. The monitoring of the carbon stock in terrestrial environments, as well as the improved understanding of the surface-atmosphere interactions controlling the exchange of mat- ter, energy and momentum, is of immediate interest for an improved assessment of the various components of the global carbon cycle. Studies of the Earth System processes at the global scale rely on models that require an advanced understanding and proper characterization of processes at smaller scales. The goal of the SPECTRA mission is to improve the description of those processes by means of better constraints on and parameterizations of the associated models. Many vegetation properties are related to features of reflectance spectra in the region 400 nm U 2500 nm. Detailed observa- tions of spectral reflectance reveal subtle features related to biochemical components of leaves such as chlorophyll and water. The architecture of vegetation canopies de- termines complex changes of observed reflectance spectra with view and illumination angle. Quantitative analysis of reflectance spectra requires, therefore, an accurate char- acterization of the anisotropy of reflected radiance. This can be achieved with nearly U simultaneous observations at different view angles. Exchange of energy between the biosphere and the atmosphere is an important mechanism determining the response of vegetation to climate variability. This requires measurements of the component tem- perature of foliage and soil. The prime objective of SPECTRA is to determine the amount, assess the conditions and understand the response of terrestrial vegetation to climate variability and its role in the coupled cycles of energy, water and carbon. The amount and state of vegetation will be determined by the combination of observed vegetation properties and data assimilation. Specifically, the mission will character- ize the amount and state of vegetation with observations of the following variables: 1) Fractional vegetation cover; 2) Fraction Absorbed Photosynthetically Active Radi- ation (FAPAR); 3) Albedo; 4) Leaf Area Index (LAI); 5) Leaf chlorophyll content; 6)Leaf water content; 7) Foliage temperature; 8) Soil temperature; 9) Fractional cover of living and dead biomass. SPECTRA will provide spatially distributed observations (maps) of the key vegetation properties at the spatial resolution of one image pixel and 1 a temporal frequency of one week or lower. Each map will cover an area of 50 km x 50 km. The SPECTRA mission is being studied by the European Space Agency to ad- dress these scientific issues. The mission comprises the following elements: A. Space segment consisting of an imaging spectrometer covering the region 400 nm U 2400 nm with a nominal spectral resolution of 10 nm and of an agile platform to perform subsequent, along track observations at seven view angles between -70 and + 70. B. Ground segment consisting of a core data processing facility and specialized Centers of Excellence to guarantee to a wide and diverse community access to higher level data products and to specialized data assimilation systems. C. Field segment consist- ing of 50 to 100 dedicated sites where teams of investigators evaluate the observations and assimilate them in models describing the functioning of terrestrial ecosystems. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11E..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11E..07M"><span>Global Climate Change: Valuable Insights from Concordant and Discordant Ice Core Histories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.</p> <p>2014-12-01</p> <p>Earth's ice cover is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical ice fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many ice fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected ice fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other cores recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan ice cores from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these cores located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea ice extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly those from geographically complex settings that appear to be dominated by similar large-scale climatological processes. Better understanding of the spatially and temporally diverse responses in such regions will expand our understanding of the mechanisms forcing climate variability in meteorologically complex environments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28428539','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28428539"><span>Separating decadal global water cycle variability from sea level rise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R</p> <p>2017-04-20</p> <p>Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP53D..06E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP53D..06E"><span>Inferring climate variability from skewed proxy records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emile-Geay, J.; Tingley, M.</p> <p>2013-12-01</p> <p>Many paleoclimate analyses assume a linear relationship between the proxy and the target climate variable, and that both the climate quantity and the errors follow normal distributions. An ever-increasing number of proxy records, however, are better modeled using distributions that are heavy-tailed, skewed, or otherwise non-normal, on account of the proxies reflecting non-normally distributed climate variables, or having non-linear relationships with a normally distributed climate variable. The analysis of such proxies requires a different set of tools, and this work serves as a cautionary tale on the danger of making conclusions about the underlying climate from applications of classic statistical procedures to heavily skewed proxy records. Inspired by runoff proxies, we consider an idealized proxy characterized by a nonlinear, thresholded relationship with climate, and describe three approaches to using such a record to infer past climate: (i) applying standard methods commonly used in the paleoclimate literature, without considering the non-linearities inherent to the proxy record; (ii) applying a power transform prior to using these standard methods; (iii) constructing a Bayesian model to invert the mechanistic relationship between the climate and the proxy. We find that neglecting the skewness in the proxy leads to erroneous conclusions and often exaggerates changes in climate variability between different time intervals. In contrast, an explicit treatment of the skewness, using either power transforms or a Bayesian inversion of the mechanistic model for the proxy, yields significantly better estimates of past climate variations. We apply these insights in two paleoclimate settings: (1) a classical sedimentary record from Laguna Pallcacocha, Ecuador (Moy et al., 2002). Our results agree with the qualitative aspects of previous analyses of this record, but quantitative departures are evident and hold implications for how such records are interpreted, and compared to other proxy records. (2) a multiproxy reconstruction of temperature over the Common Era (Mann et al., 2009), where we find that about one third of the records display significant departures from normality. Accordingly, accounting for skewness in proxy predictors has a notable influence on both reconstructed global mean and spatial patterns of temperature change. Inferring climate variability from skewed proxy records thus requires cares, but can be done with relatively simple tools. References - Mann, M. E., Z. Zhang, S. Rutherford, R. S. Bradley, M. K. Hughes, D. Shindell, C. Ammann, G. Faluvegi, and F. Ni (2009), Global signatures and dynamical origins of the little ice age and medieval climate anomaly, Science, 326(5957), 1256-1260, doi:10.1126/science.1177303. - Moy, C., G. Seltzer, D. Rodbell, and D. Anderson (2002), Variability of El Niño/Southern Oscillation activ- ity at millennial timescales during the Holocene epoch, Nature, 420(6912), 162-165.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511653R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511653R"><span>Paleoclimate networks: a concept meeting central challenges in the reconstruction of paleoclimate dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rehfeld, Kira; Goswami, Bedartha; Marwan, Norbert; Breitenbach, Sebastian; Kurths, Jürgen</p> <p>2013-04-01</p> <p>Statistical analysis of dependencies amongst paleoclimate data helps to infer on the climatic processes they reflect. Three key challenges have to be addressed, however: the datasets are heterogeneous in time (i) and space (ii), and furthermore time itself is a variable that needs to be reconstructed, which (iii) introduces additional uncertainties. To address these issues in a flexible way we developed the paleoclimate network framework, inspired by the increasing application of complex networks in climate research. Nodes in the paleoclimate network represent a paleoclimate archive, and an associated time series. Links between these nodes are assigned, if these time series are significantly similar. Therefore, the base of the paleoclimate network is formed by linear and nonlinear estimators for Pearson correlation, mutual information and event synchronization, which quantify similarity from irregularly sampled time series. Age uncertainties are propagated into the final network analysis using time series ensembles which reflect the uncertainty. We discuss how spatial heterogeneity influences the results obtained from network measures, and demonstrate the power of the approach by inferring teleconnection variability of the Asian summer monsoon for the past 1000 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014WRR....50.9177C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014WRR....50.9177C"><span>Regional patterns of interannual variability of catchment water balances across the continental U.S.: A Budyko framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carmona, Alejandra M.; Sivapalan, Murugesu; Yaeger, Mary A.; Poveda, Germán.</p> <p>2014-12-01</p> <p>Patterns of interannual variability of the annual water balance are explored using data from 190 MOPEX catchments across the continental U.S. This analysis has led to the derivation of a quantitative, dimensionless, Budyko-type framework to characterize the observed interannual variability of annual water balances. The resulting model is expressed in terms of a humidity index that measures the competition between water and energy availability at the annual time scale, and a similarity parameter (α) that captures the net effects of other short-term climate features and local landscape characteristics. This application of the model to the 190 study catchments revealed the existence of space-time symmetry between spatial (between-catchment) variability and general trends in the temporal (between-year) variability of the annual water balances. The MOPEX study catchments were classified into eight similar catchment groups on the basis of magnitudes of the similarity parameter α. Interesting regional trends of α across the continental U.S. were brought out through identification of similarities between the spatial positions of the catchment groups with the mapping of distinctive ecoregions that implicitly take into account common climatic and vegetation characteristics. In this context, this study has introduced a deep sense of similarity that is evident in observed space-time variability of water balances that also reflect the codependence and coevolution of climate and landscape properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7880F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7880F"><span>Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faust, Johan; Fabian, Karl; Giraudeau, Jacques; Knies, Jochen</p> <p>2016-04-01</p> <p>The North Atlantic Oscillation (NAO) is the leading mode of atmospheric circulation variability in the North Atlantic region. Associated shifts of storm tracks, precipitation and temperature patterns affect energy supply and demand, fisheries and agricultural, as well as marine and terrestrial ecological dynamics. Long-term NAO reconstructions are crucial to better understand NAO variability in its response to climate forcing factors, and assess predictability and possible shifts associated with ongoing climate change. Fjord deposits have a great potential for providing high-resolution sedimentary records that reflect local terrestrial and marine processes and, therefore, offer unique opportunities for the investigation of sedimentological and geochemical climatically induced processes. A recent study of instrumental time series revealed NAO as main factor for a strong relation between winter temperature, precipitation and river discharge in central Norway over the past 50 years. Here we use the gained knowledge to establish the first high resolution NAO proxy record from marine sediments. By comparing geochemical measurements from a short sediment core with instrumental data we show that marine primary productivity proxies are sensitive to NAO changes. Conditioned on a stationary relation between our climate proxy and the NAO we establish the first high resolution NAO proxy record (NAO-TFJ) from marine sediments covering the past 2,800 years. The NAO-TFJ shows distinct co-variability with climate changes over Greenland, solar activity and Northern Hemisphere glacier dynamics as well as climatically associated paleo-demographic trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CliPa..13.1831S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CliPa..13.1831S"><span>Hydroclimate variability in Scandinavia over the last millennium - insights from a climate model-proxy data comparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seftigen, Kristina; Goosse, Hugues; Klein, Francois; Chen, Deliang</p> <p>2017-12-01</p> <p>The integration of climate proxy information with general circulation model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavia with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produce droughts-pluvials in the region. Despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find that the GCM-simulated multi-decadal and/or longer hydroclimate variability is systematically smaller than the proxy-based estimates, whereas the dominance of GCM-simulated high-frequency components of variability is not reflected in the proxy record. Furthermore, the paleoclimate evidence indicates in-phase coherencies between regional hydroclimate and temperature on decadal timescales, i.e., sustained wet periods have often been concurrent with warm periods and vice versa. The CMIP5-PMIP3 archive suggests, however, out-of-phase coherencies between the two variables in the last millennium. The lack of adequate understanding of mechanisms linking temperature and moisture supply on longer timescales has serious implications for attribution and prediction of regional hydroclimate changes. Our findings stress the need for further paleoclimate data-model intercomparison efforts to expand our understanding of the dynamics of hydroclimate variability and change, to enhance our ability to evaluate climate models, and to provide a more comprehensive view of future drought and pluvial risks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910105G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910105G"><span>Climate variability and the European agricultural production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guimarães Nobre, Gabriela; Hunink, Johannes E.; Baruth, Bettina; Aerts, Jeroen C. J. H.; Ward, Philip J.</p> <p>2017-04-01</p> <p>By 2050, the global demand for maize, wheat and other major crops is expected to grow sharply. To meet this challenge, agricultural systems have to increase substantially their production. However, the expanding world population, coupled with a decline of arable land per person, and the variability in global climate, are obstacles to achieving the increasing demand. Creating a resilient agriculture system requires the incorporation of preparedness measures against weather-related events, which can trigger disruptive risks such as droughts. This study examines the influence of large-scale climate variability on agriculture production applying a robust decision-making tool named fast-and-frugal trees (FFT). We created FFTs using a dataset of crop production and indices of climate variability: the El Niño Southern Oscillation (SOI) and the North Atlantic Oscillation (NAO). Our main goal is to predict the occurrence of below-average crop production, using these two indices at different lead times. Initial results indicated that SOI and NAO have strong links with European low sugar beet production. For some areas, the FFTs were able to detect below-average productivity events six months before harvesting with hit rate and predictive positive value higher than 70%. We found that shorter lead times, such as three months before harvesting, have the highest predictive skill. Additionally, we observed that the responses of low production events to the phases of the NAO and SOI vary spatially and seasonally. Through the comprehension of the relationship between large scale climate variability and European drought related agricultural impact, this study reflects on how this information could potentially improve the management of the agricultural sector by coupling the findings with seasonal forecasting system of crop production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23825288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23825288"><span>Assessing climate change beliefs: Response effects of question wording and response alternatives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Greenhill, Murni; Leviston, Zoe; Leonard, Rosemary; Walker, Iain</p> <p>2014-11-01</p> <p>To date, there is no 'gold standard' on how to best measure public climate change beliefs. We report a study (N = 897) testing four measures of climate change causation beliefs, drawn from four sources: the CSIRO, Griffith University, the Gallup poll, and the Newspoll. We found that question wording influences the outcome of beliefs reported. Questions that did not allow respondents to choose the option of believing in an equal mix of natural and anthropogenic climate change obtained different results to those that included the option. Age and belief groups were found to be important predictors of how consistent people were in reporting their beliefs. Response consistency gave some support to past findings suggesting climate change beliefs reflect something deeper in the individual belief system. Each belief question was assessed against five criterion variables commonly used in climate change literature. Implications for future studies are discussed. © The Author(s) 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713557E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713557E"><span>Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad</p> <p>2015-04-01</p> <p>Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24122762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24122762"><span>Nursing organizational climates in public and private hospitals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García, I García; Castillo, R F; Santa-Bárbara, E S</p> <p>2014-06-01</p> <p>Researchers study climate to gain an understanding of the psychological environment of organizations, especially in healthcare institutions. Climate is considered to be the set of recurring patterns of individual and group behaviour in an organization. There is evidence confirming a relationship between ethical climate within organizations and job satisfaction. The aim of this study is to describe organizational climate for nursing personnel in public and private hospitals and to confirm the relationships among the climate variables of such hospitals. A correlational study was carried out to measure the organizational climate of one public hospital and two private hospitals in Granada. The Work Environment Scale was used for data collection. The Work Environment Scale includes 10 scales, ranging from 0 to 9, which were used to evaluate social, demographic and organizational climate variables. In this study, 386 subjects were surveyed in three hospitals. A total of 87% of the participants were female and 16% were male. Most participants were nurses (65.6%), followed by nursing aides (20%), and technicians (14.4%). The results obtained reflected different patterns of organizational climate formation, based on hospital type (i.e. public or private) within the Spanish context. Most of the dimensions were below the midpoint of the scale. In conclusion, in public hospitals, there is a greater specialization and the organizational climate is more salient than in the private hospitals. In addition, in the public hospitals, the characteristics of the human resources and their management can have a significant impact on the perception of the climate, which gives greater importance to the organizational climate as decisive of the ethical climate. © The Author(s) 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..757L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..757L"><span>Analysis of Global Urban Temperature Trends and Urbanization Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, K. I.; Ryu, J.; Jeon, S. W.</p> <p>2018-04-01</p> <p>Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194341','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194341"><span>Regionalizing indicators for marine ecosystems: Bering Sea–Aleutian Island seabirds, climate, and competitors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather</p> <p>2017-01-01</p> <p>Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the pelagic food webs that support these seabirds in the BSAI ecosystem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036157','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036157"><span>The annual cycles of phytoplankton biomass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Winder, M.; Cloern, J.E.</p> <p>2010-01-01</p> <p>Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine-coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six-or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high. ?? 2010 The Royal Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...518153S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...518153S"><span>Eastern South African hydroclimate over the past 270,000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simon, Margit H.; Ziegler, Martin; Bosmans, Joyce; Barker, Stephen; Reason, Chris J. C.; Hall, Ian R.</p> <p>2015-12-01</p> <p>Processes that control the hydrological balance in eastern South Africa on orbital to millennial timescales remain poorly understood because proxy records documenting its variability at high resolution are scarce. In this work, we present a detailed 270,000 year-long record of terrestrial climate variability in the KwaZulu-Natal province based on elemental ratios of Fe/K from the southwest Indian Ocean, derived from X-ray fluorescence core scanning. Eastern South African climate variability on these time scales reflects both the long-term effect of regional insolation changes driven by orbital precession and the effects associated with high-latitude abrupt climate forcing over the past two glacial-interglacial cycles, including millennial-scale events not previously identified. Rapid changes towards more humid conditions in eastern South Africa as the Northern Hemisphere entered phases of extreme cooling were potentially driven by a combination of warming in the Agulhas Current and shifts of the subtropical anticyclones. These climate oscillations appear coherent with other Southern Hemisphere records but are anti-phased with respect to the East Asian Monsoon. Numerical modelling results reveal that higher precipitation in the KwaZulu-Natal province during precession maxima is driven by a combination of increased local evaporation and elevated moisture transport into eastern South Africa from the coast of Mozambique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26686943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26686943"><span>Eastern South African hydroclimate over the past 270,000 years.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Simon, Margit H; Ziegler, Martin; Bosmans, Joyce; Barker, Stephen; Reason, Chris J C; Hall, Ian R</p> <p>2015-12-21</p> <p>Processes that control the hydrological balance in eastern South Africa on orbital to millennial timescales remain poorly understood because proxy records documenting its variability at high resolution are scarce. In this work, we present a detailed 270,000 year-long record of terrestrial climate variability in the KwaZulu-Natal province based on elemental ratios of Fe/K from the southwest Indian Ocean, derived from X-ray fluorescence core scanning. Eastern South African climate variability on these time scales reflects both the long-term effect of regional insolation changes driven by orbital precession and the effects associated with high-latitude abrupt climate forcing over the past two glacial-interglacial cycles, including millennial-scale events not previously identified. Rapid changes towards more humid conditions in eastern South Africa as the Northern Hemisphere entered phases of extreme cooling were potentially driven by a combination of warming in the Agulhas Current and shifts of the subtropical anticyclones. These climate oscillations appear coherent with other Southern Hemisphere records but are anti-phased with respect to the East Asian Monsoon. Numerical modelling results reveal that higher precipitation in the KwaZulu-Natal province during precession maxima is driven by a combination of increased local evaporation and elevated moisture transport into eastern South Africa from the coast of Mozambique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685309','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4685309"><span>Eastern South African hydroclimate over the past 270,000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Simon, Margit H.; Ziegler, Martin; Bosmans, Joyce; Barker, Stephen; Reason, Chris J.C.; Hall, Ian R.</p> <p>2015-01-01</p> <p>Processes that control the hydrological balance in eastern South Africa on orbital to millennial timescales remain poorly understood because proxy records documenting its variability at high resolution are scarce. In this work, we present a detailed 270,000 year-long record of terrestrial climate variability in the KwaZulu-Natal province based on elemental ratios of Fe/K from the southwest Indian Ocean, derived from X-ray fluorescence core scanning. Eastern South African climate variability on these time scales reflects both the long-term effect of regional insolation changes driven by orbital precession and the effects associated with high-latitude abrupt climate forcing over the past two glacial-interglacial cycles, including millennial-scale events not previously identified. Rapid changes towards more humid conditions in eastern South Africa as the Northern Hemisphere entered phases of extreme cooling were potentially driven by a combination of warming in the Agulhas Current and shifts of the subtropical anticyclones. These climate oscillations appear coherent with other Southern Hemisphere records but are anti-phased with respect to the East Asian Monsoon. Numerical modelling results reveal that higher precipitation in the KwaZulu-Natal province during precession maxima is driven by a combination of increased local evaporation and elevated moisture transport into eastern South Africa from the coast of Mozambique. PMID:26686943</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2764093','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2764093"><span>Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Royer, Dana L.; Meyerson, Laura A.; Robertson, Kevin M.; Adams, Jonathan M.</p> <p>2009-01-01</p> <p>Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables. PMID:19893620</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5449G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5449G"><span>Teleconnections in the Presence of Climate Change: A Case Study of the Annular Modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerber, Edwin; Baldwin, Mark</p> <p>2010-05-01</p> <p>Long model integrations of future and past climates present a problem for defining teleconnection patterns through Empirical Orthogonal Function (EOF) or correlation analysis when trends in the underlying climate begin to dominate the covariance structure. Similar issues may soon appear in observations as the record becomes longer, especially if climate trends accelerate. The Northern and Southern Annular Modes provide a prime example, because the poleward shift of the jet streams strongly projects onto these patterns, particularly in the Southern Hemisphere. Climate forecasts of the 21st century by chemistry climate models provide a case study. Computation of the annular modes in these long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The new procedure involves two key changes. First, the global mean geopotential height is removed at each time step before computing anomalies. This is particularly important high in the atmosphere, where seasonal variations in geopotential height become significant, and filters out trends due to changes in the temperature structure of the atmosphere. Pattern definition can be very sensitive near the tropopause, as regions of the atmosphere that used to be more of stratospheric character begin to take on tropospheric characteristics as the tropopause rises. The second change is to define anomalies relative to a slowly evolving seasonal climatology, so that the covariance structure reflects internal variability. Once these changes are accounted for, it is found that the zonal mean variability of the atmosphere stays remarkably constant, despite significant changes in the baseline climate forecast for the rest of the century. This stability of the internal variability makes it possible to relate trends in climate to teleconnections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ClDy...40.1841F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ClDy...40.1841F"><span>Assessment of a stochastic downscaling methodology in generating an ensemble of hourly future climate time series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fatichi, S.; Ivanov, V. Y.; Caporali, E.</p> <p>2013-04-01</p> <p>This study extends a stochastic downscaling methodology to generation of an ensemble of hourly time series of meteorological variables that express possible future climate conditions at a point-scale. The stochastic downscaling uses general circulation model (GCM) realizations and an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). Marginal distributions of factors of change are computed for several climate statistics using a Bayesian methodology that can weight GCM realizations based on the model relative performance with respect to a historical climate and a degree of disagreement in projecting future conditions. A Monte Carlo technique is used to sample the factors of change from their respective marginal distributions. As a comparison with traditional approaches, factors of change are also estimated by averaging GCM realizations. With either approach, the derived factors of change are applied to the climate statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series of meteorological variables that can be considered to be representative of future climate conditions. In this study, the time series are generated in an ensemble mode to fully reflect the uncertainty of GCM projections, climate stochasticity, as well as uncertainties of the downscaling procedure. Applications of the methodology in reproducing future climate conditions for the periods of 2000-2009, 2046-2065 and 2081-2100, using the period of 1962-1992 as the historical baseline are discussed for the location of Firenze (Italy). The inferences of the methodology for the period of 2000-2009 are tested against observations to assess reliability of the stochastic downscaling procedure in reproducing statistics of meteorological variables at different time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.569E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.569E"><span>Climatological Modeling of Monthly Air Temperature and Precipitation in Egypt through GIS Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El Kenawy, A.</p> <p>2009-09-01</p> <p>This paper describes a method for modeling and mapping four climatic variables (maximum temperature, minimum temperature, mean temperature and total precipitation) in Egypt using a multiple regression approach implemented in a GIS environment. In this model, a set of variables including latitude, longitude, elevation within a distance of 5, 10 and 15 km, slope, aspect, distance to the Mediterranean Sea, distance to the Red Sea, distance to the Nile, ratio between land and water masses within a radius of 5, 10, 15 km, the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Temperature Index (NDTI) and reflectance are included as independent variables. These variables were integrated as raster layers in MiraMon software at a spatial resolution of 1 km. Climatic variables were considered as dependent variables and averaged from quality controlled and homogenized 39 series distributing across the entire country during the period of (1957-2006). For each climatic variable, digital and objective maps were finally obtained using the multiple regression coefficients at monthly, seasonal and annual timescale. The accuracy of these maps were assessed through cross-validation between predicted and observed values using a set of statistics including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias Error (MBE) and D Willmott statistic. These maps are valuable in the sense of spatial resolution as well as the number of observatories involved in the current analysis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20140005478&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20140005478&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange"><span>Achieving Climate Change Absolute Accuracy in Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140005478'); toggleEditAbsImage('author_20140005478_show'); toggleEditAbsImage('author_20140005478_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140005478_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140005478_hide"></p> <p>2013-01-01</p> <p>The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2350S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2350S"><span>Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seo, Seung Beom; Kim, Young-Oh; Kim, Youngil; Eum, Hyung-Il</p> <p>2018-04-01</p> <p>When selecting a subset of climate change scenarios (GCM models), the priority is to ensure that the subset reflects the comprehensive range of possible model results for all variables concerned. Though many studies have attempted to improve the scenario selection, there is a lack of studies that discuss methods to ensure that the results from a subset of climate models contain the same range of uncertainty in hydrologic variables as when all models are considered. We applied the Katsavounidis-Kuo-Zhang (KKZ) algorithm to select a subset of climate change scenarios and demonstrated its ability to reduce the number of GCM models in an ensemble, while the ranges of multiple climate extremes indices were preserved. First, we analyzed the role of 27 ETCCDI climate extremes indices for scenario selection and selected the representative climate extreme indices. Before the selection of a subset, we excluded a few deficient GCM models that could not represent the observed climate regime. Subsequently, we discovered that a subset of GCM models selected by the KKZ algorithm with the representative climate extreme indices could not capture the full potential range of changes in hydrologic extremes (e.g., 3-day peak flow and 7-day low flow) in some regional case studies. However, the application of the KKZ algorithm with a different set of climate indices, which are correlated to the hydrologic extremes, enabled the overcoming of this limitation. Key climate indices, dependent on the hydrologic extremes to be projected, must therefore be determined prior to the selection of a subset of GCM models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3059571','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3059571"><span>Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>GRUBER, Andreas; ZIMMERMANN, Jolanda; WIESER, Gerhard; OBERHUBER, Walter</p> <p>2011-01-01</p> <p>Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status. We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring. Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone. We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis. PMID:21423861</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21423861','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21423861"><span>Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gruber, Andreas; Zimmermann, Jolanda; Wieser, Gerhard; Oberhuber, Walter</p> <p>2009-08-01</p> <p>Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC43B0900C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC43B0900C"><span>Evaluating the uncertainty of predicting future climate time series at the hourly time scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caporali, E.; Fatichi, S.; Ivanov, V. Y.</p> <p>2011-12-01</p> <p>A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B33B0470K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B33B0470K"><span>Regression tree modeling of forest NPP using site conditions and climate variables across eastern USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwon, Y.</p> <p>2013-12-01</p> <p>As evidence of global warming continue to increase, being able to predict forest response to climate changes, such as expected rise of temperature and precipitation, will be vital for maintaining the sustainability and productivity of forests. To map forest species redistribution by climate change scenario has been successful, however, most species redistribution maps lack mechanistic understanding to explain why trees grow under the novel conditions of chaining climate. Distributional map is only capable of predicting under the equilibrium assumption that the communities would exist following a prolonged period under the new climate. In this context, forest NPP as a surrogate for growth rate, the most important facet that determines stand dynamics, can lead to valid prediction on the transition stage to new vegetation-climate equilibrium as it represents changes in structure of forest reflecting site conditions and climate factors. The objective of this study is to develop forest growth map using regression tree analysis by extracting large-scale non-linear structures from both field-based FIA and remotely sensed MODIS data set. The major issue addressed in this approach is non-linear spatial patterns of forest attributes. Forest inventory data showed complex spatial patterns that reflect environmental states and processes that originate at different spatial scales. At broad scales, non-linear spatial trends in forest attributes and mixture of continuous and discrete types of environmental variables make traditional statistical (multivariate regression) and geostatistical (kriging) models inefficient. It calls into question some traditional underlying assumptions of spatial trends that uncritically accepted in forest data. To solve the controversy surrounding the suitability of forest data, regression tree analysis are performed using Software See5 and Cubist. Four publicly available data sets were obtained: First, field-based Forest Inventory and Analysis (USDA, Forest Service) data set for the 31 eastern most United States. Second, 8-day composite of MODIS Land Cover, FPAR, LAI and GPP/NPP data were obtained from Jan 2001 to Dec 2004 (total 182 composite) and each product were filtered by pixel-level quality assurance data to select best quality pixels. Third, 30-year averaged climate data were collected from National Oceanic and Atmospheric Administration (NOAA) and five climatic variables were obtained: Monthly temperature, precipitation, annual heating and cooling days, and annual frost-free days. Forth, topographic data were obtained from digital elevation model (1km by 1km). This research will provide a better understanding of large-scale forest responses to environmental factors that will be beneficial for the development of important forest management applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46155','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46155"><span>Explaining spatial variability in stream habitats using both natural and management-influenced landscape predictors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>K.J. Anlauf; D.W. Jensen; K.M. Burnett; E.A. Steel; K. Christiansen; J.C. Firman; B.E. Feist; D.P. Larsen</p> <p>2011-01-01</p> <p>1. The distribution and composition of in-stream habitats are reflections of landscape scale geomorphic and climatic controls. Correspondingly, Pacific salmon (Oncorhynchus spp.) are largely adapted to and constrained by the quality and complexity of those in-stream habitat conditions. The degree to which lands have been fragmented and managed can...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041624','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041624"><span>Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.</p> <p>2013-01-01</p> <p>We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect interannual changes in total recharge. These results provide insights into the possible impacts of climate change to other regional aquifer systems, and the streams they support, where discharge points represent a range of flow system scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13G0755C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13G0755C"><span>Regional Climate and Streamflow Projections in North America Under IPCC CMIP5 Scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, H. I.; Castro, C. L.; Troch, P. A. A.; Mukherjee, R.</p> <p>2014-12-01</p> <p>The Colorado River system is the predominant source of water supply for the Southwest U.S. and is already fully allocated, making the region's environmental and economic health particularly sensitive to annual and multi-year streamflow variability. Observed streamflow declines in the Colorado Basin in recent years are likely due to synergistic combination of anthropogenic global warming and natural climate variability, which are creating an overall warmer and more extreme climate. IPCC assessment reports have projected warmer and drier conditions in arid to semi-arid regions (e.g. Solomon et al. 2007). The NAM-related precipitation contributes to substantial Colorado streamflows. Recent climate change studies for the Southwest U.S. region project a dire future, with chronic drought, and substantially reduced Colorado River flows. These regional effects reflect the general observation that climate is being more extreme globally, with areas climatologically favored to be wet getting wetter and areas favored to be dry getting drier (Wang et al. 2012). Multi-scale downscaling modeling experiments are designed using recent IPCC AR5 global climate projections, which incorporate regional climate and hydrologic modeling components. The Weather Research and Forecasting model (WRF) has been selected as the main regional modeling tool; the Variable Infiltration Capacity model (VIC) will be used to generate streamflow projections for the Colorado River Basin. The WRF domain is set up to follow the CORDEX-North America guideline with 25km grid spacing, and VIC model is individually calibrated for upper and lower Colorado River basins in 1/8° resolution. The multi-scale climate and hydrology study aims to characterize how the combination of climate change and natural climate variability is changing cool and warm season precipitation. Further, to preserve the downscaled RCM sensitivity and maintain a reasonable climatology mean based on observed record, a new bias correction technique is applied when using the RCM climatology to the streamflow model. Of specific interest is how major droughts associated with La Niña-like conditions may worsen in the future, as these are the times when the Colorado River system is most critically stressed and would define the "worst case" scenario for water resource planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020194','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020194"><span>Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Swetnam, T.W.; Betancourt, J.L.</p> <p>1998-01-01</p> <p>Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (<102 km2) to mesoscale (104-106 km2). Climate-disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire-climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire-climate correlations (r = 0.7 to 0.9) during specific decades (i.e., circa 1740-80 and 1830-60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ice core, and coral isotope reconstructions. Episodic dry and wet episodes have altered age structures and species composition of woodland and conifer forests. The scarcity of old, living conifers established before circa 1600 suggests that the extreme drought of 1575-95 had pervasive effects on tree populations. The most extreme drought of the past 400 years occurred in the mid-twentieth century (1942-57). This drought resulted in broadscale plant dieoffs in shrublands, woodlands, and forests and accelerated shrub invasion of grasslands. Drought conditions were broken by the post-1976 shift to the negative SO phase and wetter cool seasons in the Southwest. The post-1976 period shows up as an unprecedented surge in tree-ring growth within millennia-length chronologies. This unusual episode may have produced a pulse in tree recruitment and improved rangeland conditions (e.g., higher grass production), though additional study is needed to disentangle the interacting roles of land use and climate. The 1950s drought and the post-1976 wet period and their aftermaths offer natural experiments to study long-term ecosystem response to interdecadal climate variability.Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (<102 km2) to mesoscale (104-106 km2). Climate-disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire-climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire-climate correlations (r = 0.7 to 0.9) during specific decades (i.e., circa 1740-80 and 1830-60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51P..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51P..01L"><span>Study of hydrological extremes - floods and droughts in global river basins using satellite data and model output</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lakshmi, V.; Fayne, J.; Bolten, J. D.</p> <p>2016-12-01</p> <p>We will use satellite data from TRMM (Tropical Rainfall Measurement Mission), AMSR (Advanced Microwave Scanning Radiometer), GRACE (Gravity Recovery and Climate Experiment) and MODIS (Moderate Resolution Spectroradiometer) and model output from NASA GLDAS (Global Land Data Assimilation System) to understand the linkages between hydrological variables. These hydrological variables include precipitation soil moisture vegetation index surface temperature ET and total water. We will present results for major river basins such as Amazon, Colorado, Mississippi, California, Danube, Nile, Congo, Yangtze Mekong, Murray-Darling and Ganga-Brahmaputra.The major floods and droughts in these watersheds will be mapped in time and space using the satellite data and model outputs mentioned above. We will analyze the various hydrological variables and conduct a synergistic study during times of flood and droughts. In order to compare hydrological variables between river basins with vastly different climate and land use we construct an index that is scaled by the climatology. This allows us to compare across different climate, topography, soils and land use regimes. The analysis shows that the hydrological variables derived from satellite data and NASA models clearly reflect the hydrological extremes. This is especially true when data from different sensors are analyzed together - for example rainfall data from TRMM and total water data from GRACE. Such analyses will help to construct prediction tools for water resources applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5...49O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5...49O"><span>Indicators and metrics for the assessment of climate engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oschlies, A.; Held, H.; Keller, D.; Keller, K.; Mengis, N.; Quaas, M.; Rickels, W.; Schmidt, H.</p> <p>2017-01-01</p> <p>Selecting appropriate indicators is essential to aggregate the information provided by climate model outputs into a manageable set of relevant metrics on which assessments of climate engineering (CE) can be based. From all the variables potentially available from climate models, indicators need to be selected that are able to inform scientists and society on the development of the Earth system under CE, as well as on possible impacts and side effects of various ways of deploying CE or not. However, the indicators used so far have been largely identical to those used in climate change assessments and do not visibly reflect the fact that indicators for assessing CE (and thus the metrics composed of these indicators) may be different from those used to assess global warming. Until now, there has been little dedicated effort to identifying specific indicators and metrics for assessing CE. We here propose that such an effort should be facilitated by a more decision-oriented approach and an iterative procedure in close interaction between academia, decision makers, and stakeholders. Specifically, synergies and trade-offs between social objectives reflected by individual indicators, as well as decision-relevant uncertainties should be considered in the development of metrics, so that society can take informed decisions about climate policy measures under the impression of the options available, their likely effects and side effects, and the quality of the underlying knowledge base.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RvGeo..54....5B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RvGeo..54....5B"><span>Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buckley, Martha W.; Marshall, John</p> <p>2016-03-01</p> <p>This is a review about the Atlantic Meridional Overturning Circulation (AMOC), its mean structure, temporal variability, controlling mechanisms, and role in the coupled climate system. The AMOC plays a central role in climate through its heat and freshwater transports. Northward ocean heat transport achieved by the AMOC is responsible for the relative warmth of the Northern Hemisphere compared to the Southern Hemisphere and is thought to play a role in setting the mean position of the Intertropical Convergence Zone north of the equator. The AMOC is a key means by which heat anomalies are sequestered into the ocean's interior and thus modulates the trajectory of climate change. Fluctuations in the AMOC have been linked to low-frequency variability of Atlantic sea surface temperatures with a host of implications for climate variability over surrounding landmasses. On intra-annual timescales, variability in AMOC is large and primarily reflects the response to local wind forcing; meridional coherence of anomalies is limited to that of the wind field. On interannual to decadal timescales, AMOC changes are primarily geostrophic and related to buoyancy anomalies on the western boundary. A pacemaker region for decadal AMOC changes is located in a western "transition zone" along the boundary between the subtropical and subpolar gyres. Decadal AMOC anomalies are communicated meridionally from this region. AMOC observations, as well as the expanded ocean observational network provided by the Argo array and satellite altimetry, are inspiring efforts to develop decadal predictability systems using coupled atmosphere-ocean models initialized by ocean data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..121.8156S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..121.8156S"><span>Albedo climatology for European land surfaces retrieved from AVHRR data (1990-2014) and its spatial and temporal analysis from green-up to vegetation senescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sütterlin, M.; Stöckli, R.; Schaaf, C. B.; Wunderle, S.</p> <p>2016-07-01</p> <p>Satellite-based, long-term records of surface albedo characterization that accurately capture spatial and temporal patterns are essential to develop climate models and to monitor the impact of land use changes on the terrestrial energy and water balance. This study presents the first Bidirectional Reflectance Distribution Function (BRDF) and albedo data set derived from the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage reflectance data acquired on board National Oceanic and Atmospheric Administration and Meteorological Operational platforms from 1990 to 2014 over Europe. The objectives of this paper are to describe the data set's surface albedo climatology and anomalies in the visible, near-infrared, and shortwave broadbands for the growing season months of May to September in order to facilitate utilization of the data by the climate modeling communities. The results demonstrate that the AVHRR BRDF and albedo data have temporal and spatial patterns that are appropriate for the underlying predominant land cover type and accurately reflect the associated climate variation. Visible and near-infrared broadband albedo anomalies are found to be contrasting in most years, and their spatial distributions depict responses of vegetation to climate events (e.g., heat waves). Visible albedo of crops and near-infrared albedo of pastures show a higher interannual variation than respective albedos of other snow-free land covers, while the interannual standard deviations are found to be lower than 0.015. Our findings indicate the importance of taking into account the spectrally distinct variability of surface albedo when analyzing its complex spatiotemporal dynamics in climate-related research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24357530','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24357530"><span>Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pomara, Lars Y; LeDee, Olivia E; Martin, Karl J; Zuckerberg, Benjamin</p> <p>2014-07-01</p> <p>Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back-cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long-term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long-term demographic decline and range contraction for a species of high-conservation concern. Range-wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal-limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110012422','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110012422"><span>CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandford, Stephen P.</p> <p>2010-01-01</p> <p>The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in the large time/space scale averages that are key to understanding decadal changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26599719','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26599719"><span>Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fleming, Alyson H; Clark, Casey T; Calambokidis, John; Barlow, Jay</p> <p>2016-03-01</p> <p>Large, migratory predators are often cited as sentinel species for ecosystem processes and climate-related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20-year period (1993-2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi-decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26104276','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26104276"><span>Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Midekisa, Alemayehu; Beyene, Belay; Mihretie, Abere; Bayabil, Estifanos; Wimberly, Michael C</p> <p>2015-06-24</p> <p>The impacts of interannual climate fluctuations on vector-borne diseases, especially malaria, have received considerable attention in the scientific literature. These effects can be significant in semi-arid and high-elevation areas such as the highlands of East Africa because cooler temperature and seasonally dry conditions limit malaria transmission. Many previous studies have examined short-term lagged effects of climate on malaria (weeks to months), but fewer have explored the possibility of longer-term seasonal effects. This study assessed the interannual variability of malaria occurrence from 2001 to 2009 in the Amhara region of Ethiopia. We tested for associations of climate variables summarized during the dry (January-April), early transition (May-June), and wet (July-September) seasons with malaria incidence in the early peak (May-July) and late peak (September-December) epidemic seasons using generalized linear models. Climate variables included land surface temperature (LST), rainfall, actual evapotranspiration (ET), and the enhanced vegetation index (EVI). We found that both early and late peak malaria incidence had the strongest associations with meteorological conditions in the preceding dry and early transition seasons. Temperature had the strongest influence in the wetter western districts, whereas moisture variables had the strongest influence in the drier eastern districts. We also found a significant correlation between malaria incidence in the early and the subsquent late peak malaria seasons, and the addition of early peak malaria incidence as a predictor substantially improved models of late peak season malaria in both of the study sub-regions. These findings suggest that climatic effects on malaria prior to the main rainy season can carry over through the rainy season and affect the probability of malaria epidemics during the late malaria peak. The results also emphasize the value of combining environmental monitoring with epidemiological surveillance to develop forecasts of malaria outbreaks, as well as the need for spatially stratified approaches that reflect the differential effects of climatic variations in the different sub-regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GML....37..515H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GML....37..515H"><span>Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, Tanja; Stein, Rüdiger; Fahl, Kirsten</p> <p>2017-10-01</p> <p>The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at 3, 2, 1.3 and 0.3 ka. Spectral analysis of the IP25 record revealed 400- and 950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22492847','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22492847"><span>Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chaves, Luis Fernando; Satake, Akiko; Hashizume, Masahiro; Minakawa, Noboru</p> <p>2012-06-15</p> <p>Patterns of concerted fluctuation in populations-synchrony-can reveal impacts of climatic variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. We studied malaria synchrony in 5 15-year long (1984-1999) monthly time series that encompass an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encompassed by the study locations. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-mediated changes in mosquito abundance. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria transmission by environmental variability to develop robust malaria control and elimination programs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18...87F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18...87F"><span>Independent variable complexity for regional regression of the flow duration curve in ungauged basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fouad, Geoffrey; Skupin, André; Hope, Allen</p> <p>2016-04-01</p> <p>The flow duration curve (FDC) is one of the most widely used tools to quantify streamflow. Its percentile flows are often required for water resource applications, but these values must be predicted for ungauged basins with insufficient or no streamflow data. Regional regression is a commonly used approach for predicting percentile flows that involves identifying hydrologic regions and calibrating regression models to each region. The independent variables used to describe the physiographic and climatic setting of the basins are a critical component of regional regression, yet few studies have investigated their effect on resulting predictions. In this study, the complexity of the independent variables needed for regional regression is investigated. Different levels of variable complexity are applied for a regional regression consisting of 918 basins in the US. Both the hydrologic regions and regression models are determined according to the different sets of variables, and the accuracy of resulting predictions is assessed. The different sets of variables include (1) a simple set of three variables strongly tied to the FDC (mean annual precipitation, potential evapotranspiration, and baseflow index), (2) a traditional set of variables describing the average physiographic and climatic conditions of the basins, and (3) a more complex set of variables extending the traditional variables to include statistics describing the distribution of physiographic data and temporal components of climatic data. The latter set of variables is not typically used in regional regression, and is evaluated for its potential to predict percentile flows. The simplest set of only three variables performed similarly to the other more complex sets of variables. Traditional variables used to describe climate, topography, and soil offered little more to the predictions, and the experimental set of variables describing the distribution of basin data in more detail did not improve predictions. These results are largely reflective of cross-correlation existing in hydrologic datasets, and highlight the limited predictive power of many traditionally used variables for regional regression. A parsimonious approach including fewer variables chosen based on their connection to streamflow may be more efficient than a data mining approach including many different variables. Future regional regression studies may benefit from having a hydrologic rationale for including different variables and attempting to create new variables related to streamflow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP31A1844P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP31A1844P"><span>Climate variability at the onset of the Younger Dryas as reflected in annually resolved tree-ring stable isotope chronologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pieper, H.; Helle, G.; Brauer, A.; Kaiser, K. F.; Miramont, C.</p> <p>2013-12-01</p> <p>The Younger Dryas interval during the Last Glacial Termination was an abrupt return to glacial-like conditions punctuating the transition to a warmer, interglacial climate. Despite recent advances in the layer counting of ice-core records of the termination, the timing and length of the Younger Dryas remain controversial. Late Glacial and early Holocene tree-ring chronologies are rare, however, they contain valuable information about past environmental conditions at annual time resolution. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the carbon and oxygen isotope composition of tree-ring cellulose reflect atmospheric and hydrospheric changes. We are investigating a 860-year (13200 - 12340 cal BP) dated dendrochronological record of Late Glacial and Early Holocene chronologies of scots pine (Pinus sylvestris L.) from subfossil tree remnants from Barbiers River (Moyenne Durance, Southern French Alps), as well as from Swiss (Dättnau, Landikon and Gänziloh) sites. Dendro-ecological parameters, such as ring width and stable isotope variations (δ 13C und δ 18O) are used to infer past environmental conditions. We will present our first carbon and oxygen isotope records from tree rings reflecting the environmental changes at the Alleröd/Younger Dryas -transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B31B0474H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B31B0474H"><span>Preliminary assessment of the GOES-R ABI hourly land surface albedo and reflectance products prototyped with Himawari AHI data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, T.; Liang, S.; Zhang, Y.; Yu, Y.</p> <p>2016-12-01</p> <p>Land surface albedo and reflectance are critical geophysical variables used in climate and environmental applications. The multispectral Advanced Baseline Imager (ABI) onboard the next generation geostationary satellites (GOES-R series, set to launch in late 2016) offers high temporal and medium spatial resolution observations, which can be used for monitoring diurnal variation of surface albedo and reflectance. In the GOES-R data processing chain there is no atmospheric correction to generate surface reflectance product, which is usually required for surface albedo estimation. We propose an optimization method to simultaneously retrieve surface bidirectional reflectance distribution function (BRDF) parameters and aerosol optical depth with GOES-R ABI data on a daily-basis, which are used for estimating surface albedo and reflectance. Before the launch of the GOES-R satellite, our algorithm was prototyped with data from the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 satellite, which has spectral bands and spatial resolutions similar to GOES-R ABI. Cal/val activities were carried out against ground measurements at the OzFlux sites in Australia and satellite data including albedo/BRDF products from MODIS and Landsat. The preliminary accuracy assessment showed promising results for both the surface albedo and reflectance estimates. The GOES-R surface albedo and reflectance products will serve as critical inputs for downstream GOES-R satellite products and also help improve climate modeling and weather forecasting with a high temporal resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS23C2033P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS23C2033P"><span>Evidence For Decadal and Century Scale Climate and Oceanic Variability in the Guaymas Basin, Gulf of California, Over the Last Millenium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pineda, L.; Ravelo, A. C.; Aiello, I. W.; Stewart, Z.; Sauthoff, W.</p> <p>2015-12-01</p> <p>Linda Pineda1Ana Christina Ravelo2Ivano Aiello3Zach Stewart2Wilson Sauthoff2 Earth and Planetary Sciences Department, UCSC Ocean Sciences Department, UCSC Moss Landing Marine Lab Natural climate change affects coastal water resources, human land use, and marine biological productivity. In particular, the seasonal migration of the Intertropical Convergence Zone (ITCZ) is influenced by changes in global-scale temperature and pressure gradients and is responsible for spatial changes in summertime rainfall in Mesoamerica impacting regional water resources and the strength of upwelling. In October 2014, aboard the Research Vessel El Puma, a 3.9 meter long core (G14-P12) was recovered from the Northeast flank of the Guaymas Basin in the Gulf of California within the oxygen minimum zone (27˚52.11'N, 111˚41.51'W, water depth of 677m) to investigate changes in seasonal upwelling and Central Mexico rainfall over the last ~1000 years. The age model was developed using Pb210, C14 and lamination counting. The time interval includes the Little Ice Age and the Medieval Warm Period. Biological productivity and precipitation proxy records were produced using an X-Ray Fluorescence (XRF) core-scanner and a color line scanner to generate a record of bulk chemistry and color reflectance. The records indicate marked decadal and centennial scale variability in the lithologic composition of the sediment superimposed on millimeter-scale variability that reflects the presence of seasonally laminated sediments. Nitrogen isotopic and nitrogen weight % measurements were used, in combination with the scanned data, to interpret changes in nitrate utilization and biological productivity. These new records will have broad implications on the link between regional coastal environmental conditions in the Gulf of California and global climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJAEO..58...36S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJAEO..58...36S"><span>Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.</p> <p>2017-06-01</p> <p>Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26967736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26967736"><span>Initial Results from the Survey of Organizational Research Climates (SOuRCe) in the U.S. Department of Veterans Affairs Healthcare System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martinson, Brian C; Nelson, David; Hagel-Campbell, Emily; Mohr, David; Charns, Martin P; Bangerter, Ann; Thrush, Carol R; Ghilardi, Joseph R; Bloomfield, Hanna; Owen, Richard; Wells, James A</p> <p>2016-01-01</p> <p>In service to its core mission of improving the health and well-being of veterans, Veterans Affairs (VA) leadership is committed to supporting research best practices in the VA. Recognizing that the behavior of researchers is influenced by the organizational climates in which they work, efforts to assess the integrity of research climates and share such information with research leadership in VA may be one way to support research best practices. The Survey of Organizational Research Climate (SOuRCe) is the first validated survey instrument specifically designed to assess the organizational climate of research integrity in academic research organizations. The current study reports on an initiative to use the SOuRCe in VA facilities to characterize the organizational research climates and pilot test the effectiveness of using SOuRCe data as a reporting and feedback intervention tool. We administered the SOuRCe using a cross-sectional, online survey, with mailed follow-up to non-responders, of research-engaged employees in the research services of a random selection of 42 VA facilities (e.g., Hospitals/Stations) believed to employ 20 or more research staff. We attained a 51% participation rate, yielding more than 5,200 usable surveys. We found a general consistency in organizational research climates across a variety of sub-groups in this random sample of research services in the VA. We also observed similar SOuRCe scale score means, relative rankings of these scales and their internal reliability, in this VA-based sample as we have previously documented in more traditional academic research settings. Results also showed more substantial variability in research climate scores within than between facilities in the VA research service as reflected in meaningful subgroup differences. These findings suggest that the SOuRCe is suitable as an instrument for assessing the research integrity climates in VA and that the tool has similar patterns of results that have been observed in more traditional academic research settings. The local and specific nature of organizational climates in VA research services, as reflected in variability across sub-groups within individual facilities, has important policy implications. Global, "one-size-fits-all" type initiatives are not likely to yield as much benefit as efforts targeted to specific organizational units or sub-groups and tailored to the specific strengths and weaknesses documented in those locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP41A1271C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP41A1271C"><span>Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.</p> <p>2017-12-01</p> <p>Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C44A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C44A..01C"><span>Climatic Change over the 'Third Pole' from Long Tree-Ring Records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, E.