Does N200 reflect semantic processing?--An ERP study on Chinese visual word recognition.
Du, Yingchun; Zhang, Qin; Zhang, John X
2014-01-01
Recent event-related potential research has reported a N200 response or a negative deflection peaking around 200 ms following the visual presentation of two-character Chinese words. This N200 shows amplitude enhancement upon immediate repetition and there has been preliminary evidence that it reflects orthographic processing but not semantic processing. The present study tested whether this N200 is indeed unrelated to semantic processing with more sensitive measures, including the use of two tasks engaging semantic processing either implicitly or explicitly and the adoption of a within-trial priming paradigm. In Exp. 1, participants viewed repeated, semantically related and unrelated prime-target word pairs as they performed a lexical decision task judging whether or not each target was a real word. In Exp. 2, participants viewed high-related, low-related and unrelated word pairs as they performed a semantic task judging whether each word pair was related in meaning. In both tasks, semantic priming was found from both the behavioral data and the N400 ERP responses. Critically, while repetition priming elicited a clear and large enhancement on the N200 response, semantic priming did not show any modulation effect on the same response. The results indicate that the N200 repetition enhancement effect cannot be explained with semantic priming and that this specific N200 response is unlikely to reflect semantic processing.
Semantic Priming for Coordinate Distant Concepts in Alzheimer's Disease Patients
ERIC Educational Resources Information Center
Perri, R.; Zannino, G. D.; Caltagirone, C.; Carlesimo, G. A.
2011-01-01
Semantic priming paradigms have been used to investigate semantic knowledge in patients with Alzheimer's disease (AD). While priming effects produced by prime-target pairs with associative relatedness reflect processes at both lexical and semantic levels, priming effects produced by words that are semantically related but not associated should…
Neural Correlates of Semantic Prediction and Resolution in Sentence Processing.
Grisoni, Luigi; Miller, Tally McCormick; Pulvermüller, Friedemann
2017-05-03
Most brain-imaging studies of language comprehension focus on activity following meaningful stimuli. Testing adult human participants with high-density EEG, we show that, already before the presentation of a critical word, context-induced semantic predictions are reflected by a neurophysiological index, which we therefore call the semantic readiness potential (SRP). The SRP precedes critical words if a previous sentence context constrains the upcoming semantic content (high-constraint contexts), but not in unpredictable (low-constraint) contexts. Specific semantic predictions were indexed by SRP sources within the motor system-in dorsolateral hand motor areas for expected hand-related words (e.g., "write"), but in ventral motor cortex for face-related words ("talk"). Compared with affirmative sentences, negated ones led to medial prefrontal and more widespread motor source activation, the latter being consistent with predictive semantic computation of alternatives to the negated expected concept. Predictive processing of semantic alternatives in negated sentences is further supported by a negative-going event-related potential at ∼400 ms (N400), which showed the typical enhancement to semantically incongruent sentence endings only in high-constraint affirmative contexts, but not to high-constraint negated ones. These brain dynamics reveal the interplay between semantic prediction and resolution (match vs error) processing in sentence understanding. SIGNIFICANCE STATEMENT Most neuroscientists agree on the eminent importance of predictive mechanisms for understanding basic as well as higher brain functions. This contrasts with a sparseness of brain measures that directly reflects specific aspects of prediction, as they are relevant in the processing of language and thought. Here we show that when critical words are strongly expected in their sentence context, a predictive brain response reflects meaning features of these anticipated symbols already before they appear. The granularity of the semantic predictions was so fine grained that the cortical sources in sensorimotor and medial prefrontal cortex even distinguished between predicted face- or hand-related action words (e.g., the words "lick" or "pick") and between affirmative and negated sentence meanings. Copyright © 2017 Grisoni et al.
Neural Correlates of Semantic Prediction and Resolution in Sentence Processing
2017-01-01
Most brain-imaging studies of language comprehension focus on activity following meaningful stimuli. Testing adult human participants with high-density EEG, we show that, already before the presentation of a critical word, context-induced semantic predictions are reflected by a neurophysiological index, which we therefore call the semantic readiness potential (SRP). The SRP precedes critical words if a previous sentence context constrains the upcoming semantic content (high-constraint contexts), but not in unpredictable (low-constraint) contexts. Specific semantic predictions were indexed by SRP sources within the motor system—in dorsolateral hand motor areas for expected hand-related words (e.g., “write”), but in ventral motor cortex for face-related words (“talk”). Compared with affirmative sentences, negated ones led to medial prefrontal and more widespread motor source activation, the latter being consistent with predictive semantic computation of alternatives to the negated expected concept. Predictive processing of semantic alternatives in negated sentences is further supported by a negative-going event-related potential at ∼400 ms (N400), which showed the typical enhancement to semantically incongruent sentence endings only in high-constraint affirmative contexts, but not to high-constraint negated ones. These brain dynamics reveal the interplay between semantic prediction and resolution (match vs error) processing in sentence understanding. SIGNIFICANCE STATEMENT Most neuroscientists agree on the eminent importance of predictive mechanisms for understanding basic as well as higher brain functions. This contrasts with a sparseness of brain measures that directly reflects specific aspects of prediction, as they are relevant in the processing of language and thought. Here we show that when critical words are strongly expected in their sentence context, a predictive brain response reflects meaning features of these anticipated symbols already before they appear. The granularity of the semantic predictions was so fine grained that the cortical sources in sensorimotor and medial prefrontal cortex even distinguished between predicted face- or hand-related action words (e.g., the words “lick” or “pick”) and between affirmative and negated sentence meanings. PMID:28411271
Electrophysiological evidence of automatic early semantic processing.
Hinojosa, José A; Martín-Loeches, Manuel; Muñoz, Francisco; Casado, Pilar; Pozo, Miguel A
2004-01-01
This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a lower-upper case discrimination judgement (shallow processing requirements), whereas the other half carried out a semantic task, consisting in detecting animal names (deep processing requirements). Stimuli were identical in the two tasks. Reaction time measures revealed that the physical task was easier to perform than the semantic task. However, RP effects elicited by the physical and semantic tasks did not differ in either latency, amplitude, or topographic distribution. Thus, the results from the present study suggest that early semantic processing is automatically triggered whenever a linguistic stimulus enters the language processor.
Electrophysiological Evidence of Automatic Early Semantic Processing
ERIC Educational Resources Information Center
Hinojosa, Jose A.; Martin-Loeches, Manuel; Munoz, Francisco; Casado, Pilar; Pozo, Miguel A.
2004-01-01
This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a…
USDA-ARS?s Scientific Manuscript database
Studies comparing child cognitive development and brain activity during cognitive functions between children who were fed breast milk (BF), milk formula (MF), or soy formula (SF) have not been reported. We recorded event-related scalp potentials reflecting semantic processing (N400 ERP) from 20 homo...
Semantic processing during morphological priming: an ERP study.
Beyersmann, Elisabeth; Iakimova, Galina; Ziegler, Johannes C; Colé, Pascale
2014-09-04
Previous research has yielded conflicting results regarding the onset of semantic processing during morphological priming. The present study was designed to further explore the time-course of morphological processing using event-related potentials (ERPs). We conducted a primed lexical decision study comparing a morphological (LAVAGE - laver [washing - wash]), a semantic (LINGE - laver [laundry - wash]), an orthographic (LAVANDE - laver [lavender - wash]), and an unrelated control condition (HOSPICE - laver [nursing home - wash]), using the same targets across the four priming conditions. The behavioral data showed significant effects of morphological and semantic priming, with the magnitude of morphological priming being significantly larger than the magnitude of semantic priming. The ERP data revealed significant morphological but no semantic priming at 100-250 ms. Furthermore, a reduction of the N400 amplitude in the morphological condition compared to the semantic and orthographic condition demonstrates that the morphological priming effect was not entirely due to the semantic or orthographic overlap between the prime and the target. The present data reflect an early process of semantically blind morphological decomposition, and a later process of morpho-semantic decomposition, which we discuss in the context of recent morphological processing theories. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrophysiological effects of semantic context in picture and word naming.
Janssen, Niels; Carreiras, Manuel; Barber, Horacio A
2011-08-01
Recent language production studies have started to use electrophysiological measures to investigate the time course of word selection processes. An important contribution with respect to this issue comes from studies that have relied on an effect of semantic context in the semantic blocking task. Here we used this task to further establish the empirical pattern associated with the effect of semantic context, and whether the effect arises during output processing. Electrophysiological and reaction time measures were co-registered while participants overtly named picture and word stimuli in the semantic blocking task. The results revealed inhibitory reaction time effects of semantic context for both words and pictures, and a corresponding electrophysiological effect that could not be interpreted in terms of output processes. These data suggest that the electrophysiological effect of semantic context in the semantic blocking task does not reflect output processes, and therefore undermine an interpretation of this effect in terms of word selection. Copyright © 2011 Elsevier Inc. All rights reserved.
Hill, Holger; Ott, Friederike; Weisbrod, Matthias
2005-06-01
In a previous semantic priming study, we found a semantic distance effect on the lexical-decision-related P300 when SOA was short (150 ms) only, but no different RT and N400 priming effects between short and long (700 ms) SOAs. To investigate this further, we separated priming from lexical decision, using a delayed lexical decision in the present study. In the short SOA only, primed targets evoked an early peaking (approximately 480 ms) P300-like component, probably because the subject detected the semantic relationship implicitly. We hypothesize that in tasks requiring an immediate lexical decision, this early P300 and the later lexical decision P300 (approximately 600 ms) are additive. Secondly, we found both a direct and an indirect priming effect for both SOAs for the ERP amplitude of the N400 time window. However the N400 component itself was considerably larger in the long SOA than in the short SOA. We interpreted this finding as an ERP correlate for deeper semantic processing in the long SOA, due to increased attention that was provoked by the use of pseudoword primes. In contrast, in the short SOA, subjects might have used a shallowed semantic processing. N400, P300, and RTs are sensitive to semantic priming-but the modulation patterns are not consistent. This raises the question as to which variable reflects an immediate physiological correlate of semantic priming, and which variable reflects co-occurring processes associated with semantic priming.
Noun-phrase anaphors and focus: the informational load hypothesis.
Almor, A
1999-10-01
The processing of noun-phrase (NP) anaphors in discourse is argued to reflect constraints on the activation and processing of semantic information in working memory. The proposed theory views NP anaphor processing as an optimization process that is based on the principle that processing cost, defined in terms of activating semantic information, should serve some discourse function--identifying the antecedent, adding new information, or both. In a series of 5 self-paced reading experiments, anaphors' functionality was manipulated by changing the discourse focus, and their cost was manipulated by changing the semantic relation between the anaphors and their antecedents. The results show that reading times of NP anaphors reflect their functional justification: Anaphors were read faster when their cost had a better functional justification. These results are incompatible with any theory that treats NP anaphors as one homogeneous class regardless of discourse function and processing cost.
Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon
2013-10-01
Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.
Richardson-Klavehn, A; Gardiner, J M
1998-05-01
Depth-of-processing effects on incidental perceptual memory tests could reflect (a) contamination by voluntary retrieval, (b) sensitivity of involuntary retrieval to prior conceptual processing, or (c) a deficit in lexical processing during graphemic study tasks that affects involuntary retrieval. The authors devised an extension of incidental test methodology--making conjunctive predictions about response times as well as response proportions--to discriminate among these alternatives. They used graphemic, phonemic, and semantic study tasks, and a word-stem completion test with incidental, intentional, and inclusion instructions. Semantic study processing was superior to phonemic study processing in the intentional and inclusion tests, but semantic and phonemic study processing produced equal priming in the incidental test, showing that priming was uncontaminated by voluntary retrieval--a conclusion reinforced by the response-time data--and that priming was insensitive to prior conceptual processing. The incidental test nevertheless showed a priming deficit following graphemic study processing, supporting the lexical-processing hypothesis. Adding a lexical decision to the 3 study tasks eliminated the priming deficit following graphemic study processing, but did not influence priming following phonemic and semantic processing. The results provide the first clear evidence that depth-of-processing effects on perceptual priming can reflect lexical processes, rather than voluntary contamination or conceptual processes.
Uniformity and nonuniformity of neural activities correlated to different insight problem solving.
Zhao, Q; Li, Y; Shang, X; Zhou, Z; Han, L
2014-06-13
Previous studies on the neural basis of insight reflected weak consistency except for the anterior cingulate cortex. The present work adopted the semantic and homophonic punny riddle to explore the uniformity and nonuniformity of neural activities correlated to different insight problem solving. Results showed that in the early period of insight solving, the semantic and homophonic punny riddles induced a common N350-500 over the central scalp. However, during -400 to 0 ms before the riddles were solved, the semantic punny riddles induced a positive event-related potential (ERP) deflection over the temporal cortex for retrieving the extensive semantic information, while the homophonic punny riddles induced a positive ERP deflection over the temporal cortex and a negative one in the left frontal cortex which might reflect the semantic and phonological information processing respectively. Our study indicated that different insight problem solving should have the same cognitive process of detecting cognitive conflicts, but have different ways to solve the conflicts. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Differential electrophysiological signatures of semantic and syntactic scene processing.
Võ, Melissa L-H; Wolfe, Jeremy M
2013-09-01
In sentence processing, semantic and syntactic violations elicit differential brain responses observable in event-related potentials: An N400 signals semantic violations, whereas a P600 marks inconsistent syntactic structure. Does the brain register similar distinctions in scene perception? To address this question, we presented participants with semantic inconsistencies, in which an object was incongruent with a scene's meaning, and syntactic inconsistencies, in which an object violated structural rules. We found a clear dissociation between semantic and syntactic processing: Semantic inconsistencies produced negative deflections in the N300-N400 time window, whereas mild syntactic inconsistencies elicited a late positivity resembling the P600 found for syntactic inconsistencies in sentence processing. Extreme syntactic violations, such as a hovering beer bottle defying gravity, were associated with earlier perceptual processing difficulties reflected in the N300 response, but failed to produce a P600 effect. We therefore conclude that different neural populations are active during semantic and syntactic processing of scenes, and that syntactically impossible object placements are processed in a categorically different manner than are syntactically resolvable object misplacements.
