Zhang, Liwen; Vander Meer, Lisette; Opmeer, Esther M; Marsman, Jan-Bernard C; Ruhé, Henricus G; Aleman, André
2016-12-01
Disturbances in implicit self-processing have been reported both in psychotic patients with bipolar disorder (BD) and schizophrenia. It remains unclear whether these two psychotic disorders show disturbed functional connectivity during explicit self-reflection, which is associated with social functioning and illness symptoms. Therefore, we investigated functional connectivity during explicit self-reflection in BD with past psychosis and schizophrenia. Twenty-three BD-patients, 17 schizophrenia-patients and 21 health controls (HC) performed a self-reflection task, including the conditions self-reflection, close other-reflection and semantic control. Functional connectivity was investigated with generalized psycho-physiological interaction (gPPI). During self-reflection compared to semantic, BD-patients had decreased connectivity between several cortical-midline structures (CMS) nodes (i.e., anterior cingulate cortex, ventromedial prefrontal cortex), the insula and the head of the caudate while HC showed increased connectivities. Schizophrenia-patients, during close other-reflection compared to semantic, demonstrated reduced ventral-anterior insula-precuneus/posterior cingulate cortex (PCC) functional connectivity, whereas this was increased in HC. There were no differences between BD and schizophrenia during self- and close other-reflection. We propose that decreased functional connectivity between the CMS nodes/insula and head of the caudate in BD-patients may imply a reduced involvement of the motivational system during self-reflection; and the reduced functional connectivity between the ventral-anterior insula and precuneus/PCC during close other-reflection in schizophrenia-patients may subserve difficulties in information integration of autobiographical memory and emotional awareness in relation to close others. These distinctive impaired patterns of functional connectivity in BD and schizophrenia (compared to HC) deserve further investigation to determine their robustness and associations with differences in clinical presentation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing
2013-01-01
Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from −12.67% to 36.30% for the red reflectance, −8.52% to −0.23% for the NIR reflectance, and −9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences than did the other sensors with respect to MODIS. A series of optimum models were presented for remote sensing data assimilation between MODIS and other sensors. PMID:24287529
Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing
2013-11-26
Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences than did the other sensors with respect to MODIS. A series of optimum models were presented for remote sensing data assimilation between MODIS and other sensors.
Floristic composition and across-track reflectance gradient in Landsat images over Amazonian forests
NASA Astrophysics Data System (ADS)
Muro, Javier; doninck, Jasper Van; Tuomisto, Hanna; Higgins, Mark A.; Moulatlet, Gabriel M.; Ruokolainen, Kalle
2016-09-01
Remotely sensed image interpretation or classification of tropical forests can be severely hampered by the effects of the bidirectional reflection distribution function (BRDF). Even for narrow swath sensors like Landsat TM/ETM+, the influence of reflectance anisotropy can be sufficiently strong to introduce a cross-track reflectance gradient. If the BRDF could be assumed to be linear for the limited swath of Landsat, it would be possible to remove this gradient during image preprocessing using a simple empirical method. However, the existence of natural gradients in reflectance caused by spatial variation in floristic composition of the forest can restrict the applicability of such simple corrections. Here we use floristic information over Peruvian and Brazilian Amazonia acquired through field surveys, complemented with information from geological maps, to investigate the interaction of real floristic gradients and the effect of reflectance anisotropy on the observed reflectances in Landsat data. In addition, we test the assumption of linearity of the BRDF for a limited swath width, and whether different primary non-inundated forest types are characterized by different magnitudes of the directional reflectance gradient. Our results show that a linear function is adequate to empirically correct for view angle effects, and that the magnitude of the across-track reflectance gradient is independent of floristic composition in the non-inundated forests we studied. This makes a routine correction of view angle effects possible. However, floristic variation complicates the issue, because different forest types have different mean reflectances. This must be taken into account when deriving the correction function in order to avoid eliminating natural gradients.
NASA Astrophysics Data System (ADS)
Sallah, M.
2014-03-01
The problem of monoenergetic radiative transfer in a finite planar stochastic atmospheric medium with polarized (vector) Rayleigh scattering is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity and transmissivity, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. Pomraning-Eddington approximation is used, at first, to obtain the deterministic analytical solution for both the total intensity and the difference function used to describe the polarized radiation. The problem is treated with specular reflecting boundaries and angular-dependent externally incident flux upon the medium from one side and with no flux from the other side. For the sake of comparison, two different forms of the weight function, which introduced to force the boundary conditions to be fulfilled, are used. Numerical results of the average reflectivity and average transmissivity are obtained for both Gaussian and modified Gaussian probability density functions at the different degrees of polarization.
Expression of the degree of polarization based on the geometrical optics pBRDF model.
Wang, Kai; Zhu, Jingping; Liu, Hong; Du, Bingzheng
2017-02-01
An expression of the degree of polarization (DOP) based on the geometrical optics polarimetric bidirectional reflectance distribution function model is presented. In this expression, the DOP is related to the surface roughness and decreases at different reflection angles because diffuse reflection is taken into consideration. A shadowing/masking function introduced into the specular reflection expression makes the DOP values decrease as the angle of incidence or observation approaches grazing. Different kinds of materials were measured to validate the accuracy of this DOP expression. The measured results suggest that the errors of the DOP are reduced significantly, and the polarized reflection characteristics can be described more reasonably and accurately.
Replacing backscattering with reduced scattering. A better formulation of reflectance function?
NASA Astrophysics Data System (ADS)
Piskozub, Jacek; McKee, David; Freda, Wlodzimierz
2014-05-01
Modern reflectance formulas all involve backscattering coefficient divided by absorption coefficient (bb/a). The backscattering (or backward scattering) coefficient describes how much of the incident radiation is scattered at angles between 90 and 180 deg. However, water leaving photons are not necessarily backscattered because it is possible for a variable fraction to exit after multiple forward scattering events. Therefore the whole angular function of scattering probability (phase function) influences the reflectance signal. This is the reason why phase functions of identical backscattering ratio may result in different reflectance values, contrary to the universally used formula. This creates the question whether there may exist a better formula using a parameter better describing phase function shape than backscattering ratio. The asymmetry parameter g (the average scattering cosine) is commonly used to parametrize phase functions. A replacement for backscattering should decrease with increasing g. Therefore, the simplest candidate to replace backscattering has the form of b(1-g), where b is the scattering coefficient. Such a parameter is well known in biomedical optics under the name of reduced scattering (sometimes transport scattering). It has even been used in parametrizing reflectance in (highly turbid) human tissues. However no attempt has been made to check its usefulness in marine optics. We perform Monte Carlo radiative transfer calculations of reflectance for multiple combinations of inherent optical properties, including different phase functions. The results are used to create a new reflectance formula as a function of reduced scattering and absorption and test its robustness to changes in phase function shape compared to the traditional bb/a formula. We discuss its usefulness as well as advantages and disadvantages compared to the traditional formulation.
A functional-dynamic reflection on participatory processes in modeling projects.
Seidl, Roman
2015-12-01
The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.
Angular dependance of spectral reflection for different materials
NASA Astrophysics Data System (ADS)
Kiefer, Pascal M.
2017-10-01
Parameters like the sun angle as well as the measurement angle mostly are not taken into account when simulating because their influence on the reflectivity is weak. Therefore the impact of a changing measurement and illumination angle on the reflectivity is investigated. Furthermore the impact of humidity and chlorophyll in the scenery is studied by analyzing reflectance spectra of different vegetative background areas. It is shown that the measurement as well as the illumination angle has an important influence on the absolute reflection values which raises the importance of measurements of the bidirectional reflectance distribution function (BRDF).
Comparison of dose response functions for EBT3 model GafChromic™ film dosimetry system.
Aldelaijan, Saad; Devic, Slobodan
2018-05-01
Different dose response functions of EBT3 model GafChromic™ film dosimetry system have been compared in terms of sensitivity as well as uncertainty vs. error analysis. We also made an assessment of the necessity of scanning film pieces before and after irradiation. Pieces of EBT3 film model were irradiated to different dose values in Solid Water (SW) phantom. Based on images scanned in both reflection and transmission mode before and after irradiation, twelve different response functions were calculated. For every response function, a reference radiochromic film dosimetry system was established by generating calibration curve and by performing the error vs. uncertainty analysis. Response functions using pixel values from the green channel demonstrated the highest sensitivity in both transmission and reflection mode. All functions were successfully fitted with rational functional form, and provided an overall one-sigma uncertainty of better than 2% for doses above 2 Gy. Use of pre-scanned images to calculate response functions resulted in negligible improvement in dose measurement accuracy. Although reflection scanning mode provides higher sensitivity and could lead to a more widespread use of radiochromic film dosimetry, it has fairly limited dose range and slightly increased uncertainty when compared to transmission scan based response functions. Double-scanning technique, either in transmission or reflection mode, shows negligible improvement in dose accuracy as well as a negligible increase in dose uncertainty. Normalized pixel value of the images scanned in transmission mode shows linear response in a dose range of up to 11 Gy. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Terahertz reflection interferometry for automobile paint layer thickness measurement
NASA Astrophysics Data System (ADS)
Rahman, Aunik; Tator, Kenneth; Rahman, Anis
2015-05-01
Non-destructive terahertz reflection interferometry offers many advantages for sub-surface inspection such as interrogation of hidden defects and measurement of layers' thicknesses. Here, we describe a terahertz reflection interferometry (TRI) technique for non-contact measurement of paint panels where the paint is comprised of different layers of primer, basecoat, topcoat and clearcoat. Terahertz interferograms were generated by reflection from different layers of paints on a metallic substrate. These interferograms' peak spacing arising from the delay-time response of respective layers, allow one to model the thicknesses of the constituent layers. Interferograms generated at different incident angles show that the interferograms are more pronounced at certain angles than others. This "optimum" angle is also a function of different paint and substrate combinations. An automated angular scanning algorithm helps visualizing the evolution of the interferograms as a function of incident angle and also enables the identification of optimum reflection angle for a given paint-substrate combination. Additionally, scanning at different points on a substrate reveals that there are observable variations from one point to another of the same sample over its entire surface area. This ability may be used as a quality control tool for in-situ inspection in a production line. Keywords: Terahertz reflective interferometry, Paint and coating layers, Non-destructive
Dimaggio, Giancarlo; Vanheule, Stijn; Lysaker, Paul H; Carcione, Antonino; Nicolò, Giuseppe
2009-09-01
Self-reflection plays a key role in healthy human adaptation. Self-reflection might involve different capacities which may be impaired to different degrees relatively independently of one another. Variation in abilities for different forms of self-reflection are commonly seen as key aspects of many adult mental disorders. Yet little has been written about whether there are different kinds of deficits in self-reflection found in mental illness, how those deficits should be distinguished from one another and how to characterize the extent to which they are interrelated. We review clinical and experimental literature and suggest four different forms of deficits in self-reflection: (a) sense of ownership of one's own thoughts and actions, (b) emotional awareness, (c) distinction between fantasy and reality and (d) the integration of a range of different views of oneself and others. We propose how these different impairments in self-reflection are linked with one another.
Spatial Assessment of Forest Ecosystem Functions and Services using Human Relating Factors for SDG
NASA Astrophysics Data System (ADS)
Song, C.; Lee, W. K.; Jeon, S. W.; Kim, T.; Lim, C. H.
2015-12-01
Application of ecosystem service concept in environmental related decision making could be numerical and objective standard for policy maker between preserving and developing perspective of environment. However, pursuing maximum benefit from natural capital through ecosystem services caused failure by losing ecosystem functions through its trade-offs. Therefore, difference between ecosystem functions and services were demonstrated and would apply human relating perspectives. Assessment results of ecosystem functions and services can be divided 3 parts. Tree growth per year set as the ecosystem function factor and indicated through so called pure function map. After that, relating functions can be driven such as water conservation, air pollutant purification, climate change regulation, and timber production. Overall process and amount are numerically quantified. These functional results can be transferred to ecosystem services by multiplying economic unit value, so function reflecting service maps can be generated. On the other hand, above services, to implement more reliable human demand, human reflecting service maps are also be developed. As the validation, quantified ecosystem functions are compared with former results through pixel based analysis. Three maps are compared, and through comparing difference between ecosystem function and services and inversed trends in function based and human based service are analysed. In this study, we could find differences in PF, FRS, and HRS in relation to based ecosystem conditions. This study suggests that the differences in PF, FRS, and HRS should be understood in the decision making process for sustainable management of ecosystem services. Although the analysis is based on in sort existing process separation, it is important to consider the possibility of different usage of ecosystem function assessment results and ecosystem service assessment results in SDG policy making. Furthermore, process based functional approach can suggest environmental information which is reflected the other kinds of perspective.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J. (Principal Investigator)
1982-01-01
Snow reflectance in all 6 TM reflective bands, i.e., 1, 2, 3, 4, 5, and 7 was simulated using a delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. It appears that the TM filters resemble a ""square-wave'' closely enough that a square-wave can be assumed in calculations. Integrated band reflectance over the actual response functions was calculated using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible. Tables are given which show (1) sensor saturation radiance as a percentage of the solar constant, integrated through the band response function; (2) comparisons of integrations through the sensor response function with integrations over the equivalent square wave; and (3) calculations of integrated reflectance for snow over all reflective TM bands, and water and ice clouds with thickness of 1 mm water equivalent over TM bands 5 and 7. These calculations look encouraging for snow/cloud discrimination with TM bands 5 and 7.
Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten
2011-06-01
A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.
Changes in reflectance anisotropy of wheat crop during different phenophases
NASA Astrophysics Data System (ADS)
Lunagaria, Manoj M.; Patel, Haridas R.
2017-04-01
The canopy structure of wheat changes significantly with growth stages and leads to changes in reflectance anisotropy. Bidirectional reflectance distribution function characterises the reflectance anisotropy of the targets, which can be approximated. Spectrodirectional reflectance measurements on wheat crop were acquired using a field goniometer system. The bidirectional reflectance spectra were acquired at 54 view angles to cover the hemispheric span up to 60° view zenith. The observations were made during early growth stages till maturity of the crop. The anisotropy was not constant for all wavelengths and anisotropic factors clearly revealed spectral dependence, which was more pronounced in near principal plane. In near infrared, wheat canopy expressed less reflectance anisotropy because of higher multiple scattering. The broad hotspot signature was noticeable in reflectance of canopy whenever view and solar angles were close. Distinct changes in bidirectional reflectance distribution function were observed during booting to flowering stages as the canopy achieves more uniformity, height and head emergence. The function clearly reveals bowl shape during heading to early milking growth stages of the crop. Late growth stages show less prominent gap and shadow effects. Anisotropy index revealed that wheat exhibits changes in reflectance anisotropy with phenological development and with spectral bands.
Affect integration and reflective function: clarification of central conceptual issues.
Solbakken, Ole André; Hansen, Roger Sandvik; Monsen, Jon Trygve
2011-07-01
The importance of affect regulation, modulation or integration for higher-order reflection and adequate functioning is increasingly emphasized across different therapeutic approaches and theories of change. These processes are probably central to any psychotherapeutic endeavor, whether explicitly conceptualized or not, and in recent years a number of therapeutic approaches have been developed that explicitly target them as a primary area of change. However, there still is important lack of clarity in the field regarding the understanding and operationalization of affect integration, particularly when it comes to specifying underlying mechanisms, the significance of different affect states, and the establishment of operational criteria for measurement. The conceptual relationship between affect integration and reflective function thus remains ambiguous. The present article addresses these topics, indicating ways in which a more complex and exhaustive understanding of integration of affect, cognition and behavior can be attained.
Russo, Cesare; Jin, Zhezhen; Palmieri, Vittorio; Homma, Shunichi; Rundek, Tatjana; Elkind, Mitchell S V; Sacco, Ralph L; Di Tullio, Marco R
2012-08-01
Increased arterial stiffness and wave reflection have been reported in heart failure with normal ejection fraction (HFNEF) and in asymptomatic left ventricular (LV) diastolic dysfunction, a precursor of HFNEF. It is unclear whether women, who have higher frequency of HFNEF, are more vulnerable than men to the deleterious effects of arterial stiffness on LV diastolic function. We investigated, in a large community-based cohort, whether sex differences exist in the relationship among arterial stiffness, wave reflection, and LV diastolic function. Arterial stiffness and wave reflection were assessed in 983 participants from the Cardiovascular Abnormalities and Brain Lesions study using applanation tonometry. The central pulse pressure/stroke volume index, total arterial compliance, pulse pressure amplification, and augmentation index were used as parameters of arterial stiffness and wave reflection. LV diastolic function was evaluated by 2-dimensional echocardiography and tissue-Doppler imaging. Arterial stiffness and wave reflection were greater in women compared with men, independent of body size and heart rate (all P<0.01), and showed inverse relationships with parameters of diastolic function in both sexes. Further adjustment for cardiovascular risk factors attenuated these relationships; however, a higher central pulse pressure/stroke volume index predicted LV diastolic dysfunction in women (odds ratio, 1.54; 95% confidence intervals, 1.03 to 2.30) and men (odds ratio, 2.09; 95% confidence interval, 1.30 to 3.39), independent of other risk factors. In conclusion, in our community-based cohort study, higher arterial stiffness was associated with worse LV diastolic function in men and women. Women's higher arterial stiffness, independent of body size, may contribute to their greater susceptibility to develop HFNEF.
Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/
NASA Technical Reports Server (NTRS)
Smith, S. M.
1981-01-01
A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.
Opposing Oxytocin Effects on Intergroup Cooperative Behavior in Intuitive and Reflective Minds.
Ma, Yina; Liu, Yi; Rand, David G; Heatherton, Todd F; Han, Shihui
2015-09-01
People often favor ingroup over outgroup members when choosing to cooperate. Such ingroup-favored cooperation is promoted by oxytocin-a neuropeptide shown to facilitate social cognition and that has emerged as a pharmacological target for treatments of social functioning deficits. The current study applied a dual-process model to investigate whether and how intuitive and reflective cognitive styles affect the oxytocin-motivated ingroup favoritism in cooperation. We examined oxytocin effects on ingroup favoritism in a double-blind, placebo-controlled between-subjects design where cognitive processing (intuition vs reflection) was experimentally manipulated in healthy Chinese males (n=150). We also supplemented this experimental manipulation with an individual difference analysis by assessing participants' inclination toward intuition or reflection in daily life. Intranasal administration of oxytocin (vs placebo) increased ingroup favoritism among participants primed to be intuitive or those who preferred intuition in daily life. In contrast, oxytocin decreased ingroup favoritism in participants primed to rely on reflective thinking or those who preferred reflective decision-making in daily life. Our results demonstrate that oxytocin has distinct functional roles when different cognitive styles (ie, intuition vs reflection) are promoted during social cooperation in a group situation. Our findings have implications for oxytocin pharmacotherapy of social dysfunction in that whether the effects of oxytocin on social functioning are facilitative, debilitative, or null, depends on an individual's cognitive style.
Opposing Oxytocin Effects on Intergroup Cooperative Behavior in Intuitive and Reflective Minds
Ma, Yina; Liu, Yi; Rand, David G; Heatherton, Todd F; Han, Shihui
2015-01-01
People often favor ingroup over outgroup members when choosing to cooperate. Such ingroup-favored cooperation is promoted by oxytocin—a neuropeptide shown to facilitate social cognition and that has emerged as a pharmacological target for treatments of social functioning deficits. The current study applied a dual-process model to investigate whether and how intuitive and reflective cognitive styles affect the oxytocin-motivated ingroup favoritism in cooperation. We examined oxytocin effects on ingroup favoritism in a double-blind, placebo-controlled between-subjects design where cognitive processing (intuition vs reflection) was experimentally manipulated in healthy Chinese males (n=150). We also supplemented this experimental manipulation with an individual difference analysis by assessing participants' inclination toward intuition or reflection in daily life. Intranasal administration of oxytocin (vs placebo) increased ingroup favoritism among participants primed to be intuitive or those who preferred intuition in daily life. In contrast, oxytocin decreased ingroup favoritism in participants primed to rely on reflective thinking or those who preferred reflective decision-making in daily life. Our results demonstrate that oxytocin has distinct functional roles when different cognitive styles (ie, intuition vs reflection) are promoted during social cooperation in a group situation. Our findings have implications for oxytocin pharmacotherapy of social dysfunction in that whether the effects of oxytocin on social functioning are facilitative, debilitative, or null, depends on an individual's cognitive style. PMID:25807529
Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori
2017-11-28
Recent advances in nanofabrication techniques are opening new frontiers in holographic devices, with the capability to integrate various optical functions in a single device. However, while most efficient holograms are achieved in reflection-mode configurations, they are in general opaque because of the reflective substrate that must be used, and therefore, have limited applicability. Here, we present a semi-transparent, reflective computer-generated hologram that is circularly-polarization dependent, and reconstructs different wavefronts when viewed from different sides. The integrated functionality is realized using a single thin-film of liquid crystal with a self-organized helical structure that Bragg reflects circularly-polarized light over a certain band of wavelengths. Asymmetry depending on the viewing side is achieved by exploiting the limited penetration depth of light in the helical structure as well as the nature of liquid crystals to conform to different orientational patterns imprinted on the two substrates sandwiching the material. Also, because the operation wavelength is determined by the reflection band position, pseudo-color holograms can be made by simply stacking layers with different designs. The unique characteristics of this hologram may find applications in polarization-encoded security holograms and see-through holographic signage where different information need to be displayed depending on the viewing direction.
Verheijen, Lieneke M; Aerts, Rien; Bönisch, Gerhard; Kattge, Jens; Van Bodegom, Peter M
2016-01-01
Plant functional types (PFTs) aggregate the variety of plant species into a small number of functionally different classes. We examined to what extent plant traits, which reflect species' functional adaptations, can capture functional differences between predefined PFTs and which traits optimally describe these differences. We applied Gaussian kernel density estimation to determine probability density functions for individual PFTs in an n-dimensional trait space and compared predicted PFTs with observed PFTs. All possible combinations of 1-6 traits from a database with 18 different traits (total of 18 287 species) were tested. A variety of trait sets had approximately similar performance, and 4-5 traits were sufficient to classify up to 85% of the species into PFTs correctly, whereas this was 80% for a bioclimatically defined tree PFT classification. Well-performing trait sets included combinations of correlated traits that are considered functionally redundant within a single plant strategy. This analysis quantitatively demonstrates how structural differences between PFTs are reflected in functional differences described by particular traits. Differentiation between PFTs is possible despite large overlap in plant strategies and traits, showing that PFTs are differently positioned in multidimensional trait space. This study therefore provides the foundation for important applications for predictive ecology. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves.
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-03-22
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-01-01
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206
Sealy, Julie; Glovinsky, Ira P
2016-01-01
This randomized controlled trial examined the reflective functioning capacities of caregivers who have a child with a neurodevelopmental disorder between the ages of 2 years 0 months and 6 years 11 months. Children with a neurodevelopmental disorder receive a range of diagnoses, including sutism; however, they all exhibit social communication challenges that can derail social relationships. Forty parent-child dyads in Barbados were randomly assigned to either a developmental individual-difference, relationship-based/floortime(DIR/FT) group (n = 20), or a psychoeducational (wait-list) group (n = 20) with parental reflective functioning measured before and after a 12-week DIR/FT treatment intervention. Results revealed significant gains in parental reflective functioning in the treatment group, as compared to the psychoeducational (wait-list) group, after the 12-week relationship-focused intervention. © 2016 Michigan Association for Infant Mental Health.
A functional equation for the specular reflection of rays.
Le Bot, A
2002-10-01
This paper aims to generalize the "radiosity method" when applied to specular reflection. Within the field of thermics, the radiosity method is also called the "standard procedure." The integral equation for incident energy, which is usually derived for diffuse reflection, is replaced by a more appropriate functional equation. The latter is used to solve some specific problems and it is shown that all the classical features of specular reflection, for example, the existence of image sources, are embodied within this equation. This equation can be solved with the ray-tracing technique, despite the implemented mathematics being quite different. Several interesting features of the energy field are presented.
Gao, Hui; Gao, Jun; Wang, Ling-mei; Wang, Chi
2016-03-01
To satisfy the demand of multilayer films on polarization detection, polarized bidirectional reflectance distribution function of multilayer films on slightly rough substrate is established on the basis of first-order vector perturbation theory and polarization transfer matrix. Due to the function, light scattering polarization properties are studied under multi-factor impacts of two typical targets-monolayer anti-reflection film and multilayer high-reflection films. The result shows that for monolayer anti-reflection film, observing positions have a great influence on the degree of polarization, for the left of the peak increased and right decreased compared with the substrate target. Film target and bare substrate can be distinguished by the degree of polarization in different observation angles. For multilayer high-reflection films, the degree of polarization is significantly associated with the number and optical thickness of layers at different wavelengths of incident light and scattering angles. With the increase of the layer number, the degree of polarization near the mirror reflection area decreases. It reveals that the calculated results coincide with the experimental data, which validates the correctness and rationality of the model. This paper provides a theoretical method for polarization detection of multilayer films target and reflection stealth technology.
ERIC Educational Resources Information Center
Vandana, V. P.
2007-01-01
There are very few acoustic studies reflecting on the localization of speech function within the different loci of the cerebellum. Task based performance profile of subjects with lesion in different cerebellar loci is not reported. Also, the findings on nonfocal cerebellar lesions cannot be generalized to lesions restricted to the cerebellum.…
Cooke, Michael A; Peters, Emmanuelle R; Fannon, Dominic; Aasen, Ingrid; Kuipers, Elizabeth; Kumari, Veena
2010-07-30
Cognitive insight in schizophrenia encompasses the evaluation and reinterpretation of distorted beliefs and appraisals. We investigated the neuropsychological basis of cognitive insight in psychosis. It was predicted that, like clinical insight, cognitive insight would be associated with a wide range of neuropsychological functions, but would be most strongly associated with measures of executive function. Sixty-five outpatients with schizophrenia or schizoaffective disorder were assessed on tests of intelligence quotient (IQ), executive function, verbal fluency, attention and memory, and completed the Beck Cognitive Insight Scale, which includes two subscales, self-certainty and self-reflection. Higher self-certainty scores reflect greater certainty about being right and more resistant to correction (poor insight), while higher self-reflection scores indicate the expression of introspection and the willingness to acknowledge fallibility (good insight). The self-certainty dimension of poor cognitive insight was significantly associated with lower scores on the Behavioural Assessment of Dysexecutive Syndrome; this relationship was not mediated by IQ. There were no relationships between self-reflection and any neuropsychological measures. We conclude that greater self-certainty (poor cognitive insight) is modestly associated with poorer executive function in psychotic individuals; self-reflection has no association with executive function. The self-certainty and self-reflection dimensions of cognitive insight have differential correlates, and probably different mechanisms, in psychosis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sibicky, Mark; And Others
Many Americans engage in voluntary activities and many of these volunteers traditionally have been college students and older adults. A functional approach to volunteerism suggests that similar acts of volunteerism may actually reflect very different personal, social, and psychological functions for different volunteers. This study examined the…
NASA Technical Reports Server (NTRS)
Roy, D. P.; Kovalskyy, V.; Zhang, H. K.; Vermote, E. F.; Yan, L.; Kumar, S. S.; Egorov, A.
2016-01-01
At over 40 years, the Landsat satellites provide the longest temporal record of space-based land surface observations, and the successful 2013 launch of the Landsat-8 is continuing this legacy. Ideally, the Landsat data record should be consistent over the Landsat sensor series. The Landsat-8 Operational Land Imager (OLI) has improved calibration, signal to noise characteristics, higher 12-bit radiometric resolution, and spectrally narrower wavebands than the previous Landsat-7 Enhanced Thematic Mapper (ETM+). Reflective wavelength differences between the two Landsat sensors depend also on the surface reflectance and atmospheric state which are difficult to model comprehensively. The orbit and sensing geometries of the Landsat- 8 OLI and Landsat-7 ETM+ provide swath edge overlapping paths sensed only one day apart. The overlap regions are sensed in alternating backscatter and forward scattering orientations so Landsat bi-directional reflectance effects are evident but approximately balanced between the two sensors when large amounts of time series data are considered. Taking advantage of this configuration a total of 59 million 30m corresponding sensor observations extracted from 6,317 Landsat-7 ETM+ and Landsat-8 OLI images acquired over three winter and three summer months for all the conterminous United States (CONUS) are compared. Results considering different stages of cloud and saturation filtering, and filtering to reduce one day surface state differences, demonstrate the importance of appropriate per-pixel data screening. Top of atmosphere (TOA) and atmospherically corrected surface reflectance for the spectrally corresponding visible, near infrared and shortwave infrared bands, and derived normalized difference vegetation index (NDVI), are compared and their differences quantified. On average the OLI TOA reflectance is greater than the ETM+ TOA reflectance for all bands, with greatest differences in the near-infrared (NIR) and the shortwave infrared bands due to the quite different spectral response functions between the sensors. The atmospheric correction reduces the mean difference in the NIR and shortwave infrared but increases the mean difference in the visible bands. Regardless of whether TOA or surface reflectance are used to generate NDVI, on average, for vegetated soil and vegetation surfaces (0 = NDVI = 1), the OLI NDVI is greater than the ETM+ NDVI. Statistical functions to transform between the comparable sensor bands and sensor NDVI values are presented so that the user community may apply them in their own research to improve temporal continuity between the Landsat-7 ETM+ and Landsat-8 OLI sensor data. The transformation functions were developed using ordinary least squares (OLS) regression and were fit quite reliably (r2 values is greater than 0.7 for the reflectance data and greater than 0.9 for the NDVI data, p-values less than 0.0001).
Ownsworth, Tamara; Gooding, Kynan; Beadle, Elizabeth
2018-05-28
To investigate the impact of neurocognitive functioning on the self-focused processing styles of rumination and reflection, and the relationship to mood symptoms after severe traumatic brain injury (TBI). A cross-sectional design with a between-group component comparing self-focused processing styles and mood symptoms of adults with TBI and age- and gender-matched controls. Fifty-two participants with severe TBI (75% male, M age = 36.56, SD = 12.39) completed cognitive tests of attention, memory, executive functioning and the Awareness Questionnaire, Reflection and Rumination Questionnaire (RRQ), and Depression, Anxiety, and Stress Scales (DASS - 21). Fifty age- and gender-matched controls completed the RRQ and DASS-21. TBI participants reported significantly greater mood symptoms than controls (p < .05); however, levels of rumination and reflection did not significantly differ. TBI participants high on both reflection and rumination had significantly greater mood symptoms than those with high reflection and low rumination (p < .001). Higher levels of rumination and reflection were associated with better working memory and immediate and delayed verbal memory (r = .36-.43, p < .01). Higher levels of rumination were also associated with greater verbal fluency, self-awareness, and mood symptoms (r = .36-.70, p < .01). Individuals with better memory functioning may be more likely to engage in self-focused processing after severe TBI. Reflection without ruminative tendencies is more adaptive for mental health than reflection with rumination. Individuals with severe TBI report more mood symptoms than non-injured controls but do not differ on self-focused processing. Poorer memory function is related to lower levels of rumination and reflection. Reflection without ruminative tendencies is adaptive for mental health after severe TBI. Individuals with greater self-awareness and ruminative tendencies are at increased risk of mental health problems following severe TBI. Rumination and reflection were assessed using a self-report measure which assumes that people with severe TBI are able to reliably report on self-focused processing styles. The direction of associations between self-focused processing, self-awareness, and mood symptoms could not be determined due to the cross-sectional design. © 2018 The British Psychological Society.
Hyperspectral optical imaging of two different species of lepidoptera
2011-01-01
In this article, we report a hyperspectral optical imaging application for measurement of the reflectance spectra of photonic structures that produce structural colors with high spatial resolution. The measurement of the spectral reflectance function is exemplified in the butterfly wings of two different species of Lepidoptera: the blue iridescence reflected by the nymphalid Morpho didius and the green iridescence of the papilionid Papilio palinurus. Color coordinates from reflectance spectra were calculated taking into account human spectral sensitivity. For each butterfly wing, the observed color is described by a characteristic color map in the chromaticity diagram and spreads over a limited volume in the color space. The results suggest that variability in the reflectance spectra is correlated with different random arrangements in the spatial distribution of the scales that cover the wing membranes. Hyperspectral optical imaging opens new ways for the non-invasive study and classification of different forms of irregularity in structural colors. PMID:21711872
Ma, Zhijie; Hanham, Stephen M; Gong, Yandong; Hong, Minghui
2018-02-15
We present an all-dielectric metasurface that simultaneously supports electric and magnetic dipole resonances for orthogonal polarizations. At resonances, the metasurface reflects the incident light with nearly perfect efficiency and provides a phase difference of π in the two axes, making a low-loss half-wave plate in reflection mode. The polarization handedness of the incident circularly polarized light is preserved after reflection; this is different from either a pure electric mirror or magnetic mirror. With the features of high reflection and circular polarization conservation, the metamirror is an ideal platform for the geometric phase-based gradient metasurface functioning in reflection mode. Anomalous reflection with the planar meta-mirror is demonstrated as a proof of concept. The proposed meta-mirror can be a good alternative to plasmonic metasurfaces for future compact and high-efficiency metadevices for polarization and phase manipulation in reflection mode.
Liu, Xin; Shu, Xuewen
2017-08-20
All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.
Lee, Yu; Yu, Chanki; Lee, Sang Wook
2018-01-10
We present a sequential fitting-and-separating algorithm for surface reflectance components that separates individual dominant reflectance components and simultaneously estimates the corresponding bidirectional reflectance distribution function (BRDF) parameters from the separated reflectance values. We tackle the estimation of a Lafortune BRDF model, which combines a nonLambertian diffuse reflection and multiple specular reflectance components with a different specular lobe. Our proposed method infers the appropriate number of BRDF lobes and their parameters by separating and estimating each of the reflectance components using an interval analysis-based branch-and-bound method in conjunction with iterative K-ordered scale estimation. The focus of this paper is the estimation of the Lafortune BRDF model. Nevertheless, our proposed method can be applied to other analytical BRDF models such as the Cook-Torrance and Ward models. Experiments were carried out to validate the proposed method using isotropic materials from the Mitsubishi Electric Research Laboratories-Massachusetts Institute of Technology (MERL-MIT) BRDF database, and the results show that our method is superior to a conventional minimization algorithm.
Hardwiring stem cell communication through tissue structure
Xin, Tianchi; Greco, Valentina; Myung, Peggy
2016-01-01
Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287
Functional diversity of potassium channel voltage-sensing domains.
Islas, León D
2016-01-01
Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.
Functional diversity of potassium channel voltage-sensing domains
Islas, León D.
2016-01-01
Abstract Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology. PMID:26794852
Lain, Lisl Robertson; Bernard, Stewart; Matthews, Mark W
2017-02-20
The accurate description of a water body's volume scattering function (VSF), and hence its phase functions, is critical to the determination of the constituent inherent optical properties (IOPs), the associated spectral water-leaving reflectance, and consequently the retrieval of phytoplankton functional type (PFT) information. The equivalent algal populations (EAP) model has previously been evaluated for phytoplankton-dominated waters, and offers the ability to provide phytoplankton population-specific phase functions, unveiling a new opportunity to further understanding of the causality of the PFT signal. This study presents and evaluates the wavelength dependent, spectrally variable EAP particle phase functions and the subsequent effects on water-leaving reflectance. Comparisons are made with frequently used phase function approximations e.g. the Fournier Forand formulation, as well as with phase functions inferred from measured VSFs in coastal waters. Relative differences in shape and magnitude are quantified. Reflectance modelled with the EAP phase functions is then compared against measured reflectance data from phytoplankton-dominated waters. Further examples of modelled phytoplankton-dominated waters are discussed with reference to choice of phase function for two PFTs (eukaryote and prokaryote) across a range of biomass. Finally a demonstration of the sensitivity of reflectance due to the choice of phase function is presented. The EAP model phase functions account for both spectral and angular variability in phytoplankton backscattering i.e. they display variability which is both spectral and shape-related. It is concluded that phase functions modelled in this way are necessary for investigating the effects of assemblage variability on the ocean colour signal, and should be considered for model closure even in relatively low scattering conditions where phytoplankton dominate the IOPs.
Dew point measurement technique utilizing fiber cut reflection
NASA Astrophysics Data System (ADS)
Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.
2009-05-01
The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.
NASA Technical Reports Server (NTRS)
Kimes, D. S.
1984-01-01
The directional-reflectance distributions of radiant flux from homogeneous vegetation canopies with greater than 90 percent ground cover are analyzed with a radiative-transfer model. The model assumes that the leaves consist of small finite planes with Lambertian properties. Four theoretical canopies with different leaf-orientation distributions were studied: erectophile, spherical, planophile, and heliotropic canopies. The directional-reflectance distributions from the model closely resemble reflectance distributions measured in the field. The physical scattering mechanisms operating in the model explain the variations observed in the reflectance distributions as a function of leaf-orientation distribution, solar zenith angle, and leaf transmittance and reflectance. The simulated reflectance distribution show unique characteristics for each canopy. The basic understanding of the physical scattering properties of the different canopy geometries gained in this study provide a basis for developing techniques to infer leaf-orientation distributions of vegetation canopies from directional remote-sensing measurements.
NASA Technical Reports Server (NTRS)
Staenz, K.; Williams, D. J.; Fedosejevs, G.; Teillet, P. M.
1995-01-01
Surface reflectance retrieval from imaging spectrometer data as acquired with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has become important for quantitative analysis. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes such as 5S and MODTRAN2 play an increasing role for removal of scattering and absorption effects of the atmosphere. Accurate knowledge of the exo-atmospheric solar irradiance (E(sub 0)) spectrum at the spectral resolution of the sensor is important for this purpose. The present study investigates the impact of differences in the solar irradiance function, as implemented in a modified version of 5S (M5S), 6S, and MODTRAN2, and as proposed by Green and Gao, on the surface reflectance retrieved from AVIRIS data. Reflectance measured in situ is used as a basis of comparison.
ERIC Educational Resources Information Center
Kjeldsen, Tinne Hoff; Blomhøj, Morten
2013-01-01
Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical position held by the modeler(s) and the…
Sex-Linked Characteristics of Brain Functioning: Why Jimmy Reads Differently.
ERIC Educational Resources Information Center
Helfeldt, John P.
1983-01-01
Presents evidence to support the premise that boys reflect a predilection to process information visually, while girls reflect a preference to process information auditorally. Cautions against relying on isolated components such as hemispheric dominance or laterality during the identification and correction of reading problems. (FL)
Schwenger, Frédéric; Repasi, Endre
2017-02-20
The knowledge of the spatial energy (or power) distribution of light beams reflected at the dynamic sea surface is of great practical interest in maritime environments. For the estimation of the light energy reflected into a specific spatial direction a lot of parameters need to be taken into account. Both whitecap coverage and its optical properties have a large impact upon the calculated value. In published literature, for applications considering vertical light propagation paths, such as bathymetric lidar, the reflectance of sea surface and whitecaps are approximated by constant values. For near-horizontal light propagation paths the optical properties of the sea surface and the whitecaps must be considered in greater detail. The calculated light energy reflected into a specific direction varies statistically and depends largely on the dynamics of the wavy sea surface and the dynamics of whitecaps. A 3D simulation of the dynamic sea surface populated with whitecaps is presented. The simulation considers the evolution of whitecaps depending on wind speed and fetch. The radiance calculation of the maritime scene (open sea/clear sky) populated with whitecaps is done in the short wavelength infrared spectral band. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of a light beam at the sea surface in the absence of whitecaps is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For whitecaps, a specific BRDF is used by taking into account their shadowing function. To ensure the credibility of the simulation, the whitecap coverage is determined from simulated image sequences for different wind speeds and compared to whitecap coverage functions from literature. The impact of whitecaps on the radiation balance for bistatic configuration of light source and receiver is calculated for a different incident (zenith/azimuth angles) of the light beam and is presented for two different wind speeds.
Wang, Jiaojian; Yang, Yong; Fan, Lingzhong; Xu, Jinping; Li, Changhai; Liu, Yong; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi
2015-01-01
The superior parietal lobule (SPL) plays a pivotal role in many cognitive, perceptive, and motor-related processes. This implies that a mosaic of distinct functional and structural subregions may exist in this area. Recent studies have demonstrated that the ongoing spontaneous fluctuations in the brain at rest are highly structured and, like coactivation patterns, reflect the integration of cortical locations into long-distance networks. This suggests that the internal differentiation of a complex brain region may be revealed by interaction patterns that are reflected in different neuroimaging modalities. On the basis of this perspective, we aimed to identify a convergent functional organization of the SPL using multimodal neuroimaging approaches. The SPL was first parcellated based on its structural connections as well as on its resting-state connectivity and coactivation patterns. Then, post hoc functional characterizations and connectivity analyses were performed for each subregion. The three types of connectivity-based parcellations consistently identified five subregions in the SPL of each hemisphere. The two anterior subregions were found to be primarily involved in action processes and in visually guided visuomotor functions, whereas the three posterior subregions were primarily associated with visual perception, spatial cognition, reasoning, working memory, and attention. This parcellation scheme for the SPL was further supported by revealing distinct connectivity patterns for each subregion in all the used modalities. These results thus indicate a convergent functional architecture of the SPL that can be revealed based on different types of connectivity and is reflected by different functions and interactions. © 2014 Wiley Periodicals, Inc.
Medijainen, Kadri; Pääsuke, Mati; Lukmann, Aet; Taba, Pille
2015-01-01
Neurological assessment of a patient with Parkinson's disease (PD) is expected to reflect upon functional performance. As women are known to report more limitations even for same observed functional performance level, present study was designed to examine whether associations between neurological assessments and functional performance differ across genders. 14 men and 14 women with PD participated. Functional performance was assessed by measuring walking speeds on 10-meter walk test (10MWT) and by performing timed-up-and-go-test (TUG). Neurological assessment included Hoehn and Yahr Scale (HY), Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Schwab and England Activities of Daily Living Scale (S-E), and Mini Mental State Examination (MMSE). In women with PD, Kendall's tau-b correlation analyses revealed significant correlations between functional performance tests and neurological assessment measures, with the exception in MMSE. No corresponding associations were found for men, although they demonstrated better functional performance, as expected. Men in similar clinical stage of the PD perform better on functional tests than women. Disease severity reflects upon functional performance differently in men and women with PD. Results indicate that when interpreting the assessment results of both functional performance and neurological assessment tests, the gender of the patient should be taken into consideration.
Fortunel, Claire; Valencia, Renato; Wright, S Joseph; Garwood, Nancy C; Kraft, Nathan J B
2016-09-01
As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25-ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests. © 2016 John Wiley & Sons Ltd/CNRS.
Laboratory upwelled radiance and reflectance spectra of Kerr reservoir sediment waters
NASA Technical Reports Server (NTRS)
Witte, W. G.; Whitlock, C. H.; Morris, W. D.; Gurganus, E. A.
1982-01-01
Reflectance, chromaticity, and several other physical and chemical properties were measured for various water mixtures of bottom sediments taken from two sites at Kerr Reservoir, Virginia. Mixture concentrations ranged from 5 to 1000 ppm by weight of total suspended solids (TSS) in filtered deionized tap water. The two sets of radiance and reflectance spectra obtained were similar in shape and magnitude for comparable values of TSS. Upwelled reflectance was observed to be a nonlinear function of TSS with the degree of curvature a function of wavelength. Sediment from the downstream site contained a greater amount of particulate organic carbon than from the upstream site. No strong conclusions can be made regarding the effects of this difference on the radiance and reflectance spectra. Near-infrared wavelengths appear useful for measuring highly turbid water with concentrations up to 1000 ppm or more. Chromaticity characteristics do not appear useful for monitoring sediment loads above 150 ppm.
USDA-ARS?s Scientific Manuscript database
Quantitative spectral reflectance data has the potential to improve the evaluation of turfgrass variety trials when management practices are factors in the testing of turf aesthetics and functionality. However, the practical application of this methodology has not been well-developed. The objectives...
Developmental Differences in Error-Related ERPs in Middle- to Late-Adolescent Males
ERIC Educational Resources Information Center
Santesso, Diane L.; Segalowitz, Sidney J.
2008-01-01
Although there are some studies documenting structural brain changes during late adolescence, there are few showing functional brain changes over this period in humans. Of special interest would be functional changes in the medial frontal cortex that reflect response monitoring. In order to examine such age-related differences, the authors…
Real reproduction and evaluation of color based on BRDF method
NASA Astrophysics Data System (ADS)
Qin, Feng; Yang, Weiping; Yang, Jia; Li, Hongning; Luo, Yanlin; Long, Hongli
2013-12-01
It is difficult to reproduce the original color of targets really in different illuminating environment using the traditional methods. So a function which can reconstruct the characteristics of reflection about every point on the surface of target is required urgently to improve the authenticity of color reproduction, which known as the Bidirectional Reflectance Distribution Function(BRDF). A method of color reproduction based on the BRDF measurement is introduced in this paper. Radiometry is combined with the colorimetric theories to measure the irradiance and radiance of GretagMacbeth 24 ColorChecker by using PR-715 Radiation Spectrophotometer of PHOTO RESEARCH, Inc, USA. The BRDF and BRF (Bidirectional Reflectance Factor) values of every color piece corresponding to the reference area are calculated according to irradiance and radiance, thus color tristimulus values of 24 ColorChecker are reconstructed. The results reconstructed by BRDF method are compared with values calculated by the reflectance using PR-715, at last, the chromaticity coordinates in color space and color difference between each other are analyzed. The experimental result shows average color difference and sample standard deviation between the method proposed in this paper and traditional reconstruction method depended on reflectance are 2.567 and 1.3049 respectively. The conclusion indicates that the method of color reproduction based on BRDF has the more obvious advantages to describe the color information of object than the reflectance in hemisphere space through the theoretical and experimental analysis. This method proposed in this paper is effective and feasible during the research of reproducing the chromaticity.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Liou, Kuo-Nan; Takano, Yoshihide
1993-01-01
The impact of using phase functions for spherical droplets and hexagonal ice crystals to analyze radiances from cirrus is examined. Adding-doubling radiative transfer calculations are employed to compute radiances for different cloud thicknesses and heights over various backgrounds. These radiances are used to develop parameterizations of top-of-the-atmosphere visible reflectance and IR emittance using tables of reflectances as a function of cloud optical depth, viewing and illumination angles, and microphysics. This parameterization, which includes Rayleigh scattering, ozone absorption, variable cloud height, and an anisotropic surface reflectance, reproduces the computed top-of-the-atmosphere reflectances with an accruacy of +/- 6 percent for four microphysical models: 10-micron water droplet, small symmetric crystal, cirrostratus, and cirrus uncinus. The accuracy is twice that of previous models.
Theory of Fiber Optical Bragg Grating: Revisited
NASA Technical Reports Server (NTRS)
Tai, H.
2003-01-01
The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.
Zhao, Yi; Cao, Xiangyu; Gao, Jun; Liu, Xiao; Li, Sijia
2016-05-16
We demonstrate a simple reconfigurable metasurface with multiple functions. Anisotropic tiles are investigated and manufactured as fundamental elements. Then, the tiles are combined in a certain sequence to construct a metasurface. Each of the tiles can be adjusted independently which is like a jigsaw puzzle and the whole metasurface can achieve diverse functions by different layouts. For demonstration purposes, we realize polarization conversion, anomalous reflection and diffusion by a jigsaw puzzle metasurface with 6 × 6 pieces of anisotropic tile. Simulated and measured results prove that our method offers a simple and effective strategy for metasurface design.
NASA Astrophysics Data System (ADS)
Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.
2015-12-01
Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).
Multifunction Imaging and Spectroscopic Instrument
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis
2004-01-01
A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.
Comparative assessment of coagulation changes induced by two different types of heart-lung machine.
Rahe-Meyer, Niels; Solomon, Cristina; Tokuno, Marie-Louise; Winterhalter, Michael; Shrestha, Malakh; Hahn, Andreas; Tanaka, Kenichi
2010-01-01
The cardiopulmonary bypass (CPB) used in heart surgery has a deleterious effect on hemostasis. The aim of our study was to assess by means of standard laboratory and point-of-care methods changes induced by CPB in coagulation parameters, particularly in platelet function, and to determine whether these changes differ depending on the type of heart-lung machine (HLM) used: minimal extracorporeal circulation system (MECC) and standard HLM. The study enrolled 88 patients scheduled for coronary artery bypass surgery performed on pump. Forty-four interventions were performed with MECC and 44 with standard HLM. Blood was sampled preoperatively, after 30 min on CPB, after weaning from CPB, and 24 h postoperatively. Coagulation and platelet function were assessed using multiple electrode aggregometry (MEA), rotation thromboelastometry, as well as standard laboratory tests. Rotation thromboelastometry and standard laboratory reflected significantly impaired hemostasis after weaning from CPB but no significant differences between the two groups at different time points. Aggregation decreased significantly in both groups as early as 30 min after the institution of CPB (P < 0.05, Mann-Whitney U-test) and recovered within the first 24 h postoperatively, without reaching the preoperative level. Intraoperatively, aggregometry values reflected a significantly more severe reduction of platelet function in standard HLM group than in the MECC group (P < 0.01, ProcMixed test). Our findings suggest that MEA and thromboelastometry reflect impairment of coagulation in cardiac surgery performed on different types of HLM and that platelet function is less affected by MECC than by standard HLM.