</p> <p>2011-12-01</p> <p>Climatic change over the Greater Himalayas and Tibetan Plateau, the 'Third Pole' of the world, is of great concern now as the Earth continues to warm at an alarming rate. While future climatic change over this region and its resulting impacts on humanity and the environment are difficult to predict with much certainty, knowing how climate has varied in the past can provide both an improved understanding of the range of variability and change that could occur in the future and the necessary context for assessing recent observed climatic change there. For this purpose, one of the best natural archives of past climate information available for study of the Third Pole environment is the changing pattern of annual ring widths found in long tree-ring chronologies. The forests of the Third Pole support many long-lived tree species, with some having life spans in excess of 1,000 years. This natural resource is steadily dwindling now due to continuing deforestation caused by human activity, but there is still enough remaining forest cover to produce a detailed network of long tree-ring chronologies for study of climate variability and change covering the past several centuries. The tree-ring records provide a mix of climate information, including that related to both temperature and precipitation. Examples of long drought-sensitive tree-ring records from the more arid parts of the Karakoram and Tibetan Plateau will be presented, along with records that primarily reflect changing temperatures in moister environments such as in Bhutan. Together they provide a glimpse of how climate of the Third Pole has changed over the past several centuries, the range of natural variability that could occur in the future independent of changes caused by greenhouse warming, and how changes during the latter part of the 20th century period of rapid global warming compare to the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..499..233O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..499..233O"><span>Time series analysis of the Antarctic Circumpolar Wave via symbolic transfer entropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oh, Mingi; Kim, Sehyun; Lim, Kyuseong; Kim, Soo Yong</p> <p>2018-06-01</p> <p>An attempt to interpret a large-scale climate phenomenon in the Southern Ocean (SO), the Antarctic Circumpolar Wave (ACW), has been made using an information entropy method, symbolic transfer entropy (STE). Over the areas of 50-60∘S latitude belt, information flow for four climate variables, sea surface temperature (SST), sea-ice edge (SIE), sea level pressure (SLP) and meridional wind speed (MWS) is examined. We found a tendency that eastward flow of information is preferred only for oceanic variables, which is a main characteristic of the ACW, an eastward wave making a circuit around the Antarctica. Since the ACW is the coherent pattern in both ocean and atmosphere it is reasonable to infer that the tendency reflects the Antarctic Circumpolar Current (ACC) encircling the Antarctica, rather than an evidence of the ACW. We observed one common feature for all four variables, a strong information flow over the area of the eastern Pacific Ocean, which suggest a signature of El Nino Southern Oscillation (ENSO).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29323158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29323158"><span>Climate change risk to forests in China associated with warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yin, Yunhe; Ma, Danyang; Wu, Shaohong</p> <p>2018-01-11</p> <p>Variations in forest net primary productivity (NPP) reflects the combined effects of key climate variables on ecosystem structure and function, especially on the carbon cycle. We performed risk analysis indicated by the magnitude of future negative anomalies in NPP in comparison with the natural interannual variability to investigate the impact of future climatic projections on forests in China. Results from the multi-model ensemble showed that climate change risk of decreases in forest NPP would be more significant in higher emission scenario in China. Under relatively low emission scenarios, the total area of risk was predicted to decline, while for RCP8.5, it was predicted to first decrease and then increase after the middle of 21st century. The rapid temperature increases predicted under the RCP8.5 scenario would be probably unfavorable for forest vegetation growth in the long term. High-level risk area was likely to increase except RCP2.6. The percentage area at high risk was predicted to increase from 5.39% (2021-2050) to 27.62% (2071-2099) under RCP8.5. Climate change risk to forests was mostly concentrated in southern subtropical and tropical regions, generally significant under high emission scenario of RCP8.5, which was mainly attributed to the intensified dryness in south China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28233774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28233774"><span>Intraspecific N and P stoichiometry of Phragmites australis: geographic patterns and variation among climatic regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Yu-Kun; Zhang, Ya-Lin; Liu, Guo-Fang; Pan, Xu; Yang, Xuejun; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Song, Yao-Bin; Dong, Ming</p> <p>2017-02-24</p> <p>Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australis, and environmental (geographic, climate and soil) variables from literature and field investigation in natural wetlands distributed in three climatic regions (subtropical, temperate and highland) across China. We found no clear geographic patterns in leaf nutrients of P. australis across China, except for leaf N:P ratio increasing with altitude. Leaf N and N:P decreased with mean annual temperature (MAT), and leaf N and P were closely related to soil pH, C:N ratio and available P. Redundancy analysis showed that climate and soil variables explained 62.1% of total variation in leaf N, P and N:P. Furthermore, leaf N in temperate region and leaf P in subtropical region increased with soil available P, while leaf N:P in subtropical region decreased with soil pH. These patterns in P. australis different from terrestrial plants might imply that changes in climate and soil properties can exert divergent effects on wetland and terrestrial ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/987794','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/987794"><span>Cloud Feedbacks on Climate: A Challenging Scientific Problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>Norris, Joe</p> <p>2017-12-22</p> <p>One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25204271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25204271"><span>Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas</p> <p>2015-01-01</p> <p>The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2)  day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5821336','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5821336"><span>High intra-specific variation in avian body condition responses to climate limits generalisation across species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>van der Jeugd, Henk P.; van de Pol, Martijn</p> <p>2018-01-01</p> <p>It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology. PMID:29466460</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960016588','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960016588"><span>Radiative transfer in shrub savanna sites in Niger: Preliminary results from HAPEX-Sahel. Part 1: Modelling surface reflectance using a geometric-optical approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Franklin, Janet; Duncan, Jeff; Huete, Alfredo R.; vanLeeuwen, W. J. D.; Li, Xiaowen; Begue, Agnes</p> <p>1994-01-01</p> <p>To use optical remote sensing to monitor land surface-climate interactions over large areas, algorithms must be developed to relate multispectral measurements to key variables controlling the exchange of matter (water, carbon dioxide) and energy between the land surface and the atmosphere. The proportion of the ground covered by vegetation and the interception of photosynthetically active radiation (PAR) by vegetation are examples of two variables related to evapotranspiration and primary production, respectively. An areal-proportion model of the multispectral reflectance of shrub savanna, composed of scattered shrubs with a grass, forb or soil understory, predicted the reflectance of two 0.5 km(exp 2) sites as the area-weighted average of the shrub and understory or 'background' reflectances. Although the shaded crown and shaded background have darker reflectances, ignoring them in the area-weighted model is not serious when shrub cover is low and solar zenith angle is small. A submodel predicted the reflectance of the shrub crown as a function of the foliage reflectance and amount of plant material within the crown, and the background reflectance scattered or transmitted through canopy gaps (referred to as a soil-plant 'spectral interaction' term). One may be able to combine these two models to estimate both the fraction of vegetation cover and interception of PAR by green vegetation in a shrub savanna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29475979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29475979"><span>Ethical decision-making climate in the ICU: theoretical framework and validation of a self-assessment tool.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van den Bulcke, Bo; Piers, Ruth; Jensen, Hanne Irene; Malmgren, Johan; Metaxa, Victoria; Reyners, Anna K; Darmon, Michael; Rusinova, Katerina; Talmor, Daniel; Meert, Anne-Pascale; Cancelliere, Laura; Zubek, Làszló; Maia, Paolo; Michalsen, Andrej; Decruyenaere, Johan; Kompanje, Erwin J O; Azoulay, Elie; Meganck, Reitske; Van de Sompel, Ariëlla; Vansteelandt, Stijn; Vlerick, Peter; Vanheule, Stijn; Benoit, Dominique D</p> <p>2018-02-23</p> <p>Literature depicts differences in ethical decision-making (EDM) between countries and intensive care units (ICU). To better conceptualise EDM climate in the ICU and to validate a tool to assess EDM climates. Using a modified Delphi method, we built a theoretical framework and a self-assessment instrument consisting of 35 statements. This Ethical Decision-Making Climate Questionnaire (EDMCQ) was developed to capture three EDM domains in healthcare: interdisciplinary collaboration and communication; leadership by physicians; and ethical environment. This instrument was subsequently validated among clinicians working in 68 adult ICUs in 13 European countries and the USA. Exploratory and confirmatory factor analysis was used to determine the structure of the EDM climate as perceived by clinicians. Measurement invariance was tested to make sure that variables used in the analysis were comparable constructs across different groups. Of 3610 nurses and 1137 physicians providing ICU bedside care, 2275 (63.1%) and 717 (62.9%) participated respectively. Statistical analyses revealed that a shortened 32-item version of the EDMCQ scale provides a factorial valid measurement of seven facets of the extent to which clinicians perceive an EDM climate: self-reflective and empowering leadership by physicians; practice and culture of open interdisciplinary reflection; culture of not avoiding end-of-life decisions; culture of mutual respect within the interdisciplinary team; active involvement of nurses in end-of-life care and decision-making; active decision-making by physicians; and practice and culture of ethical awareness. Measurement invariance of the EDMCQ across occupational groups was shown, reflecting that nurses and physicians interpret the EDMCQ items in a similar manner. The 32-item version of the EDMCQ might enrich the EDM climate measurement, clinicians' behaviour and the performance of healthcare organisations. This instrument offers opportunities to develop tailored ICU team interventions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017184','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017184"><span>Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bhatt, Rajendra; Doelling, David R.; Wu, Aisheng; Xiong, Xiaoxiong (Jack); Scarino, Benjamin R.; Haney, Conor O.; Gopalan, Arun</p> <p>2014-01-01</p> <p>The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H53C1546S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H53C1546S"><span>Belowground adaptation and resilience to drought conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sivandran, G.; Gentine, P.; Bras, R. L.</p> <p>2012-12-01</p> <p>The most expansive drought in 50 years stretched across the Midwest in 2012. In light of predicted increases in the variability of climate, this type of event can no longer be considered extreme. Understanding the resilience of both managed and natural vegetation and how these systems may adapt to this new climate reality is critical in predicting changes to the global carbon, energy and water balance. An eco-hydrological model (tRIBS+VEGGIE) was employed to model the sensitivity of vegetation to varying drought intensities. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable root carbon allocation scheme. A stochastic climate generator was used to create a series of synthetic climate realizations varying the drought characteristics - in particular the interstorm period. This change in the seasonal distribution of precipitation impacts the spatial (soil layers) and temporal distribution of soil moisture which directly impacts the water resource niche for vegetation. This change in resource niche is reflected in a shift in the optimal static rooting strategy further highlighting the need for the incorporation of a dynamic scheme that responds to local conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176441','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176441"><span>Application of MODFLOW’s farm process to California’s Central Valley</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Faunt, Claudia; Hanson, Randall T.; Schmid, Wolfgang; Belitz, Kenneth</p> <p>2008-01-01</p> <p>landscape processes. The FMP provides coupled simulation of the ground-water and surface-water components of the hydrologic cycle for irrigated and non-irrigated areas. A dynamic allocation of ground-water recharge and ground-water pumping is simulated on the basis of residual crop-water demand after surface-water deliveries and root uptake from shallow ground water. The FMP links with the Streamflow Routing Package SFR1) to facilitate the simulated conveyance of surface-water deliveries. Ground-water Pumpage through both single-aquifer and multi-node wells, irrigation return flow, and variable irrigation efficiencies also are simulated by the FMP. The simulated deliveries and ground-water pumpage in the updated model reflect climatic differences, differences among defined water-balance regions, and changes in the waterdelivery system, during the 1961–2003 simulation period. The model is designed to accept forecasts from Global Climate Models (GCMs) to simulate the potential effects on surface-water delivery, ground-water pumpage, and ground-water storage in response to climate change. The model provides a detailed transient analysis of changes in ground-water availability in relation to climatic variability, urbanization, and changes in irrigated agriculture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26466364','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26466364"><span>Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carroll, Carlos; Lawler, Joshua J; Roberts, David R; Hamann, Andreas</p> <p>2015-01-01</p> <p>Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4605713','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4605713"><span>Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas</p> <p>2015-01-01</p> <p>Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site’s future climate, can facilitate conservation of diversity at multiple scales in the face of climate change. PMID:26466364</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040035745','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040035745"><span>Recent Climate Variability in Antarctica from Satellite-derived Temperature Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.</p> <p>2004-01-01</p> <p>Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11A1868L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11A1868L"><span>Operational Production of the Total Ozone Essential Climate Variable as Part of the Copernicus Climate Change Service (C3S)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lerot, C.; Danckaert, T.; van Gent, J.; Coldewey-Egbers, M.; Loyola, D. G.; Errera, Q.; Spurr, R. J. D.; Garane, K.; Koukouli, M.; Balis, D.; Verhoelst, T.; Granville, J.; Lambert, J. C.; Van Roozendael, M.</p> <p>2017-12-01</p> <p>Total ozone is one of the Essential Climate Variables (ECV) operationally produced within the European Copernicus Climate Change Service (C3S), which aims at providing the geophysical information needed to monitor and study our climate system. The C3S total ozone processing chain relies on algorithmic developments realized for the last six years as part of the ESA's Ozone Climate Change Initiative (Ozone_cci) project. The C3S Climate Data Store currently contains a total ozone record based on observations from the nadir UV-Vis hyperspectral spectrometers GOME/ERS-2, SCIAMACHY/Envisat, GOME-2/Metop-A, GOME-2/Metop-B and OMI/Aura, spanning more than 23 years.Individual level-2 datasets were generated with the retrieval algorithm GODFIT (GOME-type Direct FITting). The retrievals are based on a non-linear least squares adjustment of reflectances simulated with radiative transfer tools from the LIDORT suite, to the measured spectra in the Huggins bands (325-335 nm). The inter-sensor consistency and the time stability of those data sets is significantly enhanced with the application of a soft-calibration procedure to the level-1 reflectances, in which GOME and OMI are used together as a long-term reference. Level-2 data sets are then combined to produce the level-3 GOME-type Total Ozone (GTO-ECV) record consisting of homogenized 1°x1° monthly mean grids. The merging procedure corrects for subsisting inter-satellite biases and temporal drifts. Some developments for minimizing sampling errors have also been recently investigated and will be discussed. Total ozone level-2 and level-3 data sets are regularly verified and validated by independent measurements both from space (independent algorithms and/or instruments) and ground (Brewer/Dobson/SAOZ) and their excellent quality and stability, as well as their consistency with other long-term total ozone data sets will be illustrated here. In future, in addition to be continuously extended in time, the C3S total ozone record will also incorporate new sensors such as OMPS aboard Suomi NPP or TROPOMI/S5p.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21273162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21273162"><span>Impacts of climate change on public health in India: future research directions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bush, Kathleen F; Luber, George; Kotha, S Rani; Dhaliwal, R S; Kapil, Vikas; Pascual, Mercedes; Brown, Daniel G; Frumkin, Howard; Dhiman, R C; Hess, Jeremy; Wilson, Mark L; Balakrishnan, Kalpana; Eisenberg, Joseph; Kaur, Tanvir; Rood, Richard; Batterman, Stuart; Joseph, Aley; Gronlund, Carina J; Agrawal, Arun; Hu, Howard</p> <p>2011-06-01</p> <p>Climate change and associated increases in climate variability will likely further exacerbate global health disparities. More research is needed, particularly in developing countries, to accurately predict the anticipated impacts and inform effective interventions. Building on the information presented at the 2009 Joint Indo-U.S. Workshop on Climate Change and Health in Goa, India, we reviewed relevant literature and data, addressed gaps in knowledge, and identified priorities and strategies for future research in India. The scope of the problem in India is enormous, based on the potential for climate change and variability to exacerbate endemic malaria, dengue, yellow fever, cholera, and chikungunya, as well as chronic diseases, particularly among the millions of people who already experience poor sanitation, pollution, malnutrition, and a shortage of drinking water. Ongoing efforts to study these risks were discussed but remain scant. A universal theme of the recommendations developed was the importance of improving the surveillance, monitoring, and integration of meteorological, environmental, geospatial, and health data while working in parallel to implement adaptation strategies. It will be critical for India to invest in improvements in information infrastructure that are innovative and that promote interdisciplinary collaborations while embarking on adaptation strategies. This will require unprecedented levels of collaboration across diverse institutions in India and abroad. The data can be used in research on the likely impacts of climate change on health that reflect India's diverse climates and populations. Local human and technical capacities for risk communication and promoting adaptive behavior must also be enhanced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG41A0113J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG41A0113J"><span>Daily Rainfall Simulation Using Climate Variables and Nonhomogeneous Hidden Markov Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jung, J.; Kim, H. S.; Joo, H. J.; Han, D.</p> <p>2017-12-01</p> <p>Markov chain is an easy method to handle when we compare it with other ones for the rainfall simulation. However, it also has limitations in reflecting seasonal variability of rainfall or change on rainfall patterns caused by climate change. This study applied a Nonhomogeneous Hidden Markov Model(NHMM) to consider these problems. The NHMM compared with a Hidden Markov Model(HMM) for the evaluation of a goodness of the model. First, we chose Gum river basin in Korea to apply the models and collected daily rainfall data from the stations. Also, the climate variables of geopotential height, temperature, zonal wind, and meridional wind date were collected from NCEP/NCAR reanalysis data to consider external factors affecting the rainfall event. We conducted a correlation analysis between rainfall and climate variables then developed a linear regression equation using the climate variables which have high correlation with rainfall. The monthly rainfall was obtained by the regression equation and it became input data of NHMM. Finally, the daily rainfall by NHMM was simulated and we evaluated the goodness of fit and prediction capability of NHMM by comparing with those of HMM. As a result of simulation by HMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.2076 and 10.8243/131.1304mm each. In case of NHMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.6652 and 10.5112/100.9865mm each. We could verify that the error of daily and monthly rainfall simulated by NHMM was improved by 2.89% and 22.99% compared with HMM. Therefore, it is expected that the results of the study could provide more accurate data for hydrologic analysis. Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028074','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028074"><span>Multidecadal climate variability of global lands and oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCabe, G.J.; Palecki, M.A.</p> <p>2006-01-01</p> <p>Principal components analysis (PCA) and singular value decomposition (SVD) are used to identify the primary modes of decadal and multidecadal variability in annual global Palmer Drought Severity Index (PDSI) values and sea-surface temperature (SSTs). The PDSI and SST data for 1925-2003 were detrended and smoothed (with a 10-year moving average) to isolate the decadal and multidecadal variability. The first two principal components (PCs) of the PDSI PCA explained almost 38% of the decadal and multidecadal variance in the detrended and smoothed global annual PDSI data. The first two PCs of detrended and smoothed global annual SSTs explained nearly 56% of the decadal variability in global SSTs. The PDSI PCs and the SST PCs are directly correlated in a pairwise fashion. The first PDSI and SST PCs reflect variability of the detrended and smoothed annual Pacific Decadal Oscillation (PDO), as well as detrended and smoothed annual Indian Ocean SSTs. The second set of PCs is strongly associated with the Atlantic Multidecadal Oscillation (AMO). The SVD analysis of the cross-covariance of the PDSI and SST data confirmed the close link between the PDSI and SST modes of decadal and multidecadal variation and provided a verification of the PCA results. These findings indicate that the major modes of multidecadal variations in SSTs and land-surface climate conditions are highly interrelated through a small number of spatially complex but slowly varying teleconnections. Therefore, these relations may be adaptable to providing improved baseline conditions for seasonal climate forecasting. Published in 2006 by John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51C1088E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51C1088E"><span>Postglacial diatom-climate responses in a small lake in the Pacific Northwest of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egan, J.; Allott, T. E.; Fletcher, W.</p> <p>2017-12-01</p> <p>Understanding the variability of ocean-atmosphere interactions in the Pacific Northwest (PNW) of North America is essential for climate forecasting, particularly variations in the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Research suggests that global warming is increasing the frequency of extreme El Niño events, which can have global climatic impacts (e.g. disrupting global weather patterns, affecting ecosystems and agriculture and extreme weather events (flood, drought, bushfires)). A diatom record spanning 14,500 Cal yr BP from Moss Lake, Washington is used to assess Holocene climate change in the PNW including evidence for periodicities related to ocean-atmosphere interactions and/or variations in solar output, and is directly compared to the Moss Lake pollen record. Three climate phases were identified: 1) the Late Pleistocene (until 11,800 Cal yr BP), with a cold climate evidenced by the low abundance of diatoms; 2) the early to mid-Holocene (11,800 - 7500 Cal yr BP), with warm climate, longer growing seasons and shorter periods of ice cover, indicated by the increase of Cyclotella pseudostelligera and decrease of Fragilaria taxa; and 3) the mid-to-late Holocene from 7500 Cal yr BP onwards, with a cooler climate reflected by a decrease in Cyclotella pseudostelligera and an increase in Fragilaria taxa. These climate shifts correlate with the regional and local pollen record. Fluctuations in Cyclotella pseudostelligera and Aulacoseira taxa suggest climatic cycles of varying amplitude throughout. RedFit and Wavelet analyses revealed periodicities of approximately 2000, 1300, and 450 yrs. The 2000 yr cycle is attributed to solar variation; the Hallstatt Oscillation. The 1300 yr and 450 yr cycles are attributed to ENSO and PDO like cycles. The 1300 periodicity is evident throughout the Late Pleistocene and Holocene and reflects shifts from El Niño/positive PDO (weak wind intensity, warm temperature) to La Niña/Negative PDO (high wind intensity, cool temperature). Between 11,800 and 7500 Cal yr BP the cycle amplitudes are reduced and frequency increased reflecting the 450 yr periodicity. Diatom data from Moss Lake provide a sensitive record of climate-related limnological responses and refine our understanding of Holocene climate change in the PNW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110016355&hterms=subtle+art&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsubtle%2Bart','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110016355&hterms=subtle+art&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsubtle%2Bart"><span>Accurate Radiometry from Space: An Essential Tool for Climate Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fox, Nigel; Kaiser-Weiss, Andrea; Schmutz, Werner; Thome, Kurtis; Young, Dave; Wielicki, Bruce; Winkler, Rainer; Woolliams, Emma</p> <p>2011-01-01</p> <p>The Earth s climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a primary standard and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a metrology laboratory in space . Keywords: climate change; Earth observation; satellites; radiometry; solar irradiance</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17612861','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17612861"><span>Sex-specific differences of craniofacial traits in Croatia: the impact of environment in a small geographic area.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buretic-Tomljanovic, Alena; Giacometti, Jasminka; Ostojic, Sasa; Kapovic, Miljenko</p> <p>2007-01-01</p> <p>Craniometric variation in humans reflects different genetic and environmental influences. Long-term climatic adaptation is less likely to show an impact on size and shape variation in a small local area than at the global level. The aim of this work was to assess the contribution of the particular environmental factors to body height and craniofacial variability in a small geographic area of Croatia. A total of 632 subjects, aged 18-21, participated in the survey. Body height, head length, head breadth, head height, head circumference, cephalic index, morphological face height, face breadth, and facial index were analysed regarding geographic, climatic and dietary conditions in different regions of the country, and correlated with the specific climatic variables (cumulative multiyear sunshine duration, cumulative multiyear average precipitation, multiyear average air temperatures) and calcium concentrations in drinking water. Significant differences between groups classified according to geographic, climatic or dietary affiliation, and the impact of the environmental predictors on the variation in the investigated traits were assessed using multiple forward stepwise regression analyses. Higher body height measures in both sexes were significantly correlated with Mediterranean diet type. Mediterranean diet type also contributed to higher head length and head circumference measures in females. Cephalic index values correlated to geographic regions in both sexes, showing an increase from southern to eastern Croatia. In the same direction, head length significantly decreased in males and head breadth increased in females. Mediterranean climate was associated with higher and narrower faces in females. The analysis of the particular climatic variables did not reveal a significant influence on body height in either sex. Concurrently, climatic features influenced all craniofacial traits in females and only head length and facial index in males. Mediterranean climate, characterized by higher average sunshine duration, higher average precipitation and higher average air temperatures, was associated with longer, higher and narrower skulls, higher head circumference, lower cephalic index, and higher and narrower faces (lower facial index). Calcium concentrations in drinking water did not correlate significantly with any dependent variable. A significant effect of environmental factors on body height and craniofacial variability was found in Croatian young adult population. This effect was more pronounced in females, revealing sex-specific craniofacial differentiation. However, the impact of environment was low and may explain only 1.0-7.32% variation of the investigated traits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC33A1219C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC33A1219C"><span>Bioclimatic Classification of Northeast Asia for climate change response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Y.; Jeon, S. W.; Lim, C. H.</p> <p>2016-12-01</p> <p>As climate change has been getting worse, we should monitor the change of biodiversity, and distribution of species to handle the crisis and take advantage of climate change. The development of bioclimatic map which classifies land into homogenous zones by similar environment properties is the first step to establish a strategy. Statistically derived classifications of land provide useful spatial frameworks to support ecosystem research, monitoring and policy decisions. Many countries are trying to make this kind of map and actively utilize it to ecosystem conservation and management. However, the Northeast Asia including North Korea doesn't have detailed environmental information, and has not built environmental classification map. Therefore, this study presents a bioclimatic map of Northeast Asia based on statistical clustering of bioclimate data. Bioclim data ver1.4 which provided by WorldClim were considered for inclusion in a model. Eight of the most relevant climate variables were selected by correlation analysis, based on previous studies. Principal Components Analysis (PCA) was used to explain 86% of the variation into three independent dimensions, which were subsequently clustered using an ISODATA clustering. The bioclimatic zone of Northeast Asia could consist of 29, 35, and 50 zones. This bioclimatic map has a 30' resolution. To assess the accuracy, the correlation coefficient was calculated between the first principal component values of the classification variables and the vegetation index, Gross Primary Production (GPP). It shows about 0.5 Pearson correlation coefficient. This study constructed Northeast Asia bioclimatic map by statistical method with high resolution, but in order to better reflect the realities, the variety of climate variables should be considered. Also, further studies should do more quantitative and qualitative validation in various ways. Then, this could be used more effectively to support decision making on climate change adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..189...31H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..189...31H"><span>Punctuated Holocene climate of Vestfirðir, Iceland, linked to internal/external variables and oceanographic conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.</p> <p>2018-06-01</p> <p>Emerging Holocene paleoclimate datasets point to a non-linear response of Icelandic climate against a background of steady orbital cooling. The Vestfirðir peninsula (NW Iceland) is an ideal target for continued climate reconstructions due to the presence of a small ice cap (Drangajökull) and numerous lakes, which provide two independent means to evaluate existing Icelandic climate records and to constrain the forcing mechanisms behind centennial-scale cold anomalies. Here, we present new evidence for Holocene expansions of Drangajökull based on 14C dates from entombed dead vegetation as well as two continuous Holocene lake sediment records. Lake sediments were analyzed for both bulk physical (MS) and biological (%TOC, δ13C, C/N, and BSi) parameters. Composite BSi and C/N records from the two lakes yield a sub-centennial qualitative perspective on algal (diatom) productivity and terrestrial landscape stability, respectively. The Vestfirðir lake proxies suggest initiation of the Holocene Thermal Maximum by ∼8.8 ka with subsequent and pronounced cooling not apparent until ∼3 ka. Synchronous periods of reduced algal productivity and accelerated landscape instability point to cold anomalies centered at ∼8.2, 6.6, 4.2, 3.3, 2.3, 1.8, 1, and 0.25 ka. Triggers for cold anomalies are linked to variable combinations of freshwater pulses, low total solar irradiance, explosive and effusive volcanism, and internal modes of climate variability, with cooling likely sustained by ocean/sea-ice feedbacks. The climate evolution reflected by our glacial and organic proxy records corresponds closely to marine records from the North Iceland Shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5151G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5151G"><span>Changing sediment physical properties at the Agulhas Plateau (IODP Site U1475): indications for the long-term variability of deepwater circulation over the last 7 Ma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gruetzner, Jens; Lathika, Nambiyathodi; Jimenez Espejo, Francisco J.; Uenzelmann-Neben, Gabriele</p> <p>2017-04-01</p> <p>The gateway south of South Africa constitutes an integral inter-ocean link in the global thermohaline circulation (THC) since it allows the exchange of shallow- and deepwater masses between the Indian and the Atlantic. Thus understanding past variations of this current system is important for improving our knowledge of the global climate. The long-term changes in deepwater flow in the Atlantic-Indian gateway during the Cenozoic have been initially studied using reflection seismic profiles. But in many cases the seismic stratigraphy is poorly constrained and not further resolved within the time period from the late Miocene to present. In particular, there are limited Pliocene records that can be used to investigate the influence of climatic (e.g. Antartic ice volume) and tectonic (e.g. closure of the central American seaway) on the deep-water variability. Here we focus on the bottom water flow around the Agulhas Plateau, a location proximal to the entrance of North Atlantic Deep Water (NADW) to the Southern Ocean and South Indian Ocean. IODP Expedition 361 (SAFARI) Site U1475 was drilled in 2669 m water depth into a sediment drift that is deposited on the southwestern flank of Agulhas Plateau and comprises a complete stratigraphic section of the last 7 Ma. We present cleaned, edited, and spliced high-resolution data sets of sediment physical properties measured at Site U1475. Synthetic seismograms generated from the velocity and bulk density core scanning records allow a detailed correlation oft the drilling results with the Site survey seismic reflection profiles. Seismic reflectors at 3.75 and 3.87 s (two-way-traveltime) correspond to major increases in acoustic impedance at 110 and 216 meters below seafloor. Based on the preliminary shipboard biostratigraphic age model sediments at these depths have ages of 4.0 and 5.1 Ma, respectively. Furthermore spectral analyses of physical property records such as natural gamma radiation and colour reflectance reveal climate variability on orbital and suborbital timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11A1869Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11A1869Y"><span>ARCSTONE: Accurate Calibration of Lunar Spectral Reflectance from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, C. L.; Lukashin, C.; Jackson, T.; Cooney, M.; Ryan, N.; Beverly, J.; Davis, W.; Nguyen, T.; Rutherford, G.; Swanson, R.; Kehoe, M.; Kopp, G.; Smith, P.; Woodward, J.; Carvo, J.; Stone, T.</p> <p>2017-12-01</p> <p>Calibration accuracy and consistency are key on-orbit performance metrics for Earth observing sensors. The accuracy and consistency of measurements across multiple instruments in low Earth and geostationary orbits are directly connected to the scientific understanding of complex systems, such as Earth's weather and climate. Recent studies have demonstrated the quantitative impacts of observational accuracy on the science data products [1] and the ability to detect climate change trends for essential climate variables (e.g., Earth's radiation budget, cloud feedback, and long-term trends in cloud parameters) [2, 3]. It is common for sensors to carry references for calibration at various wavelengths onboard, but these can be subject to degradation and increase mass and risk. The Moon can be considered a natural solar diffuser in space. Establishing the Moon as an on-orbit high-accuracy calibration reference enables broad intercalibration opportunities, as the lunar reflectance is time-invariant and can be directly measured by most Earth-observing instruments. Existing approaches to calibrate sensors against the Moon can achieve stabilities of a tenth of a percent over a decade, as demonstrated by the SeaWIFS. However, the current lunar calibration quality, with 5 - 10% bias, depends on the photometric model of the Moon [4]. Significant improvements in the lunar reference are possible and are necessary for climate-level absolute calibrations using the Moon. The ARCSTONE instrument will provide a reliable reference for high-accuracy on-orbit calibration for reflected solar instruments. An orbiting spectrometer flying on a CubeSat in low Earth orbit will provide lunar spectral reflectance with accuracy < 0.5% (k = 1), sufficient to establish an SI-traceable absolute lunar calibration standard for past, current, and future Earth weather and climate sensors. The ARCSTONE team will present the instrument design status and path forward for development, building, calibration and testing. [1] Lyapustin, A. Y. et al., 2014, Atmos. Meas. Tech., 7, pp. 4353 - 4365. [2] Wielicki, B. A., et al., 2013, Bull. Amer. Meteor. Soc., 94, pp. 1519 - 1539. [3] Shea, Y. L., et al., 2017 J. of Climate. [4] Kieffer, H. H., et al., 2005, The Astronomical J., v. 129, pp. 2887 - 2901.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24352845','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24352845"><span>Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A</p> <p>2014-04-01</p> <p>Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036080','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036080"><span>Local weather, regional climate, and annual survival of the northern spotted owl</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Glenn, E.M.; Anthony, R.G.; Forsman, E.D.; Olson, G.S.</p> <p>2011-01-01</p> <p>We used an information-theoretical approach and Cormack-Jolly-Seber models for open populations in program MARK to examine relationships between survival rates of Northern Spotted Owls and a variety of local weather variables and long-term climate variables. In four of the six populations examined, survival was positively associated with wetter than normal conditions during the growing season or high summer temperatures. At the three study areas located at the highest elevations, survival was positively associated with winter temperature but also had a negative or quadratic relation with the number of storms and winter precipitation. A metaanalysis of all six areas combined indicated that annual survival was most strongly associated with phase shifts in the Southern Oscillation and Pacific Decadal Oscillation, which reflect large-scale temperature and precipitation patterns in this region. Climate accounted for a variable amount (1-41%) of the total process variation in annual survival but for more year-to-year variation (3-66%) than did spatial variation among owl territories (0-7%). Negative associations between survival and cold, wet winters and nesting seasons were similar to those found in other studies of the Spotted Owl. The relationships between survival and growing-season precipitation and regional climate patterns, however, had not been reported for this species previously. Climate-change models for the first half of the 21st century predict warmer, wetter winters and hotter, drier summers for the Pacific Northwest. Our results indicate that these conditions could decrease Spotted Owl survival in some areas. Copyright ?? The Cooper Ornithological Society 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29901246','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29901246"><span>Traits drive global wood decomposition rates more than climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Zhenhong; Michaletz, Sean T; Johnson, Daniel J; McDowell, Nate G; Huang, Zhiqun; Zhou, Xuhui; Xu, Chonggang</p> <p>2018-06-14</p> <p>Wood decomposition is a major component of the global carbon cycle. Decomposition rates vary across climate gradients, which is thought to reflect the effects of temperature and moisture on the metabolic kinetics of decomposers. However, decomposition rates also vary with wood traits, which may reflect the influence of stoichiometry on decomposer metabolism as well as geometry relating the surface areas that decomposers colonize with the volumes they consume. In this paper, we combined metabolic and geometric scaling theories to formalize hypotheses regarding the drivers of wood decomposition rates, and assessed these hypotheses using a global compilation of data on climate, wood traits, and wood decomposition rates. Our results are consistent with predictions from both metabolic and geometric scaling theories. Approximately half of the global variation in decomposition rates was explained by wood traits (nitrogen content and diameter), while only a fifth was explained by climate variables (air temperature, precipitation, and relative humidity). These results indicate that global variation in wood decomposition rates is best explained by stoichiometric and geometric wood traits. Our findings suggest that inclusion of wood traits in global carbon cycle models can improve predictions of carbon fluxes from wood decomposition. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015QSRv..125...50Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015QSRv..125...50Z"><span>Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zorzi, Coralie; Sanchez Goñi, Maria Fernanda; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu</p> <p>2015-10-01</p> <p>In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic, Eurasia or the Indian Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B31K..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B31K..07K"><span>Linear relations between leaf mass per area (LMA) and seasonal climate discovered through Linear Manifold Clustering (LMC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiang, N. Y.; Haralick, R. M.; Diky, A.; Kattge, J.; Su, X.</p> <p>2016-12-01</p> <p>Leaf mass per area (LMA) is a critical variable in plant carbon allocation, correlates with leaf activity traits (photosynthetic activity, respiration), and is a controller of litterfall mass and hence carbon substrate for soil biogeochemistry. Recent advances in understanding the leaf economics spectrum (LES) show that LMA has a strong correlation with leaf life span, a trait that reflects ecological strategy, whereas physiological traits that control leaf activity scale with each other when mass-normalized (Osnas et al., 2013). These functional relations help reduce the number of independent variables in quantifying leaf traits. However, LMA is an independent variable that remains a challenge to specify in dynamic global vegetation models (DGVMs), when vegetation types are classified into a limited number of plant functional types (PFTs) without clear mechanistic drivers for LMA. LMA can range orders of magnitude across plant species, as well as vary within a single plant, both vertically and seasonally. As climate relations in combination with alternative ecological strategies have yet to be well identified for LMA, we have assembled 22,000 records of LMA spanning 0.004 - 33 mg/m2 from the numerous contributors to the TRY database (Kattge et al., 2011), with observations distributed over several climate zones and plant functional categories (growth form, leaf type, phenology). We present linear relations between LMA and climate variables, including seasonal temperature, precipitation, and radiation, as derived through Linear Manifold Clustering (LMC). LMC is a stochastic search technique for identifying linear dependencies between variables in high dimensional space. We identify a set of parsimonious classes of LMA-climate groups based on a metric of minimum description to identify structure in the data set, akin to data compression. The relations in each group are compared to Köppen-Geiger climate classes, with some groups revealing continuous linear relations between what might appear to be distinct classes. We discuss these results with regard to parameterization and evaluation of DGVMs with regard to plant diversity and representing the carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51A1053K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51A1053K"><span>Glacial-Interglacial Variability of Nd isotopes in the South Atlantic and Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knudson, K. P.; Goldstein, S. L.; Pena, L.; Seguí, M. J.; Kim, J.; Yehudai, M.; Fahey, T.</p> <p>2017-12-01</p> <p>Understanding the relationship between meridional overturning circulation and climate is key to understanding the processes and feedbacks underlying future climate changes. North Atlantic Deep Water (NADW) represents a major water mass that participates in global oceanic circulation and undergoes substantial reorganization with climate changes on millennial and orbital timescales. Nd isotopes are semi-quantitative water mass tracers that reflect the mixing of end-member water masses, and their values in the Southern Ocean offer the ability to characterize NADW variability over time. Here, we present paleo-circulation records of Nd isotopes measured on fish debris and Fe-Mn encrusted foraminifera from ODP Sites 1090 (42° 54.82'S, 3702 m), and 1094 (53° 10.81'S, 2807 m). Site 1090 is located in the Cape Basin, SE Atlantic, near the lower boundary between NADW and Circumpolar Deep Water (CDW), while 1094 is in the Circumpolar Current. They are ideal locations to monitor changes in the export of NADW to the Southern Ocean. These new results build on previous work (Pena and Goldstein, 2014) to document meridional overturning changes in the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170009785','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170009785"><span>Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga</p> <p>2016-01-01</p> <p>Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815702U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815702U"><span>Air temperature change in the northern and southern tropical Andes linked to North-Atlantic stadials and Greenland interstadials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urrego, Dunia H.; Hooghiemstra, Henry</p> <p>2016-04-01</p> <p>We use eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the signature of millennial-scale climate variability during the last 30,000 years, in particular the Younger Dryas (YD), Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the vegetation to millennial-scale climate variability in the tropical Andes. The signature of HS and the YD are generally recorded as downslope migrations of the upper forest line (UFL), and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicates a north to south difference that could be related to moisture availability. The direction of air temperature change recorded by the Andean vegetation is consistent with millennial-scale cryosphere and sea surface temperature records from the American tropics, but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010016104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010016104"><span>Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)</p> <p>2000-01-01</p> <p>The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31D1032L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31D1032L"><span>Optimization of Water Resources and Agricultural Activities for Economic Benefit in Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LIM, J.; Lall, U.</p> <p>2017-12-01</p> <p>The limited water resources available for irrigation are a key constraint for the important agricultural sector of Colorado's economy. As climate change and groundwater depletion reshape these resources, it is essential to understand the economic potential of water resources under different agricultural production practices. This study uses a linear programming optimization at the county spatial scale and annual temporal scales to study the optimal allocation of water withdrawal and crop choices. The model, AWASH, reflects streamflow constraints between different extraction points, six field crops, and a distinct irrigation decision for maize and wheat. The optimized decision variables, under different environmental, social, economic, and physical constraints, provide long-term solutions for ground and surface water distribution and for land use decisions so that the state can generate the maximum net revenue. Colorado, one of the largest agricultural producers, is tested as a case study and the sensitivity on water price and on climate variability is explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRG..121.3131V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRG..121.3131V"><span>Environmental drivers of mesozooplankton biomass variability in the North Pacific Subtropical Gyre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valencia, Bellineth; Landry, Michael R.; Décima, Moira; Hannides, Cecelia C. S.</p> <p>2016-12-01</p> <p>The environmental drivers of zooplankton variability are poorly explored for the central subtropical Pacific, where a direct bottom-up food-web connection is suggested by increasing trends in primary production and mesozooplankton biomass at station ALOHA (A Long-term Oligotrophic Habitat Assessment) over the past 20 years (1994-2013). Here we use generalized additive models (GAMs) to investigate how these trends relate to the major modes of North Pacific climate variability. A GAM based on monthly mean data explains 43% of the temporal variability in mesozooplankton biomass with significant influences from primary productivity (PP), sea surface temperature (SST), North Pacific Gyre Oscillation (NPGO), and El Niño. This result mainly reflects the seasonal plankton cycle at station ALOHA, in which increasing light and SST lead to enhanced nitrogen fixation, productivity, and zooplankton biomass during summertime. Based on annual mean data, GAMs for two variables suggest that PP and 3-4 year lagged NPGO individually account for 40% of zooplankton variability. The full annual mean GAM explains 70% of variability of zooplankton biomass with significant influences from PP, 4 year lagged NPGO, and 4 year lagged Pacific Decadal Oscillation (PDO). The NPGO affects wind stress, sea surface height, and subtropical gyre circulation and has been linked to mideuphotic zone anomalies in salinity and PP at station ALOHA. Our study broadens the known impact of this climate mode on plankton dynamics in the North Pacific. While lagged transport effects are also evident for subtropical waters, our study highlights a strong coupling between zooplankton fluctuations and PP, which differs from the transport-dominated climate influences that have been found for North Pacific boundary currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..718C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..718C"><span>Climatic vulnerability of the world’s freshwater and marine fishes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comte, Lise; Olden, Julian D.</p> <p>2017-10-01</p> <p>Climate change is a mounting threat to biological diversity, compromising ecosystem structure and function, and undermining the delivery of essential services worldwide. As the magnitude and speed of climate change accelerates, greater understanding of the taxonomy and geography of climatic vulnerability is critical to guide effective conservation action. However, many uncertainties remain regarding the degree and variability of climatic risk within entire clades and across vast ecosystem boundaries. Here we integrate physiological estimates of thermal sensitivity for 2,960 ray-finned fishes with future climatic exposure, and demonstrate that global patterns of vulnerability differ substantially between freshwater and marine realms. Our results suggest that climatic vulnerability for freshwater faunas will be predominantly determined by elevated levels of climatic exposure predicted for the Northern Hemisphere, whereas marine faunas in the tropics will be the most at risk, reflecting their higher intrinsic sensitivity. Spatial overlap between areas of high physiological risk and high human impacts, together with evidence of low past rates of evolution in upper thermal tolerance, highlights the urgency of global conservation actions and policy initiatives if harmful climate effects on the world’s fishes are to be mitigated in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2016/5091/sir20165091.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2016/5091/sir20165091.pdf"><span>Simulation of climate change effects on streamflow, groundwater, and stream temperature using GSFLOW and SNTEMP in the Black Earth Creek Watershed, Wisconsin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hunt, Randall J.; Westenbroek, Stephen M.; Walker, John F.; Selbig, William R.; Regan, R. Steven; Leaf, Andrew T.; Saad, David A.</p> <p>2016-08-23</p> <p>Potential future changes in air temperature drivers were consistently upward regardless of General Circulation Model and emission scenario selected; thus, simulated stream temperatures are forecast to increase appreciably with future climate. However, the amount of temperature increase was variable. Such uncertainty is reflected in temperature model results, along with uncertainty in the groundwater/surface-water interaction itself. The estimated increase in annual average temperature ranged from approximately 3 to 6 degrees Celsius by 2100 in the upper reaches of Black Earth Creek and 2 to 4 degrees Celsius in reaches farther downstream. As with all forecasts that rely on projections of an unknowable future, the results are best considered to approximate potential outcomes of climate change given the underlying uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990116486&hterms=desertification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddesertification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990116486&hterms=desertification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddesertification"><span>Characterizing Mediterranean Land Surfaces as Component of the Regional Climate System by Remote Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.</p> <p>1998-01-01</p> <p>Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007QSRv...26.2012C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007QSRv...26.2012C"><span>Abrupt climate warming in East Antarctica during the early Holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cremer, Holger; Heiri, Oliver; Wagner, Bernd; Wagner-Cremer, Friederike</p> <p>2007-08-01</p> <p>We report a centennial-scale warming event between 8600 and 8400 cal BP from Amery Oasis, East Antarctica, that is documented by the geochemical record in a lacustrine sediment sequence. The organic carbon content, the C/S ratio, and the sedimentation rate in this core have distinctly elevated values around 8500 y ago reflecting relatively warm and ice-free conditions that led to well-ventilated conditions in the lake and considerable sedimentation of both autochthonous and allochthonous organic matter on the lake bottom. This abrupt warming event occurred concurrently with reported warm climatic conditions in the Southern Ocean while the climate in central East Antarctic remained cold. The comparison of the spatial and temporal variability of warm climatic periods documented in various terrestrial, marine, and glacial archives from East Antarctica elucidates the uniqueness of the centennial-scale warming event in the Amery Oasis. We also discuss a possible correlation of the Amery warming event with the abrupt climatic deterioration around 8200 cal BP on the Northern Hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50...51R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50...51R"><span>Automated parameter tuning applied to sea ice in a global climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.</p> <p>2018-01-01</p> <p>This study investigates the hypothesis that a significant portion of spread in climate model projections of sea ice is due to poorly-constrained model parameters. New automated methods for optimization are applied to historical sea ice in a global coupled climate model (HadCM3) in order to calculate the combination of parameters required to reduce the difference between simulation and observations to within the range of model noise. The optimized parameters result in a simulated sea-ice time series which is more consistent with Arctic observations throughout the satellite record (1980-present), particularly in the September minimum, than the standard configuration of HadCM3. Divergence from observed Antarctic trends and mean regional sea ice distribution reflects broader structural uncertainty in the climate model. We also find that the optimized parameters do not cause adverse effects on the model climatology. This simple approach provides evidence for the contribution of parameter uncertainty to spread in sea ice extent trends and could be customized to investigate uncertainties in other climate variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH31A1880K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH31A1880K"><span>Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.</p> <p>2015-12-01</p> <p>The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930015744','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930015744"><span>Ocean climate data for user community in West and Central Africa: Needs, opportunities, and challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ojo, S. O.</p> <p>1992-01-01</p> <p>The urgent need to improve data delivery systems needed by scientists studying ocean role in climate and climate characteristics has been manifested in recent years because of the unprecedented climatic events experienced in many parts of the world. Indeed, there has been a striking and growing realization by governments and the general public indicating that national economies and human welfare depend on climate and its variability. In West and Central Africa, for instance climatic events, which have resulted in floods and droughts, have caused a lot of concern to both governments and people of the region. In particular, the droughts have been so widespread that greater awareness and concern have become generated for the need to find solutions to the problems created by the consequences of the climatic events. Particularly in the southern border regions of the Sahara Desert as well as in the Sahel region, the drought episodes considerably reduced food production and led to series of socioeconomic problems, not only in the areas affected by the droughts, but also in the other parts of West Africa. The various climatic variabilities which have caused the climatic events are no doubt related to the ocean-atmosphere interactions. Unfortunately, not much has been done on the understanding of these interactions, particularly as they affect developing countries. Indeed, not much has been done to develop programs which will reflect the general concerns and needs for researching into the ocean-atmosphere systems and their implications on man-environmental systems in many developing countries. This is for example, true of West and Central Africa, where compared with the middle latitude countries, much less is known about the characteristics of the ocean-atmosphere systems and their significance on man-environmental systems of the area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29195206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29195206"><span>Effects of changing climate on European stream invertebrate communities: A long-term data analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jourdan, Jonas; O'Hara, Robert B; Bottarin, Roberta; Huttunen, Kaisa-Leena; Kuemmerlen, Mathias; Monteith, Don; Muotka, Timo; Ozoliņš, Dāvis; Paavola, Riku; Pilotto, Francesca; Springe, Gunta; Skuja, Agnija; Sundermann, Andrea; Tonkin, Jonathan D; Haase, Peter</p> <p>2018-04-15</p> <p>Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21401368-analyzing-effect-longwave-emissivity-solar-reflectance-building-envelopes-energy-saving-buildings-various-climates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21401368-analyzing-effect-longwave-emissivity-solar-reflectance-building-envelopes-energy-saving-buildings-various-climates"><span>Analyzing the effect of the longwave emissivity and solar reflectance of building envelopes on energy-saving in buildings in various climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shi, Zhiyang; Zhang, Xiong</p> <p></p> <p>A dynamic computer simulation is carried out in the climates of 35 cities distributed around the world. The variation of the annual air-conditioning energy loads due to changes in the longwave emissivity and the solar reflectance of the building envelopes is studied to find the most appropriate exterior building finishes in various climates (including a tropical climate, a subtropical climate, a mountain plateau climate, a frigid-temperate climate and a temperate climate). Both the longwave emissivity and the solar reflectance are set from 0.1 to 0.9 with an interval of 0.1 in the simulation. The annual air-conditioning energy loads trends ofmore » each city are listed in a chart. The results show that both the longwave emissivity and the solar reflectance of building envelopes play significant roles in energy-saving for buildings. In tropical climates, the optical parameters of the building exterior surface affect the building energy-saving most significantly. In the mountain plateau climates and the subarctic climates, the impacts on energy-saving in buildings due to changes in the longwave emissivity and the solar reflectance are still considerable, but in the temperate continental climates and the temperate maritime climates, only limited effects are seen. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812613V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812613V"><span>Holocene river history of the Danube: human-environment interactions on its islands in Hungary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viczián, István; Balogh, János; Kis, Éva; Szeberényi, József</p> <p>2016-04-01</p> <p>A change in the frequency and magnitude of floods is the main response of river systems to climatic change. Natural floods are highly sensitive to even modest changes of climate. The discharge and the characteristics of floods basically determine the floodplain evolution and the feasibility of human land use and inhabitation on the islands and floodplains. The study revealed that those small islands of large rivers which have the surface rising only some meters above the river are particularly suitable research objects of Holocene climate variability as they are exposed to floods, react sensitively to environmental changes and their evolution may be paralleled with human history. The research area covers the islands of the Danube along the river between Komárom and Paks in Hungary, which is about 250 km, includes more than 50 smaller or formerly existing islands and two extensive islands: the Szentendre Island and Csepel Island. Data gathered from 570 archaeological sites of those islands from Neolithic to Modern Ages were analysed and interpreted in accordance with climate history and floodplain evolution. Nevertheless, the study is not only about river and its environmental history but it demonstrates the role of river and climatic variability in the history of mankind. The environment of the floodplain, the river hydrology, the sedimentation, the formation of islands and the incision and aggradation of surrounding riverbeds, the frequency of devastating floods have significantly changed through the historical time periods, which is reflected in the number and locations of archaeological sites on the islands. Their occupation history reflects the changes in discharge, climate, geomorphology, floods and human impacts and indicates historical periods with low or high probability of inundation. The most favourable periods for an island's occupation concerning the flood risk of its surfaces - and consequently of the banks along the river - are the first parts of a stable, warmer and drier period after a humid period, which is usually linked with revolutionary development of cultures and societies. The Middle Neolithic, the Late Copper Age, the Early and Late Bronze Ages, the Late Iron Age and the first part of the Roman Period, the High Middle Age are among the favourable periods, while the periods in between are characterised by frequent floods, higher water level and unfavourable environmental conditions. Archaeological sites known on small islands are found exactly from the above mentioned periods. The aim of the study was to present the Holocene river history of the Danube, improve a climatic-geomorphological model and reveal the variability of fluvial dynamics and geomorphological processes primarily affected by climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003E%26PSL.213...63D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003E%26PSL.213...63D"><span>Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desprat, Stéphanie; Sánchez Goñi, María. Fernanda; Loutre, Marie-France</p> <p>2003-08-01</p> <p>Climatic variability of the last 3 millennia in NW Iberia has been documented using high-resolution pollen analysis of Vir-18 core, retrieved from the Ría de Vigo (42°14.07‧N, 8°47.37‧W). The depth-age model is based on two accelerator mass spectrometry 14C dates and three historically dated botanical events in Galicia: the expansion of Juglans and Pinus, as well as the introduction of Eucalyptus. During the last 3000 years, the relative pollen record demonstrates the occurrence of an open deciduous oak forest, indicating a humid and temperate climate in northwestern Iberia. Two-step forest reduction since 975 cal BC suggests climate as the main cause rather than major socio-economic changes documented in historical archives. Absolute pollen influx has been compared with instrumental summer and winter temperatures and tentatively used as a proxy of short (decadal-scale) and low-amplitude (˜1°C) temperature variations. This new approach allows us to detect for the first time in NW Iberia the millennial-scale climatic cyclicity suggested by North Atlantic records, challenging the apparent climatic stability reflected by the relative pollen record. The Little Ice Age is recorded as low pollen influx values between 1400 and 1860 cal AD, with a cold maximum at 1700 cal AD (Maunder Minimum). The Roman and Medieval Warm Periods are detected through high pollen influx values at 250 cal BC-450 cal AD and 950-1400 cal AD, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51H0496M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51H0496M"><span>Differing response of soil microbial biomass phosphorus and phosphatase activities to lithology and climate in the Sierra Nevada of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margenot, A. J.; Wilson, S. G.</p> <p>2016-12-01</p> <p>Soil phosphorus (P) availability in ecosystems can be strongly reflected by microbial biomass P (MBP) and phosphatase activities. However, it is not known how MBP and phosphatases relate across variability in soil P engendered by parent material and climate. To evaluate this, we sampled surface soils (0-5 cm and 5-15 cm depth) at four climate zones (dominated by blue oak, ponderosa pine, white fir, and red fir, respectively) across three lithologies (granite, andesite, basalt) in the Sierra Nevada of California. This allowed for a unique study of both the influence of climate and lithology on microbial and enzymatic P dynamics. Soils were measured for MBP and potential activities of acid phosphomonoesterase (ACP), alkaline phosphomonoesterase (ALP), and phosphodiesterase (PDE), as well as available and organic P (Po). Across soils there were substantial differences in soil C (14-235 mg g-1), available P (0.6-111 µg g-1), and Po (53-1120 µg g-1), though soil pH was relatively constrained (pH 5.3-7.3). MBP responded more strongly to lithology than climate, and responded only to lithology at 5-15 cm depth. In contrast, phosphatase potential activities responded more strongly to climate than lithology, with greater response at 5-15 cm depth, and were positively correlated with soil C:Po (ACP p = 0.001, ALP and PDE p < 0.0001). MBP and phosphatase potential activities were not correlated, though both positively associated with soil C. Significant divergence of phosphatase activities in soils developed on andesite compared to granite and/or basalt in colder climates (white and red fir) did not reflect peak MBP at the rain-snow transition (ponderosa pine-white fir). PDE, but not ACP, ALP and MBP, was associated inversely with Po (p = 0.02) and tended to increase with available P (p = 0.059). Additionally, PDE varied most of measured indicators of P status across lithology and climate. The greater sensitivity of phosphatases to climate and of MBP to lithology, and the lack of association between MBP and phosphatase activities suggest that these (1) reflect different aspects of soil P status, and (2) are more responsive to soil C than soil P, which may explain observed trends across lithology and climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4788347','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4788347"><span>Initial Results from the Survey of Organizational Research Climates (SOuRCe) in the U.S. Department of Veterans Affairs Healthcare System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Martinson, Brian C.; Nelson, David; Hagel-Campbell, Emily; Mohr, David; Charns, Martin P.; Bangerter, Ann; Thrush, Carol R.; Ghilardi, Joseph R.; Bloomfield, Hanna; Owen, Richard; Wells, James A.