Ludersdorfer, Philipp; Wimmer, Heinz; Richlan, Fabio; Schurz, Matthias; Hutzler, Florian; Kronbichler, Martin
2016-01-01
The present fMRI study investigated the hypothesis that activation of the left ventral occipitotemporal cortex (vOT) in response to auditory words can be attributed to lexical orthographic rather than lexico-semantic processing. To this end, we presented auditory words in both an orthographic ("three or four letter word?") and a semantic ("living or nonliving?") task. In addition, a auditory control condition presented tones in a pitch evaluation task. The results showed that the left vOT exhibited higher activation for orthographic relative to semantic processing of auditory words with a peak in the posterior part of vOT. Comparisons to the auditory control condition revealed that orthographic processing of auditory words elicited activation in a large vOT cluster. In contrast, activation for semantic processing was only weak and restricted to the middle part vOT. We interpret our findings as speaking for orthographic processing in left vOT. In particular, we suggest that activation in left middle vOT can be attributed to accessing orthographic whole-word representations. While activation of such representations was experimentally ascertained in the orthographic task, it might have also occurred automatically in the semantic task. Activation in the more posterior vOT region, on the other hand, may reflect the generation of explicit images of word-specific letter sequences required by the orthographic but not the semantic task. In addition, based on cross-modal suppression, the finding of marked deactivations in response to the auditory tones is taken to reflect the visual nature of representations and processes in left vOT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A Neurocomputational Model of the N400 and the P600 in Language Processing
ERIC Educational Resources Information Center
Brouwer, Harm; Crocker, Matthew W.; Venhuizen, Noortje J.; Hoeks, John C. J.
2017-01-01
Ten years ago, researchers using event-related brain potentials (ERPs) to study language comprehension were puzzled by what looked like a "Semantic Illusion": Semantically anomalous, but structurally well-formed sentences did not affect the N400 component--traditionally taken to reflect semantic integration--but instead produced a P600…
Koppehele-Gossel, Judith; Schnuerch, Robert; Gibbons, Henning
2018-06-06
This study replicates and extends the findings of Koppehele-Gossel, Schnuerch, and Gibbons (2016) of a posterior semantic asymmetry (PSA) in event-related brain potentials (ERPs), which closely tracks the time course and degree of semantic activation from single visual words. This negativity peaked 300 ms after word onset, was derived by subtracting right- from left-side activity, and was larger in a semantic task compared to two non-semantic control tasks. The validity of the PSA in reflecting the effort to activate word meaning was again attested by a negative correlation between the meaning-specific PSA increase and verbal intelligence, even after controlling for nonverbal intelligence. Extending prior work, current source density (CSD) transformation was used. CSD results were consistent with a left temporo-parietal cortical origin of the PSA. Moreover, no PSA was found for pictorial material, suggesting that the component reflects early semantic processing specific to verbal stimuli. Copyright © 2018 Elsevier Inc. All rights reserved.
Brain Responses to Lexical-Semantic Priming in Children At-Risk for Dyslexia
ERIC Educational Resources Information Center
Torkildsen, Janne von Koss; Syversen, Gro; Simonsen, Hanne Gram; Moen, Inger; Lindgren, Magnus
2007-01-01
Deviances in early event-related potential (ERP) components reflecting auditory and phonological processing are well-documented in children at familial risk for dyslexia. However, little is known about brain responses which index processing in other linguistic domains such as lexicon, semantics and syntax in this group. The present study…
Contextual Modulation of N400 Amplitude to Lexically Ambiguous Words
ERIC Educational Resources Information Center
Titone, Debra A.; Salisbury, Dean F.
2004-01-01
Through much is known about the N400 component, an event-related EEG potential that is sensitive to semantic manipulations, it is unclear whether modulations of N400 amplitude reflect automatic processing, controlled processing, or both. We examined this issue using a semantic judgment task that manipulated local and global contextual cues. Word…
Diagnostic and prognostic role of semantic processing in preclinical Alzheimer's disease.
Venneri, Annalena; Jahn-Carta, Caroline; Marco, Matteo De; Quaranta, Davide; Marra, Camillo
2018-06-13
Relatively spared during most of the timeline of normal aging, semantic memory shows a subtle yet measurable decline even during the pre-clinical stage of Alzheimer's disease. This decline is thought to reflect early neurofibrillary changes and impairment is detectable using tests of language relying on lexical-semantic abilities. A promising approach is the characterization of semantic parameters such as typicality and age of acquisition of words, and propositional density from verbal output. Seminal research like the Nun Study or the analysis of the linguistic decline of famous writers and politicians later diagnosed with Alzheimer's disease supports the early diagnostic value of semantic processing and semantic memory. Moreover, measures of these skills may play an important role for the prognosis of patients with mild cognitive impairment.
Grasping Ideas with the Motor System: Semantic Somatotopy in Idiom Comprehension
Hauk, Olaf; Pulvermüller, Friedemann
2009-01-01
Single words and sentences referring to bodily actions activate the motor cortex. However, this semantic grounding of concrete language does not address the critical question whether the sensory–motor system contributes to the processing of abstract meaning and thought. We examined functional magnetic resonance imaging activation to idioms and literal sentences including arm- and leg-related action words. A common left fronto-temporal network was engaged in sentence reading, with idioms yielding relatively stronger activity in (pre)frontal and middle temporal cortex. Crucially, somatotopic activation along the motor strip, in central and precentral cortex, was elicited by idiomatic and literal sentences, reflecting the body part reference of the words embedded in the sentences. Semantic somatotopy was most pronounced after sentence ending, thus reflecting sentence-level processing rather than that of single words. These results indicate that semantic representations grounded in the sensory–motor system play a role in the composition of sentence-level meaning, even in the case of idioms. PMID:19068489
ERIC Educational Resources Information Center
Kuperberg, Gina R.; Kreher, Donna A.; Sitnikova, Tatiana; Caplan, David N.; Holcomb, Phillip J.
2007-01-01
Recent event-related potential studies report a P600 effect to incongruous verbs preceded by semantically associated inanimate noun-phrase (NP) arguments, e.g., "eat" in "At breakfast the eggs would eat...". This P600 effect may reflect the processing cost incurred when semantic-thematic relationships between critical verbs and their preceding NP…
Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.
Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J
2017-02-01
Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Implicit Semantic Perception in Object Substitution Masking
ERIC Educational Resources Information Center
Goodhew, Stephanie C.; Visser, Troy A. W.; Lipp, Ottmar V.; Dux, Paul E.
2011-01-01
Decades of research on visual perception has uncovered many phenomena, such as binocular rivalry, backward masking, and the attentional blink, that reflect "failures of consciousness". Although stimuli do not reach awareness in these paradigms, there is evidence that they nevertheless undergo semantic processing. Object substitution masking (OSM),…
Grilli, Matthew D
2017-11-01
Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.
Somatotopic Semantic Priming and Prediction in the Motor System
Grisoni, Luigi; Dreyer, Felix R.; Pulvermüller, Friedemann
2016-01-01
The recognition of action-related sounds and words activates motor regions, reflecting the semantic grounding of these symbols in action information; in addition, motor cortex exerts causal influences on sound perception and language comprehension. However, proponents of classic symbolic theories still dispute the role of modality-preferential systems such as the motor cortex in the semantic processing of meaningful stimuli. To clarify whether the motor system carries semantic processes, we investigated neurophysiological indexes of semantic relationships between action-related sounds and words. Event-related potentials revealed that action-related words produced significantly larger stimulus-evoked (Mismatch Negativity-like) and predictive brain responses (Readiness Potentials) when presented in body-part-incongruent sound contexts (e.g., “kiss” in footstep sound context; “kick” in whistle context) than in body-part-congruent contexts, a pattern reminiscent of neurophysiological correlates of semantic priming. Cortical generators of the semantic relatedness effect were localized in areas traditionally associated with semantic memory, including left inferior frontal cortex and temporal pole, and, crucially, in motor areas, where body-part congruency of action sound–word relationships was indexed by a somatotopic pattern of activation. As our results show neurophysiological manifestations of action-semantic priming in the motor cortex, they prove semantic processing in the motor system and thus in a modality-preferential system of the human brain. PMID:26908635
Hybrid Filtering in Semantic Query Processing
ERIC Educational Resources Information Center
Jeong, Hanjo
2011-01-01
This dissertation presents a hybrid filtering method and a case-based reasoning framework for enhancing the effectiveness of Web search. Web search may not reflect user needs, intent, context, and preferences, because today's keyword-based search is lacking semantic information to capture the user's context and intent in posing the search query.…
Parametric effects of syntactic-semantic conflict in Broca's area during sentence processing.
Thothathiri, Malathi; Kim, Albert; Trueswell, John C; Thompson-Schill, Sharon L
2012-03-01
The hypothesized role of Broca's area in sentence processing ranges from domain-general executive function to domain-specific computation that is specific to certain syntactic structures. We examined this issue by manipulating syntactic structure and conflict between syntactic and semantic cues in a sentence processing task. Functional neuroimaging revealed that activation within several Broca's area regions of interest reflected the parametric variation in syntactic-semantic conflict. These results suggest that Broca's area supports sentence processing by mediating between multiple incompatible constraints on sentence interpretation, consistent with this area's well-known role in conflict resolution in other linguistic and non-linguistic tasks. Copyright © 2011 Elsevier Inc. All rights reserved.
Python, Grégoire; Fargier, Raphaël; Laganaro, Marina
2018-02-01
In everyday conversations, we take advantage of lexical-semantic contexts to facilitate speech production, but at the same time, we also have to reduce interference and inhibit semantic competitors. The blocked cyclic naming paradigm (BCNP) has been used to investigate such context effects. Typical results on production latencies showed semantic facilitation (or no effect) during the first presentation cycle, and interference emerging in subsequent cycles. Even if semantic contexts might be just as facilitative as interfering, previous BCNP studies focused on interference, which was interpreted as reflecting lemma selection and self-monitoring processes. Facilitation in the first cycle was rarely considered/analysed, although it potentially informs on word production to the same extent as interference. Here we contrasted the event-related potential (ERP) signatures of both semantic facilitation and interference in a BCNP. ERPs differed between homogeneous and heterogeneous blocks from about 365 msec post picture onset in the first cycle (facilitation) and in an earlier time-window (270 msec post picture onset) in the third cycle (interference). Three different analyses of the ERPs converge towards distinct processes underlying semantic facilitation and interference (post-lexical vs lexical respectively). The loci of semantic facilitation and interference are interpreted in the context of different theoretical frameworks of language production: the post-lexical locus of semantic facilitation involves interactive phonological-semantic processes and/or self-monitoring, whereas the lexical locus of semantic interference is in line with selection through increased lexical competition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maxfield, Nathan D.; Pizon-Moore, Angela A.; Frisch, Stefan A.; Constantine, Joseph L.
2011-01-01
Objective Our aim was to investigate how semantic and phonological information is processed in adults who stutter (AWS) preparing to name pictures, following-up a report that event-related potentials (ERPs) in AWS evidenced atypical semantic picture-word priming (Maxfield et al., 2010). Methods Fourteen AWS and 14 typically-fluent adults (TFA) participated. Pictures, named at a delay, were followed by probe words. Design elements not used in Maxfield et al. (2010) let us evaluate both phonological and semantic picture-word priming. Results TFA evidenced typical priming effects in probe-elicited ERPs. AWS evidenced diminished Semantic priming, and reverse Phonological N400 priming. Conclusions Results point to atypical processing of semantic and phonological information in AWS. Discussion considers whether AWS ERP effects reflect unstable activation of target label semantic and phonological representations, strategic inhibition of target label phonological neighbors, and/or phonological label-probe competition. Significance Results raise questions about how mechanisms that regulate activation spreading operate in AWS. PMID:22055837
[Schizophrenia and semantic priming effects].
Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S
2006-01-01
This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which influence on the degree of involvement of controlled processes and therefore prevent to really assess its functioning. In addition, manipulations of the relation between prime and target (semantic distance, type of semantic relation and strength of semantic relation) seem to influence reaction times. However, the relation between prime and target (mediated priming) frequently used could not be the most relevant relation to understand the way of spreading of activation in semantic network in patients with schizophrenia. Finally, patients with formal thought disorders present particularly high priming effects relative to controls. These abnormal semantic priming effects could reflect a dysfunction of automatic spreading activation process and consequently an exaggerated diffusion of activation in the semantic network. In the future, the inclusion of different groups schizophrenic subjects could allow us to determine whether semantic memory disorders are pathognomonic or specific of a particular group of patients with schizophrenia.
Voss, Joel L.; Federmeier, Kara D.
2010-01-01
The “F” in FN400 denotes a more frontal scalp distribution relative to the morphologically similar N400 component—a distinction consistent with the hypothesized distinct roles of FN400 in familiarity memory versus N400 in language. However, no direct comparisons have substantiated these assumed dissimilarities. To this end, we manipulated short-term semantic priming during a recognition test. Semantic priming effects on N400 were indistinguishable from memory effects at the same latency, and semantic priming strongly modulated the “FN400,” despite having no influence on familiarity memory. Thus, no evidence suggested either electrophysiological or functional differences between the N400 and FN400, and findings were contrary to the linking of the “FN400” to familiarity. Instead, it appears that semantic/conceptual priming (reflected in the N400) occurs during recognition tests, and is frequently (mis)labeled as FN400 and attributed to familiarity. PMID:20701709
Interactions between thalamic and cortical rhythms during semantic memory recall in human
NASA Astrophysics Data System (ADS)
Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.
2002-04-01
Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.
Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.
Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S
2018-05-01
People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.
Woltz, Dan J; Gardner, Michael K
2015-09-01
Previous research has demonstrated a systematic, nonlinear relationship between word frequency judgments and values from word frequency norms. This relationship could reflect a perceptual process similar to that found in the psychophysics literature for a variety of sensory phenomena. Alternatively, it could reflect memory strength differences that are expected for words of varying levels of prior exposure. Two experiments tested the memory strength explanation by semantically priming words prior to frequency judgments. Exposure to related word meanings produced a small but measurable increase in target word frequency ratings. Repetition but not semantic priming had a greater impact on low compared to high frequency words. These findings are consistent with a memory strength view of frequency judgments that assumes a distributed network with lexical and semantic levels of representation. Copyright © 2015 Elsevier B.V. All rights reserved.
Right fusiform response patterns reflect visual object identity rather than semantic similarity.
Bruffaerts, Rose; Dupont, Patrick; De Grauwe, Sophie; Peeters, Ronald; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik
2013-12-01
We previously reported the neuropsychological consequences of a lesion confined to the middle and posterior part of the right fusiform gyrus (case JA) causing a partial loss of knowledge of visual attributes of concrete entities in the absence of category-selectivity (animate versus inanimate). We interpreted this in the context of a two-step model that distinguishes structural description knowledge from associative-semantic processing and implicated the lesioned area in the former process. To test this hypothesis in the intact brain, multi-voxel pattern analysis was used in a series of event-related fMRI studies in a total of 46 healthy subjects. We predicted that activity patterns in this region would be determined by the identity of rather than the conceptual similarity between concrete entities. In a prior behavioral experiment features were generated for each entity by more than 1000 subjects. Based on a hierarchical clustering analysis the entities were organised into 3 semantic clusters (musical instruments, vehicles, tools). Entities were presented as words or pictures. With foveal presentation of pictures, cosine similarity between fMRI response patterns in right fusiform cortex appeared to reflect both the identity of and the semantic similarity between the entities. No such effects were found for words in this region. The effect of object identity was invariant for location, scaling, orientation axis and color (grayscale versus color). It also persisted for different exemplars referring to a same concrete entity. The apparent semantic similarity effect however was not invariant. This study provides further support for a neurobiological distinction between structural description knowledge and processing of semantic relationships and confirms the role of right mid-posterior fusiform cortex in the former process, in accordance with previous lesion evidence. © 2013.