Rumination and self-reflection in stress narratives and relations to psychological functioning.
Marin, Kelly A; Rotondo, Elena K
2017-01-01
The longitudinal study aims to expand what is known about the costs and benefits of narrating stressful experiences by exploring changes in rumination within the narrative process and comparing it to changes in self-reflection. Rumination (e.g., brooding, self-criticism, and negative emotions) and self-reflection were measured in stress narratives of 56 college students. There were several goals: (1) examine changes in narrative rumination and narrative self-reflection over 3 days of writing, (2) examine the relations among the changes in narrative rumination variables and narrative self-reflection and (3) examine how changes in narrative rumination and narrative self-reflection relate to multiple measures of psychological functioning. Overall, individuals increased self-reflection over the 3-day writing task. Individuals who increased ruminative brooding across the 3 days of writing showed lower ego identity development (short term and long term) and self-esteem (short term), while increased self-criticism was positively correlated with identity distress (short term). Implications of the different aspects of narrative rumination, specifically in the context of stressful experiences, are discussed.
The functions of music and their relationship to music preference in India and Germany.
Schäfer, Thomas; Tipandjan, Arun; Sedlmeier, Peter
2012-01-01
Is the use of music in everyday life a culturally universal phenomenon? And do the functions served by music contribute to the development of music preferences regardless of the listener's cultural background? The present study explored similarities and dissimilarities in the functions of music listening and their relationship to music preferences in two countries with different cultural backgrounds: India as an example of a collectivistic society and Germany as an example of an individualistic society. Respondents were asked to what degree their favorite music serves several functions in their life. The functions were summarized in seven main groups: background entertainment, prompt for memories, diversion, emotion regulation, self-regulation, self-reflection, and social bonding. Results indicate a strong similarity of the functions of people's favorite music for Indian and German listeners. Among the Indians, all of the seven functions were rated as meaningful; among the Germans, this was the case for all functions except emotion regulation. However, a pronounced dissimilarity was found in the predictive power of the functions of music for the strength of music preference, which was much stronger for Germans than for Indians. In India, the functions of music most predictive for music preference were diversion, self-reflection, and social bonding. In Germany, the most predictive functions were emotion regulation, diversion, self-reflection, prompt for memories, and social bonding. It is concluded that potential cultural differences hardly apply to the functional use of music in everyday life, but they do so with respect to the impact of the functions on the development of music preference. The present results are consistent with the assumption that members of a collectivistic society tend to set a higher value on their social and societal integration and their connectedness to each other than do members of individualistic societies.
Quantum coherence in the reflection of above barrier wavepackets
NASA Astrophysics Data System (ADS)
Petersen, Jakob; Pollak, Eli
2018-02-01
The quantum phenomenon of above barrier reflection is investigated from a time-dependent perspective using Gaussian wavepackets. The transition path time distribution, which in principle is experimentally measurable, is used to study the mean flight times ⟨t⟩R and ⟨t⟩T associated with the reflection and the transmission over the barrier paying special attention to their dependence on the width of the barrier. Both flight times, and their difference Δt, exhibit two distinct regimes depending on the ratio of the spatial width of the incident wavepacket and the length of the barrier. When the ratio is larger than unity, the reflection and transmission dynamics are coherent and dominated by the resonances above the barrier. The flight times ⟨t⟩R/T and the flight time difference Δt oscillate as a function of the barrier width (almost in phase with the transmission probability). These oscillations reflect a momentum filtering effect related to the coherent superposition of the reflected and transmitted waves. For a ratio less than unity, the barrier reflection and transmission dynamics are incoherent and the oscillations are absent. The barrier width which separates the coherent and incoherent regimes is identified analytically. The oscillatory structure of the time difference Δt as a function of the barrier width in the coherent regime is absent when considered in terms of the Wigner phase time delays for reflection and transmission. We conclude that the Wigner phase time does not correctly describe the temporal properties of above barrier reflection. We also find that the structure of the reflected and transmitted wavepackets depends on the coherence of the process. In the coherent regime, the wavepackets can have an overlapping peak structure, but the peaks are not fully resolved. In the incoherent regime, the wavepackets split in time into distinct separated Gaussian like waves, each one reflecting the number of times the wavepacket crosses the barrier region before exiting. A classical Wigner approximation, using classical trajectories which upon reaching an edge of the barrier are reflected or transmitted as if the edge was a step potential, is quantitative in the incoherent regime. The implications of the coherence observed on resonance reactive scattering are discussed.
NASA Technical Reports Server (NTRS)
Smith, James A.
1992-01-01
The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI < 1.0) with varying soil reflectance backgrounds is particularly difficult. Standard multiple regression methods applied to canopies within a single homogeneous soil type yield good results but perform unacceptably when applied across soil boundaries, resulting in absolute percentage errors of >1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.
ERIC Educational Resources Information Center
Ramful, Ajay; Ho, Siew Yin; Lowrie, Tom
2015-01-01
This inquiry presents two fine-grained case studies of students demonstrating different levels of cognitive functioning in relation to bilateral symmetry and reflection. The two students were asked to solve four sets of tasks and articulate their reasoning in task-based interviews. The first participant, Brittany, focused essentially on three…
Does reflective functioning mediate the relationship between attachment and personality?
Nazzaro, Maria Paola; Boldrini, Tommaso; Tanzilli, Annalisa; Muzi, Laura; Giovanardi, Guido; Lingiardi, Vittorio
2017-10-01
Mentalization, operationalized as reflective functioning (RF), can play a crucial role in the psychological mechanisms underlying personality functioning. This study aimed to: (a) study the association between RF, personality disorders (cluster level) and functioning; (b) investigate whether RF and personality functioning are influenced by (secure vs. insecure) attachment; and (c) explore the potential mediating effect of RF on the relationship between attachment and personality functioning. The Shedler-Westen Assessment Procedure (SWAP-200) was used to assess personality disorders and levels of psychological functioning in a clinical sample (N = 88). Attachment and RF were evaluated with the Adult Attachment Interview (AAI) and Reflective Functioning Scale (RFS). Findings showed that RF had significant negative associations with cluster A and B personality disorders, and a significant positive association with psychological functioning. Moreover, levels of RF and personality functioning were influenced by attachment patterns. Finally, RF completely mediated the relationship between (secure/insecure) attachment and adaptive psychological features, and thus accounted for differences in overall personality functioning. Lack of mentalization seemed strongly associated with vulnerabilities in personality functioning, especially in patients with cluster A and B personality disorders. These findings provide support for the development of therapeutic interventions to improve patients' RF. Copyright © 2017 Elsevier B.V. All rights reserved.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J. (Principal Investigator)
1982-01-01
The sample LANDSAT-4 TM tape (7 bands) of NE Arkansas/Tennessee area was received and displayed. Snow reflectance in all 6 TM reflective bands, i.e. 1, 2, 3, 4, 5, and 7 was simulated, using Wiscombe and Warren's (1980) delta-Eddington model. Snow reflectance in bands 4, 5, and 7 appear sensitive to grain size. One of the objectives is to interpret surface optical grain size of snow, for spectral extension of albedo. While TM data of the study area are not received, simulation results are encouraging. It also appears that the TM filters resemble a "square-wave" closely enough to permit assuming a square-wave in calculations. Integrated band reflectance over the actual response functions was simulated, using sensor data supplied by Santa Barbara Research Center. Differences between integrating over the actual response functions and the equivalent square wave were negligible.
Stochastic optimization of broadband reflecting photonic structures.
Estrada-Wiese, D; Del Río-Chanona, E A; Del Río, J A
2018-01-19
Photonic crystals (PCs) are built to control the propagation of light within their structure. These can be used for an assortment of applications where custom designed devices are of interest. Among them, one-dimensional PCs can be produced to achieve the reflection of specific and broad wavelength ranges. However, their design and fabrication are challenging due to the diversity of periodic arrangement and layer configuration that each different PC needs. In this study, we present a framework to design high reflecting PCs for any desired wavelength range. Our method combines three stochastic optimization algorithms (Random Search, Particle Swarm Optimization and Simulated Annealing) along with a reduced space-search methodology to obtain a custom and optimized PC configuration. The optimization procedure is evaluated through theoretical reflectance spectra calculated by using the Equispaced Thickness Method, which improves the simulations due to the consideration of incoherent light transmission. We prove the viability of our procedure by fabricating different reflecting PCs made of porous silicon and obtain good agreement between experiment and theory using a merit function. With this methodology, diverse reflecting PCs can be designed for any applications and fabricated with different materials.
Representations and uses of light distribution functions
NASA Astrophysics Data System (ADS)
Lalonde, Paul Albert
1998-11-01
At their lowest level, all rendering algorithms depend on models of local illumination to define the interplay of light with the surfaces being rendered. These models depend both on the representations of light scattering at a surface due to reflection and to an equal extent on the representation of light sources and light fields. Both emission and reflection have in common that they describe how light leaves a surface as a function of direction. Reflection also depends on an incident light direction. Emission can depend on the position on the light source We call the functions representing emission and reflection light distribution functions (LDF's). There are some difficulties to using measured light distribution functions. The data sets are very large-the size of the data grows with the fourth power of the sampling resolution. For example, a bidirectional reflectance distribution function (BRDF) sampled at five degrees angular resolution, which is arguably insufficient to capture highlights and other high frequency effects in the reflection, can easily require one and a half million samples. Once acquired this data requires some form of interpolation to use them. Any compression method used must be efficient, both in space and in the time required to evaluate the function at a point or over a range of points. This dissertation examines a wavelet representation of light distribution functions that addresses these issues. A data structure is presented that allows efficient reconstruction of LDFs for a given set of parameters, making the wavelet representation feasible for rendering tasks. Texture mapping methods that take advantage of our LDF representations are examined, as well as techniques for filtering LDFs, and methods for using wavelet compressed bidirection reflectance distribution functions (BRDFs) and light sources with Monte Carlo path tracing algorithms. The wavelet representation effectively compresses BRDF and emission data while inducing only a small error in the reconstructed signal. The representation can be used to evaluate efficiently some integrals that appear in shading computation which allows fast, accurate computation of local shading. The representation can be used to represent light fields and is used to reconstruct views of environments interactively from a precomputed set of views. The representation of the BRDF also allows the efficient generation of reflected directions for Monte Carlo array tracing applications. The method can be integrated into many different global illumination algorithms, including ray tracers and wavelet radiosity systems.
Gender differences in multitasking reflect spatial ability.
Mäntylä, Timo
2013-04-01
Demands involving the scheduling and interleaving of multiple activities have become increasingly prevalent, especially for women in both their paid and unpaid work hours. Despite the ubiquity of everyday requirements to multitask, individual and gender-related differences in multitasking have gained minimal attention in past research. In two experiments, participants completed a multitasking session with four gender-fair monitoring tasks and separate tasks measuring executive functioning (working memory updating) and spatial ability (mental rotation). In both experiments, males outperformed females in monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of monitoring accuracy, but only spatial ability mediated gender differences in multitasking. Menstrual changes accentuated these effects, such that gender differences in multitasking (and spatial ability) were eliminated between males and females who were in the menstrual phase of the menstrual cycle but not between males and females who were in the luteal phase. These findings suggest that multitasking involves spatiotemporal task coordination and that gender differences in multiple-task performance reflect differences in spatial ability.
Sormaz, Mladen; Jefferies, Elizabeth; Bernhardt, Boris C; Karapanagiotidis, Theodoros; Mollo, Giovanna; Bernasconi, Neda; Bernasconi, Andrea; Hartley, Tom; Smallwood, Jonathan
2017-05-15
The hippocampus contributes to episodic, spatial and semantic aspects of memory, yet individual differences within and between these functions are not well-understood. In 136 healthy individuals, we investigated whether these differences reflect variation in the strength of connections between functionally-specialised segments of the hippocampus and diverse cortical regions that participate in different aspects of memory. Better topographical memory was associated with stronger connectivity between lingual gyrus and left anterior, rather than posterior, hippocampus. Better semantic memory was associated with increased connectivity between the intracalcarine/cuneus and left, rather than right, posterior hippocampus. Notably, we observed a double dissociation between semantic and topographical memory: better semantic memory was associated with stronger connectivity between left temporoparietal cortex and left anterior hippocampus, while better topographic memory was linked to stronger connectivity with right anterior hippocampus. Together these data support a division-of-labour account of hippocampal functioning: at the population level, differences in connectivity across the hippocampus reflect functional specialisation for different facets of memory, while variation in these connectivity patterns across individuals is associated with differences in the capacity to retrieve different types of information. In particular, within-hemisphere connectivity between hippocampus and left temporoparietal cortex supports conceptual processing at the expense of spatial ability. Copyright © 2017. Published by Elsevier Inc.
Turn exchange rhythm in English dialogues
NASA Astrophysics Data System (ADS)
Fon, Janice
2005-09-01
This study looked at the relationship between rhythm and exchange type in British English, a stress-timed language, and Singaporean English, a syllable-timed language, using a spontaneous speech corpus. Exchange intervals (EIs), or the time difference between the end of one speaker and the beginning of another, were measured and exchanges of different types were labeled. Results showed that, in a dialogue, EIs were generally limited to a narrow range. However, within this range, EIs had at least four functions. First, EIs were reflective of the cognitive load and functioned as a way to differentiate various exchange types. Those requiring more cognitive resources, such as question-and-answer pairs, generally needed longer EIs than those not as cognitively loaded, such as backchanneling pairs. Second, EIs were indicative of linguistic rhythm. Singaporean English tended to have shorter EIs than British English. Third, EIs were reflective of politeness. The degree of politeness correlated negatively with EI. Shorter EIs showed a higher degree of respect. Finally, EIs were also indicative of the level of insecurity of a speaker, which was best reflected by gender differences. Females in general had longer EIs than males.
Simulated BRDF based on measured surface topography of metal
NASA Astrophysics Data System (ADS)
Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang
2017-06-01
The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.
Cultural differences in emotion regulation during self-reflection on negative personal experiences.
Tsai, William; Lau, Anna S
2013-01-01
Reflecting on negative personal experiences has implications for mood that may vary as a function of specific domains (e.g., achievement vs. interpersonal) and cultural orientation (e.g., interdependence vs. independence). This study investigated cultural differences in the social-cognitive and affective processes undertaken as Easterners and Westerners reflected on negative interpersonal and performance experiences. One hundred Asian Americans and 92 European-American college students were randomly assigned to one of three conditions: interpersonal rejection, achievement failure, or a control condition. Results revealed that Asian Americans experienced greater distress than European Americans after self-reflecting over a failed interpersonal experience, suggesting cultural sensitivity in the relational domain. Consistent with theoretical predictions, analysis of the social cognitive and affective processes that participants engaged in during self-reflection provided some evidence that self-enhancement may buffer distress for European Americans, while emotion suppression may be adaptive for Asian Americans.
Zhu, Ying; Soeriyadi, Alexander H; Parker, Stephen G; Reece, Peter J; Gooding, J Justin
2014-06-21
Porous silicon (PSi) rugate filters modified with alkyne-terminated monolayers were chemically patterned using a combination of photolithography of photoresist and click chemistry. Two chemical functionalities were obtained by conjugating, via click reactions, ethylene glycol moieties containing two different terminal groups to discrete areas towards the exterior of a PSi rugate filter. The patterning of biological species to the functionalized surface was demonstrated through the conjugation of fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA). Fluorescence microscopy showed selective positioning of FITC-BSA at discretely functionalized areas. Meanwhile, the optical information from precisely defined positions on the patterned surface was monitored by optical reflectivity measurements. The optical measurements revealed successful step-wise chemical functionalization followed by immobilization of gelatin. Multiplex detection of protease activity from different array elements on the patterned surface was demonstrated by monitoring the blue shifts in the reflectivity spectra resulted from the digestion of gelatin by subtilisin. Precise information from both individual elements and average population was acquired. This technique is important for the development of PSi into a microarray platform for highly parallel biosensing applications, especially for cell-based assays.
Stacks, Ann M; Muzik, Maria; Wong, Kristyn; Beeghly, Marjorie; Huth-Bocks, Alissa; Irwin, Jessica L; Rosenblum, Katherine L
2014-01-01
This study examined relationships among maternal reflective functioning, parenting, infant attachment, and demographic risk in a relatively large (N = 83) socioeconomically diverse sample of women with and without a history of childhood maltreatment and their infants. Most prior research on parental reflective functioning has utilized small homogenous samples. Reflective functioning was assessed with the Parent Development Interview, parenting was coded from videotaped mother-child interactions, and infant attachment was evaluated in Ainsworth's Strange Situation by independent teams of reliable coders masked to maternal history. Reflective functioning was associated with parenting sensitivity and secure attachment, and inversely associated with demographic risk and parenting negativity; however, it was not associated with maternal maltreatment history or PTSD. Parenting sensitivity mediated the relationship between reflective functioning and infant attachment, controlling for demographic risk. Findings are discussed in the context of prior research on reflective functioning and the importance of targeting reflective functioning in interventions.
Comparison Between Sea Surface Wind Speed Estimates From Reflected GPS Signals and Buoy Measurements
NASA Technical Reports Server (NTRS)
Garrison, James L.; Katzberg, Steven J.; Zavorotny, Valery U.
2000-01-01
Reflected signals from the Global Positioning System (GPS) have been collected from an aircraft at approximately 3.7 km altitude on 5 different days. Estimation of surface wind speed by matching the shape of the reflected signal correlation function against analytical models was demonstrated. Wind speed obtained from this method agreed with that recorded from buoys to with a bias of less than 0.1 m/s, and with a standard derivation of 1.3 meters per second.
Mindfulness Plus Reflection Training: Effects on Executive Function in Early Childhood
Zelazo, Philip David; Forston, Jessica L.; Masten, Ann S.; Carlson, Stephanie M.
2018-01-01
Executive function (EF) skills are essential for academic achievement, and poverty-related stress interferes with their development. This pre-test, post-test, follow-up randomized-control trial assessed the impact of an intervention targeting reflection and stress reduction on children's EF skills. Preschool children (N = 218) from schools serving low-income families in two U.S. cities were randomly assigned to one of three options delivered in 30 small-group sessions over 6 weeks: Mindfulness + Reflection training; Literacy training; or Business as Usual (BAU). Sessions were conducted by local teachers trained in a literacy curriculum or Mindfulness + Reflection intervention, which involved calming activities and games that provided opportunities to practice reflection in the context of goal-directed problem solving. EF improved in all groups, but planned contrasts indicated that the Mindfulness + Reflection group significantly outperformed the BAU group at Follow-up (4 weeks post-test). No differences in EF were observed between the BAU and Literacy training groups. Results suggest that a brief, small-group, school-based intervention teaching mindfulness and reflection did not improve EF skills more than literacy training but is promising compared to BAU for improving EF in low-income preschool children several weeks following the intervention. PMID:29535661
Functional MRI and Multivariate Autoregressive Models
Rogers, Baxter P.; Katwal, Santosh B.; Morgan, Victoria L.; Asplund, Christopher L.; Gore, John C.
2010-01-01
Connectivity refers to the relationships that exist between different regions of the brain. In the context of functional magnetic resonance imaging (fMRI), it implies a quantifiable relationship between hemodynamic signals from different regions. One aspect of this relationship is the existence of small timing differences in the signals in different regions. Delays of 100 ms or less may be measured with fMRI, and these may reflect important aspects of the manner in which brain circuits respond as well as the overall functional organization of the brain. The multivariate autoregressive time series model has features to recommend it for measuring these delays, and is straightforward to apply to hemodynamic data. In this review, we describe the current usage of the multivariate autoregressive model for fMRI, discuss the issues that arise when it is applied to hemodynamic time series, and consider several extensions. Connectivity measures like Granger causality that are based on the autoregressive model do not always reflect true neuronal connectivity; however, we conclude that careful experimental design could make this methodology quite useful in extending the information obtainable using fMRI. PMID:20444566
Hsu, Jeffrey J; Katz, Ronit; Chirinos, Julio A; Jacobs, David R; Duprez, Daniel A; Peralta, Carmen A
2016-05-01
Differences in arterial wave reflections have been associated with increased risk for heart failure and mortality. Whether these measures are also associated with kidney function decline is not well established. Reflection magnitude (RM, defined as the ratio of the backward wave [Pb] to that of the forward wave [Pf]), augmentation index (AIx), and pulse pressure amplification (PPA) were derived from radial tonometry measures among 5232 participants free of cardiovascular disease who were enrolled in the Multiethnic Study of Atherosclerosis. Kidney function was estimated by creatinine and cystatin C measurements, as well as albumin-to-creatinine ratio. We evaluated the associations of Pb, Pf, RM, AIx, and PPA with annualized estimated glomerular filtration rate (eGFR) change and rapid kidney function decline over 5 years, using generalized linear mixed models and logistic regression, respectively. Of the study participants, 48% were male, mean age was 62 years, mean eGFR and median albumin-to-creatinine ratio at baseline were 84 mL/min/1.73 m(2) and 5.3 mg/g, respectively. In demographically adjusted models, both Pb and Pf had similarly strong associations with kidney function decline; compared to those in the lowest tertiles, the persons in the highest tertiles of Pb and Pf had a 1.01 and 0.99 mL/min/1.73 m(2)/year faster eGFR decline, respectively (P < .05). However, these associations were attenuated after adjustment for systolic blood pressure. We found no significant associations between RM, AIx, or PPA and kidney function decline. In conclusion, the reflected and forward wave components were similarly associated with kidney function decline, and these associations were explained by differences in systolic blood pressure. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses
Shera, Christopher A.
2015-01-01
Multiple internal reflection of cochlear traveling waves has been argued to provide a plausible explanation for the waxing and waning and other temporal structures often exhibited by the envelopes of basilar-membrane (BM) and auditory-nerve responses to acoustic clicks. However, a recent theoretical analysis of a BM click response measured in chinchilla concludes that the waveform cannot have arisen via any equal, repetitive process, such as iterated intracochlear reflection [Wit and Bell (2015), J. Acoust. Soc. Am. 138, 94–96]. Reanalysis of the waveform contradicts this conclusion. The measured BM click response is used to derive the frequency-domain transfer function characterizing every iteration of the loop. The selfsame transfer function that yields waxing and waning of the BM click response also captures the spectral features of ear-canal stimulus-frequency otoacoustic emissions measured in the same animal, consistent with the predictions of multiple internal reflection. Small shifts in transfer-function phase simulate results at different measurement locations and reproduce the heterogeneity of BM click response envelopes observed experimentally. PMID:26723327
NASA Astrophysics Data System (ADS)
Puszka, Agathe; Planat-Chrétien, Anne; Berger, Michel; Hervé, Lionel; Dinten, Jean-Marc
2014-02-01
We demonstrate the loss of depth sensitivity induced by the instrument response function on reflectance time-resolved diffuse optical tomography through the comparison of 3 detection systems: on one hand a photomultiplier tube (PMT) and a hybrid PMT coupled with a time-correlated single-photon counting card and on the other hand a high rate intensified camera. We experimentally evaluate the depth sensitivity achieved for each detection module with an absorbing inclusion embedded in a turbid medium. The different interfiber distances of 5, 10 and 15 mm are considered. Finally, we determine a maximal depth reached for each detection system by using 3D tomographic reconstructions based on the Mellin-Laplace transform.
Zhang, Liwen; Opmeer, Esther M.; Ruhé, Henricus G.; Aleman, André; van der Meer, Lisette
2015-01-01
Objectives Reflecting on the self and on others activates specific brain areas and contributes to metacognition and social cognition. The aim of the current study is to investigate brain activation during self- and other-reflection in patients with bipolar disorder (BD). In addition, we examined whether potential abnormal brain activation in BD patients could distinguish BD from patients with schizophrenia (SZ). Methods During functional magnetic resonance imaging (fMRI), 17 BD patients, 17 SZ patients and 21 healthy controls (HCs) performed a self-reflection task. The task consisted of sentences divided into three conditions: self-reflection, other-reflection and semantic control. Results BD patients showed less activation in the posterior cingulate cortex (PCC) extending to the precuneus during other-reflection compared to HCs (p = 0.028 FWE corrected on cluster-level within the regions of interest). In SZ patients, the level of activation in this area was in between BD patients and HCs, with no significant differences between patients with SZ and BD. There were no group differences in brain activation during self-reflection. Moreover, there was a positive correlation between the PCC/precuneus activation during other-reflection and cognitive insight in SZ patients, but not in BD patients. Conclusions BD patients showed less activation in the PCC/precuneus during other-reflection. This may support an account of impaired integration of emotion and memory (evaluation of past and current other-related information) in BD patients. Correlation differences of the PCC/precuneus activation with the cognitive insight in patients with BD and SZ might reflect an important difference between these disorders, which may help to further explore potentially distinguishing markers. PMID:26106544
Zhang, Liwen; Opmeer, Esther M; Ruhé, Henricus G; Aleman, André; van der Meer, Lisette
2015-01-01
Reflecting on the self and on others activates specific brain areas and contributes to metacognition and social cognition. The aim of the current study is to investigate brain activation during self- and other-reflection in patients with bipolar disorder (BD). In addition, we examined whether potential abnormal brain activation in BD patients could distinguish BD from patients with schizophrenia (SZ). During functional magnetic resonance imaging (fMRI), 17 BD patients, 17 SZ patients and 21 healthy controls (HCs) performed a self-reflection task. The task consisted of sentences divided into three conditions: self-reflection, other-reflection and semantic control. BD patients showed less activation in the posterior cingulate cortex (PCC) extending to the precuneus during other-reflection compared to HCs (p = 0.028 FWE corrected on cluster-level within the regions of interest). In SZ patients, the level of activation in this area was in between BD patients and HCs, with no significant differences between patients with SZ and BD. There were no group differences in brain activation during self-reflection. Moreover, there was a positive correlation between the PCC/precuneus activation during other-reflection and cognitive insight in SZ patients, but not in BD patients. BD patients showed less activation in the PCC/precuneus during other-reflection. This may support an account of impaired integration of emotion and memory (evaluation of past and current other-related information) in BD patients. Correlation differences of the PCC/precuneus activation with the cognitive insight in patients with BD and SZ might reflect an important difference between these disorders, which may help to further explore potentially distinguishing markers.
ERIC Educational Resources Information Center
Belmonte, Matthew K.; Carper, Ruth A.
2006-01-01
A pair of monozygotic twins discordant for symptoms of Asperger syndrome was evaluated at the age of 13.45 years using psychometric, morphometric, behavioural, and functional imaging methods. The lower-functioning twin had a smaller brain overall, a smaller right cerebellum, and a disproportionately large left frontal lobe, and manifested almost…
Functional and morphological correlates of mandibular symphyseal form in a living human sample.
Holton, Nathan E; Franciscus, Robert G; Ravosa, Matthew J; Southard, Thomas E
2014-03-01
Variation in recent human mandibular form is often thought to reflect differences in masticatory behavior associated with variation in food preparation and subsistence strategies. Nevertheless, while mandibular variation in some human comparisons appear to reflect differences in functional loading, other comparisons indicate that this relationship is not universal. This suggests that morphological variation in the mandible is influenced by other factors that may obscure the effects of loading on mandibular form. It is likely that highly strained mandibular regions, including the corpus, are influenced by well-established patterns of lower facial skeletal integration. As such, it is unclear to what degree mandibular form reflects localized stresses incurred during mastication vs. a larger set of correlated features that may influence bone distribution patterns. In this study, we examine the relationship between mandibular symphyseal bone distribution (i.e., second moments of area, cortical bone area) and masticatory force production (i.e., in vivo maximal bite force magnitude and estimated symphyseal bending forces) along with lower facial shape variation in a sample of n = 20 living human male subjects. Our results indicate that while some aspects of symphyseal form (e.g., wishboning resistance) are significantly correlated with estimates of symphyseal bending force magnitude, others (i.e., vertical bending resistance) are more closely tied to variation in lower facial shape. This suggests that while the symphysis reflects variation in some variables related to functional loading, the complex and multifactorial influences on symphyseal form underscores the importance of exercising caution when inferring function from the mandible especially in narrow taxonomic comparisons. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Pisek, Jan; Chen, Jing M.; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael E.; Karnieli, Arnon; Sprinstin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi
2016-03-01
Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. In this communication, we retrieved seasonal courses of understory normalized difference vegetation index (NDVI) from multiangular Moderate Resolution Imaging Spectroradiometer bidirectional reflectance distribution function (MODIS BRDF)/albedo data. We compared satellite-based seasonal courses of understory NDVI to understory NDVI values measured in different types of forests distributed along a wide latitudinal gradient (65.12°N-31.35°N). Our results indicated that the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated.
Jonker, Laura; Elferink-Gemser, Marije T; Visscher, Chris
2010-06-01
Research has shown that talented athletes outscore their mainstream peers on the basis of self-regulation. Although valuable, this does not tell us more about the distinction between good athletes and the best, which is a prerequisite in talent development. Therefore, we examined the self-regulatory skills of 222 male and female talented athletes aged 12-16 years as a function of competitive sport level (junior international or junior national athletes) and type of sport (individual or team sports). Multivariate analyses of covariance in combination with a discriminant function analysis revealed that "reflection" distinguishes between athletes at the highest levels of excellence. Furthermore, athletes playing individual sports had higher scores on "planning" and "effort" than team sport athletes, highlighting the importance of differences between types of sport. In conclusion, we emphasize the importance of reflection as a self-regulatory skill. Reflection facilitates the development of sport-specific characteristics, which may vary by type of sport. This means that an advanced sense of reflection may help talented athletes to acquire desirable characteristics during their "talent" years to ultimately reach adult elite levels of competition.
Stacks, Ann M.; Muzik, Maria; Wong, Kristyn; Beeghly, Marjorie; Huth-Bocks, Alissa; Irwin, Jessica L.; Rosenblum, Katherine L.
2014-01-01
This study examined relationships among maternal reflective functioning, parenting, infant attachment, and demographic risk in a relatively large (N= 83) socioeconomically diverse sample of women with and without a history of childhood maltreatment and their infants. Most prior research on parental reflective functioning has utilized small homogenous samples. Reflective functioning was assessed with the Parent Development Interview, parenting was coded from videotaped mother-child interactions, and infant attachment was evaluated in Ainsworth's Strange Situation by independent teams of reliable coders masked to maternal history. Reflective functioning was associated with parenting sensitivity and secure attachment, and inversely associated with demographic risk and parenting negativity; however, it was not associated with maternal maltreatment history or PTSD. Parenting sensitivity mediated the relationship between reflective functioning and infant attachment, controlling for demographic risk. Findings are discussed in the context of prior research on reflective functioning and the importance of targeting reflective functioning in interventions. PMID:25028251
NASA Technical Reports Server (NTRS)
Valdez, P. F.; Donohoe, G. W.
1997-01-01
Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.
Clinical Supervision and Psychological Functions: A New Direction for Theory and Practice.
ERIC Educational Resources Information Center
Pajak, Edward
2002-01-01
Relates Carl Jung's concept of psychological functions to four families of clinical supervision: the original clinical models, the humanistic/artistic models, the technical/didactic models, and the developmental/reflective models. Differences among clinical supervision models within these families are clarified as representing "communication…
Functional Reflective Polarizer for Augmented Reality and Color Vision Deficiency
2016-03-03
Functional reflective polarizer for augmented reality and color vision deficiency Ruidong Zhu, Guanjun Tan, Jiamin Yuan, and Shin-Tson Wu* College...polarizer that can be incorporated into a compact augmented reality system. The design principle of the functional reflective polarizer is explained and...augment reality system is relatively high as compared to a polarizing beam splitter or a conventional reflective polarizer. Such a functional reflective
Sex differences in visuospatial abilities persist during induced hypogonadism
Guerrieri, Gioia M.; Wakim, Paul G.; Keenan, P.A.; Schenkel, Linda A; Berlin, Kate; Gibson, Carolyn J.; Rubinow, David R.; Schmidt, Peter J.
2016-01-01
Background Despite well-established sex differences in the performance on tests of several cognitive domains (e.g., visuospatial ability), few studies in humans have evaluated if these sex differences are evident both in the presence of circulating sex hormones and during sex steroid hormonal suppression. Sex differences identified in the relative absence of circulating levels of estradiol and testosterone suggest that differences in brain structure or function exist independent of current hormonal environment and are more likely a reflection of differing developmental exposures and/or genetic substrates. Objective To evaluate cognitive performance in healthy eugonadal men and women before and again during GnRH agonist-induced hypogonadism. Methods Men (n = 16) and women (n = 15) without medical or psychiatric illness were matched for IQ. Cognitive tests were performed at baseline (when eugonadal) and after 68 weeks of GnRH agonist-induced gonadal suppression. The test batteries included measures of verbal and spatial memory, spatial ability, verbal fluency, motor speed/dexterity, and attention/concentration. Data were analyzed using repeated-measures models. Results During both eugonadism and hypogonadism, men performed significantly better than women on several measures of visuospatial performance including mental rotation, line orientation, Money Road Map, Porteus maze, and complex figure drawing. Although some test performances showed an effect of hormone treatment, the majority of these differences reflected an improved performance during hypogonadism compared with baseline (and probably reflected practice effects). Conclusion The well-documented male advantage in visuospatial performance, which we observed during eugonadal conditions, was maintained in the context of short-term suppression of gonadal function in both men and women. These findings suggest that, in humans, sex differences in visuospatial performance are not merely dependent on differences in the current circulating sex steroid environment. Thus sex differences in visuospatial performance in adulthood could reflect early developmental effects of sex steroid exposure or other environmental exposures differing across the sexes as our data confirm that these differences are independent of circulating estradiol or testosterone levels in men and women. PMID:26719236
Sex differences in visuospatial abilities persist during induced hypogonadism.
Guerrieri, Gioia M; Wakim, Paul G; Keenan, P A; Schenkel, Linda A; Berlin, Kate; Gibson, Carolyn J; Rubinow, David R; Schmidt, Peter J
2016-01-29
Despite well-established sex differences in the performance on tests of several cognitive domains (e.g., visuospatial ability), few studies in humans have evaluated if these sex differences are evident both in the presence of circulating sex hormones and during sex steroid hormonal suppression. Sex differences identified in the relative absence of circulating levels of estradiol and testosterone suggest that differences in brain structure or function exist independent of current hormonal environment and are more likely a reflection of differing developmental exposures and/or genetic substrates. To evaluate cognitive performance in healthy eugonadal men and women before and again during GnRH agonist-induced hypogonadism. Men (n=16) and women (n=15) without medical or psychiatric illness were matched for IQ. Cognitive tests were performed at baseline (when eugonadal) and after 6-8 weeks of GnRH agonist-induced gonadal suppression. The test batteries included measures of verbal and spatial memory, spatial ability, verbal fluency, motor speed/dexterity, and attention/concentration. Data were analyzed using repeated-measures models. During both eugonadism and hypogonadism, men performed significantly better than women on several measures of visuospatial performance including mental rotation, line orientation, Money Road Map, Porteus maze, and complex figure drawing. Although some test performances showed an effect of hormone treatment, the majority of these differences reflected an improved performance during hypogonadism compared with baseline (and probably reflected practice effects). The well-documented male advantage in visuospatial performance, which we observed during eugonadal conditions, was maintained in the context of short-term suppression of gonadal function in both men and women. These findings suggest that, in humans, sex differences in visuospatial performance are not merely dependent on differences in the current circulating sex steroid environment. Thus sex differences in visuospatial performance in adulthood could reflect early developmental effects of sex steroid exposure or other environmental exposures differing across the sexes as our data confirm that these differences are independent of circulating estradiol or testosterone levels in men and women. Published by Elsevier Ltd.
Liu, Hong; Zhu, Jingping; Wang, Kai
2015-08-24
The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.
Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface
NASA Astrophysics Data System (ADS)
Kosobukin, V. A.; Korotchenkov, A. V.
2016-12-01
A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.
Visuo-Spatial Processing and Executive Functions in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Marton, Klara
2008-01-01
Background: Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims: The purpose of the study was to examine executive…
Executive Function: Implications for Education. NCER 2017-2000
ERIC Educational Resources Information Center
Zelazo, Philip David; Blair, Clancy B.; Willoughby, Michael T.
2016-01-01
Executive function (EF) skills are the attention-regulation skills that make it possible to sustain attention, keep goals and information in mind, refrain from responding immediately, resist distraction, tolerate frustration, consider the consequences of different behaviors, reflect on past experiences, and plan for the future. As EF research…
Infant Attention and Early Childhood Executive Function
ERIC Educational Resources Information Center
Cuevas, Kimberly; Bell, Martha Ann
2014-01-01
Individual differences in infant attention are theorized to reflect the speed of information processing and are related to later cognitive abilities (i.e., memory, language, and intelligence). This study provides the first systematic longitudinal analysis of infant attention and early childhood executive function (EF; e.g., working memory,…
Strategies to keep working among workers with common mental disorders - a grounded theory study.
Danielsson, Louise; Elf, Mikael; Hensing, Gunnel
2017-11-28
Most people with common mental disorders (CMDs) are employed and working, but few studies have looked into how they manage their jobs while ill. This study explores workers' experiences of strategies to keep working while suffering from CMDs. In this grounded theory study, we interviewed 19 women and eight men with depression or anxiety disorders. They were 19-65 years old and had different occupations. Constant comparison method was used in the analysis. We identified a core pattern in the depressed and anxious workers' attempts to sustain their capacities, defined as Managing work space. The core pattern comprised four categories describing different cognitive, behavioral, and social strategies. The categories relate to a process of sustainability. Two categories reflected more reactive and temporary strategies, occurring mainly in the onset phase of illness: Forcing the work role and Warding off work strain. The third category, Recuperating from work, reflected strategies during both onset and recovery phases. The fourth category, Reflexive adaptation, was present mainly in the recovery phase and involved reflective strategies interpreted as more sustainable over time. The results can deepen understanding among rehabilitation professionals about different work-related strategies in depressed and anxious workers. Increased awareness of the meaning and characteristics of strategies can inform a person-oriented approach in rehabilitation. The knowledge can be used in clinical encounters to reflect together with the patient, exploring present options and introducing modifications to their particular work and life context. Implications for rehabilitation Self-managed work functioning in common mental disorders involves diverse strategies. Strategies interpreted as sustainable over time, seem to be reflective in the sense that the worker consciously applies and adapts the strategies. However, at the onset of illness, such reflection is difficult to develop as the worker might not want to realize their reduced functioning. Rehabilitation professionals' awareness of different strategies can facilitate a person-centered approach and understanding of the vocational rehabilitation process.
Detection of low-amplitude in vivo intrinsic signals from an optical imager of retinal function
NASA Astrophysics Data System (ADS)
Barriga, Eduardo S.; T'so, Dan; Pattichis, Marios; Kwon, Young; Kardon, Randy; Abramoff, Michael; Soliz, Peter
2006-02-01
In the early stages of some retinal diseases, such as glaucoma, loss of retinal activity may be difficult to detect with today's clinical instruments. Many of today's instruments focus on detecting changes in anatomical structures, such as the nerve fiber layer. Our device, which is based on a modified fundus camera, seeks to detect changes in optical signals that reflect functional changes in the retina. The functional imager uses a patterned stimulus at wavelength of 535nm. An intrinsic functional signal is collected at a near infrared wavelength. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other physiological signals and by imaging system noise. In this paper, we analyze the video sequences from a set of 60 experiments with different patterned stimuli from cats. Using a set of statistical techniques known as Independent Component Analysis (ICA), we estimate the signals present in the videos. Through controlled simulation experiments, we quantify the limits of signal strength in order to detect the physiological signal of interest. The results of the analysis show that, in principle, signal levels of 0.1% (-30dB) can be detected. The study found that in 86% of the animal experiments the patterned stimuli effects on the retina can be detected and extracted. The analysis of the different responses extracted from the videos can give an insight of the functional processes present during the stimulation of the retina.
Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery
NASA Technical Reports Server (NTRS)
Jackson, R. D.; Teillet, P. M.; Slater, P. N.; Fedosejevs, G.; Jasinski, Michael F.
1990-01-01
An apparatus for acquiring bidirectional reflectance-factor data was constructed and used over four surface types. Data sets were obtained over a headed wheat canopy, bare soil having several different roughness conditions, playa (dry lake bed), and gypsum sand. Results are presented in terms of relative bidirectional reflectance factors (BRFs) as a function of view angle at a number of solar zenith angles, nadir BRFs as a function of solar zenith angles, and, for wheat, vegetation indices as related to view and solar zenith angles. The wheat canopy exhibited the largest BRF changes with view angle. BRFs for the red and the NIR bands measured over wheat did not have the same relationship with view angle. NIR/Red ratios calculated from nadir BRFs changed by nearly a factor of 2 when the solar zenith angle changed from 20 to 50 degs. BRF versus view angle relationships were similar for soils having smooth and intermediate rough surfaces but were considerably different for the roughest surface. Nadir BRF versus solar-zenith angle relationships were distinctly different for the three soil roughness levels. Of the various surfaces, BRFs for gypsum sand changed the least with view angle (10 percent at 30 degs).
Laser marking of contrast images for optical read-out systems
NASA Astrophysics Data System (ADS)
Yulmetova, O. S.; Tumanova, M. A.
2017-11-01
In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.
Bidirectional reflectance function in coastal waters: modeling and validation
NASA Astrophysics Data System (ADS)
Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir
2011-11-01
The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.
Estimating surface reflectance from Himawari-8/AHI reflectance channels Using 6SV
NASA Astrophysics Data System (ADS)
Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Seong, Noh-hun; Han, Kyung-soo
2017-04-01
TOA (Top Of Atmospheric) reflectance observed by satellite is modified by the influence of atmosphere such as absorbing and scattering by molecular and gasses. Removing TOA reflectance attenuation which is caused by the atmospheric is essential. surface reflectance with compensated atmospheric effects used as important input data for land product such as Normalized Difference Vegetation Index (NDVI), Land Surface Albedo (LSA) and etc. In this study, we Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) for atmospheric correction and estimating surface reflectance from Himawari-8/Advanced Himawari Imager (AHI) reflectance channels. 6SV has the advantage that it has high accuracy by performing the atmospheric correction by dividing the width of the satellite channel by 2.5 nm, but it is slow to use in the operation. So, we use LUT approach to reduce the computation time and avoid the intensive calculation required for retrieving surface reflectance. Estimated surface reflectance data were compared with PROBA-V S1 data to evaluate the accuracy. As a result Root Mean Square Error (RMSE) and bias were about 0.05 and -0.02. It is considered that this error is due to the difference of angle component and Spectral Response Function (SRF) of each channel.
Medial prefrontal cortex subserves diverse forms of self-reflection.
Jenkins, Adrianna C; Mitchell, Jason P
2011-01-01
The ability to think about oneself--to self--reflect--is one of the defining features of the human mind. Recent research has suggested that this ability may be subserved by a particular brain region: the medial prefrontal cortex (MPFC). However, although humans can contemplate a variety of different aspects of themselves, including their stable personality traits, current feelings, and physical attributes, no research has directly examined the extent to which these different forms of self-reflection are subserved by common mechanisms. To address this question, participants were scanned using functional magnetic resonance imaging (fMRI) while making judgments about their own personality traits, current mental states, and physical attributes as well as those of another person. Whereas some brain regions responded preferentially during only one form of self-reflection, a robust region of MPFC was engaged preferentially during self-reflection across all three types of judgment. These results suggest that--although dissociable--diverse forms of self-referential thought draw on a shared cognitive process subserved by MPFC.
Paap, Kenneth R.; Sawi, Oliver
2014-01-01
A sample of 58 bilingual and 62 monolingual university students completed four tasks commonly used to test for bilingual advantages in executive functioning (EF): antisaccade, attentional network test, Simon, and color-shape switching. Across the four tasks, 13 different indices were derived that are assumed to reflect individual differences in inhibitory control, monitoring, or switching. The effects of bilingualism on the 13 measures were explored by directly comparing the means of the two language groups and through regression analyses using a continuous measure of bilingualism and multiple demographic characteristics as predictors. Across the 13 different measures and two types of data analysis there were very few significant results and those that did occur supported a monolingual advantage. An equally important goal was to assess the convergent validity through cross-task correlations of indices assume to measure the same component of executive functioning. Most of the correlations using difference-score measures were non-significant and many near zero. Although modestly higher levels of convergent validity are sometimes reported, a review of the existing literature suggests that bilingual advantages (or disadvantages) may reflect task-specific differences that are unlikely to generalize to important general differences in EF. Finally, as cautioned by Salthouse, assumed measures of executive functioning may also be threatened by a lack of discriminant validity that separates individual or group differences in EF from those in general fluid intelligence or simple processing speed. PMID:25249988
ERIC Educational Resources Information Center
Murphy, Roger J. L.
Many academic examinations exhibit sex differences in terms of entry figures and pass rates. This fact is illustrated by a selection of statistics from the British GCE "O" level examination results for June 1976. These results are discussed in terms of three possible causes: innate differences in intellectual functioning, sex role…
NASA Astrophysics Data System (ADS)
Minchin, Robert F.
2017-09-01
I investigate whether it is possible to reconcile the recent Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) observation that the neutral hydrogen mass function (HIMF) across different galactic densities has the same, non-flat, faint-end slope, with observations of isolated galaxies and many galaxy groups that show their HIMFs to have flat faint-end slopes. I find that a fairly simple model in which the position of the knee in the mass function of each individual group is allowed to vary is able to account for both of these observations. If this model reflects reality, the ALFALFA results point to an interesting “conspiracy” whereby the differing group HIMFs always sum up to form global HIMFs with the same faint-end slope in different environments. More generally, this result implies that global environmental HIMFs do not necessarily reflect the HIMFs in individual groups belonging to that environment and cannot be used to directly measure variations in group-specific HIMFs with environment.
Protein osmotic pressure gradients and microvascular reflection coefficients.
Drake, R E; Dhother, S; Teague, R A; Gabel, J C
1997-08-01
Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.
NASA Astrophysics Data System (ADS)
Escobar-Cerezo, J.; Penttilä, A.; Kohout, T.; Muñoz, O.; Moreno, F.; Muinonen, K.
2018-01-01
Lunar soil spectra differ from pulverized lunar rocks spectra by reddening and darkening effects, and shallower absorption bands. These effects have been described in the past as a consequence of space weathering. In this work, we focus on the effects of nanophase iron (npFe0) inclusions on the experimental reflectance spectra of lunar regolith particles. The reflectance spectra are computed using SIRIS3, a code that combines ray optics with radiative-transfer modeling to simulate light scattering by different types of scatterers. The imaginary part of the refractive index as a function of wavelength of immature lunar soil is derived by comparison with the measured spectra of the corresponding material. Furthermore, the effect of adding nanophase iron inclusions on the reflectance spectra is studied. The computed spectra qualitatively reproduce the observed effects of space weathered lunar regolith.
Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface
NASA Astrophysics Data System (ADS)
Antolin, J.; Yu, Z.; Prasad, S.
2016-09-01
The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.
NASA Technical Reports Server (NTRS)
King, M. D.
1983-01-01
Computational results are presented for the separate terms in the Fourier expansion of the phase function and the reflection function of a semiinfinite, conservatively scattering atmosphere composed of cloud particles. The calculations involve successive applications of invariant imbedding, doubling, and asymptotic fitting methods to cover the range from very thin to very thick atmospheres. From the results, the ratio of the total reflection function to the first-order reflection function is determined as well as the number of terms required to describe the reflection function to an accuracy of 0.1 percent. The number of terms required depends strongly on the zenith angles of incidence and reflection as well as on details of the phase function. These results are compared with similar results obtained for a Henyey-Greenstein phase function having the same asymmetry factor as in the cloud model.