</p> <p>2016-01-01</p> <p>Background In service to its core mission of improving the health and well-being of veterans, Veterans Affairs (VA) leadership is committed to supporting research best practices in the VA. Recognizing that the behavior of researchers is influenced by the organizational climates in which they work, efforts to assess the integrity of research climates and share such information with research leadership in VA may be one way to support research best practices. The Survey of Organizational Research Climate (SOuRCe) is the first validated survey instrument specifically designed to assess the organizational climate of research integrity in academic research organizations. The current study reports on an initiative to use the SOuRCe in VA facilities to characterize the organizational research climates and pilot test the effectiveness of using SOuRCe data as a reporting and feedback intervention tool. Methods We administered the SOuRCe using a cross-sectional, online survey, with mailed follow-up to non-responders, of research-engaged employees in the research services of a random selection of 42 VA facilities (e.g., Hospitals/Stations) believed to employ 20 or more research staff. We attained a 51% participation rate, yielding more than 5,200 usable surveys. Results We found a general consistency in organizational research climates across a variety of sub-groups in this random sample of research services in the VA. We also observed similar SOuRCe scale score means, relative rankings of these scales and their internal reliability, in this VA-based sample as we have previously documented in more traditional academic research settings. Results also showed more substantial variability in research climate scores within than between facilities in the VA research service as reflected in meaningful subgroup differences. These findings suggest that the SOuRCe is suitable as an instrument for assessing the research integrity climates in VA and that the tool has similar patterns of results that have been observed in more traditional academic research settings. Conclusions The local and specific nature of organizational climates in VA research services, as reflected in variability across sub-groups within individual facilities, has important policy implications. Global, “one-size-fits-all” type initiatives are not likely to yield as much benefit as efforts targeted to specific organizational units or sub-groups and tailored to the specific strengths and weaknesses documented in those locations. PMID:26967736</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B22A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B22A..06S"><span>Modeling Dynamics of South American Rangelands to Climate Variability and Human Impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanimirova, R.; Arevalo, P. A.; Kaufmann, R.; Maus, V.; Lesiv, M.; Havlik, P.; Friedl, M. A.</p> <p>2017-12-01</p> <p>The combined pressures of climate change and shifting dietary preferences are creating an urgent need to improve understanding of how climate and land management are jointly affecting the sustainability of rangelands. In particular, our ability to effectively manage rangelands in a manner that satisfies increasing demand for meat and dairy while reducing environmental impact depends on the sensitivity of rangelands to perturbations from both climate (e.g., drought) and land use (e.g., grazing). To characterize the sensitivity of rangeland vegetation to variation in climate, we analyzed gridded time series of satellite and climate data at 0.5-degree spatial resolution from 2003 to 2016 for rangeland ecosystems in South America. We used panel regression and canonical correlation to analyze the relationship between time series of enhanced vegetation index (EVI) derived from NASA's Moderate Spatial Resolution Imaging Spectroradiometer (MODIS) and gridded precipitation and air temperature data from the University of East Anglia's Climate Research Unit. To quantify the degree to which livestock management explains geographic variation of EVI, we used global livestock distribution (FAO) and feed requirements data from the Global Biosphere Management Model (GLOBIOM). Because rangeland ecosystems are sensitive to changes in meteorological variables at different time scales, we evaluated the strength of coupling between anomalies in EVI and anomalies in temperature and standardized precipitation index (SPI) data at 1-6 month lags. Our results show statistically significant relationships between EVI and precipitation during summer, fall, and winter in both tropical and subtropical agroecological zones of South America. Further, lagged precipitation effects, which reflect memory in the system, explain significant variance in winter EVI anomalies. While precipitation emerges as the dominant driver of variability in rangeland greenness, we find evidence of a management-induced signal as well. Our modeling framework integrates satellite observation, meteorological data sets, and land use/cover change information to improve our capability to monitor and manage the long-term sustainability of rangelands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3114809','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3114809"><span>Impacts of Climate Change on Public Health in India: Future Research Directions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bush, Kathleen F.; Luber, George; Kotha, S. Rani; Dhaliwal, R.S.; Kapil, Vikas; Pascual, Mercedes; Brown, Daniel G.; Frumkin, Howard; Dhiman, R.C.; Hess, Jeremy; Wilson, Mark L.; Balakrishnan, Kalpana; Eisenberg, Joseph; Kaur, Tanvir; Rood, Richard; Batterman, Stuart; Joseph, Aley; Gronlund, Carina J.; Agrawal, Arun; Hu, Howard</p> <p>2011-01-01</p> <p>Background Climate change and associated increases in climate variability will likely further exacerbate global health disparities. More research is needed, particularly in developing countries, to accurately predict the anticipated impacts and inform effective interventions. Objectives Building on the information presented at the 2009 Joint Indo–U.S. Workshop on Climate Change and Health in Goa, India, we reviewed relevant literature and data, addressed gaps in knowledge, and identified priorities and strategies for future research in India. Discussion The scope of the problem in India is enormous, based on the potential for climate change and variability to exacerbate endemic malaria, dengue, yellow fever, cholera, and chikungunya, as well as chronic diseases, particularly among the millions of people who already experience poor sanitation, pollution, malnutrition, and a shortage of drinking water. Ongoing efforts to study these risks were discussed but remain scant. A universal theme of the recommendations developed was the importance of improving the surveillance, monitoring, and integration of meteorological, environmental, geospatial, and health data while working in parallel to implement adaptation strategies. Conclusions It will be critical for India to invest in improvements in information infrastructure that are innovative and that promote interdisciplinary collaborations while embarking on adaptation strategies. This will require unprecedented levels of collaboration across diverse institutions in India and abroad. The data can be used in research on the likely impacts of climate change on health that reflect India’s diverse climates and populations. Local human and technical capacities for risk communication and promoting adaptive behavior must also be enhanced. PMID:21273162</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1439093-ecohydrologic-processes-soil-thickness-feedbacks-control-limestone-weathering-rates-karst-landscape','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1439093-ecohydrologic-processes-soil-thickness-feedbacks-control-limestone-weathering-rates-karst-landscape"><span>Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...</p> <p>2018-05-18</p> <p>Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439093-ecohydrologic-processes-soil-thickness-feedbacks-control-limestone-weathering-rates-karst-landscape','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439093-ecohydrologic-processes-soil-thickness-feedbacks-control-limestone-weathering-rates-karst-landscape"><span>Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.</p> <p></p> <p>Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24391963','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24391963"><span>Spatial match-mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siddon, Elizabeth Calvert; Kristiansen, Trond; Mueter, Franz J; Holsman, Kirstin K; Heintz, Ron A; Farley, Edward V</p> <p>2013-01-01</p> <p>Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth 'hot spots', for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918153B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918153B"><span>Rising climate variability and synchrony in North Pacific ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Black, Bryan</p> <p>2017-04-01</p> <p>Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9092R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9092R"><span>Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roedig, Edna; Cuntz, Matthias; Huth, Andreas</p> <p>2015-04-01</p> <p>The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26891307','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26891307"><span>Effect of Climate Factors on the Childhood Pneumonia in Papua New Guinea: A Time-Series Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Jinseob; Kim, Jong-Hun; Cheong, Hae-Kwan; Kim, Ho; Honda, Yasushi; Ha, Mina; Hashizume, Masahiro; Kolam, Joel; Inape, Kasis</p> <p>2016-02-15</p> <p>This study aimed to assess the association between climate factors and the incidence of childhood pneumonia in Papua New Guinea quantitatively and to evaluate the variability of the effect size according to their geographic properties. The pneumonia incidence in children under five-year and meteorological factors were obtained from six areas, including monthly rainfall and the monthly average daily maximum temperatures during the period from 1997 to 2006 from national health surveillance data. A generalized linear model was applied to measure the effect size of local and regional climate factor. The pooled risk of pneumonia in children per every 10 mm increase of rainfall was 0.24% (95% confidence interval: -0.01%-0.50%), and risk per every 1 °C increase of the monthly mean of the maximum daily temperatures was 4.88% (95% CI: 1.57-8.30). Southern oscillation index and dipole mode index showed an overall negative effect on childhood pneumonia incidence, -0.57% and -4.30%, respectively, and the risk of pneumonia was higher in the dry season than in the rainy season (pooled effect: 12.08%). There was a variability in the relationship between climate factors and pneumonia which is assumed to reflect distribution of the determinants of and vulnerability to pneumonia in the community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://herpconbio.org/Volume_8/Issue_1/Mushet_etal_2013.pdf','USGSPUBS'); return false;" href="http://herpconbio.org/Volume_8/Issue_1/Mushet_etal_2013.pdf"><span>Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.</p> <p>2013-01-01</p> <p>In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3221P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3221P"><span>Mechanisms Controlling Global Mean Sea Surface Temperature Determined From a State Estimate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ponte, R. M.; Piecuch, C. G.</p> <p>2018-04-01</p> <p>Global mean sea surface temperature (T¯) is a variable of primary interest in studies of climate variability and change. The temporal evolution of T¯ can be influenced by surface heat fluxes (F¯) and by diffusion (D¯) and advection (A¯) processes internal to the ocean, but quantifying the contribution of these different factors from data alone is prone to substantial uncertainties. Here we derive a closed T¯ budget for the period 1993-2015 based on a global ocean state estimate, which is an exact solution of a general circulation model constrained to most extant ocean observations through advanced optimization methods. The estimated average temperature of the top (10-m thick) level in the model, taken to represent T¯, shows relatively small variability at most time scales compared to F¯, D¯, or A¯, reflecting the tendency for largely balancing effects from all the latter terms. The seasonal cycle in T¯ is mostly determined by small imbalances between F¯ and D¯, with negligible contributions from A¯. While D¯ seems to simply damp F¯ at the annual period, a different dynamical role for D¯ at semiannual period is suggested by it being larger than F¯. At periods longer than annual, A¯ contributes importantly to T¯ variability, pointing to the direct influence of the variable ocean circulation on T¯ and mean surface climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PNAS..113.3453L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PNAS..113.3453L"><span>Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco; SMS Science Team; Acton, Gary; Askin, Rosemary; Atkins, Clifford; Bassett, Kari; Beu, Alan; Blackstone, Brian; Browne, Gregory; Ceregato, Alessandro; Cody, Rosemary; Cornamusini, Gianluca; Corrado, Sveva; DeConto, Robert; Del Carlo, Paola; Di Vincenzo, Gianfranco; Dunbar, Gavin; Falk, Candice; Field, Brad; Fielding, Christopher; Florindo, Fabio; Frank, Tracy; Giorgetti, Giovanna; Grelle, Thomas; Gui, Zi; Handwerger, David; Hannah, Michael; Harwood, David M.; Hauptvogel, Dan; Hayden, Travis; Henrys, Stuart; Hoffmann, Stefan; Iacoviello, Francesco; Ishman, Scott; Jarrard, Richard; Johnson, Katherine; Jovane, Luigi; Judge, Shelley; Kominz, Michelle; Konfirst, Matthew; Krissek, Lawrence; Kuhn, Gerhard; Lacy, Laura; Levy, Richard; Maffioli, Paola; Magens, Diana; Marcano, Maria C.; Millan, Cristina; Mohr, Barbara; Montone, Paola; Mukasa, Samuel; Naish, Timothy; Niessen, Frank; Ohneiser, Christian; Olney, Mathew; Panter, Kurt; Passchier, Sandra; Patterson, Molly; Paulsen, Timothy; Pekar, Stephen; Pierdominici, Simona; Pollard, David; Raine, Ian; Reed, Joshua; Reichelt, Lucia; Riesselman, Christina; Rocchi, Sergio; Sagnotti, Leonardo; Sandroni, Sonia; Sangiorgi, Francesca; Schmitt, Douglas; Speece, Marvin; Storey, Bryan; Strada, Eleonora; Talarico, Franco; Taviani, Marco; Tuzzi, Eva; Verosub, Kenneth; von Eynatten, Hilmar; Warny, Sophie; Wilson, Gary; Wilson, Terry; Wonik, Thomas; Zattin, Massimiliano</p> <p>2016-03-01</p> <p>Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (˜280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (˜500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4822588','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4822588"><span>Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco</p> <p>2016-01-01</p> <p>Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23–14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3–4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. PMID:26903644</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26903644','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26903644"><span>Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco</p> <p>2016-03-29</p> <p>Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2242814','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2242814"><span>Adaptations to Climate in Candidate Genes for Common Metabolic Disorders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hancock, Angela M; Witonsky, David B; Gordon, Adam S; Eshel, Gidon; Pritchard, Jonathan K; Coop, Graham; Di Rienzo, Anna</p> <p>2008-01-01</p> <p>Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders. PMID:18282109</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70119597','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70119597"><span>A model for evaluating stream temperature response to climate change scenarios in Wisconsin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven</p> <p>2010-01-01</p> <p>Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP21A1780F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP21A1780F"><span>Hydrologic and temperature variability at Lake Titicaca over the past 50,000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fornace, K.; Shanahan, T. M.; Sylva, S.; Ossolinski, J.; Baker, P. A.; Fritz, S. C.; Hughen, K. A.</p> <p>2011-12-01</p> <p>The Bolivian Altiplano has been the focus of many paleoclimate studies due to the important role it plays in the South American climate system. Although the timing of climate shifts in this region is relatively well known, the magnitudes of hydrologic versus temperature changes remain poorly quantified. Here we apply hydrogen isotope analysis (δD) of terrestrial leaf waxes and the TEX86 temperature proxy in sediments from Lake Titicaca to reconstruct hydrologic and temperature variability over the past 50,000 years. Our record reveals that the Altiplano underwent a major climate shift during the last deglaciation, reflected in a ~70-80% enrichment in leaf wax δD at the onset of the Holocene. Using the global isotope-temperature relationship for meteoric water, only 25-40% of this enrichment can be explained by the 4-5°C deglacial warming shown by the TEX86 proxy, indicating that precipitation was significantly reduced (and evaporation/evapotranspiration increased) during the Holocene. Further, the timing of these hydrologic and temperature changes was asynchronous during the transition from a cold and wet glacial state to a warm and dry Holocene. The major hydrologic shift recorded by leaf wax δD occurred around ~11-12 ka, consistent with Northern Hemisphere deglacial patterns, whereas TEX86 data indicate that rapid warming began much earlier, more typical of a Southern Hemisphere deglacial pattern. Within the late glacial and Holocene mean climate states, however, there is evidence of synchronous hydrologic and temperature variability on millennial timescales. This study demonstrates that climate on the Altiplano was controlled by the interaction of local and remote forcing on a range of timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25442642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25442642"><span>Distant drivers or local signals: where do mercury trends in western Arctic belugas originate?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Loseto, L L; Stern, G A; Macdonald, R W</p> <p>2015-03-15</p> <p>Temporal trends of contaminants are monitored in Arctic higher trophic level species to inform us on the fate, transport and risk of contaminants as well as advise on global emissions. However, monitoring mercury (Hg) trends in species such as belugas challenge us, as their tissue concentrations reflect complex interactions among Hg deposition and methylation, whale physiology, dietary exposure and foraging patterns. The Beaufort Sea beluga population showed significant increases in Hg during the 1990 s; since that time an additional 10 years of data have been collected. During this time of data collection, changes in the Arctic have affected many processes that underlie the Hg cycle. Here, we examine Hg in beluga tissues and investigate factors that could contribute to the observed trends after removing the effect of age and size on Hg concentrations and dietary factors. Finally, we examine available indicators of climate variability (Arctic Oscillation (AO), the Pacific Decadal Oscillation (PDO) and sea-ice minimum (SIM) concentration) to evaluate their potential to explain beluga Hg trends. Results reveal a decline in Hg concentrations from 2002 to 2012 in the liver of older whales and the muscle of large whales. The temporal increases in Hg in the 1990 s followed by recent declines do not follow trends in Hg emission, and are not easily explained by diet markers highlighting the complexity of feeding, food web dynamics and Hg uptake. Among the regional-scale climate variables the PDO exhibited the most significant relationship with beluga Hg at an eight year lag time. This distant signal points us to consider beluga winter feeding areas. Given that changes in climate will impact ecosystems; it is plausible that these climate variables are important in explaining beluga Hg trends. Such relationships require further investigation of the multiple connections between climate variables and beluga Hg. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11c5003W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11c5003W"><span>Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.</p> <p>2016-03-01</p> <p>Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in shaping continental-scale pyrogeography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EnMan..58..343H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EnMan..58..343H"><span>Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois</p> <p>2016-08-01</p> <p>Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27179801','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27179801"><span>Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois</p> <p>2016-08-01</p> <p>Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816912H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816912H"><span>Project Ukko - Design of a climate service visualisation interface for seasonal wind forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemment, Drew; Stefaner, Moritz; Makri, Stephann; Buontempo, Carlo; Christel, Isadora; Torralba-Fernandez, Veronica; Gonzalez-Reviriego, Nube; Doblas-Reyes, Francisco; de Matos, Paula; Dykes, Jason</p> <p>2016-04-01</p> <p>Project Ukko is a prototype climate service to visually communicate probabilistic seasonal wind forecasts for the energy sector. In Project Ukko, an interactive visualisation enhances the accessibility and readability to the latests advances in seasonal wind speed predictions developed as part of the RESILIENCE prototype of the EUPORIAS (EC FP7) project. Climate services provide made-to-measure climate information, tailored to the specific requirements of different users and industries. In the wind energy sector, understanding of wind conditions in the next few months has high economic value, for instance, for the energy traders. Current energy practices use retrospective climatology, but access to reliable seasonal predictions based in the recent advances in global climate models has potential to improve their resilience to climate variability and change. Despite their potential benefits, a barrier to the development of commercially viable services is the complexity of the probabilistic forecast information, and the challenge of communicating complex and uncertain information to decision makers in industry. Project Ukko consists of an interactive climate service interface for wind energy users to explore probabilistic wind speed predictions for the coming season. This interface enables fast visual detection and exploration of interesting features and regions likely to experience unusual changes in wind speed in the coming months.The aim is not only to support users to better understand the future variability in wind power resources, but also to bridge the gap between practitioners' traditional approach and the advanced prediction systems developed by the climate science community. Project Ukko is presented as a case study of cross-disciplinary collaboration between climate science and design, for the development of climate services that are useful, usable and effective for industry users. The presentation will reflect on the challenge of developing a climate service for industry users in the wind energy sector, the background to this challenge, our approach, and the evaluation of the visualisation interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/of00-332/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/of00-332/"><span>An assessment of irrigation needs and crop yield for the United States under potential climate changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brumbelow, Kelly; Georgakakos, Aris P.</p> <p>2000-01-01</p> <p>Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently, in the response of agricultural systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000QSRv...19..687D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000QSRv...19..687D"><span>The ice age cycle and the deglaciations: an application of nonlinear regression modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dalgleish, A. N.; Boulton, G. S.; Renshaw, E.</p> <p>2000-03-01</p> <p>We have applied the nonlinear regression technique known as additivity and variance stabilisation (AVAS) to time series which reflect Earth's climate over the last 600 ka. AVAS estimates a smooth, nonlinear transform for each variable, under the assumption of an additive model. The Earth's orbital parameters and insolation variations have been used as regression variables. Analysis of the contribution of each variable shows that the deglaciations are characterised by periods of increasing obliquity and perihelion approaching the vernal equinox, but not by any systematic change in eccentricity. The magnitude of insolation changes also plays no role. By approximating the transforms we can obtain a future prediction, with a glacial maximum at 60 ka AP, and a subsequent obliquity and precession forced deglaciation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=283131','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=283131"><span>Spatial distributions ofC3 and C4 grass functional types in the U.S. great plains and their despendency on inter-annual climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Grassland ecosystems in North America are primarily composed of C3 and C4 plant functional types (PFTs) with their relative cover varying spatially and temporally. This study used 500-m MODIS surface reflectance products (MOD09A1) from 2000 to 2009 to extract an NDVI time series of C3 and C4 PFTs in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4354156','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4354156"><span>Climate variation explains a third of global crop yield variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.</p> <p>2015-01-01</p> <p>Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ERL.....6c1002H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ERL.....6c1002H"><span>Global warming: it's not only size that matters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hegerl, Gabriele C.</p> <p>2011-09-01</p> <p>Observed and model simulated warming is particularly large in high latitudes, and hence the Arctic is often seen as the posterchild of vulnerability to global warming. However, Mahlstein et al (2011) point out that the signal of climate change is emerging locally from that of climate variability earliest in regions of low climate variability, based on climate model data, and in agreement with observations. This is because high latitude regions are not only regions of strong feedbacks that enhance the global warming signal, but also regions of substantial climate variability, driven by strong dynamics and enhanced by feedbacks (Hall 2004). Hence the spatial pattern of both observed warming and simulated warming for the 20th century shows strong warming in high latitudes, but this warming occurs against a backdrop of strong variability. Thus, the ratio of the warming to internal variability is not necessarily highest in the regions that warm fastest—and Mahlstein et al illustrate that it is actually the low-variability regions where the signal of local warming emerges first from that of climate variability. Thus, regions with strongest warming are neither the most important to diagnose that forcing changes climate, nor are they the regions which will necessarily experience the strongest impact. The importance of the signal-to-noise ratio has been known to the detection and attribution community, but has been buried in technical 'optimal fingerprinting' literature (e.g., Hasselmann 1979, Allen and Tett 1999), where it was used for an earlier detection of climate change by emphasizing aspects of the fingerprint of global warming associated with low variability in estimates of the observed warming. What, however, was not discussed was that the local signal-to-noise ratio is of interest also for local climate change: where temperatures emerge from the range visited by internal climate variability, it is reasonable to assume that changes in climate will also cause more impacts than temperatures that have occurred frequently due to internal climate variability. Determining when exactly temperatures enter unusual ranges may be done in many different ways (and the paper shows several, and more could be imagined), but the main result of first local emergence in low latitudes remains robust. A worrying factor is that the regions where the signal is expected to emerge first, or is already emerging are largely regions in Africa, parts of South and Central America, and the Maritime Continent; regions that are vulnerable to climate change for a variety of regions (see IPCC 2007), and regions which contribute generally little to global greenhouse gas emissions. In contrast, strong emissions of greenhouse gases occur in regions of low warming-to-variability ratio. To get even closer to the relevance of this finding for impacts, it would be interesting to place the emergence of highly unusual summer temperatures in the context not of internal variability, but in the context of variability experienced by the climate system prior to the 20th century, as, e.g. documented in palaeoclimatic reconstructions and simulated in simulations of the last millennium (see Jansen et al 2007). External forcing has moved the temperature range around more strongly for some regions and in some seasons than others. For example, while reconstructions of summer temperatures in Europe appear to show small long-term variations, winter shows deep drops in temperature in the little Ice Age and a long-term increase since then (Luterbacher et al 2004), which was at least partly caused by external forcing (Hegerl et al 2011a) and therefore 'natural variability' may be different from internal variability. A further interesting question in attempts to provide a climate-based proxy for impacts of climate change is: to what extent does the rapidity of change matter, and how does it compare to trends due to natural variability? It is reasonable to assume that fast changes impact ecosystems and society more than slow, gradual ones. Also, is it really the mean seasonal temperature that counts, or should the focus change to extremes (see Hegerl et al 2011b)? Is seasonal mean exceedance of the prior temperature envelope a good and robust measure that also reflects these other, more complex diagnostics? Lots of food for thought and research! References Allen M R and Tett S F B 1999 Checking for model consistency in optimal finger printing Clim. Dyn. 15 419-34 Hall A 2004 The role of surface albedo feedback in climate J. Clim. 17 1550-68 Hasselmann K 1979 On the signal-to-noise problem in atmospheric response studies Meteorology of Tropical Oceans ed D B Shaw (Bracknell: Royal Meteorological Society) pp 251-9 Hegerl G C, Luterbacher J, Gonzalez-Ruoco F, Tett S F B and Xoplaki E 2011a Influence of human and natural forcing on European seasonal temperatures Nature Geoscience 4 99-103 Hegerl G, Hanlon H and Beierkuhnlein C 2011b Climate science: elusive extremes Nature Geoscience 4 142-3 IPCC 2007 Climate Change 2007: Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed M L Parry, O F Canziani, J P Palutikof, P J van der Linden and C E Hanson (Cambridge: Cambridge University Press) Jansen E et al 2007 Palaeoclimate Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon et al (Cambridge: Cambridge University Press) Luterbacher J et al 2004 European seasonal and annual temperature variability, trends, and extremes since 1500 Science 303 1499-503 Mahlstein I, Knutti R, Solomon S and Portmann R W 2011 Early onset of significant local warming in low latitude countries Environ. Res. Lett. 6 034009</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814126D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814126D"><span>Societal resilience to hydroclimatic change in the Roman World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dermody, Brian; van Beek, Rens; Bierkens, Marc; Dekker, Stefan</p> <p>2016-04-01</p> <p>The Romans were masters of water resource management. They employed sophisticated irrigation techniques alongside a highly integrated food redistribution system that provided stable food supplies under the variable hydroclimatic regime within the Roman World. However, a number of paleoclimate studies have demonstrated hydroclimatic changes during the Roman Period that exceeded the amplitude and persistence of normal climate variability. In particular, there was a shift from warmer and more stable hydroclimatic conditions in the Roman Warm Period (c.250 BC - 250 AD) to cooler and more variable conditions in Late Roman Period (after c.250 AD). In this study we use a socio-hydrological model of the Roman world to explore the impact of hydroclimatic changes between the Roman Warm Period and Late Roman Period on the Roman food production and redistribution system. We calculate crop yields based on temperature and water resource availability using PC Raster Global Water Balance model (PCR-GLOBWB). PCR-GLOBWB is forced with reanalysis climate fields reflecting reconstructions of Roman Warm Period to the Late Roman climate patterns. Cropland areas and settlement patterns are derived from a database of 14,700 Roman settlement sites and crop suitability maps. We simulate food redistribution using a multi-agent food redistribution network with link weights based on Orbis: The Stanford Geospatial Network of the Roman World. Our analysis indicates a reduction in crop yields during the Late Roman Period compared with the Roman Warm Period owing to cooler temperatures. In addition, our simulations indicate that increased hydroclimatic variability decreased the stability of yields in the Late Roman period. Crop yields in the Western Empire are simulated to have been impacted most by the change in climate owing to cooler average temperatures and greater hydroclimatic variability compared with the Eastern part of the Empire. The food redistribution network was essential to buffer against lower and less stable yields in the Late Roman Period. However, the Late Roman Period coincided with a breakdown in the food redistribution network, making the Western Roman Empire particularly vulnerable to changing climate conditions. Our analysis demonstrates a number of important processes that have general implications for water resource management in food production and redistribution systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EnMan..57..976K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EnMan..57..976K"><span>Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun</p> <p>2016-05-01</p> <p>Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26796698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26796698"><span>Farmers' Perceptions of Climate Variability and Factors Influencing Adaptation: Evidence from Anhui and Jiangsu, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; Zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun</p> <p>2016-05-01</p> <p>Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613249U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613249U"><span>Asian Monsoon Variability from the Monsoon Asia Drought Atlas (MADA) and Links to Indo-Pacific Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ummenhofer, Caroline; D'Arrigo, Rosanne; Anchukaitis, Kevin; Hernandez, Manuel; Buckley, Brendan; Cook, Edward</p> <p>2014-05-01</p> <p>Drought patterns across monsoon and temperate Asia over the period 1877-2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June-August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Variations in the strength of the South Asian monsoon can also be linked to the Strange Parallels Drought (1756-1768) affecting much of Southeast Asia and the Indian subcontinent in the mid-18th Century. Large-scale climate anomalies across the wider region during years with an anomalously strengthened/weakened South Asian monsoon are discussed with implications for severe droughts prior to the instrumental period. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the MADA, provide a useful tool for assessing long-term changes in the characteristics of Asian monsoon droughts in the context of Indo-Pacific climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B42A..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B42A..02F"><span>Using Time Series of Landsat Data to Improve Understanding of Short- and Long-Term Changes to Vegetation Phenology in Response to Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedl, M. A.; Melaas, E. K.; Sulla-menashe, D. J.; Gray, J. M.</p> <p>2014-12-01</p> <p>Phenology, the seasonal progression of organisms through stages of dormancy, active growth, and senescence is a key regulator of ecosystem processes and is widely used as an indicator of vegetation responses to climate change. This is especially true in temperate forests, where seasonal dynamics in canopy development and senescence are tightly coupled to the climate system. Despite this, understanding of climate-phenology interactions is incomplete. A key impediment to improving this understanding is that available datasets are geographically sparse, and in most cases include relatively short time series. Remote sensing has been widely promoted as a useful tool for studies of large-scale phenology, but long-term studies from remote sensing have been limited to AVHRR data, which suffers from limitations related to its coarse spatial resolution and uncertainties in atmospheric corrections and radiometric adjustments that are used to create AVHRR time series. In this study, we used 30 years of Landsat data to quantify the nature and magnitude of long-term trends and short-term variability in the timing of spring leaf emergence and fall senescence. Our analysis focuses on temperate forest locations in the Northeastern United States that are co-located with surface meteorological observations, where we have estimated the timing of leaf emergence and leaf senescence at annual time steps using atmospherically corrected surface reflectances from Landsat TM and ETM+ imagery. Comparison of results from Landsat against ground observations demonstrates that phenological events can be reliably estimated from Landsat time series. More importantly, results from this analysis suggest two main conclusions related to the nature of climate change impacts on temperate forest phenology. First, there is clear evidence of trends towards longer growing seasons in the Landsat record. Second, interannual variability is large, with average year-to-year variability exceeding the magnitude of total changes to the growing season that have occurred over the last three decades. Based on these results we suggest that year-to-year variability in phenology, rather than long-term trends, provides the best basis for predicting future changes in temperate forest phenology in response to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP21C2292S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP21C2292S"><span>Variability of North African hydroclimate during the last two climatic cycles: New insights from dust flux and provenance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skonieczny, C.; McGee, D.; Bory, A. J. M.; Winckler, G.; Bradtmiller, L.; Bout-Roumazeilles, V.; Perala-Dewey, J.; Delattre, M.; Kinsley, C. W.; Polissar, P. J.; Malaizé, B.</p> <p>2016-12-01</p> <p>Every year, several hundred teragrams of dust are emitted from the Sahara and Sahel regions. These mineral particles sensitively track variations in atmospheric circulation and continental aridity. Sediments of the Northeastern Tropical Atlantic Ocean (NETAO) are fed by this intense dust supply and comprise unique long-term archives of past Saharan/Sahelian dust emissions. Past modifications of dust characteristics in these sedimentary archives can provide unique insights into changes in environmental conditions in source areas (aridity, weathering), as well as changes in atmospheric transport (wind direction and strength). Here we document changes in sediment supply to the NETAO using marine sediment core MD03-2705 (18°05N; 21°09W; 3085m water depth). This record is strategically located under the influence of seasonal dust plumes, and marine sediments of this area have revealed that past dust inputs were sensitive to global climate changes over the late Quaternary. We will focus our study on the last two climatic cycles (0-240ka), a period orbitally characterized by changes in the amplitude of both precession (MIS6-5 vs. MIS1-2) and ice volume (MIS 7 vs. MIS5). We will present, for the first time in this area, a continuous high-resolution record of dust, opal, carbonate and organic matter fluxes using 230Th-normalization. The constant flux proxy 230Thxs provides flux data that are not substantially affected by lateral advection or age model errors. These fluxes data will be complemented by grain-size, clay mineralogical and geochemical (major elements) analysis. By pairing dust flux measurements with complementary proxy data reflecting changes in aridity, wind strength and dust source, this study will provide a robust, continuous record of the magnitude and pacing of the North African hydroclimate variability through the last two climatic cycles. In particular, this long-term study will offer the opportunity to compare the well-documented North African climate variability over the last glacial cycle with the less studied variability recorded during previous glacial-interglacial cycles in order to improve our understanding of the balance of high and low-latitude controls on the climate of North Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21P..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21P..08S"><span>A satellite simulator for TRMM PR applied to climate model simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.</p> <p>2017-12-01</p> <p>Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5198102','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5198102"><span>Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta</p> <p>2016-01-01</p> <p>Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990–2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change. PMID:27929423</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27929423','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27929423"><span>Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta</p> <p>2016-12-06</p> <p>Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990-2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191883','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191883"><span>Phenological response of an Arizona dryland forest to short-term climatic extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walker, Jessica; de Beurs, Kirsten; Wynne, Randolph</p> <p>2015-01-01</p> <p>Baseline information about dryland forest phenology is necessary to accurately anticipate future ecosystem shifts. The overarching goal of our study was to investigate the variability of vegetation phenology across a dryland forest landscape in response to climate alterations. We analyzed the influence of site characteristics and climatic conditions on the phenological patterns of an Arizona, USA, ponderosa pine (Pinus ponderosa) forest during a five-year period (2005 to 2009) that encompassed extreme wet and dry precipitation regimes. We assembled 80 synthetic Landsat images by applying the spatial and temporal adaptive reflectance fusion method (STARFM) to 500 m MODIS and 30 m Landsat-5 Thematic Mapper (TM) data. We tested relationships between site characteristics and the timing of peak Normalized Difference Vegetation Index (NDVI) to assess the effect of climatic stress on the green-up of individual pixels during or after the summer monsoon. Our results show that drought-induced stress led to a fragmented phenological response that was highly dependent on microsite parameters, as both the spatial autocorrelation of peak timing and the number of significant site variables increased during the drought year. Pixels at lower elevations and with higher proportions of herbaceous vegetation were more likely to exhibit dynamic responses to changes in precipitation conditions. Our study demonstrates the complexity of responses within dryland forest ecosystems and highlights the need for standardized monitoring of phenology trends in these areas. The spatial and temporal variability of phenological signals may provide a quantitative solution to the problem of how to evaluate dryland land surface trends across time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMDD....8.5419P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMDD....8.5419P"><span>Application of all relevant feature selection for failure analysis of parameter-induced simulation crashes in climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paja, W.; Wrzesień, M.; Niemiec, R.; Rudnicki, W. R.</p> <p>2015-07-01</p> <p>The climate models are extremely complex pieces of software. They reflect best knowledge on physical components of the climate, nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a crash of simulation. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to crash of simulation, and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the dataset used in this research using different methodology. We confirm the main conclusion of the original study concerning suitability of machine learning for prediction of crashes. We show, that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three other are relevant but redundant, and two are not relevant at all. We also show that the variance due to split of data between training and validation sets has large influence both on accuracy of predictions and relative importance of variables, hence only cross-validated approach can deliver robust prediction of performance and relevance of variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.293B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.293B"><span>European climate variability and human susceptibility over the past 2500 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buentgen, U.</p> <p>2010-09-01</p> <p>Climate variations including droughts in the western US and African Sahel, landfalls of Atlantic hurricanes, and shifts in the Asian monsoon have affected human societies throughout history mainly by modulating water supply and agricultural productivity, health risk and civil conflict. Yet, discriminations of environmental impacts from political, economical and technological drivers of societal shifts are may be hampered by the indirect effects of climate on society, but certainly by the paucity of high-resolution palaeoclimatic evidence. Here we present a tree-ring network of 7284 precipitation sensitive oak series from lower elevations in France and Germany, and a compilation of 1546 temperature responsive conifers from higher elevations in the Austrian Alps, both covering the past 2500 years. Temporal distribution of historical felling dates of construction timber refers to changes in settlement activity that mirror different stages of economic wealth. Variations in Central European summer precipitation and temperature are contrasted with societal benchmarks. Prolonged periods of generally wet and warm summers, favourable for cultural prosperity, appeared during the Roman epoch between ~200 BC and 200 AD and from ~700-1000 AD, with the latter facilitating the rapid economic, cultural and political growth of medieval Europe. Unprecedented climate variability from ~200-500 AD coincides with the demise of the Western Roman Empire and the subsequent Barbarian Migrations. This period was characterized by continental-scale political turmoil, cultural stagnation and socio-economic instability including settlement abandonment, population migration, and societal collapse. Driest and coldest summers of the Late Holocene concurred in the 6th century, during which regional consolidation began. The recent political, cultural and fiscal reluctance to adapt to and mitigate projected climate change reflects the common belief of societal insusceptibility to environmental conditions. The complex climatic interference with agrarian civilizations, however, challenges the sustainability of this attitude. In addition to the long-term context it provides for instrumentally observed European climate variability, our study reveals critical targets for next-generation climate models to hindcast the temporal footprints and magnitudes of natural fluctuations over the Late Holocene in response to internal dynamics and external forcings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.479...50H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.479...50H"><span>Response of the Amazon rainforest to late Pleistocene climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno</p> <p>2017-12-01</p> <p>Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002732&hterms=year&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D60%26Ntt%3DThis%2Byear','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002732&hterms=year&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D60%26Ntt%3DThis%2Byear"><span>A 30+ Year AVHRR LAI and FAPAR Climate Data Record: Algorithm Description, Validation, and Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Claverie, Martin; Matthews, Jessica L.; Vermote, Eric F.; Justice, Christopher O.</p> <p>2016-01-01</p> <p>In- land surface models, which are used to evaluate the role of vegetation in the context ofglobal climate change and variability, LAI and FAPAR play a key role, specifically with respect to thecarbon and water cycles. The AVHRR-based LAIFAPAR dataset offers daily temporal resolution,an improvement over previous products. This climate data record is based on a carefully calibratedand corrected land surface reflectance dataset to provide a high-quality, consistent time-series suitablefor climate studies. It spans from mid-1981 to the present. Further, this operational dataset is availablein near real-time allowing use for monitoring purposes. The algorithm relies on artificial neuralnetworks calibrated using the MODIS LAI/FAPAR dataset. Evaluation based on cross-comparisonwith MODIS products and in situ data show the dataset is consistent and reliable with overalluncertainties of 1.03 and 0.15 for LAI and FAPAR, respectively. However, a clear saturation effect isobserved in the broadleaf forest biomes with high LAI (greater than 4.5) and FAPAR (greater than 0.8) values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28318131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28318131"><span>Hydrologic refugia, plants, and climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E</p> <p>2017-08-01</p> <p>Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP41E..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP41E..06R"><span>Holocene Summer Monsoon Variability- Evidence from Marine Sediment of western Continental Shelf of Sri Lanka</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ranasinghage, P. N.; Ratnayake, K. M.; Dassanayake, D. M. K. K.; Mohtadi, M.; Hewawasam, T.; Jinadasa, S. U. P.; Jayawardena, S.; Siriwardana, S.</p> <p>2016-12-01</p> <p>Understanding long term variability of Indian monsoon system is essential for better climate forecasting which is a prerequisite for agricultural development and disaster management. Yet, it has been a least attended scientific question in Sri Lanka Therefore, this study was carried out to understand the monsoonal variability during the Holocene using multiple proxies on a sediment core, representing unmixed summer monsoonal record. A 390 cm long piston core was obtained from the continental shelf off Negombo by National Aquatic Resources Research and Development Agency , was used for this study. This site mainly receives sediment from rivers fed by summer monsoon. Colour reflectance and chemical composition of the sediments, and δ18O and δ13C of Globigerinoides ruber foraminifera, extracted from the sediments were measured at 0.1-2.0 cm resolutions. Principal component analysis of chemical compositional data and colour reflectance data was performed to extract important components that represent climate variability. Benthic and planktonic foraminifera species that indicate upwelling were counted at 2 cm resolution. Radiocarbon dating was carried out using intact micro-shells. Results indicate that upwelling proxies (δ13C, foraminiferal proxies, and colour reflectance-Chlorophyll) and δ18O, which indicates evaporation-precipitation (E-P), increased during 8000-10000 cal yrs BP, 2000-4000 cal yrs BP and again after 1000 cal yrs BP. This increase in upwelling and E-P indicates strengthening of summer monsoon during these periods. However, terrestrial proxies, (XRF-PC1-Terrestrial, Ti, and DSR-PC3-iron oxides)indicate decrease in terrestrial influx which represents rainfall, from 6000-1000 cal yrs BP followed by an increase after 1000 cal yrs BP. Gradual decrease in precipitation has been observed locally as well as regionally after around 6000 cal yrs BP followed by an increase after 1000 cal yrs BP. The contrast behavior of strengthening monsoonal winds and decreasing precipitation during 2000-4000 cal yrs BP has also been observed in Arabian Sea close to the west coast of India. Although monsoonal wind strength is increased, change in its direction, which decreases orographic effect, or weakening of convergence in the vicinity of Sri Lanka, could be possible reasons for this phenomenon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27008968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27008968"><span>The past, present and future of African dust.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Evan, Amato T; Flamant, Cyrille; Gaetani, Marco; Guichard, Françoise</p> <p>2016-03-24</p> <p>African dust emission and transport exhibits variability on diurnal to decadal timescales and is known to influence processes such as Amazon productivity, Atlantic climate modes, regional atmospheric composition and radiative balance and precipitation in the Sahel. To elucidate the role of African dust in the climate system, it is necessary to understand the factors governing its emission and transport. However, African dust is correlated with seemingly disparate atmospheric phenomena, including the El Niño/Southern Oscillation, the North Atlantic Oscillation, the meridional position of the intertropical convergence zone, Sahelian rainfall and surface temperatures over the Sahara Desert, all of which obfuscate the connection between dust and climate. Here we show that the surface wind field responsible for most of the variability in North African dust emission reflects the topography of the Sahara, owing to orographic acceleration of the surface flow. As such, the correlations between dust and various climate phenomena probably arise from the projection of the winds associated with these phenomena onto an orographically controlled pattern of wind variability. A 161-year time series of dust from 1851 to 2011, created by projecting this wind field pattern onto surface winds from a historical reanalysis, suggests that the highest concentrations of dust occurred from the 1910s to the 1940s and the 1970s to the 1980s, and that there have been three periods of persistent anomalously low dust concentrations--in the 1860s, 1950s and 2000s. Projections of the wind pattern onto climate models give a statistically significant downward trend in African dust emission and transport as greenhouse gas concentrations increase over the twenty-first century, potentially associated with a slow-down of the tropical circulation. Such a dust feedback, which is not represented in climate models, may be of benefit to human and ecosystem health in West Africa via improved air quality and increased rainfall. This feedback may also enhance warming of the tropical North Atlantic, which would make the basin more suitable for hurricane formation and growth.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B22A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B22A..06S"><span>Variability in lateral carbon export from four major tributaries in the Upper Mississippi River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanimirova, R.; Arevalo, P. A.; Kaufmann, R.; Maus, V.; Lesiv, M.; Havlik, P.; Friedl, M. A.</p> <p>2016-12-01</p> <p>The combined pressures of climate change and shifting dietary preferences are creating an urgent need to improve understanding of how climate and land management are jointly affecting the sustainability of rangelands. In particular, our ability to effectively manage rangelands in a manner that satisfies increasing demand for meat and dairy while reducing environmental impact depends on the sensitivity of rangelands to perturbations from both climate (e.g., drought) and land use (e.g., grazing). To characterize the sensitivity of rangeland vegetation to variation in climate, we analyzed gridded time series of satellite and climate data at 0.5-degree spatial resolution from 2003 to 2016 for rangeland ecosystems in South America. We used panel regression and canonical correlation to analyze the relationship between time series of enhanced vegetation index (EVI) derived from NASA's Moderate Spatial Resolution Imaging Spectroradiometer (MODIS) and gridded precipitation and air temperature data from the University of East Anglia's Climate Research Unit. To quantify the degree to which livestock management explains geographic variation of EVI, we used global livestock distribution (FAO) and feed requirements data from the Global Biosphere Management Model (GLOBIOM). Because rangeland ecosystems are sensitive to changes in meteorological variables at different time scales, we evaluated the strength of coupling between anomalies in EVI and anomalies in temperature and standardized precipitation index (SPI) data at 1-6 month lags. Our results show statistically significant relationships between EVI and precipitation during summer, fall, and winter in both tropical and subtropical agroecological zones of South America. Further, lagged precipitation effects, which reflect memory in the system, explain significant variance in winter EVI anomalies. While precipitation emerges as the dominant driver of variability in rangeland greenness, we find evidence of a management-induced signal as well. Our modeling framework integrates satellite observation, meteorological data sets, and land use/cover change information to improve our capability to monitor and manage the long-term sustainability of rangelands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP33C1344L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP33C1344L"><span>A new reference frame for astronomically-tuned Plio-Pleistocene climate variability derived from a benthic oxygen isotope splice of the Mediterranean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lourens, L. J.; Ziegler, M.; Konijnendijk, T. Y. M.; Hilgen, F. J.; Bos, R.; Beekvelt, B.; van Loevezijn, A.; Collin, S.</p> <p>2017-12-01</p> <p>The astronomical theory of climate has revolutionized our understanding of past climate change and the development of highly accurate geologic time scales for the entire Cenozoic. Most of this understanding has come from the construction of astronomically tuned global ocean benthic foraminiferal oxygen isotope (δ18O) stacked record, derived by the international drilling operations of DSDP, ODP and IODP. The tuning includes fixed phase relationships between the obliquity and precession cycles and the inferred high-latitude climate, i.e. glacial-interglacial, response, which hark back to SPECMAP, using simple ice sheet models and a limited number of radiometric dates. This approach was largely implemented in the widely applied LR04 stack, though LR04 assumed shorter response times for the smaller ice caps during the Pliocene. In the past decades, an astronomically calibrated time scale for the Pliocene and Pleistocene of the Mediterranean has been developed, which has become the reference for the standard Geologic Time Scale. Typical of the Mediterranean marine sediments are the cyclic lithological alternations, reflecting the interference between obliquity and precession-paced low latitude climate variability, such as the African monsoon. Here we present the first benthic foraminiferal based oxygen isotope record of the Mediterranean reference scale, which strikingly mirrors the LR04. We will use this record to discuss the assumed open ocean glacial-interglacial related phase relations over the past 5.3 million years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C24C..07I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C24C..07I"><span>Quantifying the Significance of Heterogeneity in Supraglacial Reflectance Characteristics for Meltwater Production in Southwest Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irvine-Fynn, T. D.; Bunting, P.; Cook, J.; Hardy, A. J.; Hodson, A. J.; Holt, T.; Hubbard, A.; Naegeli, K.; Nilsson, J.; Ryan, J.; Roberts, O.; Tedstone, A.; Tranter, M.; Williamson, C.</p> <p>2017-12-01</p> <p>The seasonal melt on the southwestern margin of the Greenland Ice Sheet has been enhanced due to processes affecting the ablation area's ice surface reflectance (albedo). Recent trends in surface reflectance in the region suggest a decline potentially linked to an albedo-feedback associated with regional climate warming, emergence of organic and mineral particulates, and expansion of melt area. However, the heterogeneity of reflectance over bare ice areas in space and time has remained relatively poorly characterised. Numerous surface mass balance models utilise albedo products derived from remote sensing platforms with coarse scale resolution. Such products provide reasonable albedo estimates, but quantification of local variability in reflectance remains lacking. Consequently, there is a need to better define the distribution and representativeness of ice surface reflectance at and below the scale of satellite sensor pixel footprints to facilitate examination of albedo parameterisations. Here, we present reflectance data repeatedly collected in SW Greenland during the 2016 summer melt season over a 0.0625 km2 area proximate to the IMAU K-transect site S6 (67°04.5'N, 49°21.0'W). The Moderate Resolution Imaging Spectrometer (MODIS) albedo product MOD10A1(c6) for the study site was compared to reflectance data from Sentinel-2, centimetre resolution calibrated 12Mpix optical imagery collected using an Unmanned Aerial Vehicle (UAV) flown at a height of 70 m above the ice surface, and ground-based reflectance survey data acquired using a StellarNet Red-Dwarf/Blue-Wave visible-infrared dual system (250-1700nm) at 30 sites distributed over the area of interest. Our data highlight variability in the spatial distribution of ice surface reflectance characteristics over time. Specifically, data demonstrate marked changes in the distribution of reflectance values, despite maintaining a broadly equitable mean and median during July and August. The influence of the varied surface heterogeneity is explored further using surface energy balance modelling to quantify the impact of such changes on melt production. The findings determine the necessity to account for local variability underlying the pixel-averaged values retrieved from remote sensing platforms such as MODIS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176590','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176590"><span>Pika (Ochotona princeps) losses from two isolated regions reflect temperature and water balance, but reflect habitat area in a mainland region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Beever, Erik A.; Perrine, John D.; Rickman, Tom; Flores, Mary; Clark, John P.; Waters, Cassie; Weber, Shana S.; Yardley, Braden; Thoma, David P.; Chesley-Preston, Tara; Goehring, Kenneth E.; Magnuson, Michael; Nordensten, Nancy; Nelson, Melissa; Collins, Gail H.</p> <p>2016-01-01</p> <p>Although biotic responses to contemporary climate change are spatially pervasive and often reflect synergies between climate and other ecological disturbances, the relative importance of climatic factors versus habitat extent for species persistence remains poorly understood. To address this shortcoming, we performed surveys for American pikas (Ochotona princeps) at > 910 locations in 3 geographic regions of western North America during 2014 and 2015, complementing earlier modern (1994–2013) and historical (1898–1990) surveys. We sought to compare extirpation rates and the relative importance of climatic factors versus habitat area for pikas in a mainland-versus-islands framework. In each region, we found widespread evidence of distributional loss—local extirpations, upslope retractions, and encounter of only old sign. Locally comprehensive surveys suggest extirpation of O. princeps from 5 of 9 new sites from the hydrographic Great Basin and from 11 of 29 sites in northeastern California. Although American pikas were recorded as recently as 2011 in Zion National Park and in 2012 from Cedar Breaks National Monument in Utah, O. princeps now appears extirpated from all reported localities in both park units. Multiple logistic regressions for each region suggested that both temperature-related and water-balance-related variables estimated from DAYMET strongly explained pika persistence at sites in the Great Basin and in Utah but not in the Sierra-Cascade “mainland” portion of northeastern California. Conversely, talus-habitat area did not predict American pika persistence in the Great Basin or Utah but strongly predicted persistence in the Sierra-Cascade mainland. These results not only add new areas to our understanding of long-term trend of the American pika’s distribution, but also can inform decisions regarding allocation of conservation effort and management actions. Burgeoning research on species such as O. princeps has collectively demonstrated the heterogeneity and nuance with which climate can act on the distribution of mountain-dwelling mammals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5..337D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5..337D"><span>Climate model uncertainty in impact assessments for agriculture: A multi-ensemble case study on maize in sub-Saharan Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dale, Amy; Fant, Charles; Strzepek, Kenneth; Lickley, Megan; Solomon, Susan</p> <p>2017-03-01</p> <p>We present maize production in sub-Saharan Africa as a case study in the exploration of how uncertainties in global climate change, as reflected in projections from a range of climate model ensembles, influence climate impact assessments for agriculture. The crop model AquaCrop-OS (Food and Agriculture Organization of the United Nations) was modified to run on a 2° × 2° grid and coupled to 122 climate model projections from multi-model ensembles for three emission scenarios (Coupled Model Intercomparison Project Phase 3 [CMIP3] SRES A1B and CMIP5 Representative Concentration Pathway [RCP] scenarios 4.5 and 8.5) as well as two "within-model" ensembles (NCAR CCSM3 and ECHAM5/MPI-OM) designed to capture internal variability (i.e., uncertainty due to chaos in the climate system). In spite of high uncertainty, most notably in the high-producing semi-arid zones, we observed robust regional and sub-regional trends across all ensembles. In agreement with previous work, we project widespread yield losses in the Sahel region and Southern Africa, resilience in Central Africa, and sub-regional increases in East Africa and at the southern tip of the continent. Spatial patterns of yield losses corresponded with spatial patterns of aridity increases, which were explicitly evaluated. Internal variability was a major source of uncertainty in both within-model and between-model ensembles and explained the majority of the spatial distribution of uncertainty in yield projections. Projected climate change impacts on maize production in different regions and nations ranged from near-zero or positive (upper quartile estimates) to substantially negative (lower quartile estimates), highlighting a need for risk management strategies that are adaptive and robust to uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3857548','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3857548"><span>A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.</p> <p>2013-01-01</p> <p>We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29046560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29046560"><span>Ecosystem functioning is enveloped by hydrometeorological variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris</p> <p>2017-09-01</p> <p>Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26528407','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26528407"><span>Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand's southern beech treelines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Case, Bradley S; Buckley, Hannah L</p> <p>2015-01-01</p> <p>Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach for ecological research in mountainous environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4627911','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4627911"><span>Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Buckley, Hannah L.</p> <p>2015-01-01</p> <p>Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach for ecological research in mountainous environments. PMID:26528407</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...34E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...34E"><span>The role of Amundsen-Bellingshausen Sea anticyclonic circulation in forcing marine air intrusions into West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.</p> <p>2018-01-01</p> <p>Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen Sea (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross Sea region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in air temperature anomalies and sea ice concentrations between the eastern Ross Sea and the Bellingshausen Sea/Weddell Sea, as well as between the eastern and western Ross Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28635270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28635270"><span>Understanding the Effects of Genotype, Growing Year, and Breeding on Tunisian Durum Wheat Allergenicity. 2. The Celiac Disease Case.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boukid, Fatma; Prandi, Barbara; Sforza, Stefano; Sayar, Rhouma; Seo, Yong Weon; Mejri, Mondher; Yacoubi, Ines</p> <p>2017-07-19</p> <p>The aim of this study was to compare immunogenic and toxic gluten peptides related to celiac disease (CD). 100 accessions of genotypes selected during the 20th century in Tunisia were in vitro digested and then analyzed by UPLC/ESI-MS technique using an isotopically labeled internal standard. The first MANOVA confirmed a high variability in the content of immunogenic and toxic peptides reflecting high genetic diversity in the germplasm released during the past century in Tunisia, consistently with PCA and clustering analysis results. Our finding showed also important variability in CD epitopes due to growing season's climate scenarios. Moreover, the second MANOVA revealed significant differences between abandoned and modern cultivars' CD-related peptide amounts. Although we could not conclude that there was an augment of allergens in newly selected durum wheat lines compared to abandoned ones, we demonstrated that modern genotype peptides were less sensitive to climate variation, which is a useful indicator for wheat breeders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.2582K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.2582K"><span>Influence of climate variability on near-surface ozone depletion events in the Arctic spring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koo, Ja-Ho; Wang, Yuhang; Jiang, Tianyu; Deng, Yi; Oltmans, Samuel J.; Solberg, Sverre</p> <p>2014-04-01</p> <p>Near-surface ozone depletion events (ODEs) generally occur in the Arctic spring, and the frequency shows large interannual variations. We use surface ozone measurements at Barrow, Alert, and Zeppelinfjellet to analyze if their variations are due to climate variability. In years with frequent ODEs at Barrow and Alert, the western Pacific (WP) teleconnection pattern is usually in its negative phase, during which the Pacific jet is strengthened but the storm track originated over the western Pacific is weakened. Both factors tend to reduce the transport of ozone-rich air mass from midlatitudes to the Arctic, creating a favorable environment for the ODEs. The correlation of ODE frequencies at Zeppelinfjellet with WP indices is higher in the 2000s, reflecting stronger influence of the WP pattern in recent decade to cover ODEs in broader Arctic regions. We find that the WP pattern can be used to diagnose ODE changes and subsequent environmental impacts in the Arctic spring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180314','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180314"><span>The Calibration and Characterization of Earth Remote Sensing and Environmental Monitoring Instruments. Chapter 10</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Butler, James J.; Johnson, B. Carol; Barnes, Robert A.