A dual contribution to the involuntary semantic processing of unexpected spoken words.
Parmentier, Fabrice B R; Turner, Jacqueline; Perez, Laura
2014-02-01
Sounds are a major cause of distraction. Unexpected to-be-ignored auditory stimuli presented in the context of an otherwise repetitive acoustic background ineluctably break through selective attention and distract people from an unrelated visual task (deviance distraction). This involuntary capture of attention by deviant sounds has been hypothesized to trigger their semantic appraisal and, in some circumstances, interfere with ongoing performance, but it remains unclear how such processing compares with the automatic processing of distractors in classic interference tasks (e.g., Stroop, flanker, Simon tasks). Using a cross-modal oddball task, we assessed the involuntary semantic processing of deviant sounds in the presence and absence of deviance distraction. The results revealed that some involuntary semantic analysis of spoken distractors occurs in the absence of deviance distraction but that this processing is significantly greater in its presence. We conclude that the automatic processing of spoken distractors reflects 2 contributions, one that is contingent upon deviance distraction and one that is independent from it.
Henry, Maya L; Beeson, Pélagie M; Alexander, Gene E; Rapcsak, Steven Z
2012-02-01
Connectionist theories of language propose that written language deficits arise as a result of damage to semantic and phonological systems that also support spoken language production and comprehension, a view referred to as the "primary systems" hypothesis. The objective of the current study was to evaluate the primary systems account in a mixed group of individuals with primary progressive aphasia (PPA) by investigating the relation between measures of nonorthographic semantic and phonological processing and written language performance and by examining whether common patterns of cortical atrophy underlie impairments in spoken versus written language domains. Individuals with PPA and healthy controls were administered a language battery, including assessments of semantics, phonology, reading, and spelling. Voxel-based morphometry was used to examine the relation between gray matter volumes and language measures within brain regions previously implicated in semantic and phonological processing. In accordance with the primary systems account, our findings indicate that spoken language performance is strongly predictive of reading/spelling profile in individuals with PPA and suggest that common networks of critical left hemisphere regions support central semantic and phonological processes recruited for spoken and written language.
Facilitation and interference in naming: A consequence of the same learning process?
Hughes, Julie W; Schnur, Tatiana T
2017-08-01
Our success with naming depends on what we have named previously, a phenomenon thought to reflect learning processes. Repeatedly producing the same name facilitates language production (i.e., repetition priming), whereas producing semantically related names hinders subsequent performance (i.e., semantic interference). Semantic interference is found whether naming categorically related items once (continuous naming) or multiple times (blocked cyclic naming). A computational model suggests that the same learning mechanism responsible for facilitation in repetition creates semantic interference in categorical naming (Oppenheim, Dell, & Schwartz, 2010). Accordingly, we tested the predictions that variability in semantic interference is correlated across categorical naming tasks and is caused by learning, as measured by two repetition priming tasks (picture-picture repetition priming, Exp. 1; definition-picture repetition priming, Exp. 2, e.g., Wheeldon & Monsell, 1992). In Experiment 1 (77 subjects) semantic interference and repetition priming effects were robust, but the results revealed no relationship between semantic interference effects across contexts. Critically, learning (picture-picture repetition priming) did not predict semantic interference effects in either task. We replicated these results in Experiment 2 (81 subjects), finding no relationship between semantic interference effects across tasks or between semantic interference effects and learning (definition-picture repetition priming). We conclude that the changes underlying facilitatory and interfering effects inherent to lexical access are the result of distinct learning processes where multiple mechanisms contribute to semantic interference in naming. Copyright © 2017 Elsevier B.V. All rights reserved.
A Comparison of Semantic and Syntactic Event Related Potentials Generated by Children and Adults
ERIC Educational Resources Information Center
Atchley, Ruth Ann; Rice, Mabel L.; Betz, Stacy K.; Kwasny, Kristin M.; Sereno, Joan A.; Jongman, Allard
2006-01-01
The present study employs event related potentials (ERPs) to verify the utility of using electrophysiological measures to study developmental questions within the field of language comprehension. Established ERP components (N400 and P600) that reflect semantic and syntactic processing were examined. Fifteen adults and 14 children (ages 8-13)…
Neural correlates of semantic associations in patients with schizophrenia.
Sass, Katharina; Heim, Stefan; Sachs, Olga; Straube, Benjamin; Schneider, Frank; Habel, Ute; Kircher, Tilo
2014-03-01
Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.
Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging
Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.
2013-01-01
A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321
What lies beneath: A comparison of reading aloud in pure alexia and semantic dementia
Hoffman, Paul; Roberts, Daniel J.; Ralph, Matthew A. Lambon; Patterson, Karalyn E.
2014-01-01
Exaggerated effects of word length upon reading-aloud performance define pure alexia, but have also been observed in semantic dementia. Some researchers have proposed a reading-specific account, whereby performance in these two disorders reflects the same cause: impaired orthographic processing. In contrast, according to the primary systems view of acquired reading disorders, pure alexia results from a basic visual processing deficit, whereas degraded semantic knowledge undermines reading performance in semantic dementia. To explore the source of reading deficits in these two disorders, we compared the reading performance of 10 pure alexic and 10 semantic dementia patients, matched in terms of overall severity of reading deficit. The results revealed comparable frequency effects on reading accuracy, but weaker effects of regularity in pure alexia than in semantic dementia. Analysis of error types revealed a higher rate of letter-based errors and a lower rate of regularization responses in pure alexia than in semantic dementia. Error responses were most often words in pure alexia but most often nonwords in semantic dementia. Although all patients made some letter substitution errors, these were characterized by visual similarity in pure alexia and phonological similarity in semantic dementia. Overall, the data indicate that the reading deficits in pure alexia and semantic dementia arise from impairments of visual processing and knowledge of word meaning, respectively. The locus and mechanisms of these impairments are placed within the context of current connectionist models of reading. PMID:24702272
Chen, Yi-Chuan; Spence, Charles
2013-01-01
The time-course of cross-modal semantic interactions between pictures and either naturalistic sounds or spoken words was compared. Participants performed a speeded picture categorization task while hearing a task-irrelevant auditory stimulus presented at various stimulus onset asynchronies (SOAs) with respect to the visual picture. Both naturalistic sounds and spoken words gave rise to cross-modal semantic congruency effects (i.e., facilitation by semantically congruent sounds and inhibition by semantically incongruent sounds, as compared to a baseline noise condition) when the onset of the sound led that of the picture by 240 ms or more. Both naturalistic sounds and spoken words also gave rise to inhibition irrespective of their semantic congruency when presented within 106 ms of the onset of the picture. The peak of this cross-modal inhibitory effect occurred earlier for spoken words than for naturalistic sounds. These results therefore demonstrate that the semantic priming of visual picture categorization by auditory stimuli only occurs when the onset of the sound precedes that of the visual stimulus. The different time-courses observed for naturalistic sounds and spoken words likely reflect the different processing pathways to access the relevant semantic representations.
Levels of processing and language modality specificity in working memory.
Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker
2013-03-01
Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Historical Semantic Chaining and Efficient Communication: The Case of Container Names
ERIC Educational Resources Information Center
Xu, Yang; Regier, Terry; Malt, Barbara C.
2016-01-01
Semantic categories in the world's languages often reflect a historical process of "chaining": A name for one referent is extended to a conceptually related referent, and from there on to other referents, producing a chain of exemplars that all bear the same name. The beginning and end points of such a chain might in principle be rather…
ERIC Educational Resources Information Center
Henry, Maya L.; Beeson, Pelagie M.; Alexander, Gene E.; Rapcsak, Steven Z.
2012-01-01
Connectionist theories of language propose that written language deficits arise as a result of damage to semantic and phonological systems that also support spoken language production and comprehension, a view referred to as the "primary systems" hypothesis. The objective of the current study was to evaluate the primary systems account in a mixed…
Contrasting Semantic versus Inhibitory Processing in the Angular Gyrus: An fMRI Study.
Lewis, Gwyneth A; Poeppel, David; Murphy, Gregory L
2018-06-06
Recent studies of semantic memory have focused on dissociating the neural bases of two foundational components of human thought: taxonomic categories, which group similar objects like dogs and seals based on features, and thematic categories, which group dissimilar objects like dogs and leashes based on events. While there is emerging consensus that taxonomic concepts are represented in the anterior temporal lobe, there is disagreement over whether thematic concepts are represented in the angular gyrus (AG). We previously found AG sensitivity to both kinds of concepts; however, some accounts suggest that such activity reflects inhibition of irrelevant information rather than thematic activation. To test these possibilities, an fMRI experiment investigated both types of conceptual relations in the AG during two semantic judgment tasks. Each task trained participants to give negative responses (inhibition) or positive responses (activation) to word pairs based on taxonomic and thematic criteria of relatedness. Results showed AG engagement during both negative judgments and thematic judgments, but not during positive judgments about taxonomic pairs. Together, the results suggest that activity in the AG reflects functions that include both thematic (but not taxonomic) processing and inhibiting irrelevant semantic information.
A Complex Network Approach to Distributional Semantic Models
Utsumi, Akira
2015-01-01
A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940
Rogalsky, Corianne
2009-01-01
Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589
Bakker, Iske; Takashima, Atsuko; van Hell, Janet G; Janzen, Gabriele; McQueen, James M
2015-12-01
Novel words can be recalled immediately and after little exposure, but require a post-learning consolidation period to show word-like behaviour such as lexical competition. This pattern is thought to reflect a qualitative shift from episodic to lexical representations. However, several studies have reported immediate effects of meaningful novel words on semantic processing, suggesting that integration of novel word meanings may not require consolidation. The current study synthesises and extends these findings by showing a dissociation between lexical and semantic effects on the electrophysiological (N400, LPC) response to novel words. The difference in N400 amplitude between novel and existing words (a lexical effect) decreased significantly after a 24-h consolidation period, providing novel support for the hypothesis that offline consolidation aids lexicalisation. In contrast, novel words preceded by semantically related primes elicited a more positive LPC response (a semantic-priming effect) both before and after consolidation, indicating that certain semantic effects can be observed even when words have not been fully lexicalised. We propose that novel meanings immediately start to contribute to semantic processing, but that the underlying neural processes may shift from strategic to more automatic with consolidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Automaticity of phonological and semantic processing during visual word recognition.
Pattamadilok, Chotiga; Chanoine, Valérie; Pallier, Christophe; Anton, Jean-Luc; Nazarian, Bruno; Belin, Pascal; Ziegler, Johannes C
2017-04-01
Reading involves activation of phonological and semantic knowledge. Yet, the automaticity of the activation of these representations remains subject to debate. The present study addressed this issue by examining how different brain areas involved in language processing responded to a manipulation of bottom-up (level of visibility) and top-down information (task demands) applied to written words. The analyses showed that the same brain areas were activated in response to written words whether the task was symbol detection, rime detection, or semantic judgment. This network included posterior, temporal and prefrontal regions, which clearly suggests the involvement of orthographic, semantic and phonological/articulatory processing in all tasks. However, we also found interactions between task and stimulus visibility, which reflected the fact that the strength of the neural responses to written words in several high-level language areas varied across tasks. Together, our findings suggest that the involvement of phonological and semantic processing in reading is supported by two complementary mechanisms. First, an automatic mechanism that results from a task-independent spread of activation throughout a network in which orthography is linked to phonology and semantics. Second, a mechanism that further fine-tunes the sensitivity of high-level language areas to the sensory input in a task-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.
van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A
2005-05-01
Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing
Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.
Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.
McCarthy, Rosaleen A; Warrington, Elizabeth K
2016-10-01
We summarize the main findings and conclusions of Warrington's (1975) paper, The Selective Impairment of Semantic memory, a neuropsychological paper that described three cases with degenerative neurological conditions [Warrington, E. K. (1975). The selective impairment of semantic memory. The Quarterly Journal of Experimental Psychology, 27, 635-657]. We consider the developments that have followed from its publication and give a selective overview of the field in 2014. The initial impact of the paper was on neuropsychological investigations of semantic loss followed some 14 years later by the identification of Semantic Dementia (the condition shown by the original cases) as a distinctive form of degenerative disease with unique clinical and pathological characteristics. We discuss the distinction between disorders of semantic storage and refractory semantic access, the evidence for category- and modality-specific impairments of semantics, and the light that has been shed on the structure and organization of semantic memory. Finally we consider the relationship between semantic memory and the skills of reading and writing, phonological processing, and autobiographical memory.
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-01-01
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473
Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon
2015-07-14
Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.
The role of left prefrontal cortex in language and memory
Gabrieli, John D. E.; Poldrack, Russell A.; Desmond, John E.
1998-01-01
This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences. PMID:9448258
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2014-01-01
Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261
Semantic memory retrieval circuit: role of pre-SMA, caudate, and thalamus.
Hart, John; Maguire, Mandy J; Motes, Michael; Mudar, Raksha Anand; Chiang, Hsueh-Sheng; Womack, Kyle B; Kraut, Michael A
2013-07-01
We propose that pre-supplementary motor area (pre-SMA)-thalamic interactions govern processes fundamental to semantic retrieval of an integrated object memory. At the onset of semantic retrieval, pre-SMA initiates electrical interactions between multiple cortical regions associated with semantic memory subsystems encodings as indexed by an increase in theta-band EEG power. This starts between 100-150 ms after stimulus presentation and is sustained throughout the task. We posit that this activity represents initiation of the object memory search, which continues in searching for an object memory. When the correct memory is retrieved, there is a high beta-band EEG power increase, which reflects communication between pre-SMA and thalamus, designates the end of the search process and resultant in object retrieval from multiple semantic memory subsystems. This high beta signal is also detected in cortical regions. This circuit is modulated by the caudate nuclei to facilitate correct and suppress incorrect target memories. Copyright © 2012 Elsevier Inc. All rights reserved.
Altered brain response for semantic knowledge in Alzheimer's disease.