Alfano, Robert R.; Yang, Yuanlong
2003-09-02
Method and apparatus for examining biological materials using diffuse reflectance spectroscopy and the Kubelka-Munk function. In one aspect, the method is used to determine whether a tissue sample is cancerous or not and comprises the steps of (a) measuring the diffuse reflectance from the tissue sample at a first wavelength and at a second wavelength, wherein the first wavelength is a wavelength selected from the group consisting of 255-265 nm and wherein the second wavelength is a wavelength selected from the group consisting of 275-285 nm; (b) using the Kubelka-Munk function to transform the diffuse reflectance measurement obtained at the first and second wavelengths; and (c) comparing a ratio or a difference of the transformed Kubelka-Munk measurements at the first and second wavelengths to appropriate standards determine whether or not the tissue sample is cancerous. One can use the spectral profile of KMF between 250 nm to 300 nm to determine whether or not the tissue sample is cancerous or precancerous. According to the value at the first and second wavelengths determine whether or not the malignant tissue is invasive or mixed invasive and in situ or carcinoma in situ.
Design of the scanning mode coated glass color difference online detection system
NASA Astrophysics Data System (ADS)
Bi, Weihong; Zhang, Yu; Wang, Dajiang; Zhang, Baojun; Fu, Guangwei
2008-03-01
A design of scanning mode coated glass color difference online detection system was introduced. The system consisted of color difference data acquirement part and orbit control part. The function of the color difference data acquirement part was to acquire glass spectral reflectance and then processed them to get the color difference value. Using fiber for light guiding, the reflected light from surface of glass was transmitted into light division part, and the dispersive light was imaged on linear CCD, and then the output signals from the CCD was sampled pixel by pixel, and the spectral reflectance of coated glass was obtained finally. Then, the acquired spectral reflectance signals was sent to industrial personal computer through USB interface, using standard color space and color difference formula nominated by International Commission on Illumination (CIE) in 1976 to process these signals, and the reflected color parameter and color difference of coated glass was gained in the end. The function of the orbit control part was to move the detection probe by way of transverse scanning mode above the glass strip, and control the measuring start-stop time of the color difference data acquirement part at the same time. The color difference data acquirement part of the system was put on the orbit which is after annealing area in coated glass production line, and the protected fiber probe was placed on slide of the orbit. Using single chip microcomputer to control transmission mechanism of the slide, which made the slide move by way of transverse scanning mode on the glass strip, meanwhile, the color difference data acquirement part of the system was also controlled by the single chip microcomputer, and it made the acquirement part measure color difference data when the probe reached the needed working speed and required place on the glass strip. The scanning mode coated glass color difference online detection system can measure color parameter and color difference of each transverse point on glass strip, it can also measure lengthways color stability on glass strip. Furthermore, the measuring results can be transmitted to coated control room through intranet, so it is very useful to improve producing technique in time. In addition, equipping necessary marking machine, this system can classify glass board automatically based on the measuring result.
Self-reflection and the temporal focus of the wandering mind.
Smallwood, Jonathan; Schooler, Jonathan W; Turk, David J; Cunningham, Sheila J; Burns, Phebe; Macrae, C Neil
2011-12-01
Current accounts suggest that self-referential thought serves a pivotal function in the human ability to simulate the future during mind-wandering. Using experience sampling, this hypothesis was tested in two studies that explored the extent to which self-reflection impacts both retrospection and prospection during mind-wandering. Study 1 demonstrated that a brief period of self-reflection yielded a prospective bias during mind-wandering such that participants' engaged more frequently in spontaneous future than past thought. In Study 2, individual differences in the strength of self-referential thought - as indexed by the memorial advantage for self rather than other-encoded items - was shown to vary with future thinking during mind-wandering. Together these results confirm that self-reflection is a core component of future thinking during mind-wandering and provide novel evidence that a key function of the autobiographical memory system may be to mentally simulate events in the future. Copyright © 2011 Elsevier Inc. All rights reserved.
Research Currents: English for Everyone.
ERIC Educational Resources Information Center
Lindfors, Judith W.
1986-01-01
Presents the "Englishes" of children from different social backgrounds that are reflected in the forms and functions of their individual ways of communicating. Discusses implications of these language varieties for the classroom. (HTH)
Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya K.; Landis, David R.; Middleton, Elizabeth M.
2013-01-01
Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012+/-0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals.
Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat
NASA Astrophysics Data System (ADS)
Marchand, Roger
2012-03-01
This paper examines the along-track vertical and horizontal structure of hydrometeor occurrence, reflectivity, and column rain rate derived from CloudSat. The analysis assumes hydrometeors statistics in a given region are horizontally invariant, with the probability of hydrometeor co-occurrence obtained simply by determining the relative frequency at which hydrometeors can be found at two points (which may be at different altitudes and offset by a horizontal distance, Δx). A correlation function is introduced (gamma correlation) that normalizes hydrometeor co-occurrence values to the range of 1 to -1, with a value of 0 meaning uncorrelated in the usual sense. This correlation function is a generalization of the alpha overlap parameter that has been used in recent studies to describe the overlap between cloud (or hydrometeor) layers. Examples of joint histograms of reflectivity at two points are also examined. The analysis shows that the traditional linear (or Pearson) correlation coefficient provides a useful one-to-one measure of the strength of the relationship between hydrometeor reflectivity at two points in the horizontal (that is, two points at the same altitude). While also potentially useful in the vertical direction, the relationship between reflectivity values at different altitudes is not as well described by the linear correlation coefficient. The decrease in correlation of hydrometeor occurrence and reflectivity with horizontal distance, as well as precipitation occurrence and column rain rate, can be reasonably well fit with a simple two-parameter exponential model. In this paper, the North Pacific and tropical western Pacific are examined in detail, as is the zonal dependence.
Self-reflection modulates the outcome evaluation process: Evidence from an ERP study.
Zhu, Xiangru; Gu, Ruolei; Wu, Haiyan; Luo, Yuejia
2015-12-01
Recent research demonstrated structural overlap between reward and self processing, but the functional relationship that explains how self processing influences reward processing remains unclear. The present study used an experimentally constrained reflection task to investigate whether individuals' outcome evaluations in a gambling task are modulated by task-unrelated self- and other-reflection processes. The self- and other-reflection task contained descriptions of the self or others, and brain event-related potentials (ERPs) were recorded while 16 normal adults performed a gambling task. The ERP analysis focused on the feedback-related negativity (FRN) component. We found that the difference wave of FRN increased in the self-reflection condition compared with the other-reflection condition. The present findings provide direct evidence that self processing can influence reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Lyons, Kristen E; Zelazo, Philip David
2011-01-01
While an abundance of research has investigated the development of the automatic and controlled processes through which individuals control their thoughts, emotions, and actions, less research has emphasized the role of the self in self-regulation. This chapter synthesizes four literatures that have examined the mechanisms through which the individual acts in a managerial role, evaluating the current status of the system and initiating regulatory actions as necessary. Taken together, these literatures (on executive function, error monitoring, metacognition, and uncertainty monitoring) suggest that self-reflection plays a critical role in self-regulation, and that developmental improvements in self-reflection (via increasing levels of conscious awareness and enhanced calibration of monitoring systems) may serve as driving forces underlying developmental improvement (and temperamental individual differences) in children's ability to control their thoughts and actions.
Energy Models and the Policy Process.
ERIC Educational Resources Information Center
De Man, Reinier
1983-01-01
Describes the function of econometric and technological models in the policy process, and shows how different positions in the Dutch energy discussion are reflected by the application of different model methodologies. Discussion includes the energy policy context, a conceptual framework for using energy models, and energy scenarios in policy…
Liu, Jie; Zhang, Fu-Dong; Teng, Fei; Li, Jun; Wang, Zhi-Hong
2014-10-01
In order to in-situ detect the oil yield of oil shale, based on portable near infrared spectroscopy analytical technology, with 66 rock core samples from No. 2 well drilling of Fuyu oil shale base in Jilin, the modeling and analyzing methods for in-situ detection were researched. By the developed portable spectrometer, 3 data formats (reflectance, absorbance and K-M function) spectra were acquired. With 4 different modeling data optimization methods: principal component-mahalanobis distance (PCA-MD) for eliminating abnormal samples, uninformative variables elimination (UVE) for wavelength selection and their combina- tions: PCA-MD + UVE and UVE + PCA-MD, 2 modeling methods: partial least square (PLS) and back propagation artificial neural network (BPANN), and the same data pre-processing, the modeling and analyzing experiment were performed to determine the optimum analysis model and method. The results show that the data format, modeling data optimization method and modeling method all affect the analysis precision of model. Results show that whether or not using the optimization method, reflectance or K-M function is the proper spectrum format of the modeling database for two modeling methods. Using two different modeling methods and four different data optimization methods, the model precisions of the same modeling database are different. For PLS modeling method, the PCA-MD and UVE + PCA-MD data optimization methods can improve the modeling precision of database using K-M function spectrum data format. For BPANN modeling method, UVE, UVE + PCA-MD and PCA- MD + UVE data optimization methods can improve the modeling precision of database using any of the 3 spectrum data formats. In addition to using the reflectance spectra and PCA-MD data optimization method, modeling precision by BPANN method is better than that by PLS method. And modeling with reflectance spectra, UVE optimization method and BPANN modeling method, the model gets the highest analysis precision, its correlation coefficient (Rp) is 0.92, and its standard error of prediction (SEP) is 0.69%.
Some Insights of Spectral Optimization in Ocean Color Inversion
NASA Technical Reports Server (NTRS)
Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert
2011-01-01
In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.
Optical properties (bidirectional reflectance distribution function) of shot fabric.
Lu, R; Koenderink, J J; Kappers, A M
2000-11-01
To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.
A neuroimaging investigation of attribute framing and individual differences
Murch, Kevin B.
2014-01-01
Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. PMID:23988759
Corrugated grating on organic multilayer Bragg reflector
NASA Astrophysics Data System (ADS)
Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter
2007-08-01
Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.
Determining the influential depth for surface reflectance of sediment by BRDF measurements.
Zhang, H; Voss, K; Reid, R
2003-10-20
We measure the Bi-directional reflectance distribution function (BRDF) of ooid sand layers with three particle size distributions (0.5-1mm, 0.25-0.5mm and 0.125-0.25mm) and layer thicknesses on a reflecting mirror to determine the influential depth in the optical region at wavelengths of 658 nm (red), 570 nm (green) and 457 nm (blue). The hemispherical reflectance (albedo) was used as an indicator of BRDF changes between different layers. Measurements are carried out on both dry and water wetted grains. The results indicate that for both dry and wet and all size distributions, the influential depth is at most 2mm.
Beta value coupled wave theory for nonslanted reflection gratings.
Neipp, Cristian; Francés, Jorge; Gallego, Sergi; Bleda, Sergio; Martínez, Francisco Javier; Pascual, Inmaculada; Beléndez, Augusto
2014-01-01
We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik's coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik's coupled wave theory.
Beta Value Coupled Wave Theory for Nonslanted Reflection Gratings
Neipp, Cristian; Francés, Jorge; Gallego, Sergi; Bleda, Sergio; Martínez, Francisco Javier; Pascual, Inmaculada; Beléndez, Augusto
2014-01-01
We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik's coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik's coupled wave theory. PMID:24723811
Use of thermal neutron reflection method for chemical analysis of bulk samples
NASA Astrophysics Data System (ADS)
Papp, A.; Csikai, J.
2014-09-01
Microscopic, σβ, and macroscopic, Σβ, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σβ values are additive even for bulk samples in the z=0.5-8 cm interval and so the σβmol(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ~1000 cm3 dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously.
Deutscher, Daniel; Hart, Dennis L; Crane, Paul K; Dickstein, Ruth
2010-12-01
Comparative effectiveness research across cultures requires unbiased measures that accurately detect clinical differences between patient groups. The purpose of this study was to assess the presence and impact of differential item functioning (DIF) in knee functional status (FS) items administered using computerized adaptive testing (CAT) as a possible cause for observed differences in outcomes between 2 cultural patient groups in a polyglot society. This study was a secondary analysis of prospectively collected data. We evaluated data from 9,134 patients with knee impairments from outpatient physical therapy clinics in Israel. Items were analyzed for DIF related to sex, age, symptom acuity, surgical history, exercise history, and language used to complete the functional survey (Hebrew versus Russian). Several items exhibited DIF, but unadjusted FS estimates and FS estimates that accounted for DIF were essentially equal (intraclass correlation coefficient [2,1]>.999). No individual patient had a difference between unadjusted and adjusted FS estimates as large as the median standard error of the unadjusted estimates. Differences between groups defined by any of the covariates considered were essentially unchanged when using adjusted instead of unadjusted FS estimates. The greatest group-level impact was <0.3% of 1 standard deviation of the unadjusted FS estimates. Complete data where patients answered all items in the scale would have been preferred for DIF analysis, but only CAT data were available. Differences in FS outcomes between groups of patients with knee impairments who answered the knee CAT in Hebrew or Russian in Israel most likely reflected true differences that may reflect societal disparities in this health outcome.
Age-Related Differences in Multiple Task Monitoring
Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo
2014-01-01
Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609
Age-related differences in multiple task monitoring.
Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo
2014-01-01
Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.
Yarkovsky-O'Keefe-Radzievskii-Paddack effect with anisotropic radiation
NASA Astrophysics Data System (ADS)
Breiter, S.; Vokrouhlický, D.
2011-02-01
In this paper, we study the influence of optical scattering and thermal radiation models on the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The Lambertian formulation is compared with the scattering and emission laws and Lommel-Seeliger reflection. Although the form of the reflectivity function strongly influences the mean torques because of scattering or thermal radiation alone, their combined contribution to the rotation period YORP effect is not very different from the standard Lambertian values. For higher albedo values, the differences between the Hapke and Lambert models become significant for the YORP effect in attitude.
NASA Technical Reports Server (NTRS)
Appleby, J. F.; Van Blerkom, D. J.
1975-01-01
The article details an inhomogeneous reflecting layer (IRFL) model designed to survey absorption line behavior from a Squires-like cloud cover (which is characterized by convection cell structure). Computational problems and procedures are discussed in detail. The results show trends usually opposite to those predicted by a simple reflecting layer model. Per cent equivalent width variations for the tower model are usually somewhat greater for weak than for relatively strong absorption lines, with differences of a factor of about two or three. IRFL equivalent width variations do not differ drastically as a function of geometry when the total volume of absorbing gas is held constant. The IRFL results are in many instances consistent with observed equivalent width variations of Jupiter, Saturn, and Venus.
The socioeconomic origins of physical functioning among older U.S. adults.
Montez, Jennifer Karas
2013-12-01
Mounting evidence finds that adult health reflects socioeconomic circumstances (SES) in early life and adulthood. However, it is unclear how the health consequences of SES in early life and adulthood accumulate-for example, additively, synergistically. This study tests four hypotheses about how the health effects of early-life SES (measured by parental education) and adult SES (measured by own education) accumulate to shape functional limitations, whether the accumulation differs between men and women, and the extent to which key mechanisms explain the accumulation. It uses data from the 1994-2010 Health and Retirement Study on U.S. adults 50-100 years of age (N=24,026). The physical functioning benefits of parental and own education accumulated additively among men. While the physical functioning benefits generally accumulated among women, the functioning benefits from one's own education were dampened among women with low-educated mothers. The dampening partly reflected a strong tie between mothers' education level and women's obesity risk. Taken together, the findings reveal subtle differences between men and women in the life course origins of physical functioning. They also shed light on a key mechanism-obesity-that may help explain why a growing number of studies find that early-life SES is especially important for women's health. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aqua and Terra MODIS RSB Calibration Comparison Using BRDF Modeled Reflectance
NASA Technical Reports Server (NTRS)
Chang, Tiejun; Xiong, Xiaoxiong; Angal, Amit; Wu, Aisheng; Geng, Xu
2017-01-01
The inter-comparison of MODIS reflective solar bands onboard Aqua and Terra is very important for assessment of each instrument's calibration. One of the limitations is the lack of simultaneous nadir overpasses. Their measurements over a selected Earth view target have significant differences in solar and view angles, which magnify the effects of atmospheric scattering and Bidirectional Reflectance Distribution Function (BRDF). In this work, an intercomparison technique is formulated after correction for site's BRDF and atmospheric effects. The reflectance measurements over Libya desert sites 1, 2, and 4 from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for calibration difference. The ratio between Aqua and Terra reflectance measurements are derived for bands 1 to 9 and the results from different sites show good agreement. For year 2003, the ratios are in the range of 0.985 to1.010 for band 1 to 9. Band 3 shows the lowest ratio 0.985 and band 1 shows the highest ratio 1.010. For the year 2014, the ratio ranges from approximately 0.983 for bands 2 and 1.012 for band 8. The BRDF corrected reflectance for the two instruments are also derived for every year from 2003 to 2014 for stability assessment. Bands 1 and 2 show greater than 1 differences between the two instruments. Aqua bands 1 and 2 show downward trends while Terra bands 1 and 2 show upward trends. Bands 8 and 9 of both Aqua and Terra show large variations of reflectance measurement over time.
Anthony, Bruno J.; Kenworthy, Lauren; Armour, Anna Chelsea; Dudley, Katerina; Anthony, Laura Gutermuth
2016-01-01
There is a lack of research examining differences in functioning in autism spectrum disorder (ASD) across ethnicity, particularly among those without intellectual disability (ID). This study investigated ethnic differences in parent-reported impairment in executive function, adaptive behavior, and social–emotional functioning. White and Black youth (n = 64; ages 6–17) with ASD without ID were compared on each of these domains. Black youth had significantly lower levels of impairment on all three domains. Findings may reflect better daily functioning among Black youth with ASD and/or cultural differences in parent response to questionnaires. Regardless, these findings raise concern about the sensitivity of commonly used measures for Black children with ASD and the impact of culture on daily functioning and symptom manifestation. PMID:26439481
Ratto, Allison B; Anthony, Bruno J; Kenworthy, Lauren; Armour, Anna Chelsea; Dudley, Katerina; Anthony, Laura Gutermuth
2016-03-01
There is a lack of research examining differences in functioning in autism spectrum disorder (ASD) across ethnicity, particularly among those without intellectual disability (ID). This study investigated ethnic differences in parent-reported impairment in executive function, adaptive behavior, and social-emotional functioning. White and Black youth (n = 64; ages 6-17) with ASD without ID were compared on each of these domains. Black youth had significantly lower levels of impairment on all three domains. Findings may reflect better daily functioning among Black youth with ASD and/or cultural differences in parent response to questionnaires. Regardless, these findings raise concern about the sensitivity of commonly used measures for Black children with ASD and the impact of culture on daily functioning and symptom manifestation.
ERIC Educational Resources Information Center
Lusebrink, Vija B.
2010-01-01
The Expressive Therapies Continuum (ETC) provides a theoretical model for art-based assessments and applications of media in art therapy. The three levels of the ETC (Kinesthetic/Sensory, Perceptual/Affective, and Cognitive/Symbolic) appear to reflect different functions and structures in the brain that process visual and affective information.…
ERIC Educational Resources Information Center
Simor, Peter; Pajkossy, Peter; Horvath, Klara; Bodizs, Robert
2012-01-01
Nightmare disorder is a prevalent parasomnia characterized by vivid and highly unpleasant dream experiences during night time sleep. The neural background of disturbed dreaming was proposed to be associated with impaired prefrontal and fronto-limbic functioning during REM sleep. We hypothesized that the impaired prefrontal and fronto-limbic…
A normalisation framework for (hyper-)spectral imagery
NASA Astrophysics Data System (ADS)
Grumpe, Arne; Zirin, Vladimir; Wöhler, Christian
2015-06-01
It is well known that the topography has an influence on the observed reflectance spectra. This influence is not compensated by spectral ratios, i.e. the effect is wavelength dependent. In this work, we present a complete normalisation framework. The surface temperature is estimated based on the measured surface reflectance. To normalise the spectral reflectance with respect to a standard illumination geometry, spatially varying reflectance parameters are estimated based on a non-linear reflectance model. The reflectance parameter estimation has one free parameter, i.e. a low-pass function, which sets the scale of the spatial-variance, i.e. the lateral resolution of the reflectance parameter maps. Since the local surface topography has a major influence on the measured reflectance, often neglected shading information is extracted from the spectral imagery and an existing topography model is refined to image resolution. All methods are demonstrated on the Moon Mineralogy Mapper dataset. Additionally, two empirical methods are introduced that deal with observed systematic reflectance changes in co-registered images acquired at different phase angles. These effects, however, may also be caused by the sensor temperature, due to its correlation with the phase angle. Surface temperatures above 300 K are detected and are very similar to a reference method. The proposed method, however, seems more robust in case of absorptions visible in the reflectance spectrum near 2000 nm. By introducing a low-pass into the computation of the reflectance parameters, the reflectance behaviour of the surfaces may be derived at different scales. This allows for an iterative refinement of the local surface topography using shape from shading and the computation reflectance parameters. The inferred parameters are derived from all available co-registered images and do not show significant influence of the local surface topography. The results of the empirical correction show that both proposed methods greatly reduce the influence of different phase angles or sensor temperatures.
Using Field Measurements to Assess Aging of Self-Cleaning High-Reflectance Paint
NASA Astrophysics Data System (ADS)
Takebayashi, Hideki; Tanabe, Junichiro; Aoyama, Taizo; Sonoda, Takeshi; Nakanishi, Yasushi
2017-08-01
Continuous field measurements were used to evaluate the aging of solar reflectance on self-cleaning coatings for roofs in comparison with conventional coatings that have no self-cleaning function. Solar reflectance on self-cleaning coatings decreases by about 6 % per year with annual variations, due to the adhesion of dirt. On the other hand, solar reflectance on conventional coatings greatly decreases, by approximately 18 % within four months of the coating's application, due to the adhesion of dirt. Then, it gradually recovers at a rate of about 4 % per year, with annual variations, due to degradation of the coating. It is due to degradation of the conventional coating that the difference of solar reflectance between the self-cleaning coating and the conventional coating becomes almost zero in two years. Both the adhesion of dirt and coating degradation by chalking affect the temporal change of solar reflectance with annual variation.
Separating the FN400 and N400 potentials across recognition memory experiments
Stróżak, Paweł; Abedzadeh, Delora; Curran, Tim
2016-01-01
There is a growing debate as to whether frontally distributed FN400 potentials reflect familiarity-based recognition or are functionally identical to centro-parietal N400 reflecting semantic processing. We conducted two experiments in which event-related potentials (ERPs) associated with semantic priming and recognition were recorded, either when priming was embedded within a recognition test (Experiment 1), or when these two phases were separated (Experiment 2). In Experiment 1, we observed 300–500 ms differences between primed and unprimed old words as well as differences between old and new primed words, but these two effects did not differ topographically and both showed midline central maxima. In Experiment 2, the N400 for priming was recorded exclusively during encoding and again showed a midline central distribution. The ERP component of recognition was only found for unrelated words (not primed previously during encoding), and also showed a midline central maximum, but, in addition, was present in the left frontal area of the scalp. Conversely, the priming effect was absent in the left frontal cluster. This pattern of results indicate that FN400 and N400 potentials share similar neural generators; but when priming and recognition are not confounded, these potentials do not entirely overlap in terms of topographical distribution and presumably reflect functionally distinct processes. PMID:26776478
Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan E B; Kastner, Sabine; Hasson, Uri
2015-02-19
The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas.
Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects
NASA Astrophysics Data System (ADS)
Kuster, Martin; de Vries, Diemer
2006-12-01
It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.
Reflectance of topologically disordered photonic-crystal films
NASA Astrophysics Data System (ADS)
Vigneron, Jean-Pol; Lousse, Virginie M.; Biro, Laszlo P.; Vertesy, Zofia; Balint, Zolt
2005-04-01
Periodicity implies the creation of discretely diffracted beams while various departures from periodicity lead to broadened scattering angles. This effect is investigated for disturbed lattices exhibiting randomly varying periods. In the Born approximation, the diffused reflection is shown to be related to a pair correlation function constructed from the distribution of the film scattering power. The technique is first applied to a natural photonic crystal found on the ventral side of the wings of the butterfly Cyanophrys remus, where scanning electron microscopy reveals the formation of polycrystalline photonic structures. Second, the disorder in the distribution of the cross-ribs on the scales another butterfly, Lycaena virgaureae, is investigated. The irregular arrangement of scatterers found in chitin structure of this insect produces light reflection in the long-wavelength part of the visible range, with a quite unusual broad directionality. The use of the pair correlation function allows to propose estimates of the diffusive spreading in these very different systems.
Li, Xiaolu; Liang, Yu; Xu, Lijun
2014-09-01
To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.
Processing data, for improved, accuracy, from device for measuring speed of sound in a gas
Owen, Thomas E.
2006-09-19
A method, used in connection with a pulse-echo type sensor for determining the speed of sound in a gas, for improving the accuracy of speed of sound measurements. The sensor operates on the principle that speed of sound can be derived from the difference between the two-way travel time of signals reflected from two different target faces of the sensor. This time difference is derived by computing the cross correlation between the two reflections. The cross correlation function may be fitted to a parabola whose vertex represents the optimum time coordinate of the coherence peak, thereby providing an accurate measure of the two-way time diffference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minchin, Robert F., E-mail: rminchin@naic.edu
I investigate whether it is possible to reconcile the recent Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) observation that the neutral hydrogen mass function (HIMF) across different galactic densities has the same, non-flat, faint-end slope, with observations of isolated galaxies and many galaxy groups that show their HIMFs to have flat faint-end slopes. I find that a fairly simple model in which the position of the knee in the mass function of each individual group is allowed to vary is able to account for both of these observations. If this model reflects reality, the ALFALFA results point to anmore » interesting “conspiracy” whereby the differing group HIMFs always sum up to form global HIMFs with the same faint-end slope in different environments. More generally, this result implies that global environmental HIMFs do not necessarily reflect the HIMFs in individual groups belonging to that environment and cannot be used to directly measure variations in group-specific HIMFs with environment.« less
The rate of transient beta frequency events predicts behavior across tasks and species
Law, Robert; Tsutsui, Shawn; Moore, Christopher I; Jones, Stephanie R
2017-01-01
Beta oscillations (15-29Hz) are among the most prominent signatures of brain activity. Beta power is predictive of healthy and abnormal behaviors, including perception, attention and motor action. In non-averaged signals, beta can emerge as transient high-power 'events'. As such, functionally relevant differences in averaged power across time and trials can reflect changes in event number, power, duration, and/or frequency span. We show that functionally relevant differences in averaged beta power in primary somatosensory neocortex reflect a difference in the number of high-power beta events per trial, i.e. event rate. Further, beta events occurring close to the stimulus were more likely to impair perception. These results are consistent across detection and attention tasks in human magnetoencephalography, and in local field potentials from mice performing a detection task. These results imply that an increased propensity of beta events predicts the failure to effectively transmit information through specific neocortical representations. PMID:29106374
Detection and Analysis of Partial Reflections of HF Waves from the Lower Ionosphere
NASA Astrophysics Data System (ADS)
Erdman, A.; Moore, R. C.
2016-12-01
On the afternoon of August 27, 2011, the western half of the High Frequency Active Auroral Research Program's (HAARP's) HF transmitter repeatedly broadcast a low-power (1 kW/Tx), 4.5-MHz, X-mode polarized, 10 microsecond pulse. The HF beam was directed vertically, and the inter-pulse period was 20 milliseconds. HF observations were performed at Oasis (62° 23' 30" N, 145° 9' 03" W) using two crossed 90-foot folded dipoles. Observations clearly indicate the detection of a ground wave and multiple reflections from different sources at F-region altitudes, which is consistent with digisonde measurements at 4.5 MHz. Additional reflections were detected at a virtual altitude of 90-110 km, and we interpret these reflections as partial reflections from the rapid conductivity change at the base of the ionosphere. We compare these observations with the predictions of a new finite-difference time-domain (FDTD) plasma model. The model is a one-dimensional, second-order accurate, cold plasma FDTD model of the ionosphere extending from ground through the lower F-region. The model accounts for a spatially varying plasma frequency, cyclotron frequency, and electron-neutral collision frequency. We discuss the possibility to analyze partial reflections from the base of the ionosphere as a function of frequency to characterize the reflecting plasma.
Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties
NASA Technical Reports Server (NTRS)
Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.
2013-01-01
Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a fivefold variation in tundra LUE was observed. LUE calculated from the functional type cover fractions was also correlated to a spectral vegetation index developed to detect vegetation chlorophyll content. The concurrence of these alternate methods suggest that hyperspectral remote sensing can distinguish functionally distinct vegetation types and can be used to develop regional estimates of photosynthetic LUE in tundra landscapes.
Is Memory Search Governed by Universal Principles or Idiosyncratic Strategies?
Healey, M. Karl; Kahana, Michael J.
2013-01-01
Laboratory paradigms have provided an empirical foundation for much of psychological science. Some have argued, however, that such paradigms are highly susceptible to idiosyncratic strategies and that rather than reflecting fundamental cognitive principles, many findings are artifacts of averaging across participants who employ different strategies. We develop a set of techniques to rigorously test the extent to which average data are distorted by such strategy differences and apply these techniques to free recall data from the Penn Electrophysiology of Encoding and Retrieval Study (PEERS). Recall initiation showed evidence of subgroups: the majority of participants initiate recall from the last item in the list, but one subgroup show elevated initiation probabilities for items 2–4 back from the end of the list and another showed elevated probabilities for the beginning of the list. By contrast, serial position curves and temporal and semantic clustering functions were remarkably consistent, with almost every participant exhibiting a recognizable version of the average function, suggesting that these functions reflect fundamental principles of the memory system. The approach taken here can serve as a model for evaluating the extent to which other laboratory paradigms are influenced by individual differences in strategy use. PMID:23957279
Cartilage analysis by reflection spectroscopy
NASA Astrophysics Data System (ADS)
Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.
2015-07-01
A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.
Kuijer, P P F M; van Oostrom, S H; Duijzer, K; van Dieën, J H
2012-01-01
It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.
Cadena, Viviana; Porter, Warren P.; Kearney, Michael R.
2016-01-01
Many terrestrial ectotherms are capable of rapid colour change, yet it is unclear how these animals accommodate the multiple functions of colour, particularly camouflage, communication and thermoregulation, especially when functions require very different colours. Thermal benefits of colour change depend on an animal's absorptance of solar energy in both UV–visible (300–700 nm) and near-infrared (NIR; 700–2600 nm) wavelengths, yet colour research has focused almost exclusively on the former. Here, we show that wild-caught bearded dragon lizards (Pogona vitticeps) exhibit substantial UV–visible and NIR skin reflectance change in response to temperature for dorsal but not ventral (throat and upper chest) body regions. By contrast, lizards showed the greatest temperature-independent colour change on the beard and upper chest during social interactions and as a result of circadian colour change. Biophysical simulations of heat transfer predicted that the maximum temperature-dependent change in dorsal reflectivity could reduce the time taken to reach active body temperature by an average of 22 min per active day, saving 85 h of basking time throughout the activity season. Our results confirm that colour change may serve a thermoregulatory function, and competing thermoregulation and signalling requirements may be met by partitioning colour change to different body regions in different circumstances.
Symptomatic remission in psychosis and real-life functioning.
Oorschot, M; Lataster, T; Thewissen, V; Lardinois, M; van Os, J; Delespaul, P A E G; Myin-Germeys, I
2012-09-01
In 2005 Andreasen proposed criteria for remission in schizophrenia. It is unclear whether these criteria reflect symptom reduction and improved social functioning in daily life. To investigate whether criteria for symptomatic remission reflect symptom reduction and improved functioning in real life, comparing patients meeting remission criteria, patients not meeting these criteria and healthy controls. The Experience Sampling Method (ESM), a structured diary technique, was used to explore real-life symptoms and functioning in 177 patients with (remitted and non-remitted) schizophrenia spectrum disorders and 148 controls. Of 177 patients, 70 met criteria for symptomatic remission. These patients reported significantly fewer positive and negative symptoms and better mood states compared with patients not in remission. Furthermore, patients in remission spent more time in goal-directed activities and had less preference for being alone when they were with others. However, the patient groups did not differ on time spent in social company and doing nothing, and both the remission and non-remission groups had lower scores on functional outcome measures compared with the control group. The study provides an ecological validation for the symptomatic remission criteria, showing that patients who met the criteria reported fewer positive symptoms, better mood states and partial recovery of reward experience compared with those not in remission. However, remission status was not related to functional recovery, suggesting that the current focus on symptomatic remission may reflect an overly restricted goal.
[Who benefits from systemic therapy with a reflecting team?].
Höger, C; Temme, M; Geiken, G
1994-03-01
In an evaluation study we investigated the effectiveness of the reflecting team approach compared to eclectic child psychiatric treatment in an outpatient setting and the indications for each type of treatment. The relationship between treatment outcome and diagnostic data obtained with the Multi-axial Classification Scheme was examined in 22 families treated with the reflecting team approach and in a second group of families matched on all important sociodemographic and diagnostic variables but receiving eclectic treatment. No difference was found between the two groups regarding symptom improvement or changes in family functioning. Regarding satisfaction with treatment, the reflecting team approach was superior to the eclectic modality. In the reflecting team group parental mental disorder and inadequate intra-familial communication (according to the new fifth axis of the Multi-axial Classification Scheme) had a negative effect on outcome.
NASA Astrophysics Data System (ADS)
Ward, A. J.; Pendry, J. B.
2000-06-01
In this paper we present an updated version of our ONYX program for calculating photonic band structures using a non-orthogonal finite difference time domain method. This new version employs the same transparent formalism as the first version with the same capabilities for calculating photonic band structures or causal Green's functions but also includes extra subroutines for the calculation of transmission and reflection coefficients. Both the electric and magnetic fields are placed onto a discrete lattice by approximating the spacial and temporal derivatives with finite differences. This results in discrete versions of Maxwell's equations which can be used to integrate the fields forwards in time. The time required for a calculation using this method scales linearly with the number of real space points used in the discretization so the technique is ideally suited to handling systems with large and complicated unit cells.
Sex Differences in the Effects of Unilateral Brain Damage on Intelligence
NASA Astrophysics Data System (ADS)
Inglis, James; Lawson, J. S.
1981-05-01
A sexual dimorphism in the functional asymmetry of the damaged human brain is reflected in a test-specific laterality effect in male but not in female patients. This sex difference explains some contradictions concerning the effects of unilateral brain damage on intelligence in studies in which the influence of sex was overlooked.
Clinical Heterogeneity in Patients with the Hypermobility Type of Ehlers-Danlos Syndrome
ERIC Educational Resources Information Center
De Wandele, Inge; Rombaut, Lies; Malfait, Fransiska; De Backer, Tine; De Paepe, Anne; Calders, Patrick
2013-01-01
EDS-HT is a connective tissue disorder characterized by large inter-individual differences in the clinical presentation, complicating diagnosis and treatment. We aim to describe the clinical heterogeneity and to investigate whether differences in the symptom profile are also reflected as disparity in functional impairment and pain experience. In…
Diffuse reflectance startigraphy - a new method in the study of loess (?)
NASA Astrophysics Data System (ADS)
József, Szeberényi; Balázs, Bradák; Klaudia, Kiss; József, Kovács; György, Varga; Réka, Balázs; Viczián, István
2017-04-01
The different varieties of loess (and intercalated paleosol layers) together constitute one of the most widespread terrestrial sediments, which was deposited, altered, and redeposited in the course of the changing climatic conditions of the Pleistocene. To reveal more information about Pleistocene climate cycles and/or environments the detailed lithostratigraphical subdivision and classification of the loess variations and paleosols are necessary. Beside the numerous method such as various field measurements, semi-quantitative tests and laboratory investigations, diffuse reflectance spectroscopy (DRS) is one of the well applied method on loess/paleosol sequences. Generally, DRS has been used to separate the detrital and pedogenic mineral component of the loess sections by the hematite/goethite ratio. DRS also has been applied as a joint method of various environmental magnetic investigations such as magnetic susceptibility- and isothermal remanent magnetization measurements. In our study the so-called "diffuse reflectance stratigraphy method" were developed. At First, complex mathematical method was applied to compare the results of the spectral reflectance measurements. One of the most preferred multivariate methods is cluster analysis. Its scope is to group and compare the loess variations and paleosol based on the similarity and common properties of their reflectance curves. In the Second, beside the basic subdivision of the profiles by the different reflectance curves of the layers, the most characteristic wavelength section of the reflectance curve was determined. This sections played the most important role during the classification of the different materials of the section. The reflectance value of individual samples, belonged to the characteristic wavelength were depicted in the function of depth and well correlated with other proxies like grain size distribution and magnetic susceptibility data. The results of the correlation showed the significance of the "combined reflectance stratigraphy" as a stratigraphical method and as an environmental proxy also.
Tong, Brian; Abosi, Oluchi; Schmitz, Samantha; Myers, Janie; Pierce, Gary L; Fiedorowicz, Jess G
Individuals with bipolar disorder are at increased risk for adverse cardiovascular disease (CVD) events. This study aimed to assess endothelial function and wave reflection, a risk factor for CVD, as measured by finger plethysmography in bipolar disorder to investigate whether CVD risk was higher in bipolar disorder and altered during acute mood episodes. We hypothesized that EndoPAT would detect a lower reactive hyperemia index (RHI) and higher augmentation index (AIX) in individuals with bipolar disorder compared with controls. Second, we predicted lower RHI and higher AIX during acute mood episodes. Reactive hyperemia index and augmentation index, measures of microvascular endothelial function and arterial pressure wave reflection respectively, were assessed using the EndoPAT 2000 device in a sample of 56 participants with a DSM-IV diagnosis of bipolar I disorder with 82 measures spanning different mood states (mania, depression, euthymia) and cross-sectionally in 26 healthy controls. RHI and AIX were not different between adults with and without bipolar disorder (mean age 40.3 vs. 41.2years; RHI: 2.04±0.67 vs. 2.05±0.51; AIX@75 (AIX adjusted for heart rate of 75): 1.4±19.7 vs. 0.8±22.4). When modeled in linear mixed models with a random intercept (to account for repeated observations of persons with bipolar disorder) and adjusting for age and sex, there were no significant differences between those with bipolar disorder and controls (p=0.89 for RHI; p=0.85 for AIX@75). Microvascular endothelial function and wave reflection estimated by finger plethysmography were unable to detect differences between adults with and without bipolar disorder or changes with mood states. Future research is necessary to identify more proximal and sensitive, yet relevant, biomarkers of abnormal mood-related influences on CVD risk or must target higher risk samples. Copyright © 2017 Elsevier Inc. All rights reserved.
Fabry-Perot color filter with antireflective nano-grating surface
NASA Astrophysics Data System (ADS)
Zhang, Jiayuan; Zhang, Jie; Dong, Xiaoxuan
2013-12-01
In order to improve the color saturation of reflective Fabry-Perot(FP) color filter, we proposed a reflective color filter incorporating FP resonator with a dielectric grating. The FP resonator consists of high reflection metal film, dielectric film and semi-transparent metal film. The dielectric grating, above the semi-transparent metal film, can reduce the reflection from the semi-transparent film in which case high saturation will be achieved. By using Finite Difference Time Domain(FDTD) method, the reflection spectra characteristic is analyzed as a function of duty cycle, period, refractive index and thickness of the dielectric grating. Based on the simulation results, a high performance color filter is proposed by optimizing the structural parameters. The full width at half-maximum (FWHM) reflection spectrum of the filters are reduced from 100 nm to 70 nm and the peak reflection efficiency of the filters are about 90%. The overlap of the tricolor output spectra decreases effectively, which will increase the color saturation of the color filter.
Inverse solution of ear-canal area function from reflectance
Rasetshwane, Daniel M.; Neely, Stephen T.
2011-01-01
A number of acoustical applications require the transformation of acoustical quantities, such as impedance and pressure that are measured at the entrance of the ear canal, to quantities at the eardrum. This transformation often requires knowledge of the shape of the ear canal. Previous attempts to measure ear-canal area functions were either invasive, non-reproducible, or could only measure the area function up to a point mid-way along the canal. A method to determine the area function of the ear canal from measurements of acoustic impedance at the entrance of the ear canal is described. The method is based on a solution to the inverse problem in which measurements of impedance are used to calculate reflectance, which is then used to determine the area function of the canal. The mean ear-canal area function determined using this method is similar to mean ear-canal area functions measured by other researchers using different techniques. The advantage of the proposed method over previous methods is that it is non- invasive, fast, and reproducible. PMID:22225043
Chapman Enskog-maximum entropy method on time-dependent neutron transport equation
NASA Astrophysics Data System (ADS)
Abdou, M. A.
2006-09-01
The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Vanderbilt, V. C.; Robinson, B. F.; Biehl, L. L.; Vanderbilt, A. S.
1981-01-01
The reflectance response with view angle of wheat, was analyzed. The analyses, which assumes there are no atmospheric effects, and otherwise simulates the response of a multispectral scanner, is based upon spectra taken continuously in wavelength from 0.45 to 2.4 micrometers at more than 1200 view/illumination directions using an Exotech model 20C spectra radiometer. Data were acquired six meters above four wheat canopies, each at a different growth stage. The analysis shows that the canopy reflective response is a pronounced function of illumination angle, scanner view angle and wavelength. The variation is greater at low solar elevations compared to high solar elevations.
Photometric Lambert Correction for Global Mosaicking of HRSC Data
NASA Astrophysics Data System (ADS)
Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas
2015-04-01
The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each image pixel by an image-to-ground function. For the calculations we are using the VICAR framework and the SPICE library. Under the Lambertian assumption, the reflectance diminishment resulting from an inclined Sun angle can be corrected by dividing the measured reflectance by the cosine of the illumination angle. After rectification of the corrected images, the individual images are mosaicked together. The overall visual impression shows a much better integration of the individual image sequences. The correction resolves the direct correlation between the reflectance and the incidence angles from the data. It does not account for topographic, atmospheric or BRDF influences to the measurements. Since the main purpose of the global HRSC image mosaic is the application for geomorphologic studies with a good visual impression of the albedo variations and the topography, the remaining distortions at the image seams can be equalized by non-reversible image matching techniques.
Influence of particle size distribution on reflected and transmitted light from clouds.
Kattawar, G W; Plass, G N
1968-05-01
The light reflected and transmitted from clouds with various drop size distributions is calculated by a Monte Carlo technique. Six different models are used for the drop size distribution: isotropic, Rayleigh, haze continental, haze maritime, cumulus, and nimbostratus. The scattering function for each model is calculated from the Mie theory. In general, the reflected and transmitted radiances for the isotropic and Rayleigh models tend to be similar, as are those for the various haze and cloud models. The reflected radiance is less for the haze and cloud models than for the isotropic and Rayleigh models/except for an angle of incidence near the horizon when it is larger around the incident beam direction. The transmitted radiance is always much larger for the haze and cloud models near the incident direction; at distant angles it is less for small and moderate optical thicknesses and greater for large optical thicknesses (all comparisons to isotropic and Rayleigh models). The downward flux, cloud albedo, and ean optical path are discussed. The angular spread of the beam as a function of optical thickness is shown for the nimbostratus model.
Total internal reflection optical switch using the reverse breakdown of a pn junction in silicon.
Kim, Jong-Hun; Park, Hyo-Hoon
2015-11-01
We demonstrate a new type of silicon total-internal-reflection optical switch with a simple pn junction functioning both as a reflector and a heater. The reflector is placed between asymmetrically y-branched multimode waveguides with an inclination angle corresponding to half of the branch angle. When the reflector is at rest, incident light is reflected in accordance to the refractive index difference due to the plasma dispersion effect of the pre-doped carriers. Switching to the transmission state is attained under a reverse breakdown of the pn junction by the thermo-optic effect which smears the refractive index difference. From this switching scheme, we confirmed the switching operation with a shallow total-internal-reflection region of 1 μm width. At a 6° branch angle, an extinction ratio of 12 dB and an insertion loss of -4.2 dB are achieved along with a thermal heating power of 151.5 mW.
Seismic reflection imaging, accounting for primary and multiple reflections
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel
2015-04-01
Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are mapped to their correct positions, with correct reflection amplitudes. In the presentation we will illustrate this new methodology with numerical examples and discuss its potential and limitations.
Cavalli, Rosa Maria; Betti, Mattia; Campanelli, Alessandra; Di Cicco, Annalisa; Guglietta, Daniela; Penna, Pierluigi; Piermattei, Viviana
2014-01-01
This methodology assesses the accuracy with which remote data characterizes a surface, as a function of Full Width at Half Maximum (FWHM). The purpose is to identify the best remote data that improves the characterization of a surface, evaluating the number of bands in the spectral range. The first step creates an accurate dataset of remote simulated data, using in situ hyperspectral reflectances. The second step evaluates the capability of remote simulated data to characterize this surface. The spectral similarity measurements, which are obtained using classifiers, provide this capability. The third step examines the precision of this capability. The assumption is that in situ hyperspectral reflectances are considered the “real” reflectances. They are resized with the same spectral range of the remote data. The spectral similarity measurements which are obtained from “real” resized reflectances, are considered “real” measurements. Therefore, the quantity and magnitude of “errors” (i.e., differences between spectral similarity measurements obtained from “real” resized reflectances and from remote data) provide the accuracy as a function of FWHM. This methodology was applied to evaluate the accuracy with which CHRIS-mode1, CHRIS-mode2, Landsat5-TM, MIVIS and PRISMA data characterize three coastal waters. Their mean values of uncertainty are 1.59%, 3.79%, 7.75%, 3.15% and 1.18%, respectively. PMID:24434875
Ćurčić-Blake, Branislava; van der Meer, Lisette; Pijnenborg, Gerdina H M; David, Anthony S; Aleman, André
2015-12-01
Impaired insight into illness, associated with worse treatment outcome, is common in schizophrenia. Insight has been related to the self-reflective processing, centred on the medial frontal cortex. We hypothesized that anatomical and functional routes to and from the ventromedial prefrontal cortex (vmPFC) would differ in patients according to their degree of impaired insight. Forty-five schizophrenia patients and 19 healthy subjects performed a self-reflection task during fMRI, and underwent diffusion tensor imaging. Using dynamic causal modelling we observed increased effective connectivity from the posterior cingulate cortex (PCC), inferior parietal lobule (IPL), and dorsal mPFC (dmPFC) towards the vmPFC with poorer insight and decrease from vmPFC to the IPL. Stronger connectivity from the PCC to vmPFC during judgment of traits related to self was associated with poorer insight. We found small-scale significant changes in white matter integrity associated with clinical insight. Self-reflection may be influenced by synaptic changes that lead to the observed alterations in functional connectivity accompanied by the small-scale but measurable alterations in anatomical connections. Our findings may point to a neural compensatory response to an impairment of connectivity between self-processing regions. Similarly, the observed hyper-connectivity might be a primary deficit linked to inefficiency in the component cognitive processes that lead to impaired insight. We suggest that the stronger cognitive demands placed on patients with poor insight is reflected in increased effective connectivity during the task in this study. © 2015 Wiley Periodicals, Inc.
A neuroimaging investigation of attribute framing and individual differences.
Murch, Kevin B; Krawczyk, Daniel C
2014-10-01
Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Alvarez-Añorve, Mariana Y; Quesada, Mauricio; Sánchez-Azofeifa, G Arturo; Avila-Cabadilla, Luis Daniel; Gamon, John A
2012-05-01
The function of most ecosystems has been altered by human activities. To asses the recovery of plant communities, we must evaluate the recovery of plant functional traits. The seasonally dry tropical forest (SDTF), a highly threatened ecosystem, is assumed to recover relatively quickly from disturbance, but an integrated evaluation of recovery in floristic, structural, and functional terms has not been performed. In this study we aimed to (a) compare SDTF plant functional, floristic, and structural change along succession; (b) identify tree functional groups; and (c) explore the spectral properties of different successional stages. Across a SDTF successional gradient, we evaluated the change of species composition, vegetation structure, and leaf spectral reflectance and functional traits (related to water use, light acquisition, nutrient conservation, and CO(2) acquisition) of 25 abundant tree species. A complete recovery of SDTF takes longer than the time period inferred from floristic or structural data. Plant functional traits changed along succession from those that maximize photoprotection and heat dissipation in early succession, where temperature is an environmental constraint, to those that enhance light acquisition in late succession, where light may be limiting. A spectral indicator of plant photosynthetic performance (photochemical reflectance index) discriminated between early and late succession. This constitutes a foundation for further exploration of remote sensing technologies for studying tropical succession. A functional approach should be incorporated as a regular descriptor of forest succession because it provides a richer understanding of vegetation dynamics than is offered by either the floristic or structural approach alone.
NASA Technical Reports Server (NTRS)
Campbell, Petya K. Entcheva; Middleton, Elizabeth M.; Thome, Kurt J.; Kokaly, Raymond F.; Huemmrich, Karl Fred; Lagomasino, David; Novick, Kimberly A.; Brunsell, Nathaniel A.