</p> <p>2005-01-01</p> <p>The use of remote sensing instruments on orbiting satellite platforms in the study of Earth Science and environmental monitoring was officially inaugurated with the April 1, 1960 launch of the Television Infrared Observation Satellite (TIROS) [1]. The first TIROS accommodated two television cameras and operated for only 78 days. However, the TIROS program, in providing in excess of 22,000 pictures of the Earth, achieved its primary goal of providing Earth images from a satellite platform to aid in identifying and monitoring meteorological processes. This marked the beginning of what is now over four decades of Earth observations from satellite platforms. reflected and emitted radiation from the Earth using instruments on satellite platforms. These measurements are input to climate models, and the model results are analyzed in an effort to detect short and long-term changes and trends in the Earth's climate and environment, to identify the cause of those changes, and to predict or influence future changes. Examples of short-term climate change events include the periodic appearance of the El Nino-Southern Oscillation (ENSO) in the tropical Pacific Ocean [2] and the spectacular eruption of Mount Pinatubo on the Philippine island of Luzon in 1991. Examples of long term climate change events, which are more subtle to detect, include the destruction of coral reefs, the disappearance of glaciers, and global warming. Climatic variability can be both large and small scale and can be caused by natural or anthropogenic processes. The periodic El Nino event is an example of a natural process which induces significant climatic variability over a wide range of the Earth. A classic example of a large scale anthropogenic influence on climate is the well-documented rapid increase of atmospheric carbon dioxide occurring since the beginning of the Industrial Revolution [3]. An example of the study of a small-scale anthropogenic influence in climate variability is the Atlanta Land-use Analysis Temperature and Air-quality (ATLANTA) project [4]. This project has found that the replacement of trees and vegetation with concrete and asphalt in Atlanta, Georgia, and its environs has created a microclimate capable of producing wind and thunderstorms. A key objective of climate research is to be able to distinguish the natural versus human roles in climate change and to clearly communicate those findings to those who shape and direct environmental policy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..172....1A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..172....1A"><span>Winter temperature conditions (1670-2010) reconstructed from varved sediments, western Canadian High Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amann, Benjamin; Lamoureux, Scott F.; Boreux, Maxime P.</p> <p>2017-09-01</p> <p>Advances in paleoclimatology from the Arctic have provided insights into long-term climate conditions. However, while past annual and summer temperature have received considerable research attention, comparatively little is known about winter paleoclimate. Arctic winter is of special interest as it is the season with the highest sensitivity to climate change, and because it differs substantially from summer and annual measures. Therefore, information about past changes in winter climate is key to improve our knowledge of past forced climate variability and to reduce uncertainty in climate projections. In this context, Arctic lakes with snowmelt-fed catchments are excellent potential winter climate archives. They respond strongly to snowmelt-induced runoff, and indirectly to winter temperature and snowfall conditions. To date, only a few well-calibrated lake sediment records exist, which appear to reflect site-specific responses with differing reconstructions. This limits the possibility to resolve large-scale winter climate change prior the instrumental period. Here, we present a well-calibrated quantitative temperature and snowfall record for the extended winter season (November through March; NDJFM) from Chevalier Bay (Melville Island, NWT, Canadian Arctic) back to CE 1670. The coastal embayment has a large catchment influenced by nival terrestrial processes, which leads to high sedimentation rates and annual sedimentary structures (varves). Using detailed microstratigraphic analysis from two sediment cores and supported by μ-XRF data, we separated the nival sedimentary units (spring snowmelt) from the rainfall units (summer) and identified subaqueous slumps. Statistical correlation analysis between the proxy data and monthly climate variables reveals that the thickness of the nival units can be used to predict winter temperature (r = 0.71, pc < 0.01, 5-yr filter) and snowfall (r = 0.65, pc < 0.01, 5-yr filter) for the western Canadian High Arctic over the last ca. 400 years. Results reveal a strong variability in winter temperature back to CE 1670 with the coldest decades reconstructed for the period CE 1800-1880, while the warmest decades and major trends are reconstructed for the period CE 1880-1930 (0.26°C/decade) and CE 1970-2010 (0.37°C/decade). Although the first aim of this study was to increase the paleoclimate data coverage for the winter season, the record from Chevalier Bay also holds great potential for more applied climate research such as data-model comparisons and proxy-data assimilation in climate model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..846W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..846W"><span>The variability of the North Atlantic Oscillation throughout the Holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wassenburg, Jasper; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Wei, Wei; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev; Sabaoui, Abdellah; Lohmann, Gerrit; Andreae, Meinrat; Immenhauser, Adrian</p> <p>2013-04-01</p> <p>The North Atlantic Oscillation (NAO) has a major impact on Northern Hemisphere winter climate. Trouet et al. (2009) reconstructed the NAO for the last millennium based on a Moroccan tree ring PDSI (Palmer Drought Severity Index) reconstruction and a Scottish speleothem record. More recently, Olsen et al. (2012) extended the NAO record back to 5.2 ka BP based on a lake record from West Greenland. It is, however, well known that the NAO exhibits non-stationary behavior and the use of a single location for a NAO reconstruction may not capture the complete variability. In addition, the imprint of the NAO on European rainfall patterns in the Early and Mid Holocene on (multi-) centennial timescales is still largely unknown. This is related to difficulties in establishing robust correlations between different proxy records and the fact that proxies may not only reflect winter conditions (i.e., the season when the NAO has the largest influence). Here we present a precisely dated, high resolution speleothem δ18O record from NW Morocco covering the complete Early and Mid Holocene. Carbon and oxygen isotopes were measured at a resolution of 15 years. A multi-proxy approach provides solid evidence that speleothem δ18O values reflect changes in past rainfall intensity. The Moroccan record shows a significant correlation with a speleothem rainfall record from western Germany, which covers the entire Holocene (Fohlmeister et al., 2012). The combination with the extended speleothem record from Scotland, speleothem records from north Italy and the NAO reconstruction from West Greenland (Olsen et al., 2012) allows us to study the variability of the NAO during the entire Holocene. The relation between West German and Northwest Moroccan rainfall has not been stationary, which is evident from the changing signs of correlation. The Early Holocene is characterized by a positive correlation, which changes between 9 and 8 ka BP into a negative correlation. Simulations with the state-of-the-art earth system model COSMOS for the Early and Mid Holocene (Wei and Lohmann, 2012) indicate that this change in the NAO teleconnection is related to large-scale circulation changes due to the ice sheet configuration and deglaciation. References: Fohlmeister, J., Schroder-Ritzrau, A., Scholz, D., Riechelmann, D.F.C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D.K., Mangini, A., 2012. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Climate of the Past 8, 1751-1764. Olsen, J., Anderson, J.N., Knudsen, M.F., 2012. Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geoscience DOI:10.1038/NGEO1589, Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., Frank, D.C., 2009. Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly. Science 324, 78-80. Wei, W., Lohmann, G., 2012. Simulated Atlantic Multidecadal Oscillation during the Holocene. Journal of Climate 6989-7002.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412181M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412181M"><span>Effects of Medieval Warm Period and Little Ice Age on the hydrology of Mediterranean region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markonis, Y.; Kossieris, P.; Lykou, A.; Koutsoyiannis, D.</p> <p>2012-04-01</p> <p>Medieval Warm Period (950 - 1250) and Little Ice Age (1450 - 1850) are the most recent periods that reflect the magnitude of natural climate variability. As their names suggest, the first one was characterized by higher temperatures and a generally moister climate, while the opposite happened during the second period. Although their existence is well documented for Northern Europe and North America, recent findings suggest strong evidence in lower latitudes as well. Here we analyze qualitatively the influence of these climatic fluctuations on the hydrological cycle all over the Mediterranean basin, highlighting the spatial characteristics of precipitation and runoff. We use both qualitative estimates from literature review in the field of paleoclimatology and statistical analysis of proxy data series. We investigate possible regional patterns and possible tele-connections with large scale atmospheric circulation phenomena such as North Atlantic Oscillation, Siberian High, African Sahel Rainfall and Indian Monsoon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC13F0827E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC13F0827E"><span>Future Heat Waves In Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eltahir, E. A. B.</p> <p>2017-12-01</p> <p>I will review recent work from my group on the impact of climate change on the intensity and frequency of heat waves in Asia. Our studies covered Southwest Asia, South Asia, East China, and the Maritime continent. In any of these regions, the risk associated with climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that the wet-bulb temperature is a useful variable to consider in describing the natural hazard from heat waves since it can be easily compared to the natural threshold that defines the upper limit on human survivability. Based on an ensemble of high resolution climate change simulations, we project extremes of wet-bulb temperature conditions in each of these four regions of Asia. We consider the business-as-usual scenario of future greenhouse gas emissions, as well as a moderate mitigation scenario. The results from these regions will be compared and lessons learned summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3281456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3281456"><span>Estimation of the diesel exhaust exposures of railroad workers: II. National and historical exposures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woskie, S R; Smith, T J; Hammond, S K; Schenker, M B; Garshick, E; Speizer, F E</p> <p>1988-01-01</p> <p>The diesel exhaust exposures of railroad workers in thirteen job groups from four railroads in the United States were used to estimate U.S. national average exposures with a linear statistical model which accounts for the significant variability in exposure caused by climate, the differences among railroads and the uneven distribution of railroad workers across climatic regions. Personal measurements of respirable particulate matter, adjusted to remove the contribution of cigarette smoke particles, were used as a marker for diesel exhaust. The estimated national means of adjusted respirable particulate matter (ARP) averaged 10 micrograms/m3 lower than the simple means for each job group, reflecting the climatic differences between the northern railroads studied and the distribution of railroad workers nationally. Limited historical records, including some industrial hygiene data, were used to evaluate past diesel exhaust exposures, which were estimated to be approximately constant from the 1950's to 1983.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3985Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3985Z"><span>Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu</p> <p>2016-04-01</p> <p>In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic, Eurasia or the Indian Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8751B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8751B"><span>Integrating Climate Information and Decision Processes for Regional Climate Resilience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buizer, James; Goddard, Lisa; Guido, Zackry</p> <p>2015-04-01</p> <p>An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints under which they make their decisions, and the non-public institutions of support that are available to them. We then interpret this complex reality in terms of the demand for science-based climate products and analyze the channels through which such climate support must pass, thus linking demand assessment with the scientific capacity to create appropriate decision support tools. In summary, the approach we employ is: 1) Demand-driven, beginning with a knowledge of the impacts of climate variability and change upon targeted populations, 2) Focused on vulnerability and resilience, which requires an understanding of broader networks of institutional actors who contribute to the adaptive capacity of vulnerable peoples, 3) Needs-based in that the climate needs matrix set priorities for the assessment of relevant climate products, 4) Dynamic in that the producers of climate products are involved at the point of demand assessment and can respond directly to stated needs, 5) Reflective in that the impacts of climate product interventions are subject to monitoring and evaluation throughout the process. Methods, approaches and preliminary results of our work in the Caribbean will be presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023915','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023915"><span>The influence of climatic variability on local population dynamics of Cercidium microphyllum (foothill paloverde)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bowers, Janice E.; Turner, R.M.</p> <p>2002-01-01</p> <p>This study investigated correlations among climatic variability, population age structure, and seedling survival of a dominant Sonoran Desert tree, Cercidium microphyllum (foothill paloverde), at Tucson, Arizona, USA. A major goal was to determine whether wet years promote seedling establishment and thereby determine population structure. Plant age was estimated from basal circumference for a sample of 980 living and dead trees in twelve 0.5-ha plots. Ages ranged from 1 to 181 years. Age frequency distribution showed that the population is in decline. Most (51.2%) of the 814 living trees were 40-80 years old; only 6.5% were younger than 20 years. The average age of the 166 dead trees was 78 years. Fifty-nine percent of dead trees were aged 60-100 years. Survival of newly emerged seedlings was monitored for 7 years in a 557-m2 permanent plot. Mean survival in the 1st year of life was 1.7%. Only 2 of 1,008 seedlings lived longer than 1 year. Length of survival was not correlated with rainfall. Residual regeneration, an index of the difference between predicted and observed cohort size, showed that regeneration was high during the first half of the twentieth century and poor after the mid-1950s. Trends in regeneration did not reflect interannual variation in seasonal temperature or rain before 1950, that is, in the years before urban warming. Taken together, the seedling study and the regeneration analysis suggest that local population dynamics reflect biotic factors to such an extent that population age structure might not always be a reliable clue to past climatic influences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6881D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6881D"><span>On the Value of Climate Elasticity Indices to Assess the Impact of Climate Change on Streamflow Projection using an ensemble of bias corrected CMIP5 dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demirel, Mehmet; Moradkhani, Hamid</p> <p>2015-04-01</p> <p>Changes in two climate elasticity indices, i.e. temperature and precipitation elasticity of streamflow, were investigated using an ensemble of bias corrected CMIP5 dataset as forcing to two hydrologic models. The Variable Infiltration Capacity (VIC) and the Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic models, were calibrated at 1/16 degree resolution and the simulated streamflow was routed to the basin outlet of interest. We estimated precipitation and temperature elasticity of streamflow from: (1) observed streamflow; (2) simulated streamflow by VIC and SAC-SMA models using observed climate for the current climate (1963-2003); (3) simulated streamflow using simulated climate from 10 GCM - CMIP5 dataset for the future climate (2010-2099) including two concentration pathways (RCP4.5 and RCP8.5) and two downscaled climate products (BCSD and MACA). The streamflow sensitivity to long-term (e.g., 30-year) average annual changes in temperature and precipitation is estimated for three periods i.e. 2010-40, 2040-70 and 2070-99. We compared the results of the three cases to reflect on the value of precipitation and temperature indices to assess the climate change impacts on Columbia River streamflow. Moreover, these three cases for two models are used to assess the effects of different uncertainty sources (model forcing, model structure and different pathways) on the two climate elasticity indices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29806697','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29806697"><span>The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serreze, Mark C; Meier, Walter N</p> <p>2018-05-28</p> <p>As assessed over the period of satellite observations, October 1978 to present, there are downward linear trends in Arctic sea ice extent for all months, largest at the end of the melt season in September. The ice cover is also thinning. Downward trends in extent and thickness have been accompanied by pronounced interannual and multiyear variability, forced by both the atmosphere and ocean. As the ice thins, its response to atmospheric and oceanic forcing may be changing. In support of a busier Arctic, there is a growing need to predict ice conditions on a variety of time and space scales. A major challenge to providing seasonal scale predictions is the 7-10 days limit of numerical weather prediction. While a seasonally ice-free Arctic Ocean is likely well within this century, there is much uncertainty in the timing. This reflects differences in climate model structure, the unknown evolution of anthropogenic forcing, and natural climate variability. In sharp contrast to the Arctic, Antarctic sea ice extent, while highly variable, has increased slightly over the period of satellite observations. The reasons for this different behavior remain to be resolved, but responses to changing atmospheric circulation patterns appear to play a strong role. © 2018 New York Academy of Sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44..657L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44..657L"><span>New Martian climate constraints from radar reflectivity within the north polar layered deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lalich, D. E.; Holt, J. W.</p> <p>2017-01-01</p> <p>The north polar layered deposits (NPLD) of Mars represent a global climate record reaching back millions of years, potentially recorded in visible layers and radar reflectors. However, little is known of the specific link between those layers, reflectors, and the global climate. To test the hypothesis that reflectors are caused by thick and indurated layers known as "marker beds," the reflectivity of three reflectors was measured, mapped, and compared to a reflectivity model. The measured reflectivities match the model and show a strong sensitivity to layer thickness, implying that radar reflectivity may be used as a proxy for short-term accumulation patterns and that regional climate plays a strong role in layer thickness variations. Comparisons to an orbitally forced NPLD accumulation model show a strong correlation with predicted marker bed formation, but dust content is higher than expected, implying a stronger role for dust in Mars polar climate than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9588G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9588G"><span>The variability of the isotopic signal during the last Glacial as seen from the ultra-high resolution NEEM and NorthGRIP ice cores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gkinis, Vasileios; Møllesøe Vinther, Bo; Terkelsen Holme, Christian; Capron, Emilie; Popp, Trevor James; Olander Rasmussen, Sune</p> <p>2017-04-01</p> <p>The continuity and high resolution available in polar ice core records constitutes them an excellent tool for the study of the stadial-interstadial transitions, notably through the study of the water isotopic composition of polar precipitation (δ18O, δD ). The quest for the highest resolution possible has resulted in experimental sampling and analysis techniques that have yielded data sets with a potential to change the current picture on the climatic signals of the last Glacial. Specifically, the ultra-high resolution δ18O signals from the NorthGRIP and NEEM ice cores, present a variability at multi-annual and decadal time scales, whose interpretation gives rise to further puzzling though interesting questions and an obvious paradox. By means of simple firn isotope diffusion and densification calculations, we firstly demonstrate that the variability of observed signals is unlikely to be due to post depositional effects that are known to occur on the surface of the Greenland ice cap and alter the δ18O composition of the precipitated snow. Assuming specific values for the δ18O sensitivity to temperature (commonly referred to as the δ18O slope), we estimate that the temperature signal during the stadials has a variability that extents from interstadial to extremely cold levels with peak-to-peak fluctuations of almost 35 K occurring in a few years. Similarly, during interstadial phases the temperature varies rapidly from stadial to Holocene levels while the signal variability shows a maximum during the LGM, with magnitudes of up to 15‰ that translate to ≈ 50 K when a δ18O slope of 0.3‰K-1 is used. We assess the validity of these results and comment on the stability of the δ18O slope. Driven by a simple logical queue, we conclude that the observed δ18O variability reflects a climatic signal although not necessarily attributed 100% to temperature changes. From this we can assume that there occur climatic mechanisms during the previously thought stable stadial phases that allow for swift changes, with magnitudes comparable if not greater to that of the stadial-interstadial transitions. We are thus tempted to propose that rapid climate change is the normal mode of climate during the last Glacial and that some of the mechanisms associated with the stadial-interstadial transitions are possibly in play also during other, phenomenally more stable times of the Glacial climate record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4772233','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4772233"><span>Effect of Climate Factors on the Childhood Pneumonia in Papua New Guinea: A Time-Series Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Jinseob; Kim, Jong-Hun; Cheong, Hae-Kwan; Kim, Ho; Honda, Yasushi; Ha, Mina; Hashizume, Masahiro; Kolam, Joel; Inape, Kasis</p> <p>2016-01-01</p> <p>This study aimed to assess the association between climate factors and the incidence of childhood pneumonia in Papua New Guinea quantitatively and to evaluate the variability of the effect size according to their geographic properties. The pneumonia incidence in children under five-year and meteorological factors were obtained from six areas, including monthly rainfall and the monthly average daily maximum temperatures during the period from 1997 to 2006 from national health surveillance data. A generalized linear model was applied to measure the effect size of local and regional climate factor. The pooled risk of pneumonia in children per every 10 mm increase of rainfall was 0.24% (95% confidence interval: −0.01%–0.50%), and risk per every 1 °C increase of the monthly mean of the maximum daily temperatures was 4.88% (95% CI: 1.57–8.30). Southern oscillation index and dipole mode index showed an overall negative effect on childhood pneumonia incidence, −0.57% and −4.30%, respectively, and the risk of pneumonia was higher in the dry season than in the rainy season (pooled effect: 12.08%). There was a variability in the relationship between climate factors and pneumonia which is assumed to reflect distribution of the determinants of and vulnerability to pneumonia in the community. PMID:26891307</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23775129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23775129"><span>Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Liang; Schwartz, Mark D</p> <p>2014-10-01</p> <p>Variation in the timing of plant phenology caused by phenotypic plasticity is a sensitive measure of how organisms respond to weather and climate variability. Although continental-scale gradients in climate and consequential patterns in plant phenology are well recognized, the contribution of underlying genotypic difference to the geography of phenology is less well understood. We hypothesize that different temperate plant genotypes require varying amount of heat energy for resuming annual growth and reproduction as a result of adaptation and other ecological and evolutionary processes along climatic gradients. In particular, at least for some species, the growing degree days (GDD) needed to trigger the same spring phenology events (e.g., budburst and flower bloom) may be less for individuals originated from colder climates than those from warmer climates. This variable intrinsic heat energy requirement in plants can be characterized by the term growth efficiency and is quantitatively reflected in the timing of phenophases-earlier timing indicates higher efficiency (i.e., less heat energy needed to trigger phenophase transitions) and vice versa compared to a standard reference (i.e., either a uniform climate or a uniform genotype). In this study, we tested our hypothesis by comparing variations of budburst and bloom timing of two widely documented plants from the USA National Phenology Network (i.e., red maple-Acer rubrum and forsythia-Forsythia spp.) with cloned indicator plants (lilac-Syringa x chinensis 'Red Rothomagensis') at multiple eastern US sites. Our results indicate that across the accumulated temperature gradient, the two non-clonal plants showed significantly more gradual changes than the cloned plants, manifested by earlier phenology in colder climates and later phenology in warmer climates relative to the baseline clone phenological response. This finding provides initial evidence supporting the growth efficiency hypothesis, and suggests more work is warranted. More studies investigating genotype-determined phenological variations will be useful for better understanding and prediction of the continental-scale patterns of biospheric responses to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP31A1835W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP31A1835W"><span>An 8700 Year Record of Holocene Climate Variability from the Yucatan Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wahl, D.; Byrne, R.; Anderson, L.</p> <p>2013-12-01</p> <p>Our understanding of Holocene climate change in the Maya lowlands of Central America has improved significantly during the last several decades thanks to the development of proxy climate records from lake cores and speleothems. One important finding is that longer-term climate changes (i.e., millennial scale) were driven primarily by precessional forcing; less clear, however, are the causes of abrupt shifts and higher frequency (centennial to decadal) change recognized in many Holocene climate reconstructions. The mechanisms driving climate change on these time scales have been difficult to identify in the region, in part because the Yucatan peninsula is influenced by climatic conditions linked to both the tropical Atlantic and Pacific oceans. Additional complications arise from the development of dense human populations following the initial introduction of agriculture ~5000 cal yr BP, which had significant impact on the environment as a whole. Here we present the results of analyses (stable isotope, pollen, magnetic susceptibility, and physical properties) of a 7.25 m sediment core from Lago Puerto Arturo, a closed basin lake in the northern Peten, Guatemala. An age-depth model, based on 6 AMS radiocarbon determinations and created using CLAM, indicates the record extends to 8700 cal yr BP. Proxy data suggest that, similar to other low latitude sites, millennial scale climate at Lago Puerto Arturo was driven by changes in insolation. Higher frequency variability is associated with El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) dynamics, reflecting latitudinal shifts in the Intertropical Convergence Zone in both the tropical North Atlantic and North Pacific. Solar forcing may also play a role in short-term climate change. The pollen and isotope records show that the entire period of prehispanic settlement and agricultural activity, i.e. ~5000-1000 cal yr B.P., was characterized by relatively dry conditions compared to before or after.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CliPa..13.1901A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CliPa..13.1901A"><span>The climate of the Common Era off the Iberian Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abrantes, Fátima; Rodrigues, Teresa; Rufino, Marta; Salgueiro, Emília; Oliveira, Dulce; Gomes, Sandra; Oliveira, Paulo; Costa, Ana; Mil-Homens, Mário; Drago, Teresa; Naughton, Filipa</p> <p>2017-12-01</p> <p>The Mediterranean region is a climate hot spot, sensitive not only to global warming but also to water availability. In this work we document major temperature and precipitation changes in the Iberian Peninsula and margin during the last 2000 years and propose an interplay of the North Atlantic internal variability with the three atmospheric circulation modes (ACMs), (North Atlantic Oscillation (NAO), east atlantic (EA) and Scandinavia (SCAND)) to explain the detected climate variability. We present reconstructions of sea surface temperature (SST derived from alkenones) and on-land precipitation (estimated from higher plant n-alkanes and pollen data) in sedimentary sequences recovered along the Iberian Margin between the south of Portugal (Algarve) and the northwest of Spain (Galiza) (36 to 42° N). A clear long-term cooling trend, from 0 CE to the beginning of the 20th century, emerges in all SST records and is considered to be a reflection of the decrease in the Northern Hemisphere summer insolation that began after the Holocene optimum. Multi-decadal/centennial SST variability follows other records from Spain, Europe and the Northern Hemisphere. Warm SSTs throughout the first 1300 years encompass the Roman period (RP), the Dark Ages (DA) and the Medieval Climate Anomaly (MCA). A cooling initiated at 1300 CE leads to 4 centuries of colder SSTs contemporary with the Little Ice Age (LIA), while a climate warming at 1800 CE marks the beginning of the modern/Industrial Era. Novel results include two distinct phases in the MCA: an early period (900-1100 years) characterized by intense precipitation/flooding and warm winters but a cooler spring-fall season attributed to the interplay of internal oceanic variability with a positive phase in the three modes of atmospheric circulation (NAO, EA and SCAND). The late MCA is marked by cooler and relatively drier winters and a warmer spring-fall season consistent with a shift to a negative mode of the SCAND. The Industrial Era reveals a clear difference between the NW Iberia and the Algarve records. While off NW Iberia variability is low, the Algarve shows large-amplitude decadal variability with an inverse relationship between SST and river input. Such conditions suggest a shift in the EA mode, from negative between 1900 and 1970 CE to positive after 1970, while NAO and SCAND remain in a positive phase. The particularly noticeable rise in SST at the Algarve site by the mid-20th century (±1970), provides evidence for a regional response to the ongoing climate warming. The reported findings have implications for decadal-scale predictions of future climate change in the Iberian Peninsula.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMPP23A2037D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMPP23A2037D"><span>Exploring late Miocene climate stability: constraining background variability using high-resolution benthic δ18O and δ13C records from Site U1338</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drury, A.; John, C. M.; Lee, G.; Shevenell, A.</p> <p>2012-12-01</p> <p>The late Miocene (11.61 - 5.33 Ma) was one of the more stable climatic periods of the Cenozoic. Superimposed on this stable background climate, a number of threshold events occurred, including the late Miocene Carbon Isotope Shift (CIS, 7.6-6.6 Ma) and the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma). The goal of our study is to constrain the background climate cyclicity during the late Miocene. A better knowledge of the background cyclicity in the Earth's climate system is required to advance understanding of, and to successfully model, climate variability. Improving understanding of how changes in background climate variability affect important parameters and fluxes, such as ice volume and the carbon pump, is crucial for explaining the occurrence of threshold events such as the CIS and MSC during an otherwise climatically stable period. The study site is located in the Eastern Equatorial Pacific (IODP Site U1338, Expedition 321). U1338 was chosen, as the equatorial Pacific is an important component of the global climate system, representing half of the total tropical ocean and a quarter of the global ocean. We present δ18O and δ13C records from 3.5 to 8.5 Ma using the benthic foraminiferal species Cibicidoides mundulus, with a resolution of 3-4 kyr, which resolves all Milankovitch scale cycles. We present a revised shipboard age model, generated from new biostratigraphic age constraints based on planktic foraminiferal datums. Benthic δ18O records at IODP Site U1338 reflect the stable nature of the late Miocene climate accurately, with long-term trends showing low-amplitude (0.2‰) variations. Superimposed on this are higher-amplitude short-term fluctuations (0.3-0.4‰). Deep-sea benthic foraminferal δ18O records both temperature and the δ18O composition of global deep seawater (δ18Odsw). δ18Odsw largely reflects glacio-eustatic change. Our benthic δ18O implies that long-term trends in ice volume were minimal during the late Miocene. However, the short-term variations imply that some significant sea level fluctuations occurred. The benthic δ13C long-term trend varies by ~0.75‰. The late Miocene CIS is visible as a ~1.25‰ excursion. Short-term fluctuations in δ13C record are slightly lower amplitude (~0.50‰). Preliminary spectral analysis highlights the strength of the eccentricity forcing (400 and 100-kyr cycles) in both the δ18O and δ13C records. The 41-kyr obliquity cycles are also visible in the δ18O records. The benthic δ13C records are combined with preliminary low-resolution δ13C records measured on the planktic foraminiferal species Globigerinoides sacculifer from the same samples. Co-varying benthic-planktic δ13C is driven by changes in the ocean reservoir δ13C, whereas con/diverging benthic-planktic δ13C is related to changes in surface productivity. This initial comparison may shed some light on the forcing of the CIS, and the implications for late Miocene climate. Future work will combine benthic δ18O with independent temperature proxies, such as Mg/Ca and clumped isotopes, to isolate the δ18Odsw signal and make more robust inferences about the background cryosphere dynamics during this time. We will also increase the resolution of the planktic foraminiferal records to enable comparison of the dominant forcing in the benthic and planktic records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..154..100S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..154..100S"><span>A late Holocene record of solar-forced atmospheric blocking variability over Northern Europe inferred from varved lake sediments of Lake Kuninkaisenlampi</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saarni, Saija; Muschitiello, Francesco; Weege, Stefanie; Brauer, Achim; Saarinen, Timo</p> <p>2016-12-01</p> <p>This study presents a new varved lake sediment sequence from Lake Kuninkaisenlampi, Eastern Finland. The record is constituted by alternations of clastic and biogenic laminae and provides a precise chronology extending back to 3607 ± 94 varve yrs. BP. The seasonality of the boreal climatic zone, with cold winters and mild summers, is reflected in the varve structure as a succession of three laminae from bottom to top, (i) a coarse to fine-grained detrital lamina marked by detrital catchment material transported by spring floods; (ii) a biogenic lamina with diatoms, plant and insect remnants reflecting biological productivity during the season of lake productivity; and (iii) a very fine amorphous organic lamina deposited during the winter stratification. The thickness of the detrital lamina in the lake reflects changes in the rate of spring snow melt in the catchment and is, therefore, considered a proxy for winter conditions. Hence, the record allows reconstructing local climate and environmental conditions on inter-annual to the multi-centennial timescales. We find that minerogenic accumulation reflected in the detrital lamina exhibits a high multi-decadal to centennial-scale spectral coherency with proxies for solar activity, such as Δ14C, and Total Solar Irradiance, suggesting a strong link between solar variability and sediment transport to the lake basin. Increased catchment erosion is observed during periods of low solar activity, which we ascribe to the development of more frequent atmospheric winter blocking circulation induced by solar-forced changes in the stratosphere. We suggest that soil frost in the catchment of Lake Kuninkaisenlampi related to more frequent winter blocking led to increased surface run-off and ultimately to increased catchment erosion during spring. We conclude that, during the past ca 3600 years, solar forcing may have modulated multi-decadal to centennial variations in sedimentation regimes in lakes from Eastern Finland and potentially in other North European lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.2135D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.2135D"><span>Assessing chronic and climate-induced water risk through spatially distributed cumulative deficit measures: A new picture of water sustainability in India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devineni, Naresh; Perveen, Shama; Lall, Upmanu</p> <p>2013-04-01</p> <p>India is a poster child for groundwater depletion and chronic water stress. Often, water sustainability is measured through an estimate of the difference between the average supply and demand in a region. However, water supply and demand are highly variable in time and space. Hence, measures of scarcity need to reflect temporal imbalances even for a fixed location. We introduce spatially distributed indices of water stress that integrate over time variations in water supply and demand. The indices reflect the maximum cumulative deficit in a regional water balance within year and across years. This can be interpreted as the amount that needs to be drawn from external storage (either aquifers or surface reservoirs or interarea transfers) to meet the current demand pattern given a variable climate and renewable water supply. A simulation over a long period of record (historical or projected) provides the ability to quantify risk. We present an application at a district level in India considering more than a 100 year data set of rainfall as the renewable supply, and the recent water use pattern for each district. Consumption data are available through surveys at the district level, and consequently, we use this rather than river basins as the unit of analysis. The rainfall endogenous to each district is used as a potentially renewable water supply to reflect the supply-demand imbalances directly at the district level, independent of potential transfers due to upstream-induced runoff or canals. The index is useful for indicating whether small or large surface storage will suffice, or whether the extent of groundwater storage or external transfers, or changes in demand are needed to achieve a sustainable solution. Implications of the analysis for India and for other applications are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP41D..03O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP41D..03O"><span>Orbital Forcing driving climate variability on Tropical South Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Chiessi, C. M.; Rigsby, C. A.; Ferreira, F.</p> <p>2017-12-01</p> <p>Past research on climate response to orbital forcing in tropical South America has emphasized on high precession cycles influencing low latitude hydrologic cycles, and driving the meridional migration of Intertropical Convergence Zone (ITCZ).However, marine proxy records from the tropical Pacific Ocean showed a strong 41-ka periodicities in Pleistocene seawater temperature and productivity related to fluctuations in Earth's obliquity. It Indicates that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. To reconstruct different climate regimes over the continent and understand the orbital cycle forcing over Tropical South America climate, hydrological reconstruction have been undertaken on sediment cores located on the Brazilian continental slope, representing the past 1.6 million years. Core CDH 79 site is located on a 2345 m deep seamount on the northern Brazilian continental slope (00° 39.6853' N, 44° 20.7723' W), 320 km from modern coastline of the Maranhão Gulf. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the changes in precipitation and sedimentary input history of Tropical South America. The response of the hydrology cycle to orbital forcing was studied using spectral analysis.The 1600 ka records of dry/wet conditions presented here indicates that orbital time-scale climate change has been a dominant feature of tropical climate. We conclude that the observed oscillation reflects variability in the ITCZ activity associated with the Earth's tilt. The prevalence of the eccentricity and obliquity signals in continental hydrology proxies (Ti/Ca and Fe/K) as implicated in our precipitation records, highlights that these orbital forcings play an important role in tropics hydrologic cycles. Throughout the Quaternary abrupt shifts of tropical variability are temporally correlated with abrupt climate changes and atmospheric reorganization during Mid-Pleistocene Transition and Mid-Brunhes Events. Our findings suggets that over Late Quaternary, the N-S ITCZ movement is not only exclusively related to precessional forcing. The prevalence of the obliquity signal in both precipitation and weathering as implicated in our records, highlights that this orbital forcing exerts a significant control on global hydrological cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.126..727J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.126..727J"><span>Inter-annual rainfall variability in the eastern Antilles and coupling with the regional and intra-seasonal circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jury, Mark R.</p> <p>2016-11-01</p> <p>Climate variability in the eastern Antilles island chain is analyzed via principal component analysis of high-resolution monthly rainfall in the period 1981-2013. The second mode reflecting higher rainfall in July-October season between Martinique and Grenada is the focus of this study. Higher rainfall corresponds with a weakened trade wind and boundary current along the southern edge of the Caribbean. This quells the coastal upwelling off Venezuela and builds the freshwater plume east of Trinidad. There is corresponding upper easterly wind flow that intensifies passing tropical waves. During a storm event over the Antilles on 4-5 October 2010, there was inflow from east of Guyana where low salinity and high sea temperatures enable surplus latent heat fluxes. A N-S convective rain band forms ˜500 km east of the cyclonic vortex. Many features at the weather timescale reflect the seasonal correlation and composite difference maps and El Nino Southern Oscillation (ENSO) modulation of oceanic inter-basin transfers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1277B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1277B"><span>CLIMCONG: A framework-tool for assessing CLIMate CONGruency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buras, Allan; Kölling, Christian; Menzel, Annette</p> <p>2016-04-01</p> <p>It is widely accepted that the anticipated elevational and latitudinal shifting of climate forces living organisms (including humans) to track these changes in space over a certain time. Due to the complexity of climate change, prediction of consequent migrations is a difficult procedure afflicted with many uncertainties. To simplify climate complexity and ease respective attempts, various approaches aimed at classifying global climates. For instance, the frequently used Köppen-Geiger climate classification (Köppen, 1900) has been applied to predict the shift of climate zones throughout the 21st century (Rubel and Kottek, 2010). Another - more objective but also more complex - classification approach has recently been presented by Metzger et al. (2013). Though being comprehensive, classifications have certain drawbacks, as I) often focusing on few variables, II) having discrete borders at the margins of classes, and III) subjective selection of an arbitrary number of classes. Ecological theory suggests that when only considering temperature and precipitation (such as Köppen, 1900) particular climate features - e.g. radiation and plant water availability - may not be represented with sufficient precision. Furthermore, sharp boundaries among homogeneous classes do not reflect natural gradients. To overcome the aforementioned drawbacks, we here present CLIMCONG - a framework-tool for assessing climate congruency for quantitatively describing climate similarity through continua in space and time. CLIMCONG allows users to individually select variables for calculation of climate congruency. By this, particular foci can be specified, depending on actual research questions posed towards climate change. For instance, while ecologists focus on a multitude of parameters driving net ecosystem productivity, water managers may only be interested in variables related to drought extremes and water availability. Based on the chosen parameters CLIMCONG determines congruency of climates using Manhattan distances among locations. First applications of CLIMCONG were to I) globally cluster congruent eco-climates resulting in a classification being more objective than Köppen (1900) but at comparable complexity, II) successfully model MODIS average annual net primary productivity globally (R² = 0.69), and III) identify recent climates (with foci varying from eco-climates over water availability to extreme events) most similar to the predicted (RCP-scenarios) climate of given locations worldwide without being restricted to classifications. Using CLIMCONG it thereby becomes possible to track the 'migration' of local climate conditions throughout the 20th and 21st century. Further applications are planned and a CLIMCONG 'R'-package is under preparation. Köppen, W., 1900: Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. - Geogr. Zeitschr. 6, 593-611, 657-679. Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G, Sayre, R., Trabucco, A., and Zomer, R., 2013: A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 22, 630-638. Rubel, F., and Kottek, M., 2010: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19, 135-141.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910934R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910934R"><span>Development of a drought forecasting model for the Asia-Pacific region using remote sensing and climate data: Focusing on Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rhee, Jinyoung; Kim, Gayoung; Im, Jungho</p> <p>2017-04-01</p> <p>Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models developed for Gorontalo showed the highest drought accuracy and the lowest regression error. West Java showed higher drought accuracy compared to West Sumatra, while West Sumatra showed lower regression error compared to West Java. The lower error in West Sumatra may be because of the smaller sample size used for training and evaluation for the region. Regional differences of forecast skill are determined by the effect of ENSO and the following forecast skill of the long-range climate forecast models. While shown somewhat high in West Sumatra, relative importance of remote sensing variables was mostly low in most cases. High importance of the variables based on long-range climate forecast models indicates that the forecast skill of the machine learning models are mostly determined by the forecast skill of the climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23996901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23996901"><span>Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J</p> <p>2014-01-01</p> <p>In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4869J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4869J"><span>Climate change at upper treeline: How do trees on the edge react to increasing temperatures?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof</p> <p>2017-04-01</p> <p>Treeline ecotones are thought to be particularly sensitive to climate warming, and an alteration of their growth conditions may have important implications for the ecosystem services they supply in mountain regions. We use a novel approach to quantify effects of a changing climate on tree growth, using case studies in the European Alps. We compiled tree-ring data from almost 600 trees of four species at treeline in three climate regions of Switzerland. Temperature loggers installed along transects provided data for a precise interpolation of temperatures experienced by the sampled trees. To assess the influence of temperature on annual growth, we used linear mixed-effects models, allowing us to quantify effect sizes and to account for between-tree growth variability. After removing biological growth trends, we isolated temporal trends of ring-width indices. Furthermore, we fitted non-linear regression models to radial growth rates of individual years with temperature and tree age as predicting covariates for a fine-scale investigation of the temperature dependency of tree growth. For all species, climate-growth linear mixed-effects models indicated strong positive responses of ring-width indices to temperature in early summer and previous year's autumn, featuring considerable between-tree variability. All species showed positive ring-width index trends at treeline but different interactions with elevation: Larix decidua exhibited a declining ring-width index trend with decreasing elevation, whereas Picea abies, Pinus cembra and Pinus mugo showed increasing and/or stable trends. Not only reflected our findings the effects of ameliorated growth conditions, they might have also revealed suspected negative and positive feedbacks of climate change on growth, and increased the knowledge about the functional form and parameterization of the temperature dependency of tree growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188884','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188884"><span>The Provo shoreline of Lake Bonneville: Chapter 7</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, David</p> <p>2016-01-01</p> <p>G.K. Gilbert studied the Bonneville basin 150 years ago and his findings have largely stood the test of time: The Provo shoreline, the most prominent geomorphic feature of Lake Bonneville, reflects threshold-stabilized overflow of the lake after the Bonneville flood and before a drier climate caused the lake to shrink. Subsequent refinements in chronology allow the Provo lake to be identified as about 18.2–14.8 cal ka BP, and stratigraphic studies show that the lake was gradually growing deeper during that time. Because the lake deepened through time as isostatic rebound occurred, individual landforms in general reflect processes operating for a small part of the ~ 3400 year of Provo time. Opportunities remain to improve our knowledge of the Provo lake; topics include (1) refinement of lake levels using delta and beach stratigraphy; (2) improved understanding of lake water chemistry and its role in determining deep-water sediment and cave deposits, which have disparate interpretations; (3) identifying processes at the threshold that caused the lake level to rise; and (4) identifying climate variability signals during Provo time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23722925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23722925"><span>Modeling climate effects on hip fracture rate by the multivariate GARCH model in Montreal region, Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Modarres, Reza; Ouarda, Taha B M J; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre</p> <p>2014-07-01</p> <p>Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMAX-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56% of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJBm...58..921M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJBm...58..921M"><span>Modeling climate effects on hip fracture rate by the multivariate GARCH model in Montreal region, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Modarres, Reza; Ouarda, Taha B. M. J.; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre</p> <p>2014-07-01</p> <p>Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMA X-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1764156','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1764156"><span>Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bultó, Paulo Lázaro Ortíz; Rodríguez, Antonio Pérez; Valencia, Alina Rivero; Vega, Nicolás León; Gonzalez, Manuel Díaz; Carrera, Alina Pérez</p> <p>2006-01-01</p> <p>In this study we assessed the potential effects of climate variability and change on population health in Cuba. We describe the climate of Cuba as well as the patterns of climate-sensitive diseases of primary concern, particularly dengue fever. Analyses of the associations between climatic anomalies and disease patterns highlight current vulnerability to climate variability. We describe current adaptations, including the application of climate predictions to prevent disease outbreaks. Finally, we present the potential economic costs associated with future impacts due to climate change. The tools used in this study can be useful in the development of appropriate and effective adaptation options to address the increased climate variability associated with climate change. PMID:17185289</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4778481','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4778481"><span>Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hutchings, Jeffrey A</p> <p>2015-01-01</p> <p>Abstract The level of phenotypic plasticity displayed within a population (i.e. the slope of the reaction norm) reflects the short-term response of a population to environmental change, while variation in reaction norm slopes among populations reflects spatial variation in these responses. Thus far, studies of thermal reaction norm variation have focused on geographically driven adaptation among different latitudes, altitudes or habitats. Yet, thermal variability is a function of both space and time. For organisms that reproduce at different times of year, such variation has the potential to promote adaptive variability in thermal responses for critical early life stages. Using common-garden experiments, we examined the spatial scale of genetic variation in thermal plasticity for early life-history traits among five populations of endangered Atlantic cod (Gadus morhua) that spawn at different times of year. Patterns of plasticity for larval growth and survival suggest that population responses to climate change will differ substantially, with increasing water temperatures posing a considerably greater threat to autumn-spawning cod than to those that spawn in winter or spring. Adaptation to seasonal cooling or warming experienced during the larval stage is suggested as a possible cause. Furthermore, populations that experience relatively cold temperatures during early life might be more sensitive to changes in temperature. Substantial divergence in adaptive traits was evident at a smaller spatial scale than has previously been shown for a marine fish with no apparent physical barriers to gene flow (∼200 km). Our findings highlight the need to consider the impact of intraspecific variation in reproductive timing on thermal adaptation when forecasting the effects of climate change on animal populations. PMID:27293712</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27293712','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27293712"><span>Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oomen, Rebekah A; Hutchings, Jeffrey A</p> <p>2015-01-01</p> <p>The level of phenotypic plasticity displayed within a population (i.e. the slope of the reaction norm) reflects the short-term response of a population to environmental change, while variation in reaction norm slopes among populations reflects spatial variation in these responses. Thus far, studies of thermal reaction norm variation have focused on geographically driven adaptation among different latitudes, altitudes or habitats. Yet, thermal variability is a function of both space and time. For organisms that reproduce at different times of year, such variation has the potential to promote adaptive variability in thermal responses for critical early life stages. Using common-garden experiments, we examined the spatial scale of genetic variation in thermal plasticity for early life-history traits among five populations of endangered Atlantic cod (Gadus morhua) that spawn at different times of year. Patterns of plasticity for larval growth and survival suggest that population responses to climate change will differ substantially, with increasing water temperatures posing a considerably greater threat to autumn-spawning cod than to those that spawn in winter or spring. Adaptation to seasonal cooling or warming experienced during the larval stage is suggested as a possible cause. Furthermore, populations that experience relatively cold temperatures during early life might be more sensitive to changes in temperature. Substantial divergence in adaptive traits was evident at a smaller spatial scale than has previously been shown for a marine fish with no apparent physical barriers to gene flow (∼200 km). Our findings highlight the need to consider the impact of intraspecific variation in reproductive timing on thermal adaptation when forecasting the effects of climate change on animal populations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25548195','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25548195"><span>Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Fosaa, Anna Maria; Gould, William A; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Jónsdóttir, Ingibjörg I; Jorgenson, Janet C; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Rixen, Christian; Tweedie, Craig E; Walker, Marilyn D; Walker, Marilyn</p> <p>2015-01-13</p> <p>Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036184','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036184"><span>Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.</p> <p>2010-01-01</p> <p>Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part of the framework for climate change detection and data quality assurance for the Global Earth Observation System of Systems (GEOSS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..161....1O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..161....1O"><span>Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie</p> <p>2017-04-01</p> <p>Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning Circulation (AMOC). In contrast, forest declines during MIS 31 are associated to neither SST cooling nor high-latitude freshwater forcing. Time-series analysis reveals a dominant cyclicity of about 6 ky in the temperate forest record, which points to a potential link with the fourth harmonic of precession and thus low-latitude insolation forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP23A2314L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP23A2314L"><span>Leaf wax biomarker reconstruction of Early Pleistocene hydrological variation during hominin evolution in West Turkana, Kenya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lupien, R.; Russell, J. M.; Cohen, A. S.; Feibel, C. S.; Beck, C.; Castañeda, I. S.</p> <p>2016-12-01</p> <p>Climate change is thought to play a critical role in human evolution; however, this hypothesis is difficult to test due to a lack of long, high-quality paleoclimate records from key hominin fossil locales. To address this issue, we examine Plio-Pleistocene lake sediment drill cores from East Africa that were recovered by the Hominin Sites and Paleolakes Drilling Project, an international effort to study the environment in which our hominin ancestors evolved and dispersed. With new data we test various evolutionary hypotheses, such as the "variability selection" hypothesis, which posits that high-frequency environmental variations selected for generalist traits that allowed hominins to expand into variable environments. We analyzed organic geochemical signals of climate in lake cores from West Turkana, Kenya, which span 1.87-1.38 Ma and contain the first fossils from Homo erectus. In particular, we present a compound-specific hydrogen isotopic analysis of terrestrial plant waxes (δDwax) that records regional hydrology. The amount effect dominates water isotope fractionation in the tropics; therefore, these data are interpreted to reflect mean annual rainfall, which affects vegetation structure and thus, hominin habitats. The canonical view of East Africa is that climate became drier and increasingly felt high-latitude glacial-interglacial cycles during the Plio-Pleistocene. However, the drying trend seen in some records is not evident in Turkana δDwax, signifying instead a climate with a steady mean state. Spectral and moving variance analyses indicate paleohydrological variations related to both high-latitude glaciation (41 ky cycle) and local insolation-forced monsoons (21 ky cycle). An interval of particularly high-amplitude rainfall variation occurs at 1.7 Ma, which coincides with the intensification of the Walker Circulation. These results identify high- and low-latitude controls on East African paleohydrology during Homo erectus evolution. In particular, the interval of high-amplitude variability coincides with hominin evolution changes and lends support for the "variability selection" hypothesis. Similar analyses of a drill core from Northern Awash, Ethiopia ( 3.3-2.9 Ma) will be presented to compare Pliocene and Pleistocene climate variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP41C2286T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP41C2286T"><span>Climatic variability in sclerochronological records from the northern North Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trofimova, T.; Andersson Dahl, C.; Bonitz, F. G. W.</p> <p>2016-12-01</p> <p>Highly resolved palaeoreconstructions that can extend instrumental records back through time is a fundament for our understanding of a climate of the last millennia. Only a few established extratropical marine paleo archives enable the reconstruction of key ocean processes at annual to sub-annual time scales. Bivalves have been shown to provide a useful archive with high temporal resolution. The species Arctica islandica is unique proxy due to its exceptional longevity combined with sensitivity to changes in environmental conditions. In this study, we investigate the impact of climate variability on sclerochronological records of A. islandica from the Viking Bank in the northern North Sea. The hydrographical characteristics of this location are mainly controlled by the major inflow of Atlantic water in the North Sea and can potentially be reflected in the shell composition and growth of A. islandica. To reconstruct environment conditions, we use shells of living and subfossil specimens of A. islandica collected by dredging at depths around 100 meters. The annual growth bands within the shells were determined and growth increments widths were measured. By cross-matching 30 individual increment-width time series, we built an absolutely dated 265-year long shell-growth chronology spanning the time interval 1748-2013 AD. The relatively high Rbar (>0.5) and EPS (>0.85) values indicate a common environmental forcing on the shell growth within the population. The growth chronology preserves a 20-30 yr variability prior to 1900 which fades out towards the present. That change suggests a possible regime shift at the beginning of a 20th century. Ongoing work mainly focuses on comparing the shell-growth chronology with existing observational time series of climatic parameters to determine controlling factors and test the use of growth chronologies for climate reconstruction in this area. For reconstructing seasonality, we analyse the stable oxygen isotope composition of the shell carbonate. Preliminary results of temperature reconstruction are in agreement with observations and show a seasonal variability with an amplitude of less than 4oC. Future work includes the development of an annually resolved oxygen isotope record and subsequent temperature reconstruction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53945','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53945"><span>Climate variability drives population cycling and synchrony</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Lars Y. Pomara; Benjamin Zuckerberg</p> <p>2017-01-01</p> <p>Aim There is mounting concern that climate change will lead to the collapse of cyclic population dynamics, yet the influence of climate variability on population cycling remains poorly understood. We hypothesized that variability in survival and fecundity, driven by climate variability at different points in the life cycle, scales up from...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22689559-quantification-mapping-urban-fluxes-under-climate-change-application-wrf-suews-model-greater-porto-area-portugal','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22689559-quantification-mapping-urban-fluxes-under-climate-change-application-wrf-suews-model-greater-porto-area-portugal"><span>Quantification and mapping of urban fluxes under climate change: Application of WRF-SUEWS model to Greater Porto area (Portugal)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rafael, S., E-mail: sandra.rafael@ua.pt</p> <p></p> <p>Climate change and the growth of urban populations are two of the main challenges facing Europe today. These issues are linked as climate change results in serious challenges for cities. Recent attention has focused on how urban surface-atmosphere exchanges of heat and water will be affected by climate change and the implications for urban planning and sustainability. In this study energy fluxes for Greater Porto area, Portugal, were estimated and the influence of the projected climate change evaluated. To accomplish this, the Weather Research and Forecasting Model (WRF) and the Surface Urban Energy and Water Balance Scheme (SUEWS) were appliedmore » for two climatological scenarios: a present (or reference, 1986–2005) scenario and a future scenario (2046–2065), in this case the Representative Concentration Pathway RCP8.5, which reflects the worst set of expectations (with the most onerous impacts). The results show that for the future climate conditions, the incoming shortwave radiation will increase by around 10%, the sensible heat flux around 40% and the net storage heat flux around 35%. In contrast, the latent heat flux will decrease about 20%. The changes in the magnitude of the different fluxes result in an increase of the net all-wave radiation by 15%. The implications of the changes of the energy balance on the meteorological variables are discussed, particularly in terms of temperature and precipitation. - Highlights: • Assessment of energy fluxes behaviour under past period and medium-term climate change projection. • Evaluation of climate change at urban scale. • Meteorological variables alters the partitioning of the energy fluxes. • Changes in the partition of the annual energy balance are found between the two analysed periods. • Increase in the magnitude of sensible and storage heat fluxes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178587','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178587"><span>Estuary-ocean connectivity: Fast physics, slow biology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Raimonet, Mélanie; Cloern, James E.</p> <p>2017-01-01</p> <p>Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1–3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary–ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing patterns of upwelling timing and intensity as the planet continues to warm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC51E1210D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC51E1210D"><span>Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dwomoh, F. K.; Wimberly, M. C.</p> <p>2016-12-01</p> <p>The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMD.....9.1065P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMD.....9.1065P"><span>Application of all-relevant feature selection for the failure analysis of parameter-induced simulation crashes in climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paja, Wiesław; Wrzesien, Mariusz; Niemiec, Rafał; Rudnicki, Witold R.</p> <p>2016-03-01</p> <p>Climate models are extremely complex pieces of software. They reflect the best knowledge on the physical components of the climate; nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a simulation crashing. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to the simulation crashing and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the data set used in this research using different methodology. We confirm the main conclusion of the original study concerning the suitability of machine learning for the prediction of crashes. We show that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three others are relevant but redundant and two are not relevant at all. We also show that the variance due to the split of data between training and validation sets has a large influence both on the accuracy of predictions and on the relative importance of variables; hence only a cross-validated approach can deliver a robust prediction of performance and relevance of variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017088','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017088"><span>Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.</p> <p>2014-01-01</p> <p>The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24499816','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24499816"><span>Amazon forests maintain consistent canopy structure and greenness during the dry season.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J</p> <p>2014-02-13</p> <p>The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29726212','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29726212"><span>[Hydrologic variability and sensitivity based on Hurst coefficient and Bartels statistic].