Wierenga, Christina E; Stricker, Nikki H; McCauley, Ashley; Simmons, Alan; Jak, Amy J; Chang, Yu-Ling; Nation, Daniel A; Bangen, Katherine J; Salmon, David P; Bondi, Mark W
2011-02-01
Word retrieval deficits are common in Alzheimer's disease (AD) and are thought to reflect a degradation of semantic memory. Yet, the nature of semantic deterioration in AD and the underlying neural correlates of these semantic memory changes remain largely unknown. We examined the semantic memory impairment in AD by investigating the neural correlates of category knowledge (e.g., living vs. nonliving) and featural processing (global vs. local visual information). During event-related fMRI, 10 adults diagnosed with mild AD and 22 cognitively normal (CN) older adults named aloud items from three categories for which processing of specific visual features has previously been dissociated from categorical features. Results showed widespread group differences in the categorical representation of semantic knowledge in several language-related brain areas. For example, the right inferior frontal gyrus showed selective brain response for nonliving items in the CN group but living items in the AD group. Additionally, the AD group showed increased brain response for word retrieval irrespective of category in Broca's homologue in the right hemisphere and rostral cingulate cortex bilaterally, which suggests greater recruitment of frontally mediated neural compensatory mechanisms in the face of semantic alteration. Copyright © 2010 Elsevier Ltd. All rights reserved.
de Wit, Bianca; Kinoshita, Sachiko
2015-01-01
The magnitude of the semantic priming effect is known to increase as the proportion of related prime-target pairs in an experiment increases. This relatedness proportion (RP) effect was studied in a lexical decision task at a short prime-target stimulus onset asynchrony (240 ms), which is widely assumed to preclude strategic prospective usage of the prime. The analysis of the reaction time (RT) distribution suggested that the observed RP effect reflected a modulation of a retrospective semantic matching process. The pattern of the RP effect on the RT distribution found here is contrasted to that reported in De Wit and Kinoshita's (2014) semantic categorization study, and it is concluded that the RP effect is driven by different underlying mechanisms in lexical decision and semantic categorization.
Neural pattern similarity underlies the mnemonic advantages for living words.
Xiao, Xiaoqian; Dong, Qi; Chen, Chuansheng; Xue, Gui
2016-06-01
It has been consistently shown that words representing living things are better remembered than words representing nonliving things, yet the underlying cognitive and neural mechanisms have not been clearly elucidated. The present study used both univariate and multivariate pattern analyses to examine the hypotheses that living words are better remembered because (1) they draw more attention and/or (2) they share more overlapping semantic features. Subjects were asked to study a list of living and nonliving words during a semantic judgment task. An unexpected recognition test was administered 30 min later. We found that subjects recognized significantly more living words than nonliving words. Results supported the overlapping semantic feature hypothesis by showing that (a) semantic ratings showed greater semantic similarity for living words than for nonliving words, (b) there was also significantly greater neural global pattern similarity (nGPS) for living words than for nonliving words in the posterior portion of left parahippocampus (LpPHG), (c) the nGPS in the LpPHG reflected the rated semantic similarity, and also mediated the memory differences between two semantic categories, and (d) greater univariate activation was found for living words than for nonliving words in the left hippocampus (LHIP), which mediated the better memory performance for living words and might reflect greater semantic context binding. In contrast, although living words were processed faster and elicited a stronger activity in the dorsal attention network, these differences did not mediate the animacy effect in memory. Taken together, our results provide strong support to the overlapping semantic features hypothesis, and emphasize the important role of semantic organization in episodic memory encoding. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matzen, Laura E.; Taylor, Eric G.; Benjamin, Aaron S.
2010-01-01
It has been suggested that both familiarity and recollection contribute to the recognition decision process. In this paper, we leverage the form of false alarm rate functions—in which false-alarm rates describe an inverted U-shaped function as the time between study and test increases—to assess how these processes support retention of semantic and surface form information from previously studied words. We directly compare the maxima of these functions for lures that are semantically related and lures that are related by surface form to previously studied material. This analysis reveals a more rapid loss of access to surface form than to semantic information. To separate the contributions of item familiarity and reminding-induced recollection rejection to this effect, we use a simple multinomial process model; this analysis reveals that this loss of access reflects both a more rapid loss of familiarity and lower rates of recollection for surface form information. PMID:21240745
Thompson, Hannah E; Almaghyuli, Azizah; Noonan, Krist A; Barak, Ohr; Lambon Ralph, Matthew A; Jefferies, Elizabeth
2018-01-03
Semantic cognition, as described by the controlled semantic cognition (CSC) framework (Rogers et al., , Neuropsychologia, 76, 220), involves two key components: activation of coherent, generalizable concepts within a heteromodal 'hub' in combination with modality-specific features (spokes), and a constraining mechanism that manipulates and gates this knowledge to generate time- and task-appropriate behaviour. Executive-semantic goal representations, largely supported by executive regions such as frontal and parietal cortex, are thought to allow the generation of non-dominant aspects of knowledge when these are appropriate for the task or context. Semantic aphasia (SA) patients have executive-semantic deficits, and these are correlated with general executive impairment. If the CSC proposal is correct, patients with executive impairment should not only exhibit impaired semantic cognition, but should also show characteristics that align with those observed in SA. This possibility remains largely untested, as patients selected on the basis that they show executive impairment (i.e., with 'dysexecutive syndrome') have not been extensively tested on tasks tapping semantic control and have not been previously compared with SA cases. We explored conceptual processing in 12 patients showing symptoms consistent with dysexecutive syndrome (DYS) and 24 SA patients, using a range of multimodal semantic assessments which manipulated control demands. Patients with executive impairments, despite not being selected to show semantic impairments, nevertheless showed parallel patterns to SA cases. They showed strong effects of distractor strength, cues and miscues, and probe-target distance, plus minimal effects of word frequency on comprehension (unlike semantic dementia patients with degradation of conceptual knowledge). This supports a component process account of semantic cognition in which retrieval is shaped by control processes, and confirms that deficits in SA patients reflect difficulty controlling semantic retrieval. © 2018 The Authors. Journal of Neuropsychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Unitary vs multiple semantics: PET studies of word and picture processing.
Bright, P; Moss, H; Tyler, L K
2004-06-01
In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990; Lambon Ralph, Graham, Patterson, & Hodges, 1999; Rapp, Hillis, & Caramazza, 1993)? We present an analysis of four PET studies (three semantic categorisation tasks and one lexical decision task), two of which employ words as stimuli and two of which employ pictures. Using conjunction analyses, we found robust semantic activation, common to both input modalities in anterior and medial aspects of the left fusiform gyrus, left parahippocampal and perirhinal cortices, and left inferior frontal gyrus (BA 47). There were modality-specific activations in both temporal poles (words) and occipitotemporal cortices (pictures). We propose that the temporal poles are involved in processing both words and pictures, but their engagement might be primarily determined by the level of specificity at which an object is processed. Activation in posterior temporal regions associated with picture processing most likely reflects intermediate, pre-semantic stages of visual processing. Our data are most consistent with a hierarchically structured, unitary system of semantic representations for both verbal and visual modalities, subserved by anterior regions of the inferior temporal cortex.
(Pea)nuts and bolts of visual narrative: Structure and meaning in sequential image comprehension
Cohn, Neil; Paczynski, Martin; Jackendoff, Ray; Holcomb, Phillip J.; Kuperberg, Gina R.
2012-01-01
Just as syntax differentiates coherent sentences from scrambled word strings, the comprehension of sequential images must also use a cognitive system to distinguish coherent narrative sequences from random strings of images. We conducted experiments analogous to two classic studies of language processing to examine the contributions of narrative structure and semantic relatedness to processing sequential images. We compared four types of comic strips: 1) Normal sequences with both structure and meaning, 2) Semantic Only sequences (in which the panels were related to a common semantic theme, but had no narrative structure), 3) Structural Only sequences (narrative structure but no semantic relatedness), and 4) Scrambled sequences of randomly-ordered panels. In Experiment 1, participants monitored for target panels in sequences presented panel-by-panel. Reaction times were slowest to panels in Scrambled sequences, intermediate in both Structural Only and Semantic Only sequences, and fastest in Normal sequences. This suggests that both semantic relatedness and narrative structure offer advantages to processing. Experiment 2 measured ERPs to all panels across the whole sequence. The N300/N400 was largest to panels in both the Scrambled and Structural Only sequences, intermediate in Semantic Only sequences and smallest in the Normal sequences. This implies that a combination of narrative structure and semantic relatedness can facilitate semantic processing of upcoming panels (as reflected by the N300/N400). Also, panels in the Scrambled sequences evoked a larger left-lateralized anterior negativity than panels in the Structural Only sequences. This localized effect was distinct from the N300/N400, and appeared despite the fact that these two sequence types were matched on local semantic relatedness between individual panels. These findings suggest that sequential image comprehension uses a narrative structure that may be independent of semantic relatedness. Altogether, we argue that the comprehension of visual narrative is guided by an interaction between structure and meaning. PMID:22387723
Thematic relatedness production norms for 100 object concepts.
Jouravlev, Olessia; McRae, Ken
2016-12-01
Knowledge of thematic relations is an area of increased interest in semantic memory research because it is crucial to many cognitive processes. One methodological issue that researchers face is how to identify pairs of thematically related concepts that are well-established in semantic memory for most people. In this article, we review existing methods of assessing thematic relatedness and provide thematic relatedness production norming data for 100 object concepts. In addition, 1,174 related concept pairs obtained from the production norms were classified as reflecting one of the five subtypes of relations: attributive, argument, coordinate, locative, and temporal. The database and methodology will be useful for researchers interested in the effects of thematic knowledge on language processing, analogical reasoning, similarity judgments, and memory. These data will also benefit researchers interested in investigating potential processing differences among the five types of semantic relations.
Measurements of auditory-verbal STM span in aphasia: effects of item, task, and lexical impairment.
Martin, Nadine; Ayala, Jennifer
2004-06-01
In the first part of this study, we investigated effects of item and task type on span performance in a group of aphasic individuals with word processing and STM deficits. Group analyses revealed significant effects of item on span performance with span being greater for digits than for words. We also investigated associations between subjects' lexical-semantic and phonological processing abilities and performance on four measures of verbal span (digit and word span, each varied for type of response, verbal vs. pointing) as well as one measure of nonverbal span. We predicted and found that the patterns of association between verbal span tasks and lexical abilities reflected the integrity of language processes and representations deployed in each paradigm used to assess span. Performance on the pointing span task, which engages both lexical-semantic and phonological processes, correlated with measures of both lexical-semantic and phonological abilities. Performance on repetition span, which engages primarily input and output phonological processes, correlated with measures of phonological abilities but not measures of lexical-semantic abilities. However, when partial correlations were performed for two subject groups based on their relative preservation of lexical-semantic ability (less or more than phonological ability), repetition span correlated with lexical-semantic measures only in the subgroup with relatively impaired lexical-semantics. Additionally, performance on the nonverbal span task correlated with measures of phonological abilities, suggesting either a general cognitive deficit affecting verbal and nonverbal STM or possibly, the use of a verbal strategy to perform this task. Our discussion focuses on the interpretation of span measurements in clinical practice and research, as well as the implications of these data for theories of short-term memory and word processing.
Robson, Holly; Sage, Karen; Ralph, Matthew A Lambon
2012-01-01
Wernicke's aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and semantic aphasia) and (b) an ongoing debate about the underlying causes of comprehension impairment in WA. By directly comparing these three patient groups for the first time, we demonstrate that the comprehension impairment in Wernicke's aphasia is best accounted for by dual deficits in acoustic-phonological analysis (associated with pSTG) and semantic cognition (associated with pMTG and angular gyrus). The WA group were impaired on both nonverbal and verbal comprehension assessments consistent with a generalised semantic impairment. This semantic deficit was most similar in nature to that of the semantic aphasia group suggestive of a disruption to semantic control processes. In addition, only the WA group showed a strong effect of input modality on comprehension, with accuracy decreasing considerably as acoustic-phonological requirements increased. These results deviate from traditional accounts which emphasise a single impairment and, instead, implicate two deficits underlying the comprehension disorder in WA. Copyright © 2011 Elsevier Ltd. All rights reserved.
West, W C; Holcomb, P J
2000-11-01
Words representing concrete concepts are processed more quickly and efficiently than words representing abstract concepts. Concreteness effects have also been observed in studies using event-related brain potentials (ERPs). The aim of this study was to examine concrete and abstract words using both reaction time (RT) and ERP measurements to determine (1) at what point in the stream of cognitive processing concreteness effects emerge and (2) how different types of cognitive operations influence these concreteness effects. Three groups of subjects performed a sentence verification task in which the final word of each sentence was concrete or abstract. For each group the truthfulness judgment required either (1) image generation, (2) semantic decision, or (3) evaluation of surface characteristics. Concrete and abstract words produced similar RTs and ERPs in the surface task, suggesting that postlexical semantic processing is necessary to elicit concreteness effects. In both the semantic and imagery tasks, RTs were shorter for concrete than for abstract words. This difference was greatest in the imagery task. Also, in both of these tasks concrete words elicited more negative ERPs than abstract words between 300 and 550 msec (N400). This effect was widespread across the scalp and may reflect activation in a linguistic semantic system common to both concrete and abstract words. ERPs were also more negative for concrete than abstract words between 550 and 800 msec. This effect was more frontally distributed and was most evident in the imagery task. We propose that this later anterior effect represents a distinct ERP component (N700) that is sensitive to the use of mental imagery. The N700 may reflect the a access of specific characteristics of the imaged item or activation in a working memory system specific to mental imagery. These results also support the extended dual-coding hypothesis that superior associative connections and the use of mental imagery both contribute to processing advantages for concrete words over abstract words.
Cheyette, Samuel J.; Plaut, David C.
2016-01-01
The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012, Brain and Language, 120, 271-281; Laszlo & Armstrong, 2014, Brain and Language, 132, 22-27) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on “implicit semantic prediction error” (Rabovsky & McRae, 2014, Cognition, 132, 68-98) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. PMID:27871623
Body-part-specific representations of semantic noun categories.
Carota, Francesca; Moseley, Rachel; Pulvermüller, Friedemann
2012-06-01
Word meaning processing in the brain involves ventrolateral temporal cortex, but a semantic contribution of the dorsal stream, especially frontocentral sensorimotor areas, has been controversial. We here examine brain activation during passive reading of object-related nouns from different semantic categories, notably animal, food, and tool words, matched for a range of psycholinguistic features. Results show ventral stream activation in temporal cortex along with category-specific activation patterns in both ventral and dorsal streams, including sensorimotor systems and adjacent pFC. Precentral activation reflected action-related semantic features of the word categories. Cortical regions implicated in mouth and face movements were sparked by food words, and hand area activation was seen for tool words, consistent with the actions implicated by the objects the words are used to speak about. Furthermore, tool words specifically activated the right cerebellum, and food words activated the left orbito-frontal and fusiform areas. We discuss our results in the context of category-specific semantic deficits in the processing of words and concepts, along with previous neuroimaging research, and conclude that specific dorsal and ventral areas in frontocentral and temporal cortex index visual and affective-emotional semantic attributes of object-related nouns and action-related affordances of their referent objects.
Cheyette, Samuel J; Plaut, David C
2017-05-01
The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on "implicit semantic prediction error" (Rabovsky & McRae, 2014) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.