2013-01-01
This study evaluated Earth Observing 1 (EO-1) Hyperion reflectance time series at established calibration sites to assess the instrument stability and suitability for monitoring vegetation functional parameters. Our analysis using three pseudo-invariant calibration sites in North America indicated that the reflectance time series are devoid of apparent spectral trends and their stability consistently is within 2.5-5 percent throughout most of the spectral range spanning the 12-plus year data record. Using three vegetated sites instrumented with eddy covariance towers, the Hyperion reflectance time series were evaluated for their ability to determine important variables of ecosystem function. A number of narrowband and derivative vegetation indices (VI) closely described the seasonal profiles in vegetation function and ecosystem carbon exchange (e.g., net and gross ecosystem productivity) in three very different ecosystems, including a hardwood forest and tallgrass prairie in North America, and a Miombo woodland in Africa. Our results demonstrate the potential for scaling the carbon flux tower measurements to local and regional landscape levels. The VIs with stronger relationships to the CO2 parameters were derived using continuous reflectance spectra and included wavelengths associated with chlorophyll content and/or chlorophyll fluorescence. Since these indices cannot be calculated from broadband multispectral instrument data, the opportunity to exploit these spectrometer-based VIs in the future will depend on the launch of satellites such as EnMAP and HyspIRI. This study highlights the practical utility of space-borne spectrometers for characterization of the spectral stability and uniformity of the calibration sites in support of sensor cross-comparisons, and demonstrates the potential of narrowband VIs to track and spatially extend ecosystem functional status as well as carbon processes measured at flux towers.
Campbell, P.K.E.; Middleton, E.M.; Thome, K.J.; Kokaly, Raymond F.; Huemmrich, K.F.; Novick, K.A.; Brunsell, N.A.
2013-01-01
This study evaluated Earth Observing 1 (EO-1) Hyperion reflectance time series at established calibration sites to assess the instrument stability and suitability for monitoring vegetation functional parameters. Our analysis using three pseudo-invariant calibration sites in North America indicated that the reflectance time series are devoid of apparent spectral trends and their stability consistently is within 2.5-5 percent throughout most of the spectral range spanning the 12+ year data record. Using three vegetated sites instrumented with eddy covariance towers, the Hyperion reflectance time series were evaluated for their ability to determine important variables of ecosystem function. A number of narrowband and derivative vegetation indices (VI) closely described the seasonal profiles in vegetation function and ecosystem carbon exchange (e.g., net and gross ecosystem productivity) in three very different ecosystems, including a hardwood forest and tallgrass prairie in North America, and a Miombo woodland in Africa. Our results demonstrate the potential for scaling the carbon flux tower measurements to local and regional landscape levels. The VIs with stronger relationships to the CO2 parameters were derived using continuous reflectance spectra and included wavelengths associated with chlorophyll content and/or chlorophyll fluorescence. Since these indices cannot be calculated from broadband multispectral instrument data, the opportunity to exploit these spectrometer-based VIs in the future will depend on the launch of satellites such as EnMAP and HyspIRI. This study highlights the practical utility of space-borne spectrometers for characterization of the spectral stability and uniformity of the calibration sites in support of sensor cross-comparisons, and demonstrates the potential of narrowband VIs to track and spatially extend ecosystem functional status as well as carbon processes measured at flux towers.
Dynamic updating of hippocampal object representations reflects new conceptual knowledge
Mack, Michael L.; Love, Bradley C.; Preston, Alison R.
2016-01-01
Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal. PMID:27803320
Metacognitive reflection and insight therapy (MERIT) for patients with schizophrenia.
de Jong, S; van Donkersgoed, R J M; Timmerman, M E; Aan Het Rot, M; Wunderink, L; Arends, J; van Der Gaag, M; Aleman, A; Lysaker, P H; Pijnenborg, G H M
2018-04-25
Impaired metacognition is associated with difficulties in the daily functioning of people with psychosis. Metacognition can be divided into four domains: Self-Reflection, Understanding the Other's Mind, Decentration, and Mastery. This study investigated whether Metacognitive Reflection and Insight Therapy (MERIT) can be used to improve metacognition. This study is a randomized controlled trial. Patients in the active condition (n = 35) received forty MERIT sessions, the control group (n = 35) received treatment as usual. Multilevel intention-to-treat and completers analyses were performed for metacognition and secondary outcomes (psychotic symptomatology, cognitive insight, Theory of Mind, empathy, depression, self-stigma, quality of life, social functioning, and work readiness). Eighteen out of 35 participants finished treatment, half the drop-out stemmed from therapist attrition (N = 5) or before the first session (N = 4). Intention-to-treat analysis demonstrated that in both groups metacognition improved between pre- and post-measurements, with no significant differences between the groups. Patients who received MERIT continued to improve, while the control group returned to baseline, leading to significant differences at follow-up. Completers analysis (18/35) showed improvements on the Metacognition Assessment Scale (MAS-A) scales Self Reflectivity and metacognitive Mastery at follow-up. No effects were found on secondary outcomes. On average, participants in the MERIT group were, based on MAS-A scores, at follow-up more likely to recognize their thoughts as changeable rather than as facts. MERIT might be useful for patients whose self-reflection is too limited to benefit from other therapies. Given how no changes were found in secondary measures, further research is needed. Limitations and suggestions for future research are discussed.
NASA Technical Reports Server (NTRS)
Brown, Christopher A.
1993-01-01
The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces.
Mannaerts, Dominique; Faes, Ellen; Goovaerts, Inge; Stoop, Tibor; Cornette, Jerome; Gyselaers, Wilfried; Spaanderman, Marc; Van Craenenbroeck, Emeline M; Jacquemyn, Yves
2017-11-01
Endothelial function and arterial stiffness are known to be altered in preeclamptic pregnancies. Previous studies have shown conflicting results regarding the best technique for assessing vascular function in pregnancy. In this study, we made a comprehensive evaluation of in vivo vascular function [including flow-mediated dilatation (FMD), peripheral arterial tonometry (PAT), and arterial stiffness] in preeclamptic patients and compared them with normal pregnancies. In addition, we assessed the relation between vascular function and systemic inflammation. Fourteen patients with preeclampsia (PE) and 14 healthy pregnant controls were included. Endothelial function was determined by FMD and PAT and arterial stiffness by carotid-femoral pulse-wave velocity and augmentation index. Systemic inflammation was assessed using mean platelet volume (MPV) and neutrophil-lymphocyte ratio (NLR). The reactive hyperemia index, assessed using PAT, is decreased at the third trimester compared with the first trimester in a normal, uncomplicated pregnancy ( P = 0.001). Arterial stiffness is significantly higher in PE versus normal pregnancy ( P < 0.001). Endothelial function, obtained by FMD, is deteriorated in PE versus normal pregnancy ( P = 0.015), whereas endothelial function assessment by PAT is improved in PE versus normal pregnancy ( P = 0.001). Systemic inflammation (MPV and NLR) increases during normal pregnancy. FMD and PAT are disturbed in PE. Endothelial function, assessed by FMD and PAT, shows distinct results. This may indicate that measurements with FMD and PAT reflect different aspects of endothelial function and that PAT should not be used as a substitute for FMD as a measure of endothelial function in pregnancy. Copyright © 2017 the American Physiological Society.
Kakiuchida, Hiroshi; Sakai, Daisuke; Nishikawa, Jun; Hirose, Euichi
2017-01-01
Tunic is a cellulosic, integumentary matrix found in tunicates (Subphylum Tunicata or Urochordata). The tunics of some ascidian species and pelagic tunicates, such as salps, are nearly transparent, which is useful in predator avoidance. Transparent materials can be detected visually using light reflected from their surfaces, with the different refractive indices between two media, i.e., tunic and seawater, being the measure of reflectance. A larger difference in refractive indices thus provides a larger measure of reflectance. We measured the refractive indices of the transparent tunic of Thetys vagina (salp: Thaliacea) and Rhopalae a sp. (ascidian: Ascidiacea) using an Abbe refractometer and an ellipsometer to estimate the light reflection at the tunic surface and evaluate the anti-reflection effect of the nipple array structure on the tunic surface of T. vagina . At D-line light (λ = 589 nm), the refractive indices of the tunics were 0.002-0.004 greater than seawater in the measurements by Abbe refractometer, and 0.02-0.03 greater than seawater in the measurements by ellipsometer. The refractive indices of tunics were slightly higher than that of seawater. According to the simulation of light reflection based on rigorous coupled wave analysis (RCWA), light at a large angle of incidence will be completely reflected from a surface when its refractive indices are smaller than seawater. Therefore, the refractive index of integument is important for enabling transparent organisms to remain invisible in the water column. In order to minimize reflectance, the refractive index should be similar to, but never smaller than, that of the surrounding seawater. The simulation also indicated that the presence or absence of a nipple array does not cause significant difference in reflectance on the surface. The nipple array on the tunic of the diurnal salp may have another function, such as bubble repellence, other than anti-reflection.
Model of bidirectional reflectance distribution function for metallic materials
NASA Astrophysics Data System (ADS)
Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun
2016-09-01
Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.
Differential responsiveness to a parenting intervention for mothers in substance abuse treatment.
Paris, Ruth; Herriott, Anna; Holt, Melissa; Gould, Karen
2015-12-01
This study examines the relationship between levels of psychological distress in substance-dependent mothers and their differential response to a dyadic parent-child intervention. A sample of 66 mothers who were receiving treatment for substance abuse, as well as a simultaneous parenting intervention, were interviewed pre and post-treatment on measures of psychological distress, adult and child trauma history, parental reflective functioning, and child social-emotional development. Additionally, clinicians provided assessments of the parent-child relationships. As anticipated, trauma histories for mothers and children, children's social emotional development, and parental reflective functioning were associated with aspects of maternal psychological distress. Kruskal-Wallis and subsequent Wilcoxson signed rank tests revealed that women with highest levels of baseline psychological distress showed significant improvements in psychological functioning post-treatment while women with moderately elevated levels of psychological distress did not. Women who were most distressed at baseline showed increased levels of parental reflective functioning post-treatment while women with moderate and lower levels of baseline psychological distress showed improvements on clinician-rated assessments of parent-child relationships. Chi Square analyses showed that parents who endorsed the highest levels of distress at baseline reported that their children's risk status regarding social-emotional development decreased post-treatment. Despite similarities in substance dependence, mothers in this sample had different needs and outcomes in the context of this parenting intervention due to variation in mental health. Given this variation, parenting interventions for substance-dependent mothers need to account for the individual differences in levels of psychological distress. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yeh, Shu-Jen; Khalil, Omar S; Hanna, Charles F; Kantor, Stanislaw
2003-07-01
We observed a difference in the thermal response of localized reflectance signal of human skin between type 2 diabetics and nondiabetics. We investigated the use of this thermo-optical behavior as the basis for a noninvasive method for the determination of the diabetic status of a subject. We used a two-site temperature differential method, which is predicated upon the measurement of localized reflectance from two areas on the surface of the skin. Each of these areas is subjected to a different thermal perturbation. The response of localized reflectance to temperature perturbation was measured and used in a classification algorithm. We used a discriminant function to classify subjects as diabetic or nondiabetic. In a prediction set of twenty-four noninvasive tests collected from six diabetic and six nondiabetic subjects, the sensitivity ranged between 73 and 100%, and the specificity ranged between 75 and 100%, depending on the thermal conditions and the probe-skin contact time. The difference in the thermo-optical response of the skin of the two groups is explained in terms of a difference in the response of cutaneous microcirculation, which is manifested as a difference in the near-infrared light absorption. Another factor is the difference in the temperature response of the scattering coefficient between the two groups, which may be caused by cutaneous structural differences induced by nonenzymatic glycation of skin protein fibers, and possibly by the difference in blood cell aggregation. (c) 2003 Society of Photo-Optical Instrumentation Engineers.
Individual differences in perceiving and recognizing faces-One element of social cognition.
Wilhelm, Oliver; Herzmann, Grit; Kunina, Olga; Danthiir, Vanessa; Schacht, Annekathrin; Sommer, Werner
2010-09-01
Recognizing faces swiftly and accurately is of paramount importance to humans as a social species. Individual differences in the ability to perform these tasks may therefore reflect important aspects of social or emotional intelligence. Although functional models of face cognition based on group and single case studies postulate multiple component processes, little is known about the ability structure underlying individual differences in face cognition. In 2 large individual differences experiments (N = 151 and N = 209), a broad variety of face-cognition tasks were tested and the component abilities of face cognition-face perception, face memory, and the speed of face cognition-were identified and then replicated. Experiment 2 also showed that the 3 face-cognition abilities are clearly distinct from immediate and delayed memory, mental speed, general cognitive ability, and object cognition. These results converge with functional and neuroanatomical models of face cognition by demonstrating the difference between face perception and face memory. The results also underline the importance of distinguishing between speed and accuracy of face cognition. Together our results provide a first step toward establishing face-processing abilities as an independent ability reflecting elements of social intelligence. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth
Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir
2009-01-01
We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241
NASA Astrophysics Data System (ADS)
Arkebauer, T. J.; Walter-Shea, E. A.
2017-12-01
Vegetation indices, based on canopy spectral reflectance, are widely used to infer physical and biological characteristics of vegetation. Understanding the changes in remotely sensed signals as vegetation responds to its changing environment is essential for full assessment of canopy structure and function. Canopy-level reflectance has been measured at Nebraska AmeriFlux sites US-Ne1, US-Ne2 and US-Ne3 for most years since flux measurements were initiated in 2001. Tower-mounted spectral sensors provided 10-minute averaged reflectance (in PAR and NIR spectral regions) every half hour through the growing season for maize and soybean. Canopy reflectance varied over diurnal and seasonal time periods which led to variations in vegetation indices. One source of variation is due to the interaction of incident solar radiant energy with canopy structure (e.g., reflectance varies with changes in solar zenith angle and direct beam fraction, vegetative fraction, and leaf angle distribution). Another source of variation results from changes in canopy function (e.g., fluctuations in gross primary production and invocation of photoprotective mechanisms with plant stress). We present here a series of diurnal "patterns" of vegetation indices (including Normalized Difference Vegetation Index and Chlorophyll Index) for maize and soybean under mostly clear sky conditions. We demonstrate that diurnal patterns change as the LAI of the canopy changes through the course of the growing season in a somewhat predictable pattern from plant emergence (low vegetative cover) through peak green LAI (full vegetation cover). However, there are changes in the diurnal pattern that we have yet to fully understand; this variation in pattern may indicate variation in canopy function. Initially, we have explored the pattern changes qualitatively and are currently developing more quantitative approaches.
Gradient index liquid crystal devices and method of fabrication thereof
Lee, J.C.; Jacobs, S.
1991-10-29
Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.
Gradient index liquid crystal devices and method of fabrication thereof
Lee, Jae-Cheul; Jacobs, Stephen
1991-01-01
Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.
Item Type and Gender Differences on the Mental Rotations Test
ERIC Educational Resources Information Center
Voyer, Daniel; Doyle, Randi A.
2010-01-01
This study investigated gender differences on the Mental Rotations Test (MRT) as a function of item and response types. Accordingly, 86 male and 109 female undergraduate students completed the MRT without time limits. Responses were coded as reflecting two correct (CC), one correct and one wrong (CW), two wrong (WW), one correct and one blank…
Tibon, Roni; Levy, Daniel A
2014-03-01
Little is known about the time course of processes supporting episodic cued recall. To examine these processes, we recorded event-related scalp electrical potentials during episodic cued recall following pair-associate learning of unimodal object-picture pairs and crossmodal object-picture and sound pairs. Successful cued recall of unimodal associates was characterized by markedly early scalp potential differences over frontal areas, while cued recall of both unimodal and crossmodal associates were reflected by subsequent differences recorded over frontal and parietal areas. Notably, unimodal cued recall success divergences over frontal areas were apparent in a time window generally assumed to reflect the operation of familiarity but not recollection processes, raising the possibility that retrieval success effects in that temporal window may reflect additional mnemonic processes beyond familiarity. Furthermore, parietal scalp potential recall success differences, which did not distinguish between crossmodal and unimodal tasks, seemingly support attentional or buffer accounts of posterior parietal mnemonic function but appear to constrain signal accumulation, expectation, or representational accounts.
Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces
Ma, Hui Feng; Wang, Gui Zhen; Kong, Gu Sheng; Cui, Tie Jun
2015-01-01
We propose a kind of anisotropic planar metasurface, which has capacity to manipulate the orthogonally-polarized electromagnetic waves independently in the reflection mode. The metasurface is composed of orthogonally I-shaped structures and a metal-grounded plane spaced by a dielectric isolator, with the thickness of about 1/15 wavelength. The normally incident linear-polarized waves will be totally reflected by the metal plane, but the reflected phases of x- and y-polarized waves can be controlled independently by the orthogonally I-shaped structures. Based on this principle, we design four functional devices using the anisotropic metasurfaces to realize polarization beam splitting, beam deflection, and linear-to-circular polarization conversion with a deflection angle, respectively. Good performances have been observed from both simulation and measurement results, which show good capacity of the anisotropic metasurfaces to manipulate the x- and y-polarized reflected waves independently. PMID:25873323
NASA Astrophysics Data System (ADS)
Couture, O.; Cherin, E.; Foster, F. S.
2007-07-01
A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.
Anisotropic multi-spot DBR porous silicon chip for the detection of human immunoglobin G.
Cho, Bomin; Um, Sungyong; Sohn, Honglae
2014-07-01
Asymmetric porous silicon multilayer (APSM)-based optical biosensor was developed to specify human Immunoglobin G (Ig G). APSM chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon multilayer. APSM prepared from anisotropic etching conditions displayed a sharp reflection resonance in the reflectivity spectrum. Each spot displayed single reflection resonance at different wavelengths as a function of the lateral distance from the Pt counter electrode. The sensor system was consisted of the 3 x 3 spot array of APSM modified with protein A. The system was probed with an aqueous human Ig G. Molecular binding and specificity was monitored as a shift in wavelength of reflection resonance.
Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Ruggieri, Fabrizio; Blumberg, Jeffrey B; Stornello, Michele; Ferri, Claudio
2012-09-01
Nitric oxide plays a pivotal role in regulating vascular tone. Different studies show endothelial function is impaired during hyperglycemia. Dark chocolate increases flow-mediated dilation in healthy and hypertensive subjects with and without glucose intolerance; however, the effect of pretreatment with dark chocolate on endothelial function and other vascular responses to hyperglycemia has not been examined. Therefore, we aimed to investigate the effects of flavanol-rich dark chocolate administration on (1) flow-mediated dilation and wave reflections; (2) blood pressure, endothelin-1 and oxidative stress, before and after oral glucose tolerance test (OGTT). Twelve healthy volunteers (5 males, 28.2±2.7 years) randomly received either 100 g/d dark chocolate or flavanol-free white chocolate for 3 days. After 7 days washout period, volunteers were switched to the other treatment. Flow-mediated dilation, stiffness index, reflection index, peak-to-peak time, blood pressure, endothelin-1 and 8-iso-PGF(2α) were evaluated after each treatment phase and OGTT. Compared with white chocolate, dark chocolate ingestion improved flow-mediated dilation (P=0.03), wave reflections, endothelin-1 and 8-iso-PGF(2α) (P<0.05). After white chocolate ingestion, flow-mediated dilation was reduced after OGTT from 7.88±0.68 to 6.07±0.76 (P=0.027), 6.74±0.51 (P=0.046) at 1 and 2 h after the glucose load, respectively. Similarly, after white chocolate but not after dark chocolate, wave reflections, blood pressure, and endothelin-1 and 8-iso-PGF(2α) increased after OGTT. OGTT causes acute, transient impairment of endothelial function and oxidative stress, which is attenuated by flavanol-rich dark chocolate. These results suggest cocoa flavanols may contribute to vascular health by reducing the postprandial impairment of arterial function associated with the pathogenesis of atherosclerosis.
Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya P. K.; Landis, David; Middleton, Elizabeth
2012-01-01
Climate change in tundra regions may alter vegetation species composition and ecosystem carbon balance. Remote sensing provides critical tools for monitoring these changes as optical signals provide a way to scale from plot measurements to regional patterns. Gas exchange measurements of pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK, show three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012 0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Further, discriminant analysis of patch reflectance identifies five spectral bands that can separate each vegetation functional type as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. Patch-level statistical discriminant functions applied to in situ hyperspectral reflectance successfully unmixed cover fractions of the vegetation functional types. These functions, developed from the tram data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine regional variability in distribution of the vegetation functional types and from those distributions, the variability of LUE. Across the landscape, there was a fivefold variation in tundra LUE that was correlated to a spectral vegetation index developed to detect vegetation chlorophyll content.
NASA Astrophysics Data System (ADS)
Faulkner Burkhart, John; Kylling, Arve; Schaaf, Crystal B.; Wang, Zhuosen; Bogren, Wiley; Storvold, Rune; Solbø, Stian; Pedersen, Christina A.; Gerland, Sebastian
2017-07-01
Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300-920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.
Simulation of laser beam reflection at the sea surface modeling and validation
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Repasi, Endre
2013-06-01
A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for the pre-calculation of images for cameras operating in different spectral wavebands (visible, short wave infrared) for a bistatic configuration of laser source and receiver for different atmospheric conditions. In the visible waveband the calculated detected total power of reflected laser light from a 660nm laser source is compared with data collected in a field trial. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser beam reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the view of a camera the sea surface radiance must be calculated for the specific waveband. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). Validation of simulation results is prerequisite before applying the computer simulation to maritime laser applications. For validation purposes data (images and meteorological data) were selected from field measurements, using a 660nm cw-laser diode to produce laser beam reflection at the water surface and recording images by a TV camera. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam.
Design of bifunctional metasurface based on independent control of transmission and reflection.
Zhuang, Yaqiang; Wang, Guangming; Cai, Tong; Zhang, Qingfeng
2018-02-05
Multifunctional metasurface integrating different functions can significantly save the occupied space, although most of bifunctional metasurfaces reported to date only control the wave in either reflection or transmission regime. In this paper, we propose a scheme that allows one to independently control the reflection and transmission wavefront under orthogonal polarizations. For demonstration, we design a bifunctional metasurface that simultaneously realizes a diffusion reflection and a focusing transmission. The diffusion reflection is realized using a random phase distribution, which was implemented by randomly arranging two basic coding unit cells with the aid of an ergodic algorithm. Meanwhile, the hyperbolic phase distribution was designed to realize the focusing functionality in the transmission regime. To further show the potential applications, a high-gain lens antenna was designed by assembling the proposed metasurface with a proper feed. Both simulation and measurement results have been carried out, and the agreement between the two results demonstrates the validity of the performance as expected. The backward scattering can be reduced more than 5 dB within 6.4-10 GHz compared with the metallic plate. Moreover, the lens antenna has a gain of 20 dB (with around 13 dB enhancement in comparison with the bare feeding antenna) and an efficiency of 32.5%.
Carver, Charles S.; Johnson, Sheri L.; Joormann, Jutta
2010-01-01
Evidence from diverse literatures supports the viewpoint that two modes of self-regulation exist, a lower-order system that responds quickly to associative cues of the moment and a higher-order system that responds more reflectively and planfully; that low serotonergic function is linked to relative dominance of the lower-order system; that how dominance of the lower-order system is manifested depends on additional variables; and that low serotonergic function therefore can promote behavioral patterns as divergent as impulsive aggression and lethargic depression. Literatures reviewed include work on two-mode models; studies of brain function supporting the biological plausibility of the two-mode view and the involvement of serotonergic pathways in functions pertaining to it; and studies relating low serotonergic function to impulsiveness, aggression (including extreme violence), aspects of personality, and depression vulnerability. Substantial differences between depression and other phenomena reviewed are interpreted by proposing that depression reflects both low serotonergic function and low reward sensitivity. The article closes with brief consideration of the idea that low serotonergic function relates to even more diverse phenomena, whose natures depend in part on sensitivities of other systems. PMID:18954161
Wavelet-based analysis of transient electromagnetic wave propagation in photonic crystals.
Shifman, Yair; Leviatan, Yehuda
2004-03-01
Photonic crystals and optical bandgap structures, which facilitate high-precision control of electromagnetic-field propagation, are gaining ever-increasing attention in both scientific and commercial applications. One common photonic device is the distributed Bragg reflector (DBR), which exhibits high reflectivity at certain frequencies. Analysis of the transient interaction of an electromagnetic pulse with such a device can be formulated in terms of the time-domain volume integral equation and, in turn, solved numerically with the method of moments. Owing to the frequency-dependent reflectivity of such devices, the extent of field penetration into deep layers of the device will be different depending on the frequency content of the impinging pulse. We show how this phenomenon can be exploited to reduce the number of basis functions needed for the solution. To this end, we use spatiotemporal wavelet basis functions, which possess the multiresolution property in both spatial and temporal domains. To select the dominant functions in the solution, we use an iterative impedance matrix compression (IMC) procedure, which gradually constructs and solves a compressed version of the matrix equation until the desired degree of accuracy has been achieved. Results show that when the electromagnetic pulse is reflected, the transient IMC omits basis functions defined over the last layers of the DBR, as anticipated.
NASA Astrophysics Data System (ADS)
Cui, Li; Wang, Wenjun; Ding, Guowen; Chen, Ke; Zhao, Junming; Jiang, Tian; Zhu, Bo; Feng, Yijun
2017-11-01
In this paper, we design a bi-functional metasurface with different spatial distribution of reflection phase responses depending on the incident polarization. The metasurface with a thickness of only 0.067 λ0 (λ0 is the working wavelength) is constructed by unit cells composing two orthogonal I-shaped metallic structures, and the reflection phase for x- and y-linearly polarized incidence can be independently controlled by the geometric parameters. The metasurface can work as a flat parabolic reflector antenna with a maximum gain reaching about 22 dBi around 9.5 GHz, when it is illuminated by the x-polarized feed source of an offset open-ended waveguide antenna. Meanwhile, designed with randomly distributed reflection phases, the proposed metasurface can behave as an electromagnetic (EM) diffusion-like surface, which is capable of suppressing the backward scattering in a broadband from 8.5 GHz to 14 GHz for y-polarized incidence. By this strategy of EM functionality integration, a metasurface reflector antenna equipped with stealth technique to achieve simultaneously high gain and low backward scattering is obtained. Finally, experiments have been carried out to demonstrate this design principle, which agree with the simulation results. The proposed metasurface could offer a promising route for designing EM devices with polarization-dependent multi-functionalities.
Stiers, Peter; Goulas, Alexandros
2018-06-01
A subset of regions in the lateral and medial prefrontal cortex and the anterior insula increase their activity level whenever a cognitive task becomes more demanding, regardless of the specific nature of this demand. During execution of a task, these areas and the surrounding cortex temporally encode aspects of the task context in spatially distributed patterns of activity. It is not clear whether these patterns reflect underlying anatomical subnetworks that still exist when task execution has finished. We use fMRI in 12 participants performing alternating blocks of three cognitive tasks to address this question. A first data set is used to define multiple demand regions in each participant. A second dataset from the same participants is used to determine multiple demand voxel assemblies with a preference for one task over the others. We then show that these voxels remain functionally coupled during execution of non-preferred tasks and that they exhibit stronger functional connectivity during rest. This indicates that the assemblies of task preference sharing voxels reflect patterns of underlying anatomical connections. Moreover, we show that voxels preferring the same task have more similar whole brain functional connectivity profiles that are consistent across participants. This suggests that voxel assemblies differ in patterns of input-output connections, most likely reflecting task demand-specific information exchange.
NASA Technical Reports Server (NTRS)
Chen, M. H.; Berger, R. D.; Saul, J. P.; Stevenson, K.; Cohen, R. J.
1987-01-01
We report a new method for the noninvasive characterization of the frequency response of the autonomic nervous system (ANS) in mediating fluctuations in heart rate (HR). The approach entails computation of the transfer function magnitude and phase between instantaneous lung volume and HR. Broad band fluctuations in lung volume were initiated when subjects breathed on cue to a sequence of beeps spaced randomly in time. We studied 10 subjects in both supine and standing positions. The transfer function, averaged among all the subjects, showed systematic differences between the two postures, reflecting the differing frequency responses of the sympathetic and parasympathetic divisions of the ANS.
Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A
2009-08-01
Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.
Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson
NASA Astrophysics Data System (ADS)
Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth
2012-04-01
One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.
Soybean canopy reflectance as a function of view and illumination geometry
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.; Bauer, M. E.
1981-01-01
Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions, for various solar zenith and azimuth angles over portions of three days, in an experimental characterization of a soybean field by means of its reflectances and physical and agronomic attributes. Results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength, and row direction, as well as the state of canopy development. Shadows between rows were found to affect visible wavelength band reflectance to a greater extent than near-IR reflectance. A model describing reflectance variation as a function of projected solar and viewing angles is proposed, which approximates the visible wavelength band reflectance variations of a canopy with a well-defined row structure.
Vibrational Excitations and Low Energy Electronic Structure of Epoxide-decorated Graphene.
Mattson, E C; Johns, J E; Pande, K; Bosch, R A; Cui, S; Gajdardziska-Josifovska, M; Weinert, M; Chen, J H; Hersam, M C; Hirschmugl, C J
2014-01-02
We report infrared studies of adsorbed atomic oxygen (epoxide functional groups) on graphene. Two different systems are used as a platform to explore these interactions, namely, epitaxial graphene/SiC(0001) functionalized with atomic oxygen (graphene epoxide, GE) and chemically reduced graphene oxide (RGO). In the case of the model GE system, IR reflectivity measurements show that epoxide groups distort the graphene π bands around the K-point, imparting a finite effective mass and contributing to a band gap. In the case of RGO, epoxide groups are found to be present following the reduction treatment by a combination of polarized IR reflectance and transmittance measurements. Similar to the GE system, a band gap in the RGO sample is observed as well.
Vibrational Excitations and Low Energy Electronic Structure of Epoxide-decorated Graphene
Mattson, E.C.; Johns, J.E.; Pande, K.; Bosch, R.A.; Cui, S.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J.H.; Hersam, M.C.; Hirschmugl, C.J.
2014-01-01
We report infrared studies of adsorbed atomic oxygen (epoxide functional groups) on graphene. Two different systems are used as a platform to explore these interactions, namely, epitaxial graphene/SiC(0001) functionalized with atomic oxygen (graphene epoxide, GE) and chemically reduced graphene oxide (RGO). In the case of the model GE system, IR reflectivity measurements show that epoxide groups distort the graphene π bands around the K-point, imparting a finite effective mass and contributing to a band gap. In the case of RGO, epoxide groups are found to be present following the reduction treatment by a combination of polarized IR reflectance and transmittance measurements. Similar to the GE system, a band gap in the RGO sample is observed as well. PMID:24563725
Diffuse characteristics study of laser target board using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Yang, Pengling; Wu, Yong; Wang, Zhenbao; Tao, Mengmeng; Wu, Junjie; Wang, Ping; Yan, Yan; Zhang, Lei; Feng, Gang; Zhu, Jinghui; Feng, Guobin
2013-05-01
In this paper, Torrance-Sparrow and Oren-Nayar model is adopt to study diffuse characteristics of laser target board. The model which based on geometric optics, assumes that rough surfaces are made up of a series of symmetric V-groove cavities with different slopes at microscopic level. The distribution of the slopes of the V-grooves are modeled as beckman distribution function, and every microfacet of the V-groove cavity is assumed to behave like a perfect mirror, which means the reflected ray follows Fresnel law at the microfacet. The masking and shadowing effects of rough surface are also taken into account through geometric attenuation factor. Monte Carlo method is used to simulate the diffuse reflectance distribution of the laser target board with different materials and processing technology, and all the calculated results are verified by experiment. It is shown that the profile of bidirectional reflectance distribution curve is lobe-shaped with the maximum lies along the mirror reflection direction. The width of the profile is narrower for a lower roughness value, and broader for a higher roughness value. The refractive index of target material will also influence the intensity and distribution of diffuse reflectance of laser target surface.
Use of Airborne Hyperspectral Data in the Simulation of Satellite Images
NASA Astrophysics Data System (ADS)
de Miguel, Eduardo; Jimenez, Marcos; Ruiz, Elena; Salido, Elena; Gutierrez de la Camara, Oscar
2016-08-01
The simulation of future images is part of the development phase of most Earth Observation missions. This simulation uses frequently as starting point images acquired from airborne instruments. These instruments provide the required flexibility in acquisition parameters (time, date, illumination and observation geometry...) and high spectral and spatial resolution, well above the target values (as required by simulation tools). However, there are a number of important problems hampering the use of airborne imagery. One of these problems is that observation zenith angles (OZA), are far from those that the misisons to be simulated would use.We examine this problem by evaluating the difference in ground reflectance estimated from airborne images for different observation/illumination geometries. Next, we analyze a solution for simulation purposes, in which a Bi- directional Reflectance Distribution Function (BRDF) model is attached to an image of the isotropic surface reflectance. The results obtained confirm the need for reflectance anisotropy correction when using airborne images for creating a reflectance map for simulation purposes. But this correction should not be used without providing the corresponding estimation of BRDF, in the form of model parameters, to the simulation teams.
Madan, Christopher R.; Chen, Yvonne Y.; Singhal, Anthony
2016-01-01
It is known that the functional properties of an object can interact with perceptual, cognitive, and motor processes. Previously we have found that a between-subjects manipulation of judgment instructions resulted in different manipulability-related memory biases in an incidental memory test. To better understand this effect we recorded electroencephalography (EEG) while participants made judgments about images of objects that were either high or low in functional manipulability (e.g., hammer vs. ladder). Using a between-subjects design, participants judged whether they had seen the object recently (Personal Experience), or could manipulate the object using their hand (Functionality). We focused on the P300 and slow-wave event-related potentials (ERPs) as reflections of attentional allocation. In both groups, we observed higher P300 and slow wave amplitudes for high-manipulability objects at electrodes Pz and C3. As P300 is thought to reflect bottom-up attentional processes, this may suggest that the processing of high-manipulability objects recruited more attentional resources. Additionally, the P300 effect was greater in the Functionality group. A more complex pattern was observed at electrode C3 during slow wave: processing the high-manipulability objects in the Functionality instruction evoked a more positive slow wave than in the other three conditions, likely related to motor simulation processes. These data provide neural evidence that effects of manipulability on stimulus processing are further mediated by automatic vs. deliberate motor-related processing. PMID:27536224
Spectral modelling of multicomponent landscapes in the Sahel
NASA Technical Reports Server (NTRS)
Hanan, N. P.; Prince, S. D.; Hiernaux, P. H. Y.
1991-01-01
Simple additive models are used to examine the infuence of differing soil types on the spatial average spectral reflectance and normalized difference vegetation index (NDVI). The spatial average NDVI is shown to be a function of the brightness (red plus near-infrared reflectances), the NDVI, and the fractional cover of the components. In landscapes where soil and vegetation can be considered the only components, the NDVI-brightness model can be inverted to obtain the NDVI of vegetation. The red and near-infrared component reflectances of soil and vegetation are determined on the basis of aerial photoradiometer data from Mali. The relationship between the vegetation component NDVI and plant cover is found to be better than between the NDVI of the entire landscape and plant cover. It is concluded that the usefulness of this modeling approach depends on the existence of clearly distinguishable landscape components.
Angal, A.; Chander, Gyanesh; Choi, Taeyoung; Wu, Aisheng; Xiong, Xiaoxiong
2010-01-01
The Sonoran Desert is a large, flat, pseudo-invariant site near the United States-Mexico border. It is one of the largest and hottest deserts in North America, with an area of 311,000 square km. This site is particularly suitable for calibration purposes because of its high spatial and spectral uniformity and reasonable temporal stability. This study uses measurements from four different sensors, Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), Aqua MODIS, and Landsat 5 (L5) Thematic Mapper (TM), to assess the suitability of this site for long-term stability monitoring and to evaluate the “radiometric calibration differences” between spectrally matching bands of all four sensors. In general, the drift in the top-of-atmosphere (TOA) reflectance of each sensor over a span of nine years is within the specified calibration uncertainties. Monthly precipitation measurements of the Sonoran Desert region were obtained from the Global Historical Climatology Network (GHCN), and their effects on the retrieved TOA reflectances were evaluated. To account for the combined uncertainties in the TOA reflectance due to the surface and atmospheric Bi-directional Reflectance Distribution Function (BRDF), a semi-empirical BRDF model has been adopted to monitor and reduce the impact of illumination geometry differences on the retrieved TOA reflectances. To evaluate calibration differences between the MODIS and Landsat sensors, correction for spectral response differences using a hyperspectral sensor is also demonstrated.
Rigolle, Annelien; Foubert, Imogen; Hettler, Jan; Verboven, Erik; Demuynck, Ruth; Van Den Abeele, Koen
2015-09-01
The quasi-isothermal crystallization process of cocoa butter was monitored by an ultrasonic shear reflection technique utilizing a custom-built experimental set-up in a temperature controlled environment. To facilitate the interpretation of the measurement results, the propagation of shear waves was first theoretically studied in different configurations of gas, liquid or solid layers with varying thickness for the case of normal incidence, yielding theoretical equations of the shear wave reflection coefficient (swRC) for different layering conditions. The typical experimentally observed pattern of the swRC during quasi-isothermal cocoa butter crystallization was subsequently linked to the theoretical equations. The remarkable oscillatory damped response in the swRC as function of the crystallization time could be explained by constructive and destructive interference of a first reflection at the boundary between a plexiglass delay line and the crystallized cocoa butter and a second reflection occurring at the interface between crystallized and liquid substance. This hypothesis was supported by the excitation frequency dependence of the oscillations. The quality of the fit of the theoretical model to the experimental results was very good and also the reproducibility between different independent measurements was acceptable. Finally, measurements at different temperatures (18°C and 20°C) suggested that the technique was able to detect differences in crystallization behavior, as measurements at 18°C displayed faster oscillations compared to measurements at 20°C. Moreover, this was also confirmed by the theoretical model, as a higher value of the crystallization rate parameter K, exhibited more rapid oscillations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sheremata, Summer L; Somers, David C; Shomstein, Sarah
2018-02-07
Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks. Copyright © 2018 the authors 0270-6474/18/381511-09$15.00/0.
NASA Astrophysics Data System (ADS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-11-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Astrophysics Data System (ADS)
Poudyal, R.; Singh, M.; Gautam, R.; Gatebe, C. K.
2016-12-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR)- http://car.gsfc.nasa.gov/. Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Technical Reports Server (NTRS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-01-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wild fire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan EB; Kastner, Sabine; Hasson, Uri
2015-01-01
The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas. DOI: http://dx.doi.org/10.7554/eLife.03952.001 PMID:25695154
NASA Astrophysics Data System (ADS)
von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.
2011-02-01
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite - ENVISAT - of the European Space Agency - ESA) and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft) observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF) is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC) or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET) over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time. For the investigated Asian region increasing AOT have been found.
Pangelinan, Melissa M; Kagerer, Florian A; Momen, Bahram; Hatfield, Bradley D; Clark, Jane E
2011-04-01
Previous neuroimaging and behavioral studies demonstrated structural and functional changes in the motor system across childhood. However, it is unclear what functionally relevant electrocortical processes underlie developmental differences in motor planning and control during multijoint, goal-directed movements. The current study characterized age-related differences in electrocortical processes during the performance of discrete aiming movements in children and adults. Electroencephalography and movement kinematics were recorded from 3 groups of participants (n = 15 each): young children (mean 6.7 years), older children (mean 10.2 years), and adults (mean 22.1 years). Age-related differences were evident in the electroencephalographic (EEG) signals. First, young children exhibited less movement-related activity in task-relevant motor areas compared with adults (movement-related cortical potentials). Second, young children exhibited greater activation (less alpha power) of the frontal areas and less activation of the parietal areas as compared with the other groups. At the behavioral level, young children made slower and jerkier movements, with less consistent directional planning compared with older children and adults. Significant correlations were also found between EEG and movement kinematic measures. Taken together, the results of this study provide evidence that age-related differences in the quality of motor planning and performance are reflected in the differences in electrocortical dynamics among children and adults.
NASA Technical Reports Server (NTRS)
Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.
2010-01-01
The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".
Calculations of the variability of ice cloud radiative properties at selected solar wavelengths
NASA Technical Reports Server (NTRS)
Welch, R. M.; Zdunkowski, W. G.; Cox, S. K.
1980-01-01
This study shows that there is surprising little difference in values of reflectance, absorptance, and transmittance for many of the intermediate-size particle spectra. Particle size distributions with mode radii ranging from approximately 50 to 300 microns, irrespective of particle shape and nearly independent of the choice of size distribution representation, give relatively similar flux values. The very small particle sizes, however, have significantly larger values of reflectance and transmittance with corresponding smaller values of absorptance than do the larger particle sizes. The very large particle modes produce very small values of reflectance and transmittance along with very large values of absorptance. Such variations are particularly noticeable when plotted as a function of wavelength.
Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk
2014-11-12
The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.
Uher, Jana; Trofimova, Irina; Sulis, William; Netter, Petra; Pessoa, Luiz; Posner, Michael I; Rothbart, Mary K; Rusalov, Vladimir; Peterson, Isaac T; Schmidt, Louis A
2018-04-19
Throughout the last 2500 years, the classification of individual differences in healthy people and their extreme expressions in mental disorders has remained one of the most difficult challenges in science that affects our ability to explore individuals' functioning, underlying psychobiological processes and pathways of development. To facilitate analyses of the principles required for studying individual differences, this theme issue brought together prominent scholars from diverse backgrounds of which many bring unique combinations of cross-disciplinary experiences and perspectives that help establish connections and promote exchange across disciplines. This final paper presents brief commentaries of some of our authors and further scholars exchanging perspectives and reflecting on the contributions of this theme issue.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Diner, D. J.; Martonchik, J. V.; Sanghavi, S.; Xu, F.; Garay, M. J.; Bradley, C.; Chipman, R.; McClain, S.
2011-12-01
Passive retrievals of aerosol properties from aircraft or satellite must account for surface reflection at the lower boundary. Future missions such as Aerosol-Cloud-Ecosystem (ACE) will use multiangular, multispectral, and polarimetric imagery for aerosol remote sensing. Interpreting such multidimensional measurements requires representing the aerosols by a set of optical and microphysical parameters and modeling the surface bidirectional reflectance distribution function (BRDF). We are developing a surface model represented by a matrix BRDF that describes both intensity and polarization. The BRDF is the sum of a depolarizing volumetric (diffuse) scattering term represented by the modified Rahman-Pinty-Verstraete (mRPV) function, and a specular reflection term corresponding to a distribution of tilted microfacets, each of which reflects according to the Fresnel laws. In order to limit the number of parameters that need to be retrieved, empirical constraints are placed on the surface reflection model, e.g., that the volumetric component can be written as the product of a function only of wavelength and a function only of illumination and view geometry and that the polarized surface reflectance is spectrally neutral. Validation of these assumptions is required to establish a successful surface reflectance model that can be used as part of the aerosol retrievals. The Ground-based and Airborne Multiangle SpectroPolarimetric Imagers (GroundMSPI and AirMSPI) are pushbroom cameras that use a novel dual-photoelastic modulator (PEM) design to measure the Stokes vector components I, Q, and U, degree of linear polarization (DOLP), and angle of linear polarization (AOLP) with high accuracy. Intensity bands are centered at 355, 380, 445, 555, 660, 865, and 935 nm, and polarization channels are at 470, 660, and 865 nm. GroundMSPI and AirMSPI data collected on clear days are being used to further develop and validate the parametric surface model. For GroundMSPI, time sequences of intensity and polarization imagery are acquired throughout the day, and motion of the Sun through the sky provides variable scattering angle. AirMSPI acquires multiangular imagery from the NASA ER-2 aircraft by pointing the camera at different angles using a motorized gimbal. In this paper, we will present examples of GroundMSPI and AirMSPI imagery and explore how well the parametric surface model is able to represent the measured intensity and polarization data.
Analytic Reflected Lightcurves for Exoplanets
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-04-01
The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.
NASA Astrophysics Data System (ADS)
Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo
2017-04-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.
DNA biosensors implemented on PNA-functionalized microstructured optical fibers Bragg gratings
NASA Astrophysics Data System (ADS)
Candiani, A.; Giannetti, S.; Cucinotta, A.; Bertucci, A.; Manicardi, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Corradini, R.; Selleri, S.
2013-05-01
A novel DNA sensing platform based on a Peptide Nucleic Acid - functionalized Microstructured Optical Fibers gratings has been demonstrated. The inner surface of different MOFs has been functionalized using PNA probes, OligoNucleotides mimic that are well suited for specific DNA target sequences detection. The hybrid sensing systems were tested for optical DNA detection of targets of relevance in biomedical application, using the cystic fibrosis gene mutation, and food-analysis, using the genomic DNA from genetic modified organism soy flour. After the solutions of DNA molecules has been infiltrated inside the fibers capillaries and hybridization has occurred, oligonucleotidefunctionalized gold nanoparticles were infiltrated and used to form a sandwich-like system to achieve signal amplification. Spectral measurements of the reflected signal reveal a clear wavelength shift of the reflected modes when the infiltrated complementary DNA matches with the PNA probes placed on the inner fiber surface. Measurements have also been made using the mismatched DNA solution for the c, containing a single nucleotide polymorphism, showing no significant changes in the reflected spectrum. Several experiments have been carried out demonstrating the reproducibility of the results and the high selectivity of the sensors, showing the simplicity and the potential of this approach.
Punishment sensitivity modulates the processing of negative feedback but not error-induced learning.
Unger, Kerstin; Heintz, Sonja; Kray, Jutta
2012-01-01
Accumulating evidence suggests that individual differences in punishment and reward sensitivity are associated with functional alterations in neural systems underlying error and feedback processing. In particular, individuals highly sensitive to punishment have been found to be characterized by larger mediofrontal error signals as reflected in the error negativity/error-related negativity (Ne/ERN) and the feedback-related negativity (FRN). By contrast, reward sensitivity has been shown to relate to the error positivity (Pe). Given that Ne/ERN, FRN, and Pe have been functionally linked to flexible behavioral adaptation, the aim of the present research was to examine how these electrophysiological reflections of error and feedback processing vary as a function of punishment and reward sensitivity during reinforcement learning. We applied a probabilistic learning task that involved three different conditions of feedback validity (100%, 80%, and 50%). In contrast to prior studies using response competition tasks, we did not find reliable correlations between punishment sensitivity and the Ne/ERN. Instead, higher punishment sensitivity predicted larger FRN amplitudes, irrespective of feedback validity. Moreover, higher reward sensitivity was associated with a larger Pe. However, only reward sensitivity was related to better overall learning performance and higher post-error accuracy, whereas highly punishment sensitive participants showed impaired learning performance, suggesting that larger negative feedback-related error signals were not beneficial for learning or even reflected maladaptive information processing in these individuals. Thus, although our findings indicate that individual differences in reward and punishment sensitivity are related to electrophysiological correlates of error and feedback processing, we found less evidence for influences of these personality characteristics on the relation between performance monitoring and feedback-based learning.
ERIC Educational Resources Information Center
Borelli, Jessica L.; Hong, Kajung; Rasmussen, Hannah F.; Smiley, Patricia A.
2017-01-01
Theorists argue that parental reflective functioning (PRF) is activated in response to emotions, potentially supporting parenting sensitivity even when arousal is high. That is, when parents become emotionally reactive when interacting with their children, those who can use PRF to understand their children's mental states should be able to parent…
Pajulo, Marjukka; Tolvanen, Mimmi; Karlsson, Linnea; Halme-Chowdhury, Elina; Öst, Camilla; Luyten, Patrick; Mayes, Linda; Karlsson, Hasse
2015-01-01
Parental reflective functioning (PRF) is the capacity to focus on experience and feelings in oneself and in the child. Individual differences in PRF reportedly affect child attachment and socioemotional development. In this study, we report work on developing a questionnaire to assess PRF during pregnancy (Prenatal Parental Reflective Functioning Questionnaire; P-PRFQ). The factor structure of the 33-item version of the P-PRFQ was explored using pilot study data from the Finn Brain Birth Cohort Study (n = 124 mothers, n = 82 fathers). Construct validity was assessed against the Pregnancy Interview (PI; A. Slade, L. Grunebaum, L. Huganir, & M. Reeves, 1987, 2002, 2011) in a subsample of 29 mothers from the same pilot sample. Exploratory and confirmatory factor analysis resulted in a 14-item P-PRFQ, with three factors which seem to capture relevant aspects of prenatal parental mentalization-F1: "Opacity of mental states," F2: "Reflecting on the fetus-child," and F3: "The dynamic nature of the mental states." Functioning of the factor structure was further tested in the large cohort with 600 mothers and 600 fathers. Correlations with the PI result were high, both regarding total and factor scores of the P-PRFQ. Cost-effective tools to assess key areas of early parenting are needed for both research and clinical purposes. The 14-item P-PRFQ seems to be an applicable and promising new tool for assessing very early parental mentalizing capacity. © 2015 Michigan Association for Infant Mental Health.