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lei, Xu; Xie, Ping; Wu, Zi Yi; Sang, Yan Fang; Zhao, Jiang Yan; Li, Bin Bin</p> <p>2018-04-01</p> <p>Due to the global climate change and frequent human activities in recent years, the pure stochastic components of hydrological sequence is mixed with one or several of the variation ingredients, including jump, trend, period and dependency. It is urgently needed to clarify which indices should be used to quantify the degree of their variability. In this study, we defined the hydrological variability based on Hurst coefficient and Bartels statistic, and used Monte Carlo statistical tests to test and analyze their sensitivity to different variants. When the hydrological sequence had jump or trend variation, both Hurst coefficient and Bartels statistic could reflect the variation, with the Hurst coefficient being more sensitive to weak jump or trend variation. When the sequence had period, only the Bartels statistic could detect the mutation of the sequence. When the sequence had a dependency, both the Hurst coefficient and the Bartels statistics could reflect the variation, with the latter could detect weaker dependent variations. For the four variations, both the Hurst variability and Bartels variability increased with the increases of variation range. Thus, they could be used to measure the variation intensity of the hydrological sequence. We analyzed the temperature series of different weather stations in the Lancang River basin. Results showed that the temperature of all stations showed the upward trend or jump, indicating that the entire basin had experienced warming in recent years and the temperature variability in the upper and lower reaches was much higher. This case study showed the practicability of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........71P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........71P"><span>Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parsons, Luke Alexander</p> <p></p> <p>Here we analyze climate variability using instrumental, paleoclimate (proxy), and the latest climate model data to understand more about the sources and impacts of low-frequency climate variability. Understanding the drivers of climate variability at interannual to century timescales is important for studies of climate change, including analyses of detection and attribution of climate change impacts. Additionally, correctly modeling the sources and impacts of variability is key to the simulation of abrupt change (Alley et al., 2003) and extended drought (Seager et al., 2005; Pelletier and Turcotte, 1997; Ault et al., 2014). In Appendix A, we employ an Earth system model (GFDL-ESM2M) simulation to study the impacts of a weakening of the Atlantic meridional overturning circulation (AMOC) on the climate of the American Tropics. The AMOC drives some degree of local and global internal low-frequency climate variability (Manabe and Stouffer, 1995; Thornalley et al., 2009) and helps control the position of the tropical rainfall belt (Zhang and Delworth, 2005). We find that a major weakening of the AMOC can cause large-scale temperature, precipitation, and carbon storage changes in Central and South America. Our results suggest that possible future changes in AMOC strength alone will not be sufficient to drive a large-scale dieback of the Amazonian forest, but this key natural ecosystem is sensitive to dry-season length and timing of rainfall (Parsons et al., 2014). In Appendix B, we compare a paleoclimate record of precipitation variability in the Peruvian Amazon to climate model precipitation variability. The paleoclimate (Lake Limon) record indicates that precipitation variability in western Amazonia is 'red' (i.e., increasing variability with timescale). By contrast, most state-of-the-art climate models indicate precipitation variability in this region is nearly 'white' (i.e., equally variability across timescales). This paleo-model disagreement in the overall structure of the variance spectrum has important consequences for the probability of multi-year drought. Our lake record suggests there is a significant background threat of multi-year, and even decade-length, drought in western Amazonia, whereas climate model simulations indicate most droughts likely last no longer than one to three years. These findings suggest climate models may underestimate the future risk of extended drought in this important region. In Appendix C, we expand our analysis of climate variability beyond South America. We use observations, well-constrained tropical paleoclimate, and Earth system model data to examine the overall shape of the climate spectrum across interannual to century frequencies. We find a general agreement among observations and models that temperature variability increases with timescale across most of the globe outside the tropics. However, as compared to paleoclimate records, climate models generate too little low-frequency variability in the tropics (e.g., Laepple and Huybers, 2014). When we compare the shape of the simulated climate spectrum to the spectrum of a simple autoregressive process, we find much of the modeled surface temperature variability in the tropics could be explained by ocean smoothing of weather noise. Importantly, modeled precipitation tends to be similar to white noise across much of the globe. By contrast, paleoclimate records of various types from around the globe indicate that both temperature and precipitation variability should experience much more low-frequency variability than a simple autoregressive or white-noise process. In summary, state-of-the-art climate models generate some degree of dynamically driven low-frequency climate variability, especially at high latitudes. However, the latest climate models, observations, and paleoclimate data provide us with drastically different pictures of the background climate system and its associated risks. This research has important consequences for improving how we simulate climate extremes as we enter a warmer (and often drier) world in the coming centuries; if climate models underestimate low-frequency variability, we will underestimate the risk of future abrupt change and extreme events, such as megadroughts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021055"><span>Interactions of Mean Climate Change and Climate Variability on Food Security Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.</p> <p>2015-01-01</p> <p>Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812894W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812894W"><span>Past climate variability between 97 and 7 ka reconstructed from a multi proxy speleothem record from Western Cuba</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winterhalder, Sophie; Scholz, Denis; Mangini, Augusto; Spötl, Christoph; Jochum, Klaus Peter; Pajón, Jesús M.</p> <p>2016-04-01</p> <p>The tropical hydrological cycle plays a key role in regulating global climate, mainly through the export of heat and moisture to higher latitudes, and is highly sensitive to climate change, for instance due to changes in the position of the Intertropical Convergence Zone (ITCZ). Previous work on Caribbean stalagmites suggests a strong connection of precipitation variability to North Atlantic (NA) sea surface temperatures on multidecadal to millenial timescales (Fensterer et al., 2012; Fensterer et al., 2013; Winter et al., 2011). Cold phases in the NA potentially lead to a southward shift of the ITCZ and thus drier conditions in Cuba. On orbital timescales, Cuban stalagmites suggest a relation of speleothem δ18O values with the δ18O value of Caribbean surface waters (Fensterer et al., 2013). Here we present an expansion of the Cuban speleothem record covering the whole last glacial period from the end of MIS5c (97 ka BP) until 7 ka with hiatuses between 93-80 ka, 37-35 ka and 13-10 ka. Stalagmite Cuba medio (CM) has been precisely dated with 60 230Th/U-ages, mainly performed by the MC-ICPMS technique. The δ18O and δ13C records are completed by a continuous, high resolution LA-ICPMS trace element profile. These data allow for the first time to establish a multi-proxy climate reconstruction for the North Western Caribbean at decadal to centennial resolution for this period. The long-term variability of the δ18O values probably reflects rainfall amount in Cuba. The response to some Dansgaard/Oeschger and Heinrich stadials confirms the previously observed correlation between Caribbean and NA climate variability. However, this connection is not clearly imprinted throughout the record. Furthermore, trace elements, such as Mg, do not proof without ambiguity drier conditions in Cuba during NA cold events, such as the Heinrich stadials. This suggests that climate variability in Cuba was more complex during the last 100ka, and that the NA was not the only driving factor. Due to the competing influence of the NA, the Gulf of Mexico and the Pacific Ocean, the proposed severe changes in the tropical hydrological cycle during that time (such as variations of the ITCZ, insolation and the thermohaline circulation (THC)) have potentially lead to significant changes in sources and trajectories of precipitation in Western Cuba. Our record, thus, provides an important contribution towards understanding and differentiating these parameters on Caribbean climate during glacial climate changes. References: Fensterer, C., Scholz, D., Hoffmann, D., Spötl, C., Pajón, J.M., Mangini, A., 2012. Cuban stalagmite suggests relationship between Caribbean precipitation and the Atlantic Multidecadal Oscillation during the past 1.3 ka. The Holocene, 0959683612449759. Fensterer, C., Scholz, D., Hoffmann, D.L., Spötl, C., Schröder-Ritzrau, A., Horn, C., Pajón, J.M., Mangini, A., 2013. Millennial-scale climate variability during the last 12.5 ka recorded in a Caribbean speleothem. Earth and Planetary Science Letters 361, 143-151. Winter, A., Miller, T., Kushnir, Y., Sinha, A., Timmermann, A., Jury, M.R., Gallup, C., Cheng, H., Edwards, R.L., 2011. Evidence for 800years of North Atlantic multi-decadal variability from a Puerto Rican speleothem. Earth and Planetary Science Letters 308, 23-28.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3012064','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3012064"><span>Conclusions about Niche Expansion in Introduced Impatiens walleriana Populations Depend on Method of Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mandle, Lisa; Warren, Dan L.; Hoffmann, Matthias H.; Peterson, A. Townsend; Schmitt, Johanna; von Wettberg, Eric J.</p> <p>2010-01-01</p> <p>Determining the degree to which climate niches are conserved across plant species' native and introduced ranges is valuable to developing successful strategies to limit the introduction and spread of invasive plants, and also has important ecological and evolutionary implications. Here, we test whether climate niches differ between native and introduced populations of Impatiens walleriana, globally one of the most popular horticultural species. We use approaches based on both raw climate data associated with occurrence points and ecological niche models (ENMs) developed with Maxent. We include comparisons of climate niche breadth in both geographic and environmental spaces, taking into account differences in available habitats between the distributional areas. We find significant differences in climate envelopes between native and introduced populations when comparing raw climate variables, with introduced populations appearing to expand into wetter and cooler climates. However, analyses controlling for differences in available habitat in each region do not indicate expansion of climate niches. We therefore cannot reject the hypothesis that observed differences in climate envelopes reflect only the limited environments available within the species' native range in East Africa. Our results suggest that models built from only native range occurrence data will not provide an accurate prediction of the potential for invasiveness if applied to areas containing a greater range of environmental combinations, and that tests of niche expansion may overestimate shifts in climate niches if they do not control carefully for environmental differences between distributional areas. PMID:21206912</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMED14B..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMED14B..01W"><span>Teaching climate change: A 16-year record of introducing undergraduates to the fundamentals of the climate system and its complexities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winckler, G.; Pfirman, S. L.; Hays, J. D.; Schlosser, P.; Ting, M.</p> <p>2011-12-01</p> <p>Responding to climate change challenges in the near and far future, will require a wide range of knowledge, skills and a sense of the complexities involved. Since 1995, Columbia University and Barnard College have offered an undergraduate class that strives to provide students with some of these skills. The 'Climate System' course is a component of the three-part 'Earth Environmental Systems' series and provides the fundamentals needed for understanding the Earth's climate system and its variability. Being designed both for science majors and non-science majors, the emphasis of the course is on basic physical explanations, rather than mathematical derivations of the laws that govern the climate system. The course includes lectures, labs and discussion. Laboratory exercises primarily explore the climate system using global datasets, augmented by hands-on activities. Course materials are available for public use at http://eesc.columbia.edu/courses/ees/climate/camel_modules/ and http://ncseonline.org/climate/cms.cfm?id=3783. In this presentation we discuss the experiences, challenges and future demands of conveying the science of the Earth's Climate System and the risks facing the planet to a wide spectrum of undergraduate students, many of them without a background in the sciences. Using evaluation data we reflect how the course, the students, and the faculty have evolved over the past 16 years as the earth warmed, pressures for adaptation planning and mitigation measures increased, and public discourse became increasingly polarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJBm..tmp...28S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJBm..tmp...28S"><span>Evaluating the climate capabilities of the coastal areas of southeastern Iran for tourism: a case study on port of Chabahar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabzevari, Azadeh Arbabi; Miri, Morteza; Raziei, Tayeb; Oroji, Hassan; Rahimi, Mojtaba</p> <p>2018-03-01</p> <p>The present study aims to evaluate the influence of climate conditions on tourism in the port of Chabahar, southeastern Iran, using the climate comfort indices (CIT, PMV, and TCI) and the field data relative to the tourist satisfaction. According to the computed TCI, the autumn-winter season (October-April) is climatically favorable for tourism in Chabahar, but it is ideal during January to March. Based on the computed PMV index, the studied region is in the range of climate comfort in most parts of the year. However, when the PMV thermal comfort limits (- 0.5 < PMV < 0.5) and the PPD limits (0 < PPD < 10) are considered, only the March and November are included in the thermal comfort range. The CIT index also indicates that all months of the year are acceptable for tourism that does not coincide with the reality of the region. However, by blending the PMV and the tourist's degree of satisfaction, a slight modification was made to the CIT index to better represent the reality of the region regarding the climate comfort. The modified CIT gave a different result, reflecting the importance of tourists' perceptions in defining the climate comfort rather than merely relying on the climate variables. The modified CIT also suggests November-March as a period with favorable to ideal climate condition for tourism in Chabahar which is a more realistic assessment of climate condition of the region as perceived by the tourists interviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197346','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197346"><span>Influence of climate on alpine stream chemistry and water sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Foks, Sydney; Stets, Edward; Singha, Kamini; Clow, David W.</p> <p>2018-01-01</p> <p>The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1643...30D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1643...30D"><span>Farmer's response to changing climate in North East India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De, Utpal Kumar</p> <p>2015-02-01</p> <p>Diversification of land use in the cultivation of various crops provides an alternative way to moderate the climate risk. By choosing alternative crops that are resilient to various weather parameters, farmers can reduce the crop damage and achieve optimum output from their limited land resources. Apart from other adaptation measures, crop diversity can reflect farmers' response towards changing climate uncertainty. This paper tries to examine the changing climatic condition through spatio-temporal variation of two important weather variables (precipitation and temperature) in the largest North-East Indian state, Assam, since 1950. It is examined by the variation in crop diversification index. We have used (1) Herfindahl Index for measuring degree of diversification and (2) locational quotient for measuring the changes in the regional crop concentration. The results show that, in almost all the districts, crop specialization has been taking place slowly and that happened mostly in the last phase of our study. The hilly and backward districts recorded more diversification but towards lower value crops. It goes against the normal feature of crop diversification where farmers diversify in favour of high value crops. Employing ordinary least squares method and/or Fixed Effect model, irrigation is found to have significant impact on crop diversification; while the flood plain zones and hill zones are found to have better progress in this regard, which has been due to the survival necessity of poor farmers living the zone. Thus crop diversity does not reflect very significant response from the farmers' side towards changing weather factors (except rainfall) though they have significant impact on the productivity of various crops, and thus profitability. The study thus suggests the necessity for rapid and suitable diversification as alternative climate change mitigation in the long run.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030638','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030638"><span>Radiolaria and pollen records from 0 to 50 ka at ODP Site 1233: Continental and marine climate records from the Southeast Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pisias, N.G.; Heusser, L.; Heusser, C.; Hostetler, S.W.; Mix, A.C.; Weber, M.</p> <p>2006-01-01</p> <p>Site 1233 drilled during Leg 202 of the Ocean Drilling Program provides a detailed record of marine and continental climate change in the Southeast Pacific and South American continent. Splits from over 500 samples taken at 20 cm intervals for quantitative analysis of radiolarian and pollen populations yield a temporal resolution of 200-400 years. In each sample, 39 pollen taxa and 40 radiolarian species and genera were evaluated. Age control is provided by 25 AMS 14C dates [Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., Stoner, J., 2004. Science 304, 1959-1962]. Multivariate statistical analyses of these data allow us to conclude the following: (1) During the past 50 ka, the region of the central Chile coast is not directly influenced by polar water from the Antarctic region. (2) Changes in ocean conditions off central Chile during this time interval primarily reflect north-south shifts in the position of the South Pacific transition zone. (3) Changes in Chilean vegetation reflect comparable latitudinal shifts in precipitation and the position of the southern westerlies. (4) The first canonical variate of radiolarian and pollen records extracted from Site 1233 are remarkably similar to each other as well as to temperature records from the Antarctic, which suggests that marine and continental climate variability in the region is tightly coupled at periods longer than 3000 years. (5) The phase coupling of these climate records, which lead variations of continental erosion based on iron abundance at the same site, are consistent with a hypothesis that erosion is linked to relatively long (i.e, few thousand years) response times of the Patagonian ice sheet, and thus is not a direct indicator of regional climate. ?? 2005 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008WRR....44.7401S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008WRR....44.7401S"><span>A comparative modeling analysis of multiscale temporal variability of rainfall in Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samuel, Jos M.; Sivapalan, Murugesu</p> <p>2008-07-01</p> <p>The effects of long-term natural climate variability and human-induced climate change on rainfall variability have become the focus of much concern and recent research efforts. In this paper, we present the results of a comparative analysis of observed multiscale temporal variability of rainfall in the Perth, Newcastle, and Darwin regions of Australia. This empirical and stochastic modeling analysis explores multiscale rainfall variability, i.e., ranging from short to long term, including within-storm patterns, and intra-annual, interannual, and interdecadal variabilities, using data taken from each of these regions. The analyses investigated how storm durations, interstorm periods, and average storm rainfall intensities differ for different climate states and demonstrated significant differences in this regard between the three selected regions. In Perth, the average storm intensity is stronger during La Niña years than during El Niño years, whereas in Newcastle and Darwin storm duration is longer during La Niña years. Increase of either storm duration or average storm intensity is the cause of higher average annual rainfall during La Niña years as compared to El Niño years. On the other hand, within-storm variability does not differ significantly between different ENSO states in all three locations. In the case of long-term rainfall variability, the statistical analyses indicated that in Newcastle the long-term rainfall pattern reflects the variability of the Interdecadal Pacific Oscillation (IPO) index, whereas in Perth and Darwin the long-term variability exhibits a step change in average annual rainfall (up in Darwin and down in Perth) which occurred around 1970. The step changes in Perth and Darwin and the switch in IPO states in Newcastle manifested differently in the three study regions in terms of changes in the annual number of rainy days or the average daily rainfall intensity or both. On the basis of these empirical data analyses, a stochastic rainfall time series model was developed that incorporates the entire range of multiscale variabilities observed in each region, including within-storm, intra-annual, interannual, and interdecadal variability. Such ability to characterize, model, and synthetically generate realistic time series of rainfall intensities is essential for addressing many hydrological problems, including estimation of flood and drought frequencies, pesticide risk assessment, and landslide frequencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25620645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25620645"><span>Shrubs tracing sea surface temperature--Calluna vulgaris on the Faroe Islands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beil, Ilka; Buras, Allan; Hallinger, Martin; Smiljanić, Marko; Wilmking, Martin</p> <p>2015-11-01</p> <p>The climate of Central and Northern Europe is highly influenced by the North Atlantic Ocean due to heat transfer from lower latitudes. Detailed knowledge about spatio-temporal variability of sea surface temperature (SST) in that region is thus of high interest for climate and environmental research. Because of the close relations between ocean and coastal climate and the climate sensitivity of plant growth, annual rings of woody plants in coastal regions might be used as a proxy for SST. We show here for the first time the proxy potential of the common and widespread evergreen dwarf shrub Calluna vulgaris (heather), using the Faroe Islands as our case study. Despite its small and irregular ring structure, the species seems suitable for dendroecological investigations. Ring width showed high and significant correlations with summer and winter air temperatures and SST. The C. vulgaris chronology from the Faroe Islands, placed directly within the North Atlantic Current, clearly reflects variations in summer SSTs over an area between Iceland and Scotland. Utilising shrubs like C. vulgaris as easy accessible and annually resolved proxies offers an interesting possibility for reconstruction of the coupled climate-ocean system at high latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1050661','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1050661"><span>CLARREO shortwave observing system simulation experiments of the twenty-first century: Simulator design and implementation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Feldman, D.R.; Algieri, C.A.; Ong, J.R.</p> <p>2011-04-01</p> <p>Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensivelymore » validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRG..112.1024W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRG..112.1024W"><span>Estimating global distribution of boreal, temperate, and tropical tree plant functional types using clustering techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Audrey; Price, David T.</p> <p>2007-03-01</p> <p>A simple integrated algorithm was developed to relate global climatology to distributions of tree plant functional types (PFT). Multivariate cluster analysis was performed to analyze the statistical homogeneity of the climate space occupied by individual tree PFTs. Forested regions identified from the satellite-based GLC2000 classification were separated into tropical, temperate, and boreal sub-PFTs for use in the Canadian Terrestrial Ecosystem Model (CTEM). Global data sets of monthly minimum temperature, growing degree days, an index of climatic moisture, and estimated PFT cover fractions were then used as variables in the cluster analysis. The statistical results for individual PFT clusters were found consistent with other global-scale classifications of dominant vegetation. As an improvement of the quantification of the climatic limitations on PFT distributions, the results also demonstrated overlapping of PFT cluster boundaries that reflected vegetation transitions, for example, between tropical and temperate biomes. The resulting global database should provide a better basis for simulating the interaction of climate change and terrestrial ecosystem dynamics using global vegetation models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.5739L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.5739L"><span>CMIP5 models' shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lipat, Bernard R.; Tselioudis, George; Grise, Kevin M.; Polvani, Lorenzo M.</p> <p>2017-06-01</p> <p>This study analyzes Coupled Model Intercomparison Project phase 5 (CMIP5) model output to examine the covariability of interannual Southern Hemisphere Hadley cell (HC) edge latitude shifts and shortwave cloud radiative effect (SWCRE). In control climate runs, during years when the HC edge is anomalously poleward, most models substantially reduce the shortwave radiation reflected by clouds in the lower midlatitude region (LML; ˜28°S-˜48°S), although no such reduction is seen in observations. These biases in HC-SWCRE covariability are linked to biases in the climatological HC extent. Notably, models with excessively equatorward climatological HC extents have weaker climatological LML subsidence and exhibit larger increases in LML subsidence with poleward HC edge expansion. This behavior, based on control climate interannual variability, has important implications for the CO2-forced model response. In 4×CO2-forced runs, models with excessively equatorward climatological HC extents produce stronger SW cloud radiative warming in the LML region and tend to have larger climate sensitivity values than models with more realistic climatological HC extents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002604"><span>Reducing the Uncertainties in Direct Aerosol Radiative Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kahn, Ralph A.</p> <p>2011-01-01</p> <p>Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load. Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..224C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..224C"><span>A global synthesis of animal phenological responses to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohen, Jeremy M.; Lajeunesse, Marc J.; Rohr, Jason R.</p> <p>2018-03-01</p> <p>Shifts in phenology are already resulting in disruptions to the timing of migration and breeding, and asynchronies between interacting species1-5. Recent syntheses have concluded that trophic level1, latitude6 and how phenological responses are measured7 are key to determining the strength of phenological responses to climate change. However, researchers still lack a comprehensive framework that can predict responses to climate change globally and across diverse taxa. Here, we synthesize hundreds of published time series of animal phenology from across the planet to show that temperature primarily drives phenological responses at mid-latitudes, with precipitation becoming important at lower latitudes, probably reflecting factors that drive seasonality in each region. Phylogeny and body size are associated with the strength of phenological shifts, suggesting emerging asynchronies between interacting species that differ in body size, such as hosts and parasites and predators and prey. Finally, although there are many compelling biological explanations for spring phenological delays, some examples of delays are associated with short annual records that are prone to sampling error. Our findings arm biologists with predictions concerning which climatic variables and organismal traits drive phenological shifts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PalOc..32..903T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PalOc..32..903T"><span>Tropical Pacific climate variability over the last 6000 years as recorded in Bainbridge Crater Lake, Galápagos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, Diane M.; Conroy, Jessica L.; Collins, Aaron; Hlohowskyj, Stephan R.; Overpeck, Jonathan T.; Riedinger-Whitmore, Melanie; Cole, Julia E.; Bush, Mark B.; Whitney, H.; Corley, Timothy L.; Kannan, Miriam Steinitz</p> <p>2017-08-01</p> <p>Finely laminated sediments within Bainbridge Crater Lake, Galápagos, provide a record of El Niño-Southern Oscillation (ENSO) events over the Holocene. Despite the importance of this sediment record, hypotheses for how climate variability is preserved in the lake sediments have not been tested. Here we present results of long-term monitoring of the local climate and limnology and a revised interpretation of the sediment record. Brown-green, organic-rich, siliciclastic laminae reflect warm, wet conditions typical of El Niño events, whereas carbonate and gypsum precipitate during cool, dry La Niña events and persistent dry periods, respectively. Applying this new interpretation, we find that ENSO events of both phases were generally less frequent during the mid-Holocene ( 6100-4000 calendar years B.P.) relative to the last 1500 calendar years. Abundant carbonate laminations between 3500 and 3000 calendar years B.P. imply that conditions in the Galápagos region were cool and dry during this period when the tropical Pacific E-W sea surface temperature (SST) gradient likely strengthened. The frequency of El Niño and La Niña events then intensified dramatically around 1750-2000 calendar years B.P., consistent with a weaker SST gradient and an increased frequency of ENSO events in other regional records. This strong interannual variability persisted until 700 calendar years B.P., when ENSO-related variability at the lake decreased as the SST gradient strengthened. Persistent, dry conditions then dominated between 300 and 50 calendar years B.P. (A.D. 1650-1900, ± 100 years), whereas wetter conditions and frequent El Niño events dominated in the most recent century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910003143','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910003143"><span>Climate Impact of Solar Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schatten, Kenneth H. (Editor); Arking, Albert (Editor)</p> <p>1990-01-01</p> <p>The conference on The Climate Impact of Solar Variability, was held at Goddard Space Flight Center from April 24 to 27, 1990. In recent years they developed a renewed interest in the potential effects of increasing greenhouse gases on climate. Carbon dioxide, methane, nitrous oxide, and the chlorofluorocarbons have been increasing at rates that could significantly change climate. There is considerable uncertainty over the magnitude of this anthropogenic change. The climate system is very complex, with feedback processes that are not fully understood. Moreover, there are two sources of natural climate variability (volcanic aerosols and solar variability) added to the anthropogenic changes which may confuse our interpretation of the observed temperature record. Thus, if we could understand the climatic impact of the natural variability, it would aid our interpretation and understanding of man-made climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4258067','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4258067"><span>Climate variability and vulnerability to climate change: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J</p> <p>2014-01-01</p> <p>The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.1281B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.1281B"><span>Seasonally resolved climate variability during the last interglacial from southern Caribbean corals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brocas, William; Felis, Thomas; Kölling, Martin; Scholz, Denis; Lohmann, Gerrit; Scheffers, Sanders</p> <p>2013-04-01</p> <p>A range of future climate scenarios have been predicted for a warmer Earth as a result of varying anthropogenic greenhouse emissions. The Last Interglacial period (~125,000 years ago, Marine Isotope Stage 5) offers a period in time which is estimated to have been in the range of 0.1 to > 2oC warmer than present (AD 1961-1990). Although this period is not considered completely analogous for future climate states, the mechanisms behind such changes have the potential to be well understood. Here we present the initial findings of a study which aims to augment current understanding by quantifying the climate dynamics of the tropical southern Caribbean using high resolution marine climate archives. In doing so, we highlight geochemical proxies obtained from aragonitic coral skeletons as a proxy for seasonality and interannual to decadal climate variability. Unique fossil coral material has been collected from an uplifted reef terrace on the island of Bonaire (Netherlands Antilles), which according to 230Th/U dating, was deposited during the Last Interglacial. The sampling technique employed here has been focused using C/T scanning and X-radiography which revealed annual density bands in 21 individual coral colonies. Due to a high average extension rate of greater than 6mm/year, monthly records are available which represent growth periods from 9 to 40 years and so cover various time windows across the Last Interglacial. We discuss the results from geochemical signals of Sr/Ca and oxygen isotope ratios (δ18O) which reflect, respectively, regional temperature and hydrological balance at the sea surface. The finding that Sr/Ca and δ18O cycles occur alongside visible annual density bands allows the quality of the fossil coral material to be considered high and reliable. To further supplement the interpretation of these records greyscale increment analysis, Mg/Ca and δ13C records are presented. The implications of these findings, when compared to Holocene records, identify the variability of internal and external forcing mechanisms behind the local behaviour of climate patterns and phenomena. By comparing our findings to "state of the art" climate models, the reconstructed index states of such patterns can be placed into a larger spatial context. This work is a contribution to the DFG Programme INTERDYNAMIC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411232B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411232B"><span>Assessing and managing water scarcity within the Nile River Transboundary Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butts, M. B.; Wendi, D.; Jessen, O. Z.; Riegels, N. D.</p> <p>2012-04-01</p> <p>The Nile Basin is the main source of water in the North Eastern Region of Africa and is perhaps one of the most critical river basins in Africa as the riparian countries constitute 40% of the population on the continent but only 10% of the area. This resource is under considerable stress with rising levels of water scarcity, high population growth, watershed degradation, and loss of environmental services. The potential impacts of climate change may significantly exacerbate this situation as the water resources in the Nile Basin are critically sensitive to climate change (Conway, Hanson, Doherty, & Persechino, 2007). The motivation for this study is an assessment of climate change impacts and adaptation potential for floods and droughts within the UNEP project "Adapting to climate change induced water stress in the Nile River Basin", supported by SIDA. This project is being carried out as collaboration between DHI, the UK Met Office, and the Nile Basin Initiative (NBI). The Nile Basin exhibits highly diverse climatological and hydrological characteristics. Thus climate change impacts and adaptive capacity must be addressed at both regional and sub-basin scales. While the main focus of the project is the regional scale, sub-basin scale modelling is required to reflect variability within the basin. One of the major challenges in addressing this variability is the scarcity of data. This paper presents an initial screening modelling study of the water balance of the Nile Basin along with estimates of expected future impacts of climate change on the water balance. This initial study is focussed on the Ethiopian Highlands and the Lake Victoria regions, where the impact of climate change on rainfall is important. A robust sub-basin based monthly water balance model is developed and applied to selected sub-basins. The models were developed and calibrated using publicly available data. One of the major challenges in addressing this variability within the basin is the scarcity of spatial data and the results for the Kagera sub-basin show that it is important to represent the spatial distribution of the hydro-geographic characteristics such as rainfall, soil type, etc., in order to develop a reasonable representation of the water balance. These initial results show that the changes in the water balance and flow regime under climate change exhibit large uncertainty. From an examination the flow duration curves, however, there seems to be a consensus, based on an ensemble of climate projections, that flows will increase slightly the short term (2011-2030) and decrease significantly in the long term 2080-2099. The large uncertainties together with the natural variability in the Nile suggest that there is a strong need to maximise adaptive capacity with the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP53C0841C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP53C0841C"><span>Revisiting Melton: Analyzing the correlation structure of geomorphological and climatological parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carothers, R. A.; Sangireddy, H.; Passalacqua, P.</p> <p>2013-12-01</p> <p>In his expansive 1957 study of over 80 basins in Arizona, Colorado, New Mexico, and Utah, Mark Melton measured key morphometric, soil, land cover, and climatic parameters [Melton, 1957]. He identified correlations between morphological parameters and climatic regimes in an attempt to characterize the geomorphology of the basin as a function of climate and vegetation. Using modern techniques such as high resolution digital terrain models in combination with high spatial resolution weather station records, vector soil maps, seamless raster geological data, and land cover vector maps, we revisit Melton's 1957 dataset with the following hypotheses: (1) Patterns of channelization carry strong, codependent signatures in the form of statistical correlations of rainfall variability, soil type, and vegetation patterns. (2) Channelization patterns reflect the erosion processes on sub-catchment scale and the subsequent processes of vegetation recovery and gullying. In order to characterize various topographic and climatic parameters, we obtain elevation and land cover data from the USGS National Elevation dataset, climate data from the Western Regional Climate Center and PRISM climate group database, and soil type from the USDA STATSGO soil database. We generate a correlative high resolution database on vegetation, soil cover, lithology, and climatology for the basins identified by Melton in his 1957 study. Using the GeoNet framework developed by Passalacqua et al. [2010], we extract various morphological parameters such as slope, drainage density, and stream frequency. We also calculate metrics for patterns of channelization such as number of channelized pixels in a basin and channel head density. In order to understand the correlation structure between climate and morphological variables, we compute the Pearson's correlation coefficient similar to Melton's analysis and also explore other statistical procedures to characterize the feedbacks between these variables. By identifying the differences in Melton's and our results, we address the influence of climate over the degree of channel dissection in the landscape. References: Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties, and geomorphology (No. CU-TR-11). COLUMBIA UNIV NEW YORK Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical Research: Earth Surface (2003-2012), 115(F1). PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 4 Feb 2004 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. U.S. General Soil Map (STATSGO2). Available online at http://soildatamart.nrcs.usda.gov USGS National Map Viewer, United States Geological Survey. Web. 10 June 2013. http://viewer.nationalmap.gov/viewer/ Western U.S. Historical Climate Summaries, Western Regional Climate Group, 2013. Web. 10 June 2013. http://www.wrcc.dri.edu/Climsum.html</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011QSRv...30.3321B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011QSRv...30.3321B"><span>Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bogotá-A, R. G.; Groot, M. H. M.; Hooghiemstra, H.; Lourens, L. J.; Van der Linden, M.; Berrio, J. C.</p> <p>2011-11-01</p> <p>This paper compares a new super-high resolution pollen record from a central location in Lake Fúquene (4°N) with 3 pollen records from marginal sites from the same lake basin, located at 2540 m elevation in the Eastern Cordillera of Colombia. We harmonized the pollen sum of all records, and provided previously published records of climate change with an improved age model using a new approach for long continental pollen records. We dissociated from subjective curve matching and applied a more objective procedure including radiocarbon ages, cyclostratigraphy, and orbital tuning using the new 284 ka long Fúquene Basin Composite record (Fq-BC) as the backbone ( Groot et al., 2011). We showed that a common ˜9 m cycle in the arboreal pollen percentage (AP%) records reflects obliquity forcing and drives vegetational and climatic change. The AP% records were tuned to the 41 kyr component filtered from standard benthic δ 18O LR04 record. Changes in sediment supply to the lake are reflected in concert by the four records making frequency analysis in the depth domain an adequate method to compare records from the same basin. We calibrated the original 14C ages and used where necessary biostratigraphic correlation, i.e. for records shorter than one obliquity cycle. Pollen records from the periphery of the lake showed changes in the abundance of Alnus and Weinmannia forests more clearly while centrally located record Fq-9C shows a more integrated signal of regional vegetation change. The revised age models show that core Fq-2 reflects the last 44 ka and composite record Fq-7C the last 85.5 ka. Marginally located core Fq-3 has an age of 133 ka at 32 m core depth and the lowermost 11 m of sediments appear of older but unknown age. The longest record Fq-BC shows ˜60 yr resolution over the period of 284-27 ka. All pollen records are in support of a common regional vegetation development leading to a robust reconstruction of long series of submillennial climate oscillations reflecting Dansgaard-Oeschger (DO) cycles. Reconstructed climate variability in the tropical Andes since marine isotope stage (MIS) 8 compares well with NGRIP (δ 18O based), Epica Dome C (δD based) and the Mediterranean sea surface temperature record MD01-2443/44 (U K'37 based) underpinning the global significance of the climate record from this tropical Andean lake. A basin-wide biostratigraphy is presented and we concluded although with varying robustness that each core is representative of regional vegetational and climatic change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9963S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9963S"><span>How resilient are ecosystems in adapting to climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savenije, Hubert H. G.</p> <p>2015-04-01</p> <p>The conclusion often drawn in the media is that ecosystems may perish as a result of climate change. Although climatic trends may indeed lead to shifts in ecosystem composition, the challenge to adjust to climatic variability - even if there is no trend - is larger, particularly in semi-arid or topical climates where climatic variability is large compared to temperate climates. How do ecosystems buffer for climatic variability? The most powerful mechanism is to invest in root zone storage capacity, so as to guarantee access to water and nutrients during period of drought. This investment comes at a cost of having less energy available to invest in growth or formation of fruits. Ecosystems are expected to create sufficient buffer to overcome critical periods of drought, but not more than is necessary to survive or reproduce. Based on this concept, a methodology has been developed to estimate ecosystem root zone storage capacity at local, regional and global scale. These estimates correspond well with estimates made by combining soil and ecosystem information, but are more accurate and more detailed. The methodology shows that ecosystems have intrinsic capacity to adjust to climatic variability and hence have a high resilience to both climatic variability and climatic trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010QSRv...29..913E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010QSRv...29..913E"><span>Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Engel, Zbyněk; Nývlt, Daniel; Křížek, Marek; Treml, Václav; Jankovská, Vlasta; Lisá, Lenka</p> <p>2010-04-01</p> <p>A sedimentary core recovered from the cirque basin of Labský důl valley (1039 m a.s.l.) in the Krkonoše Mountains reflects the environmental history for approximately the last 30,000 years. Analyses of magnetic susceptibility, carbon content, pollen assemblages and macrofossil data in a 15 m thick sediment sequence provide the first continuous record of Lateglacial and Holocene vegetation history in Sudetes region of the Czech Republic. The succession of sedimentary units in the lower part of the core suggests that the cirque was ice-free before the onset of the last glaciation at the beginning of marine isotope stage 2. Highly variable climate prevailed during this period with cold conditions culminating about 18 cal ka BP. Cold climates persisted until the Lateglacial period, evidenced by an identified warming and subsequent cooling event correlated with the Younger Dryas period. Sparse, treeless vegetation dominated in the catchment area at that time. The sequence of interrupted thinly laminated silts reflects the retreat and temporary readvance of a local glacier in the cirque during 12.5-10.8 cal ka BP. Subsequently, the alpine treeline ecotone gradually shifted above the cirque floor. Palaeoclimatic conditions in the early Holocene fluctuated strongly, whereas since 5.1 cal ka BP conditions have been more stable. Pollen-based climate reconstructions suggest significant cooling at around 9.8-9.3, 7.7-7.5 and 4.0-3.3 cal ka BP. Spruce forests have dominated the site since 5.0 cal ka BP when the vegetation became similar to the modern one. Two phases of increased sedimentation were identified within the Holocene culminating about 9.2-7.5 cal ka BP and 5.8-5.5 cal ka BP. Sediment yield was as high as 2.4 mm yr -1 during the period, reflecting environmental changes during the Atlantic/Sub-Boreal transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.593Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.593Z"><span>European temperature records of the past five centuries based on documentary information compared to climate simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zorita, E.</p> <p>2009-09-01</p> <p>Two European temperature records for the past half-millennium, January-to-April air temperature for Stockholm (Sweden) and seasonal temperature for a Central European region, both derived from the analysis of documentary sources combined with long instrumental records, are compared with the output of forced (solar, volcanic, greenhouse gases) climate simulations with the model ECHO-G. The analysis is complemented with the long (early)-instrumental record of Central England Temperature (CET). Both approaches to study past climates (simulations and reconstructions) are burdened with uncertainties. The main objective of this comparative analysis is to identify robust features and weaknesses that may help to improve models and reconstruction methods. The results indicate a general agreement between simulations and the reconstructed Stockholm and CET records regarding the long-term temperature trend over the recent centuries, suggesting a reasonable choice of the amplitude of the solar forcing in the simulations and sensitivity of the model to the external forcing. However, the Stockholm reconstruction and the CET record also show a long and clear multi-decadal warm episode peaking around 1730, which is absent in the simulations. The uncertainties associated with the reconstruction method or with the simulated internal climate variability cannot easily explain this difference. Regarding the interannual variability, the Stockholm series displays in some periods higher amplitudes than the simulations but these differences are within the statistical uncertainty and further decrease if output from a regional model driven by the global model is used. The long-term trends in the simulations and reconstructions of the Central European temperature agree less well. The reconstructed temperature displays, for all seasons, a smaller difference between the present climate and past centuries than the simulations. Possible reasons for these differences may be related to a limitation of the traditional technique for converting documentary evidence to temperature values to capture long-term climate changes, because the documents often reflect temperatures relative to the contemporary authors' own perception of what constituted 'normal' conditions. By contrast, the simulated and reconstructed inter-annual variability is in rather good agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040082190&hterms=Asian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DAsian','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040082190&hterms=Asian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DAsian"><span>The North Pacific as a Regulator of Summertime Climate Over North America and the Asian Monsoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, William K. M.; Wang, H.</p> <p>2004-01-01</p> <p>The interannual variability of summertime rainfall over the U.S. may be linked to climate anomalies over Pacific and East Asia through teleconnection patterns that may be components of recurring global climate modes in boreal summer (Lau and Weng 2002). In this study, maintenance of the boreal summer teleconnection patterns is investigated. The particular focus is on the potential effects of North Pacific air-sea interaction on climate anomalies over the U.S. Observational data, reanalysis and outputs of a series of NASA NSIPP AGCM and AGCM coupled to NASA GSFC MLO model experiments are used. Statistical analysis of observations and NSIPP AMIP type simulations indicates that, the interannual variability of observed warm season precipitation over the U.S. is related to SST variation in both tropical and North Pacific, whereas the NSIPP AMIP simulated summertime US. precipitation variation mainly reflects impact of ENS0 in tropical Pacific. This implies the potential importance of air-sea interaction in North Pacific in contributing to the interannual variability of observed summer climate over the U.S. The anomalous atmospheric circulation associated with the dominant summertime teleconnection modes in both observations and NSIPP AMIP simulations are further diagnosed, using stationary wave modeling approach. In observations, for the two dominant modes, both anomalous diabatic heating and anomalous transients significantly contribute to the anomalous circulation. The distributions of the anomalous diabatic heating and transient forcing are quadrature configured over North Pacific and North America, so that both forcings act constructively to maintain the teleconnection patterns. The contrast between observations and NSIPP AMIP simulations from stationary wave modeling diagnosis confirms the previous conclusion based on statistical analysis. To better appreciate the role of extra-tropical air-sea interaction in maintaining the summertime teleconnection pattern, various dynamical and physical fields and their inter- linkage in the series of NSIPP AGCM and AGCM coupled to MLO model experiments are examined in-depth. Based on comparison between different model experiments, we will discuss the physical and dynamical mechanisms through which the air-sea interaction in extratropics, and transient mean flow interactions over the North Pacific, affects interannual variation of U.S. climate during boreal summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4639351','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4639351"><span>THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan</p> <p>2015-01-01</p> <p>Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran’s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran’s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. Results: of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran’s libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Conclusions: Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries. PMID:26622203</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26622203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26622203"><span>THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan</p> <p>2015-10-01</p> <p>The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran's universities. This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran's public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran's libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27907262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27907262"><span>Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bateman, Brooke L; Pidgeon, Anna M; Radeloff, Volker C; Flather, Curtis H; VanDerWal, Jeremy; Akçakaya, H Resit; Thogmartin, Wayne E; Albright, Thomas P; Vavrus, Stephen J; Heglund, Patricia J</p> <p>2016-12-01</p> <p>Climate conditions, such as temperature or precipitation, averaged over several decades strongly affect species distributions, as evidenced by experimental results and a plethora of models demonstrating statistical relations between species occurrences and long-term climate averages. However, long-term averages can conceal climate changes that have occurred in recent decades and may not capture actual species occurrence well because the distributions of species, especially at the edges of their range, are typically dynamic and may respond strongly to short-term climate variability. Our goal here was to test whether bird occurrence models can be predicted by either covariates based on short-term climate variability or on long-term climate averages. We parameterized species distribution models (SDMs) based on either short-term variability or long-term average climate covariates for 320 bird species in the conterminous USA and tested whether any life-history trait-based guilds were particularly sensitive to short-term conditions. Models including short-term climate variability performed well based on their cross-validated area-under-the-curve AUC score (0.85), as did models based on long-term climate averages (0.84). Similarly, both models performed well compared to independent presence/absence data from the North American Breeding Bird Survey (independent AUC of 0.89 and 0.90, respectively). However, models based on short-term variability covariates more accurately classified true absences for most species (73% of true absences classified within the lowest quarter of environmental suitability vs. 68%). In addition, they have the advantage that they can reveal the dynamic relationship between species and their environment because they capture the spatial fluctuations of species potential breeding distributions. With this information, we can identify which species and guilds are sensitive to climate variability, identify sites of high conservation value where climate variability is low, and assess how species' potential distributions may have already shifted due recent climate change. However, long-term climate averages require less data and processing time and may be more readily available for some areas of interest. Where data on short-term climate variability are not available, long-term climate information is a sufficient predictor of species distributions in many cases. However, short-term climate variability data may provide information not captured with long-term climate data for use in SDMs. © 2016 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011423','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011423"><span>Driving terrestrial ecosystem models from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Waring, R. H.</p> <p>1993-01-01</p> <p>Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001E%26PSL.184..505M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001E%26PSL.184..505M"><span>Abrupt intensification of the SW Indian Ocean monsoon during the last deglaciation: constraints from Th, Pa, and He isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marcantonio, Franco; Anderson, Robert F.; Higgins, Sean; Fleisher, Martin Q.; Stute, Martin; Schlosser, Peter</p> <p>2001-01-01</p> <p>Sediments from western Arabian Sea core 74KL representing the last 23 ka were analyzed for helium, thorium, and protactinium isotopes. Assuming global average fluxes of extraterrestrial 3He and 230Th, the average 3He-derived sediment mass accumulation rate (MAR) is a factor of 1.8 higher than the average 230Th-derived MAR. 3He- and 230Th-derived MARs converge, however, during the Younger Dryas (YD) and during the peak of the early Holocene humid interval. These features, not seen anywhere else in the world, probably reflect a combination of climate-driven changes in the flux of 230Th and 3He. Ratios of xs 231Pa/xs 230Th, proxies of paleoproductivity, are lowest during the last glacial maximum (LGM), and increase abruptly during the Bolling-Allerod. Later, following a sudden decrease to near-LGM values during the YD, they rise abruptly to maximum values for the entire record in the early Holocene. We hypothesize that low xs 231Pa/xs 230Th ratios reflect low productivity due to the decreased intensity of the SW monsoon, whereas the opposite is true for high ratios. The correlation between Arabian Sea productivity and monsoonal upwelling, on the one hand, and North Atlantic climate variability, on the other, suggests a linkage between high- and low-latitude climates caused by changing patterns of atmospheric circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.6194C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.6194C"><span>Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carey, Sean K.; Tetzlaff, Doerthe; Buttle, Jim; Laudon, Hjalmar; McDonnell, Jeff; McGuire, Kevin; Seibert, Jan; Soulsby, Chris; Shanley, Jamie</p> <p>2013-10-01</p> <p>The higher midlatitudes of the northern hemisphere are particularly sensitive to change due to the important role the 0°C isotherm plays in the phase of precipitation and intermediate storage as snow. An international intercatchment comparison program called North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. Here eight North-Watch catchments located in Sweden (Krycklan), Scotland (Girnock and Strontian), the United States (Sleepers River, Hubbard Brook, and HJ Andrews), and Canada (Dorset and Wolf Creek) with 10 continuous years of daily precipitation and runoff data were selected to assess daily to seasonal coupling of precipitation (P) and runoff (Q) using wavelet coherency, and to explore the patterns and scales of variability in streamflow using color maps. Wavelet coherency revealed that P and Q were decoupled in catchments with cold winters, yet were strongly coupled during and immediately following the spring snowmelt freshet. In all catchments, coupling at shorter time scales occurred during wet periods when the catchment was responsive and storage deficits were small. At longer time scales, coupling reflected coherence between seasonal cycles, being enhanced at sites with enhanced seasonality in P. Color maps were applied as an alternative method to identify patterns and scales of flow variability. Seasonal versus transient flow variability was identified along with the persistence of that variability on influencing the flow regime. While exploratory in nature, this intercomparison exercise highlights the importance of climate and the 0°C isotherm on the functioning of northern catchments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PrOce.116...31L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PrOce.116...31L"><span>Pteropods and climate off the Antarctic Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loeb, Valerie J.; Santora, Jarrod A.</p> <p>2013-09-01</p> <p>Shelled (thecosome) and naked (gymnosome) pteropods are regular, at times abundant, members of Southern Ocean zooplankton assemblages. Regionally, shelled species can play a major role in food webs and carbon cycling. Because of their aragonite shells thecosome pteropods may be vulnerable to the impacts of ocean acidification; without shells they cannot survive and their demise would have major implications for food webs and carbon cycling in the Southern Ocean. Additionally, pteropod species in the southwest Atlantic sector of the Southern Ocean inhabit a region of rapid warming and climate change, the impacts of which are predicted to be observed as poleward distribution shifts. Here we provide baseline information on intraseasonal, interannual and longer scale variability of pteropod populations off the Antarctic Peninsula between 1994 and 2009. Concentrations of the 4 dominant taxa, Limacina helicina antarctica f. antarctica, Clio pyramidata f. sulcata, Spongiobranchaea australis and Clione limacina antarctica, are similar to those monitored during the 1928-1935 Discovery Investigations and reflect generally low values but with episodic interannual abundance peaks that, except for C. pyr. sulcata, are related to basin-scale climate forcing associated with the El Niño-Southern Oscillation (ENSO) climate mode. Significant abundance increases of L. helicina and S. australis after 1998 were associated with a climate regime shift that initiated a period dominated by cool La Niña conditions and increased nearshore influence of the Antarctic Circumpolar Current (ACC). This background information is essential to assess potential future changes in pteropod species distribution and abundance associated with ocean warming and acidification. construct maps of pteropod spatial frequency and mean abundance to assess their oceanographic associations; quantify pteropod abundance anomalies for comparing intraseasonal and interannual variability relative to m-3 environmental variables and climate modes; investigate the presence of long-term trends and/or cycles of peak abundance of the pteropod species in this region as have been described for krill and salps (Loeb et al., 2009, 2010; Loeb and Santora, 2012). We then examine interannual and longer-term variability of pteropod species abundance with respect to possible effects of the El Niño-Southern Oscillation (ENSO) and Southern Annular Mode (SAM) on population size, advection into and retention within the survey area. In doing so we highlight the importance of having sufficient spatial and temporal sampling coverage, as well as appropriate net mesh size, to establish statistically significant abundance changes associated with climate modes and long-term warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC12A..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC12A..07L"><span>Past climates primary productivity changes in the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Mézo, P. K.; Kageyama, M.; Bopp, L.; Beaufort, L.; Braconnot, P.; Bassinot, F. C.</p> <p>2016-02-01</p> <p>Organic climate recorders, e.g., coccolithophorids and foraminifera, are widely used to reconstruct past climate conditions, such as the Indian monsoon intensity and variability, since they are sensitive to climate-induced fluctuations of their environment. In the Indian Ocean, it is commonly accepted that a stronger summer monsoon will enhance productivity in the Arabian Sea and therefore the amount of organisms in a sediment core should reflect monsoon intensity. In this study, we use the coupled Earth System Model IPSLCM5A, which has a biogeochemical component PISCES that simulates primary production. We use 8 climate simulations of the IPSL-CM5A model, from -72kyr BP climate conditions to a preindustrial state. Our simulations have different orbital forcing (precession, obliquity and eccentricity), greenhouse gas concentrations as well as different ice sheet covers. The objective of this work is to characterize the mechanisms behind the changes in primary productivity between the different time periods. Our model shows that in climates where monsoon is enhanced (due to changes in precession) we do not necessarily see an increase in summer productivity in the Arabian Sea, and inversely. It seems that the glacial-interglacial state of the simulation is important in driving productivity changes in this region of the world. We try to explain the changes in productivity in the Arabian Sea with the local climate and then to link the changes in local climate to large scale atmospheric forcing and commonly used Indian monsoon definitions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26479830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26479830"><span>Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing</p> <p>2016-01-01</p> <p>Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMPP11F..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMPP11F..07M"><span>Insight to forcing of late Quaternary climate change from aeolian dust archives in eastern Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGowan, H. A.; Marx, S.; Soderholm, J.; Denholm, J.; Petherick, L.</p> <p>2010-12-01</p> <p>The Australian continent is the largest source of dust in the Southern Hemisphere. Historical dust emissions records display inter-annual variability in response to the El Niño Southern Oscillation (ENSO) phenomenon and inter-decadal variability which has been linked to the Pacific Decadal Oscillation (PDO). These reflect change in hydrometeorology of the continents two major dust source regions, the Murray-Darling Basin and the Lake Eyre Basin. The historical records do not allow longer term variability of ENSO and the PDO and their influence on Australia to be quantified. Importantly, sub-Milankovitch centennial to multi-millennial scale climate cycles and their impacts are not represented in the historical records. In this paper we present summary results from the analysis of two aeolain dust records spanning 7 ka and 45 ka. These were developed from ombrotrophic mire and lacustrine sediment cores collected from the Australian Alps and southeast Queensland. Both sites are located in the southeast Australian dust transport pathway and provide rare insight to forcings of climate variability and its impacts on eastern Australia through the late Quaternary. Age controls for the cores were established using 14C and 210Pb dating [McGowan et al. 2008, 2010]. The cores were sliced into 2 to 5 mm segments with a sub-sample of each segment combusted at 450°C for 12 hrs to destroy organic material and allow recovery of mineral dust. Geochemical fingerprinting of the < 90 µm fraction of the dust was used to determine provenance and to account for contamination by fluvial and/or colluvial sediments [Marx et al. 2005]. Analysis of the dust records, proxy for hydrometeorology, identified tropical ocean teleconnections, variability of solar irradiance and change in ocean deep water circulation as the principal causes of inter-decadal to centennial scale climate cycles and change. Predictions of future climate must consider these forcings so that in water scarce regions of Australia the effect on the hydroclimate is incorporated into the design of water allocation policy and infrastructure, and the management of environmental systems. Comparison with ice core records from Greenland and Antarctica indicate both synchronicity of global climate variability and the impact of forcings originating from the North Hemisphere. These results highlight the potential for adverse impacts on the climate of Australia by disturbance to North Atlantic Ocean circulation. References Marx, S. K., et al. 2005: Provenance of long travelled dust determined with ultra trace element composition: A pilot study with samples from New Zealand glaciers. Earth Surf. Processes Landforms, 30, 699-716. McGowan, H.A., et al. 2008: An ultra-high resolution record of aeolian sedimentation during the late Quaternary from eastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 265(3-4), 171-181. McGowan, H. A., et al. 2010: Evidence of solar and tropical ocean forcing of hydroclimate cycles in southeastern Australia for the past 6500 years. Geophys. Res. Lett., 37, L10705, doi:10.1029/2010GL042918.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A22B..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A22B..01D"><span>New Perspectives on the Role of Internal Variability in Regional Climate Change and Climate Model Evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deser, C.</p> <p>2017-12-01</p> <p>Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29472598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29472598"><span>Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kukal, Meetpal S; Irmak, Suat</p> <p>2018-02-22</p> <p>Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968-2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28589633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28589633"><span>Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campos, Fernando A; Morris, William F; Alberts, Susan C; Altmann, Jeanne; Brockman, Diane K; Cords, Marina; Pusey, Anne; Stoinski, Tara S; Strier, Karen B; Fedigan, Linda M</p> <p>2017-11-01</p> <p>Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168921','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168921"><span>The pace of past climate change vs. potential bird distributions and land use in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bateman, Brooke L.; Pidgeon, Anna M.; Radeloff, Volker C.; VanDerWal, Jeremy; Thogmartin, Wayne E.; Vavrus, Stephen J.; Heglund, Patricia J.</p> <p>2016-01-01</p> <p>Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species’ suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr−1, about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr−1). The direction of shifts was not uniform. The majority of species’ distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC43G..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC43G..02W"><span>Climate Variability over India and Bangladesh from the Perturbed UK Met Office Hadley Model: Impacts on Flow and Nutrient Fluxes in the Ganges Delta System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitehead, P. G.; Caesar, J.; Crossman, J.; Barbour, E.; Ledesma, J.; Futter, M. N.