Balthazar, Marcio L.F.; Yasuda, Clarissa L.; Lopes, Tátila M.; Pereira, Fabrício R.S.; Damasceno, Benito Pereira; Cendes, Fernando
2011-01-01
Neuroanatomical correlations of naming and lexical-semantic memory are not yet fully understood. The most influential approaches share the view that semantic representations reflect the manner in which information has been acquired through perception and action, and that each brain area processes different modalities of semantic representations. Despite these anatomical differences in semantic processing, generalization across different features that have similar semantic significance is one of the main characteristics of human cognition. Methods We evaluated the brain regions related to naming, and to the semantic generalization, of visually presented drawings of objects from the Boston Naming Test (BNT), which comprises different categories, such as animals, vegetables, tools, food, and furniture. In order to create a model of lesion method, a sample of 48 subjects presenting with a continuous decline both in cognitive functions, including naming skills, and in grey matter density (GMD) was compared to normal young adults with normal aging, amnestic mild cognitive impairment (aMCI) and mild Alzheimer’s disease (AD). Semantic errors on the BNT, as well as naming performance, were correlated with whole brain GMD as measured by voxel-based morphometry (VBM). Results The areas most strongly related to naming and to semantic errors were the medial temporal structures, thalami, superior and inferior temporal gyri, especially their anterior parts, as well as prefrontal cortices (inferior and superior frontal gyri). Conclusion The possible role of each of these areas in the lexical-semantic networks was discussed, along with their contribution to the models of semantic memory organization. PMID:29213726
An fMRI study of semantic processing in men with schizophrenia
Kubicki, M.; McCarley, R.W.; Nestor, P.G.; Huh, T.; Kikinis, R.; Shenton, M.E.; Wible, C.G.
2009-01-01
As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance. PMID:14683698
An fMRI study of semantic processing in men with schizophrenia.
Kubicki, M; McCarley, R W; Nestor, P G; Huh, T; Kikinis, R; Shenton, M E; Wible, C G
2003-12-01
As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance.
Children and adolescents' performance on a medium-length/nonsemantic word-list test.
Flores-Lázaro, Julio César; Salgado Soruco, María Alejandra; Stepanov, Igor I
2017-01-01
Word-list learning tasks are among the most important and frequently used tests for declarative memory evaluation. For example, the California Verbal Learning Test-Children's Version (CVLT-C) and Rey Auditory Verbal Learning Test provide important information about different cognitive-neuropsychological processes. However, the impact of test length (i.e., number of words) and semantic organization (i.e., type of words) on children's and adolescents' memory performance remains to be clarified, especially during this developmental stage. To explore whether a medium-length non-semantically organized test can produce the typical curvilinear performance that semantically organized tests produce, reflecting executive control, we studied and compared the cognitive performance of normal children and adolescents by utilizing mathematical modeling. The model is based on the first-order system transfer function and has been successfully applied to learning curves for the CVLT-C (15 words, semantically organized paradigm). Results indicate that learning nine semantically unrelated words produces typical curvilinear (executive function) performance in children and younger adolescents and that performance could be effectively analyzed with the mathematical model. This indicates that the exponential increase (curvilinear performance) of correctly learned words does not solely depend on semantic and/or length features. This type of test controls semantic and length effects and may represent complementary tools for executive function evaluation in clinical populations in which semantic and/or length processing are affected.
The structure of semantic person memory: evidence from semantic priming in person recognition.
Wiese, Holger
2011-11-01
This paper reviews research on the structure of semantic person memory as examined with semantic priming. In this experimental paradigm, a familiarity decision on a target face or written name is usually faster when it is preceded by a related as compared to an unrelated prime. This effect has been shown to be relatively short lived and susceptible to interfering items. Moreover, semantic priming can cross stimulus domains, such that a written name can prime a target face and vice versa. However, it remains controversial whether representations of people are stored in associative networks based on co-occurrence, or in more abstract semantic categories. In line with prominent cognitive models of face recognition, which explain semantic priming by shared semantic information between prime and target, recent research demonstrated that priming could be obtained from purely categorically related, non-associated prime/target pairs. Although strategic processes, such as expectancy and retrospective matching likely contribute, there is also evidence for a non-strategic contribution to priming, presumably related to spreading activation. Finally, a semantic priming effect has been demonstrated in the N400 event-related potential (ERP) component, which may reflect facilitated access to semantic information. It is concluded that categorical relatedness is one organizing principle of semantic person memory. ©2011 The British Psychological Society.
Pulvermüller, Friedemann; Cooper-Pye, Elisa; Dine, Clare; Hauk, Olaf; Nestor, Peter J; Patterson, Karalyn
2010-09-01
It has been claimed that semantic dementia (SD), the temporal variant of fronto-temporal dementia, is characterized by an across-the-board deficit affecting all types of conceptual knowledge. We here confirm this generalized deficit but also report differential degrees of impairment in processing specific semantic word categories in a case series of SD patients (N = 11). Within the domain of words with strong visually grounded meaning, the patients' lexical decision accuracy was more impaired for color-related than for form-related words. Likewise, within the domain of action verbs, the patients' performance was worse for words referring to face movements and speech acts than for words semantically linked to actions performed with the hand and arm. Psycholinguistic properties were matched between the stimulus groups entering these contrasts; an explanation for the differential degrees of impairment must therefore involve semantic features of the words in the different conditions. Furthermore, this specific pattern of deficits cannot be captured by classic category distinctions such as nouns versus verbs or living versus nonliving things. Evidence from previous neuroimaging research indicates that color- and face/speech-related words, respectively, draw most heavily on anterior-temporal and inferior-frontal areas, the structures most affected in SD. Our account combines (a) the notion of an anterior-temporal amodal semantic "hub" to explain the profound across-the-board deficit in SD word processing, with (b) a semantic topography model of category-specific circuits whose cortical distributions reflect semantic features of the words and concepts represented.
Affective priming effects of musical sounds on the processing of word meaning.
Steinbeis, Nikolaus; Koelsch, Stefan
2011-03-01
Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.
Semantic processing in subliminal face stimuli: an EEG and tDCS study.
Kongthong, Nutchakan; Minami, Tetsuto; Nakauchi, Shigeki
2013-06-07
Whether visual subliminal processing involves semantic processing is still being debated. To examine this, we combined a passive electroencephalogram (EEG) study with an application of transcranial direct current stimulation (tDCS). In the masked-face priming paradigm, we presented a subliminal prime preceding the target stimulus. Participants were asked to determine whether the target face was a famous face, indicated by a button press. The prime and target pair were either the same person's face (congruent) or different person's faces (incongruent), and were always both famous or both non-famous faces. Experiments were performed over 2 days: 1 day for a real tDCS session and another for a sham session as a control condition. In the sham session, a priming effect, reflected in the difference in amplitude of the late positive component (250-500 ms to target onset), was observed only in the famous prime condition. According to a previous study, this effect might indicate a subliminal semantic process [10]. Alternatively, a priming effect toward famous primes disappeared after tDCS stimulation. Our results suggested that a subliminal process might not be limited to processes in the occipital and temporal areas, but may proceed to the semantic level processed in prefrontal cortex. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Zhang, Liwen; Vander Meer, Lisette; Opmeer, Esther M; Marsman, Jan-Bernard C; Ruhé, Henricus G; Aleman, André
2016-12-01
Disturbances in implicit self-processing have been reported both in psychotic patients with bipolar disorder (BD) and schizophrenia. It remains unclear whether these two psychotic disorders show disturbed functional connectivity during explicit self-reflection, which is associated with social functioning and illness symptoms. Therefore, we investigated functional connectivity during explicit self-reflection in BD with past psychosis and schizophrenia. Twenty-three BD-patients, 17 schizophrenia-patients and 21 health controls (HC) performed a self-reflection task, including the conditions self-reflection, close other-reflection and semantic control. Functional connectivity was investigated with generalized psycho-physiological interaction (gPPI). During self-reflection compared to semantic, BD-patients had decreased connectivity between several cortical-midline structures (CMS) nodes (i.e., anterior cingulate cortex, ventromedial prefrontal cortex), the insula and the head of the caudate while HC showed increased connectivities. Schizophrenia-patients, during close other-reflection compared to semantic, demonstrated reduced ventral-anterior insula-precuneus/posterior cingulate cortex (PCC) functional connectivity, whereas this was increased in HC. There were no differences between BD and schizophrenia during self- and close other-reflection. We propose that decreased functional connectivity between the CMS nodes/insula and head of the caudate in BD-patients may imply a reduced involvement of the motivational system during self-reflection; and the reduced functional connectivity between the ventral-anterior insula and precuneus/PCC during close other-reflection in schizophrenia-patients may subserve difficulties in information integration of autobiographical memory and emotional awareness in relation to close others. These distinctive impaired patterns of functional connectivity in BD and schizophrenia (compared to HC) deserve further investigation to determine their robustness and associations with differences in clinical presentation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blackford, Trevor; Holcomb, Phillip J.; Grainger, Jonathan; Kuperberg, Gina R.
2013-01-01
We measured Event-Related Potentials (ERPs) and naming times to picture targets preceded by masked words (stimulus onset asynchrony: 80 ms) that shared one of three different types of relationship with the names of the pictures: (1) Identity related, in which the prime was the name of the picture (“socks” –
Shaving Bridges and Tuning Kitaraa: The Effect of Language Switching on Semantic Processing
Hut, Suzanne C. A.; Leminen, Alina
2017-01-01
Language switching has been repeatedly found to be costly. Yet, there are reasons to believe that switches in language might benefit language comprehension in some groups of people, such as less proficient language learners. This study therefore investigated the interplay between language switching and semantic processing in groups with varying language proficiency. EEG was recorded while L2 learners of English with intermediate and high proficiency levels read semantically congruent or incongruent sentences in L2. Translations of congruent and incongruent target words were additionally presented in L1 to create intrasentential language switches. A control group of English native speakers was tested in order to compare responses to non-switched stimuli with those of L2 learners. An omnibus ANOVA including all groups revealed larger N400 responses for non-switched incongruent stimuli compared to congruent stimuli. Additionally, despite switches to L1 at target word position, semantic N400 responses were still elicited in both L2 learner groups. Further switching effects were reflected by an N400-like effect and a late positivity complex, pointing to possible parsing efforts after language switches. Our results therefore show that although language switches are associated with increased mental effort, switches may not necessarily be costly on the semantic level. This finding contributes to the ongoing discussion on language inhibition processes, and shows that, in these intermediate and high proficient L2 learners, semantic processes look similar to those of native speakers of English. PMID:28900402
Lapinskaya, Natalia; Uzomah, Uchechukwu; Bedny, Marina; Lau, Ellen
2016-12-01
Numerous theories have been proposed regarding the brain's organization and retrieval of lexical information. Neurophysiological dissociations in processing different word classes, particularly nouns and verbs, have been extensively documented, supporting the contribution of grammatical class to lexical organization. However, the contribution of semantic properties to these processing differences is still unresolved. We aim to isolate this contribution by comparing ERPs to verbs (e.g. wade), object nouns (e.g. cookie), and event nouns (e.g. concert) in a paired similarity judgment task, as event nouns share grammatical category with object nouns but some semantic properties with verbs. We find that event nouns pattern with verbs in eliciting a more positive response than object nouns across left anterior electrodes 300-500ms after word presentation. This time-window has been strongly linked to lexical-semantic access by prior electrophysiological work. Thus, the similarity of the response to words referring to concepts with more complex participant structure and temporal continuity extends across grammatical class (event nouns and verbs), and contrasts with the words that refer to objects (object nouns). This contrast supports a semantic, as well as syntactic, contribution to the differential neural organization and processing of lexical items. We also observed a late (500-800ms post-stimulus) posterior positivity for object nouns relative to event nouns and verbs at the second word of each pair, which may reflect the impact of semantic properties on the similarity judgment task. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blair, K S; Richell, R A; Mitchell, D G V; Leonard, A; Morton, J; Blair, R J R
2006-08-01
Previous work has indicated dysfunctional affect-language interactions in individuals with psychopathy through use of the lexical decision task. However, it has been uncertain as to whether these deficits actually reflect impaired affect-language interactions or a more fundamental deficit in general semantic processing. In this study, we examined affective priming and semantic priming (dependent measures were reaction times and error rates) in individuals with psychopathy and comparison individuals, classified according to the psychopathy checklist revised (PCL-R) [Hare, R.D., 1991. The Hare Psychopathy Checklist-Revised. Multi-Health Systems, Toronto, Ont] Individuals with psychopathy showed significantly less affective priming relative to comparison individuals. In contrast, the two groups showed comparable levels of semantic priming. The results are discussed with reference to current models of psychopathy.
Self-reflection and the psychosis-prone brain: an fMRI study.
Modinos, Gemma; Renken, Remco; Ormel, Johan; Aleman, André
2011-05-01
The Cortical Midline Structures (CMS) play a critical role in self-reflection, together with the insula. Abnormalities in self-referential processing and its neural underpinnings have been reported in schizophrenia and at-risk populations, suggesting they might be markers of psychotic vulnerability. Psychometric measures of schizotypal traits may be used to index psychosis proneness (PP) in nonclinical samples. It remains an unresolved question whether differences in self-reflective processing are associated with PP. Six hundred students completed the Community Assessment of Psychic Experiences Questionnaire, positive subscale. Two groups were formed from the extremes of the distribution (total N = 36). fMRI was used to examine CMS/insula function during a self-reflection task. Participants judged personality trait sentences about self and about an acquaintance. High PP subjects attributed less positive traits to others (i.e., acquaintances) than subjects with low PP. Across groups, the contrasts self > semantic and self > other induced activation in CMS and insula, whereas other > semantic did not produce insula activation. Other > self induced posterior cingulate cortex activation in low PP but not in high PP. In addition, high PP subjects showed stronger activation than low PP in left insula during self > semantic. Examining valence effects revealed that high PP individuals showed increased activation in left insula, right dMPFC, and left vMPFC for positive self-related traits, and in bilateral insula, ACC, and right dMPFC for negative self-related traits. The findings suggest that aspects of self-referential processing and underlying brain mechanisms are similar in clinical and subclinical (high PP) forms of psychosis, suggesting that these may be associated with vulnerability to psychosis.