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
NASA Technical Reports Server (NTRS)
Clark, R. N.
1981-01-01
The spectral reflectance of water frost and frost on ice as a function of temperature and grain size is presented with 1-1/2% spectral resolution in the 0.65- to 2.5-micron wavelength region. The well-known 2.0-, 1.65-, and 1.5-micron solid water absorption bands are precisely defined along with the little studied 1.25-micron band and the previously unidentified (in reflectance) 1.04-, 0.90-, and 0.81-micron absorption bands. The 1.5-microns band complex is quantitatively analyzed using a nonlinear least squares algorithm to resolve the band into four Gaussian components as a function of grain size and temperature. It is found that the 1.65-micron component, which was thought to be a good temperature sensor, is highly grain-size dependent and poorly suited to temperature sensing. Another Gaussian component appears to show a dependence of width on grain size while being independent of temperature. The relative apparent band depths are different for frost layers on ice than for thick layers of frost and may explain the apparent band depths seen in many planetary reflectance spectra.
Economic decision-making compared with an equivalent motor task.
Wu, Shih-Wei; Delgado, Mauricio R; Maloney, Laurence T
2009-04-14
There is considerable evidence that human economic decision-making deviates from the predictions of expected utility theory (EUT) and that human performance conforms to EUT in many perceptual and motor decision tasks. It is possible that these results reflect a real difference in decision-making in the 2 domains but it is also possible that the observed discrepancy simply reflects typical differences in experimental design. We developed a motor task that is mathematically equivalent to choosing between lotteries and used it to compare how the same subject chose between classical economic lotteries and the same lotteries presented in equivalent motor form. In experiment 1, we found that subjects are more risk seeking in deciding between motor lotteries. In experiment 2, we used cumulative prospect theory to model choice and separately estimated the probability weighting functions and the value functions for each subject carrying out each task. We found no patterned differences in how subjects represented outcome value in the motor and the classical tasks. However, the probability weighting functions for motor and classical tasks were markedly and significantly different. Those for the classical task showed a typical tendency to overweight small probabilities and underweight large probabilities, and those for the motor task showed the opposite pattern of probability distortion. This outcome also accounts for the increased risk-seeking observed in the motor tasks of experiment 1. We conclude that the same subject distorts probability, but not value, differently in making identical decisions in motor and classical form.
The effect of carbon nanotubes functionalization on the band-gap energy of TiO2-CNT nanocomposite
NASA Astrophysics Data System (ADS)
Shahbazi, Hessam; Shafei, Alireza; Sheibani, Saeed
2018-01-01
In this paper the morphology and structure of TiO2-CNT nanocomposite powder obtained by an in situ sol-gel process were investigated. The synthesized nanocomposite powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS). The effect of functionalizing of CNT on the properties was studied. XRD results showed amorphous structure before calcination. Also, anatase phase TiO2 was formed after calcination at 400 °C. The SEM results indicate different distributions of TiO2 on CNTs. As a result, well dispersed TiO2 microstructure on the surface of CNTs was observed after functionalizing, while compact and large aggregated particles were found without functionalizing. The average thickness of uniform and well-defined coated TiO2 layer was in the range of 30-40 nm. The DRS results have determined the reflective properties and band gap energies of nanocomposite powders and have shown that functionalizing of CNTs caused the change of band-gap energy from 2.98 to 2.87 eV.
Hutter-Saunders, Jessica A L; Gendelman, Howard E; Mosley, R Lee
2012-03-01
Acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces nigrostriatal neurodegeneration that reflects Parkinson's disease (PD) pathobiology. The model is commonly used for rodent studies of PD pathogenesis and diagnostics and for developmental therapeutics. However, tests of motor function in MPTP-intoxicated mice have yielded mixed results. This unmet need reflects, in part, lesion severity, animal variability, and the overall test sensitivity and specificity. In attempts to standardize rodent motor function and behavioral tests, mice were trained on the rotarod or habituated in an open field test chamber, and baseline performance measurements were collected prior to MPTP intoxication. One week following MPTP intoxication, motor function and behavior were assessed and baseline measurements applied to post-MPTP measurements with normalization to PBS controls. Rotarod and open field tests assessed in this manner demonstrated significant differences between MPTP- and saline-treated mice, while tests of neuromuscular strength and endurance did not. We conclude that the rotarod and open field tests provide reliable measures of motor function for MPTP-intoxicated mice.
Mattfeld, Aaron T.; Stark, Craig E. L.
2015-01-01
The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298
Jassey, Vincent E J; Lamentowicz, Mariusz; Bragazza, Luca; Hofsommer, Maaike L; Mills, Robert T E; Buttler, Alexandre; Signarbieux, Constant; Robroek, Bjorn J M
2016-09-01
Soil microbial communities significantly contribute to global fluxes of nutrients and carbon. Their response to climate change, including winter warming, is expected to modify these processes through direct effects on microbial functions due to osmotic stress, and changing temperature regimes. Using four European peatlands reflecting different frequencies of frost events, we show that peatland testate amoeba communities diverge among sites with different winter climates, and that this is reflected through contrasting functions. We found that exposure to harder soil frost promoted species β-diversity (species turnover) thus shifting the community composition of testate amoebae. In particular, we found that harder soil frost, and lower water-soluble phenolic compounds, induced functional turnover through the decrease of large species (-68%, >80μm) and the increase of small-bodied mixotrophic species (i.e. Archerella flavum; +79%). These results suggest that increased exposure to soil frost could be highly limiting for large species while smaller species are more resistant. Furthermore, we found that β-glucosidase enzymatic activity, in addition to soil temperature, strongly depended of the functional diversity of testate amoebae (R 2 =0.95, ANOVA). Changing winter conditions can therefore strongly impact peatland decomposition process, though it remains unclear if these changes are carried-over to the growing season. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Brakke, Thomas W.; Wergin, William P.; Erbe, Eric F.; Harnden, Joann M.
1993-01-01
The light scattered from leaves was measured as a function of view angle in the principal plane for yellow poplar, red oak, and red maple. The source was a parallel-polarized helium-neon laser. Yellow poplar leaves had the highest reflectance of the three species, which may have been due to its shorter palisade cells and more extensive spongy mesophyll. Prior to senescence, there was a significant decrease, but not total extinction, in the reflectance of the beam incident at 60 deg from nadir on the adaxial side of the leaves of all three species. Low-temperature SEM observations showed differences in the surface wax patterns among the three species but did not indicate a cause of the reflectance changes other than possibly the accumulation and aging of the wax.
Effects of target shape and reflection on laser radar cross sections.
Steinvall, O
2000-08-20
Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.
Biogenic twinned crystals exhibiting unique morphological symmetry
NASA Astrophysics Data System (ADS)
Hirsch, Anna; Gur, Dvir; Palmer, Ben; Addadi, Lia; Leiserowitz, Leslie; Kronik, Leeor
Guanine crystals are widely used in nature as components of multilayer reflectors. Organisms control the size, morphology, and arrangement of these crystals, to obtain a variety of optical ''devices''. The reflection systems found in the lens of the scallop eye and in the copepod cuticle are unique in that the multilayered reflectors are tiled together to form a contiguous packed array. In the former, square crystals are tiled to form a reflecting mirror. In the latter, hexagonal crystals are closely packed to produce brilliant colors. Based on electron diffraction, morphology considerations, and density functional theory, these crystals were shown to possess similar monoclinic crystal symmetry, which we have previously identified as different from that of synthetic anhydrous guanine. However, the crystals are different in that multiple twinning about the {012} and the {011} crystallographic planes results in square and hexagonal morphology, respectively. This is a unique example where controlled twinning is used as a strategy to form a morphology with higher symmetry than that of the underlying crystal, allowing for tilling that facilitates optical functionality.
Seventeenth breeding-bird census. 34. Diked wet meadow
Quinn, M.J.; Ottinger, M.A.; French, J.B.
2000-01-01
Several characteristics of plumage, including color and molt schedule, are influenced by hormonal signals, and hence may be modified by endocrine active contaminants. If so, the functions of plumage (e.g. communication for mating or territorial defense), may be compromised by exposure to such compounds. Polychlorinated biphenyls (PCBs) are ubiquitous and persistent environmental toxins that can disrupt endocrine function in laboratory animals. Captive American kestrels (Falco sparverius) were fed PCBs (Aroclor 1242) at 6 and 60 ppm, thyroxine at 10 ppm, estradiol at 1.4 ppm, and a thyroid hormone blocker (propylthiouracil: PTU) at 2000 ppm, mixed in their normal diet. Plumage characteristics measured included: the width of the black subterminal band on the tail, brightness (a composite index of hue and saturation), reflectance from 230 - 800 nm (measured on a reflectance spectrophotometer), the pattern of feather loss and regrowth on the tail and wing, and the timing of onset and the duration of molt. PCB-treated birds did not differ from controls, but birds treated with thyroxine were significantly different from those dosed with estradiol or PTU in the width of subterminal tail bands, reflectance, and duration of molt. Thus, although hormone treatments did modify some of the plumage characteristics we measured, PCB treatments at these exposure levels did not.
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Swinnen, Stephan P.; Wenderoth, Nicole
2016-01-01
Autism spectrum disorders (ASD) are far more prevalent in males than in females. Little is known however about the differential neural expression of ASD in males and females. We used a resting-state fMRI-dataset comprising 42 males/42 females with ASD and 75 male/75 female typical-controls to examine whether autism-related alterations in intrinsic functional connectivity are similar or different in males and females, and particularly whether alterations reflect ‘neural masculinization’, as predicted by the Extreme Male Brain theory. Males and females showed a differential neural expression of ASD, characterized by highly consistent patterns of hypo-connectivity in males with ASD (compared to typical males), and hyper-connectivity in females with ASD (compared to typical females). Interestingly, patterns of hyper-connectivity in females with ASD reflected a shift towards the (high) connectivity levels seen in typical males (neural masculinization), whereas patterns of hypo-connectivity observed in males with ASD reflected a shift towards the (low) typical feminine connectivity patterns (neural feminization). Our data support the notion that ASD is a disorder of sexual differentiation rather than a disorder characterized by masculinization in both genders. Future work is needed to identify underlying factors such as sex hormonal alterations that drive these sex-specific neural expressions of ASD. PMID:26989195
Functional connectivity in resting state as a phonemic fluency ability measure.
Miró-Padilla, Anna; Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Ávila, César
2017-03-01
There is some evidence that functional connectivity (FC) measures obtained at rest may reflect individual differences in cognitive capabilities. We tested this possibility by using the FAS test as a measure of phonemic fluency. Seed regions of the main brain areas involved in this task were extracted from meta-analysis results (Wagner et al., 2014) and used for pairwise resting-state FC analysis. Ninety-three undergraduates completed the FAS test outside the scanner. A correlation analysis was conducted between the F-A-S scores (behavioral testing) and the pairwise FC pattern of verbal fluency regions of interest. Results showed that the higher FC between the thalamus and the cerebellum, and the lower FCs between the left inferior frontal gyrus and the right insula and between the supplementary motor area and the right insula were associated with better performance on the FAS test. Regression analyses revealed that the first two FCs contributed independently to this better phonemic fluency, reflecting a more general attentional factor (FC between thalamus and cerebellum) and a more specific fluency factor (FC between the left inferior frontal gyrus and the right insula). The results support the Spontaneous Trait Reactivation hypothesis, which explains how resting-state derived measures may reflect individual differences in cognitive abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Pao-Keng
2012-05-01
We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2012-05-01
We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.
Frequency-phase analysis of resting-state functional MRI
Goelman, Gadi; Dan, Rotem; Růžička, Filip; Bezdicek, Ondrej; Růžička, Evžen; Roth, Jan; Vymazal, Josef; Jech, Robert
2017-01-01
We describe an analysis method that characterizes the correlation between coupled time-series functions by their frequencies and phases. It provides a unified framework for simultaneous assessment of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation functions to obtain the frequencies and phase-differences of the original time-series. We define symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last two were never introduced before. Seed maps of the motor system were calculated to demonstrate the strength and capabilities of the analysis. Unique types of functional connections, their dominant frequencies and phase-differences have been identified. The relation between phase-differences and time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a difference in the hemodynamic response between regions that are modulated by neurotransmitters concentration. The analysis can be used with any coupled functions in many disciplines including electrophysiology, EEG or MEG in neuroscience. PMID:28272522
Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance.
Lee, ZhongPing; Carder, Kendall L; Du, KePing
2004-09-01
For optically deep waters, remote-sensing reflectance (r(rs)) is traditionally expressed as the ratio of the backscattering coefficient (b(b)) to the sum of absorption and backscattering coefficients (a + b(b)) that multiples a model parameter (g, or the so-called f'/Q). Parameter g is further expressed as a function of b(b)/(a + b(b)) (or b(b)/a) to account for its variation that is due to multiple scattering. With such an approach, the same g value will be derived for different a and b(b) values that provide the same ratio. Because g is partially a measure of the angular distribution of upwelling light, and the angular distribution from molecular scattering is quite different from that of particle scattering; g values are expected to vary with different scattering distributions even if the b(b)/a ratios are the same. In this study, after numerically demonstrating the effects of molecular and particle scatterings on the values of g, an innovative r(rs) model is developed. This new model expresses r(rs) in two separate terms: one governed by the phase function of molecular scattering and one governed by the phase function of particle scattering, with a model parameter introduced for each term. In this way the phase function effects from molecular and particle scatterings are explicitly separated and accounted for. This new model provides an analytical tool to understand and quantify the phase-function effects on r(rs), and a platform to calculate r(rs) spectrum quickly and accurately that is required for remote-sensing applications.
Effect of acute moderate exercise on induced inflammation and arterial function in older adults.
Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo
2014-04-01
Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.
He, Zongling; Cui, Qian; Zheng, Junjie; Duan, Xujun; Pang, Yajing; Gao, Qing; Han, Shaoqiang; Long, Zhiliang; Wang, Yifeng; Li, Jiao; Wang, Xiao; Zhao, Jingping; Chen, Huafu
2016-11-01
Major depressive disorder (MDD) may involve alterations in brain functional connectivity in multiple neural circuits and present large-scale network dysfunction. Patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) show different responses to antidepressants and aberrant brain functions. This study aims to investigate functional connectivity patterns of TRD and TSD at the whole brain resting state. Seventeen patients with TRD, 17 patients with TSD, and 17 healthy controls matched with age, gender, and years of education were recruited in this study. The brain was divided using an automated anatomical labeling atlas into 90 regions of interest, which were used to construct the entire brain functional networks. An analysis method called network-based statistic was used to explore the dysconnected subnetworks of TRD and TSD at different frequency bands. At resting state, TSD and TRD present characteristic patterns of network dysfunction at special frequency bands. The dysconnected subnetwork of TSD mainly lies in the fronto-parietal top-down control network. Moreover, the abnormal neural circuits of TRD are extensive and complex. These circuits not only depend on the abnormal affective network but also involve other networks, including salience network, auditory network, visual network, and language processing cortex. Our findings reflect that the pathological mechanism of TSD may refer to impairment in cognitive control, whereas TRD mainly triggers the dysfunction of emotion processing and affective cognition. This study reveals that differences in brain functional connectivity at resting state reflect distinct pathophysiological mechanisms in TSD and TRD. These findings may be helpful in differentiating two types of MDD and predicting treatment responses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adult outcomes of preterm children.
Hack, Maureen
2009-10-01
The survivors of the initial years of neonatal intensive care of preterm infants reached adulthood during the last decade. Reports of their adult outcomes examined have included neurodevelopmental, behavioral and health outcomes as well as social functioning and reproduction. Despite statistically significant differences between preterm young adults and controls in most outcomes studied, the majority of preterm survivors do well and live fairly normal lives. The two major predictors of adult outcomes are lower gestational age that reflect perinatal injury and family sociodemographic status which reflects both genetic and environmental effects.
VUV and XUV reflectance of optically coated mirrors for selection of high harmonics
Larsen, K. A.; Cryan, J. P.; Shivaram, N.; ...
2016-08-08
We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. Furthermore, we discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser.
Sleep spindles in humans: insights from intracranial EEG and unit recordings
Andrillon, Thomas; Nir, Yuval; Staba, Richard J.; Ferrarelli, Fabio; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak
2012-01-01
Sleep spindles are an electroencephalographic (EEG) hallmark of non-rapid eye movement (NREM) sleep and are believed to mediate many sleep-related functions, from memory consolidation to cortical development. Spindles differ in location, frequency, and association with slow waves, but whether this heterogeneity may reflect different physiological processes and potentially serve different functional roles remains unclear. Here we utilized a unique opportunity to record intracranial depth EEG and single-unit activity in multiple brain regions of neurosurgical patients to better characterize spindle activity in human sleep. We find that spindles occur across multiple neocortical regions, and less frequently also in the parahippocampal gyrus and hippocampus. Most spindles are spatially restricted to specific brain regions. In addition, spindle frequency is topographically organized with a sharp transition around the supplementary motor area between fast (13-15Hz) centroparietal spindles often occurring with slow wave up-states, and slow (9-12Hz) frontal spindles occurring 200ms later on average. Spindle variability across regions may reflect the underlying thalamocortical projections. We also find that during individual spindles, frequency decreases within and between regions. In addition, deeper sleep is associated with a reduction in spindle occurrence and spindle frequency. Frequency changes between regions, during individual spindles, and across sleep may reflect the same phenomenon, the underlying level of thalamocortical hyperpolarization. Finally, during spindles neuronal firing rates are not consistently modulated, although some neurons exhibit phase-locked discharges. Overall, anatomical considerations can account well for regional spindle characteristics, while variable hyperpolarization levels can explain differences in spindle frequency. PMID:22159098
Divided versus selective attention: evidence for common processing mechanisms
Hahn, Britta; Wolkenberg, Frank A.; Ross, Thomas J.; Myers, Carol S.; Heishman, Stephen J.; Stein, Dan J.; Kurup, Pradeep K.; Stein, Elliot A.
2008-01-01
The current study revisited the question of whether there are brain mechanisms specific to divided attention that differ from those used in selective attention. Increased neuronal activity required to simultaneously process two stimulus dimensions as compared with each separate dimension has often been observed, but rarely has activity induced by a divided attention condition exceeded the sum of activity induced by the component tasks. Healthy participants performed a selective-divided attention paradigm while undergoing functional Magnetic Resonance Imaging (fMRI). The task required participants to make a same-different judgment about either one of two simultaneously presented stimulus dimensions, or about both dimensions. Performance accuracy was equated between tasks by dynamically adjusting the stimulus display time. Blood Oxygenation Level Dependent (BOLD) signal differences between tasks were identified by whole-brain voxel-wise comparisons and by region-specific analyses of all areas modulated by the divided attention task (DIV). No region displayed greater activation or deactivation by DIV than the sum of signal change by the two selective attention tasks. Instead, regional activity followed the tasks’ processing demands as reflected by reaction time. Only a left cerebellar region displayed a correlation between participants’ BOLD signal intensity and reaction time that was selective for DIV. The correlation was positive, reflecting slower responding with greater activation. Overall, the findings do not support the existence of functional brain activity specific to DIV. Increased activity appears to reflect additional processing demands by introducing a secondary task, but those demands do not appear to qualitatively differ from processes of selective attention. PMID:18479670
Hughes, Michelle L; Choi, Sangsook; Glickman, Erin
2018-03-01
Modeling studies suggest that differences in neural responses between polarities might reflect underlying neural health. Specifically, large differences in electrically evoked compound action potential (eCAP) amplitudes and amplitude-growth-function (AGF) slopes between polarities might reflect poorer peripheral neural health, whereas more similar eCAP responses between polarities might reflect better neural health. The interphase gap (IPG) has also been shown to relate to neural survival in animal studies. Specifically, healthy neurons exhibit larger eCAP amplitudes, lower thresholds, and steeper AGF slopes for increasing IPGs. In ears with poorer neural survival, these changes in neural responses are generally less apparent with increasing IPG. The primary goal of this study was to examine the combined effects of stimulus polarity and IPG within and across subjects to determine whether both measures represent similar underlying mechanisms related to neural health. With the exception of one measure in one group of subjects, results showed that polarity and IPG effects were generally not correlated in a systematic or predictable way. This suggests that these two effects might represent somewhat different aspects of neural health, such as differences in site of excitation versus integrative membrane characteristics, for example. Overall, the results from this study suggest that the underlying mechanisms that contribute to polarity and IPG effects in human CI recipients might be difficult to determine from animal models that do not exhibit the same anatomy, variance in etiology, electrode placement, and duration of deafness as humans. Copyright © 2017 Elsevier B.V. All rights reserved.
Divided versus selective attention: evidence for common processing mechanisms.
Hahn, Britta; Wolkenberg, Frank A; Ross, Thomas J; Myers, Carol S; Heishman, Stephen J; Stein, Dan J; Kurup, Pradeep K; Stein, Elliot A
2008-06-18
The current study revisited the question of whether there are brain mechanisms specific to divided attention that differ from those used in selective attention. Increased neuronal activity required to simultaneously process two stimulus dimensions as compared with each separate dimension has often been observed, but rarely has activity induced by a divided attention condition exceeded the sum of activity induced by the component tasks. Healthy participants performed a selective-divided attention paradigm while undergoing functional Magnetic Resonance Imaging (fMRI). The task required participants to make a same-different judgment about either one of two simultaneously presented stimulus dimensions, or about both dimensions. Performance accuracy was equated between tasks by dynamically adjusting the stimulus display time. Blood Oxygenation Level Dependent (BOLD) signal differences between tasks were identified by whole-brain voxel-wise comparisons and by region-specific analyses of all areas modulated by the divided attention task (DIV). No region displayed greater activation or deactivation by DIV than the sum of signal change by the two selective attention tasks. Instead, regional activity followed the tasks' processing demands as reflected by reaction time. Only a left cerebellar region displayed a correlation between participants' BOLD signal intensity and reaction time that was selective for DIV. The correlation was positive, reflecting slower responding with greater activation. Overall, the findings do not support the existence of functional brain activity specific to DIV. Increased activity appears to reflect additional processing demands by introducing a secondary task, but those demands do not appear to qualitatively differ from processes of selective attention.
Arterial wave reflection and subclinical left ventricular systolic dysfunction.
Russo, Cesare; Jin, Zhezhen; Takei, Yasuyoshi; Hasegawa, Takuya; Koshaka, Shun; Palmieri, Vittorio; Elkind, Mitchell Sv; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R
2011-03-01
Increased arterial wave reflection is a predictor of cardiovascular events and has been hypothesized to be a cofactor in the pathophysiology of heart failure. Whether increased wave reflection is inversely associated with left-ventricular (LV) systolic function in individuals without heart failure is not clear. Arterial wave reflection and LV systolic function were assessed in 301 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study using two-dimensional echocardiography and applanation tonometry of the radial artery to derive central arterial waveform by a validated transfer function. Aortic augmentation index (AIx) and wasted energy index (WEi) were used as indices of wave reflection. LV systolic function was measured by LV ejection fraction (LVEF) and tissue Doppler imaging (TDI). Mitral annulus peak systolic velocity (Sm), peak longitudinal strain and strain rate were measured. Participants with history of coronary artery disease, atrial fibrillation, LVEF less than 50% or wall motion abnormalities were excluded. Mean age of the study population was 68.3 ± 10.2 years (64.1% women, 65% hypertensive). LV systolic function by TDI was lower with increasing wave reflection, whereas LVEF was not. In multivariate analysis, TDI parameters of LV longitudinal systolic function were significantly and inversely correlated to AIx and WEi (P values from 0.05 to 0.002). In a community cohort without heart failure and with normal LVEF, an increased arterial wave reflection was associated with subclinical reduction in LV systolic function assessed by novel TDI techniques. Further studies are needed to investigate the prognostic implications of this relationship.
Mediating objects: scientific and public functions of models in nineteenth-century biology.
Ludwig, David
2013-01-01
The aim of this article is to examine the scientific and public functions of two- and three-dimensional models in the context of three episodes from nineteenth-century biology. I argue that these models incorporate both data and theory by presenting theoretical assumptions in the light of concrete data or organizing data through theoretical assumptions. Despite their diverse roles in scientific practice, they all can be characterized as mediators between data and theory. Furthermore, I argue that these different mediating functions often reflect their different audiences that included specialized scientists, students, and the general public. In this sense, models in nineteenth-century biology can be understood as mediators between theory, data, and their diverse audiences.
NASA Astrophysics Data System (ADS)
Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu
2016-07-01
Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.
Application of a neural network for reflectance spectrum classification
NASA Astrophysics Data System (ADS)
Yang, Gefei; Gartley, Michael
2017-05-01
Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.
NASA Astrophysics Data System (ADS)
Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania
2015-01-01
Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.
NASA Astrophysics Data System (ADS)
Studenikin, S. A.; Potemski, M.; Sachrajda, A. S.; Hilke, M.; Pfeiffer, L. N.; West, K. W.
2005-04-01
We have performed microwave absorption and near-field reflection experiments on a high mobility GaAs/AlGaAs heterostructure for the same conditions for which Microwave-Induced Resistance Oscillations (MIROs) are observed. It is shown that the electrodynamic aspect of the problem is important in these experiments. In the absorption experiments a broad CR line was observed due to a large reflection from the highly conductive electron gas. There were no additional features observed related to absorption at harmonics of the cyclotron resonance. In near-field reflection experiments a very different oscillation pattern was revealed when compared to MIROs. The oscillation pattern observed in the reflection experiments is probably due to plasma effects occurring in a finite-size sample. The whole microscopic picture of MIROs is more complicated than simply a resonant absorption at harmonics of the cyclotron resonance. Nevertheless, the experimental observations are in good agreement with the model by Durst et al. involving the photo-assisted scattering in the presence of a crossed magnetic field and dc bias. The observed damping factor of MIROs may be attributed to a change in the electron mobility as a function of temperature. MIROs may be considered as a light-induced drift effect, a broad class of phenomena associated with a light-induced asymmetry in the velocity distribution function.
NASA Astrophysics Data System (ADS)
Studenikin, S. A.; Potemski, M.; Sachrajda, A. S.; Hilke, M.; Pfeiffer, L. N.; West, K. W.
We have performed microwave absorption and near-field reflection experiments on a high mobility GaAs/AlGaAs heterostructure for the same conditions for which Microwave-Induced Resistance Oscillations (MIROs) are observed. It is shown that the electrodynamic aspect of the problem is important in these experiments. In the absorption experiments a broad CR line was observed due to a large reflection from the highly conductive electron gas. There were no additional features observed related to absorption at harmonics of the cyclotron resonance. In near-field reflection experiments a very different oscillation pattern was revealed when compared to MIROs. The oscillation pattern observed in the reflection experiments is probably due to plasma effects occurring in a finite-size sample. The whole microscopic picture of MIROs is more complicated than simply a resonant absorption at harmonics of the cyclotron resonance. Nevertheless, the experimental observations are in good agreement with the model by Durst et al. involving the photo-assisted scattering in the presence of a crossed magnetic field and dc bias. The observed damping factor of MIROs may be attributed to a change in the electron mobility as a function of temperature. MIROs may be considered as a light-induced drift effect, a broad class of phenomena associated with a light-induced asymmetry in the velocity distribution function.
An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection
Holt, Daphne J.; Cassidy, Brittany S.; Andrews-Hanna, Jessica R.; Lee, Su Mei; Coombs, Garth; Goff, Donald C.; Gabrieli, John D.; Moran, Joseph M.
2013-01-01
Background Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during “resting” states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Methods Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Results Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Conclusions Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. PMID:21144498
An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.
Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M
2011-03-01
Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Lifang, Li
2012-01-01
This research has chosen some students and undergraduates from 35 colleges and universities, which are national, local and professional colleges or universities with different entrepreneurship needs and different educational functions in the same area. The research reveals that the undergraduates or students are in strong desire of career…
ERIC Educational Resources Information Center
Kim, Albert E.; Oines, Leif; Miyake, Akira
2018-01-01
This study investigated the processes reflected in the widely observed N400 and P600 event-related potential (ERP) effects and tested the hypothesis that the N400 and P600 effects are functionally linked in a tradeoff relationship, constrained in part by individual differences in cognitive ability. Sixty participants read sentences, and ERP…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Dawei; Han, Baoqin, E-mail: baoqinh@ouc.edu.cn; Dong, Wen
Highlights: {yields} We report, for the first time, the safety of carboxymethyl chitosan in blood system. {yields} CM-Chitosan has no significant effects on coagulation function of rats. {yields} CM-Chitosan has no significant effects on anticoagulation performance of rats. {yields} CM-Chitosan has no significant effects on fibrinolytic function of rats. {yields} CM-Chitosan has no significant effects on hemorheology of rats. -- Abstract: Carboxymethyl chitosan (CM-chitosan), a derivative of chitosan, was extensively studied in the biomedical materials field for its beneficial biological properties of hemostasis and stimulation of healing. However, studies examining the safety of CM-chitosan in the blood system are lacking.more » In this study CM-chitosan was implanted into the abdominal cavity of rats to determine blood indexes at different times and to evaluate the effects of CM-chitosan on the blood system of rats. Coagulation function was reflected by thrombin time (TT), prothrombin time (PT), activated partial thromboplatin time (APTT), fibrinogen (FIB) and platelet factor 4 (PF4) indexes; anti-coagulation performance was assessed by the index of antithrombinIII (ATIII); fibrinolytic function was reflected by plasminogen (PLG) and fibrin degradation product (FDP) indexes; and blood viscosity (BV) and plasma viscosity (PV) indexes reflected hemorheology. Results showed that CM-chitosan has no significant effects on the blood system of rats, and provides experimental basis for CM-chitosan to be applied in the field of biomedical materials.« less
NASA Astrophysics Data System (ADS)
Hodgkin, Van A.
2015-05-01
Most mass-produced, commercially available and fielded military reflective imaging systems operate across broad swaths of the visible, near infrared (NIR), and shortwave infrared (SWIR) wavebands without any spectral selectivity within those wavebands. In applications that employ these systems, it is not uncommon to be imaging a scene in which the image contrasts between the objects of interest, i.e., the targets, and the objects of little or no interest, i.e., the backgrounds, are sufficiently low to make target discrimination difficult or uncertain. This can occur even when the spectral distribution of the target and background reflectivity across the given waveband differ significantly from each other, because the fundamental components of broadband image contrast are the spectral integrals of the target and background signatures. Spectral integration by the detectors tends to smooth out any differences. Hyperspectral imaging is one approach to preserving, and thus highlighting, spectral differences across the scene, even when the waveband integrated signatures would be about the same, but it is an expensive, complex, noncompact, and untimely solution. This paper documents a study of how the capability to selectively customize the spectral width and center wavelength with a hypothetical tunable fore-optic filter would allow a broadband reflective imaging sensor to optimize image contrast as a function of scene content and ambient illumination.
The specification of a hospital cost function. A comment on the recent literature.
Breyer, F
1987-06-01
In the empirical estimation of hospital cost functions, two radically different types of specifications have been chosen to date, ad-hoc forms and flexible functional forms based on neoclassical production theory. This paper discusses the respective strengths and weaknesses of both approaches and emphasizes the apparently unreconcilable conflict between the goals of maintaining functional flexibility and keeping the number of variables manageable if at the same time patient heterogeneity is to be adequately reflected in the case mix variables. A new specification is proposed which strikes a compromise between these goals, and the underlying assumptions are discussed critically.
Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing
Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; ...
2016-03-01
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. We present a simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined.more » In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. In conclusion, this means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.« less
Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing.
Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D
2016-03-01
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.
Jones, Tyler B; Bandettini, Peter A; Kenworthy, Lauren; Case, Laura K; Milleville, Shawn C; Martin, Alex; Birn, Rasmus M
2010-01-01
An increasing number of fMRI studies are using the correlation of low-frequency fluctuations between brain regions, believed to reflect synchronized variations in neuronal activity, to infer "functional connectivity". In studies of autism spectrum disorder (ASD), decreases in this measure of connectivity have been found by focusing on the response to task modulation, by using only the rest periods, or by analyzing purely resting-state data. This difference in connectivity, however, could result from a number of different mechanisms--differences in noise, task-related fluctuations, task performance, or spontaneous neuronal activity. In this study, we investigate the difference in functional connectivity between adolescents with high-functioning ASD and typically developing control subjects by examining the residual fluctuations occurring on top of the fMRI response to an overt verbal fluency task. We find decreased correlations of these residuals (a decreased "connectivity") in ASD subjects. Furthermore, we find that this decrease was not due to task-related effects, block-to-block variations in task performance, or increased noise, and the difference was greatest when primarily rest periods are considered. These findings suggest that the estimate of disrupted functional connectivity in ASD is likely driven by differences in task-unrelated neuronal fluctuations.
The idiosyncratic nature of confidence
Navajas, Joaquin; Hindocha, Chandni; Foda, Hebah; Keramati, Mehdi; Latham, Peter E; Bahrami, Bahador
2017-01-01
Confidence is the ‘feeling of knowing’ that accompanies decision making. Bayesian theory proposes that confidence is a function solely of the perceived probability of being correct. Empirical research has suggested, however, that different individuals may perform different computations to estimate confidence from uncertain evidence. To test this hypothesis, we collected confidence reports in a task where subjects made categorical decisions about the mean of a sequence. We found that for most individuals, confidence did indeed reflect the perceived probability of being correct. However, in approximately half of them, confidence also reflected a different probabilistic quantity: the perceived uncertainty in the estimated variable. We found that the contribution of both quantities was stable over weeks. We also observed that the influence of the perceived probability of being correct was stable across two tasks, one perceptual and one cognitive. Overall, our findings provide a computational interpretation of individual differences in human confidence. PMID:29152591
Color representation and interpretation of special effect coatings.
Ferrero, A; Perales, E; Rabal, A M; Campos, J; Martínez-Verdú, F M; Chorro, E; Pons, A
2014-02-01
A representation of the color gamut of special effect coatings is proposed and shown for six different samples, whose colors were calculated from spectral bidirectional reflectance distribution function (BRDF) measurements at different geometries. The most important characteristic of the proposed representation is that it allows a straightforward understanding of the color shift to be done both in terms of conventional irradiation and viewing angles and in terms of flake-based parameters. A different line was proposed to assess the color shift of special effect coatings on a*,b*-diagrams: the absorption line. Similar to interference and aspecular lines (constant aspecular and irradiation angles, respectively), an absorption line is the locus of calculated color coordinates from measurement geometries with a fixed bistatic angle. The advantages of using the absorption lines to characterize the contributions to the spectral BRDF of the scattering at the absorption pigments and the reflection at interference pigments for different geometries are shown.
NASA Astrophysics Data System (ADS)
Lamare, Maxim; Hedley, John; King, Martin
2016-04-01
Knowledge of the albedo in the cryosphere is essential to monitor a range of climatic processes that have an impact on a global scale. Optical Earth Observation satellites are ideal for the synoptic observation of expansive and inaccessible areas, providing large datasets used to derive essential products, such as albedo. The application of remote sensing to investigate climate processes requires the combination of data from different sensors. However, although there is significant value in the analysis of data from individual sensors, global observing systems require accurate knowledge of sensor-to-sensor biases. Therefore, the inter-calibration of sensors used for climate studies is essential to avoid inconsistencies, which may mask climate effects. CEOS (Committee on Earth Observing Satellites) has established a number of natural Earth targets to serve as international reference standards, amongst which sea ice has great potential. The reflectance of natural surfaces is not isotropic and reflectance varies with the illumination and viewing geometries, consequently impacting satellite observations. Furthermore, variations in the physical properties (sea ice type, thickness) and the light absorbing impurities deposited in the sea ice have a strong impact on reflectance. Thus, the characterisation of the bi-directional reflectance distribution function (BRDF) of sea ice is a fundamental step toward the inter-calibration of optical satellite sensors. This study provides a characterisation of the effects of mineral aerosol and black carbon deposits on the BRDF of three different sea ice types. BRDF measurements were performed on bare sea ice grown in an experimental ice tank, using a state-of-the-art laboratory goniometer. The sea ice was "poisoned" with concentrations of mineral dust and black carbon varying between 100 and 5 000 ng g-1 deposited uniformly in a 5 cm surface layer. Using measurements from the experimental facility, novel information about sea ice BRDF as a function of sea ice type, thickness and light-absorbing impurities was derived using a radiative-transfer model (PlanarRad). This extensive characterisation of the multi angular reflectance of sea ice reveals the importance of BRDF for the validation and calibration of Earth Observation satellite sensor data.
Mc Laughlin, Myles; Chabwine, Joelle Nsimire; van der Heijden, Marcel; Joris, Philip X
2008-10-01
To localize low-frequency sounds, humans rely on an interaural comparison of the temporally encoded sound waveform after peripheral filtering. This process can be compared with cross-correlation. For a broadband stimulus, after filtering, the correlation function has a damped oscillatory shape where the periodicity reflects the filter's center frequency and the damping reflects the bandwidth (BW). The physiological equivalent of the correlation function is the noise delay (ND) function, which is obtained from binaural cells by measuring response rate to broadband noise with varying interaural time delays (ITDs). For monaural neurons, delay functions are obtained by counting coincidences for varying delays across spike trains obtained to the same stimulus. Previously, we showed that BWs in monaural and binaural neurons were similar. However, earlier work showed that the damping of delay functions differs significantly between these two populations. Here, we address this paradox by looking at the role of sensitivity to changes in interaural correlation. We measured delay and correlation functions in the cat inferior colliculus (IC) and auditory nerve (AN). We find that, at a population level, AN and IC neurons with similar characteristic frequencies (CF) and BWs can have different responses to changes in correlation. Notably, binaural neurons often show compression, which is not found in the AN and which makes the shape of delay functions more invariant with CF at the level of the IC than at the AN. We conclude that binaural sensitivity is more dependent on correlation sensitivity than has hitherto been appreciated and that the mechanisms underlying correlation sensitivity should be addressed in future studies.
NASA Astrophysics Data System (ADS)
Zhang, Xuanni; Zhang, Hui; Wang, Yijun
2016-02-01
The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.
Butterfly wing coloration studied with a novel imaging scatterometer
NASA Astrophysics Data System (ADS)
Stavenga, Doekele
2010-03-01
Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)
Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Suttles, J. T.
1986-01-01
Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.
Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.
Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J
2009-12-01
In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.
Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode
NASA Astrophysics Data System (ADS)
Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.
2009-12-01
In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.
Advances in remote sensing of forest background reflectance with MODIS BRDF data across Europe
NASA Astrophysics Data System (ADS)
Pisek, Jan; Alikas, Krista; Lukeš, Petr; Lundin, Lars; Kobler, Johannes; Santos-Reis, Margarida; Chen, Jing
2017-04-01
Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. However, systematic reflectance data covering different site types are almost missing. This presentation will focus on the validation of background reflectance retrievals using MODIS bidirectional reflectance distribution function (BRDF) data against in-situ understory reflectance measurements covering a diverse set of long-term ecological research (LTER) sites distributed along a wide latitudinal and elevational gradient across Europe: protected coniferous blueberry forest in Sweden, karst forest system in Austria, floodplain broadleaf forest and coniferous forest in the Czech Republic, and Mediterranean agro-sylvo-pastoral woodlands in Portugal. The multi-angle remote sensing data-based methodology was originally developed for the forest background signal retrieval in a boreal region. Here its performance will be tested across diverse forest conditions and moments during the growing season, which is a necessary step before conducting extensive mapping over forested areas. The results can be also used as an input for improved modeling of local carbon and energy fluxes.
Radiative transfer in spherical shell atmospheres. 2: Asymmetric phase functions
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Adams, C. N.
1977-01-01
The effects are investigated of sphericity on the radiation reflected from a planet with a homogeneous, conservative scattering atmosphere of optical thicknesses of 0.25 and 1.0. A Henyey-Greenstein phase function with asymmetry factors of 0.5 and 0.7 is considered. Significant differences were found when these results were compared with the plane-parallel calculations. Also large violations of the reciprocity theorem, which is only true for plane-parallel calculations, were noted. Results are presented for the radiance versus height distributions as a function of planetary phase angle.
NASA Astrophysics Data System (ADS)
Oliker, Vladimir I.; Cherkasskiy, Boris
2014-09-01
Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future will bring spiders to the forefront of the study of structural colors in nature.
Structural color and its interaction with other color-producing elements: perspectives from spiders
NASA Astrophysics Data System (ADS)
Hsiung, Bor-Kai; Blackledge, Todd A.; Shawkey, Matthew D.
2014-09-01
Structural color is produced when nanostructures called schemochromes alter light reflected from a surface through different optic principles, in contrast with other types of colors that are produced when pigments selectively absorb certain wavelengths of light. Research on biogenic photonic nanostructures has focused primarily on bird feathers, butterfly wings and beetle elytra, ignoring other diverse groups such as spiders. We argue that spiders are a good model system to study the functions and evolution of colors in nature for the following reasons. First, these colors clearly function in spiders such as the tarantulas outside of sexual selection, which is likely the dominant driver of the evolution of structural colors in birds and butterflies. Second, within more than 44,000 currently known spider species, colors are used in every possible way based on the same sets of relatively simple materials. Using spiders, we can study how colors evolve to serve different functions under a variety of combinations of driving forces, and how those colors are produced within a relatively simple system. Here, we first review the different color-producing materials and mechanisms (i.e., light absorbing, reflecting and emitting) in birds, butterflies and beetles, the interactions between these different elements, and the functions of colors in different organisms. We then summarize the current state of knowledge of spider colors and compare it with that of birds and insects. We then raise questions including: 1. Could spiders use fluorescence as a mechanism to protect themselves from UV radiation, if they do not have the biosynthetic pathways to produce melanins? 2. What functions could color serve for nearly blind tarantulas? 3. Why are only multilayer nanostructures (thus far) found in spiders, while birds and butterflies use many diverse nanostructures? And, does this limit the diversity of structural colors found in spiders? Answering any of these questions in the future will bring spiders to the forefront of the study of structural colors in nature.
Determinants of Iliac Blade Orientation in Anthropoid Primates.
Middleton, Emily R; Winkler, Zachariah J; Hammond, Ashley S; Plavcan, J Michael; Ward, Carol V
2017-05-01
Orientation of the iliac blades is a key feature that appears to distinguish extant apes from monkeys. Iliac morphology is hypothesized to reflect variation in thoracic shape that, in turn, reflects adaptations for shoulder and forearm function in anthropoids. Iliac orientation is traditionally measured relative to the acetabulum, whereas functional explanations pertain to its orientation relative to the cardinal anatomical planes. We investigated iliac orientation relative to a median plane using digital models of hipbones registered to landmark data from articulated pelves. We fit planes to the iliac surfaces, midline, and acetabulum, and investigated linear metrics that characterize geometric relationships of the iliac margins. Our results demonstrate that extant hominoid ilia are not rotated into a coronal plane from a more sagittal position in basal apes and monkeys but that the apparent rotation is the result of geometric changes within the ilia. The whole ilium and its gluteal surface are more coronally oriented in apes, but apes and monkeys do not differ in orientation of the iliac fossa. The angular differences in the whole blade and gluteal surface primarily reflect a narrower iliac tuberosity set closer to the midline in extant apes, reflecting a decrease in erector spinae muscle mass associated with stiffening of the lumbar spine. Mediolateral breadth across the ventral dorsal iliac spines is only slightly greater in extant apes than in monkeys. These results demonstrate that spinal musculature and mobility have a more significant effect on pelvic morphology than does shoulder orientation, as had been previously hypothesized. Anat Rec, 300:810-827, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Working Memory Is (Almost) Perfectly Predicted by "g"
ERIC Educational Resources Information Center
Colom, Roberto; Rebollo, Irene; Palacios, Antonio; Juan-Espinosa, Manuel; Kyllonen, Patrick C.
2004-01-01
This article analyzes if working memory (WM) is especially important to understand "g." WM comprises the functions of focusing attention, conscious rehearsal, and transformation and mental manipulation of information, while "g" reflects the component variance that is common to all tests of ability. The centrality of WM in individual differences in…
2005-10-01
Many plants have both sexual and vegetative reproduction, and this may be best handled with separate classes that reflect meaningful differ- ences in... Transmutation and functional representation of heterogeneous landscapes.” Landscape Ecology 5: 239-253. LaGro, J.Jr. 1991. “Assessing patch
A Comparison of Cognitive Flexibility and Metalinguistic Skills in Adult Good and Poor Comprehenders
ERIC Educational Resources Information Center
Cartwright, Kelly B.; Bock, Allison M.; Coppage, Elizabeth A.; Hodgkiss, Melinda D.; Nelson, Marisa Isaac
2017-01-01
Good and poor comprehenders exhibit different profiles of cognitive abilities, despite comparable decoding skills. Recent work suggests that executive functions, particularly cognitive flexibility, may underlie poor comprehenders' difficulties in childhood and adulthood. However, metalinguistic skills that enable readers to reflect on various…
Dynamics of the functional link between area MT LFPs and motion detection
Smith, Jackson E. T.; Beliveau, Vincent; Schoen, Alan; Remz, Jordana; Zhan, Chang'an A.
2015-01-01
The evolution of a visually guided perceptual decision results from multiple neural processes, and recent work suggests that signals with different neural origins are reflected in separate frequency bands of the cortical local field potential (LFP). Spike activity and LFPs in the middle temporal area (MT) have a functional link with the perception of motion stimuli (referred to as neural-behavioral correlation). To cast light on the different neural origins that underlie this functional link, we compared the temporal dynamics of the neural-behavioral correlations of MT spikes and LFPs. Wide-band activity was simultaneously recorded from two locations of MT from monkeys performing a threshold, two-stimuli, motion pulse detection task. Shortly after the motion pulse occurred, we found that high-gamma (100–200 Hz) LFPs had a fast, positive correlation with detection performance that was similar to that of the spike response. Beta (10–30 Hz) LFPs were negatively correlated with detection performance, but their dynamics were much slower, peaked late, and did not depend on stimulus configuration or reaction time. A late change in the correlation of all LFPs across the two recording electrodes suggests that a common input arrived at both MT locations prior to the behavioral response. Our results support a framework in which early high-gamma LFPs likely reflected fast, bottom-up, sensory processing that was causally linked to perception of the motion pulse. In comparison, late-arriving beta and high-gamma LFPs likely reflected slower, top-down, sources of neural-behavioral correlation that originated after the perception of the motion pulse. PMID:25948867
Vantage sensitivity: individual differences in response to positive experiences.
Pluess, Michael; Belsky, Jay
2013-07-01
The notion that some people are more vulnerable to adversity as a function of inherent risk characteristics is widely embraced in most fields of psychology. This is reflected in the popularity of the diathesis-stress framework, which has received a vast amount of empirical support over the years. Much less effort has been directed toward the investigation of endogenous factors associated with variability in response to positive influences. One reason for the failure to investigate individual differences in response to positive experiences as a function of endogenous factors may be the absence of adequate theoretical frameworks. According to the differential-susceptibility hypothesis, individuals generally vary in their developmental plasticity regardless of whether they are exposed to negative or positive influences--a notion derived from evolutionary reasoning. On the basis of this now well-supported proposition, we advance herein the new concept of vantage sensitivity, reflecting variation in response to exclusively positive experiences as a function of individual endogenous characteristics. After distinguishing vantage sensitivity from theoretically related concepts of differential-susceptibility and resilience, we review some recent empirical evidence for vantage sensitivity featuring behavioral, physiological, and genetic factors as moderators of a wide range of positive experiences ranging from family environment and psychotherapy to educational intervention. Thereafter, we discuss genetic and environmental factors contributing to individual differences in vantage sensitivity, potential mechanisms underlying vantage sensitivity, and practical implications. 2013 APA, all rights reserved
Arzouan, Yossi; Solomon, Sorin; Faust, Miriam; Goldstein, Abraham
2011-04-27
Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity.
Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits.
Heinloth, Tanja; Uhlhorn, Juliane; Wernet, Mathias F
2018-01-01
The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the "Dorsal Rim Area" (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster , we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision.
A SYSTEMATIC REVIEW OF PLACENTAL PATHOLOGY IN MATERNAL DIABETES MELLITUS
Huynh, J.; Dawson, D.; Roberts, D.; Bentley-Lewis, R.