</p> <p>2015-12-01</p> <p>A semi-distributed flow and water quality model (INCA- Integrated Catchments Model) has been set up for the whole of the Ganges- Brahmaputra- Meghna (GBM) River system in India and Bangladesh. These massive rivers transport large fluxes of water and nutrients into the Bay of Bengal via the GBM Delta system in Bangladesh. Future climate change will impact these fluxes with changing rainfall, temperature, evapotranspiration and soil moisture deficits being altered in the catchment systems. In this study the INCA model has been used to assess potential impacts of climate change using the UK Met Office Hadley Centre GCM model linked to a regionally coupled model of South East Asia, covering India and Bangladesh. The Hadley Centre model has been pururbed by varying the parameters in the model to generate 17 realisations of future climates. Some of these reflect expected change but others capture the more extreme potential behaviour of future climate conditions. The 17 realisations have been used to drive the INCA Flow and Nitrogen model inorder to generate downstream times series of hydrology and nitrate- nitrogen. The variability of the climates on these fluxes are investigated and and their likley impact on the Bay of Begal Delta considered. Results indicate a slight shift in the monsoon season with increased wet season flows and increased temperatures which alter nutrient fluxes. Societal Importance to Stakeholders The GBM Delta supports one of the most densely populated regions of people living in poverty, who rely on ecosystem services provided by the Delta for survival. These ecosystem services are dependent upon fluxes of water and nutrients. Freshwater for urban, agriculture, and aquaculture requirements are essential to livelihoods. Nutrient loads stimulate estuarine ecosystems, supporting fishing stocks, which contribute significantly the economy of Bangladesh. Thus the societal importance of upstream climate driven change change in Bangladesh are very significant to many stakeholders in Bangladesh at the local, regional and national levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26691721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26691721"><span>The pace of past climate change vs. potential bird distributions and land use in the United States.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bateman, Brooke L; Pidgeon, Anna M; Radeloff, Volker C; VanDerWal, Jeremy; Thogmartin, Wayne E; Vavrus, Stephen J; Heglund, Patricia J</p> <p>2016-03-01</p> <p>Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species' suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr(-1) , about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr(-1) ). The direction of shifts was not uniform. The majority of species' distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing. © 2015 John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2308Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2308Y"><span>On climate prediction: how much can we expect from climate memory?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg</p> <p>2018-03-01</p> <p>Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=34049','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=34049"><span>Assessing climate impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wohl, Ellen E.; Pulwarty, Roger S.; Zhang, Jian Yun</p> <p>2000-01-01</p> <p>Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science. PMID:11027321</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH42A..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH42A..03W"><span>Solar Spectral Irradiance Reconstruction over 9 Millennia from a Composite 14C and 10Be Series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, C. J.; Usoskin, I. G.; Krivova, N.; Kovaltsov, G.; Solanki, S. K.</p> <p>2017-12-01</p> <p>The Sun is the main external energy source to the Earth and thus the knowledge of solar variability on different time scales is important for understanding the solar influence on the terrestrial atmosphere and climate. The overall energy input and its spectral distribution are described by the total (TSI) and spectral (SSI) solar irradiance, respectively. Direct measurements of the solar irradiance provide information on solar variability on the decadal and shorter time scales, while the sunspot number record covers four centuries. On yet longer time scales only indirect proxies can be used, such as the concentrations of the cosmogenic isotopes 10Be and 14C in terrestrial archives. These isotopes are produced in the terrestrial atmosphere by impinging cosmic rays, whose flux is modulated by solar activity. Therefore the isotope data retrieved from various natural archives around the globe show a very high degree of similarity reflecting changes in the solar activity. Nevertheless, significant short-term deviations can be observed due to the different geochemical production processes and local climatic conditions. We will present the newest TSI/SSI reconstruction over the last 9000 years based on a new consistent composite multi-isotope proxy series. The solar irradiance reconstruction reveals the global and robust pattern of solar variability in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012QuRes..78..323C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012QuRes..78..323C"><span>The 1.5-ka varved record of Lake Montcortès (southern Pyrenees, NE Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corella, Juan Pablo; Brauer, Achim; Mangili, Clara; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Morellón, Mario; Valero-Garcés, Blas L.</p> <p>2012-09-01</p> <p>The karstic Lake Montcortès sedimentary sequence spanning the last 1548 yr constitutes the first continuous, high-resolution, multi-proxy varved record in northern Spain. Sediments consist of biogenic varves composed of calcite, organic matter and detrital laminae and turbidite layers. Calcite layer thickness and internal sub-layering indicate changes in water temperature and seasonality whereas the frequency of detrital layers reflects rainfall variability. Higher temperatures occurred in Lake Montcortès in AD 555-738, 825-875, 1010-1322 and 1874-present. Lower temperatures and prolonged winter conditions were recorded in AD 1446-1598, 1663-1711 and 1759-1819. Extreme and multiple precipitation events dominated in AD 571-593, 848-922, 987-1086, 1168-1196, 1217-1249, 1444-1457, 1728-1741 and 1840-1875, indicating complex hydrological variability in NE Spain since AD 463. The sedimentary record of Lake Montcortès reveals a short-term relation between rainfall variability and the detrital influx, pronounced during extended periods of reduced anthropogenic influences. In pre-industrial times, during warm climate episodes, population and land use increased in the area. After the onset of the industrialization, the relationship between climate and human activities decoupled and population dynamics and landscape modifications were therefore mostly determined by socio-economic factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.T44A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.T44A..01A"><span>Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.</p> <p>2008-12-01</p> <p>Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from <8° to 28°/my over 7my are attributed to unsteady fault slip along the roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute to the filling and deformation of the Po foreland, we hypothesize that climatically-modulated surface processes are reflected in the observed rates of fault slip and fold growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612140K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612140K"><span>Understanding controls on biotic assemblages and ecological status in Zambian rivers for the development of sustainable monitoring protocols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kennedy, Michael; Gibbins, Chris; Lowe, Steven; Dallas, Helen; Taylor, Jonathan; Lang, Pauline; Saili, Kothelani; Sichingabula, Henry; Murphy, Kevin</p> <p>2014-05-01</p> <p>The water resources of Zambia are likely to experience increasing multiple pressures in the future as a result of very high predicted population growth, industrial development, land use change, and potentially, altered regional rainfall patterns. It is well known that rivers in tropical regions typically have a rich biodiversity, controlled in part by inter-annual variability in climate and discharge, and in part by local catchment conditions. However, till recently little country-wide work had had been carried out on the biota of Zambian rivers, and little was therefore known about the ecological status, or degree of catchment alteration of many of the rivers. To underpin sustainable water management, protocols have been developed to assess the ecological status of Zambian rivers. This paper describes the development of the protocols and their application to provide the first extensive assessment of the ecological status of rivers in the country. The protocols were designed to be simple, and hence rapid, easy and relatively inexpensive to apply. Status scores were derived for individual sites using sensitivity weightings from 3 major groups (macrophytes, diatoms and macroinvertebrates). The general approach was based on schemes used successfully elsewhere, with species and family sensitivity weightings modified so as be appropriate to Zambia. Modifications were based on a survey of 140 Zambian rivers, incorporating data on species distributions, physical habitat conditions and water quality. Analysis of historical data suggests that established Freshwater Ecoregions reflect hydro-climatic variability across Zambia. Survey data indicate that most of the spatial variation in biological assemblages across the country reflects these same hydro-climatic gradients, in addition to hydrochemical differences linked to geology. Site status scores suggest that rivers are generally in good health, although exceptions occur in some large urban areas and a small number of catchments with major industrial activity. Data form an important baseline against which to assess future changes related to population growth and climate change, and will therefore help inform policy within Zambia for sustainable river monitoring and management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23C0308K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23C0308K"><span>Abrupt Late Holocene Shift in Atmospheric Circulation Recorded by Mineral Dust in the Siple Dome Ice Core, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koffman, B. G.; Goldstein, S. L.; Kaplan, M. R.; Winckler, G.; Bory, A. J. M.; Biscaye, P.</p> <p>2015-12-01</p> <p>Atmospheric dust directly influences Earth's climate by altering the radiative balance and by depositing micronutrients in the surface ocean, affecting global biogeochemical cycling. In addition, mineral dust particles provide observational evidence constraining past atmospheric circulation patterns. Because dust can originate from both local and distant terrestrial sources, knowledge of dust provenance can substantially inform our understanding of past climate history, atmospheric transport pathways, and differences in aerosol characteristics between glacial and interglacial climate states. Dust provenance information from Antarctic ice cores has until now been limited to sites in East Antarctica. Here we present some of the first provenance data from West Antarctica. We use Sr-Nd isotopes to characterize dust extracted from late Holocene ice (~1000-1800 C.E.) from the Siple Dome ice core. The data form a tight array in Sr-Nd isotope space, with 87Sr/86Sr ranging between ~0.7087 and 0.7102, and ɛNd ranging between ~ -7 and -16. This combination is unique for Antarctica, with low Nd and low Sr isotope ratios compared to high-elevation East Antarctic sites, requiring a dust source from ancient (Archean to early Proterozoic) and unweathered continental crust, which mixes with young volcanic material. Both components are likely sourced from Antarctica. We also observe significant, systematic variability in Sr and Nd isotopic signatures through time, reflecting changes in the mixing ratio of these sources, and hypothesize that these changes are driven by shifts in circulation patterns. A large change occurs over about 10 years at ca. 1125 C.E. (ΔɛNd = +3 and Δ87Sr/86Sr = -0.0014). This shift coincides with changes in climate proxies in Southern Hemisphere paleoclimate records reflecting variability in the Westerlies. We therefore interpret the shift in dust provenance at Siple Dome to be related to larger-scale circulation changes. In general, the observed shifts in the particle source signatures indicate that dust transport pathways to and around the West Antarctic Ice Sheet are highly responsive to perturbations in atmospheric circulation, and can record rapid shifts in provenance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990094166&hterms=climate+change+evidence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dclimate%2Bchange%2Bevidence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990094166&hterms=climate+change+evidence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dclimate%2Bchange%2Bevidence"><span>Solar Variability in the Context of Other Climate Forcing Mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hansen, James E.</p> <p>1999-01-01</p> <p>I compare and contrast climate forcings due to solar variability with climate forcings due to other mechanisms of climate change, interpretation of the role of the sun in climate change depends upon climate sensitivity and upon the net forcing by other climate change mechanisms. Among the potential indirect climate forcings due to solar variability, only that due to solar cycle induced ozone changes has been well quantified. There is evidence that the sun has been a significant player in past climate change on decadal to century time scales, and that it has the potential to contribute to climate change in the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B11A0003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B11A0003M"><span>Multiangular Contributions for Discriminate Seasonal Structural Changes in the Amazon Rainforest Using MODIS MAIAC Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moura, Y. M.; Hilker, T.; Galvão, L. S.; Santos, J. R.; Lyapustin, A.; Sousa, C. H. R. D.; McAdam, E.</p> <p>2014-12-01</p> <p>The sensitivity of the Amazon rainforests to climate change has received great attention by the scientific community due to the important role that this vegetation plays in the global carbon, water and energy cycle. The spatial and temporal variability of tropical forests across Amazonia, and their phenological, ecological and edaphic cycles are still poorly understood. The objective of this work was to infer seasonal and spatial variability of forest structure in the Brazilian Amazon based on anisotropy of multi-angle satellite observations. We used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS/Terra and Aqua) processed by a new Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC) to investigate how multi-angular spectral response from satellite imagery can be used to analyze structural variability of Amazon rainforests. We calculated differences acquired from forward and backscatter reflectance by modeling the bi-directional reflectance distribution function to infer seasonal and spatial changes in vegetation structure. Changes in anisotropy were larger during the dry season than during the wet season, suggesting intra-annual changes in vegetation structure and density. However, there were marked differences in timing and amplitude depending on forest type. For instance differences between reflectance hotspot and darkspot showed more anisotropy in the open Ombrophilous forest than in the dense Ombrophilous forest. Our results show that multi-angle data can be useful for analyzing structural differences in various forest types and for discriminating different seasonal effects within the Amazon basin. Also, multi-angle data could help solve uncertainties about sensitivity of different tropical forest types to light versus rainfall. In conclusion, multi-angular information, as expressed by the anisotropy of spectral reflectance, may complement conventional studies and provide significant improvements over approaches that are based on vegetation indices alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002E%26PSL.203..383H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002E%26PSL.203..383H"><span>Sediment focusing creates 100-ka cycles in interplanetary dust accumulation on the Ontong Java Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Higgins, Sean M.; Anderson, Robert F.; Marcantonio, Franco; Schlosser, Peter; Stute, Martin</p> <p>2002-10-01</p> <p>The accumulation of extraterrestrial 3He, a tracer for interplanetary dust particles (IDPs), in sediments from the Ontong Java Plateau (OJP; western equatorial Pacific Ocean) has been shown previously to exhibit a regular cyclicity during the late Pleistocene, with a period of ∼100 ka. Those results have been interpreted to reflect periodic variability in the global accretion of IDPs that, in turn, has been linked to changes in the inclination of Earth's orbit with respect to the invariable plane of the solar system. Here we show that the accumulation in OJP sediments of authigenic 230Th, produced by radioactive decay of 234U in seawater, exhibits a 100-ka cyclicity similar in phase and amplitude to that evident in the 3He record. We interpret the similar patterns of 230Th and 3He accumulation to reflect a common origin within the ocean-climate system. Comparing spatial and temporal patterns of sediment accumulation against regional patterns of biological productivity and against the well-established pattern of CaCO3 dissolution in the deep Pacific Ocean leads to the further conclusion that a common 100-ka cycle in accumulation of biogenic, authigenic and extraterrestrial constituents in OJP sediments reflects the influence of climate-related changes in sediment focusing, rather than changes in the rate of production or supply of sedimentary constituents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.423...98E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.423...98E"><span>Origin of limestone-marlstone cycles: Astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eldrett, James S.; Ma, Chao; Bergman, Steven C.; Ozkan, Aysen; Minisini, Daniel; Lutz, Brendan; Jackett, Sarah-Jane; Macaulay, Calum; Kelly, Amy E.</p> <p>2015-08-01</p> <p>We present an integrated multidisciplinary study of limestone-marlstone couplets from a continuously cored section including parts of the upper Buda Limestone, the entire Eagle Ford Group (Boquillas Formation) and lower Austin Chalk from the Shell Iona-1 research borehole (Texas, USA), which provides a >8 million year (myr) distal, clastic sediment-starved, intrashelf basin record of the early Cenomanian to the earliest Coniacian Stages. Results show that despite variable yet minimal diagenetic overprints, several unambiguous primary environmental signals are preserved and support greater water-mass ventilation and current activity promoting increased silica/carbonate productivity during the deposition of limestone beds compared to deposition of marlstone beds which reflect greater organic matter productivity and preservation. Furthermore, our astronomical analyses demonstrate that the limestone-marlstone couplets in the Iona-1 core reflect climatic forcing driven by solar insolation resulting from integrated Milankovitch periodicities. In particular, we propose that obliquity and precession forcing on the latitudinal distribution of solar insolation may have been responsible for the observed lithological and environmental variations through the Cenomanian, Turonian and Coniacian in this mid-latitude epicontinental sea setting. Our data also suggests that rhythmic lithological alternations deposited in Greenhouse periods, in general, may simply reflect climate-driven cycles related to Earth-Sun dynamics without the need to invoke significant sea-level variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESSD..1110515T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESSD..1110515T"><span>Effect of year-to-year variability of leaf area index on variable infiltration capacity model performance and simulation of streamflow during drought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.</p> <p>2014-09-01</p> <p>This study assessed the effect of using observed monthly leaf area index (LAI) on hydrologic model performance and the simulation of streamflow during drought using the variable infiltration capacity (VIC) hydrological model in the Goulburn-Broken catchment of Australia, which has heterogeneous vegetation, soil and climate zones. VIC was calibrated with both observed monthly LAI and long-term mean monthly LAI, which were derived from the Global Land Surface Satellite (GLASS) observed monthly LAI dataset covering the period from 1982 to 2012. The model performance under wet and dry climates for the two different LAI inputs was assessed using three criteria, the classical Nash-Sutcliffe efficiency, the logarithm transformed flow Nash-Sutcliffe efficiency and the percentage bias. Finally, the percentage deviation of the simulated monthly streamflow using the observed monthly LAI from simulated streamflow using long-term mean monthly LAI was computed. The VIC model predicted monthly streamflow in the selected sub-catchments with model efficiencies ranging from 61.5 to 95.9% during calibration (1982-1997) and 59 to 92.4% during validation (1998-2012). Our results suggest systematic improvements from 4 to 25% in the Nash-Sutcliffe efficiency in pasture dominated catchments when the VIC model was calibrated with the observed monthly LAI instead of the long-term mean monthly LAI. There was limited systematic improvement in tree dominated catchments. The results also suggest that the model overestimation or underestimation of streamflow during wet and dry periods can be reduced to some extent by including the year-to-year variability of LAI in the model, thus reflecting the responses of vegetation to fluctuations in climate and other factors. Hence, the year-to-year variability in LAI should not be neglected; rather it should be included in model calibration as well as simulation of monthly water balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AdWR...83..310T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AdWR...83..310T"><span>The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.</p> <p>2015-09-01</p> <p>This study assessed the effect of using observed monthly leaf area index (LAI) on hydrological model performance and the simulation of runoff using the Variable Infiltration Capacity (VIC) hydrological model in the Goulburn-Broken catchment of Australia, which has heterogeneous vegetation, soil and climate zones. VIC was calibrated with both observed monthly LAI and long-term mean monthly LAI, which were derived from the Global Land Surface Satellite (GLASS) leaf area index dataset covering the period from 1982 to 2012. The model performance under wet and dry climates for the two different LAI inputs was assessed using three criteria, the classical Nash-Sutcliffe efficiency, the logarithm transformed flow Nash-Sutcliffe efficiency and the percentage bias. Finally, the deviation of the simulated monthly runoff using the observed monthly LAI from simulated runoff using long-term mean monthly LAI was computed. The VIC model predicted monthly runoff in the selected sub-catchments with model efficiencies ranging from 61.5% to 95.9% during calibration (1982-1997) and 59% to 92.4% during validation (1998-2012). Our results suggest systematic improvements, from 4% to 25% in Nash-Sutcliffe efficiency, in sparsely forested sub-catchments when the VIC model was calibrated with observed monthly LAI instead of long-term mean monthly LAI. There was limited systematic improvement in tree dominated sub-catchments. The results also suggest that the model overestimation or underestimation of runoff during wet and dry periods can be reduced to 25 mm and 35 mm respectively by including the year-to-year variability of LAI in the model, thus reflecting the responses of vegetation to fluctuations in climate and other factors. Hence, the year-to-year variability in LAI should not be neglected; rather it should be included in model calibration as well as simulation of monthly water balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7976M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7976M"><span>Weather patterns as a downscaling tool - evaluating their skill in stratifying local climate variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murawski, Aline; Bürger, Gerd; Vorogushyn, Sergiy; Merz, Bruno</p> <p>2016-04-01</p> <p>The use of a weather pattern based approach for downscaling of coarse, gridded atmospheric data, as usually obtained from the output of general circulation models (GCM), allows for investigating the impact of anthropogenic greenhouse gas emissions on fluxes and state variables of the hydrological cycle such as e.g. on runoff in large river catchments. Here we aim at attributing changes in high flows in the Rhine catchment to anthropogenic climate change. Therefore we run an objective classification scheme (simulated annealing and diversified randomisation - SANDRA, available from the cost733 classification software) on ERA20C reanalyses data and apply the established classification to GCMs from the CMIP5 project. After deriving weather pattern time series from GCM runs using forcing from all greenhouse gases (All-Hist) and using natural greenhouse gas forcing only (Nat-Hist), a weather generator will be employed to obtain climate data time series for the hydrological model. The parameters of the weather pattern classification (i.e. spatial extent, number of patterns, classification variables) need to be selected in a way that allows for good stratification of the meteorological variables that are of interest for the hydrological modelling. We evaluate the skill of the classification in stratifying meteorological data using a multi-variable approach. This allows for estimating the stratification skill for all meteorological variables together, not separately as usually done in existing similar work. The advantage of the multi-variable approach is to properly account for situations where e.g. two patterns are associated with similar mean daily temperature, but one pattern is dry while the other one is related to considerable amounts of precipitation. Thus, the separation of these two patterns would not be justified when considering temperature only, but is perfectly reasonable when accounting for precipitation as well. Besides that, the weather patterns derived from reanalyses data should be well represented in the All-Hist GCM runs in terms of e.g. frequency, seasonality, and persistence. In this contribution we show how to select the most appropriate weather pattern classification and how the classes derived from it are reflected in the GCMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=338471','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=338471"><span>Flexible stocking as a strategy for enhancing ranch profitability in the face of a changing and variable climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Predicted climate change impacts include increased weather variability and increased occurrences of extreme events such as drought. Such climate changes potentially affect cattle performance as well as pasture and range productivity. These climate induced risks are often coupled with variable market...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918904Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918904Z"><span>Statistical structure of intrinsic climate variability under global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Xiuhua; Bye, John; Fraedrich, Klaus</p> <p>2017-04-01</p> <p>Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4608698','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4608698"><span>Predictive Mapping of Topsoil Organic Carbon in an Alpine Environment Aided by Landsat TM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Renmin; Rossiter, David G.; Liu, Feng; Lu, Yuanyuan; Yang, Fan; Yang, Fei; Zhao, Yuguo; Li, Decheng; Zhang, Ganlin</p> <p>2015-01-01</p> <p>The objective of this study was to examine the reflectance of Landsat TM imagery for mapping soil organic Carbon (SOC) content in an Alpine environment. The studied area (ca. 3*104 km2) is the upper reaches of the Heihe River at the northeast edge of the Tibetan plateau, China. A set (105) of topsoil samples were analyzed for SOC. Boosted regression tree (BRT) models using Landsat TM imagery were built to predict SOC content, alone or with topography and climate covariates (temperature and precipitation). The best model, combining all covariates, was only marginally better than using only imagery. Imagery alone was sufficient to build a reasonable model; this was a bit better than only using topography and climate covariates. The Lin’s concordance correlation coefficient values of the imagery only model and the full model are very close, larger than the topography and climate variables based model. In the full model, SOC was mainly explained by Landsat TM imagery (65% relative importance), followed by climate variables (20%) and topography (15% of relative importance). The good results from imagery are likely due to (1) the strong dependence of SOC on native vegetation intensity in this Alpine environment; (2) the strong correlation in this environment between imagery and environmental covariables, especially elevation (corresponding to temperature), precipitation, and slope aspect. We conclude that multispectral satellite data from Landsat TM images may be used to predict topsoil SOC with reasonable accuracy in Alpine regions, and perhaps other regions covered with natural vegetation, and that adding topography and climate covariables to the satellite data can improve the predictive accuracy. PMID:26473739</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193598','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193598"><span>Integrating satellite observations and modern climate measurements with the recent sedimentary record: An example from Southeast Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Addison, Jason A.; Finney, Bruce P.; Jaeger, John M.; Stoner, Joseph S.; Norris, Richard D.; Hangsterfer, Alexandra</p> <p>2013-01-01</p> <p>Assessments of climate change over time scales that exceed the last 100 years require robust integration of high-quality instrument records with high-resolution paleoclimate proxy data. In this study, we show that the recent biogenic sediments accumulating in two temperate ice-free fjords in Southeast Alaska preserve evidence of North Pacific Ocean climate variability as recorded by both instrument networks and satellite observations. Multicore samples EW0408-32MC and EW0408-43MC were investigated with 137Cs and excess 210Pb geochronometry, three-dimensional computed tomography, high-resolution scanning XRF geochemistry, and organic stable isotope analyses. EW0408-32MC (57.162°N, 135.357°W, 146 m depth) is a moderately bioturbated continuous record that spans AD ∼1930–2004. EW0408-43MC (56.965°N, 135.268°W, 91 m depth) is composed of laminated diatom oozes, a turbidite, and a hypopycnal plume (river flood) deposit. A discontinuous event-based varve chronology indicates 43MC spans AD ∼1940–1981. Decadal-scale fluctuations in sedimentary Br/Cl ratios accurately reflect changes in marine organic matter accumulation that display the same temporal pattern as that of the Pacific Decadal Oscillation. An estimated Sitka summer productivity parameter calibrated using SeaWiFS satellite observations support these relationships. The correlation of North Pacific climate regime states, primary productivity, and sediment geochemistry indicate the accumulation of biogenic sediment in Southeast Alaska temperate fjords can be used as a sensitive recorder of past productivity variability, and by inference, past climate conditions in the high-latitude Gulf of Alaska.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMD.....9.4365X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMD.....9.4365X"><span>A diagram for evaluating multiple aspects of model performance in simulating vector fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Zhongfeng; Hou, Zhaolu; Han, Ying; Guo, Weidong</p> <p>2016-12-01</p> <p>Vector quantities, e.g., vector winds, play an extremely important role in climate systems. The energy and water exchanges between different regions are strongly dominated by wind, which in turn shapes the regional climate. Thus, how well climate models can simulate vector fields directly affects model performance in reproducing the nature of a regional climate. This paper devises a new diagram, termed the vector field evaluation (VFE) diagram, which is a generalized Taylor diagram and able to provide a concise evaluation of model performance in simulating vector fields. The diagram can measure how well two vector fields match each other in terms of three statistical variables, i.e., the vector similarity coefficient, root mean square length (RMSL), and root mean square vector difference (RMSVD). Similar to the Taylor diagram, the VFE diagram is especially useful for evaluating climate models. The pattern similarity of two vector fields is measured by a vector similarity coefficient (VSC) that is defined by the arithmetic mean of the inner product of normalized vector pairs. Examples are provided, showing that VSC can identify how close one vector field resembles another. Note that VSC can only describe the pattern similarity, and it does not reflect the systematic difference in the mean vector length between two vector fields. To measure the vector length, RMSL is included in the diagram. The third variable, RMSVD, is used to identify the magnitude of the overall difference between two vector fields. Examples show that the VFE diagram can clearly illustrate the extent to which the overall RMSVD is attributed to the systematic difference in RMSL and how much is due to the poor pattern similarity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..540..457F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..540..457F"><span>Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fink, Gabriel; Wessels, Martin; Wüest, Alfred</p> <p>2016-09-01</p> <p>Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP51A2286H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP51A2286H"><span>The impact of AMO and NAO in Western Iberia during the Late Holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, A.; Leira, M.; Trigo, R.; Vázquez-Loureiro, D.; Carballeira, R.; Sáez, A.</p> <p>2016-12-01</p> <p>High mountain lakes in the Iberian Peninsula are particularly sensitive to the influence of North Atlantic large-scale modes of climate variability due to their geographical position and the reduced anthropic disturbances. In this context, Serra da Estrela (Portugal), the westernmost range of the Sistema Central, constitutes a physical barrier to air masses coming from the Atlantic Ocean. However, long-term climate reconstructions have not yet been conducted. We present a climate reconstruction of this region based on facies analysis, X-ray fluorescence core scanning, elemental and isotope geochemistry on bulk organic matter and a preliminary study of diatom assemblages from the sedimentary record of Lake Peixão (1677 m a.s.l.; Serra da Estrela) for the last ca. 3500 years. A multivariate statistical analysis has been performed to recognize the main environmental factors controlling the sedimentary infill. Our results reveal that two main processes explain the 70% of the total variance. Thus, changes in primary productivity, reflected in organic matter accumulation, and variations in runoff, related to external particles input, explain 53% and 17% respectively. Additionally, evidence of changes in productivity and water level regime recorded as variations in diatom assemblages correlate well with our interpretations. A comparison between the lake productivity changes and previous Atlantic Multidecadal Oscillation (AMO) reconstructions shows a good correlation, suggesting this climate mode as the main driver over lacustrine primary productivity at multi-decadal scales. In turn, changes in terrigenous inputs, linked to precipitation, seem to be more influenced by the winter North Atlantic Oscillation (NAO) variability. Hence, our results highlight that although the climate regime in this area is clearly influenced by the NAO, the AMO also plays a key role at long-term time-scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A14C..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A14C..06L"><span>Variability and changes in tropospheric ozone over the western United States (1980-2010): Exploring the roles of stratosphere-to-troposphere transport and El Niño-Southern Oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, M.; Fiore, A. M.; Horowitz, L. W.; Naik, V.; Oltmans, S. J.; Levy, H.; Cooper, O. R.; Johnson, B. J.</p> <p>2011-12-01</p> <p>Understanding the drivers of inter-annual variability and long-term changes of tropospheric ozone is crucial for designing appropriate control policies. Advancing this knowledge will also enable process-oriented assessments of chemistry-climate models, which are needed to build confidence in their utility for projecting tropospheric ozone under future climate scenarios. We examine here the response of North American background ozone over the past 30 years (1980-2010) to changes in atmospheric circulation and chemistry, both in the stratosphere and in the troposphere, through an integrated analysis of observational records from satellite, ozonesonde and ground-based networks with the GFDL AM3 global chemistry-climate model (nudged to reanalysis winds to allow for exact space-time comparisons with the observational datasets). Comparing the model simulation with ~30 years of ozone measurements at Mauna Loa ground station (~3397 m a.s.l.) and Hilo sonde (550-450 hPa) in Hawaii, we find that mid-tropospheric ozone in the eastern Pacific extratropics is enhanced by ~5-10 ppbv (~10-20% deviations from the climatological mean) during strong El Niño events (i.e. 1982-1983, 1997-1998, 2009-2010), presumably reflecting stronger transport from the stratosphere and Asia due to the eastward extension of the Pacific storm tracks and amplified subtropical jet. The La Niña condition typically manifests in the opposite sign, with ozone decreasing north of Hawaii. Over the western U.S., however, both cyclonic and anticyclonic circulation following strong El Niño and La Niña winters, respectively, may enhance deep stratosphere-to-troposphere transport in spring. Both ozonesonde and model results sampled at Trinidad Head, California, indicate ~25% positive deviations in UT/LS ozone during the El Niño winters of 1997-1998 and 2009-2010. We find that this ENSO-related UT/LS ozone variability is also captured in satellite-derived total column ozone from TOMS and AIRS over the Northwest U.S. in May. In contrast, enhanced lower tropospheric ozone over the western U.S. during strong La Niña years (e.g. 1999) mostly reflect changes in atmospheric dynamics rather than lower stratospheric ozone. The model indicates a 0.2 ppb/yr increase in mid-tropospheric ozone over the past 25 years. We are implementing a stratospheric ozone tracer in the model to quantify the springtime stratospheric enhancement to the high tail of daily maximum 8-hour surface ozone frequency during both phases of ENSO. We expect that the associated variability should provide insights regarding potential responses to climate shifts as well as inform air quality planning and control strategies to attain the national standard.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRG..120.2194W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRG..120.2194W"><span>Temporal variability of particulate organic carbon in the lower Changjiang (Yangtze River) in the post-Three Gorges Dam period: Links to anthropogenic and climate impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Ying; Bao, Hongyan; Yu, Hao; Zhang, Jing; Kattner, Gerhard</p> <p>2015-11-01</p> <p>Suspended particles from the lower Changjiang were collected monthly from 2003 to 2011, which corresponds to the three construction periods of the Three Gorges Dam. Organic carbon (%OC), organic carbon to total nitrogen molar ratio, stable carbon isotope, and terrestrial biomarkers were examined. Rating curve studies were applied for the temporal trend analysis. The composition of particulate lignin phenols exhibited clear annual and periodic variations but only minor seasonal changes. Lignin phenol ratios (vanillyl/syringyl and cinnamyl/vanillyl) indicated that the terrigenous organic matter (OM) was primarily composed of woody and nonwoody tissue derived from angiosperm plants. The low-lignin phenol yields (Λ8) in combination with higher acid to aldehyde ratios reflected a substantial contribution from soil OM to the particle samples or modifications during river transport. The temporal shift of the lignin phenol vegetation index with the sediment load during the flood seasons revealed particulate organic matter (POM) erosion from soils and the impact of hydrodynamic processes. The dam operations affected the seasonal variability of terrigenous OM fluxes, although the covariation of lignin and sediment loads with discharged water implies that unseasonal extreme conditions and climate change most likely had larger influences, because decreases in the sediment load and lignin flux alter the structure and composition of particulate OM (POM) on interannual time scales, indicating that they may be driven by climate variability. The modification of the composition and structure of POM will have significant impacts on regional carbon cycles and marine ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2901442','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2901442"><span>Disentangling the role of environmental and human pressures on biological invasions across Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pyšek, Petr; Jarošík, Vojtěch; Hulme, Philip E.; Kühn, Ingolf; Wild, Jan; Arianoutsou, Margarita; Bacher, Sven; Chiron, Francois; Didžiulis, Viktoras; Essl, Franz; Genovesi, Piero; Gherardi, Francesca; Hejda, Martin; Kark, Salit; Lambdon, Philip W.; Desprez-Loustau, Marie-Laure; Nentwig, Wolfgang; Pergl, Jan; Poboljšaj, Katja; Rabitsch, Wolfgang; Roques, Alain; Roy, David B.; Shirley, Susan; Solarz, Wojciech; Vilà, Montserrat; Winter, Marten</p> <p>2010-01-01</p> <p>The accelerating rates of international trade, travel, and transport in the latter half of the twentieth century have led to the progressive mixing of biota from across the world and the number of species introduced to new regions continues to increase. The importance of biogeographic, climatic, economic, and demographic factors as drivers of this trend is increasingly being realized but as yet there is no consensus regarding their relative importance. Whereas little may be done to mitigate the effects of geography and climate on invasions, a wider range of options may exist to moderate the impacts of economic and demographic drivers. Here we use the most recent data available from Europe to partition between macroecological, economic, and demographic variables the variation in alien species richness of bryophytes, fungi, vascular plants, terrestrial insects, aquatic invertebrates, fish, amphibians, reptiles, birds, and mammals. Only national wealth and human population density were statistically significant predictors in the majority of models when analyzed jointly with climate, geography, and land cover. The economic and demographic variables reflect the intensity of human activities and integrate the effect of factors that directly determine the outcome of invasion such as propagule pressure, pathways of introduction, eutrophication, and the intensity of anthropogenic disturbance. The strong influence of economic and demographic variables on the levels of invasion by alien species demonstrates that future solutions to the problem of biological invasions at a national scale lie in mitigating the negative environmental consequences of human activities that generate wealth and by promoting more sustainable population growth. PMID:20534543</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3388H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3388H"><span>Stable oxygen and carbon isotope characteristics in speleothems from Southern Africa - how good are they?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmgren, K.</p> <p>2009-04-01</p> <p>Much remains to be understood about the interaction between the African climate system, its surrounding ocean-atmosphere climate variability and the global climate system. A better understanding of the regional climate evolution is crucial for understanding global climate dynamics and issues surrounding environmental change throughout Africa and a prerequisite for increasing climate forecasting capabilities for the region. As part of developing this understanding, a longer term perspective that reaches beyond the information available from instrumental records is required. Speleothems are frequently abundant in southern Africa. Quite a few records are now available, reporting significant changes in climate and environmental conditions over longer and shorter time scales. Conclusions are mainly based on the stable isotopic composition of the speleothems. The interpretation of the stable isotope data is, however, not always straight-forward, since many processes contribute to the observed signal in the speleothem and these processes may influence the signal differently at different spatial and temporal scales. For example was the Makapansgat speleothem oxygen isotope record, originally interpreted as being generally determined by shifts in atmospheric circulation pattern (Lee-Thorp et al. 2001, Holmgren et al. 2003), recently challenged and re-interpreted by Partin et al. (2008) to reflect annual rainfall amounts. Historically, less attention has been paid to the stable carbon isotope composition in speleothems. Today, an increasing number of studies demonstrate the potential of stable carbon variations as providing additional information on climate and environment. Measured variations can be a function of the amount of C3 versus C4 vegetation, vegetation cover and soil biological activity, bedrock proportion, rainfall amount and the drip rate. Clearly the multitudes of plausible processes behind the isotopic composition of speleothems in southern Africa (as well as elsewhere) are a challenge to firm conclusions. However, the need for more globally well dispersed terrestrial palaeoclimatic records; the strong advantages of speleothems to provide precise ages and the empirical experience of successful solutions in previous speleothem research, encourage us to continue research on speleothems from southern Africa. If the understanding of the forcing mechanisms behind measured variables in speleothems can be increased, then there is a great potential for retrieving good climate records from the sub-continent, since the availability of caves containing speleothems is fairly frequent. Available speleothem research from southern Africa will be summarised and potentials and constraints will be discussed. References: Holmgren, K., Lee-Thorp, J.A., Cooper, G.J., Lundblad, K., Partridge, T.C., Scott, L., Sithaldeen, R., Talma, A.S. and Tyson, P.D. 2003: Persistent Millennial-Scale Climatic Variability over the Past 25 thousand Years in Southern Africa. Quaternary Science Reviews, 22, 2311-2326. Lee-Thorp, J.A., Holmgren, K., S.E. Lauritzen, Linge, H., Moberg, A., Partridge, T.C., Stevenson, C. and Tyson P., 2001: Rapid climate shifts in the southern African interior throughout the mid to late Holocene. Geophysical Research Letters 28, 4507-4510. Partin, J.W., Cobb, K.M. and Banner, J.L. 2008: Climate variability recorded in tropical and sub-tropical speleothems. PAGES news, 16, 3, p. 9-10.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.A53E..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.A53E..03W"><span>The Modulated Annual Cycle: An Alternative Reference Frame for Climate Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Z.</p> <p>2007-12-01</p> <p>In climate science, an anomaly is the deviation of a quantity from its annual cycle (AC). There are many ways to define annual cycle. Traditionally, the annual cycle is taken to be an exact repetition of itself year after year. This stationary annual cycle may not reflect well the intrinsic nonlinearity of the climate system, especially under external forcing. In this study, we have reexamined the reference frame for anomalies by reexamining the annual cycle. We propose an alternative reference frame, the modulated annual cycle (MAC) that allows the annual cycle to change from year to year, for defining anomalies. In order for this alternative reference frame to be useful, we need to be able to define the instantaneous annual cycle. We therefore also introduce a new method to extract the MAC from climatic data. In the presence of an MAC, modulated in both amplitude and frequency, we can then define an alternative version of an anomaly, this time with respect to the instantaneous MAC rather than a permanent and unchanging AC. Based on this alternative definition of anomalies, we reexamine some familiar physical processes: in particular, the sea surface temperature (SST) reemergence and the ENSO phase locking to the annual cycle. We find that the re-emergence mechanism may be alternatively interpreted as an explanation of the change of the annual cycle instead of the interannual to interdecadal persistence of SST anomalies. We also find that the ENSO phase locking can largely be attributed to the residual annual cycle (the difference of the MAC and the corresponding traditional annual cycle) contained in the traditional anomaly, and, therefore, can be alternatively interpreted as a part of the annual cycle phase locked to the annual cycle itself. Two additional examples are also presented of the implications of using a MAC against which to define anomalies. We show that using MAC as a reference framework for anomaly can bypass the difficulty brought by concepts such as "decadal variability of summer (or winter) climate" for understanding the low-frequency variability of the climate system. We also point out the drawbacks related to the stationary assumption in previous studies of extreme weather and climate and propose instead the appropriateness of choosing a non-stationary framework to study extreme weather and climate events. The concept of an amplitude and frequency modulated annual cycle, a method to extract it, and its implications for the interpretation of physical processes, all may contribute potentially to a more consistent and fruitful way of examining past and future climate variability and change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC24C..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC24C..07L"><span>Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loeb, N. G.; Wong, T.; Wang, H.</p> <p>2017-12-01</p> <p>Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20404180','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20404180"><span>Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rohr, Jason R; Raffel, Thomas R</p> <p>2010-05-04</p> <p>The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..741B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..741B"><span>Effects of short-term variability of meteorological variables on soil temperature in permafrost regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias</p> <p>2018-03-01</p> <p>Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3295284','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3295284"><span>Timing of climate variability and grassland productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Craine, Joseph M.; Nippert, Jesse B.; Elmore, Andrew J.; Skibbe, Adam M.; Hutchinson, Stacy L.; Brunsell, Nathaniel A.</p> <p>2012-01-01</p> <p>Future climates are forecast to include greater precipitation variability and more frequent heat waves, but the degree to which the timing of climate variability impacts ecosystems is uncertain. In a temperate, humid grassland, we examined the seasonal impacts of climate variability on 27 y of grass productivity. Drought and high-intensity precipitation reduced grass productivity only during a 110-d period, whereas high temperatures reduced productivity only during 25 d in July. The effects of drought and heat waves declined over the season and had no detectable impact on grass productivity in August. If these patterns are general across ecosystems, predictions of ecosystem response to climate change will have to account not only for the magnitude of climate variability but also for its timing. PMID:22331914</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22889171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22889171"><span>Selection of climate change scenario data for impact modelling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sloth Madsen, M; Maule, C Fox; MacKellar, N; Olesen, J E; Christensen, J Hesselbjerg</p> <p>2012-01-01</p> <p>Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented in this paper, applied to relative humidity, but it could be adopted to other variables if needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840066883&hterms=satelite&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsatelite','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840066883&hterms=satelite&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsatelite"><span>Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. I - Analysis method. II - November 1978 cloud distributions. III - November 1978 radiative parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Minnis, P.; Harrison, E. F.</p> <p>1984-01-01</p> <p>Cloud cover is one of the most important variables affecting the earth radiation budget (ERB) and, ultimately, the global climate. The present investigation is concerned with several aspects of the effects of extended cloudiness, taking into account hourly visible and infrared data from the Geostationary Operational Environmental Satelite (GOES). A methodology called the hybrid bispectral threshold method is developed to extract regional cloud amounts at three levels in the atmosphere, effective cloud-top temperatures, clear-sky temperature and cloud and clear-sky visible reflectance characteristics from GOES data. The diurnal variations are examined in low, middle, high, and total cloudiness determined with this methodology for November 1978. The bulk, broadband radiative properties of the resultant cloud and clear-sky data are estimated to determine the possible effect of the diurnal variability of regional cloudiness on the interpretation of ERB measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ClDy...23..439R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ClDy...23..439R"><span>Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rowe, H. D.; Dunbar, R. B.</p> <p>2004-09-01</p> <p>A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23438320','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23438320"><span>Means and extremes: building variability into community-level climate change experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula</p> <p>2013-06-01</p> <p>Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..518H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..518H"><span>Lithostratigraphy and microfacies analyses of the Lateglacial and early Holocene sediment record from Lake Haemelsee (Germany)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haliuc, Aritina; Brauer, Achim; Dulski, Peter; Engels, Stefan; Lane, Christine</p> <p>2015-04-01</p> <p>Annually laminated sediments are unique continental archives holding essential paleoenvironmental and paleoclimatic information providing the opportunity (i) to evaluate the climate variability at inter-annual to decadal scale and (ii) to construct independent and reliable chronologies. Lake Haemelsee in northern Germany (19.5 m a.s.l) is a key site for tracing high-resolution climatic and environmental evolution in W Europe because of its partly varved sediments. Here, we apply lithostratigraphical, geochemical and micro-facies analyses for the bottom sediments (~1700 to 1300 cm sediment depth) in order to investigate the driving mechanisms, timing and amplitude of Lateglacial abrupt climate changes to the onset of the Holocene warming. Detailed investigation includes micro-facies analyses on petrographic thin sections combined with high-resolution µ-XRF element scanning on both fresh sediment core halves (200 µm resolution) and impregnated sediment blocks (50µm resolution). Based on these analyses, the sediment composite profile (378 cm) has been divided in ten lithozones, each exhibiting different sedimentation modes in response to regional and local climatic and environmental changes. Micro-facies analyses revealed that sediments consist of organic matter, siderite, calcite, clay/silt and sand. The basal sediments consist of glacio-fluvial material. Fine laminations are best preserved in lithozone 5 (1522-1573 cm), where minima in element proxies for detrital sediments (Ti, K, Si) and maxima in Fe and Mn indicate the prevalence of anoxic meromictic conditions. Three different varve facies types were distinguished: i) the clastic-organic varves are specific for the intervals 1571-1573 cm and 1536-1541 cm; ii) calcite/siderite-organic varves appear between 1568-1571 and 1541-1545 cm; iii) the siderite-organic varves are characteristic for the middle of the lithozone 5 spanning from 1545-1568 cm. These changes in varve facies reflect the complex answer of sedimentary conditions to climatic changes during Allerød and Allerød/Younger Dryas transition. An increased detrital sediment flux characterizes lithozone 6 and, most probably reflects the Younger Dryas cold interval. This interpretation is supported by the late Allerød Laacher See Tephra, an important chronostratigraphic marker horizon to link the floating 625 varve year chronology for the Allerød interstadial to an absolute time scale. Also, the preliminary pollen data provided the biostratigraphical information for establishing the lateglacial boundaries. Poorly preserved organic laminas are characteristic for lithozone 7 (1445-1474 cm). Our preliminary results demonstrate that the lake system responded sensitively to rapid and short-term climatic changes and these responses are well-expressed in sedimentological and geochemical variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29536264','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29536264"><span>Evaluating the climate capabilities of the coastal areas of southeastern Iran for tourism: a case study on port of Chabahar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sabzevari, Azadeh Arbabi; Miri, Morteza; Raziei, Tayeb; Oroji, Hassan; Rahimi, Mojtaba</p> <p>2018-03-14</p> <p>The present study aims to evaluate the influence of climate conditions on tourism in the port of Chabahar, southeastern Iran, using the climate comfort indices (CIT, PMV, and TCI) and the field data relative to the tourist satisfaction. According to the computed TCI, the autumn-winter season (October-April) is climatically favorable for tourism in Chabahar, but it is ideal during January to March. Based on the computed PMV index, the studied region is in the range of climate comfort in most parts of the year. However, when the PMV thermal comfort limits (- 0.5 < PMV < 0.5) and the PPD limits (0 < PPD < 10) are considered, only the March and November are included in the thermal comfort range. The CIT index also indicates that all months of the year are acceptable for tourism that does not coincide with the reality of the region. However, by blending the PMV and the tourist's degree of satisfaction, a slight modification was made to the CIT index to better represent the reality of the region regarding the climate comfort. The modified CIT gave a different result, reflecting the importance of tourists' perceptions in defining the climate comfort rather than merely relying on the climate variables. The modified CIT also suggests November-March as a period with favorable to ideal climate condition for tourism in Chabahar which is a more realistic assessment of climate condition of the region as perceived by the tourists interviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ESD.....6..311F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ESD.....6..311F"><span>Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forsythe, N.; Blenkinsop, S.; Fowler, H. J.</p> <p>2015-05-01</p> <p>A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18355257','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18355257"><span>An overview of patient safety climate in the VA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hartmann, Christine W; Rosen, Amy K; Meterko, Mark; Shokeen, Priti; Zhao, Shibei; Singer, Sara; Falwell, Alyson; Gaba, David M</p> <p>2008-08-01</p> <p>To assess variation in safety climate across VA hospitals nationally. Data were collected from employees at 30 VA hospitals over a 6-month period using the Patient Safety Climate in Healthcare Organizations survey. We sampled 100 percent of senior managers and physicians and a random 10 percent of other employees. At 10 randomly selected hospitals, we sampled an additional 100 percent of employees working in units with intrinsically higher hazards (high-hazard units [HHUs]). Data were collected using an anonymous survey design. We received 4,547 responses (49 percent response rate). The percent problematic response--lower percent reflecting higher levels of patient safety climate--ranged from 12.0-23.7 percent across hospitals (mean=17.5 percent). Differences in safety climate emerged by management level, clinician status, and workgroup. Supervisors and front-line staff reported lower levels of safety climate than senior managers; clinician responses reflected lower levels of safety climate than those of nonclinicians; and responses of employees in HHUs reflected lower levels of safety climate than those of workers in other areas. This is the first systematic study of patient safety climate in VA hospitals. Findings indicate an overall positive safety climate across the VA, but there is room for improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC33C1079S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC33C1079S"><span>Atmospheric Teleconnection and Climate Variability: Affecting Rice Productivity of Bihar, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saini, A.</p> <p>2017-12-01</p> <p>Climate variability brought various negative results to the environment around us and area under rice crop in Bihar has also faced a lot of negative impacts due to variability in temperature and rainfall. Location of Bihar in Northern Plain of India automatically makes it prime location for agriculture and therefore variability in climatic variables brings highly sensitive results to the agricultural production (especially rice). In this study, rainfall and temperature variables are taken into consideration to investigate the impact on rice cultivated area. Change in climate variable with the passage of time is prevailing since the start of geological time scale, how the variability in climate variables has affected the major crops. Climate index of Pacific Ocean and Indian Ocean influences the seasonal weather in Bihar and therefore role of ENSO and IOD is an interesting point of inquiry. Does there exists direct relation between climate variability and area under agricultural crops? How many important variables directly signals towards the change in area under agriculture production? These entire questions are answered with respect to change in area under rice cultivation of Bihar State of India. Temperature, rainfall and ENSO are a good indicator with respect to rice cultivation in Indian subcontinent. Impact on the area under rice has been signaled through ONI, Niño3 and DMI. Increasing range of temperature in the rice productivity declining years is observed since 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1115/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1115/"><span>Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.</p> <p>2009-01-01</p> <p>This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412519D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412519D"><span>Impact of Resolution on the Representation of Precipitation Variability Associated With the ITCZ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Benedetti, Marc; Moore, G. W. K.</p> <p>2017-12-01</p> <p>The Intertropical Convergence Zone (ITCZ) is responsible for most of the weather and climate in equatorial regions along with many tropical-midlatitude interactions. It is therefore important to understand how models represent its structure and variability. Most ITCZ-associated precipitation is convective, making it unclear how horizontal resolution impacts its representation. To assess this, we introduce a novel technique that involves calculation of the precipitation field's decorrelation length scale (DCLS) using model data sets that share a common lineage with horizontal resolutions from 16 to 160 km. All resolutions captured the ITCZ's mean structure; however, imprints of topography, such as Hawaii and sea surface temperature, including the variability associated with upwelling cold water off the coast of South America, are more clearly represented at higher resolutions. The DCLS analysis indicates that there are changes in the spatial variability of the ITCZ's precipitation that are not reflected in its mean structure, thus confirming its utility as a diagnostic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157133','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157133"><span>Climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cronin, Thomas M.</p> <p>2016-01-01</p> <p>Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13A2047K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13A2047K"><span>Biomarker-based reconstruction of late Holocene sea-ice variability: East versus West Greenland continental shelf.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolling, H. M.; Stein, R. H.; Fahl, K.</p> <p>2016-12-01</p> <p>Sea is a critical component of the climate system and its role is not yet fully understood e.g. the recent rapid decrease in sea ice is not clearly reflected in climate models. This illustrates the need for high-resolution proxy-based sea-ice reconstructions going beyond the time scale of direct measurements in order to understand the processes controlling present and past natural variability of sea ice on short time scales. Here we present the first comparison of two high-resolution biomarker records from the East and West Greenland Shelf for the late Holocene. Both areas are highly sensitive to sea-ice changes as they are influenced by the East Greenland Current, the main exporter of Arctic freshwater and sea ice. On the East Greenland Shelf, we do not find any clear evidence for a long-term increase of sea ice during the late Holocene Neoglacial. This sea-ice record seems to be more sensitive to short-term climate events, such as the Roman Warm Period, the Dark Ages, the Medieval Warm Period and the Little Ice Age. In contrary, the West Greenland Shelf record shows a strong and gradual increase in sea ice concentration and a reduction in marine productivity markers starting near 1.6 ka. In general, the increase in sea ice seems to follow the decreasing solar insolation trend. Short-term events are not as clearly pronounced as on the East Greenland Shelf. A comparison to recently published foraminiferal records from the same cores (Perner et al., 2011, 2015) illuminates the differences of biomarker and micropaleontoligical proxies. It seems that the general trend is reflected in both proxies but the signal of small-scale events is preserved rather differently, pointing towards different environmental requirements of the species behind both proxies. References: Perner, K., et al., 2011. Quat. Sci. Revs. 30, 2815-2826 Perner, K., et al., 2015. Quat. Sci. Revs. 129, 296-307</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.463..310W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.463..310W"><span>Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/86Sr values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wortham, Barbara E.; Wong, Corinne I.; Silva, Lucas C. R.; McGee, David; Montañez, Isabel P.; Troy Rasbury, E.; Cooper, Kari M.; Sharp, Warren D.; Glessner, Justin J. G.; Santos, Roberto V.</p> <p>2017-04-01</p> <p>Delineating the controls on hydroclimate throughout Brazil is essential to assessing potential impact of global climate change on water resources and biogeography. An increasing number of monsoon reconstructions from δ18O records provide insight into variations in regional monsoon intensity over the last millennium. The strength, however, of δ18O as a proxy of regional climate limits its ability to reflect local conditions, highlighting the need for comparable reconstructions of local moisture conditions. Here, speleothem 87Sr/86Sr values are developed as a paleo-moisture proxy in central Brazil to complement existing δ18O-based reconstructions of regional monsoon intensity. Speleothem 87Sr/86Sr values are resolved using laser ablation and conventional solution mass spectrometry at high resolution relative to existing (non-δ18O-based) paleo-moisture reconstructions to allow comparisons of centennial variability in paleo-monsoon intensity and paleo-moisture conditions. Variations in speleothem 87Sr/86Sr values from Tamboril Cave are interpreted to reflect varying extents of water interaction with the carbonate host rock, with more interaction resulting in greater evolution of water isotope values from those initially acquired from the soil to those of the carbonate bedrock. Increasing speleothem 87Sr/86Sr values over the last millennium suggest progressively less interaction with the carbonate host rock likely resulting from higher infiltration rates, expected under wetter conditions. Increasingly wetter conditions over the last millennium are consistent with an overall trend of increasing monsoon intensity (decreasing δ18O values) preserved in many existing δ18O records from the region. Such a trend, however, is absent in δ18O records from our site (central Brazil) and Cristal Cave (southeast Brazil), suggesting the existence of divergent (relevant to δ18Oprecip) shifts in the climate patterns within and outside the core monsoon region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-07PD-0704.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-07PD-0704.html"><span>Orbital Sciences Pegasus XL AIM Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-03-16</p> <p>In a clean-room environment at North Vandenberg Air Force Base, lights are reflected on the solar array panels of the AIM spacecraft during illumination testing. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-07pd0704.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-07pd0704.html"><span>KSC-07pd0704</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-03-16</p> <p>VANDENBERG AIR FORCE BASE, CALIF. -- In a clean-room environment at North Vandenberg Air Force Base, lights are reflected on the solar array panels of the AIM spacecraft during illumination testing. The AIM spacecraft will fly three instruments designed to study those clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009271','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009271"><span>Analysis of the Relationship Between Climate and NDVI Variability at Global Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro</p> <p>2011-01-01</p> <p>interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910003186&hterms=climate+change+evidence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dclimate%2Bchange%2Bevidence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910003186&hterms=climate+change+evidence&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dclimate%2Bchange%2Bevidence"><span>A Review and Reflections on the Sun-Climate Connection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldberg, Richard A.