ERIC Educational Resources Information Center
Sugiura, Motoaki; Mano, Yoko; Sasaki, Akihiro; Sadato, Norihiro
2011-01-01
Special processes recruited during the recognition of personally familiar people have been assumed to reflect the rich episodic and semantic information that selectively represents each person. However, the processes may also include person nonselective ones, which may require interpretation in terms beyond the memory mechanism. To examine this…
Liu, Hong; Zhang, Gaoyan; Liu, Baolin
2017-04-01
In the Chinese language, a polyphone is a kind of special character that has more than one pronunciation, with each pronunciation corresponding to a different meaning. Here, we aimed to reveal the cognitive processing of audio-visual information integration of polyphones in a sentence context using the event-related potential (ERP) method. Sentences ending with polyphones were presented to subjects simultaneously in both an auditory and a visual modality. Four experimental conditions were set in which the visual presentations were the same, but the pronunciations of the polyphones were: the correct pronunciation; another pronunciation of the polyphone; a semantically appropriate pronunciation but not the pronunciation of the polyphone; or a semantically inappropriate pronunciation but also not the pronunciation of the polyphone. The behavioral results demonstrated significant differences in response accuracies when judging the semantic meanings of the audio-visual sentences, which reflected the different demands on cognitive resources. The ERP results showed that in the early stage, abnormal pronunciations were represented by the amplitude of the P200 component. Interestingly, because the phonological information mediated access to the lexical semantics, the amplitude and latency of the N400 component changed linearly across conditions, which may reflect the gradually increased semantic mismatch in the four conditions when integrating the auditory pronunciation with the visual information. Moreover, the amplitude of the late positive shift (LPS) showed a significant correlation with the behavioral response accuracies, demonstrating that the LPS component reveals the demand of cognitive resources for monitoring and resolving semantic conflicts when integrating the audio-visual information.
Zachau, Swantje; Korpilahti, Pirjo; Hämäläinen, Jarmo A; Ervast, Leena; Heinänen, Kaisu; Suominen, Kalervo; Lehtihalmes, Matti; Leppänen, Paavo H T
2014-07-01
We explored semantic integration mechanisms in native and non-native hearing users of sign language and non-signing controls. Event-related brain potentials (ERPs) were recorded while participants performed a semantic decision task for priming lexeme pairs. Pairs were presented either within speech or across speech and sign language. Target-related ERP responses were subjected to principal component analyses (PCA), and neurocognitive basis of semantic integration processes were assessed by analyzing the N400 and the late positive complex (LPC) components in response to spoken (auditory) and signed (visual) antonymic and unrelated targets. Semantically-related effects triggered across modalities would indicate a similar tight interconnection between the signers׳ two languages like that described for spoken language bilinguals. Remarkable structural similarity of the N400 and LPC components with varying group differences between the spoken and signed targets were found. The LPC was the dominant response. The controls׳ LPC differed from the LPC of the two signing groups. It was reduced to the auditory unrelated targets and was less frontal for all the visual targets. The visual LPC was more broadly distributed in native than non-native signers and was left-lateralized for the unrelated targets in the native hearing signers only. Semantic priming effects were found for the auditory N400 in all groups, but only native hearing signers revealed a clear N400 effect to the visual targets. Surprisingly, the non-native signers revealed no semantically-related processing effect to the visual targets reflected in the N400 or the LPC; instead they appeared to rely more on visual post-lexical analyzing stages than native signers. We conclude that native and non-native signers employed different processing strategies to integrate signed and spoken semantic content. It appeared that the signers׳ semantic processing system was affected by group-specific factors like language background and/or usage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Levels-of-processing effect on internal source monitoring in schizophrenia.
Ragland, J Daniel; McCarthy, Erin; Bilker, Warren B; Brensinger, Colleen M; Valdez, Jeffrey; Kohler, Christian; Gur, Raquel E; Gur, Ruben C
2006-05-01
Recognition can be normalized in schizophrenia by providing patients with semantic organizational strategies through a levels-of-processing (LOP) framework. However, patients may rely primarily on familiarity effects, making recognition less sensitive than source monitoring to the strength of the episodic memory trace. The current study investigates whether providing semantic organizational strategies can also normalize patients' internal source-monitoring performance. Sixteen clinically stable medicated patients with schizophrenia and 15 demographically matched healthy controls were asked to identify the source of remembered words following an LOP-encoding paradigm in which they alternated between processing words on a 'shallow' perceptual versus a 'deep' semantic level. A multinomial analysis provided orthogonal measures of item recognition and source discrimination, and bootstrapping generated variance to allow for parametric analyses. LOP and group effects were tested by contrasting recognition and source-monitoring parameters for words that had been encoded during deep versus shallow processing conditions. As in a previous study there were no group differences in LOP effects on recognition performance, with patients and controls benefiting equally from deep versus shallow processing. Although there were no group differences in internal source monitoring, only controls had significantly better performance for words processed during the deep encoding condition. Patient performance did not correlate with clinical symptoms or medication dose. Providing a deep processing semantic encoding strategy significantly improved patients' recognition performance only. The lack of a significant LOP effect on internal source monitoring in patients may reflect subtle problems in the relational binding of semantic information that are independent of strategic memory processes.
Attentional Capture by Emotional Stimuli Is Modulated by Semantic Processing
ERIC Educational Resources Information Center
Huang, Yang-Ming; Baddeley, Alan; Young, Andrew W.
2008-01-01
The attentional blink paradigm was used to examine whether emotional stimuli always capture attention. The processing requirement for emotional stimuli in a rapid sequential visual presentation stream was manipulated to investigate the circumstances under which emotional distractors capture attention, as reflected in an enhanced attentional blink…
Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi
2017-02-01
Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.
Space-valence priming with subliminal and supraliminal words.
Ansorge, Ulrich; Khalid, Shah; König, Peter
2013-01-01
To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime "up" before the target "happy") than with an incongruent prime (e.g., the prime "up" before the target "sad"). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments.
Sormaz, Mladen; Jefferies, Elizabeth; Bernhardt, Boris C; Karapanagiotidis, Theodoros; Mollo, Giovanna; Bernasconi, Neda; Bernasconi, Andrea; Hartley, Tom; Smallwood, Jonathan
2017-05-15
The hippocampus contributes to episodic, spatial and semantic aspects of memory, yet individual differences within and between these functions are not well-understood. In 136 healthy individuals, we investigated whether these differences reflect variation in the strength of connections between functionally-specialised segments of the hippocampus and diverse cortical regions that participate in different aspects of memory. Better topographical memory was associated with stronger connectivity between lingual gyrus and left anterior, rather than posterior, hippocampus. Better semantic memory was associated with increased connectivity between the intracalcarine/cuneus and left, rather than right, posterior hippocampus. Notably, we observed a double dissociation between semantic and topographical memory: better semantic memory was associated with stronger connectivity between left temporoparietal cortex and left anterior hippocampus, while better topographic memory was linked to stronger connectivity with right anterior hippocampus. Together these data support a division-of-labour account of hippocampal functioning: at the population level, differences in connectivity across the hippocampus reflect functional specialisation for different facets of memory, while variation in these connectivity patterns across individuals is associated with differences in the capacity to retrieve different types of information. In particular, within-hemisphere connectivity between hippocampus and left temporoparietal cortex supports conceptual processing at the expense of spatial ability. Copyright © 2017. Published by Elsevier Inc.
Vissers, Constance Th W M; Chwilla, Uli G; Egger, Jos I M; Chwilla, Dorothee J
2013-05-01
Little is known about the relationship between language and emotion. Vissers et al. (2010) investigated the effects of mood on the processing of syntactic violations, as indexed by P600. An interaction was observed between mood and syntactic correctness for which three explanations were offered: one in terms of syntactic processing, one in terms of heuristic processing, and one in terms of more general factors like attention and/or motivation. In this experiment, we further determined the locus of the effects of emotional state on language comprehension by investigating the effects of mood on the processing of semantic reversal anomalies (e.g., "the cat that fled from the mice"), in which heuristics play a key role. The main findings were as follows. The mood induction was effective: participants were happier after watching happy film clips and sadder after watching sad film clips compared to baseline. For P600, a mood by semantic plausibility interaction was obtained reflecting a broadly distributed P600 effect for the happy mood vs. absence of a P600 for the sad mood condition. Correlation analyses confirmed that changes in P600 in happy mood were accompanied by changes in emotional state. Given that semantic reversal anomalies are syntactically unambiguous, the P600 modulation by mood cannot be explained by syntactic factors. The semantic plausibility by mood interaction can be accounted for in terms of (1) heuristic processing (stronger reliance on a good enough representation of the input in happy mood than sad mood), and/or (2) more general factors like attention (e.g., more attention to semantic reversals in happy mood than sad mood). Copyright © 2013 Elsevier Ltd. All rights reserved.
Imaging Implicit Morphological Processing: Evidence from Hebrew
ERIC Educational Resources Information Center
Bick, Atira S.; Frost, Ram; Goelman, Gadi
2010-01-01
Is morphology a discrete and independent element of lexical structure or does it simply reflect a fine-tuning of the system to the statistical correlation that exists among orthographic and semantic properties of words? Hebrew provides a unique opportunity to examine morphological processing in the brain because of its rich morphological system.…
Data-driven classification of patients with primary progressive aphasia.
Hoffman, Paul; Sajjadi, Seyed Ahmad; Patterson, Karalyn; Nestor, Peter J
2017-11-01
Current diagnostic criteria classify primary progressive aphasia into three variants-semantic (sv), nonfluent (nfv) and logopenic (lv) PPA-though the adequacy of this scheme is debated. This study took a data-driven approach, applying k-means clustering to data from 43 PPA patients. The algorithm grouped patients based on similarities in language, semantic and non-linguistic cognitive scores. The optimum solution consisted of three groups. One group, almost exclusively those diagnosed as svPPA, displayed a selective semantic impairment. A second cluster, with impairments to speech production, repetition and syntactic processing, contained a majority of patients with nfvPPA but also some lvPPA patients. The final group exhibited more severe deficits to speech, repetition and syntax as well as semantic and other cognitive deficits. These results suggest that, amongst cases of non-semantic PPA, differentiation mainly reflects overall degree of language/cognitive impairment. The observed patterns were scarcely affected by inclusion/exclusion of non-linguistic cognitive scores. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Robson, Holly; Sage, Karen; Lambon Ralph, Matthew A.
2012-01-01
Wernicke's aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and…
Manfredi, Mirella; Cohn, Neil; Kutas, Marta
2017-06-01
Researchers have long questioned whether information presented through different sensory modalities involves distinct or shared semantic systems. We investigated uni-sensory cross-modal processing by recording event-related brain potentials to words replacing the climactic event in a visual narrative sequence (comics). We compared Onomatopoeic words, which phonetically imitate action sounds (Pow!), with Descriptive words, which describe an action (Punch!), that were (in)congruent within their sequence contexts. Across two experiments, larger N400s appeared to Anomalous Onomatopoeic or Descriptive critical panels than to their congruent counterparts, reflecting a difficulty in semantic access/retrieval. Also, Descriptive words evinced a greater late frontal positivity compared to Onomatopoetic words, suggesting that, though plausible, they may be less predictable/expected in visual narratives. Our results indicate that uni-sensory cross-model integration of word/letter-symbol strings within visual narratives elicit ERP patterns typically observed for written sentence processing, thereby suggesting the engagement of similar domain-independent integration/interpretation mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.
A Large-Scale Analysis of Variance in Written Language.
Johns, Brendan T; Jamieson, Randall K
2018-01-22
The collection of very large text sources has revolutionized the study of natural language, leading to the development of several models of language learning and distributional semantics that extract sophisticated semantic representations of words based on the statistical redundancies contained within natural language (e.g., Griffiths, Steyvers, & Tenenbaum, ; Jones & Mewhort, ; Landauer & Dumais, ; Mikolov, Sutskever, Chen, Corrado, & Dean, ). The models treat knowledge as an interaction of processing mechanisms and the structure of language experience. But language experience is often treated agnostically. We report a distributional semantic analysis that shows written language in fiction books varies appreciably between books from the different genres, books from the same genre, and even books written by the same author. Given that current theories assume that word knowledge reflects an interaction between processing mechanisms and the language environment, the analysis shows the need for the field to engage in a more deliberate consideration and curation of the corpora used in computational studies of natural language processing. Copyright © 2018 Cognitive Science Society, Inc.
Manfredi, Mirella; Cohn, Neil; Kutas, Marta
2017-01-01
Researchers have long questioned whether information presented through different sensory modalities involves distinct or shared semantic systems. We investigated uni-sensory cross-modal processing by recording event-related brain potentials to words replacing the climactic event in a visual narrative sequence (comics). We compared Onomatopoeic words, which phonetically imitate action sounds (Pow!), with Descriptive words, which describe an action (Punch!), that were (in)congruent within their sequence contexts. Across two experiments, larger N400s appeared to Anomalous Onomatopoeic or Descriptive critical panels than to their congruent counterparts, reflecting a difficulty in semantic access/retrieval. Also, Descriptive words evinced a greater late frontal positivity compared to Onomatopoetic words, suggesting that, though plausible, they may be less predictable/expected in visual narratives. Our results indicate that uni-sensory cross-model integration of word/letter-symbol strings within visual narratives elicit ERP patterns typically observed for written sentence processing, thereby suggesting the engagement of similar domain-independent integration/interpretation mechanisms. PMID:28242517
N400 ERPs for actions: building meaning in context
Amoruso, Lucía; Gelormini, Carlos; Aboitiz, Francisco; Alvarez González, Miguel; Manes, Facundo; Cardona, Juan F.; Ibanez, Agustín
2013-01-01
Converging neuroscientific evidence suggests the existence of close links between language and sensorimotor cognition. Accordingly, during the comprehension of meaningful actions, our brain would recruit semantic-related operations similar to those associated with the processing of language information. Consistent with this view, electrophysiological findings show that the N400 component, traditionally linked to the semantic processing of linguistic material, can also be elicited by action-related material. This review outlines recent data from N400 studies that examine the understanding of action events. We focus on three specific domains, including everyday action comprehension, co-speech gesture integration, and the semantics involved in motor planning and execution. Based on the reviewed findings, we suggest that both negativities (the N400 and the action-N400) reflect a common neurocognitive mechanism involved in the construction of meaning through the expectancies created by previous experiences and current contextual information. To shed light on how this process is instantiated in the brain, a testable contextual fronto-temporo-parietal model is proposed. PMID:23459873
Category specific dysnomia after thalamic infarction: a case-control study.
Levin, Netta; Ben-Hur, Tamir; Biran, Iftah; Wertman, Eli
2005-01-01
Category specific naming impairment was described mainly after cortical lesions. It is thought to result from a lesion in a specific network, reflecting the organization of our semantic knowledge. The deficit usually involves multiple semantic categories whose profile of naming deficit generally obeys the animate/inanimate dichotomy. Thalamic lesions cause general semantic naming deficit, and only rarely a category specific semantic deficit for very limited and highly specific categories. We performed a case-control study on a 56-year-old right-handed man who presented with language impairment following a left anterior thalamic infarction. His naming ability and semantic knowledge were evaluated in the visual, tactile and auditory modalities for stimuli from 11 different categories, and compared to that of five controls. In naming to visual stimuli the patient performed poorly (error rate>50%) in four categories: vegetables, toys, animals and body parts (average 70.31+/-15%). In each category there was a different dominating error type. He performed better in the other seven categories (tools, clothes, transportation, fruits, electric, furniture, kitchen utensils), averaging 14.28+/-9% errors. Further analysis revealed a dichotomy between naming in animate and inanimate categories in the visual and tactile modalities but not in response to auditory stimuli. Thus, a unique category specific profile of response and naming errors to visual and tactile, but not auditory stimuli was found after a left anterior thalamic infarction. This might reflect the role of the thalamus not only as a relay station but further as a central integrator of different stages of perceptual and semantic processing.