2014-01-01
During a pregnancy complicated by diabetes, the human placenta undergoes a number of functional and structural pathologic changes, such as increased placental weight and increased incidence of placental lesions including villous maturational defects and fibrinoid necrosis. The pathologic findings reported have differed among studies, potentially reflecting differences in type of diabetes, study methodology, or glycemic control of study participants. Alternatively, these discrepancies may represent different biologic adaptations to distinct metabolic diseases. In order to clarify these distinctions, we conducted a comprehensive review of English language citations in Pubmed and Embase using the keywords “diabetes”, “placenta”, AND “pathology”. Abstracts were reviewed for relevance then full-text articles were reviewed in order to extract a comprehensive summary of current pathological findings associated with pregestational and gestational diabetes mellitus, as well as an understanding of the impact of glycemic control on placental pathology. Placental abnormalities most consistently associated with maternal diabetes are an increased incidence of villous immaturity, increased measures of angiogenesis, and increased placental weight. The literature suggests that, despite similarities in placental abnormalities, differences in placental pathology may reflect differences in pathophysiology among different types of diabetes. Consequently, standardization of terminology used to define placental lesions is warranted. Moreover, further research is needed to investigate the impact of pathophysiology, glycemic control and clinical factors, such as infant sex, weight and race, on placental structure and function. PMID:25524060
Nancarrow, Susan A; Smith, Tony; Ariss, Steven; Enderby, Pamela M
2015-07-01
Reflective practice is used increasingly to enhance team functioning and service effectiveness; however, there is little evidence of its use in interdisciplinary teams. This paper presents the qualitative evaluation of the Interdisciplinary Management Tool (IMT), an evidence-based change tool designed to enhance interdisciplinary teamwork through structured team reflection. The IMT incorporates three components: an evidence-based resource guide; a reflective implementation framework based on Structured, Facilitated Action Research for Implementation methodology; and formative and summative evaluation components. The IMT was implemented with intermediate care teams supported by independent facilitators in England. Each intervention lasted 6 months and was evaluated over a 12-month period. Data sources include interviews, a focus group with facilitators, questionnaires completed by team members and documentary feedback from structured team reports. Data were analysed qualitatively using the Framework approach. The IMT was implemented with 10 teams, including 253 staff from more than 10 different disciplines. Team challenges included lack of clear vision; communication issues; limited career progression opportunities; inefficient resource use; need for role clarity and service development. The IMT successfully engaged staff in the change process, and resulted in teams developing creative strategies to address the issues identified. Participants valued dedicated time to focus on the processes of team functioning; however, some were uncomfortable with a focus on teamwork at the expense of delivering direct patient care. The IMT is a relatively low-cost, structured, reflective way to enhance team function. It empowers individuals to understand and value their own, and others' roles and responsibilities within the team; identify barriers to effective teamwork, and develop and implement appropriate solutions to these. To be successful, teams need protected time to take for reflection, and executive support to be able to broker changes that are beyond the scope of the team. © 2014 John Wiley & Sons Ltd.
Backscattering of sound from targets in an Airy caustic formed by a curved reflecting surface
NASA Astrophysics Data System (ADS)
Dzikowicz, Benjamin Robert
The focusing of a caustic associated with the reflection of a locally curved sea floor or surface affects the scattering of sound by underwater targets. The most elementary caustic formed when sound reflects off a naturally curved surface is an Airy caustic. The case of a spherical target is examined here. With a point source acting also as a receiver, a point target lying in a shadow region returns only one echo directly from the target. When the target is on the Airy caustic, there are two echoes: one path is directly to the target and the other focuses off the curved surface. Echoes may be focused in both directions, the doubly focused case being the largest and the latest echo. With the target in the lit region, these different paths produce multiple echoes. For a finite sized sphere near an Airy caustic, all these echoes are manifest, but they occur at shifted target positions. Echoes of tone bursts reflecting only once overlap and interfere with each other, as do those reflecting twice. Catastrophe theory is used to analyze the echo amplitudes arising from these overlaps. The echo pressure for single reflections is shown to have a dependence on target position described by an Airy function for both a point and a finite target. With double focusing, this dependence is the square of an Airy function for a point target. With a finite sized target, (as in the experiment) this becomes a hyperbolic umbilic catastrophe integral with symmetric arguments. The arguments of each of these functions are derived from only the relative echo times of a transient pulse. Transient echo times are calculated using a numerical ray finding technique. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the Airy and hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method allows targets to be observed at greater distances in the presence of a focusing surface.
Analytic reflected light curves for exoplanets
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-07-01
The disc-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motions coupled with an inhomogeneous albedo map. We have previously derived analytic reflected light curves for spherical harmonic albedo maps in the special case of a synchronously rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard). In this paper, we present analytic reflected light curves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_ l^m-maps). In particular, we use Wigner D-matrices to express an harmonic light curve for an arbitrary viewing geometry as a non-linear combination of harmonic light curves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected light curves, as well as fast calculation of light curves for mapping exoplanets based on time-resolved photometry. To these ends, we make available Exoplanet Analytic Reflected Lightcurves, a simple open-source code that allows rapid computation of reflected light curves.
NASA Astrophysics Data System (ADS)
Ramful, Ajay; Ho, Siew Yin; Lowrie, Tom
2015-12-01
This inquiry presents two fine-grained case studies of students demonstrating different levels of cognitive functioning in relation to bilateral symmetry and reflection. The two students were asked to solve four sets of tasks and articulate their reasoning in task-based interviews. The first participant, Brittany, focused essentially on three criteria, namely (1) equidistance, (2) congruence of sides and (3) `exactly opposite' as the intuitive counterpart of perpendicularity for performing reflection. On the other hand, the second participant, Sara, focused on perpendicularity and equidistance, as is the normative procedure. Brittany's inadequate knowledge of reflection shaped her actions and served as a validation for her solutions. Intuitively, her visual strategies took over as a fallback measure to maintain congruence of sides in the absence of a formal notion of perpendicularity. In this paper, we address some of the well-known constraints that students encounter in dealing with bilateral symmetry and reflection, particularly situations involving inclined line of symmetry. Importantly, we make an attempt to show how visual and analytical strategies interact in the production of a reflected image. Our findings highlight the necessity to give more explicit attention to the notion of perpendicularity in bilateral symmetry and reflection tasks.
NASA Astrophysics Data System (ADS)
Szeberényi, Jozsef; Bradak-Hayashi, Balázs; Kiss, Klaudia; Kovács, József; Varga, György; Balázs, Réka; Szalai, Zoltán; Viczián, István
2016-04-01
The different varieties of loess (and intercalated paleosol layers) together constitute one of the most widespread terrestrial sediments, which was deposited, altered, and redeposited in the course of the changing climatic conditions of the Pleistocene. To reveal more information about Pleistocene climate cycles and/or environments the detailed lithostratigraphical subdivision and classification of the loess variations and paleosols are necessary. Beside the numerous method such as various field measurements, semi-quantitative tests and laboratory investigations, diffuse reflectance spectroscopy (DRS) is one of the well applied method on loess/paleosol sequences. Generally, DRS has been used to separate the detrital and pedogenic mineral component of the loess sections by the hematite/goethite ratio. DRS also has been applied as a joint method of various environmental magnetic investigations such as magnetic susceptibility- and isothermal remanent magnetization measurements. In our study the so-called "combined reflectance stratigraphy method" were developed. At First, complex mathematical method was applied to compare the results of the spectral reflectance measurements. One of the most preferred multivariate methods is cluster analysis. Its scope is to group and compare the loess variations and paleosol based on the similarity and common properties of their reflectance curves. In the Second, beside the basic subdivision of the profiles by the different reflectance curves of the layers, the most characteristic wavelength section of the reflectance curve was determined. This sections played the most important role during the classification of the different materials of the section. The reflectance value of individual samples, belonged to the characteristic wavelength were depicted in the function of depth and well correlated with other proxies like grain size distribution and magnetic susceptibility data. The results of the correlation showed the significance of the "combined reflectance stratigraphy" as a stratigraphical method and as an environmental proxy also. Acknowledgment Bradák-Hayashi, B.'s fellowship at Department of Planetology (Kobe University, Japan) was supported by the Japan Society for the Promotion of Science (JSPS). The investigation was supported by International Visegrad Fund. Project No: 11410020.
Um, Sungyong; Cho, Bomin; Woo, Hee-Gweon; Sohn, Honglae
2011-08-01
Multi-spot porous silicon (MSPS)-based optical biosensor was developed to specify the biomolecules. MSPS chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon. MSPS prepared from anisotropic etching conditions displayed the Fabry-Pérot fringe patterns which varied spatially across the porous silicon (PS). Each spot displayed different reflection resonances and different pore characteristics as a function of the lateral distance from the Pt counter electrode. The sensor system consists of the 3 x 3 spot array of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the reflection patterns in the white light reflection spectrum of MSPS. Molecular binding and specificity was detected as a shift in wavelength of these Fabry-Pérot fringe patterns.
NASA Astrophysics Data System (ADS)
Miskowiec, A.; Schnase, P.; Bai, M.; Taub, H.; Hansen, F. Y.; Dubey, M.; Singh, S.; Majewski, J.
2012-02-01
We have recently been investigating the diffusion of water on single-supported DMPC lipid bilayer membranes at different levels of hydration, using high-resolution quasielastic neutron scattering (QNS). To aid in the interpretation of these QNS studies, we have conducted neutron reflectivity (NR) measurements on SPEAR at LANSCE to characterize the structure of similarly prepared samples. Protonated DMPC membranes were deposited onto SiO2-coated Si(100) substrates and characterized by Atomic Force Microscopy (AFM) at different levels of hydration. We find reasonable agreement between the membrane thickness determined by NR and AFM at room temperature. We also find consistency between the scattering length density (SLD) profile in the vicinity of the upper leaflet of the supported DMPC membrane and that found in a molecular dynamics simulation of a freestanding membrane at 303 K. However, the fit to the reflectivity curve can be improved by modifying the SLD profile near the leaflet closest to the SiO2 surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.
Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and themore » solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also discussed.« less
Multimodal frontostriatal connectivity underlies individual differences in self-esteem
Heatherton, Todd F.
2015-01-01
A heightened sense of self-esteem is associated with a reduced risk for several types of affective and psychiatric disorders, including depression, anxiety and eating disorders. However, little is known about how brain systems integrate self-referential processing and positive evaluation to give rise to these feelings. To address this, we combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to test how frontostriatal connectivity reflects long-term trait and short-term state aspects of self-esteem. Using DTI, we found individual variability in white matter structural integrity between the medial prefrontal cortex and the ventral striatum was related to trait measures of self-esteem, reflecting long-term stability of self-esteem maintenance. Using fMRI, we found that functional connectivity of these regions during positive self-evaluation was related to current feelings of self-esteem, reflecting short-term state self-esteem. These results provide convergent anatomical and functional evidence that self-esteem is related to the connectivity of frontostriatal circuits and suggest that feelings of self-worth may emerge from neural systems integrating information about the self with positive affect and reward. This information could potentially inform the etiology of diminished self-esteem underlying multiple psychiatric conditions and inform future studies of evaluative self-referential processing. PMID:24795440
NASA Astrophysics Data System (ADS)
von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.
2010-05-01
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main influences on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on ENVISAT) and SeaWiFS (Sea viewing Wide Fiels Sensor on OrbView-2) observations are the existence of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. Normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface BRDF is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with AERONET data over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for trends in AOT.
NASA Astrophysics Data System (ADS)
Foote, E. J.; Paige, D. A.; Shepard, M. K.; Johnson, J. R.; Biggar, S. F.; Greenhagen, B. T.; Allen, C.
2010-12-01
We have compared laboratory solar reflectance measurements of Apollo 11 and 16 soil samples to Lunar Reconnaissance Orbiter (LRO) Diviner orbital albedo measurements at the Apollo landing sites. The soil samples are two representative end member samples from the moon, low albedo lunar maria (sample 10084) and high albedo lunar highlands (sample 68810). Bidirectional reflectance distribution function (BRDF) measurements of the soil samples were conducted at Bloomsburg University (BUG) and at the University of Arizona [1,2]. We collected two different types of BUG datasets: a standard set of BRDF measurements at incidence angles of 0-60°, emission angles of 0-80°, and phase angles of 3-140°, and a high-incidence angle set of measurements along and perpendicular to the principal plane at incidence angles of 0-75° and phase angles of 3-155°. The BUG measurements generated a total of 765 data points in four different filters 450, 550, 750 and 950 nm. The Blacklab measurements were acquired at incidence angles of 60-88°, emission angles 60-82°, and phase angles of 17-93° at wavelengths of 455, 554, 699, 949nm. The BUG data were fit to two BRDF models: Hapke’s model [3] as described by Johnson et al, 2010 [4], and a simplified empirical function. The fact that both approaches can satisfactorily fit the BUG data is not unexpected, given the similarities between the functions and their input parameters, and the fact that the BRDF for dark lunar soil is dominated by the single scattering phase functions of the individual soil particles. To compare our lunar sample measurements with LRO Diviner data [5], we selected all daytime observations acquired during the first year of operation within 3 km square boxes centered at the landing sites. We compared Diviner Channel 1 (0.3 - 3 µm) Lambert albedos with model calculated Lambert albedos of the lunar samples at the same photometric angles. In general, we found good agreement between the laboratory and Diviner measurements, particularly at intermediate incidence angles. We are currently reconciling any differences observed between our two datasets to provide mutual validation, and to better understand the Diviner solar reflectance measurements in terms of lunar regolith properties. [1] Shepard, M.K., Solar System Remote Sensing Symposium, #4004, LPI, 2002; [2] Biggar, S.F. et al, Proc. Soc. Photo-Opt. Instrum. Eng. 924:232-240, 1988; [3] Hapke, B. Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, 1993; [4] Johnson J.R. et al, Fall AGU 2010; [5] Paige, D.A. et al, Space Science Reviews, 150:125-160, 2010;
Backscattering from targets residing in caustics resulting from ocean boundary interactions
NASA Astrophysics Data System (ADS)
Dzikowicz, Benjamin R.; Marston, Philip L.
2005-04-01
Detection of targets by backscatter in shallow water can be enhanced by interactions with ocean boundaries. A laboratory experiment is performed where a spherical target passes through an Airy caustic formed by a curved surface. When the target resides in the insonified region of the caustic there are two sets of multi-path rays: two pairs reflecting once off the surface (either to or from the target), and three reflecting twice off the surface (to and from the target). When a target moves across the caustic the singly reflected rays merge, as do the doubly reflected. With a longer tone burst the rays in each set overlap and the backscatter is greatly enhanced as the target moves into the insonified region. For a point target the singly reflected backscatter scales as an Airy function [B. R. Dzikowicz and P. L. Marston, J. Acoust. Soc. Am. 116, 2751-2757 (2004)], and the doubly reflected as the square of an Airy function. For a finite target the doubly reflected backscatter unfolds into a hyperbolic umbilic function. The arguments of the Airy and Hyperbolic Umbilic functions are calculated using the relative echo times of transient pulses. [Work supported by ONR.
Theory of dissociative tunneling ionization
NASA Astrophysics Data System (ADS)
Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer
2016-05-01
We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.
NASA Technical Reports Server (NTRS)
Pahlevan, Nima; Sarkar, Sudipta; Devadiga, Sadashiva; Wolfe, Robert E.; Roman, Miguel; Vermote, Eric; Lin, Guoqing; Xiong, Xiaoxiong
2016-01-01
With the increasing need to construct long-term climate-quality data records to understand, monitor, and predict climate variability and change, it is vital to continue systematic satellite measurements along with the development of new technology for more quantitative and accurate observations. The Suomi National Polar-orbiting Partnership mission provides continuity in monitoring the Earths surface and its atmosphere in a similar fashion as the heritage MODIS instruments onboard the National Aeronautics and Space Administrations Terra and Aqua satellites. In this paper, we aim at quantifying the consistency of Aqua MODIS and Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Reflectance (LSR) and NDVI products as related to their inherent spatial sampling characteristics. To avoid interferences from sources of measurement and/or processing errors other than spatial sampling, including calibration, atmospheric correction, and the effects of the bidirectional reflectance distribution function, the MODIS and VIIRSLSR products were simulated using the Landsat-8s Operational Land Imager (OLI) LSR products. The simulations were performed using the instruments point spread functions on a daily basis for various OLI scenes over a 16-day orbit cycle. It was found that the daily mean differences due to discrepancies in spatial sampling remain below 0.0015 (1) in absolute surface reflectance at subgranule scale (i.e., OLI scene size).We also found that the MODISVIIRS product intercomparisons appear to be minimally impacted when differences in the corresponding view zenith angles (VZAs) are within the range of -15deg to -35deg (VZA(sub v) - VZA(sub m)), where VIIRS and MODIS footprints resemble in size. In general, depending on the spatial heterogeneity of the OLI scene contents, per-grid-cell differences can reach up to 20.Further spatial analysis of the simulated NDVI and LSR products revealed that, depending on the user accuracy requirements for product intercomparisons, spatial aggregations may be used. It was found that if per-grid-cell differences on the order of 10(in LSR or NDVI) are tolerated, the product intercomparisons are expected to be immune from differences in spatial sampling.
NASA Astrophysics Data System (ADS)
Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Tupayachi, Raul; Knapp, David E.; Sinca, Felipe
2015-07-01
Tropical forest functional diversity, which is a measure of the diversity of organismal interactions with the environment, is poorly understood despite its importance for linking evolutionary biology to ecosystem biogeochemistry. Functional diversity is reflected in functional traits such as the concentrations of different compounds in leaves or the density of leaf mass, which are related to plant activities such as plant defence, nutrient cycling, or growth. In the Amazonian lowlands, river movement and microtopography control nutrient mobility, which may influence functional trait distributions. Here we use airborne laser-guided imaging spectroscopy to develop maps of 16 forest canopy traits, throughout four large landscapes that harbour three common forest community types on the Madre de Dios and Tambopata rivers in southwestern Amazonia. Our maps, which are based on quantitative chemometric analysis of forest canopies with visible-to-near infrared (400-2,500 nm) spectroscopy, reveal substantial variation in canopy traits and their distributions within and among forested landscapes. Forest canopy trait distributions are arranged in a nested pattern, with location along rivers controlling trait variation between different landscapes, and microtopography controlling trait variation within landscapes. We suggest that processes of nutrient deposition and depletion drive increasing phosphorus limitation, and a corresponding increase in plant defence, in an eastward direction from the base of the Andes into the Amazon Basin.
Structural adaptations to diverse fighting styles in sexually selected weapons
McCullough, Erin L.; Tobalske, Bret W.; Emlen, Douglas J.
2014-01-01
The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male–male competition can drive the diversification of animal weapons. PMID:25201949
Structural adaptations to diverse fighting styles in sexually selected weapons.
McCullough, Erin L; Tobalske, Bret W; Emlen, Douglas J
2014-10-07
The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male-male competition can drive the diversification of animal weapons.
Influence of target reflection on three-dimensional range gated reconstruction.
Chua, Sing Yee; Wang, Xin; Guo, Ningqun; Tan, Ching Seong
2016-08-20
The range gated technique is a promising laser ranging method that is widely used in different fields such as surveillance, industry, and military. In a range gated system, a reflected laser pulse returned from the target scene contains key information for range reconstruction, which directly affects the system performance. Therefore, it is necessary to study the characteristics and effects of the target reflection factor. In this paper, theoretical and experimental analyses are performed to investigate the influence of target reflection on three-dimensional (3D) range gated reconstruction. Based on laser detection and ranging (LADAR) and bidirectional reflection distribution function (BRDF) theory, a 3D range gated reconstruction model is derived and the effect on range accuracy is analyzed from the perspectives of target surface reflectivity and angle of laser incidence. Our theoretical and experimental study shows that the range accuracy is proportional to the target surface reflectivity, but it decreases when the angle of incidence increases to adhere to the BRDF model. The presented findings establish a comprehensive understanding of target reflection in 3D range gated reconstruction, which is of interest to various applications such as target recognition and object modeling. This paper provides a reference for future improvement to perform accurate range compensation or correction.
The effect of skin reflectance on thermal traits in a small heliothermic ectotherm.
Matthews, Genevieve; Goulet, Celine T; Delhey, Kaspar; Chapple, David G
2016-08-01
Variation in colour patterning is prevalent among and within species. A number of theories have been proposed in explaining its evolution. Because solar radiation interacts with the pigmentation of the integument causing light to either be reflected or absorbed into the body, thermoregulation has been considered to be a primary selective agent, particularly among ectotherms. Accordingly, the colour-mediated thermoregulatory hypothesis states that darker individuals will heat faster and reach higher thermal equilibria while paler individuals will have the opposite traits. It was further predicted that dark colouration would promote slower cooling rates and higher thermal performance temperatures. To test these hypotheses we quantified the reflectance, selected body temperatures, performance optima, as well as heating and cooling rates of an ectothermic vertebrate, Lampropholis delicata. Our results indicated that colour had no influence on thermal physiology, as all thermal traits were uncorrelated with reflectance. We suggest that crypsis may instead be the stronger selective agent as it may have a more direct impact on fitness. Our study has improved our knowledge of the functional differences among individuals with different colour patterns, and the evolutionary significance of morphological variation within species. Copyright © 2016 Elsevier Ltd. All rights reserved.
A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model
NASA Astrophysics Data System (ADS)
Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge
2016-12-01
A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
[Soil microbial functional diversity of different altitude Pinus koraiensis forests].
Han, Dong-xue; Wang, Ning; Wang, Nan-nan; Sun, Xue; Feng, Fu-juan
2015-12-01
In order to comprehensively understand the soil microbial carbon utilization characteristics of Pinus koraiensis forests, we took the topsoil (0-5 cm and 5-10 cm) along the 700-1100 m altitude in Changbai Mountains and analyzed the vertical distributed characteristics and variation of microbial functional diversity along the elevation gradient by Biolog microplate method. The results showed that there were significant differences in functional diversity of microbial communities at different elevations. AWCD increased with the extension of incubation time and AWCD at the same soil depth gradually decreased along with increasing altitude; Shannon, Simpson and McIntosh diversity index also showed the same trend with AWCD and three different diversity indices were significantly different along the elevation gradient; Species diversity and functional diversity showed the same variation. The utilization intensities of six categories carbon sources had differences while amino acids were constantly the most dominant carbon source. Principal component analysis (PCA) identified that soil microbial carbon utilization at different altitudes had obvious spatial differentiation, as reflected in the use of carbohydrates, amino acids and carboxylic acids. In addition, the cluster of the microbial diversity indexes and AWCD values of different altitudes showed that the composition of vegetation had a significant impact on soil microbial composition and functional activity.
Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil
NASA Technical Reports Server (NTRS)
Schluessel, G.; Dickinson, R. E.; Privette, J. L.; Emery, W. J.; Kokaly, R.
1994-01-01
An analytical model of the bidirectional reflectance for optically semi-infinite plant canopies has been extended to describe the reflectance of finite depth canopies contributions from the underlying soil. The model depends on 10 independent parameters describing vegetation and soil optical and structural properties. The model is inverted with a nonlinear minimization routine using directional reflectance data for lawn (leaf area index (LAI) is equal to 9.9), soybeans (LAI, 2.9) and simulated reflectance data (LAI, 1.0) from a numerical bidirectional reflectance distribution function (BRDF) model (Myneni et al., 1988). While the ten-parameter model results in relatively low rms differences for the BRDF, most of the retrieved parameters exhibit poor stability. The most stable parameter was the single-scattering albedo of the vegetation. Canopy albedo could be derived with an accuracy of less than 5% relative error in the visible and less than 1% in the near-infrared. Sensitivity were performed to determine which of the 10 parameters were most important and to assess the effects of Gaussian noise on the parameter retrievals. Out of the 10 parameters, three were identified which described most of the BRDF variability. At low LAI values the most influential parameters were the single-scattering albedos (both soil and vegetation) and LAI, while at higher LAI values (greater than 2.5) these shifted to the two scattering phase function parameters for vegetation and the single-scattering albedo of the vegetation. The three-parameter model, formed by fixing the seven least significant parameters, gave higher rms values but was less sensitive to noise in the BRDF than the full ten-parameter model. A full hemispherical reflectance data set for lawn was then interpolated to yield BRDF values corresponding to advanced very high resolution radiometer (AVHRR) scan geometries collected over a period of nine days. The resulting parameters and BRDFs are similar to those for the full sampling geometry, suggesting that the limited geometry of AVHRR measurements might be used to reliably retrieve BRDF and canopy albedo with this model.
Resolving Microzooplankton Functional Groups In A Size-Structured Planktonic Model
NASA Astrophysics Data System (ADS)
Taniguchi, D.; Dutkiewicz, S.; Follows, M. J.; Jahn, O.; Menden-Deuer, S.
2016-02-01
Microzooplankton are important marine grazers, often consuming a large fraction of primary productivity. They consist of a great diversity of organisms with different behaviors, characteristics, and rates. This functional diversity, and its consequences, are not currently reflected in large-scale ocean ecological simulations. How should these organisms be represented, and what are the implications for their biogeography? We develop a size-structured, trait-based model to characterize a diversity of microzooplankton functional groups. We compile and examine size-based laboratory data on the traits, revealing some patterns with size and functional group that we interpret with mechanistic theory. Fitting the model to the data provides parameterizations of key rates and properties, which we employ in a numerical ocean model. The diversity of grazing preference, rates, and trophic strategies enables the coexistence of different functional groups of micro-grazers under various environmental conditions, and the model produces testable predictions of the biogeography.
Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole
2016-06-01
Autism spectrum disorders (ASD) are far more prevalent in males than in females. Little is known however about the differential neural expression of ASD in males and females. We used a resting-state fMRI-dataset comprising 42 males/42 females with ASD and 75 male/75 female typical-controls to examine whether autism-related alterations in intrinsic functional connectivity are similar or different in males and females, and particularly whether alterations reflect 'neural masculinization', as predicted by the Extreme Male Brain theory. Males and females showed a differential neural expression of ASD, characterized by highly consistent patterns of hypo-connectivity in males with ASD (compared to typical males), and hyper-connectivity in females with ASD (compared to typical females). Interestingly, patterns of hyper-connectivity in females with ASD reflected a shift towards the (high) connectivity levels seen in typical males (neural masculinization), whereas patterns of hypo-connectivity observed in males with ASD reflected a shift towards the (low) typical feminine connectivity patterns (neural feminization). Our data support the notion that ASD is a disorder of sexual differentiation rather than a disorder characterized by masculinization in both genders. Future work is needed to identify underlying factors such as sex hormonal alterations that drive these sex-specific neural expressions of ASD. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Cyclic Colour Change in the Bearded Dragon Pogona vitticeps under Different Photoperiods
Fan, Marie; Stuart-Fox, Devi; Cadena, Viviana
2014-01-01
The ability to change colour rapidly is widespread among ectotherms and has various functions including camouflage, communication and thermoregulation. The process of colour change can occur as an aperiodic event or be rhythmic, induced by cyclic environmental factors or regulated by internal oscillators. Despite the importance of colour change in reptile ecology, few studies have investigated the occurrence of a circadian rhythm in lizard pigmentation. Additionally, although colour change also entails changes in near-infrared reflectance, which may affect thermoregulation, little research has examined this part of the spectrum. We tested whether the bearded dragon lizard, Pogona vitticeps, displays an endogenous circadian rhythm in pigmentation changes that could be entrained by light/dark (LD) cycles and how light affected the relative change in reflectance in both ultraviolet-visible and near-infrared spectra. We subjected 11 lizards to four photoperiodic regimens: LD 12∶12; LD 6∶18; LD 18∶6 and DD; and measured their dorsal skin reflectance at 3-hour intervals for 72 hours after a habituation period. A proportion of lizards displayed a significant rhythm under constant darkness, with maximum reflectance occurring in the subjective night. This endogenous rhythm synchronised to the different artificial LD cycles, with maximum reflectance occurring during dark phases, but did not vary in amplitude. In addition, the total ultraviolet-visible reflectance in relation to the total near-infrared reflectance was significantly higher during dark phases than during light phases. We conclude that P. vitticeps exhibits a circadian pigmentation rhythm of constant amplitude, regulated by internal oscillators and that can be entrained by light/dark cycles. PMID:25354192
Cyclic colour change in the bearded dragon Pogona vitticeps under different photoperiods.
Fan, Marie; Stuart-Fox, Devi; Cadena, Viviana
2014-01-01
The ability to change colour rapidly is widespread among ectotherms and has various functions including camouflage, communication and thermoregulation. The process of colour change can occur as an aperiodic event or be rhythmic, induced by cyclic environmental factors or regulated by internal oscillators. Despite the importance of colour change in reptile ecology, few studies have investigated the occurrence of a circadian rhythm in lizard pigmentation. Additionally, although colour change also entails changes in near-infrared reflectance, which may affect thermoregulation, little research has examined this part of the spectrum. We tested whether the bearded dragon lizard, Pogona vitticeps, displays an endogenous circadian rhythm in pigmentation changes that could be entrained by light/dark (LD) cycles and how light affected the relative change in reflectance in both ultraviolet-visible and near-infrared spectra. We subjected 11 lizards to four photoperiodic regimens: LD 12:12; LD 6:18; LD 18:6 and DD; and measured their dorsal skin reflectance at 3-hour intervals for 72 hours after a habituation period. A proportion of lizards displayed a significant rhythm under constant darkness, with maximum reflectance occurring in the subjective night. This endogenous rhythm synchronised to the different artificial LD cycles, with maximum reflectance occurring during dark phases, but did not vary in amplitude. In addition, the total ultraviolet-visible reflectance in relation to the total near-infrared reflectance was significantly higher during dark phases than during light phases. We conclude that P. vitticeps exhibits a circadian pigmentation rhythm of constant amplitude, regulated by internal oscillators and that can be entrained by light/dark cycles.
NASA Astrophysics Data System (ADS)
Güleçyüz, M. Ç.; Şenyiğit, M.; Ersoy, A.
2018-01-01
The Milne problem is studied in one speed neutron transport theory using the linearly anisotropic scattering kernel which combines forward and backward scatterings (extremely anisotropic scattering) for a non-absorbing medium with specular and diffuse reflection boundary conditions. In order to calculate the extrapolated endpoint for the Milne problem, Legendre polynomial approximation (PN method) is applied and numerical results are tabulated for selected cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with the existing results in literature.
Reflections on supervision in psychotherapy.
Fernández-Alvarez, Héctor
2016-01-01
The aim of the author is to share his reflections on supervision as a central topic in therapists' education and training programs. The concept of supervision, its functions and effects on the training process along with the contributions of different theoretical models to its evolution are addressed. Supervision alliance, the roles of supervisor and supervisee, evaluation as a central component and the influence of socioeconomic factors are discussed. The conclusions depict the most interesting paths for development in the near future and the areas where research needs to be further conducted along with the subjects most worthy of efforts in the supervision field.
A tail of two voltages: Proteomic comparison of the three electric organs of the electric eel
Traeger, Lindsay L.; Sabat, Grzegorz; Barrett-Wilt, Gregory A.; Wells, Gregg B.; Sussman, Michael R.
2017-01-01
The electric eel (Electrophorus electricus) is unusual among electric fishes because it has three pairs of electric organs that serve multiple biological functions: For navigation and communication, it emits continuous pulses of weak electric discharge (<1 V), but for predation and defense, it intermittently emits lethal strong electric discharges (10 to 600 V). We hypothesized that these two electrogenic outputs have different energetic demands reflected by differences in their proteome and phosphoproteome. We report the use of isotope-assisted quantitative mass spectrometry to test this hypothesis. We observed novel phosphorylation sites in sodium transporters and identified a potassium channel with unique differences in protein concentration among the electric organs. In addition, we found transcription factors and protein kinases that show differential abundance in the strong versus weak electric organs. Our findings support the hypothesis that proteomic differences among electric organs underlie differences in energetic needs, reflecting a trade-off between generating weak voltages continuously and strong voltages intermittently. PMID:28695212
ERIC Educational Resources Information Center
Willoughby, Michael T.
2014-01-01
The focus article (Willoughby et al., 2014) (1) introduced the distinction between formative and reflective measurement and (2) proposed that performance-based executive function tasks may be better conceptualized from the perspective of formative rather than reflective measurement. This proposal stands in sharp contrast to conventional…
Parenting and Adolescent Adjustment: The Role of Parental Reflective Function
ERIC Educational Resources Information Center
Benbassat, Naomi; Priel, Beatriz
2012-01-01
Reflective function (RF) is the capacity to reflect on one's own mental experiences and those of others. This study examined the relationship between parental RF and adolescent adjustment. One hundred and five adolescents, aged 14-18, and their mothers and fathers were interviewed and completed questionnaires during home visits. We measured…
Dopamine Reward Prediction Error Responses Reflect Marginal Utility
Stauffer, William R.; Lak, Armin; Schultz, Wolfram
2014-01-01
Summary Background Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. Results In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions’ shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. Conclusions These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). PMID:25283778
Kattawar, G W; Plass, G N; Hitzfelder, S J
1976-03-01
The complete radiation field including polarization is calculated by the matrix operator method for scattering layers of various optical thicknesses. Results obtained for Rayleigh scattering are compared with those for scattering from a continental haze. Radiances calculated using Stokes vectors show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are only of the order of 0.1% for a continental haze phase function. The polarization of the reflected and transmitted radiation is given for a wide range of optical thicknesses of the scattering layer, for various solar zenith angles, and various surface albedos. Two entirely different types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points (RNP) arise from the zero polarization in single scattering that occurs for all phase functions at scattering angles of 0 degrees and 180 degrees . For Rayleigh phase functions, the position of the RNP varies appreciably with the optical thickness of the scattering layer. At low solar elevations there may be four RNP. For a continental haze phase function the position of the RNP in the reflected radiation shows only a small variation with the optical thickness, and the RNP exists in the transmitted radiation only for extremely small optical thicknesses. Another type of neutral point (NRNP) exists for aerosol phase functions. It is associated with the zeros of the single scattered polarization, which occur between the end points of the curve; these are called non-Rayleigh neutral points (NRNP). There may be from zero to four of these neutral points associated with each zero of the single scattering curve. They occur over a range of azimuthal angles, unlike the RNP that are in the principal plane only. The position of these neutral points is given as a function of solar angle and optical thickness.
Dopamine reward prediction error responses reflect marginal utility.
Stauffer, William R; Lak, Armin; Schultz, Wolfram
2014-11-03
Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.
2006-05-01
Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.
NASA Technical Reports Server (NTRS)
Georgiev, G. T.; Butler, J. J.; Kowalewski, M. G.; Ding, L.
2012-01-01
Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensing
Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.
2009-01-01
Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370
Maxwell, Hilary; Tasca, Giorgio A; Grenon, Renee; Faye, Megan; Ritchie, Kerri; Bissada, Hany; Balfour, Louise
2017-08-01
Coherence of mind and reflective functioning may impact negative affect and interpersonal functioning over and above the effects of symptoms of depression and interpersonal problems that contribute to symptoms of binge-eating disorder (BED) and overweight/obesity. Matched samples of overweight women with BED and overweight and normal weight women without BED completed the Adult Attachment Interview, a measure of depressive symptoms, and a measure of interpersonal problems. Greater symptoms of depression distinguished women with BED from the matched comparison samples. Greater interpersonal problems differentiated women with BED from overweight women without BED. Coherence of Mind scores did not differentiate the samples. However, lower Reflective Functioning scores did distinguish both women with BED and overweight women without BED from normal weight women. Lower reflective functioning may lead to binge eating independent of depressive symptoms and interpersonal problems.
Long-term training modifies the modular structure and organization of walking balance control
Allen, Jessica L.
2015-01-01
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. PMID:26467521
Long-term training modifies the modular structure and organization of walking balance control.
Sawers, Andrew; Allen, Jessica L; Ting, Lena H
2015-12-01
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. Copyright © 2015 the American Physiological Society.
Bidirectional reflection functions from surface bump maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, B.; Max, N.; Springmeyer, R.
1987-04-29
The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less
Situational Meanings and Functions of Korean Speech Styles
ERIC Educational Resources Information Center
Yoon, Sangseok
2010-01-01
This study aims to provide a perspective which allows honorifics to be seen beyond the frame of politeness and/or formality in social structures. Korean school grammar explains honorifics as linguistic forms that reflect relative social positional difference (e.g., K-H. Lee, 2010), and has assumed that social structure and language use have a…
Individual and Collective Reflection: How to Meet the Needs of Development in Teaching
ERIC Educational Resources Information Center
Nissila, Sade-Pirkko
2005-01-01
The following five core ideas explain how learning organizations function as wholes. The core ideas are central when school is examined as a learning organization. Personal mastery, mental models, team learning, shared visions and system thinking offer different angles to examine the organization. (1) Personal mastery. Without personal commitment,…
The Function and Methods of Libraries in the Diffusion of Knowledge.
ERIC Educational Resources Information Center
Williams, Gordon R.
1980-01-01
Argues that the role expected of libraries is significantly different now from what it was for nearly 95 percent of the span of library history, and that this change of purpose has not been reflected in the current budgetary and management priorities of librarians. Nine references are cited. (FM)
USDA-ARS?s Scientific Manuscript database
Exotic species currently dominate many communities, but it is unclear if the significance of a species’ origin merely reflects our societal values or if exotic species function differently from the native, resident species. The difficulty in separating these perspectives derives from a lack of syst...
Prayer Is a Positive Activity for Children--A Report on Recent Research
ERIC Educational Resources Information Center
Mountain, Vivienne
2005-01-01
This article reports on Australian research investigating the meaning and function of prayer for children. Semi-structured interviews were conducted with 60 primary school participants selected from six different schools in Melbourne, reflecting some of the diverse philosophical and religious traditions found in the Australian society. The three…
Brains creating stories of selves: the neural basis of autobiographical reasoning
Cassol, Helena; Phillips, Christophe; Balteau, Evelyne; Salmon, Eric; Van der Linden, Martial
2014-01-01
Personal identity critically depends on the creation of stories about the self and one’s life. The present study investigates the neural substrates of autobiographical reasoning, a process central to the construction of such narratives. During functional magnetic resonance imaging scanning, participants approached a set of personally significant memories in two different ways: in some trials, they remembered the concrete content of the events (autobiographical remembering), whereas in other trials they reflected on the broader meaning and implications of their memories (autobiographical reasoning). Relative to remembering, autobiographical reasoning recruited a left-lateralized network involved in conceptual processing [including the dorsal medial prefrontal cortex (MPFC), inferior frontal gyrus, middle temporal gyrus and angular gyrus]. The ventral MPFC—an area that may function to generate personal/affective meaning—was not consistently engaged during autobiographical reasoning across participants but, interestingly, the activity of this region was modulated by individual differences in interest and willingness to engage in self-reflection. These findings support the notion that autobiographical reasoning and the construction of personal narratives go beyond mere remembering in that they require deriving meaning and value from past experiences. PMID:23482628
Gallego, Sergi; Márquez, André; Méndez, David; Marini, Stephan; Beléndez, Augusto; Pascual, Inmaculada
2009-08-01
Photopolymers are appealing materials for the fabrication of diffractive optical elements (DOEs). We evaluate the possibilities of polyvinyl-alcohol/acrylamide-based photopolymers to store diffractive elements with low spatial frequencies. We record gratings with different spatial frequencies in the material and analyze the material behavior measuring the transmitted and the reflected orders as a function of exposition. We study two different compositions for the photopolymer, with and without a cross-linker. The values of diffraction efficiency achieved for both compositions make the material suitable to record DOEs with long spatial periods. Assuming a Fermi-Dirac-function-based profile, we fitted the diffracted intensities (up to the eighth order) to obtain the phase profile of the recorded gratings. This analysis shows that it is possible to achieve a phase shift larger than 2pi rad with steep edges in the periodic phase profile. In the case of the measurements in reflection, we have obtained information dealing with the surface profile, which show that it has a smooth shape with an extremely large phase-modulation depth.
Li, Weiwei; Li, Yadan; Yang, Wenjing; Zhang, Qinglin; Wei, Dongtao; Li, Wenfu; Hitchman, Glenn; Qiu, Jiang
2015-04-01
Internet addiction (IA) incurs significant social and financial costs in the form of physical side-effects, academic and occupational impairment, and serious relationship problems. The majority of previous studies on Internet addiction disorders (IAD) have focused on structural and functional abnormalities, while few studies have simultaneously investigated the structural and functional brain alterations underlying individual differences in IA tendencies measured by questionnaires in a healthy sample. Here we combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity, rsFC) information to explore the neural mechanisms underlying IAT in a large sample of 260 healthy young adults. The results showed that IAT scores were significantly and positively correlated with rGMV in the right dorsolateral prefrontal cortex (DLPFC, one key node of the cognitive control network, CCN), which might reflect reduced functioning of inhibitory control. More interestingly, decreased anticorrelations between the right DLPFC and the medial prefrontal cortex/rostral anterior cingulate cortex (mPFC/rACC, one key node of the default mode network, DMN) were associated with higher IAT scores, which might be associated with reduced efficiency of the CCN and DMN (e.g., diminished cognitive control and self-monitoring). Furthermore, the Stroop interference effect was positively associated with the volume of the DLPFC and with the IA scores, as well as with the connectivity between DLPFC and mPFC, which further indicated that rGMV variations in the DLPFC and decreased anticonnections between the DLPFC and mPFC may reflect addiction-related reduced inhibitory control and cognitive efficiency. These findings suggest the combination of structural and functional information can provide a valuable basis for further understanding of the mechanisms and pathogenesis of IA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.
2015-01-01
Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908
Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C
2015-01-01
Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.
Personality Is Reflected in the Brain's Intrinsic Functional Architecture
Adelstein, Jonathan S.; Shehzad, Zarrar; Mennes, Maarten; DeYoung, Colin G.; Zuo, Xi-Nian; Kelly, Clare; Margulies, Daniel S.; Bloomfield, Aaron; Gray, Jeremy R.; Castellanos, F. Xavier; Milham, Michael P.
2011-01-01
Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC) can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective ‘hubs’ in the brain—the anterior cingulate and precuneus—each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses. PMID:22140453
A Cartesian reflex assessment of face processing.
Polewan, Robert J; Vigorito, Christopher M; Nason, Christopher D; Block, Richard A; Moore, John W
2006-03-01
Commands to blink were embedded within pictures of faces and simple geometric shapes or forms. The faces and shapes were conditioned stimuli (CSs), and the required responses were conditioned responses, or more properly, Cartesian reflexes (CRs). As in classical conditioning protocols, response times (RTs) were measured from CS onset. RTs provided a measure of the processing cost (PC) of attending to a CS. A PC is the extra time required to respond relative to RTs to unconditioned stimulus (US) commands presented alone. They reflect the interplay between attentional processing of the informational content of a CS and its signaling function with respect to the US command. This resulted in longer RTs to embedded commands. Differences between PCs of faces and geometric shapes represent a starting place for a new mental chronometry based on the traditional idea that differences in RT reflect differences in information processing.
Radar sea reflection for low-e targets
NASA Astrophysics Data System (ADS)
Chow, Winston C.; Groves, Gordon W.
1998-09-01
Modeling radar signal reflection from a wavy sea surface uses a realistic characteristic of the large surface features and parameterizes the effect of the small roughness elements. Representation of the reflection coefficient at each point of the sea surface as a function of the Specular Deviation Angle is, to our knowledge, a novel approach. The objective is to achieve enough simplification and retain enough fidelity to obtain a practical multipath model. The 'specular deviation angle' as used in this investigation is defined and explained. Being a function of the sea elevations, which are stochastic in nature, this quantity is also random and has a probability density function. This density function depends on the relative geometry of the antenna and target positions, and together with the beam- broadening effect of the small surface ripples determined the reflectivity of the sea surface at each point. The probability density function of the specular deviation angle is derived. The distribution of the specular deviation angel as function of position on the mean sea surface is described.
New methods for engineering site characterization using reflection and surface wave seismic survey
NASA Astrophysics Data System (ADS)
Chaiprakaikeow, Susit
This study presents two new seismic testing methods for engineering application, a new shallow seismic reflection method and Time Filtered Analysis of Surface Waves (TFASW). Both methods are described in this dissertation. The new shallow seismic reflection was developed to measure reflection at a single point using two to four receivers, assuming homogeneous, horizontal layering. It uses one or more shakers driven by a swept sine function as a source, and the cross-correlation technique to identify wave arrivals. The phase difference between the source forcing function and the ground motion due to the dynamic response of the shaker-ground interface was corrected by using a reference geophone. Attenuated high frequency energy was also recovered using the whitening in frequency domain. The new shallow seismic reflection testing was performed at the crest of Porcupine Dam in Paradise, Utah. The testing used two horizontal Vibroseis sources and four receivers for spacings between 6 and 300 ft. Unfortunately, the results showed no clear evidence of the reflectors despite correction of the magnitude and phase of the signals. However, an improvement in the shape of the cross-correlations was noticed after the corrections. The results showed distinct primary lobes in the corrected cross-correlated signals up to 150 ft offset. More consistent maximum peaks were observed in the corrected waveforms. TFASW is a new surface (Rayleigh) wave method to determine the shear wave velocity profile at a site. It is a time domain method as opposed to the Spectral Analysis of Surface Waves (SASW) method, which is a frequency domain method. This method uses digital filtering to optimize bandwidth used to determine the dispersion curve. Results from testings at three different sites in Utah indicated good agreement with the dispersion curves measured using both TFASW and SASW methods. The advantage of TFASW method is that the dispersion curves had less scatter at long wavelengths as a result from wider bandwidth used in those tests.
Remote Sensing of Ecosystem Light Use Efficiency Using MODIS
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Middleton, E.; Landis, D.; Black, T. A.; Barr, A. G.; McCaughey, J. H.; Hall, F.
2009-12-01
Understanding the dynamics of the global carbon cycle requires an accurate determination of the spatial and temporal distribution of photosynthetic CO2 uptake by terrestrial vegetation. Optimal photosynthetic function is negatively affected by stress factors that cause down-regulation (i.e., reduced rate of photosynthesis). Present modeling approaches to determine ecosystem carbon exchange rely on meteorological data as inputs to models that predict the relative photosynthetic function in response to environmental conditions inducing stress (e.g., drought, high/low temperatures). This study examines the determination of ecosystem photosynthetic light use efficiency (LUE) from remote sensing, through measurement of vegetation spectral reflectance changes associated with physiologic stress responses exhibited by photosynthetic pigments. This approach uses the Moderate-Resolution Spectroradiometer (MODIS) on Aqua and Terra to provide frequent, narrow-band measurements. The reflective ocean MODIS bands were used to calculate the Photochemical Reflectance Index (PRI), an index that is sensitive to reflectance changes near 531nm associated with vegetation stress responses exhibited by photosynthetic pigments in the xanthophyll cycle. MODIS PRI values were compared with LUE calculated from CO2 flux measured at four Canadian forest sites: A mature Douglas fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed forest site in Ontario, all part of the Canadian Carbon Program network. The relationships between LUE and MODIS PRI were different among forest types, with clear differences in the slopes of the relationships for conifer and deciduous forests. The MODIS based LUE measurements provide a more accurate estimation of observed LUE than the values calculated in the MODIS GPP model. This suggests the possibility of a GPP model that uses MODIS LUE instead of modeled LUE. This type of model may provide a useful contrast to existing models driven by meteorological data. The main impediment to developing such a model is the lack of a MODIS product that provides surface reflectance for the MODIS ocean bands over land.
Rational functional representation of flap noise spectra including correction for reflection effects
NASA Technical Reports Server (NTRS)
Miles, J. H.
1974-01-01
A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on Thomas' (1969) N-independent-source model extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown-flap data taken from turbofan engine tests and from large-scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.
Cryo-scatter measurements of beryllium
NASA Astrophysics Data System (ADS)
Lippey, Barret; Krone-Schmidt, Wilfried
1991-12-01
Bi-directional Reflection Distribution Function measurements were performed as a function of cryogenic temperature for various substrates. Substrates investigated include HIPed and sputtered beryllium produced from different powders and by various manufacturing and polishing processes. In some samples investigated, the BRDF at 10.6 microns increased by a factor of 2 to 5 during cooling from 300 to 30 Kelvin. On repeated temperature cycling the change in BRDF appeared to be totally elastic. The cryo-scatter effect does not occur for all types of beryllium.
Reflective properties of randomly rough surfaces under large incidence angles.
Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J
2014-06-01
The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.
Single-wavelength functional photoacoustic microscopy in biological tissue.
Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V
2011-03-01
Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.
Single-wavelength functional photoacoustic microscopy in biological tissue
Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.
2011-01-01
Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multi-wavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy. PMID:21368977
NASA Astrophysics Data System (ADS)
Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.