</p> <p>1990-01-01</p> <p>The field of sun-climate is beset with an extraordinary number of numerical correlations attempting to relate various periodicities of solar activity with changes in the Earth's weather and climate. Signatures representing climatological variability have been sought for cycles as short as the solar 28-day rotational period up to Milankovich periods of thousands of years, although a majority of correlations have concentrated on the 11-year sunspot and 22-year Hale double sunspot cycles. For the shorter term, parameters including temperature, pressure, winds storm tracks, rainfall, and water levels in rivers and lakes, etc. have been correlated with solar variability. For longer periods, it has been necessary to seek more indirect evidence in ice cores, tree rings, and geologic deep sea cores. Other atmospheric parameters relating to atmospheric electricity and the global electric circuit have also been correlated in similar fashion. Unfortunately, few, if any, of this wide spectrum of numerical correlations have been associated with any viable physical explanation, making most studies in the field an exercise in numerical statistics. More recently, a few suggestions for plausible coupling processes have begun to appear. These, coupled with new and stronger correlations involving selective binning of climatological data sets have injected new life and hope to this field. An overview is given of the historical past and current perspectives, to evaluate possible avenues for defining physical linking processes in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28831405','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28831405"><span>Survey data reflecting popular opinions of the causes and mitigation of climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thompson, Jonathan E</p> <p>2017-10-01</p> <p>The data presented within this manuscript reports the results of a 20-question opinion survey concerning popular beliefs regarding the causes of and possible mitigation of climate change. The results and opinions from 746 survey respondents are presented. The data reflects certain misconceptions of climate change, and is useful for investigators to begin forming opinions of the public's knowledge regarding the potentially inflammatory topics of climate change, greenhouse gases, and geo-engineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7093T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7093T"><span>Resilience, rapid transitions and regime shifts: fingerprinting the responses of Lake Żabińskie (NE Poland) to climate variability and human disturbance since 1000 AD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tylmann, Wojciech; Hernández-Almeida, Iván; Grosjean, Martin; José Gómez Navarro, Juan; Larocque-Tobler, Isabelle; Bonk, Alicja; Enters, Dirk; Ustrzycka, Alicja; Piotrowska, Natalia; Przybylak, Rajmund; Wacnik, Agnieszka; Witak, Małgorzata</p> <p>2016-04-01</p> <p>Rapid ecosystem transitions and adverse effects on ecosystem services as responses to combined climate and human impacts are of major concern. Yet few quantitative observational data exist, particularly for ecosystems that have a long history of human intervention. Here, we combine quantitative summer and winter climate reconstructions, climate model simulations and proxies for three major environmental pressures (land use, nutrients and erosion) to explore the system dynamics, resilience, and the role of disturbance regimes in varved eutrophic Lake Żabińskie since AD 1000. Comparison between regional and global climate simulations and quantitative climate reconstructions indicate that proxy data capture noticeably natural forced climate variability, while internal variability appears as the dominant source of climate variability in the climate model simulations during most parts of the last millennium. Using different multivariate analyses and change point detection techniques, we identify ecosystem changes through time and shifts between rather stable states and highly variable ones, as expressed by the proxies for land-use, erosion and productivity in the lake. Prior to AD 1600, the lake ecosystem was characterized by a high stability and resilience against considerable observed natural climate variability. In contrast, lake-ecosystem conditions started to fluctuate at high frequency across a broad range of states after AD 1600. The period AD 1748-1868 represents the phase with the strongest human disturbance of the ecosystem. Analyses of the frequency of change points in the multi-proxy dataset suggests that the last 400 years were highly variable and flickering with increasing vulnerability of the ecosystem to the combined effects of climate variability and anthropogenic disturbances. This led to significant rapid ecosystem transformations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24652258','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24652258"><span>[Modelling the effect of local climatic variability on dengue transmission in Medellin (Colombia) by means of time series analysis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rúa-Uribe, Guillermo L; Suárez-Acosta, Carolina; Chauca, José; Ventosilla, Palmira; Almanza, Rita</p> <p>2013-09-01</p> <p>Dengue fever is a major impact on public health vector-borne disease, and its transmission is influenced by entomological, sociocultural and economic factors. Additionally, climate variability plays an important role in the transmission dynamics. A large scientific consensus has indicated that the strong association between climatic variables and disease could be used to develop models to explain the incidence of the disease. To develop a model that provides a better understanding of dengue transmission dynamics in Medellin and predicts increases in the incidence of the disease. The incidence of dengue fever was used as dependent variable, and weekly climatic factors (maximum, mean and minimum temperature, relative humidity and precipitation) as independent variables. Expert Modeler was used to develop a model to better explain the behavior of the disease. Climatic variables with significant association to the dependent variable were selected through ARIMA models. The model explains 34% of observed variability. Precipitation was the climatic variable showing statistically significant association with the incidence of dengue fever, but with a 20 weeks delay. In Medellin, the transmission of dengue fever was influenced by climate variability, especially precipitation. The strong association dengue fever/precipitation allowed the construction of a model to help understand dengue transmission dynamics. This information will be useful to develop appropriate and timely strategies for dengue control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRG..118.1438J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRG..118.1438J"><span>Oxygen and carbon stable isotopes in coast redwood tree rings respond to spring and summer climate signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnstone, James A.; Roden, John S.; Dawson, Todd E.</p> <p>2013-12-01</p> <p>variability in the oxygen and carbon isotope composition of tree ring cellulose was investigated in coast redwood (Sequoia sempervirens) from three sites in coastal Northern California. Middle and late wood samples from annual tree rings were compared to regional climate indices and gridded ocean-atmosphere fields for the years 1952-2003. The strongest climate-isotope relationship (r = 0.72) was found with summer (June-September) daily maximum temperature and middle wood δ13, which also responds positively to coastal sea surface temperature and negatively to summer low cloud frequency. Late wood δ18O reflects a balance between 18O-enriched summer fog drip and depleted summer rainwater, while a combined analysis of late wood δ18O and δ13C revealed sensitivity to the sign of summer precipitation anomalies. Empirical orthogonal function analysis of regional summer climate indices and coast redwood stable isotopes identified multivariate isotopic responses to summer fog and drought that correspond to atmospheric circulation anomalies over the NE Pacific and NW U.S. The presence of regional climate signals in coast redwood stable isotope composition, consistent with known mechanistic processes and prior studies, offers the potential for high-resolution paleoclimate reconstructions of the California current system from this long-lived tree species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29635689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29635689"><span>Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M</p> <p>2018-06-01</p> <p>Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CliPa..14..193B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CliPa..14..193B"><span>The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin</p> <p>2018-02-01</p> <p>High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007EOSTr..88..111G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007EOSTr..88..111G"><span>Reconstruction of Past Mediterranean Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos</p> <p>2007-02-01</p> <p>First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H32G..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H32G..03H"><span>Climate variability and demand growth as drivers of water scarcity in the Turkwel river basin: a bottom-up risk assessment of a data-sparse basin in Kenya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirpa, F. A.; Dyer, E.; Hope, R.; Dadson, S. J.</p> <p>2017-12-01</p> <p>Sustainable water management and allocation are essential for maintaining human well-being, sustaining healthy ecosystems, and supporting steady economic growth. The Turkwel river basin, located in north-western Kenya, experiences a high level of water scarcity due to its arid climate, high rainfall variability, and rapidly growing water demand. However, due to sparse hydro-climatic data and limited literature, the water resources system of the basin has been poorly understood. Here we apply a bottom-up climate risk assessment method to estimate the resilience of the basin's water resources system to growing demand and climate stressors. First, using a water resource system model and historical climate data, we construct a climate risk map that depicts the way in which the system responds to climate change and variability. Then we develop a set of water demand scenarios to identify the conditions that potentially lead to the risk of unmet water demand and groundwater depletion. Finally, we investigate the impact of climate change and variability by stress testing these development scenarios against historically strong El Niño/Southern Oscillation (ENSO) years and future climate projections from multiple Global Circulation Models (GCMs). The results reveal that climate variability and increased water demand are the main drivers of water scarcity in the basin. Our findings show that increases in water demand due to expanded irrigation and population growth exert the strongest influence on the ability of the system to meet water resource supply requirements, and in all cases considered increase the impacts of droughts caused by future climate variability. Our analysis illustrates the importance of combining analysis of future climate risks with other development decisions that affect water resources planning. Policy and investment decisions which maximise water use efficiency in the present day are likely to impart resilience to climate change and variability under a wide range of future scenarios and therefore constitute low regret measures for climate adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13C1086T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13C1086T"><span>Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trachsel, M.; Rehfeld, K.; Telford, R.; Laepple, T.</p> <p>2017-12-01</p> <p>Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because temporal changes of a dominant climate variable are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable's trends. Our results, although based on a model vegetation that is inevitably simpler than reality, indicate that reconstructions of multiple climate variables based on modern spatial bio-indicator datasets should be treated with caution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP41C1320R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP41C1320R"><span>Bering Sea Nd isotope records of North Pacific Intermediate Water circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabbat, C.; Knudson, K. P.; Goldstein, S. L.</p> <p>2017-12-01</p> <p>North Pacific Intermediate Water (NPIW) is the primary water mass associated with Pacific meridional overturning circulation. While the relationship between Atlantic meridional overturning circulation and climate has been extensively studied, a lack of suitable sediment cores has limited past investigations of North Pacific climate and NPIW variability. Integrated Ocean Drilling Program Site U1342 (818 m water depth) on Bower's Ridge in the Bering Sea is located at a sensitive depth for detecting changes in NPIW, and it is the only available sub-arctic North Pacific site that offers long, continuous core recovery, relatively high sedimentation rates, excellent foraminifera preservation, and a well-constrained age model over multiple glacial-interglacial cycles. Previous work at Site U1342 from Knudson and Ravelo (2015), using non-quantitative circulation proxies, provides evidence for enhanced NPIW formation during extreme glacials associated with the closure of the Bering Strait and suggest that NPIW was formed locally within the Bering Sea. Our work builds on the potential importance of these results and applies more robust and potentially quantitative circulation proxies to constrain NPIW variability. Here, we present new records of NPIW circulation from Site U1342 based on Nd isotope analyses on fish debris and Fe-Mn encrusted foraminifera, which serve as semi-quantitative "water mass tracers." Weak Bering Sea NPIW formation and ventilation are reflected by relatively lower eNd values indicative of open subarctic North Pacific waters, which are presently predominant, whereas enhanced Bering Sea NPIW formation and ventilation are be reflected by relatively higher eNd values due to the input of Nd from regional volcanic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A33D2387S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A33D2387S"><span>Earth Reflectivity from Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, W.; Knyazikhin, Y.; Wen, G.; Marshak, A.; Yan, G.; Mu, X.; Park, T.; Chen, C.; Xu, B.; Myneni, R. B.</p> <p>2017-12-01</p> <p>Earth reflectivity, which is also specified as Earth albedo or Earth reflectance, is defined as the fraction of incident solar radiation reflected back to space at the top of the atmosphere. It is a key climate parameter that describes climate forcing and associated response of the climate system. Satellite is one of the most efficient ways to measure earth reflectivity. Conventional polar orbit and geostationary satellites observe the Earth at a specific local solar time or monitor only a specific area of the Earth. For the first time, the NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) collects simultaneously radiance data of the entire sunlit earth at 8 km resolution at nadir every 65 to 110 min. It provides reflectivity images in backscattering direction with the scattering angle between 168º and 176º at 10 narrow spectral bands in ultraviolet, visible, and near-Infrared (NIR) wavelengths. We estimate the Earth reflectivity using DSCOVR EPIC observations and analyze errors in Earth reflectivity due to sampling strategy of polar orbit Terra/Aqua MODIS and geostationary Goddard Earth Observing System-R series missions. We also provide estimates of contributions from ocean, clouds, land and vegetation to the Earth reflectivity. Graphic abstract shows enhanced RGB EPIC images of the Earth taken on July-24-2016 at 7:04GMT and 15:48 GMT. Parallel lines depict a 2330 km wide Aqua MODIS swath. The plot shows diurnal courses of mean Earth reflectance over the Aqua swath (triangles) and the entire image (circles). In this example the relative difference between the mean reflectances is +34% at 7:04GMT and -16% at 15:48 GMT. Corresponding daily averages are 0.256 (0.044) and 0.231 (0.025). The relative precision estimated as root mean square relative error is 17.9% in this example.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMPP31D..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMPP31D..03G"><span>The ICDP Dead Sea deep drill cores: records of climate change and tectonics in the Levant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.</p> <p>2012-12-01</p> <p>The Dead Sea drainage basin sits at the boundary of the Mediterranean and the Saharan climate zones, and the basin is formed by the Dead Sea transform fault. The ICDP-funded Dead Sea Deep Drilling Project recovered the longest and most complete paleo-environmental and paleo-seismic record in the Middle East, drilling holes of ~450 and ~350 meters in deep (~300 m below the lake level) and shallow sites (~3 m), respectively, and. The sediments record the evolving environmental conditions (e.g. droughts, rains, floods, dust-storms), as well as tectonics (earthquake layers). The core can be dated using 14C on organic materials, U-Th on inorganic aragonite, stable isotopes, and layer counting. They were opened, described, and XRF-scanned during June to November 2011, the first sampling party took place in July 2012, and study is now underway. Some important conclusions can already be drawn. The stratigraphy reflects the climate conditions. During wet climate intervals the lithology is typically varve-like laminated aragonite and detritus (aad), reflecting summer and winter seasons, respectively, and sequences of mud. Gypsum layers reflect more arid climate, and salt (halite) indicates extreme aridity. The Dead Sea expands during glacials, and the portion of the core that corresponds to the last glacial Lisan Formation above the shoreline is easily recognized in the core based on the common lithological sequence, and this allows us to infer a broad scale age model. Interglacials show all the lithologic facies (aad, mud, gypsum, salt), reflecting extreme climate variability, while glacials contain the aad, mud, and gypsum but lack salt layers. Thus we estimate that the deep site hole extends into MIS 7 (to ~200,000 years). Thin (up to several cm thick) seismic layers occur throughout the core, but thick (up to several meters) landslide deposits only occur during glacial intervals. The most dramatic discovery is evidence of an extreme dry interval during MIS 5 at the deep site. There is a ~40 cm thick interval of partly rounded pebbles in the core at ~235 m below the lake floor. It is the only clean pebbly unit in the core, and resembles a beach deposit. Below the layer there is ~45 meters of mainly salt. These observations indicate a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping at rates >1m/year, as all the countries in the area are using all the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during the last interglacial without human intervention. Dating is underway to constrain the timing of the extreme drydown.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C14A..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C14A..07K"><span>Glacier Erosion and Response to Climate in Chilean Patagonia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koppes, M.; Hallet, B.; Stewart, R.</p> <p>2006-12-01</p> <p>A vibrant dimension in current research on landscape evolution is the potential impact of climate change on erosion rates due to differences in efficiency of glacial and non-glacial erosion processes. The climate-sensitive rate and spatial distribution of erosion can be as important as the tectonic environment in determining the development of mountain ranges. To evaluate properly how glacial erosion influences orogenic processes and reflects climate variability, it is necessary to understand how ice dynamics control erosion rates. The Patagonian Andes are a unique laboratory for documenting glacial erosion in a range of precipitation and thermal regimes, as zonal atmospheric circulation in the region creates strong latitudinal gradients. We will present relevant findings from two tidewater glaciers in Chilean Patagonia: San Rafael glacier, which drains the northern portion of the North Patagonian Icefield (46.6S, 74W), and Marinelli glacier, the largest glacier in the Cordillera Darwin of Tierra del Fuego (54.6S, 69W). Both glaciers have been in steady retreat during the latter half of the 20th century, and both calve into a fjord or lagoon, which provides an efficient trap for the sediment eroded by the glacier and deposited at the calving front. The reconstructed flux of ice into the glaciers is compared to the retreat of the ice fronts and to the sediment flux to examine the influence of ice dynamics on the rate of glacier erosion. NCEP-NCAR Reanalysis climate data, adjusted to local conditions by correlation with automatic weather stations installed at the glacier termini and coupled to a model of orographic enhancement of precipitation over the glacier basin, were used to reconstruct the daily precipitation input into and ablation output from the glaciers during the last 50 years. The sediment flux out of the glaciers during this period was calculated from acoustic reflection profiles of the sediments accumulated in the proglacial fjords, and used to infer erosion rates. Preliminary results indicate 1) that high rates of retreat of the ice front occur during years in which the total input of snow into the glacier is balanced by the total ablation, and hence the residual flux of ice at the terminus is insufficient to compensate for the calving, and 2) that the highest basin- wide erosion rates reflect years in which total ice accumulation is lower and retreat rates are high. Interestingly, basin-wide erosion rates from these glaciers are up to an order of magnitude higher than long- term exhumation rates derived from detrital apatite thermochronometry in the basins, indicating that current rates of erosion far exceed long-term rates, and are reflective of periods of warming climate and enhanced glacial retreat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMPP32B..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMPP32B..04M"><span>The Interfaces Between Historical, Paleo-, and Modern Climatology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mock, C. J.</p> <p>2011-12-01</p> <p>Historical climatology, commonly defined as the study of reconstructing past climates from documentary and early instrumental data, has routinely utilized data within the last several hundred years down to sub-daily temporal resolution prior to the advent of "modern" instrumental records beginning in the late 19th and 20th centuries. Historical climate reconstruction methods generally share similar aspects conducted in both paleoclimate reconstruction and modern climatology, given the need to quantify, calibrate, and conduct careful data quality assessments. Although some studies have integrated historical climatic studies with other high resolution paleoclimatic proxies, very few efforts have integrated historical data with modern "systematic" climate networks to further examine spatial and temporal patterns of climate variability. This presentation describes historical climate examples of how such data can be integrated within modern climate timescales, including examples of documentary data on tropical cyclones from the Western Pacific and Atlantic Basins, colonial records from Belize and Constantinople, ship logbooks in the Western Arctic, plantation diaries from the American Southeast, and newspaper data from the Fiji Islands and Bermuda. Some results include a unique wet period in Belize and active tropical cyclone periods in the Western and South Pacific in the early 20th century - both are not reflected in conventional modern climate datasets. Documentary data examples demonstrate high feasibility in further understanding extreme weather events at daily timeframes such as false spring/killing frost episodes and hydrological extremes in southeastern North America. Recent unique efforts also involve community participation, secondary education, and web- based volunteer efforts to digitize and archive historical weather and climate information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29314017','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29314017"><span>Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Housset, Johann M; Nadeau, Simon; Isabel, Nathalie; Depardieu, Claire; Duchesne, Isabelle; Lenz, Patrick; Girardin, Martin P</p> <p>2018-04-01</p> <p>Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27920390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27920390"><span>Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lancaster, Lesley T; Morrison, Gavin; Fitt, Robert N</p> <p>2017-01-19</p> <p>The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5182441','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5182441"><span>Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Morrison, Gavin; Fitt, Robert N.</p> <p>2017-01-01</p> <p>The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920390</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.4245M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.4245M"><span>Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Makowski, Jessica K.; Chambers, Don P.; Bonin, Jennifer A.</p> <p>2015-06-01</p> <p>Previous studies have suggested that ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) can be used to measure the depth-averaged, or barotropic, transport variability of the Antarctic Circumpolar Current (ACC). Here, we use GRACE OBP observations to calculate transport variability in a region of the southern Indian Ocean encompassing the major fronts of the ACC. We use a statistical analysis of a simulated GRACE-like data set to determine the uncertainty of the estimated transport for the 2003.0-2013.0 time period. We find that when the transport is averaged over 60° of longitude, the uncertainty (one standard error) is close to 1 Sv (1 Sv = 106 m3 s-1) for low-pass filtered transport, which is significantly smaller than the signal and lower than previous studies have found. The interannual variability is correlated with the Southern Annual mode (SAM) (0.61), but more highly correlated with circumpolar zonally averaged winds between 45°S and 65°S (0.88). GRACE transport reflects significant changes in transport between 2007 and 2009 that is observed in the zonal wind variations but not in the SAM index. We also find a statistically significant trend in transport (-1.0 ± 0.4 Sv yr-1, 90% confidence) that is correlated with a local deceleration in zonal winds related to an asymmetry in the SAM on multidecadal periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25261455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25261455"><span>Re-evaluating occupational heat stress in a changing climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spector, June T; Sheffield, Perry E</p> <p>2014-10-01</p> <p>The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B11D0502H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B11D0502H"><span>Analyzing the responses of species assemblages to climate change across the Great Basin, USA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.</p> <p>2016-12-01</p> <p>The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP34A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP34A..03M"><span>The Asian monsoon's role in atmospheric heat transport responses to orbital and millennial-scale climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGee, D.; Green, B.; Donohoe, A.; Marshall, J.</p> <p>2015-12-01</p> <p>Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat transport help to provide quantitative insights into Asian monsoon variability in past climates. References cited: Donohoe, A. et al., (2013) Journal of Climate 26, 3597-3618. Heaviside, C. and Czaja, A. (2012) Quart. J. Royal Met. Soc. 139, 2181-2189. Marshall, J. et al., (2014) Climate Dynamics 42, 1967-1979.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1550767','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1550767"><span>Climate variability has a stabilizing effect on the coexistence of prairie grasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Adler, Peter B.; HilleRisLambers, Janneke; Kyriakidis, Phaedon C.; Guan, Qingfeng; Levine, Jonathan M.</p> <p>2006-01-01</p> <p>How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity. PMID:16908862</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP31A1269S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP31A1269S"><span>Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World Drought Atlases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smerdon, J. E.; Baek, S. H.; Coats, S.; Williams, P.; Cook, B.; Cook, E. R.; Seager, R.</p> <p>2017-12-01</p> <p>The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA), and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based PDSI products. Predominantly positive (negative) correlations are determined between seasonal precipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson's correlation coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while remaining similar for temperature. Notwithstanding these differences, the drought atlases robustly express teleconnection patterns associated with the El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). These expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of climate variability are dominant in boreal winter, with the exception of the Atlantic Multidecadal Oscillation. ENSO and NAO teleconnection patterns in the drought atlases are particularly consistent with their well-known dominant expressions in boreal winter and over the OWDA domain, respectively. Collectively, our findings confirm that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate variability on seasonal to multidecadal timescales over the 20th century and are likely to provide similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1690J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1690J"><span>Antarctic Climate Variability: Covariance of Ozone and Sea Ice in Atmosphere - Ocean Coupled Model Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jrrar, Amna; Abraham, N. Luke; Pyle, John A.; Holland, David</p> <p>2014-05-01</p> <p>Changes in sea ice significantly modulate climate change because of its high reflective and insulating nature. While Arctic Sea Ice Extent (SIE) shows a negative trend. Antarctic SIE shows a weak but positive trend, estimated at 0.127 x 106 km2 per decade. The trend results from large regional cancellations, more ice in the Weddell and the Ross seas, and less ice in the Amundsen - Bellingshausen seas. A number of studies had demonstrated that stratospheric ozone depletion has had a major impact on the atmospheric circulation, causing a positive trend in the Southern Annular Mode (SAM), which has been linked to the observed positive trend in autumn sea ice in the Ross Sea. However, other modelling studies show that models forced with prescribed ozone hole simulate decreased sea ice in all regions comparative to a control run. A recent study has also shown that stratospheric ozone recovery will mitigate Antarctic sea ice loss. To verify this assumed relationship, it is important first to investigate the covariance between ozone's natural (dynamical) variability and Antarctic sea ice distribution in pre-industrial climate, to estimate the trend due to natural variability. We investigate the relationship between anomalous Antarctic ozone years and the subsequent changes in Antarctic sea ice distribution in a multidecadal control simulation using the AO-UMUKCA model. The model has a horizontal resolution of 3.75 X 2.5 degrees in longitude and latitude; and 60 hybrid height levels in the vertical, from the surface up to a height of 84 km. The ocean component is the NEMO ocean model on the ORCA2 tripolar grid, and the sea ice model is CICE. We evaluate the model's performance in terms of sea ice distribution, and we calculate sea ice extent trends for composites of anomalously low versus anomalously high SH polar ozone column. We apply EOF analysis to the seasonal anomalies of sea ice concentration, MSLP, and Z 500, and identify the leading climate modes controlling the variability of Antarctic sea ice in each case, and study their relationship with SH polar ozone column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411215B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411215B"><span>A full lipid biomarker based record from Lake Challa, Tanzania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blaga, C. I.; de Leeuw, J. W.; Verschuren, D.; Sinninghe Damsté1, J. S.</p> <p>2012-04-01</p> <p>The climate of the regions surrounding the Indian Ocean - East Africa, Arabian and Indian peninsulas - is strongly dominated by the dynamics of the seasonal monsoon. To understand the long and short term driving forces behind the natural climatic variability in this region it is highly important to reconstruct climatic changes in the past and, thereby, predict future changes taking into account also anthropogenic activities. Most low latitude locations lack continuous, highly resolved continental records with good age control. From the few existing records acquired from tropical glacier ice, cave stalagmites and fossil diatoms a thorough understanding of the climatic variations reflected (rainfall and drought or temperature and its effect on precipitation) is scanty. Chemically stratified crater lakes accumulate high-quality climate-proxy records as shown in very recent studies done on the continuous and finely laminated sediment record of Lake Challa situated on the lower East slope of Mt. Kilimanjaro (Verschuren et al. 2009; Wolff et al. 2011). The unique location of this lake in equatorial East Africa implies that the climate variability is influenced by the Indian Ocean and not by the Atlantic due to the Congo Air Boundary (Thierney et al. 2011). The objective of this study is to fully explore the biomarker content of the Lake Challa sedimentary record already characterized by an excellent time resolution and chronology. Various normal chain lipids (n-alkanes, n-fatty acids, n-alcohols), sterols, long-chain diols, triterpenoids and glycolipids in sedimentary organic matter, were determined in their solvent-extractable (free) and saponification-released forms (bound). The changing composition of organic matter content from the investigated lake is used as a framework to trace palaeo-humidity, terrestrial input, algal input, temperature in sediment traps and underlying sediments of Lake Challa to further our palaeo-environmental knowledge based on GDGT's and alkanes (Sinninghe Damsté et al. 2009, 2011).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ClDy...31..823W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ClDy...31..823W"><span>The modulated annual cycle: an alternative reference frame for climate anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Zhaohua; Schneider, Edwin K.; Kirtman, Ben P.; Sarachik, E. S.; Huang, Norden E.; Tucker, Compton J.</p> <p>2008-12-01</p> <p>In climate science, an anomaly is the deviation of a quantity from its annual cycle. There are many ways to define annual cycle. Traditionally, this annual cycle is taken to be an exact repeat of itself year after year. This stationary annual cycle may not reflect well the intrinsic nonlinearity of the climate system, especially under external forcing. In this paper, we re-examine the reference frame for anomalies by re-examining the annual cycle. We propose an alternative reference frame for climate anomalies, the modulated annual cycle (MAC) that allows the annual cycle to change from year to year, for defining anomalies. In order for this alternative reference frame to be useful, we need to be able to define the instantaneous annual cycle: we therefore also introduce a new method to extract the MAC from climatic data. In the presence of a MAC, modulated in both amplitude and frequency, we can then define an alternative version of an anomaly, this time with respect to the instantaneous MAC rather than a permanent and unchanging AC. Based on this alternative definition of anomalies, we re-examine some familiar physical processes: in particular SST re-emergence and ENSO phase locking to the annual cycle. We find that the re-emergence mechanism may be alternatively interpreted as an explanation of the change of the annual cycle instead of an explanation of the interannual to interdecadal persistence of SST anomalies. We also find that the ENSO phase locking can largely be attributed to the residual annual cycle (the difference of the MAC and the corresponding traditional annual cycle) contained in the traditional anomaly, and, therefore, can be alternatively interpreted as a part of the annual cycle phase locked to the annual cycle itself. In addition to the examples of reinterpretation of physics of well known climate phenomena, we also present an example of the implications of using a MAC against which to define anomalies. We show that using MAC as a reference framework for anomaly can bypass the difficulty brought by concepts such as “decadal variability of summer (or winter) climate” for understanding the low-frequency variability of the climate system. The concept of an amplitude and frequency modulated annual cycle, a method to extract it, and its implications for the interpretation of physical processes, all may contribute potentially to a more consistent and fruitful way of examining past and future climate variability and change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24572','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24572"><span>Spatial variability in forest growth—climate relationships in the Olympic Mountains, Washington.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jill M. Nakawatase; David L. Peterson</p> <p>2006-01-01</p> <p>For many Pacific Northwest forests, little is known about the spatial and temporal variability in tree growth - climate relationships, yet it is this information that is needed to predict how forests will respond to future climatic change. We studied the effects of climatic variability on forest growth at 74 plots in the western and northeastern Olympic Mountains....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1275738-frontiers-decadal-climate-variability-proceedings-workshop','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1275738-frontiers-decadal-climate-variability-proceedings-workshop"><span>Frontiers in Decadal Climate Variability: Proceedings of a Workshop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Purcell, Amanda</p> <p></p> <p>A number of studies indicate an apparent slowdown in the overall rise in global average surface temperature between roughly 1998 and 2014. Most models did not predict such a slowdown--a fact that stimulated a lot of new research on variability of Earth's climate system. At a September 2015 workshop, leading scientists gathered to discuss current understanding of climate variability on decadal timescales (10 to 30 years) and whether and how prediction of it might be improved. Many researchers have focused their attention on the climate system itself, which is known to vary across seasons, decades, and other timescales. Several naturalmore » variables produce "ups and downs" in the climate system, which are superimposed on the long-term warming trend due to human influence. Understanding decadal climate variability is important not only for assessing global climate change but also for improving decision making related to infrastructure, water resources, agriculture, energy, and other realms. Like the well-studied El Nino and La Nina interannual variations, decadal climate variability is associated with specific regional patterns of temperature and precipitation, such as heat waves, cold spells, and droughts. Several participants shared research that assesses decadal predictive capability of current models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28319296','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28319296"><span>Joint effects of climate variability and socioecological factors on dengue transmission: epidemiological evidence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akter, Rokeya; Hu, Wenbiao; Naish, Suchithra; Banu, Shahera; Tong, Shilu</p> <p>2017-06-01</p> <p>To assess the epidemiological evidence on the joint effects of climate variability and socioecological factors on dengue transmission. Following PRISMA guidelines, a detailed literature search was conducted in PubMed, Web of Science and Scopus. Peer-reviewed, freely available and full-text articles, considering both climate and socioecological factors in relation to dengue, published in English from January 1993 to October 2015 were included in this review. Twenty studies have met the inclusion criteria and assessed the impact of both climatic and socioecological factors on dengue dynamics. Among those, four studies have further investigated the relative importance of climate variability and socioecological factors on dengue transmission. A few studies also developed predictive models including both climatic and socioecological factors. Due to insufficient data, methodological issues and contextual variability of the studies, it is hard to draw conclusion on the joint effects of climate variability and socioecological factors on dengue transmission. Future research should take into account socioecological factors in combination with climate variables for a better understanding of the complex nature of dengue transmission as well as for improving the predictive capability of dengue forecasting models, to develop effective and reliable early warning systems. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27801968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27801968"><span>Estuary-ocean connectivity: fast physics, slow biology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raimonet, Mélanie; Cloern, James E</p> <p>2017-06-01</p> <p>Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1-3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary-ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing patterns of upwelling timing and intensity as the planet continues to warm. © 2016 Published by John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3855202','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3855202"><span>Historical versus Contemporary Climate Forcing on the Annual Nesting Variability of Loggerhead Sea Turtles in the Northwest Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arendt, Michael D.; Schwenter, Jeffrey A.; Witherington, Blair E.; Meylan, Anne B.; Saba, Vincent S.</p> <p>2013-01-01</p> <p>A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998–2007 was not projected for 2029–2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998–2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response. PMID:24339901</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24339901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24339901"><span>Historical versus contemporary climate forcing on the annual nesting variability of loggerhead sea turtles in the Northwest Atlantic Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arendt, Michael D; Schwenter, Jeffrey A; Witherington, Blair E; Meylan, Anne B; Saba, Vincent S</p> <p>2013-01-01</p> <p>A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998-2007 was not projected for 2029-2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998-2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28055125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28055125"><span>Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bacigalupe, Leonardo D; Soto-Azat, Claudio; García-Vera, Cristobal; Barría-Oyarzo, Ismael; Rezende, Enrico L</p> <p>2017-09-01</p> <p>Chytridiomycosis, due to the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. Because conservation programs are implemented locally, it is essential to understand how the complex interactions among host species, climate and human activities contribute to Bd occurrence at regional scales. Using weighted phylogenetic regressions and model selection, we investigated geographic patterns of Bd occurrence along a latitudinal gradient of 1500 km within a biodiversity hot spot in Chile (1845 individuals sampled from 253 sites and representing 24 species), and its association with climatic, socio-demographic and economic variables. Analyses show that Bd prevalence decreases with latitude although it has increased by almost 10% between 2008 and 2013, possibly reflecting an ongoing spread of Bd following the introduction of Xenopus laevis. Occurrence of Bd was higher in regions with high gross domestic product (particularly near developed centers) and with a high variability in rainfall regimes, whereas models including other bioclimatic or geographic variables, including temperature, exhibited substantially lower fit and virtually no support based on Akaike weights. In addition, Bd prevalence exhibited a strong phylogenetic signal, with five species having high numbers of infected individuals and higher prevalence than the average of 13.3% across all species. Taken together, our results highlight that Bd in Chile might still be spreading south, facilitated by a subset of species that seem to play an important epidemiological role maintaining this pathogen in the communities, in combination with climatic and human factors affecting the availability and quality of amphibian breeding sites. This information may be employed to design conservation strategies and mitigate the impacts of Bd in the biodiversity hot spot of southern Chile, and similar studies may prove useful to disentangle the role of different factors contributing to the emergence and spread of this catastrophic disease. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP34A..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP34A..06K"><span>The Glacial-Interglacial Monsoon Recorded by Speleothems from Sulawesi, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Hellstrom, J. C.; Rifai, H.</p> <p>2015-12-01</p> <p>The Indo-Pacific Warm Pool is a primary source of heat and moisture to the global atmosphere and a key player in tropical and global climate variability. There is mounting evidence that atmospheric convection and oceanic processes in the tropics can modulate global climate on orbital and sub-orbital timescales. Glacial-interglacial cycles represent the largest natural climate changes over the last 800 kyr with each cycle terminated by rapid global warming and sea level rise. Our understanding of the role and response of tropical atmospheric convection during these periods of dramatic warming is limited. We present the first speleothem paleomonsoon record for southwest Sulawesi (5ºS, 119ºE), spanning two glacial-interglacial cycles, including glacial termination IV (~340 kyr BP) and both phases of termination III (~248 and ~220 kyr BP). This unique record is constructed from multiple stalagmites from two separate caves and is based on a multi-proxy approach (δ18O, δ13C, Mg/Ca, Sr/Ca) that provides insight into the mechanisms controlling Australian-Indonesian summer monsoon variability. Speleothem δ18O and trace element data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. Terminations IV, III, and I are each characterized by an abrupt 3‰ decrease in δ18O. Variability in δ18O leading-in to glacial terminations is also similar, and corresponds to October insolation. Prior to deglaciation, there is a distinct shift to higher δ18O that is synchronized with weak monsoon intervals in Chinese speleothem records. The remarkably consistent pattern among terminations implies that the response of tropical convection to changing background climates is well regulated. Furthermore, we find that speleothem δ13C leads δ18O by ~5 kyr during glacial terminations. The early decrease in speleothem δ13C may reflect the response of tropical vegetation to rising atmospheric CO2 and temperature, rather than regional changes in rainfall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019904','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019904"><span>Investigation of North American Vegetation Variability under Recent Climate: A Study Using the SSiB4/TRIFFID Biophysical/Dynamic Vegetation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, George J.</p> <p>2015-01-01</p> <p>Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980s. The effects of the severe drought during 1987-1992 and the last decade in the southwestern U.S. on vegetation are also evident from decreases in the simulated and satellite-derived LAIs. Both simulated and satellite-derived LAIs have the strongest correlations with air temperature at northern middle to high latitudes in spring reflecting the effect of these climatic variables on photosynthesis and phenological processes. Meanwhile, in southwestern dry lands, negative correlations appear due to the heat and moisture stress there during the summer. Furthermore, there are also positive correlations between soil wetness and LAI, which increases from spring to summer. The present study shows both the current improvements and remaining weaknesses in dynamical vegetation models. It also highlights large continental-scale variations that have occurred in NA vegetation over the past six decades and their potential relations to climate. With more observational data availability, more studies with differentmodels and focusing on different regions will be possible and are necessary to achieve comprehensive understanding of the vegetation dynamics and climate interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7824E..29Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7824E..29Z"><span>Satellite and in situ monitoring data used for modeling of forest vegetation reflectance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoran, M. A.; Savastru, R. S.; Savastru, D. M.; Miclos, S. I.; Tautan, M. N.; Baschir, L.</p> <p>2010-10-01</p> <p>As climatic variability and anthropogenic stressors are growing up continuously, must be defined the proper criteria for forest vegetation assessment. In order to characterize current and future state of forest vegetation satellite imagery is a very useful tool. Vegetation can be distinguished using remote sensing data from most other (mainly inorganic) materials by virtue of its notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance and, especially, its very strong reflectance in the near-IR. Vegetation reflectance has variations with sun zenith angle, view zenith angle, and terrain slope angle. To provide corrections of these effects, for visible and near-infrared light, was used a developed a simple physical model of vegetation reflectance, by assuming homogeneous and closed vegetation canopy with randomly oriented leaves. A simple physical model of forest vegetation reflectance was applied and validated for Cernica forested area, near Bucharest town through two ASTER satellite data , acquired within minutes from one another ,a nadir and off-nadir for band 3 lying in the near infra red, most radiance differences between the two scenes can be attributed to the BRDF effect. Other satellite data MODIS, Landsat TM and ETM as well as, IKONOS have been used for different NDVI and classification analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H13G1391S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H13G1391S"><span>Impacts of Considering Climate Variability on Investment Decisions in Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strzepek, K.; Block, P.; Rosegrant, M.; Diao, X.</p> <p>2005-12-01</p> <p>In Ethiopia, climate extremes, inducing droughts or floods, are not unusual. Monitoring the effects of these extremes, and climate variability in general, is critical for economic prediction and assessment of the country's future welfare. The focus of this study involves adding climate variability to a deterministic, mean climate-driven agro-economic model, in an attempt to understand its effects and degree of influence on general economic prediction indicators for Ethiopia. Four simulations are examined, including a baseline simulation and three investment strategies: simulations of irrigation investment, roads investment, and a combination investment of both irrigation and roads. The deterministic model is transformed into a stochastic model by dynamically adding year-to-year climate variability through climate-yield factors. Nine sets of actual, historic, variable climate data are individually assembled and implemented into the 12-year stochastic model simulation, producing an ensemble of economic prediction indicators. This ensemble allows for a probabilistic approach to planning and policy making, allowing decision makers to consider risk. The economic indicators from the deterministic and stochastic approaches, including rates of return to investments, are significantly different. The predictions of the deterministic model appreciably overestimate the future welfare of Ethiopia; the predictions of the stochastic model, utilizing actual climate data, tend to give a better semblance of what may be expected. Inclusion of climate variability is vital for proper analysis of the predictor values from this agro-economic model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H13B1398S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H13B1398S"><span>Post-Fire Recovery of Eco-Hydrologic Behavior Given Historic and Projected Climate Variability in California Mediterranean Type Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seaby, L. P.; Tague, C. L.; Hope, A. S.</p> <p>2006-12-01</p> <p>The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..198..610L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..198..610L"><span>Quantifying salinity-induced changes on estuarine benthic fauna: The potential implications of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Little, S.; Wood, P. J.; Elliott, M.</p> <p>2017-11-01</p> <p>Coastal and estuarine systems worldwide are under threat from global climate change, with potential consequences including an increase in salinities and incursion of saltwater into areas currently subject to tidal and non-tidal freshwater regimes. It is commonly assumed that climate-driven increases in estuarine salinities and saline incursion will be directly reflected in an upstream shift in species distributions and patterns of community composition based on salinity tolerance. This study examined the responses of benthos to medium-term salinity changes in two macrotidal river-estuary systems in SE England to test whether these responses may be representative of climate-induced salinity changes over the long-term. The study reinforced the effect of salinity, related to tidal incursion, as the primary environmental driver of benthic species distribution and community composition. Salinity, however, acted within a hierarchy of factors followed by substratum type, with biotic competition and predator-prey relationships superimposed on these. The assumption that increasing salinities will be directly reflected in a shift in species distributions and patterns of community composition upstream over the long-term was shown to be over simplistic and not representative of a complex and highly variable system. Relative Sea Level Rise (RSLR) projections were predicted to increase estuarine salinities and saline incursion in the study estuaries, which together with projected reductions in river flow will have important consequences for estuarine structure and function, particularly in tidal limnetic zones, despite estuarine communities being pre-adapted to cope with fluctuating salinities. The study identified, however, that limnic-derived fauna inhabiting these zones may demonstrate greater tolerance to salinity change than is currently recognised, and may persist where salinity increases are gradual and zones unbounded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26324900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26324900"><span>Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boulton, Chris A; Lenton, Timothy M</p> <p>2015-09-15</p> <p>Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26027582','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26027582"><span>Influence of climate variability on acute myocardial infarction mortality in Havana, 2001-2012.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rivero, Alina; Bolufé, Javier; Ortiz, Paulo L; Rodríguez, Yunisleydi; Reyes, María C</p> <p>2015-04-01</p> <p>Death from acute myocardial infarction is due to many factors; influences on risk to the individual include habits, lifestyle and behavior, as well as weather, climate and other environmental components. Changing climate patterns make it especially important to understand how climatic variability may influence acute myocardial infarction mortality. Describe the relationship between climate variability and acute myocardial infarction mortality during the period 2001-2012 in Havana. An ecological time-series study was conducted. The universe comprised 23,744 deaths from acute myocardial infarction (ICD-10: I21-I22) in Havana residents from 2001 to 2012. Climate variability and seasonal anomalies were described using the Bultó-1 bioclimatic index (comprising variables of temperature, humidity, precipitation, and atmospheric pressure), along with series analysis to determine different seasonal-to-interannual climate variation signals. The role played by climate variables in acute myocardial infarction mortality was determined using factor analysis. The Mann-Kendall and Pettitt statistical tests were used for trend analysis with a significance level of 5%. The strong association between climate variability conditions described using the Bultó-1 bioclimatic index and acute myocardial infarctions accounts for the marked seasonal pattern in AMI mortality. The highest mortality rate occurred during the dry season, i.e., the winter months in Cuba (November-April), with peak numbers in January, December and March. The lowest mortality coincided with the rainy season, i.e., the summer months (May-October). A downward trend in total number of deaths can be seen starting with the change point in April 2009. Climate variability is inversely associated with an increase in acute myocardial infarction mortality as is shown by the Bultó-1 index. This inverse relationship accounts for acute myocardial infarction mortality's seasonal pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710282B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710282B"><span>Reconstruction of Holocene southern African continental climate using biomarkers from salt pan sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belz, Lukas; Schüller, Irka; Wehrmann, Achim; Wilkes, Heinz</p> <p>2015-04-01</p> <p>The climate system of southern Africa is strongly influenced by large scale atmospheric and marine circulation processes and, therefore, very sensitive to global climate change. Recent publications provided evidence for strong spatial and temporal climate variability in southern Africa over the Holocene. It is of major importance to understand the mechanisms driving the southern African climate system in order to estimate regional implications of current global change. However, proxy datasets from continental geoarchives especially of the semi-arid western Kalahari region are still scarce. A main problem is the absence of conventional continental climatic archives, due to the lack of lacustrine systems. In this study we are exploring the utility of sediments from western Kalahari salt pans, i.e. local depressions which are flooded temporarily during rainfall events. Besides the analyses of basic geochemical bulk parameters including TOC, δ13Corg, TIC, δ13Ccarb, δ18Ocarb, TN, δ15N, the paleo-climatic approach focuses on reconstruction of local vegetation assemblages to identify changes in the ecosystem. This is pursued using plant biomarkers, particularly leaf wax n-alkanes and n-alcohols and their stable carbon and hydrogen isotopic signatures. Preliminary results show prominent shifts in n-alkane distribution and δ13C values of the C33 homologue during late Pleistocene and early Holocene. These shifts correlate to changes of the TOC content. Our data indicate changes in carbon sources which possibly reflect major environmental changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25098016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25098016"><span>Motivational climate, staff and members' behaviors, and members' psychological well-being at a national fitness franchise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Theresa C; Fry, Mary D</p> <p>2014-06-01</p> <p>The purpose of this study was to examine the association between members' perceptions of staffs behaviors, motivational climate, their own behaviors, commitment to future exercise, and life satisfaction in a group-fitness setting. The theory-driven hypothesized mediating role of perceptions of the climate was also tested. Members (N = 5,541) of a national group-fitness studio franchise completed a survey regarding their class experiences. The survey included questions that measured participants' perceptions of the motivational climate (caring, task-involving, ego-involving), perceptions of staff's behaviors, their own behaviors, commitment to exercise, and life satisfaction. Structural equation modeling was used to assess both the association between variables and the theoretically driven predictive relationships. The participants perceived the environment as highly caring and task-involving and low ego-involving. They reported high exercise commitment and moderately high life satisfaction and perceived that the staffs and their own behaviors reflected caring, task-involving characteristics. Structural equation modeling demonstrated that those who perceived a higher caring, task-involving climate and lower ego-involving climate were more likely to report more task-involving, caring behaviors among the staff and themselves as well as greater commitment to exercise. In addition, a theory-driven mediational model suggested that staff behaviors may be an antecedent to members' exercise experiences by impacting their perceptions of the climate. The results of this study give direction to specific behaviors in which staff of group-fitness programs might engage to positively influence members' exercise experiences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP23D..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP23D..07R"><span>Central Tropical Pacific Variability And ENSO Response To Changing Climate Boundary Conditions: Evidence From Individual Line Island Foraminifera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.</p> <p>2017-12-01</p> <p>The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28285853','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28285853"><span>Tracking climate change in oligotrophic mountain lakes: Recent hydrology and productivity synergies in Lago de Sanabria (NW Iberian Peninsula).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jambrina-Enríquez, Margarita; Recio, Clemente; Vega, José Carlos; Valero-Garcés, Blas</p> <p>2017-07-15</p> <p>Mountain lakes are particularly sensitive to global change as their oligotrophic conditions may be rapidly altered after reaching an ecological threshold, due to increasing human impact and climate change. Sanabria Lake, the largest mountain lake in the Iberian Peninsula and with a recent history of increased human impact in its watershed, provides an opportunity to investigate recent trends in an oligotrophic, hydrologically-open mountain lake, and their relationship with climate, hydrological variability and human pressure. We conducted the first systematic and detailed survey of stable isotope compositions of Sanabria Lake and Tera River together with limnological analyses during 2009-2011. δ 18 O lakewater and δD lakewater seasonal fluctuations are strongly linked to river discharges, and follow the monthly mean isotopic composition of precipitation, which is controlled by NAO dynamics. δ 13 C POM and δ 13 C DIC revealed higher contribution of allochthonous organic matter in winter and spring due to higher river inflow and lower primary productivity. Increased phytoplankton biomass in late summer correlated significantly with higher pH and Chl-a, and higher nutrient input and lower river inflow. However, the small δ 13 C POM seasonal amplitude underlines the stability of the oligotrophic conditions and the isotopic variation in POM and DIC reflect small seasonal fluctuations mostly as a consequence of strong throughflow. The stability of hydrology and productivity patterns is consistent with Holocene and last millennium reconstructions of past limnological changes in Sanabria Lake. The results of this study indicate that trophic state in this hydrologically-open mountain lake is strongly controlled by climate variability, but recent changes in human-land uses have increased sediment delivery and nutrients supply to the lake and have to be considered for management policies. Monitoring surveys including isotope techniques provide snapshots of modern isotope variability, and serve as a benchmark for assessing the environmental impacts of future developments and long-term climate changes in mountain lakes. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034288','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034288"><span>Climatic extremes improve predictions of spatial patterns of tree species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.</p> <p>2009-01-01</p> <p>Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041536','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041536"><span>Do bioclimate variables improve performance of climate envelope models?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.</p> <p>2012-01-01</p> <p>Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.noaa.gov/climate','SCIGOVWS'); return false;" href="http://www.noaa.gov/climate"><span>Climate | National Oceanic and Atmospheric Administration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>to help people understand and prepare for <em>climate</em> variability and <em>change</em>. <em>Climate</em>. NOAA From to help people understand and prepare for <em>climate</em> variability and <em>change</em>. LATEST FEATURES // Ocean Jump to Content Enter Search Terms Weather <em>Climate</em> Oceans & Coasts Fisheries Satellites</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H34D..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H34D..02A"><span>Quantitative predictions of streamflow variability in the Susquehanna River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexander, R.; Boyer, E. W.; Leonard, L. N.; Duffy, C.; Schwarz, G. E.; Smith, R. A.</p> <p>2012-12-01</p> <p>Hydrologic researchers and water managers have increasingly sought an improved understanding of the major processes that control fluxes of water and solutes across diverse environmental settings and large spatial scales. Regional analyses of observed streamflow data have led to advances in our knowledge of relations among land use, climate, and streamflow, with methodologies ranging from statistical assessments of multiple monitoring sites to the regionalization of the parameters of catchment-scale mechanistic simulation models. However, gaps remain in our understanding of the best ways to transfer the knowledge of hydrologic response and governing processes among locations, including methods for regionalizing streamflow measurements and model predictions. We developed an approach to predict variations in streamflow using the SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling infrastructure, with mechanistic functions, mass conservation constraints, and statistical estimation of regional and sub-regional parameters. We used the model to predict discharge in the Susquehanna River Basin (SRB) under varying hydrological regimes that are representative of contemporary flow conditions. The resulting basin-scale water balance describes mean monthly flows in stream reaches throughout the entire SRB (represented at a 1:100,000 scale using the National Hydrologic Data network), with water supply and demand components that are inclusive of a range of hydrologic, climatic, and cultural properties (e.g., precipitation, evapotranspiration, soil and groundwater storage, runoff, baseflow, water use). We compare alternative models of varying complexity that reflect differences in the number and types of explanatory variables and functional expressions as well as spatial and temporal variability in the model parameters. Statistical estimation of the models reveals the levels of complexity that can be uniquely identified, subject to the information content and uncertainties of the hydrologic and climate measurements. Assessment of spatial variations in the model parameters and predictions provides an improved understanding of how much of the hydrologic response to land use, climate, and other properties is unique to specific locations versus more universally observed across catchments of the SRB. This approach advances understanding of water cycle variability at any location throughout the stream network, as a function of both landscape characteristics (e.g., soils, vegetation, land use) and external forcings (e.g., precipitation quantity and frequency). These improvements in predictions of streamflow dynamics will advance the ability to predict spatial and temporal variability in key solutes, such as nutrients, and their delivery to the Chesapeake Bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1606Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1606Q"><span>Estimation of Land Surface Temperature for the Quantitative Analysis of Land Cover of Lower Areas of Sindh to Assess the Impacts of Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qaisar, Maha</p> <p>2016-07-01</p> <p>Due to the present land use practices and climate variability, drastic shifts in regional climate and land covers are easily seen and their future reduction and gain are too well predicted. Therefore, there is an increasing need for data on land-cover changes at narrow and broad spatial scales. In this study, a remote sensing-based technique for land-cover-change analysis is applied to the lower Sindh areas for the last decade. Landsat satellite products were analyzed on an alternate yearly basis, from 1990 to 2016. Then Land-cover-change magnitudes were measured and mapped for alternate years. Land Surface Temperature (LST) is one of the critical elements in the natural phenomena of surface energy and water balance at local and global extent. However, LST was computed by using Landsat thermal bands via brightness temperature and a vegetation index. Normalized difference vegetation index (NDVI) was interpreted and maps were achieved. LST reflected NDVI patterns with complexity of vegetation patterns. Along with this, Object Based Image Analysis (OBIA) was done for classifying 5 major classes of water, vegetation, urban, marshy lands and barren lands with significant map layouts. Pakistan Meteorological Department provided the climate data in which rainfall, temperature and air temperature are included. Once the LST and OBIA are performed, overlay analysis was done to correlate the results of LST with OBIA and LST with meteorological data to ascertain the changes in land covers due to increasing centigrade of LST. However, satellite derived LST was also correlated with climate data for environmental analysis and to estimate Land Surface Temperature for assessing the inverse impacts of climate variability. This study's results demonstrate the land-cover changes in Lower Areas of Sindh including the Indus Delta mostly involve variations in land-cover conditions due to inter-annual climatic variability and temporary shifts in seasonality. However it is too concluded that transitory alteration of the biophysical characteristics of the surface driven by variations in rainfall is the prevailing progression. Moreover, future work will focus on finer-scale analysis and validations of patterns of changes due to rapid urbanization and population explosion in poverty stricken areas of Sindh which are posing an adverse impact on the land utilization and in turn increasing the land surface temperature and ultimately more stress on the low lying areas of Sindh i.e. Indus Delta will be losing its productivity and capacity to bear biodiversity whether the fauna or flora. Hence, this regional scale problem will become a global concern. Therefore, it is needed to stop the menace in its starting phase to mitigate the problem and to bring minds on this horrendous situation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26027583','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26027583"><span>Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R</p> <p>2015-04-01</p> <p>Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1406716-recent-changes-county-level-corn-yield-variability-united-states-from-observations-crop-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1406716-recent-changes-county-level-corn-yield-variability-united-states-from-observations-crop-models"><span>Recent changes in county-level corn yield variability in the United States from observations and crop models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leng, Guoyong</p> <p></p> <p>The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated the change trend of corn yield variability, in projecting its future changes.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Risk+AND+feelings&pg=3&id=ED559550','ERIC'); return false;" href="https://eric.ed.gov/?q=Risk+AND+feelings&pg=3&id=ED559550"><span>Violence and Disorder, School Climate, and PBIS: The Relationship among School Climate, Student Outcomes, and the Use of Positive Behavioral Interventions and Supports</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Eacho, Thomas Christopher</p> <p>2013-01-01</p> <p>The primary purpose of this study was to examine the relationship between school climate and student outcome variables. The secondary purpose was to examine the relationship between the use of Positive Behavioral Interventions and Supports (PBIS) and the same student outcome variables. Variables depicting student perceptions of school climate,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23G0296L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23G0296L"><span>The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements in Understanding AMOC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucas, S. E.