Electrophysiological signatures of phonological and semantic maintenance in sentence repetition.
Meltzer, Jed A; Kielar, Aneta; Panamsky, Lilia; Links, Kira A; Deschamps, Tiffany; Leigh, Rosie C
2017-08-01
Verbal short-term memory comprises resources for phonological rehearsal, which have been characterized anatomically, and for maintenance of semantic information, which are less understood. Sentence repetition tasks tap both processes interactively. To distinguish brain activity involved in phonological vs. semantic maintenance, we recorded magnetoencephalography during a sentence repetition task, incorporating three manipulations emphasizing one mechanism over the other. Participants heard sentences or word lists and attempted to repeat them verbatim after a 5-second delay. After MEG, participants completed a cued recall task testing how much they remembered of each sentence. Greater semantic engagement relative to phonological rehearsal was hypothesized for 1) sentences vs. word lists, 2) concrete vs. abstract sentences, and 3) well recalled vs. poorly recalled sentences. During auditory perception and the memory delay period, we found highly left-lateralized activation in the form of 8-30 Hz event-related desynchronization. Compared to abstract sentences, concrete sentences recruited posterior temporal cortex bilaterally, demonstrating a neural signature for the engagement of visual imagery in sentence maintenance. Maintenance of arbitrary word lists recruited right hemisphere dorsal regions, reflecting increased demands on phonological rehearsal. Sentences that were ultimately poorly recalled in the post-test also elicited extra right hemisphere activation when they were held in short-term memory, suggesting increased demands on phonological resources. Frontal midline theta oscillations also reflected phonological rather than semantic demand, being increased for word lists and poorly recalled sentences. These findings highlight distinct neural resources for phonological and semantic maintenance, with phonological maintenance associated with stronger oscillatory modulations. Copyright © 2017 Elsevier Inc. All rights reserved.
Specifying the role of the left prefrontal cortex in word selection
Ries, S. K; Karzmark, C. R.; Navarrete, E.; Knight, R. T.; Dronkers, N. F.
2015-01-01
Word selection allows us to choose words during language production. This is often viewed as a competitive process wherein a lexical representation is retrieved among semantically-related alternatives. The left prefrontal cortex (LPFC) is thought to help overcome competition for word selection through top-down control. However, whether the LPFC is always necessary for word selection remains unclear. We tested 6 LPFC-injured patients and controls in two picture naming paradigms varying in terms of item repetition. Both paradigms elicited the expected semantic interference effects (SIE), reflecting interference caused by semantically-related representations in word selection. However, LPFC patients as a group showed a larger SIE than controls only in the paradigm involving item repetition. We argue that item repetition increases interference caused by semantically-related alternatives, resulting in increased LPFC-dependent cognitive control demands. The remaining network of brain regions associated with word selection appears to be sufficient when items are not repeated. PMID:26291289
Concreteness in Word Processing: ERP and Behavioral Effects in a Lexical Decision Task
ERIC Educational Resources Information Center
Barber, Horacio A.; Otten, Leun J.; Kousta, Stavroula-Thaleia; Vigliocco, Gabriella
2013-01-01
Relative to abstract words, concrete words typically elicit faster response times and larger N400 and N700 event-related potential (ERP) brain responses. These effects have been interpreted as reflecting the denser links to associated semantic information of concrete words and their recruitment of visual imagery processes. Here, we examined…
Stanley, Nicholas; Davis, Tara; Estis, Julie
2017-03-01
Aging effects on speech understanding in noise have primarily been assessed through speech recognition tasks. Recognition tasks, which focus on bottom-up, perceptual aspects of speech understanding, intentionally limit linguistic and cognitive factors by asking participants to only repeat what they have heard. On the other hand, linguistic processing tasks require bottom-up and top-down (linguistic, cognitive) processing skills and are, therefore, more reflective of speech understanding abilities used in everyday communication. The effect of signal-to-noise ratio (SNR) on linguistic processing ability is relatively unknown for either young (YAs) or older adults (OAs). To determine if reduced SNRs would be more deleterious to the linguistic processing of OAs than YAs, as measured by accuracy and reaction time in a semantic judgment task in competing speech. In the semantic judgment task, participants indicated via button press whether word pairs were a semantic Match or No Match. This task was performed in quiet, as well as, +3, 0, -3, and -6 dB SNR with two-talker speech competition. Seventeen YAs (20-30 yr) with normal hearing sensitivity and 17 OAs (60-68 yr) with normal hearing sensitivity or mild-to-moderate sensorineural hearing loss within age-appropriate norms. Accuracy, reaction time, and false alarm rate were measured and analyzed using a mixed design analysis of variance. A decrease in SNR level significantly reduced accuracy and increased reaction time in both YAs and OAs. However, poor SNRs affected accuracy and reaction time of Match and No Match word pairs differently. Accuracy for Match pairs declined at a steeper rate than No Match pairs in both groups as SNR decreased. In addition, reaction time for No Match pairs increased at a greater rate than Match pairs in more difficult SNRs, particularly at -3 and -6 dB SNR. False-alarm rates indicated that participants had a response bias to No Match pairs as the SNR decreased. Age-related differences were limited to No Match pair accuracies at -6 dB SNR. The ability to correctly identify semantically matched word pairs was more susceptible to disruption by a poor SNR than semantically unrelated words in both YAs and OAs. The effect of SNR on this semantic judgment task implies that speech competition differentially affected the facilitation of semantically related words and the inhibition of semantically incompatible words, although processing speed, as measured by reaction time, remained faster for semantically matched pairs. Overall, the semantic judgment task in competing speech elucidated the effect of a poor listening environment on the higher order processing of words. American Academy of Audiology
The functional neuroanatomy of autobiographical memory: A meta-analysis
Svoboda, Eva; McKinnon, Margaret C.; Levine, Brian
2007-01-01
Autobiographical memory (AM) entails a complex set of operations, including episodic memory, self-reflection, emotion, visual imagery, attention, executive functions, and semantic processes. The heterogeneous nature of AM poses significant challenges in capturing its behavioral and neuroanatomical correlates. Investigators have recently turned their attention to the functional neuroanatomy of AM. We used the effect-location method of meta-analysis to analyze data from 24 functional imaging studies of AM. The results indicated a core neural network of left-lateralized regions, including the medial and ventrolateral prefrontal, medial and lateral temporal and retrosplenial/posterior cingulate cortices, the temporoparietal junction and the cerebellum. Secondary and tertiary regions, less frequently reported in imaging studies of AM, are also identified. We examined the neural correlates of putative component processes in AM, including, executive functions, self-reflection, episodic remembering and visuospatial processing. We also separately analyzed the effect of select variables on the AM network across individual studies, including memory age, qualitative factors (personal significance, level of detail and vividness), semantic and emotional content, and the effect of reference conditions. We found that memory age effects on medial temporal lobe structures may be modulated by qualitative aspects of memory. Studies using rest as a control task masked process-specific components of the AM neural network. Our findings support a neural distinction between episodic and semantic memory in AM. Finally, emotional events produced a shift in lateralization of the AM network with activation observed in emotion-centered regions and deactivation (or lack of activation) observed in regions associated with cognitive processes. PMID:16806314
Space-Valence Priming with Subliminal and Supraliminal Words
Ansorge, Ulrich; Khalid, Shah; König, Peter
2013-01-01
To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime “up” before the target “happy”) than with an incongruent prime (e.g., the prime “up” before the target “sad”). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments. PMID:23439863
Menninghaus, Winfried; Bohrn, Isabel C; Knoop, Christine A; Kotz, Sonja A; Schlotz, Wolff; Jacobs, Arthur M
2015-10-01
Studies on rhetorical features of language have reported both enhancing and adverse effects on ease of processing. We hypothesized that two explanations may account for these inconclusive findings. First, the respective gains and losses in ease of processing may apply to different dimensions of language processing (specifically, prosodic and semantic processing) and different types of fluency (perceptual vs. conceptual) and may well allow for an integration into a more comprehensive framework. Second, the effects of rhetorical features may be sensitive to interactions with other rhetorical features; employing a feature separately or in combination with others may then predict starkly different effects. We designed a series of experiments in which we expected the same rhetorical features of the very same sentences to exert adverse effects on semantic (conceptual) fluency and enhancing effects on prosodic (perceptual) fluency. We focused on proverbs that each employ three rhetorical features: rhyme, meter, and brevitas (i.e., artful shortness). The presence of these target features decreased ease of conceptual fluency (semantic comprehension) while enhancing perceptual fluency as reflected in beauty and succinctness ratings that were mainly driven by prosodic features. The rhetorical features also predicted choices for persuasive purposes, yet only for the sentence versions featuring all three rhetorical features; the presence of only one or two rhetorical features had an adverse effect on the choices made. We suggest that the facilitating effects of a combination of rhyme, meter, and rhetorical brevitas on perceptual (prosodic) fluency overcompensated for their adverse effects on conceptual (semantic) fluency, thus resulting in a total net gain both in processing ease and in choices for persuasive purposes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Steen-Baker, Allison A.; Ng, Shukhan; Payne, Brennan R.; Anderson, Carolyn J.; Federmeier, Kara D.; Stine-Morrow, Elizabeth A. L.
2017-01-01
The facilitation of word processing by sentence context reflects the interaction between the build-up of message-level semantics and lexical processing. Yet, little is known about how this effect varies through adulthood as a function of reading skill. In this study, Participants 18-64 years old with a range of literacy competence read simple…
Semantic framework for mapping object-oriented model to semantic web languages
Ježek, Petr; Mouček, Roman
2015-01-01
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework. PMID:25762923
Semantic framework for mapping object-oriented model to semantic web languages.
Ježek, Petr; Mouček, Roman
2015-01-01
The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.
Tomasello, Rosario; Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2017-04-01
Neuroimaging and patient studies show that different areas of cortex respectively specialize for general and selective, or category-specific, semantic processing. Why are there both semantic hubs and category-specificity, and how come that they emerge in different cortical regions? Can the activation time-course of these areas be predicted and explained by brain-like network models? In this present work, we extend a neurocomputational model of human cortical function to simulate the time-course of cortical processes of understanding meaningful concrete words. The model implements frontal and temporal cortical areas for language, perception, and action along with their connectivity. It uses Hebbian learning to semantically ground words in aspects of their referential object- and action-related meaning. Compared with earlier proposals, the present model incorporates additional neuroanatomical links supported by connectivity studies and downscaled synaptic weights in order to control for functional between-area differences purely due to the number of in- or output links of an area. We show that learning of semantic relationships between words and the objects and actions these symbols are used to speak about, leads to the formation of distributed circuits, which all include neuronal material in connector hub areas bridging between sensory and motor cortical systems. Therefore, these connector hub areas acquire a role as semantic hubs. By differentially reaching into motor or visual areas, the cortical distributions of the emergent 'semantic circuits' reflect aspects of the represented symbols' meaning, thus explaining category-specificity. The improved connectivity structure of our model entails a degree of category-specificity even in the 'semantic hubs' of the model. The relative time-course of activation of these areas is typically fast and near-simultaneous, with semantic hubs central to the network structure activating before modality-preferential areas carrying semantic information. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The representation of semantic knowledge in a child with Williams syndrome.
Robinson, Sally J; Temple, Christine M
2009-05-01
This study investigated whether there are distinct types of semantic knowledge with distinct representational bases during development. The representation of semantic knowledge in a teenage child (S.T.) with Williams syndrome was explored for the categories of animals, fruit, and vegetables, manipulable objects, and nonmanipulable objects. S.T.'s lexical stores were of a normal size but the volume of "sensory feature" semantic knowledge she generated in oral descriptions was reduced. In visual recognition decisions, S.T. made more false positives to nonitems than did controls. Although overall naming of pictures was unimpaired, S.T. exhibited a category-specific anomia for nonmanipulable objects and impaired naming of visual-feature descriptions of animals. S.T.'s performance was interpreted as reflecting the impaired integration of distinctive features from perceptual input, which may impact upon nonmanipulable objects to a greater extent than the other knowledge categories. Performance was used to inform adult-based models of semantic representation, with category structure proposed to emerge due to differing degrees of dependency upon underlying knowledge types, feature correlations, and the acquisition of information from modality-specific processing modules.
Self-referencing enhances recollection in both young and older adults
Leshikar, Eric D.; Dulas, Michael R.; Duarte, Audrey
2014-01-01
Processing information in relation to the self enhances subsequent item recognition in both young and older adults, and further, enhances recollection at least in the young. Because older adults experience recollection memory deficits it is unknown whether self-referencing improves recollection in older adults. We examined recollection benefits from self-referential encoding in older and younger adults and further examined the quality and quantity of episodic details facilitated by self-referencing. We further investigated the influence of valence on recollection given prior findings of age group differences in emotional memory (i.e. “positivity effects”). Across 2 experiments, young and older adults processed positive and negative adjectives either for self-relevance or for semantic meaning. We found that self-referencing, relative to semantic encoding, increased recollection memory in both age groups. In Experiment 1, both groups remembered proportionally more negative than positive items when adjectives were processed semantically; however, when adjectives were processed self-referentially, both groups exhibited evidence of better recollection for the positive items, inconsistent with a positivity effect in aging. In Experiment 2, both groups reported more episodic details associated with recollected items, as measured by a memory characteristic questionnaire (MCQ), for the self-reference relative to the semantic condition. Overall, these data suggest that self-referencing leads to detail-rich memory representations reflected in higher rates of recollection across age. PMID:25264018
Priming deficiency in male subjects at risk for alcoholism: the N4 during a lexical decision task.
Roopesh, Bangalore N; Rangaswamy, Madhavi; Kamarajan, Chella; Chorlian, David B; Stimus, Arthur; Bauer, Lance O; Rohrbaugh, John; O'Connor, Sean J; Kuperman, Samuel; Schuckit, Marc; Porjesz, Bernice
2009-12-01
While there is extensive literature on the relationship between the P3 component of event-related potentials (ERPs) and risk for alcoholism, there are few published studies regarding other potentially important ERP components. One important candidate is the N4(00) component in the context of semantic processing, as abnormalities in this component have been reported for adult alcoholics. A semantic priming task was administered to nonalcohol dependent male offspring (18 to 25 years) of alcoholic fathers [high risk (HR) n = 23] and nonalcoholic fathers [low risk (LR) n = 28] to study whether the 2 groups differ in terms of the N4 component. Subjects were presented with 150 words and 150 nonwords. Among the words, 50 words (primed) were preceded by their antonyms (prime, n = 50), whereas the remaining 50 words were unprimed. For the analysis, N4 amplitude and latency as well as behavioral measures for the primed and unprimed words were considered. A significant interaction effect was observed between semantic condition and group, where HR subjects did not show N4 attenuation for primed stimuli. The lack of N4 attenuation to primed stimuli and/or inability to differentiate between primed and unprimed stimuli, without latency and reaction time being affected, suggest deficits in semantic priming, especially in semantic expectancy and/or postlexical semantic processing in HR male offspring. Further, it indicates that it might be an electrophysiological endophenotype that reflects genetic vulnerability to develop alcoholism.