2016-12-01
Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and international partners.
van Tubergen, Astrid; Gulpen, Anouk; Landewé, Robert; Boonen, Annelies
2018-05-19
Patients' experience of overall health is often assessed through a single-item global question. Here, we evaluated among patients with AS and population controls whether single-item questions on the constructs health, well-being and quality of life (QoL) are interchangeable. In a mixed quantitative and qualitative approach, all subjects scored the three single-item globals on a numeric rating scale (0-10, best). Next, they indicated for each of the questions which aspects they had been considering when scoring. After forced reflection, globals were scored again. Dissimilarities in scores among constructs, between patients and controls, and before or after reflection were tested using mixed linear models. Themes identified per construct in the qualitative part were linked to the International Classification of Functioning, Disability and Health. The type of themes per construct was compared between patients and controls. Sixty-eight AS patients and 84 controls completed the questionnaire. Patients scored significantly worse on each global than controls (mean 6.1-6.3 vs 7.2-7.6, all P < 0.01). Within groups, however, no significant differences in scores on each construct, or in scores before or after forced reflection were found. Health-related themes were relevant to each construct for patients, but were less relevant for controls when considering well-being and QoL. Emotional functions were relevant to well-being in all participants. Social roles and financial situation were more frequently related to well-being and QoL in controls. While patients and controls identified content-related dissimilarities between the three constructs studied, this was not reflected in different scores of the globals.
NASA Astrophysics Data System (ADS)
Moura, Y. M.; Hilker, T.; Galvão, L. S.; Santos, J. R.; Lyapustin, A.; Sousa, C. H. R. D.; McAdam, E.
2014-12-01
The sensitivity of the Amazon rainforests to climate change has received great attention by the scientific community due to the important role that this vegetation plays in the global carbon, water and energy cycle. The spatial and temporal variability of tropical forests across Amazonia, and their phenological, ecological and edaphic cycles are still poorly understood. The objective of this work was to infer seasonal and spatial variability of forest structure in the Brazilian Amazon based on anisotropy of multi-angle satellite observations. We used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS/Terra and Aqua) processed by a new Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC) to investigate how multi-angular spectral response from satellite imagery can be used to analyze structural variability of Amazon rainforests. We calculated differences acquired from forward and backscatter reflectance by modeling the bi-directional reflectance distribution function to infer seasonal and spatial changes in vegetation structure. Changes in anisotropy were larger during the dry season than during the wet season, suggesting intra-annual changes in vegetation structure and density. However, there were marked differences in timing and amplitude depending on forest type. For instance differences between reflectance hotspot and darkspot showed more anisotropy in the open Ombrophilous forest than in the dense Ombrophilous forest. Our results show that multi-angle data can be useful for analyzing structural differences in various forest types and for discriminating different seasonal effects within the Amazon basin. Also, multi-angle data could help solve uncertainties about sensitivity of different tropical forest types to light versus rainfall. In conclusion, multi-angular information, as expressed by the anisotropy of spectral reflectance, may complement conventional studies and provide significant improvements over approaches that are based on vegetation indices alone.
Xu, Han-qiu; Zhang, Tie-jun
2011-07-01
The present paper investigates the quantitative relationship between the NDVI and SAVI vegetation indices of Landsat and ASTER sensors based on three tandem image pairs. The study examines how well ASTER sensor vegetation observations replicate ETM+ vegetation observations, and more importantly, the difference in the vegetation observations between the two sensors. The DN values of the three image pairs were first converted to at-sensor reflectance to reduce radiometric differences between two sensors, images. The NDVI and SAVI vegetation indices of the two sensors were then calculated using the converted reflectance. The quantitative relationship was revealed through regression analysis on the scatter plots of the vegetation index values of the two sensors. The models for the conversion between the two sensors, vegetation indices were also obtained from the regression. The results show that the difference does exist between the two sensors, vegetation indices though they have a very strong positive linear relationship. The study found that the red and near infrared measurements differ between the two sensors, with ASTER generally producing higher reflectance in the red band and lower reflectance in the near infrared band than the ETM+ sensor. This results in the ASTER sensor producing lower spectral vegetation index measurements, for the same target, than ETM+. The relative spectral response function differences in the red and near infrared bands between the two sensors are believed to be the main factor contributing to their differences in vegetation index measurements, because the red and near infrared relative spectral response features of the ASTER sensor overlap the vegetation "red edge" spectral region. The obtained conversion models have high accuracy with a RMSE less than 0.04 for both sensors' inter-conversion between corresponding vegetation indices.
Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra
NASA Astrophysics Data System (ADS)
Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang
2016-02-01
We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.
Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015
NASA Astrophysics Data System (ADS)
Liu, M.; Lin, J.
2016-12-01
Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.
Functional Connectivity’s Degenerate View of Brain Computation
Giron, Alain; Rudrauf, David
2016-01-01
Brain computation relies on effective interactions between ensembles of neurons. In neuroimaging, measures of functional connectivity (FC) aim at statistically quantifying such interactions, often to study normal or pathological cognition. Their capacity to reflect a meaningful variety of patterns as expected from neural computation in relation to cognitive processes remains debated. The relative weights of time-varying local neurophysiological dynamics versus static structural connectivity (SC) in the generation of FC as measured remains unsettled. Empirical evidence features mixed results: from little to significant FC variability and correlation with cognitive functions, within and between participants. We used a unified approach combining multivariate analysis, bootstrap and computational modeling to characterize the potential variety of patterns of FC and SC both qualitatively and quantitatively. Empirical data and simulations from generative models with different dynamical behaviors demonstrated, largely irrespective of FC metrics, that a linear subspace with dimension one or two could explain much of the variability across patterns of FC. On the contrary, the variability across BOLD time-courses could not be reduced to such a small subspace. FC appeared to strongly reflect SC and to be partly governed by a Gaussian process. The main differences between simulated and empirical data related to limitations of DWI-based SC estimation (and SC itself could then be estimated from FC). Above and beyond the limited dynamical range of the BOLD signal itself, measures of FC may offer a degenerate representation of brain interactions, with limited access to the underlying complexity. They feature an invariant common core, reflecting the channel capacity of the network as conditioned by SC, with a limited, though perhaps meaningful residual variability. PMID:27736900
[Modeling and Simulation of Spectral Polarimetric BRDF].
Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu
2016-01-01
Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.
Atmospheric and Science Complexity Effects on Surface Bidirectional Reflectance
NASA Technical Reports Server (NTRS)
Diner, D. J. (Principal Investigator); Martonchik, J. V.; Sythe, W. D.; Hessom, C.
1985-01-01
Among the tools used in passive remote sensing of Earth resources in the visible and near-infrared spectral regions are measurements of spectral signature and bidirectional reflectance functions (BDRFs). Determination of surface properties using these observables is complicated by a number of factors, including: (1) mixing of surface components, such as soil and vegetation, (2) multiple reflections of radiation due to complex geometry, such as in crop canopies, and (3) atmospheric effects. In order to bridge the diversity in these different approaches, there is a need for a fundamental physical understanding of the influence of the various effects and a quantiative measure of their relative importance. In particular, we consider scene complexity effects using the example of reflection by vegetative surfaces. The interaction of sunlight with a crop canopy and interpretation of the spectral and angular dependence of the emergent radiation is basically a multidimensional radiative transfer problem. The complex canopy geometry, underlying soil cover, and presence of diffuse as well as collimated illumination will modify the reflectance characteristics of the canopy relative to those of the individual elements.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng
2007-10-01
Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.
NASA Astrophysics Data System (ADS)
Billing, H.; Koslowsky, D.
In the AVHRR data of the polar orbiting NOAA Satellites, directional reflectance under a certain view from satellite and a certain illumination by the sun is measured. Due to the nearly sunsynchroneous orbit of the NOAA satellite, each area is seen under different viewing angles in successive days. Only after approximately 9 days, the conditions are again similar. Areas, seen in specular direction, may appear only half as bright, as if seen in antispecular direction. This deviation from a Lambertian reflector is a function of the surface roughness and the degree of coverage with vegetation. The NOAA afternoon satellites drift by half an hour from year to year. Thus even data from the same season, but different years, are seen under different illumination conditions. To derive the bidirectional reflection distribution function in dependence on satellite viewing angle and solar illumination becomes a very complicated procedure. Using the Helmholtz reciprocity principle (HRP), i.e. the symetrie in viewing and illumination, reduces the problem by one dimension. For different bidimensional reflection laws it will be tested, whether they can be formulated to fullfill the HRP. Via regression, the parameters will be deduced for time series of AVHRR data of 10 years from NOAA 11,14,16 and 17. Brdfunctions, suggested by Rao as well as a law, suggested by Ba seem to become unstable for low sun resp. large viewing zenit angles. Only brdfs with 4 coefficients can fit the observed distributions. A nonlinear temporal angular model (NTAM), suggested by Latifovic,Cihlar and Chen, seems to be suitable to describe even the hot spot and the dependence on plant growth. The coefficients of these brdf-function will be derived via regression for monthly series of cloud free data for the European area, where AVHRR data in full resolution are received in Berlin. Using these coefficients, monthly maps of surface roughness are produced for the above area for the time since 1985. Ba, M.B., Deschamps, P.-Y.,Frouin, R. 1995. Error reduction in NOAA satellite monitoring of the land surface vegetation during FIFE. J. Geophys. Res., 100: 25537-25548. Rao, C.R.N., Chen, J., 1994. Post-launch calibration of the visible and near infrared channels of the advanced very high resolution radiometer on NOAA-7,- 9, and -11 spacecraft. NOAA Technical Report NESDIS 78. Latifovic, R., Chilar, J., Chen, J., 2003. A Comparison of BRDF Models for the Normalisation of Satellite Optical Data to a Standard Sun-Target- Sensor Geometry. IEEE Transactions on Geoscience and Remote Sensing, Vol.41, No.8, 1889 - 1898.
Interpreting vegetation reflectance measurements as a function of solar zenith angle
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Smith, J. A.; Ranson, K. J.
1979-01-01
Spectral hemispherical-conical reflectances of a nadir looking sensor were taken throughout the day for a lodgepole pine and two grass canopies. Mathematical simulations of both spectral hemispherical-conical and bi-hemispherical reflectances were performed for two theoretical canopies of contrasting geometric structure. These results and comparisons with literature studies showed a great amount of variability of vegetation canopy reflectances as a function of solar zenith angle. Explanations for this variability are discussed and recommendations for further measurements are proposed.
Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa
2012-12-20
A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.; Ayalon, Michal
2018-02-01
A foundational component of developing algebraic thinking for meaningful calculus learning is the idea of "function" that focuses on the relationship between varying quantities. Students have demonstrated widespread difficulties in learning calculus, particularly interpreting and modeling dynamic events, when they have a poor understanding of relationships between variables. Yet, there are differing views on how to develop students' functional thinking over time. In the Australian curriculum context, linear relationships are introduced to lower secondary students with content that reflects a hybrid of traditional and reform algebra pedagogy. This article discusses an investigation into Australian secondary students' understanding of linear functional relationships from Years 7 to 12 (approximately 12 to 18 years old; n = 215) in their approaches to three tasks (finding rate of change, pattern generalisation and interpretation of gradient) involving four different representations (table, geometric growing pattern, equation and graph). From the findings, it appears that these students' knowledge of linear functions remains context-specific rather than becoming connected over time.
The Effect of Incident Light Polarization on Vegetation Bidirectional Reflectance Factor
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Thome, Kurt; Ranson, Kurtis J.; King, Michael D.; Butler, James J.
2010-01-01
The Laboratory-based Bidirectional Reflectance Factor (BRF) polarization study of vegetation is presented in this paper. The BRF was measured using a short-arc Xenon lamp/monochromator assembly producing an incoherent, tunable light source with a well-defined spectral bandpass at visible and near-infrared wavelengths of interest at 470 nm and 870 nm and coherent light source at 1.656 microns. All vegetation samples were measured using P and S linearly polarized incident light over a range of incident and scatter angles. By comparing these results, we quantitatively examine how the BRF of the samples depends on the polarization of the incident light. The differences are significant, depend strongly on the incident and scatter angles, and can be as high as 120% at 67 deg incident and 470nm. The global nature of Earth's processes requires consistent long-term calibration of all instruments involved in data retrieval. The BRF defines the reflection characteristics of Earth surface. It provides the reflectance of a target in a specific direction as a function of illumination and viewing geometry. The BRF is a function of wavelength and reflects the structural and optical properties of the surface. Various space and airborne radiometric and imaging remote sensing instruments are used in the remote sensing characterization of vegetation canopies and soils, oceans, or especially large pollution sources. The satellite data is validated through comparison with airborne, ground-based and laboratory-based data in an effort to fully understand the vegetation canopy reflectance, The Sun's light is assumed to be unpolarized at the top of the atmosphere; however it becomes polarized to some degree due to atmospheric effects by the time it reaches the vegetation canopy. Although there are numerous atmospheric correction models, laboratory data is needed for model verification and improvement.
Decoupled form and function in disparate herbivorous dinosaur clades
NASA Astrophysics Data System (ADS)
Lautenschlager, Stephan; Brassey, Charlotte A.; Button, David J.; Barrett, Paul M.
2016-05-01
Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.
Decoupled form and function in disparate herbivorous dinosaur clades.
Lautenschlager, Stephan; Brassey, Charlotte A; Button, David J; Barrett, Paul M
2016-05-20
Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.
Components of executive functioning in metamemory.
Mäntylä, Timo; Rönnlund, Michael; Kliegel, Matthias
2010-10-01
This study examined metamemory in relation to three basic executive functions (set shifting, working memory updating, and response inhibition) measured as latent variables. Young adults (Experiment 1) and middle-aged adults (Experiment 2) completed a set of executive functioning tasks and the Prospective and Retrospective Memory Questionnaire (PRMQ). In Experiment 1, source recall and face recognition tasks were included as indicators of objective memory performance. In both experiments, analyses of the executive functioning data yielded a two-factor solution, with the updating and inhibition tasks constituting a common factor and the shifting tasks a separate factor. Self-reported memory problems showed low predictive validity, but subjective and objective memory performance were related to different components of executive functioning. In both experiments, set shifting, but not updating and inhibition, was related to PRMQ, whereas source recall showed the opposite pattern of correlations in Experiment 1. These findings suggest that metamemorial judgments reflect selective effects of executive functioning and that individual differences in mental flexibility contribute to self-beliefs of efficacy.
A new class of methods for functional connectivity estimation
NASA Astrophysics Data System (ADS)
Lin, Wutu
Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.
Soybean canopy reflectance as a function of view and illumination geometry
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.
1982-01-01
The results of an experiment designed to characterize a soybean field by its reflectance at various view and illumination angles and by its physical and agronomic attributes are presented. Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions for various solar zenith and azimuth angles during portions of three days. An ancillary data set consisting of the agronomic and physical characteristics of the soybean field is described. The results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength and row direction, as well as the state of development of the canopy. Shadows between rows greatly affected the reflectance in the visible wavelength bands and to a lesser extent in the near infrared wavelengths. A model is proposed that describes the reflectance variation as a function of projected solar and projected viewing angles. The model appears to approximate the reflectance variations in the visible wavelength bands from a canopy with well defined row structure.
Thermal consequences of colour and near-infrared reflectance.
Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana
2017-07-05
The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).
About the Distinction between Working Memory and Short-Term Memory.
Aben, Bart; Stapert, Sven; Blokland, Arjan
2012-01-01
The theoretical concepts short-term memory (STM) and working memory (WM) have been used to refer to the maintenance and the maintenance plus manipulation of information, respectively. Although they are conceptually different, the use of the terms STM and WM in literature is not always strict. STM and WM are different theoretical concepts that are assumed to reflect different cognitive functions. However, correlational studies have not been able to separate both constructs consistently and there is evidence for a large or even complete overlap. The emerging view from neurobiological studies is partly different, although there are conceptual problems troubling the interpretation of findings. In this regard, there is a crucial role for the tasks that are used to measure STM or WM (simple and complex span tasks, respectively) and for the cognitive load reflected by factors like attention and processing speed that may covary between and within these tasks. These conceptual issues are discussed based on several abstract models for the relation between STM and WM.
Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits
Heinloth, Tanja; Uhlhorn, Juliane; Wernet, Mathias F.
2018-01-01
The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the “Dorsal Rim Area” (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster, we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision. PMID:29615868
NASA Technical Reports Server (NTRS)
Miles, J. H.
1975-01-01
Ground reflection effects on the propagation of jet noise over an asphalt surface are discussed for data obtained using a 33.02-cm diameter nozzle with microphones at several heights and distances from the nozzle axis. Ground reflection effects are analyzed using the concept of a reflected signal transfer function which represents the influence of both the reflecting surface and the atmosphere on the propagation of the reflected signal in a mathematical model. The mathematical model used as a basis for the computer program was successful in significantly reducing the ground reflection effects. The range of values of the single complex number used to define the reflected signal transfer function was larger than expected when determined only by the asphalt surface. This may indicate that the atmosphere is affecting the propagation of the reflected signal more than the asphalt surface. The selective placement of the reinforcements and cancellations in the design of an experiment to minimize ground reflection effects is also discussed.
NASA Technical Reports Server (NTRS)
Miles, J. H.
1975-01-01
Ground reflection effects on the propagation of jet noise over an asphalt surface are discussed for data obtained using a 33.02 cm (13-in.) diameter nozzle with microphones at several heights and distances from the nozzle axis. Analysis of ground reflection effects is accomplished using the concept of a reflected signal transfer function which represents the influence of both the reflecting surface and the atmosphere on the propagation of the reflected signal in a mathematical model. The mathematical model used as a basis for the computer program was successful in significantly reducing the ground reflection effects. The range of values of the single complex number used to define the reflected signal transfer function was larger than expected when determined only by the asphalt surface. This may indicate that the atmosphere is affecting the propagation of the reflected signal more than the asphalt surface. Also discussed is the selective placement of the reinforcements and cancellations in the design of an experiment to minimize ground reflection effects.
Simulation of a polarized laser beam reflected at the sea surface: modeling and validation
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric
2015-05-01
A 3-D simulation of the polarization-dependent reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation considers polarized or unpolarized laser sources and calculates the polarization states upon reflection at the sea surface. It is suitable for the radiance calculation of the scene in different spectral wavebands (e.g. near-infrared, SWIR, etc.) not including the camera degradations. The simulation also considers a bistatic configuration of laser source and receiver as well as different atmospheric conditions. In the SWIR, the detected total power of reflected laser light is compared with data collected in a field trial. Our computer simulation combines the 3-D simulation of a maritime scene (open sea/clear sky) with the simulation of polarized or unpolarized laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the input of a camera equipped with a linear polarizer, the polarized sea surface radiance must be calculated for the specific waveband. The s- and p-polarization states are calculated for the emitted sea surface radiance and the specularly reflected sky radiance to determine the total polarized sea surface radiance of each component. The states of polarization and the radiance of laser light specularly reflected at the wind-roughened sea surface are calculated by considering the s- and p- components of the electric field of laser light with respect to the specular plane of incidence. This is done by using the formalism of their coherence matrices according to E. Wolf [1]. Additionally, an analytical statistical sea surface BRDF (bidirectional reflectance distribution function) is considered for the reflection of laser light radiances. Validation of the simulation results is required to ensure model credibility and applicability to maritime laser applications. For validation purposes, field measurement data (images and meteorological data) was analyzed. An infrared laser, with or without a mounted polarizer, produced laser beam reflection at the water surface and images were recorded by a camera equipped with a polarizer with horizontal or vertical alignment. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam and different alignment for the laser polarizers (vertical/horizontal/without) and the camera (vertical/horizontal).
Protein functional features are reflected in the patterns of mRNA translation speed.
López, Daniel; Pazos, Florencio
2015-07-09
The degeneracy of the genetic code makes it possible for the same amino acid string to be coded by different messenger RNA (mRNA) sequences. These "synonymous mRNAs" may differ largely in a number of aspects related to their overall translational efficiency, such as secondary structure content and availability of the encoded transfer RNAs (tRNAs). Consequently, they may render different yields of the translated polypeptides. These mRNA features related to translation efficiency are also playing a role locally, resulting in a non-uniform translation speed along the mRNA, which has been previously related to some protein structural features and also used to explain some dramatic effects of "silent" single-nucleotide-polymorphisms (SNPs). In this work we perform the first large scale analysis of the relationship between three experimental proxies of mRNA local translation efficiency and the local features of the corresponding encoded proteins. We found that a number of protein functional and structural features are reflected in the patterns of ribosome occupancy, secondary structure and tRNA availability along the mRNA. One or more of these proxies of translation speed have distinctive patterns around the mRNA regions coding for certain protein local features. In some cases the three patterns follow a similar trend. We also show specific examples where these patterns of translation speed point to the protein's important structural and functional features. This support the idea that the genome not only codes the protein functional features as sequences of amino acids, but also as subtle patterns of mRNA properties which, probably through local effects on the translation speed, have some consequence on the final polypeptide. These results open the possibility of predicting a protein's functional regions based on a single genomic sequence, and have implications for heterologous protein expression and fine-tuning protein function.
Complex networks of functional connectivity in a wetland reconnected to its floodplain
Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson
2017-01-01
Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a “biotic filter,” shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.
Complex networks of functional connectivity in a wetland reconnected to its floodplain
NASA Astrophysics Data System (ADS)
Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson W.
2017-07-01
Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a "biotic filter," shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.
Effects of successive air and nitrox dives on human vascular function.
Marinovic, Jasna; Ljubkovic, Marko; Breskovic, Toni; Gunjaca, Grgo; Obad, Ante; Modun, Darko; Bilopavlovic, Nada; Tsikas, Dimitrios; Dujic, Zeljko
2012-06-01
SCUBA diving is regularly associated with asymptomatic changes in cardiac, pulmonary and vascular function. The aim of this study was to evaluate the changes in vascular/endothelial function following SCUBA diving and to assess the potential difference between two breathing gases: air and nitrox 36 (36% oxygen and 64% nitrogen). Ten divers performed two 3-day diving series (no-decompression dive to 18 m with 47 min bottom time with air and nitrox, respectively), with 2 weeks pause in between. Arterial/endothelial function was assessed using SphygmoCor and flow-mediated dilation measurements, and concentration of nitrite before and after diving was determined in venous blood. Production of nitrogen bubbles post-dive was assessed by ultrasonic determination of venous gas bubble grade. Significantly higher bubbling was found after all air dives as compared to nitrox dives. Pulse wave velocity increased slightly (~6%), significantly after both air and nitrox diving, indicating an increase in arterial stiffness. However, augmentation index became significantly more negative after diving indicating smaller wave reflection. There was a trend for post-dive reduction of FMD after air dives; however, only nitrox diving significantly reduced FMD. No significant differences in blood nitrite before and after the dives were found. We found that nitrox diving affects systemic/vascular function more profoundly than air diving by reducing FMD response, most likely due to higher oxygen load. Both air and nitrox dives increased arterial stiffness, but decreased wave reflection suggesting a decrease in peripheral resistance due to exercise during diving. These effects of nitrox and air diving were not followed by changes in plasma nitrite.
Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies
NASA Technical Reports Server (NTRS)
Norman, J. M. (Principal Investigator)
1985-01-01
The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. The model (named BIGAR) considers the angular distribution of leaves, leaf area index, the location and size of individual subcanopies such as widely spaced rows or trees, spectral and directional properties of leaves, multiple scattering, solar position and sky condition, and characteristics of the soil. The model relates canopy biophysical attributes to down-looking radiation measurements for nadir and off-nadir viewing angles. Therefore, inversion of this model, which is difficult but practical should provide surface biophysical pattern; a fundamental goal of remote sensing. Such a model also will help to evaluate atmospheric limitations to satellite remote sensing by providing a good surface boundary condition for many different kinds of canopies. Furthermore, this model can relate estimates of nadir reflectance, which is approximated by most satellites, to hemispherical reflectance, which is necessary in the energy budget of vegetated surfaces.
Metasurface for multi-channel terahertz beam splitters and polarization rotators
NASA Astrophysics Data System (ADS)
Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin
2018-04-01
Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.
Analysis-Software for Hyperspectral Algal Reflectance Probes v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timlin, Jerilyn A.; Reichardt, Thomas A.; Jenson, Travis J.
This software provides onsite analysis of the hyperspectral reflectance data acquired on an outdoor algal pond by a multichannel, fiber-coupled spectroradiometer. The analysis algorithm is based on numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a function of the single backscattering albedo, which is dependent on the backscatter and absorption coefficients of the algal culture, which are in turn related to the algal biomass and pigment optical activity, respectively. Prior to the development of this software, while raw multichannel data were displayed in real time, analysis required a post-processing procedure to extract the relevantmore » parameters. This software provides the capability to track the temporal variation of such culture parameters in real time, as raw data are being acquired, or can be run in a post processing mode. The software allows the user to select between different algal species, incorporate the appropriate calibration data, and observe the quality of the resulting model inversions.« less
Ishinova, Vera A; Svyatogor, Irina A; Reznikova, Tatiana N
2009-11-01
The present work examines the change in color reflection in psychogenic pain in patients with somatoform disorders (SFD) during psychotherapeutic treatment, for which empatho-techniques were used. At the start and end of the course the psychophysiological condition was determined according to psychological parameters and assessment of bioelectrical brain activity. All initial indicators for the patients significantly differed from those for the healthy subjects. At the same time, color reflection in the psychogenic pain was characterised by colors in the longwave part of the spectrum, in contradistinction to healthy subjects for whom achromatic and shortwave colors predominated. After the completed course patients with SFD had a significant improvement of all psychophysiological indicators and a lack of color reflectons in the longwave part of the spectrum. The data obtained permits the proposition that there exists a link between the psychogenic pain, its color reflection and anxiety, and also changes in the functional condition of the CNS.
NASA Astrophysics Data System (ADS)
Raut, U.
2017-12-01
We report new measurements of the far-ultraviolet (115-180 nm) bidirectional reflectance of Apollo soil 10084 in the Southwest Ultraviolet Reflectance Chamber (SwURC). We find the bidirectional reflectance distribution function (BRDF) to be featureless in this wavelength region, though with a small blue slope. The angular distribution of the BRDF at Ly-α and 160 nm shows that this mature mare soil, containing nanophase Fe and enriched in Ti, anisotropically scatters light in the forward direction. The phase angle dependence of the BRDF is fitted with Hapke's photometric model with an additional diffuse-directional term. Future plans include measurements of mare and highland soils of differing maturity index (Is/FeO), water ice frost and lunar soil-ice aggregates. Such measurements will help constrain the abundance and distribution of the water ice on the illuminated lunar surface and dark permanently shadowed regions of the moon, as reported by LRO-LAMP.
Spectral scattering characteristics of space target in near-UV to visible bands.
Bai, Lu; Wu, Zhensen; Cao, Yunhua; Huang, Xun
2014-04-07
In this study, the spectral scattering characteristics of a space target are calculated in the near-UV to visible bands on the basis of measured data of spectral hemispheric reflectivity in the upper half space. Further, the bidirectional reflection distribution function (BRDF) model proposed by Davies is modified to describe the light scattering properties of a target surface. This modification aims to improve the characteristics identifying ability for different space targets. By using this modified Davies spectrum BRDF model, the spectral scattering characteristics of each subsurface can be obtained. A mathematical model of spectral scattering properties of the space target is built by summing all the contributing surface grid reflection scattering components, considering the impact of surface shadow effect.Moreover, the spectral scattering characteristics of the space target calculated with both the traditional and modified Davies BRDF models are compared. The results show that in the fixed and modified cases, the hemispheric reflectivity significantly affects the spectral scattering irradiance of the target.
NASA Astrophysics Data System (ADS)
Liu, Ying; Zhao, Kun; Drew, Michael G. B.; Liu, Yue
2018-01-01
Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss's and Stokes's theorems have been related to Green's theorem in a novel way.
Multimodal frontostriatal connectivity underlies individual differences in self-esteem.
Chavez, Robert S; Heatherton, Todd F
2015-03-01
A heightened sense of self-esteem is associated with a reduced risk for several types of affective and psychiatric disorders, including depression, anxiety and eating disorders. However, little is known about how brain systems integrate self-referential processing and positive evaluation to give rise to these feelings. To address this, we combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to test how frontostriatal connectivity reflects long-term trait and short-term state aspects of self-esteem. Using DTI, we found individual variability in white matter structural integrity between the medial prefrontal cortex and the ventral striatum was related to trait measures of self-esteem, reflecting long-term stability of self-esteem maintenance. Using fMRI, we found that functional connectivity of these regions during positive self-evaluation was related to current feelings of self-esteem, reflecting short-term state self-esteem. These results provide convergent anatomical and functional evidence that self-esteem is related to the connectivity of frontostriatal circuits and suggest that feelings of self-worth may emerge from neural systems integrating information about the self with positive affect and reward. This information could potentially inform the etiology of diminished self-esteem underlying multiple psychiatric conditions and inform future studies of evaluative self-referential processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Levitan, Nathaniel; Gross, Barry
2016-10-01
New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.
Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site
NASA Technical Reports Server (NTRS)
Blad, Blaine L.; Walter-Shea, Elizabeth A.; Starks, Patrick J.; Vining, Roel C.; Hays, Cynthia J.; Mesarch, Mark A.
1990-01-01
Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study.
Activation of Anterior Insula during Self-Reflection
Modinos, Gemma; Ormel, Johan; Aleman, André
2009-01-01
Background Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the “self”-network. Methodology/Principal Findings Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. Conclusions/Significance The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self. PMID:19242539
Activation of anterior insula during self-reflection.
Modinos, Gemma; Ormel, Johan; Aleman, André
2009-01-01
Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.
Satellite and field studies of man's impact on the surface in arid regions
Otterman, Joseph
1981-01-01
Models of the nadir reflectivity as a function of the fractional cover by plants or plant debris are presented and are applied to assessing the Negev vs Sinai differences and the sharp recovery (darkening) of the surface in a Sinai enclosure where anthropogenic pressures were stopped in 1974 by fencing off the area.
ERIC Educational Resources Information Center
Luebbe, Aaron M.; Elledge, L. Christian; Kiel, Elizabeth J.; Stoppelbein, Laura
2012-01-01
Individual differences in behavioral regulation system (BRS) and stress response system (SRS) functioning may reflect greater biological sensitivity to context. The current study tested whether children's cortisol, a measure of the SRS, was related to observed dysregulated behavior, an indicator of the BRS, in a sample of children admitted for…
Shen, Yi; Kern, Allison B.
2018-01-01
Individual differences in the recognition of monosyllabic words, either in isolation (NU6 test) or in sentence context (SPIN test), were investigated under the theoretical framework of the speech intelligibility index (SII). An adaptive psychophysical procedure, namely the quick-band-importance-function procedure, was developed to enable the fitting of the SII model to individual listeners. Using this procedure, the band importance function (i.e., the relative weights of speech information across the spectrum) and the link function relating the SII to recognition scores can be simultaneously estimated while requiring only 200 to 300 trials of testing. Octave-frequency band importance functions and link functions were estimated separately for NU6 and SPIN materials from 30 normal-hearing listeners who were naïve to speech recognition experiments. For each type of speech material, considerable individual differences in the spectral weights were observed in some but not all frequency regions. At frequencies where the greatest intersubject variability was found, the spectral weights were correlated between the two speech materials, suggesting that the variability in spectral weights reflected listener-originated factors. PMID:29532711
Microwave Radiative Transfer: Theory and Applications
NASA Astrophysics Data System (ADS)
Wilheit, T. T.
2006-12-01
The same physical laws govern visible, infrared and microwave radiative transfer. However, frequency dependence of the Planck function and of the properties of geophysically important materials create apparent differences. The applicability of the Rayleigh-Jeans to most of the microwave spectrum is a convenience, and makes it easier to illustrate some physical principles, but is of very little fundamental importance. Line widths of gaseous constituents are determined by collision frequencies and are of the order of 1 GHz throughout the troposphere in the visible, infrared and microwave portions of the spectrum. However, it is easy to make a radiometer that has a bandwidth small compared to this width in the microwave portion of the spectrum and significantly more difficult in the infrared and visible. As a result, computations in the microwave are monochromatic (or very close to it). In the microwave portion of the spectrum there is no need for elaborate band models. Clouds are a fundamental difference because the opacity of most clouds is very high in the visible and infrared and fairly small in the microwave. This quantitative difference necessitates qualitative differences in approach. Probably, the most counter-intuitive differences between the microwave regions and shorter wavelengths result from the preponderance of highly reflective surfaces in the microwave. The oceans reflect on the order of 50% but the details depend strongly on frequency, polarization and view angle. The large glaciers of Greenland and Antarctica are also highly reflective but less dependant on view angle and polarization. This high reflectivity means that introducing an absorber into the atmosphere at a temperature colder than the surface temperature will, nevertheless increase the observed radiance. This has fundamental importance for the retrieval of constituents from the atmosphere. Even over land surfaces, the observed radiance in microwave window channels depends more on the reflectivity than on the temperature. Thus, microwave observations can yield information on the surface composition (soil moisture, vegetation cover).
NASA Technical Reports Server (NTRS)
Shepard, M. K.
2001-01-01
We have constructed a photometric goniometer for measuring the full bidirectional reflectance function of planetary analog materials. Additional information is contained in the original extended abstract.
Measurement of the configuration of a concave surface by the interference of reflected light
NASA Technical Reports Server (NTRS)
Kumazawa, T.; Sakamoto, T.; Shida, S.
1985-01-01
A method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface is described. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection. In this interferometry, multilight waves reflected from the concave surface interfere and make fringes wherever the reflected light propagates. Interference fringe orders. Photographs of the fringe patterns for a uniformly loaded thin silicon plate clamped at the edge are shown experimentally. The experimental and the theoretical values of the maximum optical path difference show good agreement. This simple method can be applied to obtain accurate information on concave surfaces.
Tunable-φ Josephson junction with a quantum anomalous Hall insulator
NASA Astrophysics Data System (ADS)
Sakurai, Keimei; Ikegaya, Satoshi; Asano, Yasuhiro
2017-12-01
We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insulator/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase difference across the junction θ . The phase shift φ appearing in the current-phase relationship J ∝sin(θ -φ ) is proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological analysis of the Andreev reflection processes explains the physical origin of φ . In a quantum anomalous Hall insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable φ junction with a quantum Hall insulator.
Bidirectional reflectance distribution function effects in ladar-based reflection tomography.
Jin, Xuemin; Levine, Robert Y
2009-07-20
Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.
Luo, Yangmei; Qi, Senqing; Chen, Xuhai; You, Xuqun; Huang, Xiting; Yang, Zhen
2017-10-01
What is a good life and how it can be achieved is one of the fundamental issues. When considering a good life, there is a division between hedonic (pleasure attainment) and eudaimonic well-being (meaning pursuing and self-realization). However, an integrated approach that can compare the brain functional and structural differences of these two forms of well-being is lacking. Here, we investigated how the individual tendency to eudaimonic well-being relative to hedonic well-being, measured using eudaimonic and hedonic balance (EHB) index, is reflected in the functional and structural features of a key network of well-being-the default mode network (DMN). We found that EHB was positively correlated with functional connectivity of bilateral ventral medial prefrontal cortex within anterior DMN and bilateral precuneus within posterior DMN. Brain morphometric analysis showed that EHB was also positively correlated with gray matter volume in left precuneus. These results demonstrated that the relative dominance of one form of well-being to the other is reflected in the morphometric characteristics and intrinsic functions of DMN. © The Author (2017). Published by Oxford University Press.
Li, Q; He, Y L; Wang, Y; Tao, W Q
2007-11-01
A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.
The size distribution of interstellar grains
NASA Technical Reports Server (NTRS)
Witt, Adolf N.
1987-01-01
Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.
Wide-field high spatial frequency domain imaging of tissue microstructure
NASA Astrophysics Data System (ADS)
Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.
2018-02-01
Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.
Charge Fluctuations in the NdO1-xFxBiS2 Superconductors
NASA Astrophysics Data System (ADS)
Athauda, Anushika; Mizuguchi, Yoshikazu; Nagao, Masanori; Neuefeind, Joerg; Louca, Despina
2017-12-01
The local atomic structure of superconducting NdO1-xFxBiS2 (x = 0.2 and 0.4) is investigated using neutron diffraction and the pair density function analysis technique. In the non-superconducting x = 0.2 composition, ferrodistortive displacements of the pyramidal sulfur ions break the tetragonal symmetry and a superlattice structure emerges with peaks appearing at h + k odd reflections superimposed on the even reflections of the P4/nmm symmetry. In the superconducting x = 0.4 composition, similar ferrodistortive displacements are observed but with different magnitudes coupled with in-plane Bi distortions which are indicative of charge fluctuations.
Physically based reflectance model utilizing polarization measurement.
Nakano, Takayuki; Tamagawa, Yasuhisa
2005-05-20
A surface bidirectional reflectance distribution function (BRDF) depends on both the optical properties of the material and the microstructure of the surface and appears as combination of these factors. We propose a method for modeling the BRDF based on a separate optical-property (refractive-index) estimation by polarization measurement. Because the BRDF and the refractive index for precisely the same place can be determined, errors cased by individual difference or spatial dependence can be eliminated. Our BRDF model treats the surface as an aggregation of microfacets, and the diffractive effect is negligible because of randomness. An example model of a painted aluminum plate is presented.
Ferrero, Alejandro; Rabal, Ana; Campos, Joaquín; Martínez-Verdú, Francisco; Chorro, Elísabet; Perales, Esther; Pons, Alicia; Hernanz, María Luisa
2013-02-01
A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.
Pickering, Catherine Marina; Barros, Agustina
2015-12-01
Functional traits reflect plant responses to disturbance, including from visitor impacts. The impacts of mountain biking and hiking on functional composition were compared using a common experimental protocol in a subalpine grassland in the Australian Alps. The overlapping cover of all species was recorded two weeks after different intensities of hiking (200 and 500 passes) and mountain biking (none, 25, 75, 200 and 500 passes). Species' functional trait data were combined with their relative cover to calculate community trait weighted means for plant height, leaf area, percentage leaf dry matter content and Specific Leaf Area (SLA). Species such as Poa fawcettiae with larger leaves and SLA but lower dry weight content of leaves were more resistant to use, with differences between bikers and hikers only apparent at the highest levels of use tested. This differs from some vegetation communities in Europe where plants with smaller leaves were more resistant to hiking. More research using functional traits may account for differences in species responses to trampling. Managers of conservation areas used for hiking and biking need to minimise off trail use by both user groups. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Crane, R. K.
1975-01-01
An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.
Eschmann, Kathrin C J; Bader, Regine; Mecklinger, Axel
2018-06-01
Electrophysiological oscillations are assumed to be the core mechanism for large-scale network communication. The specific role of frontal-midline theta oscillations as cognitive control mechanism is under debate. According to the dual mechanisms of control framework, cognitive control processes can be divided into proactive and reactive control. The present study aimed at investigating the role of frontal-midline theta activity by assessing oscillations in two tasks varying in the type of cognitive control needed. More specifically, a delayed match to sample (DMTS) task requiring proactive control and a color Stroop task recruiting reactive control processes were conducted within the same group of participants. Moreover, both tasks contained conditions with low and high need for cognitive control. As expected larger frontal-midline theta activity was found in conditions with high need for cognitive control. However, theta activity was focally activated at frontal sites in the DMTS task whereas it had a broader topographical distribution in the Stroop task, indicating that both proactive and reactive control are reflected in frontal-midline theta activity but reactive control is additionally characterized by a broader theta activation. These findings support the conclusion that frontal-midline theta acts functionally different depending on task requirements. Copyright © 2018 Elsevier Inc. All rights reserved.
Keefe, Douglas H.; Abdala, Carolina
2008-01-01
The purpose of this study is to understand why otoacoustic emission (OAE) levels are higher in normal-hearing human infants relative to adults. In a previous study, distortion product (DP) OAE input/output (I/O) functions were shown to differ at f2=6 kHz in adults compared to infants through 6 months of age. These DPOAE I/O functions were used to noninvasively assess immaturities in forward/reverse transmission through the ear canal and middle ear [Abdala, C., and Keefe, D. H., (2006). J. Acoust Soc. Am. 120, 3832–3842]. In the present study, ear-canal reflectance and DPOAEs measured in the same ears were analyzed using a scattering-matrix model of forward and reverse transmission in the ear canal, middle ear, and cochlea. Reflectance measurements were sensitive to frequency-dependent effects of ear-canal and middle-ear transmission that differed across OAE type and subject age. Results indicated that DPOAE levels were larger in infants mainly because the reverse middle-ear transmittance level varied with ear-canal area, which differed by more than a factor of 7 between term infants and adults. The forward middle-ear transmittance level was −16 dB less in infants, so that the conductive efficiency was poorer in infants than adults. PMID:17348521
Normal incidence reflective-mode etalons with novel spectral properties
NASA Astrophysics Data System (ADS)
Te Kolste, Robert D.
2003-11-01
Etalons having one surface which is highly reflective have been used for a variety of applications. By varying the coating type and carefully controlling the thicknesses of the coatings on the lower reflectance side, one can obtain interesting and useful properties. One example is a low finesse but highly efficient element having a reflectance which is very sinusoidal with respect to wavelength. By adding additional layers, functions which are asymmetric about the reflectance peak with respect to wavelength can be obtained, including behavior which approximates a sawtooth reflectance as a function of wavelength. Such devices are easily fabricated at the wafer scale, and can be used in wavelength monitoring and control applications such as wavelength lockers for tunable lasers.
Dehling, D Matthias; Jordano, Pedro; Schaefer, H Martin; Böhning-Gaese, Katrin; Schleuning, Matthias
2016-01-27
Species' functional roles in key ecosystem processes such as predation, pollination or seed dispersal are determined by the resource use of consumer species. An interaction between resource and consumer species usually requires trait matching (e.g. a congruence in the morphologies of interaction partners). Species' morphology should therefore determine species' functional roles in ecological processes mediated by mutualistic or antagonistic interactions. We tested this assumption for Neotropical plant-bird mutualisms. We used a new analytical framework that assesses a species's functional role based on the analysis of the traits of its interaction partners in a multidimensional trait space. We employed this framework to test (i) whether there is correspondence between the morphology of bird species and their functional roles and (ii) whether morphologically specialized birds fulfil specialized functional roles. We found that morphological differences between bird species reflected their functional differences: (i) bird species with different morphologies foraged on distinct sets of plant species and (ii) morphologically distinct bird species fulfilled specialized functional roles. These findings encourage further assessments of species' functional roles through the analysis of their interaction partners, and the proposed analytical framework facilitates a wide range of novel analyses for network and community ecology. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhuosen; King, Michael D.
2012-01-01
Over the past decade, the role of multiangle 1 remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75deg off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular 18 characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhousen; King, Michael D.
2011-01-01
Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.
Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes.
Perna, Robert; Temple, Jessica
2015-01-01
Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n = 172) or hemorrhagic stroke (n = 112) within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4) at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures.
The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves
NASA Technical Reports Server (NTRS)
Bowman, William D.
1989-01-01
Measurements of leaf spectral reflectance, the components of water potential, and leaf gas exchanges as a function of leaf water content were made to evaluate the use of NIR reflectance as an indicator of plant water status. Significant correlations were determined between spectral reflectance at 810 nm, 1665 nm, and 2210 nm and leaf relative water content, total water potential, and turgor pressure. However, the slopes of these relationships were relatively shallow and, when evaluated over the range of leaf water contents in which physiological activity occurs (e.g., photosynthesis), had lower r-squared values, and some relationships were not statistically significant. NIR reflectance varied primarily as a function of leaf water content, and not independently as a function of turgor pressure, which is a sensitive indicator of leaf water status. The limitations of this approach to measuring plant water stress are discussed.
NASA Technical Reports Server (NTRS)
Gordy, R. S.
1972-01-01
An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.
A new and efficient theoretical model to analyze chirped grating distributed feedback lasers
NASA Astrophysics Data System (ADS)
Arif, Muhammad
Threshold conditions of a distributed feedback (DFB) laser with a linearly chirped grating are investigated using a new and efficient method. DFB laser with chirped grating is found to have significant effects on the lasing characteristics. The coupled wave equations for these lasers are derived and solved using a power series method to obtain the threshold condition. A Newton- Raphson routine is used to solve the threshold conditions numerically to obtain threshold gain and lasing wavelengths. To prove the validity of this model, it is applied to both conventional index-coupled and complex- coupled DFB lasers. The threshold gain margins are calculated as functions of the ratio of the gain coupling to index coupling (|κg|/|κ n|), and the phase difference between the index and gain gratings. It was found that for coupling coefficient |κ|l < 0.9, the laser shows a mode degeneracy at particular values of the ratio |κ g|/|κn|, for cleaved facets. We found that at phase differences π/2 and 3π/2, between the gain and index grating, for an AR-coated complex-coupled laser, the laser becomes multimode and a different mode starts to lase. We also studied the effect of the facet reflectivity (both magnitude and phase) on the gain margin of a complex- coupled DFB laser. Although, the gain margin varies slowly with the magnitude of the facet reflectivity, it shows large variations as a function of the phase. Spatial hole burning was found to be minimum at phase difference nπ, n = 0, 1, ... and maximum at phase differences π/2 and 3π/2. The single mode gain margin of an index-coupled linearly chirped CG-DFB is calculated for different chirping factors and coupling constants. We found that there is clearly an optimum chirping for which the single mode gain margin is maximum. The gain margins were calculated also for different positions of the cavity center. The effect of the facet reflectivities and their phases on the gain margin was investigated. We found the gain margin is maximum and the Spatial Hole Burning (SHB) is minimum for the cavity center at the middle of the laser cavity. Effect of chirping on the threshold gain, gain margin and spatial hole burning (SHB) for different parameters, such as the coupling coefficients, facet reflectivities, etc., of these lasers are studied. Single mode yield of these lasers are calculated and compared with that of a uniform grating DFB laser.
Theory of reflectivity blurring in seismic depth imaging
NASA Astrophysics Data System (ADS)
Thomson, C. J.; Kitchenside, P. W.; Fletcher, R. P.
2016-05-01
A subsurface extended image gather obtained during controlled-source depth imaging yields a blurred kernel of an interface reflection operator. This reflectivity kernel or reflection function is comprised of the interface plane-wave reflection coefficients and so, in principle, the gather contains amplitude versus offset or angle information. We present a modelling theory for extended image gathers that accounts for variable illumination and blurring, under the assumption of a good migration-velocity model. The method involves forward modelling as well as migration or back propagation so as to define a receiver-side blurring function, which contains the effects of the detector array for a given shot. Composition with the modelled incident wave and summation over shots then yields an overall blurring function that relates the reflectivity to the extended image gather obtained from field data. The spatial evolution or instability of blurring functions is a key concept and there is generally not just spatial blurring in the apparent reflectivity, but also slowness or angle blurring. Gridded blurring functions can be estimated with, for example, a reverse-time migration modelling engine. A calibration step is required to account for ad hoc band limitedness in the modelling and the method also exploits blurring-function reciprocity. To demonstrate the concepts, we show numerical examples of various quantities using the well-known SIGSBEE test model and a simple salt-body overburden model, both for 2-D. The moderately strong slowness/angle blurring in the latter model suggests that the effect on amplitude versus offset or angle analysis should be considered in more realistic structures. Although the description and examples are for 2-D, the extension to 3-D is conceptually straightforward. The computational cost of overall blurring functions implies their targeted use for the foreseeable future, for example, in reservoir characterization. The description is for scalar waves, but the extension to elasticity is foreseeable and we emphasize the separation of the overburden and survey-geometry blurring effects from the nature of the target scatterer.
NASA Technical Reports Server (NTRS)
Nakajima, Teruyuki; King, Michael D.; Spinhirne, James D.; Radke, Lawrence F.
1991-01-01
A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75 micron and at 1.65 and 2.16 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE, conducted off the coast of southern California during July 1987. Multispectral images of the reflection function were used to derive the optical thickness and the effective particle radius of stratiform cloud layers on four days. In addition to the radiation measurements, in situ microphysical measurements were obtained from an aircraft. In this paper, the remote sensing results are compared with in situ observations, which show a good spatial correlation for both optical thickness and effective radius. These comparisons further show systematic differences between remote sensing and in situ values, with a tendency for remote sensing to overestimate the effective radius by about 2-3 microns, independent of particle radius. The optical thickness, in contrast, is somewhat overestimated for small optical thicknesses and underestimated for large optical thicknesses. An introduction of enhanced gaseous absorption at a wavelength of 2.16 microns successfully explains some of these observed discrepancies.