</p> <p>2016-12-01</p> <p>The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). This poster will present the recently funded CVP projects on improving the understanding Atlantic Meridional Overturning Circulation (AMOC), its impact on decadal predictability, and its relationship with the overall climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24465610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24465610"><span>Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui</p> <p>2014-01-01</p> <p>Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003-2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003-2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May-June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3899034','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3899034"><span>Effects of Climatic Factors and Ecosystem Responses on the Inter-Annual Variability of Evapotranspiration in a Coniferous Plantation in Subtropical China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui</p> <p>2014-01-01</p> <p>Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003–2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003–2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May–June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation. PMID:24465610</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESSD....9..471J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESSD....9..471J"><span>Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, Philip D.; Harpham, Colin; Troccoli, Alberto; Gschwind, Benoit; Ranchin, Thierry; Wald, Lucien; Goodess, Clare M.; Dorling, Stephen</p> <p>2017-07-01</p> <p>The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on either 3 or 6 h timescales over the period 1979-2016. The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present from <a href="ftp://ecem.climate.copernicus.eu" target="_blank">ftp://ecem.climate.copernicus.eu</a>. The benefit of performing bias adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against gridded observational fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160009138&hterms=India+climate+change&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DIndia%2Bclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160009138&hterms=India+climate+change&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DIndia%2Bclimate%2Bchange"><span>Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos</p> <p>2016-01-01</p> <p>We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1261480-response-guided-community-detection-application-climate-index-discovery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1261480-response-guided-community-detection-application-climate-index-discovery"><span>Response-Guided Community Detection: Application to Climate Index Discovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bello, Gonzalo; Angus, Michael; Pedemane, Navya</p> <p></p> <p>Discovering climate indices-time series that summarize spatiotemporal climate patterns-is a key task in the climate science domain. In this work, we approach this task as a problem of response-guided community detection; that is, identifying communities in a graph associated with a response variable of interest. To this end, we propose a general strategy for response-guided community detection that explicitly incorporates information of the response variable during the community detection process, and introduce a graph representation of spatiotemporal data that leverages information from multiple variables. We apply our proposed methodology to the discovery of climate indices associated with seasonal rainfall variability.more » Our results suggest that our methodology is able to capture the underlying patterns known to be associated with the response variable of interest and to improve its predictability compared to existing methodologies for data-driven climate index discovery and official forecasts.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24418218','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24418218"><span>Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R</p> <p>2014-09-15</p> <p>Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1925B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1925B"><span>Emergence of the significant local warming of Korea in CMIP5 projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boo, Kyung-On; Shim, Sungbo; Kim, Jee-Eun</p> <p>2016-04-01</p> <p>According to IPCC AR5, anthropogenic influence on warming is obvious in local scales, especially in some tropical regions. Detection of significant local warming is important for adaptation to climate change of society and ecosystem. Recently much attention has focused on the time of emergence (ToE) for the signal of anthropogenic climate change against the natural climate variability. Motivated from the previous studies, this study analyzes ToE of regional surface air temperature over Korea. Simulations of CMIP5 15 models are used for RCP 2.6, 4.5 and 8.5. For each year, JJA and DJF temperature anomalies are calculated for the time period 1900-1929. For noise of interannual variability, natural-only historical simulations of CMIP5 12 models are used and the standard deviation of the time series is obtained. For signal of warming, we examine the year when the signal above 2 standard deviations is detected in 80% of the models using 30-year smoothed time series. According to our results, interannual variability is larger in land than ocean. Seasonally, it is larger in winter than in summer. Accordingly, ToE of summertime temperature is earlier than that in winter and is expected to appear in 2030s from three RCPs. The seasonal difference is consistent with previous studies. Wintertime ToE appears in 2040s for RCP85 and 2060s for RCP4.5. The different emergence time between RCP8.5 and RCP4.5 reflects the influence of mitigation. In a similar way, daily maximum and minimum temperatures are analyzed. ToE of Tmin appears earlier than that of Tmax and difference is small. Acknowledgements. This study is supported by the National Institute of Meteorological Sciences, Korea Meteorological Administration (NIMR-2012-B-2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5647K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5647K"><span>Arctic energy budget in relation to sea-ice variability on monthly to annual time scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krikken, Folmer; Hazeleger, Wilco</p> <p>2015-04-01</p> <p>The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24804626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24804626"><span>From silk to satellite: half a century of ocean colour anomalies in the Northeast Atlantic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raitsos, Dionysios E; Pradhan, Yaswant; Lavender, Samantha J; Hoteit, Ibrahim; McQuatters-Gollop, Abigail; Reid, Phillip C; Richardson, Anthony J</p> <p>2014-07-01</p> <p>Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites - the Coastal Zone Colour Scanner (CZCS, 1979-1986) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 1998-2010). Due to the large gap between the two satellite eras and differences in sensor characteristics, comparison of the absolute values retrieved from the two instruments remains challenging. Using a unique in situ ocean colour dataset that spans more than half a century, the two satellite-derived chlorophyll-a (Chl-a) eras are linked to assess concurrent changes in phytoplankton variability and bloom timing over the Northeast Atlantic Ocean and North Sea. Results from this unique re-analysis reflect a clear increasing pattern of Chl-a, a merging of the two seasonal phytoplankton blooms producing a longer growing season and higher seasonal biomass, since the mid-1980s. The broader climate plays a key role in Chl-a variability as the ocean colour anomalies parallel the oscillations of the Northern Hemisphere Temperature (NHT) since 1948. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27122551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27122551"><span>Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M</p> <p>2016-04-27</p> <p>Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. © 2016 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4855373','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4855373"><span>Biotic and abiotic variables influencing plant litter breakdown in streams: a global study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pearson, Richard G.; Hui, Cang; Gessner, Mark O.; Pérez, Javier; Alexandrou, Markos A.; Graça, Manuel A. S.; Cardinale, Bradley J.; Albariño, Ricardo J.; Arunachalam, Muthukumarasamy; Barmuta, Leon A.; Boulton, Andrew J.; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G.; Dudgeon, David; Encalada, Andrea C.; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S.; Gonçalves, José F.; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S.; Pringle, Catherine M.; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M.</p> <p>2016-01-01</p> <p>Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP43B1356R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP43B1356R"><span>Developing novel peat isotope proxies from vascular plant-dominated peatlands of New Zealand to reconstruct Southern Hemisphere climate dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roland, T.; Amesbury, M. J.; Charman, D.; Newnham, R.; Royles, J.; Griffiths, H.; Ratcliffe, J.; Rees, A.; Campbell, D.; Baisden, T.; Keller, E. D.</p> <p>2017-12-01</p> <p>The Southern Annular Mode (SAM) is a key control on the strength and position of the southern westerly winds (SWW), which are a major influence on Southern Hemisphere (SH) mid- to high-latitude climate. A shift towards a more positive SAM has occurred since the 1950s, driven by ozone layer thinning and enhanced by greenhouse gas driven warming. Although these recent changes are thought to be unprecedented over the last 1000 years, the longer-term behaviour of the SAM is poorly understood. We are developing stable isotope proxies from plant cellulose in vascular plant-dominated (Empodisma spp.) peatlands in New Zealand that we hypothesise are related to changes in past temperature (δ13C) and precipitation moisture source (δ18O). The moisture source signal is driven by the balance between Southern Ocean sources (depleted δ18O) and sub-tropical sources (enriched δ18O), reflecting the relative states of SAM and the El Niño-Southern Oscillation. We aim to provide palaeoclimatic context for the recent positive trend in the SAM, and explore the long-term relationship between the SAM and ENSO, testing the contention that tropical Pacific variability is a key influence on past and future SAM variability. Terrestrial palaeoclimate records in the Southern Hemisphere are often spatially isolated and temporally fragmented. However, New Zealand is ideally placed to test such hypotheses as it registers strong correlations between SAM, temperature and precipitation, and it straddles the zone of interaction between the SWW and sub-tropical moisture sources, reflected in a strong precipitation δ18O gradient. We report data from surface samples across New Zealand and explore the spatial and temporal patterns in stable isotopes in cellulose and water that we will use to interpret the palaeoenvironmental data. Preliminary downcore data will be used to demonstrate the efficacy of this approach to reconstructing moisture sources and temperature linked to moisture source variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53D2273F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53D2273F"><span>A new record of Atlantic sea surface salinity from 1896-2013 reveals the signatures of climate variability and long-term trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedman, A. R.; Reverdin, G. P.; Khodri, M.; Gastineau, G.</p> <p>2017-12-01</p> <p>In the North Atlantic, sea surface salinity is both an indicator of the hydrological cycle and an active component of the ocean circulation. As an indirect "ocean rain gauge", surface salinity reflects the net surface fluxes of evaporation - precipitation + runoff, along with advection and vertical mixing. Subpolar surface salinity also may influence the strength of deep convection and the Atlantic Meridional Overturning Circulation (AMOC). However, continuous surface salinity time series beginning before the 1950s are rare, limiting our ability to resolve modes of variability and long-term trends. Here, we present a new gridded surface salinity record in the Atlantic from 1896-2013, compiled from a variety of historical sources. The compilation covers most of the Atlantic from 20°S-70°N, at 100-1000 km length scale and interannual temporal resolution, allowing us to resolve major modes of variability and linkages with large-scale Atlantic climate variations. We find that the low-latitude (tropical and subtropical) Atlantic and the subpolar Atlantic surface salinity are negatively correlated, with subpolar anomalies leading low-latitude anomalies by about a decade. Subpolar surface salinity varies in phase with the Atlantic Multidecadal Oscillation (AMO), whereas low-latitude surface salinity lags the AMO and varies in phase with the low-frequency North Atlantic Oscillation (NAO). Additionally, northern tropical surface salinity is anticorrelated with the AMO and with Sahel rainfall, suggesting that it reflects the latitude of the Intertropical Convergence Zone. The 1896-2013 long-term trend features an amplification of the mean Atlantic surface salinity gradient pattern, with freshening in the subpolar Atlantic and salinification in the tropical and subtropical Atlantic. We find that regressing out the AMO and the low-frequency NAO has little effect on the long-term residual trend. The spatial trend structure is consistent with the "rich-get-richer" hydrological cycle intensification response to global warming, and may also indicate increased Arctic cryosphere melting and surface runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4898V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4898V"><span>Reconstruction of past equilibrium line altitude using ice extent data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Visnjevic, Vjeran; Herman, Frederic; Podladchikov, Yuri</p> <p>2017-04-01</p> <p>With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. This last glacial advance left a strong observable imprint on the landscape, such as abandoned moraines, trimlines and other glacial geomorphic features. These features provide a valuable record of past continental climate. In particular, terminal moraines reflect the extent of glaciers and ice-caps, which itself reflects past temperature and precipitation conditions. Here we present an inverse approach, based on a Tikhonov regularization, we have recently developed to reconstruct the LGM mass balance from observed ice extent data. The ice flow model is developed using the shallow ice approximation and solved explicitly using Graphical Processing Units (GPU). The mass balance field, b, is the constrained variable defined by the ice surface S, balance rate β and the spatially variable equilibrium line altitude field (ELA): b = min (β ṡ(S(x,y)- ELA (x,y)),c). (1) where c is a maximum accumulation rate. We show that such a mass balance, and thus the spatially variable ELA field, can be inferred from the observed past ice extent and ice thickness at high resolution and very efficiently. The GPU implementation allows us solve one 1024x1024 grid points forward model run under 0.5s, which significantly reduces the time needed for our inverse method to converge. We start with synthetic test to demonstrate the method. We then apply the method to LGM ice extents of South Island of New Zealand, the Patagonian Andes, where we can see a clear influence of Westerlies on the ELA, and the European Alps. These examples show that the method is capable of constraining spatial variations in mass balance at the scale of a mountain range, and provide us with information on past continental climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175476','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175476"><span>Reconstructions of Columbia River streamflow from tree-ring chronologies in the Pacific Northwest, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Littell, Jeremy; Pederson, Gregory T.; Gray, Stephen T.; Tjoelker, Michael; Hamlet, Alan F.; Woodhouse, Connie A.</p> <p>2016-01-01</p> <p>We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree-ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree-ring chronologies where high snowpack limits growth, which better represent the contribution of cool-season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high-intensity, long-duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s-1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm-season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late-19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.cpc.ncep.noaa.gov/products/outreach/CDPW41/CDPW41.php','SCIGOVWS'); return false;" href="http://www.cpc.ncep.noaa.gov/products/outreach/CDPW41/CDPW41.php"><span>Climate Prediction Center - Outreach: 41st Annual Climate Diagnostics &</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>the University of Maine <em>Climate</em> <em>Change</em> Institute and School of Earth and <em>Climate</em> Sciences and is co (drought, heat waves, severe weather, tropical cyclones) in the framework of <em>climate</em> variability and <em>change</em> and including the use of paleoclimate data. Arctic <em>climate</em> variability and <em>change</em>, and linkages to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EnMan..50.1152T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EnMan..50.1152T"><span>A Risk-Based Approach to Evaluating Wildlife Demographics for Management in a Changing Climate: A Case Study of the Lewis's Woodpecker</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Towler, Erin; Saab, Victoria A.; Sojda, Richard S.; Dickinson, Katherine; Bruyère, Cindy L.; Newlon, Karen R.</p> <p>2012-12-01</p> <p>Given the projected threat that climate change poses to biodiversity, the need for proactive response efforts is clear. However, integrating uncertain climate change information into conservation planning is challenging, and more explicit guidance is needed. To this end, this article provides a specific example of how a risk-based approach can be used to incorporate a species' response to climate into conservation decisions. This is shown by taking advantage of species' response (i.e., impact) models that have been developed for a well-studied bird species of conservation concern. Specifically, we examine the current and potential impact of climate on nest survival of the Lewis's Woodpecker ( Melanerpes lewis) in two different habitats. To address climate uncertainty, climate scenarios are developed by manipulating historical weather observations to create ensembles (i.e., multiple sequences of daily weather) that reflect historical variability and potential climate change. These ensembles allow for a probabilistic evaluation of the risk posed to Lewis's Woodpecker nest survival and are used in two demographic analyses. First, the relative value of each habitat is compared in terms of nest survival, and second, the likelihood of exceeding a critical population threshold is examined. By embedding the analyses in a risk framework, we show how management choices can be made to be commensurate with a defined level of acceptable risk. The results can be used to inform habitat prioritization and are discussed in the context of an economic framework for evaluating trade-offs between management alternatives.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040451','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040451"><span>A risk-based approach to evaluating wildlife demographics for management in a changing climate: A case study of the Lewis's Woodpecker</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Towler, Erin; Saab, Victoria A.; Sojda, Richard S.; Dickinson, Katherine; Bruyere, Cindy L.; Newlon, Karen R.</p> <p>2012-01-01</p> <p>Given the projected threat that climate change poses to biodiversity, the need for proactive response efforts is clear. However, integrating uncertain climate change information into conservation planning is challenging, and more explicit guidance is needed. To this end, this article provides a specific example of how a risk-based approach can be used to incorporate a species' response to climate into conservation decisions. This is shown by taking advantage of species' response (i.e., impact) models that have been developed for a well-studied bird species of conservation concern. Specifically, we examine the current and potential impact of climate on nest survival of the Lewis's Woodpecker (Melanerpes lewis) in two different habitats. To address climate uncertainty, climate scenarios are developed by manipulating historical weather observations to create ensembles (i.e., multiple sequences of daily weather) that reflect historical variability and potential climate change. These ensembles allow for a probabilistic evaluation of the risk posed to Lewis's Woodpecker nest survival and are used in two demographic analyses. First, the relative value of each habitat is compared in terms of nest survival, and second, the likelihood of exceeding a critical population threshold is examined. By embedding the analyses in a risk framework, we show how management choices can be made to be commensurate with a defined level of acceptable risk. The results can be used to inform habitat prioritization and are discussed in the context of an economic framework for evaluating trade-offs between management alternatives.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H33G1629G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H33G1629G"><span>Spatio-temporal variability of several eco-precipitation indicators in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, B. B.; Zhang, J.; Wang, F.</p> <p>2016-12-01</p> <p>Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of λ and 1/θ with a saltation point in the year 1997 and 1992, respectively. This study indicates that uniform and concentrated extreme precipitation significantly increased in China under the climate change, which brings severer challenge in constructing eco-hydrological models to make rational countermeasures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C51G..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C51G..07M"><span>Forecasting Glacier Evolution and Hindcasting Paleoclimates In Light of Mass Balance Nonlinearities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malone, A.; Doughty, A. M.; MacAyeal, D. R.</p> <p>2016-12-01</p> <p>Glaciers are commonly used barometers of present and past climate change, with their variations often being linked to shifts in the mean climate. Climate variability within a unchanging mean state, however, can produce short term mass balance and glacier length anomalies, complicating this linkage. Also, the mass balance response to this variability can be nonlinear, possibly impacting the longer term state of the glacier. We propose a conceptual model to understand these nonlinearities and quantify their impacts on the longer term mass balance and glacier length. The relationship between mass balance and elevation, i.e. the vertical balance profile (VBP), illuminates these nonlinearities (Figure A). The VBP, given here for a wet tropical glacier, is piecewise, which can lead to different mass balance responses to climate anomalies of similar magnitude but opposite sign. We simulate the mass balance response to climate variability by vertically (temperature anomalies) and horizontally (precipitation anomalies) transposing the VBP for the mean climate (Figure A). The resulting anomalous VBP is the superposition of the two translations. We drive a 1-D flowline model with 10,000 years of anomalous VBPs. The aggregate VBP for the mean climate including variability differs from the VBP for the mean climate excluding variability, having a higher equilibrium line altitude (ELA) and a negative mass balance (Figure B). Accordingly, the glacier retreats, and the equilibrium glacier length for the aggregate VBP is the same as the mean length from the 10,000 year flowline simulation (Figure C). The magnitude of the VBP shift and glacier retreat increases with greater temperature variability and larger discontinuities in the VBP slope. These results highlight the importance of both the climate mean and variability in determining the longer term state of the glacier. Thus, forecasting glacier evolution or hindcasting past climates should also include representation of climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110013375','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110013375"><span>Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, M. M.; Newman, P. A.; Song, I. S.</p> <p>2011-01-01</p> <p>A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990018738&hterms=recycling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drecycling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990018738&hterms=recycling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drecycling"><span>Precipitation Recycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eltahir, Elfatih A. B.; Bras, Rafael L.</p> <p>1996-01-01</p> <p>The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.nwrc.usgs.gov/sandt/Sothwest.pdf','USGSPUBS'); return false;" href="http://www.nwrc.usgs.gov/sandt/Sothwest.pdf"><span>Southwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bogan, Michael A.; Allen, Craig D.; Muldavin, Esteban H.; Platania, Steven P.; Stuart, James N.; Farley, Greg H.; Mehlhop, Patricia; Belnap, Jayne</p> <p>1998-01-01</p> <p>The southwestern region of the United States is a land of extremes and contrasts. Elevations vary from below sea level in the Imperial Valley of California to mountain peaks approaching 4,000 meters. Landscapes are striking and variable and include mountains, foothills, canyons, deserts, plains, and rivers. The area is arid or semiarid and, depending on the location, may have mild winters and summers, periods of bitter cold, or intervals of intense heat. Climate is inextricably tied to water and its availability. Historically, water varied from abundant to sparse over the span of a year, and adaptations of native plants and animals reflect those extremes. Annual precipitation, usually in the form of rain, varies from 30 to 40 millimeters in the low-elevation Sonoran Desert to more than 1,000 millimeters in the high mountains (Brown 1982a; Bahre and Shelton 1993). This variation in topography and climate has produced great floral and faunal diversity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/27884','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/27884"><span>Impacts of climate change and variability on transportation systems and infrastructure : Gulf Coast study, phase 2 : task 2 : climate variability and change in Mobile, Alabama.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-09-01</p> <p>Despite increasing confidence in global climate change projections in recent years, projections of : climate effects at local scales remains scarce. Location-specific risks to transportation systems : imposed by changes in climate are not yet well kn...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CliPa..12.2255R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CliPa..12.2255R"><span>Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rehfeld, Kira; Trachsel, Mathias; Telford, Richard J.; Laepple, Thomas</p> <p>2016-12-01</p> <p>Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen, foraminifera or chironomids are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that in our model experiments the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We furthermore show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because temporal changes of a dominant climate variable, such as summer temperatures in the model's Arctic, are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable's trends. Our results, although based on a model vegetation that is inevitably simpler than reality, indicate that reconstructions of multiple climate variables based on modern spatial bio-indicator datasets should be treated with caution. Expert knowledge on the ecophysiological drivers of the proxies, as well as statistical methods that go beyond the cross validation on modern calibration datasets, are crucial to avoid misinterpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2517282','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2517282"><span>An Overview of Patient Safety Climate in the VA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hartmann, Christine W; Rosen, Amy K; Meterko, Mark; Shokeen, Priti; Zhao, Shibei; Singer, Sara; Falwell, Alyson; Gaba, David M</p> <p>2008-01-01</p> <p>Objective To assess variation in safety climate across VA hospitals nationally. Study Setting Data were collected from employees at 30 VA hospitals over a 6-month period using the Patient Safety Climate in Healthcare Organizations survey. Study Design We sampled 100 percent of senior managers and physicians and a random 10 percent of other employees. At 10 randomly selected hospitals, we sampled an additional 100 percent of employees working in units with intrinsically higher hazards (high-hazard units [HHUs]). Data Collection Data were collected using an anonymous survey design. Principal Findings We received 4,547 responses (49 percent response rate). The percent problematic response—lower percent reflecting higher levels of patient safety climate—ranged from 12.0–23.7 percent across hospitals (mean=17.5 percent). Differences in safety climate emerged by management level, clinician status, and workgroup. Supervisors and front-line staff reported lower levels of safety climate than senior managers; clinician responses reflected lower levels of safety climate than those of nonclinicians; and responses of employees in HHUs reflected lower levels of safety climate than those of workers in other areas. Conclusions This is the first systematic study of patient safety climate in VA hospitals. Findings indicate an overall positive safety climate across the VA, but there is room for improvement. PMID:18355257</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29391875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29391875"><span>Change in the magnitude and mechanisms of global temperature variability with warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Patrick T; Ming, Yi; Li, Wenhong; Hill, Spencer A</p> <p>2017-01-01</p> <p>Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC33H..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC33H..04B"><span>Change in the Magnitude and Mechanisms of Global Temperature Variability with Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, P. T.; Ming, Y.; Li, W.; Hill, S. A.</p> <p>2017-12-01</p> <p>Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN31F..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN31F..01K"><span>The CESM Large Ensemble Project: Inspiring New Ideas and Understanding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kay, J. E.; Deser, C.</p> <p>2016-12-01</p> <p>While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920-2100) 40+ times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 2000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Examples of scientists and stakeholders that are using the CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change will be highlighted the presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=background+AND+wind&pg=2&id=EJ747380','ERIC'); return false;" href="https://eric.ed.gov/?q=background+AND+wind&pg=2&id=EJ747380"><span>LAMPPOST: A Mnemonic Device for Teaching Climate Variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fahrer, Chuck; Harris, Dan</p> <p>2004-01-01</p> <p>This article introduces the word "LAMPPOST" as a mnemonic device to aid in the instruction of climate variables. It provides instructors with a framework for discussing climate patterns that is based on eight variables: latitude, altitude, maritime influence and continentality, pressure systems, prevailing winds, ocean currents, storms, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1167250','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1167250"><span>A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fedorov, Alexey V.</p> <p>2015-01-14</p> <p>The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth systemmore » models, to the stability and variability of the AMOC in past climates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5052011','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5052011"><span>Time scale bias in erosion rates of glaciated landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P.; Fischer, Woodward W.; Avouac, Jean-Philippe</p> <p>2016-01-01</p> <p>Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time. PMID:27713925</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27713925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27713925"><span>Time scale bias in erosion rates of glaciated landscapes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe</p> <p>2016-10-01</p> <p>Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SciNa.104...16M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SciNa.104...16M"><span>Variations in chemical sexual signals of Psammodromus algirus lizards along an elevation gradient may reflect altitudinal variation in microclimatic conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martín, José; Javier Zamora-Camacho, Francisco; Reguera, Senda; López, Pilar; Moreno-Rueda, Gregorio</p> <p>2017-04-01</p> <p>Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography-mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ15002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ15002S"><span>Cloud regimes as phase transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stechmann, Samuel; Hottovy, Scott</p> <p>2017-11-01</p> <p>Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes - open versus closed cells - fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells (POCs) as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. Similar viewpoints of deep convection and self-organized criticality will also be discussed. With these new conceptual viewpoints, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions. The research of S.N.S. is partially supported by a Sloan Research Fellowship, ONR Young Investigator Award N00014-12-1-0744, and ONR MURI Grant N00014-12-1-0912.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.151..190D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.151..190D"><span>Response of carbon isotopic compositions of Early-Middle Permian coals in North China to palaeo-climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, Dianshi; Liu, Guijian; Sun, Xiaohui; Sun, Ruoyu</p> <p>2018-01-01</p> <p>To investigate the magnitude to which the carbon isotopic ratio (δ13C) varies in coals in response to their contemporary terrestrial environment, the Early-Middle Permian Huainan coals (including coals from the Shanxi Formation, Lower Shihezi Formation and Upper Shihezi Formation) in North China were systematically sampled. A 2.5‰ variation range of δ13C values (-25.15‰ to -22.65‰) was observed in Huainan coals, with an average value of -24.06‰. As coal diagenesis exerts little influence on carbon isotope fractionation, δ13C values in coals were mainly imparted by those of coal-forming flora assemblages which were linked to the contemporary climate. The δ13C values in coals from the Shanxi and Lower Shihezi Formations are variable, reflecting unstable climatic oscillations. Heavy carbon isotope is enriched in coals of the Capitanian Upper Shihezi Formation, implying a shift to high positive δ13C values of coeval atmospheric CO2. Notably, our study provides evidence of the Kamura event in the terrestrial environment for the first time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28251299','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28251299"><span>Variations in chemical sexual signals of Psammodromus algirus lizards along an elevation gradient may reflect altitudinal variation in microclimatic conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martín, José; Javier Zamora-Camacho, Francisco; Reguera, Senda; López, Pilar; Moreno-Rueda, Gregorio</p> <p>2017-04-01</p> <p>Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography-mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP33E..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP33E..06C"><span>Multiproxy (pollen, stable isotopes, trace elements) reconstruction of climate variability in northeastern Amazon during the late Holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conte, M. H.; Urrego, D. H.; Charles-Dominique, P.; Giraudeau, J.; Martinez, P.; Bush, M. B.; Huang, Y.; Russell, J. M.; Gaucher, P.</p> <p>2013-12-01</p> <p>Model projections of future climate predict changes in ocean-atmosphere processes that will affect the organization of the Atlantic Intertropical Convergence Zone (ITCZ) and ENSO, and in turn, precipitation patterns over much of South America. The northeastern Amazon is particularly sensitive to ITCZ and ENSO organization, and experiences major episodes of drought and rainfall extremes due to interannual variability in ITCZ intensity and position. Hence understanding Holocene climate variability in the northeastern Amazon, and its phasing with other South American records, can provides new insights into past ITCZ organization and Atlantic-Pacific teleconnections. Lac Toponowini is a landslide-dammed lake in the undisturbed highland rainforest of French Guiana (Guyane). Toponowini sediments are finely varved, with pronounced light-dark couplets that appear to reflect alternating wet and dry season conditions. High-resolution X-Ray Fluorescence (XRF) profiling reveals that the couplets consist of bands of weathered clays and organic-rich material containing co-precipitated sulfides and platinum group elements (PGEs), sourced from gold deposits in the watershed. Mobility of PGEs is highly sensitive to hydrology and groundwater chemistry, and subtle variations in PGE flux and composition in Lac Toponowini appears to track past hydrologic conditions. Of note is the inverse correlation between the Pd/Pb ratio in Toponowini sediments and the %Ti record of fluvial input into the Cariaco Basin (Peterson and Haug 2006, Palaeogeog. Palaeoclim. Palaeoecol. 234, 97-113), which suggests antiphasing between rainfall in northern South America and French Guiana, consistent with ITCZ migration forced by multidecadal Atlantic variability. The carbon isotopic composition (δ13C) of terrestrial leaf waxes exhibits a maximum at ~1500 years BP, consistent with pollen evidence (Ledru 2001, Rev. Paleobot. Palynol. 115, 161-176) for ecosystem adaptations indicative of drier conditions in central Guyane at this time. New data on wax hydrogen isotopic composition will provide further insights into late Holocene precipitation patterns complementing pollen, carbon isotope and elemental proxies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IAUS..233..511R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IAUS..233..511R"><span>Does the Nile reflect solar variability?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruzmaikin, Alexander; Feynman, Joan; Yung, Yuk</p> <p></p> <p>Historical records of the Nile water level provide a unique opportunity to investigate the possibility that solar variability influences the Earth's climate. Particularly important are the annual records of the water level, which are uninterrupted for the years 622-1470 A.D. These records are non-stationary, so that standard spectral analyses cannot adequately characterize them. Here the Empirical Mode Decomposition technique, which is designed to deal with non-stationary, nonlinear time series, becomes useful. It allows the identification of two characteristic time scales in the water level data that can be linked to solar variability: the 88 year period and a time scale of about 200 years. These time scales are also present in the concurrent aurora data. Auroras are driven by coronal mass ejections and the rate of auroras is an excellent proxy for solar variabiliy. Analysis of auroral data contemporaneous with the Nile data shows peaks at 88 years and about 200 years. This suggests a physical link between solar variability and the low-frequency variations of the Nile water level. The link involves the influence of solar variability on the North Annual Mode of atmospheric variability and its North Atlantic and Indian Oceans patterns that affect rainfall over Eastren Equatorial Africa where the Nile originates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26315724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26315724"><span>Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Potts, Richard; Faith, J Tyler</p> <p>2015-10-01</p> <p>Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin--all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710397F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710397F"><span>Astronomical forcing, insolation and millennial-scale climate variability: evidence from the North Atlantic Ocean (IODP Expedition 306, Site U1313) during the Early-Middle Pleistocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferretti, Patrizia; Crowhurst, Simon; Naafs, David; Barbante, Carlo</p> <p>2015-04-01</p> <p>Since the seminal work by Hays, Imbrie and Shackleton (1976), a plethora of studies mostly based on marine sediments collected during DSDP-ODP-IODP Expeditions has demonstrated a correlation between orbital variations and climatic change. However, information on how changes in orbital boundary conditions affected the frequency and amplitude of millennial-scale climate variability is still fragmentary. Here we examine the record of climatic conditions from MIS 23 to 17 (c. 920-670 ka) using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to evaluate the climate system's response in the millennial band to known orbitally induced insolation changes. Special emphasis is placed on Marine Isotope Stage (MIS) 19, an interglacial centred at around 785 ka during which the insolation appears comparable to the current orbital geometry: MIS 19 is characterised by a minimum of the 400-kyr eccentricity cycle, subdued amplitude of precessional changes, and small amplitude variations in insolation making this marine isotopic stage a potential astronomical analogue for the Holocene and its future evolution, if this remains governed by natural forcing (Loutre and Berger 2000). Benthic and planktonic foraminiferal oxygen isotope values indicate relatively stable conditions during the peak warmth of MIS 19, but sea-surface and deep-water reconstructions start diverging during the transition towards the glacial MIS 18, when large, cold excursions disrupt the surface waters whereas low amplitude millennial scale fluctuations persist in the deep waters as recorded by the oxygen isotope signal (Ferretti et al., 2015). The glacial inception occurred at ˜779 ka, in agreement with an increased abundance of tetra-unsaturated alkenones, reflecting the influence of icebergs and associated meltwater pulses and high-latitude waters at the study site. Using a variety of time series analysis techniques, we evaluate the evolution of millennial climate variability in response to changing orbital boundary conditions during the early-middle Pleistocene. Suborbital variability in both surface- and deep-water records is mainly concentrated at a period of ˜11 kyr and, additionally, at ˜5.8 and ˜3.9 kyr in the deep ocean; these periods are equal to harmonics of precession band oscillations. The fact that the response at the 11 kyr period increased over the same interval during which the amplitude of the response to the precessional cycle increased supports the notion that most of the variance in the 11 kyr band in the sedimentary record is nonlinearly transferred from precession band oscillations. Considering that these periodicities are important features in the equatorial and intertropical insolation, these observations are in line with the view that the low-latitude regions play an important role in the response of the climate system to the astronomical forcing. We conclude that the effect of the orbitally induced insolation is of fundamental importance in regulating the timing and amplitude of millennial scale climate variability. Ferretti P., Crowhurst S.J., Naafs B.D.A., Barbante C., 2015. Quaternary Science Reviews 108, 95-110. Hays J.D., Imbrie J., Shackleton N.J., 1976. Science 194, 1121-1132. Loutre M.F., Berger A., 2000. Climatic Change 46, 61-90.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3962442','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3962442"><span>Beyond a Climate-Centric View of Plant Distribution: Edaphic Variables Add Value to Distribution Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Beauregard, Frieda; de Blois, Sylvie</p> <p>2014-01-01</p> <p>Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839) covering an extent of ∼55000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study identifies the potential for non-climate aspects of the environment to pose a constraint to range expansion under climate change. PMID:24658097</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24658097','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24658097"><span>Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beauregard, Frieda; de Blois, Sylvie</p> <p>2014-01-01</p> <p>Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839) covering an extent of ∼55,000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study identifies the potential for non-climate aspects of the environment to pose a constraint to range expansion under climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5483041','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5483041"><span>Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Esperón-Rodríguez, Manuel; Baumgartner, John B.; Beaumont, Linda J.</p> <p>2017-01-01</p> <p>Background Shrubs play a key role in biogeochemical cycles, prevent soil and water erosion, provide forage for livestock, and are a source of food, wood and non-wood products. However, despite their ecological and societal importance, the influence of different environmental variables on shrub distributions remains unclear. We evaluated the influence of climate and soil characteristics, and whether including soil variables improved the performance of a species distribution model (SDM), Maxent. Methods This study assessed variation in predictions of environmental suitability for 29 Australian shrub species (representing dominant members of six shrubland classes) due to the use of alternative sets of predictor variables. Models were calibrated with (1) climate variables only, (2) climate and soil variables, and (3) soil variables only. Results The predictive power of SDMs differed substantially across species, but generally models calibrated with both climate and soil data performed better than those calibrated only with climate variables. Models calibrated solely with soil variables were the least accurate. We found regional differences in potential shrub species richness across Australia due to the use of different sets of variables. Conclusions Our study provides evidence that predicted patterns of species richness may be sensitive to the choice of predictor set when multiple, plausible alternatives exist, and demonstrates the importance of considering soil properties when modeling availability of habitat for plants. PMID:28652933</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27885754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27885754"><span>Adaptive and plastic responses of Quercus petraea populations to climate across Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine</p> <p>2017-07-01</p> <p>How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC21F..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC21F..01T"><span>High-amplitude, centennial-scale climate oscillations during the last glacial in the western Third Pole as recorded in the Guliya ice cap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.</p> <p>2015-12-01</p> <p>The Guliya ice cap, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar ice field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an ice core drilled in 1992 contains Eemian ice, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative ice core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming of these glaciers and the impact on future water resources in this important region is urgently needed to help guide mitigation and adaptation policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC32A..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC32A..02M"><span>Disease in a more variable and unpredictable climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMahon, T. A.; Raffel, T.; Rohr, J. R.; Halstead, N.; Venesky, M.; Romansic, J.</p> <p>2014-12-01</p> <p>Global climate change is shifting the dynamics of infectious diseases of humans and wildlife with potential adverse consequences for disease control. Despite this, the role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial. Climate change is expected to increase climate variability in addition to increasing mean temperatures, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments and field data on disease-associated frog declines in Latin America support this framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was inconsistent with the pattern of Bd growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. Consistent with our laboratory experiments, increased regional temperature variability associated with global El Niño climatic events was the best predictor of widespread amphibian losses in the genus Atelopus. Thus, incorporating the effects of small-scale temporal variability in climate can greatly improve our ability to predict the effects of climate change on disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGC13A0938W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGC13A0938W"><span>Variations in the Relationship Between Precipitation and Tree Growth in the North-Central Rocky Mountains Identified Using a Tree-Ring Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wise, E.</p> <p>2007-12-01</p> <p>Much of the western United States is in the midst of a multi-year drought that has placed a renewed sense of urgency on water availability issues. The characterization of variability over relevant space and time scales has emerged as one of the top needs concerning the hydrological cycle, but understanding hydroclimatic variability at decadal and longer time scales has been limited by instrumental data that are both spatially and temporally inadequate. The reconstruction of moisture variables from tree-rings has been recognized as an important source of information on long-term water supply variability. Moisture variables of interest may include annual precipitation, snowpack, summer precipitation, and streamflow. Trees in closely co-located sites can vary widely in the signal they reflect, particularly in a region with the complex topography and hydroclimatic variability that is seen in the north-central Rocky Mountains. In this study, climatic and geospatial information was combined with tree-ring chronologies in order to better-understand factors determining variations in the response of tree growth to a particular precipitation signal. Resulting spatial variability in moisture seasonality and growth response provide insight into the region's moisture patterns and better characterization of the region's hydroclimatic variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNH43D..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNH43D..03D"><span>The Dynamics of Vulnerability and Implications for Climate Change Adaptation: Lessons from Urban Water Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dilling, L.; Daly, M.; Travis, W.; Wilhelmi, O.; Klein, R.; Kenney, D.; Ray, A. J.; Miller, K.</p> <p>2013-12-01</p> <p>Recent reports and scholarship have suggested that adapting to current climate variability may represent a "no regrets" strategy for adapting to climate change. Filling "adaptation deficits" and other approaches that rely on addressing current vulnerabilities are of course helpful for responding to current climate variability, but we find here that they are not sufficient for adapting to climate change. First, following a comprehensive review and unique synthesis of the natural hazards and climate adaptation literatures, we advance six reasons why adapting to climate variability is not sufficient for adapting to climate change: 1) Vulnerability is different at different levels of exposure; 2) Coping with climate variability is not equivalent to adaptation to longer term change; 3) The socioeconomic context for vulnerability is constantly changing; 4) The perception of risk associated with climate variability does not necessarily promote adaptive behavior in the face of climate change; 5) Adaptations made to short term climate variability may reduce the flexibility of the system in the long term; and 6) Adaptive actions may shift vulnerabilities to other parts of the system or to other people. Instead we suggest that decision makers faced with choices to adapt to climate change must consider the dynamics of vulnerability in a connected system-- how choices made in one part of the system might impact other valued outcomes or even create new vulnerabilities. Furthermore we suggest that rather than expressing climate change adaptation as an extension of adaptation to climate variability, the research and practice communities would do well to articulate adaptation as an imperfect policy, with tradeoffs and consequences and that decisions be prioritized to preserve flexibility be revisited often as climate change unfolds. We then present the results of a number of empirical studies of decision making for drought in urban water systems in the United States to understand: a) the variety of actions taken; b) the limitations of actions available to water managers; and c) the effectiveness of actions taken to date. Time permitting, we briefly present the results of 3 in-depth case studies of drought response and current perception of preparedness with respect to future drought and climate change among urban water system managers. We examine the role of governance, system connectivity, public perceptions and other factors in driving decision making and outcomes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..296G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..296G"><span>The role of climate variability in extreme floods in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guimarães Nobre, Gabriela; Aerts, Jeroen C. J. H.; Jongman, Brenden; Ward, Philip J.</p> <p>2017-04-01</p> <p>Between 1980 and 2015, Europe experienced 18% of worldwide weather-related loss events, which accounted for over US500 billion in damage. Consequently, it is urgent to further develop adaptation strategies to mitigate the consequences of weather-related disasters, such as floods. Europe's capability to prepare for such disasters is challenged by a large range of uncertainties and a limited understanding of the driving forces of hydrometeorological hazards. One of the major sources of uncertainty is the relationship between climate variability and weather-related losses. Previous studies show that climate variability drives temporal changes in hydrometereological variables in Europe. However, their influence on flood risk has received little attention. We investigated the influence of the positive and negative phases of El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO), on the seasonal frequency and intensity of extreme rainfall, and anomalies in flood occurrence and damage compared to the neutral phases of the indices of climate variability. Using statistical methods to analyze relationships between the indices of climate variability and four indicators of flooding, we found that positive and negative phases of NAO and AO are associated with more (or less) frequent and intense seasonal extreme rainfall over large areas of Europe. The relationship between ENSO and both the occurrence of extreme rainfall and intensity of extreme rainfall in Europe is much smaller than the relationship with NAO or AO, but still significant in some regions. We observe that flood damage and flood occurrence have strong links with climate variability, especially in southern and eastern Europe. Therefore, when investigating flooding across Europe, all three indices of climate variability should be considered. Seasonal forecasting of flooding could be enhanced by the inclusion of climate variability indicators .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMPP41B1450V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMPP41B1450V"><span>Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.</p> <p>2008-12-01</p> <p>The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to high latitude climate variability exerted widespread influence across the African continent. In northern and western tropical Africa these drought episodes accentuated the late- Holocene drying trend; in southern tropical Africa they mitigated or aborted the trend to increasing monsoon rainfall prescribed by SH insolation forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1121G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1121G"><span>Integrated assessment in the Mediterranean: the CIRCE case studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodess, C. M.; Agnew, M. D.; Hemming, D.; Giannakopoulos, C.</p> <p>2012-04-01</p> <p>The heterogeneous nature of the Mediterranean environment, combined with a wide diversity of economic, social and cultural identities, make this region particularly amenable to integrated research on climate change impacts, vulnerabilities, and adaptive response. Within the framework of the EU FP7 CIRCE project, eleven case-study locations were selected to reflect three generic environments (urban, rural and coastal), to quantify current and future climate change and to assess the potential consequences to human communities and ecosystems at the regional to local scale. The case studies (Athens, Beirut, Alexandria, Tuscany, Apulia, Tel Hadya, Judean Foothills, Gulf of Valencia, Gulf of Oran, Gulf of Gabes, West Nile Delta) were chosen to reflect the east-west and north-south contrasts across the Mediterranean, using common selection criteria. A rigorous common framework, referred to as the CIRCE Case studies Integrating Framework was developed to facilitate a structured and systematic basis for identifying and selecting indicators. Within this framework, climate dynamics is viewed as a key driver of changes in social and biogeophysical systems and is modulated by the inherent dynamics of these systems. The top-down, indicator-based approach was complemented by a bottom-up approach involving local and regional stakeholders. A participatory level of involvement was aimed for, with stakeholder dialogue on an informal basis throughout the project, culminating in a series of more formal regional stakeholder workshops. Identification and construction of physical and socio-economic indicators was the most challenging and time-consuming aspect of the case-study work. A detailed set of selection criteria was defined and the process of reviewing and refining indicators was iterative. Nonetheless, a number of data and methodological challenges were encountered. Despite these issues, indicator linkages diagrams provided a useful preparatory stage for structuring the integrated assessment for each case study. In the first and major assessment stage, impacts and vulnerability due to exposure to hazards associated with current and recent climate variability and change were explored using observed data. This then provided the context for considering future changes. The latter work was based on climate projections derived from the CIRCE global and regional climate model simulations which have the main novel characteristic of incorporating coupling between the Mediterranean Sea and atmosphere. Natural and human systems in all eleven case studies were found to be vulnerable to current climate variability and change as well as to social dynamics or drivers. The climate projections of increases in mean and extreme high temperature and decreases in precipitation are considered to be robust, although there is uncertainty with regards to the magnitude of change. They indicate that all case studies will experience continuing and increasing vulnerability to climate change in the absence of mitigation or adaptation. Projections for other extreme weather events, such as heavy precipitation and flooding, are highly uncertain, but any increase in such events would further increase vulnerability. At the same time, social dynamics and drivers such as population growth (at least in the short term and in the southern Mediterranean) are likely to further increase vulnerability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49628','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49628"><span>Selecting climate change scenarios using impact-relevant sensitivities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Julie A. Vano; John B. Kim; David E. Rupp; Philip W. Mote</p> <p>2015-01-01</p> <p>Climate impact studies often require the selection of a small number of climate scenarios. Ideally, a subset would have simulations that both (1) appropriately represent the range of possible futures for the variable/s most important to the impact under investigation and (2) come from global climate models (GCMs) that provide plausible results for future climate in the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC22C..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC22C..01C"><span>Climate and Southern Africa's Water-Energy-Food Nexus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conway, D.; Osborn, T.; Dorling, S.; Ringler, C.; Lankford, B.; Dalin, C.; Thurlow, J.; Zhu, T.; Deryng, D.; Landman, W.; Archer van Garderen, E.; Krueger, T.; Lebek, K.</p> <p>2014-12-01</p> <p>Numerous challenges coalesce to make Southern Africa emblematic of the connections between climate and the water-energy-food nexus. Rainfall and river flows in the region show high levels of variability across a range of spatial and temporal scales. Physical and socioeconomic exposure to climate variability and change is high, for example, the contribution of electricity produced from hydroelectric sources is over 30% in Madagascar and Zimbabwe and almost 100% in the DRC, Lesotho, Malawi, and Zambia. The region's economy is closely linked with that of the rest of the African continent and climate-sensitive food products are an important item of trade. Southern Africa's population is concentrated in regions exposed to high levels of hydro-meteorological variability, and will increase rapidly over the next four decades. The capacity to manage the effects of climate variability tends, however, to be low. Moreover, with climate change annual precipitation levels, soil moisture and runoff are likely to decrease and rising temperatures will increase evaporative demand. Despite high levels of hydro-meteorological variability, the sectoral and cross-sectoral water-energy-food linkages with climate in Southern Africa have not been considered in detail. Lack of data and questionable reliability are compounded by complex dynamic relationships. We review the role of climate in Southern Africa's nexus, complemented by empirical analysis of national level data on climate, water resources, crop and energy production, and economic activity. Our aim is to examine the role of climate variability as a driver of production fluctuations in the nexus, and to improve understanding of the magnitude and temporal dimensions of their interactions. We first consider national level exposure of food, water and energy production to climate in aggregate economic terms and then examine the linkages between interannual and multi-year climate variability and economic activity, focusing on food and hydropower production. We then review the potential for connecting areas with robust seasonal climate forecasting skill with key precursors of economic output and conclude by identifying knowledge gaps in our understanding of regional and national economic linkages in the climate and water-energy-food nexus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PalOc..31..286K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PalOc..31..286K"><span>Testing competing forms of the Milankovitch hypothesis: A multivariate approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaufmann, Robert K.; Juselius, Katarina</p> <p>2016-02-01</p> <p>We test competing forms of the Milankovitch hypothesis by estimating the coefficients and diagnostic statistics for a cointegrated vector autoregressive model that includes 10 climate variables and four exogenous variables for solar insolation. The estimates are consistent with the physical mechanisms postulated to drive glacial cycles. They show that the climate variables are driven partly by solar insolation, determining the timing and magnitude of glaciations and terminations, and partly by internal feedback dynamics, pushing the climate variables away from equilibrium. We argue that the latter is consistent with a weak form of the Milankovitch hypothesis and that it should be restated as follows: internal climate dynamics impose perturbations on glacial cycles that are driven by solar insolation. Our results show that these perturbations are likely caused by slow adjustment between land ice volume and solar insolation. The estimated adjustment dynamics show that solar insolation affects an array of climate variables other than ice volume, each at a unique rate. This implies that previous efforts to test the strong form of the Milankovitch hypothesis by examining the relationship between solar insolation and a single climate variable are likely to suffer from omitted variable bias.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GPC...123...86A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GPC...123...86A"><span>Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, AD 1907-2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amann, Benjamin; Lobsiger, Simon; Fischer, Daniela; Tylmann, Wojciech; Bonk, Alicja; Filipiak, Janusz; Grosjean, Martin</p> <p>2014-12-01</p> <p>Varved lake sediments are excellent natural archives providing quantitative insights into climatic and environmental changes at very high resolution and chronological accuracy. However, due to the multitude of responses within lake ecosystems it is often difficult to understand how climate variability interacts with other environmental pressures such as eutrophication, and to attribute observed changes to specific causes. This is particularly challenging during the past 100 years when multiple strong trends are superposed. Here we present a high-resolution multi-proxy record of sedimentary pigments and other biogeochemical data from the varved sediments of Lake Żabińskie (Masurian Lake District, north-eastern Poland, 54°N-22°E, 120 m a.s.l.) spanning AD 1907 to 2008. Lake Żabińskie exhibits biogeochemical varves with highly organic late summer and winter layers separated by white layers of endogenous calcite precipitated in early summer. The aim of our study is to investigate whether climate-driven changes and anthropogenic changes can be separated in a multi-proxy sediment data set, and to explore which sediment proxies are potentially suitable for long quantitative climate reconstructions. We also test if convoluted analytical techniques (e.g. HPLC) can be substituted by rapid scanning techniques (visible reflectance spectroscopy VIS-RS; 380-730 nm). We used principal component analysis and cluster analysis to show that the recent eutrophication of Lake Żabińskie can be discriminated from climate-driven changes for the period AD 1907-2008. The eutrophication signal (PC1 = 46.4%; TOC, TN, TS, Phe-b, high TC/CD ratios total carotenoids/chlorophyll-a derivatives) is mainly expressed as increasing aquatic primary production, increasing hypolimnetic anoxia and a change in the algal community from green algae to blue-green algae. The proxies diagnostic for eutrophication show a smooth positive trend between 1907 and ca 1980 followed by a very rapid increase from ca. 1980 ± 2 onwards. We demonstrate that PC2 (24.4%, Chl-a-related pigments) is not affected by the eutrophication signal, but instead is sensitive to spring (MAM) temperature (r = 0.63, pcorr < 0.05, RMSEP = 0.56 °C; 5-yr filtered). Limnological monitoring data (2011-2013) support this finding. We also demonstrate that scanning visible reflectance spectroscopy (VIS-RS) data can be calibrated to HPLC-measured chloropigment data and be used to infer concentrations of sedimentary Chl-a derivatives {pheophytin a + pyropheophytin a}. This offers the possibility for very high-resolution (multi)millennial-long paleoenvironmental reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/24360','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/24360"><span>The implications of climate change on pavement performance and design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-09-25</p> <p>Pavements are designed based on historic climatic patterns, reflecting local climate and : incorporating assumptions about a reasonable range of temperatures and precipitation levels. : Given anticipated climate changes and the inherent uncertainty a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JApMe..44.1655G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JApMe..44.1655G"><span>Climate Variability and Sugarcane Yield in Louisiana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenland, David</p> <p>2005-11-01</p> <p>This paper seeks to understand the role that climate variability has on annual yield of sugarcane in Louisiana. Unique features of sugarcane growth in Louisiana and nonclimatic, yield-influencing factors make this goal an interesting and challenging one. Several methods of seeking and establishing the relations between yield and climate variables are employed. First, yield climate relations were investigated at a single research station where crop variety and growing conditions could be held constant and yield relations could be established between a predominant older crop variety and a newer one. Interviews with crop experts and a literature survey were used to identify potential climatic factors that control yield. A statistical analysis was performed using statewide yield data from the American Sugar Cane League from 1963 to 2002 and a climate database. Yield values for later years were adjusted downward to form an adjusted yield dataset. The climate database was principally constructed from daily and monthly values of maximum and minimum temperature and daily and monthly total precipitation for six cooperative weather-reporting stations representative of the area of sugarcane production. The influence of 74 different, though not independent, climate-related variables on sugarcane yield was investigated. The fact that a climate signal exists is demonstrated by comparing mean values of the climate variables corresponding to the upper and lower third of adjusted yield values. Most of these mean-value differences show an intuitively plausible difference between the high- and low-yield years. The difference between means of the climate variables for years corresponding to the upper and lower third of annual yield values for 13 of the variables is statistically significant at or above the 90% level. A correlation matrix was used to identify the variables that had the largest influence on annual yield. Four variables [called here critical climatic variables (CCV)], mean maximum August temperature, mean minimum February temperature, soil water surplus between April and September, and occurrence of autumn (fall) hurricanes, were built into a model to simulate adjusted yield values. The CCV model simulates the yield value with an rmse of 5.1 t ha-1. The mean of the adjusted yield data over the study period was 60.4 t ha-1, with values for the highest and lowest years being 73.1 and 50.6 t ha-1, respectively, and a standard deviation of 5.9 t ha-1. Presumably because of the almost constant high water table and soil water availability, higher precipitation totals, which are inversely related to radiation and temperature, tend to have a negative effect on the yields. Past trends in the values of critical climatic variables and general projections of future climate suggest that, with respect to the climatic environment and as long as land drainage is continued and maintained, future levels of sugarcane yield will rise in Louisiana.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>