Electronic transport close to semi-infinite 2D systems and their interfaces
NASA Astrophysics Data System (ADS)
Xia, Fanbing; Wang, Jian; Jian Wang's research Group Team
Transport properties of 2D materials especially close to their boundary has received much attention after the successful fabrication of Graphene. While most previous work is devoted to the conventional lead-device-lead setup with a finite size center area, this project investigates real space transport properties of infinite and semi-infinite 2D systems under the framework of Non-equilibrium Green's function. The commonly used method of calculating Green's function by inverting matrices in the real space can be unstable in dealing with large systems as sometimes it gives non-converging result. By transforming from the real space to momentum space, the author managed to replace the matrix inverting process by Brillouin Zone integral which can be greatly simplified by the application of contour integral. Combining this methodology with Dyson equations, we are able to calculate transport properties of semi-infinite graphene close to its zigzag boundary and its combination with other material including s-wave superconductor. Interference pattern of transmitted and reflected electrons, Graphene lensing effects and difference between Specular Andreev reflection and normal Andreev reflection are verified. We also generalize how to apply this method to a broad range of 2D materials. The University of Hong Kong.
Jiang, Haiteng; van Gerven, Marcel A J; Jensen, Ole
2015-03-01
It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it reflects the functional disengagement of specific regions in attention and memory tasks. We here ask if such allocation of resources by alpha oscillations generalizes to long-term memory encoding in a cross-modal setting in which we acquired the ongoing brain activity using magnetoencephalography. Participants were asked to encode pictures while ignoring simultaneously presented words and vice versa. We quantified the brain activity during rehearsal reflecting subsequent memory in the different attention conditions. The key finding was that successful long-term memory encoding is reflected by alpha power decreases in the sensory region of the to-be-attended modality and increases in the sensory region of the to-be-ignored modality to suppress distraction during rehearsal period. Our results corroborate related findings from attention studies by demonstrating that alpha activity is also important for the allocation of resources during long-term memory encoding in the presence of distracters.
Radiometric Block Adjusment and Digital Radiometric Model Generation
NASA Astrophysics Data System (ADS)
Pros, A.; Colomina, I.; Navarro, J. A.; Antequera, R.; Andrinal, P.
2013-05-01
In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM) as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF). In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART) models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.
Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing
Dhawan, Anuj; Canva, Michael; Vo-Dinh, Tuan
2011-01-01
We present a novel surface plasmon resonance (SPR) configuration based on narrow groove (sub-15 nm) plasmonic nano-gratings such that normally incident radiation can be coupled into surface plasmons without the use of prism-coupling based total internal reflection, as in the classical Kretschmann configuration. This eliminates the angular dependence requirements of SPR-based sensing and allows development of robust miniaturized SPR sensors. Simulations based on Rigorous Coupled Wave Analysis (RCWA) were carried out to numerically calculate the reflectance - from different gold and silver nano-grating structures - as a function of the localized refractive index of the media around the SPR nano-gratings as well as the incident radiation wavelength and angle of incidence. Our calculations indicate substantially higher differential reflectance signals, on localized change of refractive index in the narrow groove plasmonic gratings, as compared to those obtained from conventional SPR-based sensing systems. Furthermore, these calculations allow determination of the optimal nano-grating geometric parameters - i. e. nanoline periodicity, spacing between the nanolines, as well as the height of the nanolines in the nano-grating - for highest sensitivity to localized change of refractive index, as would occur due to binding of a biomolecule target to a functionalized nano-grating surface. PMID:21263620
Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study.
Fabiani, Monica; Gordon, Brian A; Maclin, Edward L; Pearson, Melanie A; Brumback-Peltz, Carrie R; Low, Kathy A; McAuley, Edward; Sutton, Bradley P; Kramer, Arthur F; Gratton, Gabriele
2014-01-15
Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy- and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhao, Shifu; Cheng, Rongchuan; Zheng, Jian; Li, Qianning; Wang, Jingzhou; Fan, Wenhui; Zhang, Lili; Zhang, Yanling; Li, Hongzeng; Liu, Shuxiao
2015-10-01
The primary objective was to evaluate the efficacy and safety of droxidopa as add-on therapy in improving stiffness, tremors and other motor functions and activities of daily living for moderate-to-severe Parkinson's disease (PD). PD patients, above Hoehn-Yahr III (including Hoehn-Yahr III), were randomly assigned to drug therapy (droxidopa 600 mg/day for 8 weeks) or placebo. Efficacy indicators were the Unified Parkinson's Disease Rating Scale (UPDRS) part I, II, III subscale, Clinical Global Impression (CGI) rating score, and individual symptom scores (e.g. stiffness, tremors), to evaluate motor function and activities of daily life. There are 109 patients in the droxidopa group, and 110 in the placebo group, at baseline, there were no differences between the two groups for age, body weight, disease severity and previous drugs therapy. At days 14 and 57 of droxidopa add on treatment, UPDRS-II scores reflecting activities of daily life and UPDRS-III scores reflecting motor functions were significantly different compared to the pre-treatment baseline scores (P < 0.01), UPDRS- II and UPDRS-III scores at day 14 and day 57 were also significantly different (P < 0.01) between the two groups. Individual motor symptoms such as stiffness, resting tremor, and alternate hand motion were also significantly improved with droxidopa on days 14 and 57 of treatment (P < 0.01 vs placebo), showing that droxidopa is effective in improving rigidity, tremor and alternate motion of hand. Droxidopa was effective as symptomatic adjunct therapy, improved significantly motor function and activities of daily living, benefited patients with signs of tremor and Stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Obtaining reliable phase-gradient delays from otoacoustic emission data.
Shera, Christopher A; Bergevin, Christopher
2012-08-01
Reflection-source otoacoustic emission phase-gradient delays are widely used to obtain noninvasive estimates of cochlear function and properties, such as the sharpness of mechanical tuning and its variation along the length of the cochlear partition. Although different data-processing strategies are known to yield different delay estimates and trends, their relative reliability has not been established. This paper uses in silico experiments to evaluate six methods for extracting delay trends from reflection-source otoacoustic emissions (OAEs). The six methods include both previously published procedures (e.g., phase smoothing, energy-weighting, data exclusion based on signal-to-noise ratio) and novel strategies (e.g., peak-picking, all-pass factorization). Although some of the methods perform well (e.g., peak-picking), others introduce substantial bias (e.g., phase smoothing) and are not recommended. In addition, since standing waves caused by multiple internal reflection can complicate the interpretation and compromise the application of OAE delays, this paper develops and evaluates two promising signal-processing strategies, the first based on time-frequency filtering using the continuous wavelet transform and the second on cepstral analysis, for separating the direct emission from its subsequent reflections. Altogether, the results help to resolve previous disagreements about the frequency dependence of human OAE delays and the sharpness of cochlear tuning while providing useful analysis methods for future studies.
A New Fast Algorithm to Completely Account for Non-Lambertian Surface Reflection of The Earth
NASA Technical Reports Server (NTRS)
Qin, Wen-Han; Herman, Jay R.; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)
2000-01-01
Surface bidirectional reflectance distribution function (BRDF) influences not only radiance just about the surface, but that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast and accurate, algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on radiance measured above TOA. This new algorithm is based on a 4-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. This is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the direct radiation reaching the surface. The model is validated by comparison with a full-scale, vector radiation transfer model for the atmosphere-surface system. The result demonstrates that CASBIR performs very well (with overall relative difference of less than one percent) for all solar and viewing zenith and azimuth angles considered in wavelengths from ultraviolet to near-infrared over three typical, but very different surface types. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and a potential approach for surface BRDF retrieval from satellite measured radiance.
NASA Astrophysics Data System (ADS)
Obein, Gaël.; Audenaert, Jan; Ged, Guillaume; Leloup, Frédéric B.
2015-03-01
Among the complete bidirectional reflectance distribution function (BRDF), visual gloss is principally related to physical reflection characteristics located around the specular reflection direction. This particular part of the BRDF is usually referred to as the specular peak. A good starting point for the physical description of gloss could be to measure the reflection properties around this specular peak. Unfortunately, such a characterization is not trivial, since for glossy surfaces the width of the specular peak can become very narrow (typically a full width at half maximum inferior to 0.5° is encountered). In result, new BRDF measurement devices with a very small solid angle of detection are being introduced. Yet, differences in the optical design of BRDF measurement instruments engender different measurement results for the same specimen, complicating direct comparison of the measurement results. This issue is addressed in this paper. By way of example, BRDF measurement results of two samples, one being matte and the other one glossy, obtained by use of two high level goniospectrophotometers with a different optical design, are described. Important discrepancies in the results of the glossy sample are discussed. Finally, luminance maps obtained from renderings with the acquired BRDF data are presented, exemplifying the large visual differences that might be obtained. This stresses the metrological aspects that must be known for using BRDF data. Indeed, the comprehension of parameters affecting the measurement results is an inevitable step towards progress in the metrology of surface gloss, and thus towards a better metrology of appearance in general.
NASA Technical Reports Server (NTRS)
Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng
2016-01-01
The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.
NASA Astrophysics Data System (ADS)
Kim, H. W.; Yeom, J. M.; Woo, S. H.
2017-12-01
Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With the cloud optical depth of CALIPSO, the cloud masking result can be more improved since we can figure out how deep cloud is. To validate the cloud mask and the correlation result, the atmospheric retrieval will be computed to compare the difference between TOA reflectance and the simulated surface reflectance.
Shokouhi, Mahsa; Davis, Karen D; Moulin, Dwight E; Morley-Forster, Pat; Nielson, Warren R; Bureau, Yves; St Lawrence, Keith
2016-06-01
Pain disability is a major impediment to fibromyalgia (FM) patients' quality of life. Neuroimaging studies have demonstrated abnormal pain processing in FM. However, it is not known whether there are brain abnormalities linked to pain disability. Understanding neural correlates of pain disability in FM, independent from pain intensity, could provide a framework to guide future more efficient therapy strategies to improve patients' functional ability. We used arterial spin labeling to image cerebral blood flow (CBF) in 23 FM patients and 16 controls. Functional connectivity was also estimated using blood oxygenation level-dependent imaging to further investigate the possible underpinnings of the observed CBF changes. Among patients, CBF in the basal ganglia correlated negatively with pain disability index and positively with the overall impact of FM (Fibromyalgia Impact Questionnaire) but did not correlate with pain intensity. Whole-brain analysis revealed no CBF differences between the 2 groups; however, post hoc analysis in the basal ganglia showed CBF reductions mainly in the right putamen and right lateral globus pallidus in patients, likely reflecting the negative correlation with the pain disability index. However, the connectivity of the corresponding corticobasal ganglia-thalamus loop, that is, motor network (the connection between supplementary motor area, putamen, and thalamus) remained intact. Basal ganglia perfusion reflects long-term symptoms, including somatic and psychological components of FM rather than pain intensity. These CBF findings may reflect differences in behavioral and psychological responses between patients.
Modeling the microstructure of surface by applying BRDF function
NASA Astrophysics Data System (ADS)
Plachta, Kamil
2017-06-01
The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.
Masukagami, Y; De Souza, D P; Dayalan, S; Bowen, C; O'Callaghan, S; Kouremenos, K; Nijagal, B; Tull, D; Tivendale, K A; Markham, P F; McConville, M J; Browning, G F; Sansom, F M
2017-01-01
Mycoplasmas are simple, but successful parasites that have the smallest genome of any free-living cell and are thought to have a highly streamlined cellular metabolism. Here, we have undertaken a detailed metabolomic analysis of two species, Mycoplasma bovis and Mycoplasma gallisepticum , which cause economically important diseases in cattle and poultry, respectively. Untargeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses of mycoplasma metabolite extracts revealed significant differences in the steady-state levels of many metabolites in central carbon metabolism, while 13 C stable isotope labeling studies revealed marked differences in carbon source utilization. These data were mapped onto in silico metabolic networks predicted from genome wide annotations. The analyses elucidated distinct differences, including a clear difference in glucose utilization, with a marked decrease in glucose uptake and glycolysis in M. bovis compared to M. gallisepticum , which may reflect differing host nutrient availabilities. The 13 C-labeling patterns also revealed several functional metabolic pathways that were previously unannotated in these species, allowing us to assign putative enzyme functions to the products of a number of genes of unknown function, especially in M. bovis . This study demonstrates the considerable potential of metabolomic analyses to assist in characterizing significant differences in the metabolism of different bacterial species and in improving genome annotation. IMPORTANCE Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms.
Miyake, Akira; Friedman, Naomi P.
2012-01-01
Executive functions (EFs)—a set of general-purpose control processes that regulate one’s thoughts and behaviors—have become a popular research topic lately and have been studied in many subdisciplines of psychological science. This article summarizes the EF research that our group has conducted to understand the nature of individual differences in EFs and their cognitive and biological underpinnings. In the context of a new theoretical framework that we have been developing (the unity/diversity framework), we describe four general conclusions that have emerged from our research. Specifically, we argue that individual differences in EFs, as measured with simple laboratory tasks, (1) show both unity and diversity (different EFs are correlated yet separable); (2) reflect substantial genetic contributions; (3) are related to various clinically and societally important phenomena; and (4) show some developmental stability. PMID:22773897
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Lekki, John; Lock, James A.
2002-01-01
The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.
Vaknin, David; Bu, Wei; Travesset, Alex
2008-07-28
We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik
2015-06-29
To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less
NASA Astrophysics Data System (ADS)
Adlmann, Franz A.; Herbel, Jörg; Korolkovas, Airidas; Bliersbach, Andreas; Toperverg, Boris; Van Herck, Walter; Pálsson, Gunnar K.; Kitchen, Brian; Wolff, Max
2018-04-01
Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.
Vaccine adjuvant technology: from mechanistic concepts to practical applications.
Degen, Winfried G J; Jansen, Theo; Schijns, Virgil E J C
2003-04-01
Distinct types of immune responses are required for efficient elimination of different pathogens. Programming of the desired type of immune response by safe nonreplicating vaccines requires suitable vaccine adjuvants. Adjuvants largely determine the magnitude and quality of immune responses specific for the coadministered antigen. Unfortunately, rational vaccine design requiring a rational choice of vaccine adjuvant, is hampered by a lack of knowledge about the mechanism(s) of vaccine adjuvant activity. The current review addresses different critical immunological processes possibly explaining adjuvant functions. In addition, we discuss traditional vaccine adjuvant formulations and their possible mode of action. Finally, we reflect on the latest technologies for the identification of novel adjuvants using molecular analysis of immune activation and functional genomics.
Sahgal, A; McKeith, I G; Galloway, P H; Tasker, N; Steckler, T
1995-02-01
Visuospatial memory was investigated in two groups of patients suffering from senile dementias of the Alzheimer (SDAT) or Lewy body (SDLT) types; a, third, age-matched, healthy control group was also included. The two patient groups were mildly demented and could not be distinguished from each other by traditional tests of cognitive function. A different pattern of performance emerged in the two groups on a computerised test of spatial working memory, which is a self-ordered pointing task requiring the subject to search for hidden tokens. An analysis of the pattern of errors revealed that the SDLT group made more of both possible types of error ("Within Search" and "Between Search") than the SDAT group. Neither patient groups' performance differed from each other when assessed on a computerised Corsi spatial span task. A measure of planning ability was obtained by examining search strategies. Although an index previously developed to measure the subject's use of a particular strategy in the spatial working memory task failed to detect any differences between the three groups, a novel index was calculated which focuses on performance within a search, and this revealed deficits in both demented groups. Since the two patient groups differed from each other in the spatial working memory, but not the Corsi spatial span, task, it is suggested that the differences between the two demented groups are not due to a specific mnemonic impairment, but reflect dysfunctions in non-mnemonic processes mediated by fronto-subcortical circuits, which are more severely damaged in SDLT.
Shalhoub, V; Jackson, M E; Lian, J B; Stein, G S; Marks, S C
1991-05-25
Osteopetrosis is a group of metabolic bone diseases characterized by reductions in osteoclast development and/or function. These aspects of osteoclast biology are known to be influenced by osteoblasts and their products. To ascertain whether osteoblast dysfunction contributes to aberrations in the structural and functional properties of osteoclasts in osteopetrosis, we systematically examined gene expression as reflected by mRNA levels for a series of cell growth- and tissue-related genes associated with the osteoblast phenotype during skeletal development in normal and mutant rats of three different osteopetrotic stocks. We show that the methods used permit the reproducible isolation of undegraded total cellular RNA from bone and that mRNA levels can be reliably quantitated in these preparations. Each osteopetrotic mutation exhibits a distinct aberrant pattern of osteoblast gene expression that may be correlated with and explain some abnormalities in extracellular matrix composition, mineralization, osteoclast development, and effects of elevated serum levels of 1 alpha,25-dihydroxyvitamin D3, depending upon the mutation. Normal rats show minor variations in gene expression that reflect the genetic background (stock). This, the first comprehensive molecular analysis of osteoblast gene expression in osteopetrosis, suggests that some osteopetroses, particularly in the toothless rat, are associated with and potentially related to mechanisms associated with aberrations in osteoblast function. More generally, the present studies demonstrate alterations in gene expression as reflected by mRNA levels that are associated with functional properties of the osteoblast, particularly those contributing to the recruitment and/or differentiation of osteoclasts, thereby influencing skeletal modeling.
NASA Technical Reports Server (NTRS)
Miles, J. H.
1974-01-01
A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on the N-independent-source model of P. Thomas extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown flap data taken from turbofan engine tests and from large scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.
The functional-cognitive framework for psychological research: Controversies and resolutions.
Hughes, Sean; De Houwer, Jan; Perugini, Marco
2016-02-01
The scientific goals, values and assumptions of functional and cognitive researchers have propelled them down two very different scientific pathways. Many have, and continue to argue, that these differences undermine any potential communication and collaboration between the two traditions. We explore a different view on this debate. Specifically, we focus on the Functional-Cognitive (FC) framework, and in particular, the idea that cognitive and functional researchers can and should interact to the benefit of both. Our article begins with a short introduction to the FC framework. We sweep aside misconceptions about the framework, present the original version as it was outlined by De Houwer (2011) and then offer our most recent thoughts on how it should be implemented. Thereafter, we reflect on its strengths and weaknesses, clarify the functional (effect-centric vs. analytic-abstractive) level and consider its many implications for cognitive research and theorising. In the final section, we briefly review the articles contained in this Special Issue. These contributions provide clear examples of the conceptual, empirical and methodological developments that can emerge when cognitive, clinical, personality and neuroscientists fully engage with the functional-cognitive perspective. © 2015 International Union of Psychological Science.
NASA Astrophysics Data System (ADS)
Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.
2017-12-01
Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km LAI products from 2000 to 2014, once every 8 days. The results show that the algorithm owns good stability and can effectively invert LAI in areas with very complex vegetation and terrain conditions.
Pulmonary function outcomes for assessing cystic fibrosis care.
Wagener, Jeffrey S; Elkin, Eric P; Pasta, David J; Schechter, Michael S; Konstan, Michael W; Morgan, Wayne J
2015-05-01
Assessing cystic fibrosis (CF) patient quality of care requires the choice of an appropriate outcome measure. We looked systematically and in detail at pulmonary function outcomes that potentially reflect clinical practice patterns. Epidemiologic Study of Cystic Fibrosis data were used to evaluate six potential outcome variables (2002 best FVC, FEV(1), and FEF(25-75) and rate of decline for each from 2000 to 2002). We ranked CF care sites by outcome measure and then assessed any association with practice patterns and follow-up pulmonary function. Sites ranked in the top quartile had more frequent monitoring, treatment of exacerbations, and use of chronic therapies and oral corticosteroids. The follow-up rate of pulmonary function decline was not predicted by site ranking. Different pulmonary function outcomes associate slightly differently with practice patterns, although annual FEV(1) is at least as good as any other measure. Current site ranking only moderately predicts future ranking. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Radiative transfer in spherical shell atmospheres. II - Asymmetric phase functions
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Adams, C. N.
1978-01-01
This paper investigates the effects of sphericity on the radiation reflected from a planet with a homogeneous conservative-scattering atmosphere of optical thicknesses of 0.25 and 1.0. A Henyey-Greenstein phase function with asymmetry factors of 0.5 and 0.7 was considered. Significant differences were found when these results were compared with the plane-parallel calculations. Also, large violations of the reciprocity theorem, which is only true for plane-parallel calculations, were noted. Results are presented for the radiance versus height distributions as a function of planetary phase angle. These results will be useful to researchers in the field of remote sensing and planetary spectroscopy.
ERIC Educational Resources Information Center
Engelhard, George, Jr.; Wang, Jue
2014-01-01
The authors of the Focus article pose important questions regarding whether or not performance-based tasks related to executive functioning are best viewed as reflective or formative indicators. Miyake and Friedman (2012) define executive functioning (EF) as "a set of general-purpose control mechanisms, often linked to the prefrontal cortex…
Patil, Harshal Ashok; Chitko, Shrikant Shrinivas; Kerudi, Veerendra Virupaxappa; Maheshwari, Amit Ratanlal; Patil, Neeraj Suresh; Tekale, Pawankumar Dnyandeo; Gore, Ketan Ashorao; Zope, Amit Ashok
2016-08-01
Reflectivity of an object is a good parameter for surface finish. As the patient evaluates finishing as a function of gloss/reflectivity/shine an attempt is made here to evaluate changes in surface finish with custom made reflectometer. The aim of the present study was to study the effect of various procedures during orthodontic treatment on the shine of enamel, using a custom made reflectometer. Sixty one extracted premolars were collected and each tooth was mounted on acrylic block. Reflectivity of the teeth was measured as compared to standard before any procedure. One tooth was kept as standard throughout the study. Sixty teeth were acid etched. Reflectivity was measured on custom made reflectometer and readings recorded. Same procedure was repeated after debonding. Then 60 samples were divided into three groups: Group 1 - Tungsten Carbide, Group 2 - Astropol, Group 3- Sof-Lex disc depending upon the finishing method after debonding and reflectivity was measured. The mean percentage of reflectivity after acid etching was 31.4%, debonding 45.5%, Tungsten carbide bur finishing (Group 1) was 58.3%, Astropol (Group 2) 72.8%, and Sof-Lex disc (Group 3) 84.4% as that to the standard. There was statistically very highly significant (p<0.001) difference in reflectivity restored by the three finishing materials in the study. Thus, the light reflection was better in Group 3> Group 2> Group 1. The primary goal was to restore the enamel to its original state after orthodontic treatment. The methods tested in this study could not restore the original enamel reflectivity.
NASA Astrophysics Data System (ADS)
Migliavacca, Mirco
2016-04-01
Recent studies have shown how human induced nitrogen (N) and phosphorous (P) imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induced variation in structural and functional changes of vegetation under different nutrient availability. However, several uncertainties still hamper the direct link between photosynthetic CO2 uptake (gross primary productivity, GPP) and hyperspectral reflectance. Sun-induced fluorescence (SIF) provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light use efficiency and photosynthetic CO2 uptake. In this contribution we will present an experiment conducted in a Mediterranean grassland, where 16 plots of 8x8 meters were manipulated by adding nutrient (N, P, and NP). Almost simultaneous estimates of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and high resolution spectrometers, respectively. We investigated the response of GPP and SIF to different nutrient availability and plant stoichiometry. The second objective was to identify how structural (LAI, leaf angle distribution, and biodiversity) and canopy biochemical properties (e.g. N and chlorophyll content - Chl) control the functional relationship between GPP and SIF. To test the different hypotheses the SCOPE radiative transfer model was used. We ran a factorial experiment with SCOPE to disentangle the main drivers (structure vs biochemistry) of the relationship GPP-SIF. The results showed significant differences in GPP values between N and without N addition plots. We also found that vegetation indices sensitive to pigment variations and physiology (such as photochemical reflectance index PRI) and SIF showed differences between different treatments. SCOPE showed very good agreement with the observed data (R2=0.71). The observed variability in SIF was mainly related to changes in functional traits of the vegetation (changes in N and P content and Chl). However, beside changes in functional traits, changes in canopy structure (and in particular variation in plant forms abundance after fertilization) controlled the GPP-SIF relationship. According to these results, plant N/P stoichiometry and structure should be considered when modelling GPP assuming a linear relationship with SIF at grasslands sites.
Connectivity precedes function in the development of the visual word form area.
Saygin, Zeynep M; Osher, David E; Norton, Elizabeth S; Youssoufian, Deanna A; Beach, Sara D; Feather, Jenelle; Gaab, Nadine; Gabrieli, John D E; Kanwisher, Nancy
2016-09-01
What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development.
1992-12-01
views expressed in this thesis are those of the author end do net reflect olicsia policy or pokletsm of the Deperteaset of Defame or the US...utempl u v= cncd (2,1,6,G64,u,zeros(l,12));%Convolutional encoding mm=bm(2,v); %Binary to M-ary conversion clear v u; mm=inter(50,200,mm);%Interleaving (50...save result err B. CNCD.X (CONVOLUTIONAL ENCODER FUNCTION) function (v,vr] - cncd (n,k,m,Gr,u,r) % CONVOLUTIONAL ENCODER % Paul H. Moose % Naval
The classification of conversion disorder (functional neurologic symptom disorder) in ICD and DSM.
Levenson, J L; Sharpe, M
2016-01-01
The name given to functional neurologic symptoms has evolved over time in the different editions of the International Classification of Diseases (ICD) and the Diagnostic and Statistical Manual of Mental Disorders (DSM), reflecting a gradual move away from an etiologic conception rooted in hysterical conversion to an empiric phenomenologic one, emphasizing the central role of the neurologic examination and testing in demonstrating that the symptoms are incompatible with recognized neurologic disease pathophysiology, or are internally inconsistent. © 2016 Elsevier B.V. All rights reserved.
The analysis of EEG coherence reflects middle childhood differences in mathematical achievement.
González-Garrido, Andrés A; Gómez-Velázquez, Fabiola R; Salido-Ruiz, Ricardo A; Espinoza-Valdez, Aurora; Vélez-Pérez, Hugo; Romo-Vazquez, Rebeca; Gallardo-Moreno, Geisa B; Ruiz-Stovel, Vanessa D; Martínez-Ramos, Alicia; Berumen, Gustavo
2018-07-01
Symbolic numerical magnitude processing is crucial to arithmetic development, and it is thought to be supported by the functional activation of several brain-interconnected structures. In this context, EEG beta oscillations have been recently associated with attention and working memory processing that underlie math achievement. Due to that EEG coherence represents a useful measure of brain functional connectivity, we aimed to contrast the EEG coherence in forty 8-to-9-year-old children with different math skill levels (High: HA, and Low achievement: LA) according to their arithmetic scores in the Fourth Edition of the Wide Range Achievement Test (WRAT-4) while performing a symbolic magnitude comparison task (i.e. determining which of two numbers is numerically larger). The analysis showed significantly greater coherence over the right hemisphere in the two groups, but with a distinctive connectivity pattern. Whereas functional connectivity in the HA group was predominant in parietal areas, especially involving beta frequencies, the LA group showed more extensive frontoparietal relationships, with higher participation of delta, theta and alpha band frequencies, along with a distinct time-frequency domain expression. The results seem to reflect that lower math achievements in children mainly associate with cognitive processing steps beyond stimulus encoding, along with the need of further attentional resources and cognitive control than their peers, suggesting a lower degree of numerical processing automation. Copyright © 2018 Elsevier Inc. All rights reserved.
Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.
Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D
2017-12-01
It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.
[NUCLEAR STRUCTURE IN THE SECRETORY CELLS OF MAMMARY GLANDS IN LACTATING AND NON-LACTATING RATS].
Tyutina, K V; Skopichev, V G; Bogolyubov, D S; Bogolyubova, I O
2016-01-01
The features of structural and functional organization of the main nuclear compartments and distribution of their key molecular components (chromatin-remodeling protein ATRX, RNA polymerase I and II, and the splicing factor SC35) has been studied in the nuclei of mammary gland cells at different functional states. No significant differences between the nuclei of the cells in the lactating and non-lactating mammary glands have been revealed at the ultrastructural level. At the same time, photometric analysis has revealed higher intensity of nucleoplasmic immunofluorescent staining of mammary glands in the lactating animals when antibodies against the proteins ATRX and SC35 were used. Apparently, this observation reflects the changes of the structural and functional status of chromatin as well as the redistribution of splicing factors between the sites of their deposition and transcription.
Bidirectional plant canopy reflection models derived from the radiation transfer equation
NASA Technical Reports Server (NTRS)
Beeth, D. R.
1975-01-01
A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.
ERIC Educational Resources Information Center
McVay, Jennifer C.; Kane, Michael J.
2010-01-01
In this comment, we contrast different conceptions of mind wandering that were presented in 2 recent theoretical reviews: Smallwood and Schooler (2006) and Watkins (2008). We also introduce a new perspective on the role of executive control in mind wandering by integrating empirical evidence presented in Smallwood and Schooler with 2 theoretical…
ERIC Educational Resources Information Center
Feenaughty, Lynda; Tjaden, Kris; Benedict, Ralph H. B.; Weinstock-Guttman, Bianca
2013-01-01
This preliminary study investigated how cognitive-linguistic status in multiple sclerosis (MS) is reflected in two speech tasks (i.e. oral reading, narrative) that differ in cognitive-linguistic demand. Twenty individuals with MS were selected to comprise High and Low performance groups based on clinical tests of executive function and information…
McGowan, Conor P.; Lyons, James E.; Smith, David
2015-01-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
Integration of Spectral Reflectance across the Plumage: Implications for Mating Patterns
Laczi, Miklós; Török, János; Rosivall, Balázs; Hegyi, Gergely
2011-01-01
Background In complex sexual signaling systems such as plumage color, developmental or genetic links may occur among seemingly distinct traits. However, the interrelations of such traits and the functional significance of their integration rarely have been examined. Methodology/Principal Findings We investigated the parallel variation of two reflectance descriptors (brightness and UV chroma) across depigmented and melanized plumage areas of collared flycatchers (Ficedula albicollis), and the possible role of integrated color signals in mate acquisition. We found moderate integration in brightness and UV chroma across the plumage, with similar correlation structures in the two sexes despite the strong sexual dichromatism. Patterns of parallel color change across the plumage were largely unrelated to ornamental white patch sizes, but they all showed strong assortative mating between the sexes. Comparing different types of assortative mating patterns for individual spectral variables suggested a distinct role for plumage-level color axes in mate acquisition. Conclusions/Significance Our results indicate that the plumage-level, parallel variation of coloration might play a role in mate acquisition. This study underlines the importance of considering potential developmental and functional integration among apparently different ornaments in studies of sexual selection. PMID:21853088
NASA Astrophysics Data System (ADS)
McGowan, Conor P.; Lyons, James E.; Smith, David R.
2015-04-01
Structured decision making (SDM) is an increasingly utilized approach and set of tools for addressing complex decisions in environmental management. SDM is a value-focused thinking approach that places paramount importance on first establishing clear management objectives that reflect core values of stakeholders. To be useful for management, objectives must be transparently stated in unambiguous and measurable terms. We used these concepts to develop consensus objectives for the multiple stakeholders of horseshoe crab harvest in Delaware Bay. Participating stakeholders first agreed on a qualitative statement of fundamental objectives, and then worked to convert those objectives to specific and measurable quantities, so that management decisions could be assessed. We used a constraint-based approach where the conservation objectives for Red Knots, a species of migratory shorebird that relies on horseshoe crab eggs as a food resource during migration, constrained the utility of crab harvest. Developing utility functions to effectively reflect the management objectives allowed us to incorporate stakeholder risk aversion even though different stakeholder groups were averse to different or competing risks. While measurable objectives and quantitative utility functions seem scientific, developing these objectives was fundamentally driven by the values of the participating stakeholders.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Malila, W. A.; Gleason, J. M.
1977-01-01
The author has identified the following significant results. LANDSAT data from seven 5 by 6 segments having crop type information were analyzed to determine the potential for spectral separation of spring wheat from other small grains as an alternative to the primary LACIE procedure for estimating spring wheat acreage. Within segment field-center, classification accuracies for spring wheat vs. barley tended to be best in mid-July when crop color changes were in progress. When correlations were made for differences in atmospheric haze, data from several segments could be aggregated, and results that approached within segment accuracies were obtained for selected dates. LACIE field measurement spectral reflectance data provided information on both wheat development patterns and the importance of various agronomic factors on wheat reflectance, the most important being availability of soil moisture. To investigate early season detection for winter wheat, reflectance of developing wheat patterns was simulated through reflectance modeling and was analyzed along with field measured reflectance from a Kansas site. The green component development of the wheat field was analyzed as a function of data throughout the season. A selected threshold was not crossed by all fields until mid-April. These reflectance data were shown to be consistent actual LANDSAT data.
NASA Astrophysics Data System (ADS)
Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.
2017-12-01
This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.
Hyde, M W; Schmidt, J D; Havrilla, M J
2009-11-23
A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.
The 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet
NASA Technical Reports Server (NTRS)
Cross, A. E.; Marshall, R. E.; Hearn, C. P.; Neece, R. T.
1993-01-01
Monostatic reflection-coefficient magnitude, absolute value of Gamma, measurements occurring between a radiating horn and a metal reflecting plate are presented for a family of three 2.2 lambda diameter conical horn antennas. The three horns have different aperture phase deviations: 6 deg, 22.5 deg, and 125 deg. Measurements of the magnitude of absolute value of Gamma as a function of horn-plate separation (d) extend from an effective antenna aperture short (d = O) to beyond the far-field boundary (d = 2D(sup 2)/lambda, where D is the antenna diameter). Measurement data are presented with various physical environments for each of the horns. Measured scalar data are compared with theoretical data from two models, a numerical model for a circular waveguide aperture in a ground plane and a scalar diffraction theory model. This work was conducted in support of the development effort for a spaceborne multifrequency microwave reflectometer designed to accurately determine the distance from a space vehicle's surface to a reflecting plasma boundary. The metal reflecting plate was used to simulate the RF reflectivity of a critically dense plasma. The resulting configuration, a ground plane mounted aperture facing a reflecting plane in close proximity, produces a strong interaction between the ground plane and the reflecting plate, especially at integral half-wavelength separations. The transition coefficient is characterized by large amplitude variations.
Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans
2014-01-01
Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.
Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh
2012-01-01
The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718
Design of Amphoteric Refraction Models Using WAVICA and RAYICA
NASA Technical Reports Server (NTRS)
Su, Richard
2004-01-01
The phenomenon of refraction of light is due to refractive index mismatches in two different media. However, to achieve this effect, a finite reflection loss is inevitable. A recent finding presented a unique type of interface, ferroelastic materials, that enables refraction without any reflection for either an electron or a light beam. This property is called total refraction. The same type of interface that yields total refraction can also yield amphoteric refraction, where the index of refraction can be either positive or negative depending on the incident angle. This interface could potentially be used to steer light without reflections which could have major applications in high power optics. My goal this summer is to first familiarize myself with the Mathematica software, especially the Wavica and Rayica packages. I will then model the amphoteric refraction by either modifying the Wavica and Rayica packages or using the built-in functions in these packages.
Light trapping structures in wing scales of butterfly Trogonoptera brookiana.
Han, Zhiwu; Niu, Shichao; Shang, Chunhui; Liu, Zhenning; Ren, Luquan
2012-04-28
The fine optical structures in wing scales of Trogonoptera brookiana, a tropical butterfly exhibiting efficient light trapping effect, were carefully examined and the reflectivity was measured using reflectance spectrometry. The optimized 3D configuration of the coupling structure was determined using SEM and TEM data, and the light trapping mechanism of butterfly scales was studied. It is found that the front and back sides of butterfly wings possess different light trapping structures, but both can significantly increase the optical path and thus result in almost total absorption of all incident light. An optical model was created to check the properties of this light trapping structure. The simulated reflectance spectra are in concordance with the experimental ones. The results reliably confirm that these structures induce efficient light trapping effect. This functional "biomimetic structure" would have a potential value in wide engineering and optical applications. This journal is © The Royal Society of Chemistry 2012
Thin film concentrator panel development
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1982-01-01
The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.
Measuring and modeling near surface reflected and emitted radiation fluxes at the FIFE site
NASA Technical Reports Server (NTRS)
Blad, Blaine L.; Norman, John M.; Walter-Shea, Elizabeth; Starks, Patrick; Vining, Roel; Hays, Cynthia
1988-01-01
Research was conducted during the four Intensive Field Campaigns (IFC) of the FIFE project in 1987. The research was done on a tall grass prairie with specific measurement sites on and near the Konza Prairie in Kansas. Measurements were made to help meet the following objectives: determination of the variability in reflected and emitted radiation fluxes in selected spectral wavebands as a function of topography and vegetative community; development of techniques to account for slope and sun angle effects on the radiation fluxes; estimation of shortwave albedo and net radiation fluxes using the reflected and emitted spectral measurements described; estimation of leaf and canopy spectral properties from calculated normalized differences coupled with off-nadir measurements using inversion techniques; estimation of plant water status at several locations with indices utilizing plant temperature and other environmental parameters; and determination of relationships between estimated plant water status and measured soil water content. Results are discussed.
Religious beliefs influence neural substrates of self-reflection in Tibetans
Wang, Cheng; He, Xi; Mao, Lihua
2010-01-01
Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness’ in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self. PMID:20197287
Religious beliefs influence neural substrates of self-reflection in Tibetans.
Wu, Yanhong; Wang, Cheng; He, Xi; Mao, Lihua; Zhang, Li
2010-06-01
Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness' in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self.
On hemispheric differences in evoked potentials to speech stimuli
NASA Technical Reports Server (NTRS)
Galambos, R.; Benson, P.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.
1975-01-01
Confirmation is provided for the belief that evoked potentials may reflect differences in hemispheric functioning that are marginal at best. Subjects were right-handed and audiologically normal men and women, and responses were recorded using standard EEG techniques. Subjects were instructed to listen for the targets while laying in a darkened sound booth. Different stimuli, speech and tone signals, were used. Speech sounds were shown to evoke a response pattern that resembles that to tone or clicks. Analysis of variances on peak amplitude and latency measures showed no significant differences between hemispheres, however, a Wilcoxon test showed significant differences in hemispheres for certain target tasks.
Heil, Martin; Jansen-Osmann, Petra
2008-05-01
Sex differences in mental rotation were investigated as a function of stimulus complexity with a sample size of N = 72. Replicating earlier findings with polygons, mental rotation was faster for males than for females, and reaction time increased with more complex polygons. Additionally, sex differences increased for complex polygons. Most importantly, however, mental rotation speed decreased with increasing complexity for women but did not change for men. Thus, the sex effects reflect a difference in strategy, with women mentally rotating the polygons in an analytic, piecemeal fashion and men using a holistic mode of mental rotation.
Wine, Jeffrey J.; Char, Jessica E.; Chen, Jonathan; Cho, Hyung-ju; Dunn, Colleen; Frisbee, Eric; Joo, Nam Soo; Milla, Carlos; Modlin, Sara E.; Park, Il-Ho; Thomas, Ewart A. C.; Tran, Kim V.; Verma, Rohan; Wolfe, Marlene H.
2013-01-01
To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (∼50) individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat) was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat) was stimulated with a β-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ∼0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with ‘CFTR-related’ conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics. PMID:24204751
Deng, Xuegong; Braun, Gary B; Liu, Sheng; Sciortino, Paul F; Koefer, Bob; Tombler, Thomas; Moskovits, Martin
2010-05-12
The surface-enhanced Raman spectroscopy (SERS) activity and the optical reflectance of a subwavelength gold nanograting fabricated entirely using top down technologies on silicon wafers are presented. The grating consists of 120 nm gold cladding on top of parallel silica nanowires constituting the grating's lines, with gaps between nanowires <10 nm wide at their narrowest point. The grating produces inordinately intense SERS and shows very strong polarization dependence. Reflectance measurements for the optimized grating indicate that (when p-polarization is used and at least one of the incident electric field components lies across the grating lines) the reflectance drops to <1% at resonance, indicating that essentially all of the radiant energy falling on the surface is coupled into the grating. The SERS intensity and the reflectance at resonance anticorrelate predicatively, suggesting that reflectance measurements can provide a nondestructive, wafer-level test of SERS efficacy. The SERS performance of the gratings is very uniform and reproducible. Extensive measurements on samples cut from both the same wafer and from different wafers, produce a SERS intensity distribution function that is similar to that obtained for ordinary Raman measurements carried out at multiple locations on a polished (100) silicon wafer.
Numerical modeling of laser assisted tape winding process
NASA Astrophysics Data System (ADS)
Zaami, Amin; Baran, Ismet; Akkerman, Remko
2017-10-01
Laser assisted tape winding (LATW) has become more and more popular way of producing new thermoplastic products such as ultra-deep sea water riser, gas tanks, structural parts for aerospace applications. Predicting the temperature in LATW has been a source of great interest since the temperature at nip-point plays a key role for mechanical interface performance. Modeling the LATW process includes several challenges such as the interaction of optics and heat transfer. In the current study, numerical modeling of the optical behavior of laser radiation on circular surfaces is investigated based on a ray tracing and non-specular reflection model. The non-specular reflection is implemented considering the anisotropic reflective behavior of the fiber-reinforced thermoplastic tape using a bidirectional reflectance distribution function (BRDF). The proposed model in the present paper includes a three-dimensional circular geometry, in which the effects of reflection from different ranges of the circular surface as well as effect of process parameters on temperature distribution are studied. The heat transfer model is constructed using a fully implicit method. The effect of process parameters on the nip-point temperature is examined. Furthermore, several laser distributions including Gaussian and linear are examined which has not been considered in literature up to now.
Comparison of the bidirectional reflectance distribution function of various surfaces
NASA Technical Reports Server (NTRS)
Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.
1988-01-01
Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared.
MgF2 monolayer as an anti-reflecting material
NASA Astrophysics Data System (ADS)
Mahida, H. R.; Singh, Deobrat; Sonvane, Yogesh; Gupta, Sanjeev K.; Thakor, P. B.
2017-02-01
The single-layer atomic sheet of magnesium fluoride (MgF2) having 1H and 1T phase structure (hexagonal and tetragonal phase) has been calculated by density functional theory (DFT). Further, we have investigated the structural, electronic and optical properties such as frequency dependent dielectric function, absorption spectra, energy loss spectra, reflectivity, refractive index and optical conductivity of monolayer MgF2 for the direction of parallel and perpendicular electric field polarizations. Our results suggest that monolayer MgF2 provides promising applications in anti-reflection coatings, high-reflective systems and in opto-electronic materials.
Petit, Magali; Lewden, Agnès; Vézina, François
2013-01-01
Stochastic winter weather events are predicted to increase in occurrence and amplitude at northern latitudes and organisms are expected to cope through phenotypic flexibility. Small avian species wintering in these environments show acclimatization where basal metabolic rate (BMR) and maximal thermogenic capacity (MSUM) are typically elevated. However, little is known on intra-seasonal variation in metabolic performance and on how population trends truly reflect individual flexibility. Here we report intra-seasonal variation in metabolic parameters measured at the population and individual levels in black-capped chickadees ( Poecile atricapillus ). Results confirmed that population patterns indeed reflect flexibility at the individual level. They showed the expected increase in BMR (6%) and MSUM (34%) in winter relative to summer but also, and most importantly, that these parameters changed differently through time. BMR began its seasonal increase in November, while MSUM had already achieved more than 20% of its inter-seasonal increase by October, and declined to its starting level by March, while MSUM remained high. Although both parameters co-vary on a yearly scale, this mismatch in the timing of variation in winter BMR and MSUM likely reflects different constraints acting on different physiological components and therefore suggests a lack of functional link between these parameters. PMID:23840843
NASA Astrophysics Data System (ADS)
Schneider, Sandra; Prijs, Vera F.; Schoonhoven, Ruurd
2003-06-01
Lower sideband distortion product otoacoustic emissions (DPOAEs), measured in the ear canal upon stimulation with two continuous pure tones, are the result of interfering contributions from two different mechanisms, the nonlinear distortion component and the linear reflection component. The two contributors have been shown to have a different amplitude and, in particular, a different phase behavior as a function of the stimulus frequencies. The dominance of either component was investigated in an extensive (f1,f2) area study of DPOAE amplitude and phase in the guinea pig, which allows for both qualitative and quantitative analysis of isophase contours. Making a minimum of additional assumptions, simple relations between the direction of constant phase in the (f1,f2) plane and the group delays in f1-sweep, f2-sweep, and fixed f2/f1 paradigms can be derived, both for distortion (wave-fixed) and reflection (place-fixed) components. The experimental data indicate the presence of both components in the lower sideband DPOAEs, with the reflection component as the dominant contributor for low f2/f1 ratios and the distortion component for intermediate ratios. At high ratios the behavior cannot be explained by dominance of either component.
Simulation of laser beam reflection at the sea surface
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Repasi, Endre
2011-05-01
A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.
Allostasis model facilitates understanding race differences in the diurnal cortisol rhythm
Skinner, Martie L.; Shirtcliff, Elizabeth A.; Haggerty, Kevin P.; Coe, Christopher L.; Catalano, Richard F.
2012-01-01
The concept of allostasis suggests that greater cumulative stress burden can influence stress-responsive physiology. Dysregulation of allostatic mediators, including the hypothalamic-pituitary-adrenal (HPA) axis, is thought to precede many other signs of age-related pathology as the persistent burden of stressors accumulates over the individual's lifespan. We predicted that even in young adulthood, HPA regulation would differ between Blacks and Whites reflecting, in part, higher rates of stressor exposure and greater potential for stressors to “get under the skin”. We examined whether stressor exposure, including experiences with racism and discrimination, explained race differences in waking cortisol and the diurnal rhythm. We also examined whether HPA functioning was associated with mental health outcomes previously linked to cortisol. Salivary cortisol was assayed in 275 young adults (127 Blacks, 148 Whites, 19 to 22 years old), four times a day across 3 days. Hierarchical linear models revealed flatter slopes for Blacks, reflecting significantly lower waking and higher bedtime cortisol levels compared to Whites. Associations of HPA functioning with stressors were typically more robust for Whites such that more stress exposure created an HPA profile that resembled that of Black young adults. For Blacks, greater stressor exposure did not further impact HPA functioning, or, when significant, was often associated with higher cortisol levels. Across both races, flatter slopes generally indicated greater HPA dysregulation and were associated with poor mental health outcomes. These differential effects were more robust for Whites. These findings support an allostatic model in which social contextual factors influence normal biorhythms, even as early as young adulthood. PMID:22018088
Psychodynamic profile and reflective functioning in patients with bulimia nervosa.
Mathiesen, Birgit Bork; Pedersen, Signe Holm; Sandros, Charlotte; Katznelson, Hannah; Wilczek, Alexander; Poulsen, Stig; Lunn, Susanne
2015-10-01
The aim of this study was to examine the general psychological functioning of patients suffering from bulimia nervosa (BN) using the Karolinska Psychodynamic Profile (KAPP). Furthermore, KAPP data and data from the Reflective Functioning scale (RF), measuring the ability to mentalize, were combined in order to examine differences in alexithymia, impulse control and affect regulation in patients with high or low RF. Seventy patients with BN were interviewed with both the KAPP and the Adult Attachment Interview (AAI) from which RF is coded. Differences in KAPP scores of patients with high or low RF were analyzed. Most of the patients with BN were found to have a personality structure within the normal or neurotic range (n=50 of 70). BN patients with a high RF had significantly lower scores on KAPP's alexithymia scale than patients with a low RF score, demonstrating that poor mentalizing is related to alexithymia. Concurrently, patients with high RF showed problems with impulse control and coping with aggressive affects according to KAPP scores. Although BN patients with high RF showed good capacities for describing their mental states, they still had difficulties regulating the emotions and impulses related to these states. Among patients suffering from BN, patients with high RF were significantly less alexithymic than low RF patients. The findings of this study are limited by the relatively small numbers of participants especially in the RF subgroups, posing a danger of not finding as significant existing differences in character pathology between high and low RF groups. Copyright © 2015 Elsevier Inc. All rights reserved.
In-vivo Reflectance Measurements from Human Skin
NASA Astrophysics Data System (ADS)
Delgado, J. A.; Cornejo, A.; Cunill, M.; Báez, J. J.; Matos, R.; Anasagasti, L.; Santiago, C.
2006-09-01
We evaluate the potential of using a standard commercial spectrophotometer, specifically designed to meet the growing requirement for color control in the digital-imaging application field, to perform in-vivo diffuse reflectance measurements from adult human skin. We report and discuss diffuse reflectance spectra for three practical situations: a) reflectance versus skin type, b) reflectance from normal skin with different grade of solar exposition, c) reflectance from normal skin versus reflectance from seborrheic keratosis. Results show, that using the above spectrophotometer we can easily differentiate two sites of different solar exposition. Besides, significant differences are found in the normal skin diffuse reflectance for patients with different skin types.