Tanguay, Annick N; Benton, Lauren; Romio, Lorenza; Sievers, Carolin; Davidson, Patrick S R; Renoult, Louis
2018-02-01
Self-knowledge concerns one's own preferences and personality. It pertains to the self (similar to episodic memory), yet does not concern events. It is factual (like semantic memory), but also idiosyncratic. For these reasons, it is unclear where self-knowledge might fall on a continuum in relation to semantic and episodic memory. In this study, we aimed to compare the event-related potential (ERP) correlates of self-knowledge to those of semantic and episodic memory, using N400 and Late Positive Component (LPC) as proxies for semantic and episodic processing, respectively. We considered an additional factor: time perspective. Temporally distant selves have been suggested to be more semantic compared to the present self, but thinking about one's past and future selves may also engage episodic memory. Twenty-eight adults answered whether traits (e.g., persistent) were true of most people holding an occupation (e.g., soldiers; semantic memory condition), or true of themselves 5 years ago, in the present, or 5 years from now (past, present, and future self-knowledge conditions). The study ended with an episodic recognition memory task for previously seen traits. Present self-knowledge produced mean LPC amplitudes at posterior parietal sites that fell between semantic and episodic memory. Mean LPC amplitudes for past and future self-knowledge were greater than for semantic memory, and not significantly different from episodic memory. Mean N400 amplitudes for the self-knowledge conditions were smaller than for semantic memory at sagittal sites. However, this N400 effect was not separable from a preceding P200 effect at these same electrode sites. This P200 effect can be interpreted as reflecting the greater emotional salience of self as compared to general knowledge, which may have facilitated semantic processing. Overall, our findings are consistent with a distinction between knowledge of others and self-knowledge, but the closeness of self-knowledge's neural correlates to either semantic or episodic memory appears to depend to some extent on time perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural Substrates of Semantic Prospection – Evidence from the Dementias
Irish, Muireann; Eyre, Nadine; Dermody, Nadene; O’Callaghan, Claire; Hodges, John R.; Hornberger, Michael; Piguet, Olivier
2016-01-01
The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts. PMID:27252632
Zhou, Hong; Li, Yu; Liang, Meng; Guan, Connie Qun; Zhang, Linjun; Shu, Hua; Zhang, Yang
2017-01-01
The goal of this developmental speech perception study was to assess whether and how age group modulated the influences of high-level semantic context and low-level fundamental frequency ( F 0 ) contours on the recognition of Mandarin speech by elementary and middle-school-aged children in quiet and interference backgrounds. The results revealed different patterns for semantic and F 0 information. One the one hand, age group modulated significantly the use of F 0 contours, indicating that elementary school children relied more on natural F 0 contours than middle school children during Mandarin speech recognition. On the other hand, there was no significant modulation effect of age group on semantic context, indicating that children of both age groups used semantic context to assist speech recognition to a similar extent. Furthermore, the significant modulation effect of age group on the interaction between F 0 contours and semantic context revealed that younger children could not make better use of semantic context in recognizing speech with flat F 0 contours compared with natural F 0 contours, while older children could benefit from semantic context even when natural F 0 contours were altered, thus confirming the important role of F 0 contours in Mandarin speech recognition by elementary school children. The developmental changes in the effects of high-level semantic and low-level F 0 information on speech recognition might reflect the differences in auditory and cognitive resources associated with processing of the two types of information in speech perception.
Concept Representation Reflects Multimodal Abstraction: A Framework for Embodied Semantics
Fernandino, Leonardo; Binder, Jeffrey R.; Desai, Rutvik H.; Pendl, Suzanne L.; Humphries, Colin J.; Gross, William L.; Conant, Lisa L.; Seidenberg, Mark S.
2016-01-01
Recent research indicates that sensory and motor cortical areas play a significant role in the neural representation of concepts. However, little is known about the overall architecture of this representational system, including the role played by higher level areas that integrate different types of sensory and motor information. The present study addressed this issue by investigating the simultaneous contributions of multiple sensory-motor modalities to semantic word processing. With a multivariate fMRI design, we examined activation associated with 5 sensory-motor attributes—color, shape, visual motion, sound, and manipulation—for 900 words. Regions responsive to each attribute were identified using independent ratings of the attributes' relevance to the meaning of each word. The results indicate that these aspects of conceptual knowledge are encoded in multimodal and higher level unimodal areas involved in processing the corresponding types of information during perception and action, in agreement with embodied theories of semantics. They also reveal a hierarchical system of abstracted sensory-motor representations incorporating a major division between object interaction and object perception processes. PMID:25750259
Processing visual words with numbers: electrophysiological evidence for semantic activation.
Lien, Mei-Ching; Allen, Philip; Martin, Nicole
2014-08-01
Perea, Duñabeitia, and Carreiras (Journal of Experimental Psychology: Human Perception and Performance 34:237-241, 2008) found that LEET stimuli, formed by a mixture of digits and letters (e.g., T4BL3 instead of TABLE), produced priming effects similar to those for regular words. This finding led them to conclude that LEET stimuli automatically activate lexical information. In the present study, we examined whether semantic activation occurs for LEET stimuli by using an electrophysiological measure called the N400 effect. The N400 effect, also known as the mismatch negativity, reflects detection of a mismatch between a word and the current semantic context. This N400 effect could occur only if the LEET stimulus had been identified and processed semantically. Participants determined whether a stimulus (word or LEET) was related to a given category (e.g., APPLE or 4PPL3 belongs to the category "fruit," but TABLE or T4BL3 does not). We found that LEET stimuli produced an N400 effect similar in magnitude to that for regular uppercase words, suggesting that LEET stimuli can access meaning in a manner similar to words presented in consistent uppercase letters.
Lower- and higher-level models of right hemisphere language. A selective survey.
Gainotti, Guido
2016-01-01
The models advanced to explain right hemisphere (RH) language function can be divided into two main types. According to the older (lower-level) models, RH language reflects the ontogenesis of conceptual and semantic-lexical development; the more recent models, on the other hand, suggest that the RH plays an important role in the use of higher-level language functions, such as metaphors, to convey complex, abstract concepts. The hypothesis that the RH may be preferentially involved in processing the semantic-lexical components of language was advanced by Zaidel in splitbrain patients and his model was confirmed by neuropsychological investigations, proving that right brain-damaged patients show selective semanticlexical disorders. The possible links between lower and higher levels of RH language are discussed, as is the hypothesis that the RH may have privileged access to the figurative aspects of novel metaphorical expressions, whereas conventionalization of metaphorical meaning could be a bilaterally-mediated process involving abstract semantic-lexical codes.
Liu, B; Wang, Z; Wu, G; Meng, X
2011-04-28
In this paper, we aim to study the cognitive integration of asynchronous natural or non-natural auditory and visual information in videos of real-world events. Videos with asynchronous semantically consistent or inconsistent natural sound or speech were used as stimuli in order to compare the difference and similarity between multisensory integrations of videos with asynchronous natural sound and speech. The event-related potential (ERP) results showed that N1 and P250 components were elicited irrespective of whether natural sounds were consistent or inconsistent with critical actions in videos. Videos with inconsistent natural sound could elicit N400-P600 effects compared to videos with consistent natural sound, which was similar to the results from unisensory visual studies. Videos with semantically consistent or inconsistent speech could both elicit N1 components. Meanwhile, videos with inconsistent speech would elicit N400-LPN effects in comparison with videos with consistent speech, which showed that this semantic processing was probably related to recognition memory. Moreover, the N400 effect elicited by videos with semantically inconsistent speech was larger and later than that elicited by videos with semantically inconsistent natural sound. Overall, multisensory integration of videos with natural sound or speech could be roughly divided into two stages. For the videos with natural sound, the first stage might reflect the connection between the received information and the stored information in memory; and the second one might stand for the evaluation process of inconsistent semantic information. For the videos with speech, the first stage was similar to the first stage of videos with natural sound; while the second one might be related to recognition memory process. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Losing sight of the future: Impaired semantic prospection following medial temporal lobe lesions
Race, Elizabeth; Keane, Margaret M.; Verfaellie, Mieke
2012-01-01
The ability to imagine the future (prospection) relies on many of the same brain regions that support memory for the past. To date, scientific research has primarily focused on the neural substrates of episodic forms of prospection (mental simulation of spatiotemporally specific future events) whereas little is known about the neural substrates of semantic prospection (mental simulation of future nonpersonal facts). Of particular interest is the role of the medial temporal lobes, and specifically the hippocampus. While the hippocampus has been proposed to play a key role in episodic prospection, recent evidence suggests that it may not play a similar role in semantic prospection. To examine this possibility, amnesic patients with medial temporal lobe (MTL) lesions were asked to imagine future issues occurring in the public domain. The results showed that patients could list general semantic facts about the future, but when probed to elaborate, patients produced impoverished descriptions that lacked semantic detail. This impairment occurred despite intact performance on standard neuropsychological tests of semantic processing, and did not simply reflect deficits in narrative construction. The performance of a patient with damage limited to the hippocampus was similar to that of the remaining MTL patients and amnesic patients’ impaired elaboration of the semantic future correlated with their impaired elaboration of the semantic past. Together, these results provide novel evidence from MTL amnesia that memory and prospection are linked in the semantic domain and reveal that the medial temporal lobes play a critical role in the construction of detailed, multi-element semantic simulations. PMID:23197413
Prosody and the Development of Comprehension.
ERIC Educational Resources Information Center
Cutler, Anne; Swinney, David A.
1987-01-01
Studies analyzing children's response time to detect word targets revealed that six-year-olds and younger children generally did not show the response time advantage for accented target words which adult listeners show, providing support for the argument that the processing advantage for accented words reflects the semantic role of accent as an…
Strikwerda-Brown, Cherie; Mothakunnel, Annu; Hodges, John R; Piguet, Olivier; Irish, Muireann
2018-04-24
Autobiographical memory (ABM) is typically held to comprise episodic and semantic elements, with the vast majority of studies to date focusing on profiles of episodic details in health and disease. In this context, 'non-episodic' elements are often considered to reflect semantic processing or are discounted from analyses entirely. Mounting evidence suggests that rather than reflecting one unitary entity, semantic autobiographical information may contain discrete subcomponents, which vary in their relative degree of semantic or episodic content. This study aimed to (1) review the existing literature to formally characterize the variability in analysis of 'non-episodic' content (i.e., external details) on the Autobiographical Interview and (2) use these findings to create a theoretically grounded framework for coding external details. Our review exposed discrepancies in the reporting and interpretation of external details across studies, reinforcing the need for a new, consistent approach. We validated our new external details scoring protocol (the 'NExt' taxonomy) in patients with Alzheimer's disease (n = 18) and semantic dementia (n = 13), and 20 healthy older Control participants and compared profiles of the NExt subcategories across groups and time periods. Our results revealed increased sensitivity of the NExt taxonomy in discriminating between ABM profiles of patient groups, when compared to traditionally used internal and external detail metrics. Further, remote and recent autobiographical memories displayed distinct compositions of the NExt detail types. This study is the first to provide a fine-grained and comprehensive taxonomy to parse external details into intuitive subcategories and to validate this protocol in neurodegenerative disorders. © 2018 The British Psychological Society.
ERIC Educational Resources Information Center
Khattab, Ali-Maher; Michael, William B.
1986-01-01
Based on reanalyses of correlational data obtained from the University of Southern California Aptitudes Research Project, this investigation examined the extent to which two higher order factors of semantic content and symbolic content form Guilford's structure-of-intellect model reflected distinct constructs. (Author/LMO)
Specifying the role of the left prefrontal cortex in word selection.
Riès, S K; Karzmark, C R; Navarrete, E; Knight, R T; Dronkers, N F
2015-10-01
Word selection allows us to choose words during language production. This is often viewed as a competitive process wherein a lexical representation is retrieved among semantically-related alternatives. The left prefrontal cortex (LPFC) is thought to help overcome competition for word selection through top-down control. However, whether the LPFC is always necessary for word selection remains unclear. We tested 6 LPFC-injured patients and controls in two picture naming paradigms varying in terms of item repetition. Both paradigms elicited the expected semantic interference effects (SIE), reflecting interference caused by semantically-related representations in word selection. However, LPFC patients as a group showed a larger SIE than controls only in the paradigm involving item repetition. We argue that item repetition increases interference caused by semantically-related alternatives, resulting in increased LPFC-dependent cognitive control demands. The remaining network of brain regions associated with word selection appears to be sufficient when items are not repeated. Copyright © 2015 Elsevier Inc. All rights reserved.
Foucart, Alice; Garcia, Xavier; Ayguasanosa, Meritxell; Thierry, Guillaume; Martin, Clara; Costa, Albert
2015-08-01
The present study investigated how pragmatic information is integrated during L2 sentence comprehension. We put forward that the differences often observed between L1 and L2 sentence processing may reflect differences on how various types of information are used to process a sentence, and not necessarily differences between native and non-native linguistic systems. Based on the idea that when a cue is missing or distorted, one relies more on other cues available, we hypothesised that late bilinguals favour the cues that they master during sentence processing. To verify this hypothesis we investigated whether late bilinguals take the speaker's identity (inferred by the voice) into account when incrementally processing speech and whether this affects their online interpretation of the sentence. To do so, we adapted Van Berkum, J.J.A., Van den Brink, D., Tesink, C.M.J.Y., Kos, M., Hagoort, P., 2008. J. Cogn. Neurosci. 20(4), 580-591, study in which sentences with either semantic violations or pragmatic inconsistencies were presented. While both the native and the non-native groups showed a similar response to semantic violations (N400), their response to speakers' inconsistencies slightly diverged; late bilinguals showed a positivity much earlier than native speakers (LPP). These results suggest that, like native speakers, late bilinguals process semantic and pragmatic information incrementally; however, what seems to differ between L1 and L2 processing is the time-course of the different processes. We propose that this difference may originate from late bilinguals' sensitivity to pragmatic information and/or their ability to efficiently make use of the information provided by the sentence context to generate expectations in relation to pragmatic information during L2 sentence comprehension. In other words, late bilinguals may rely more on speaker identity than native speakers when they face semantic integration difficulties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Li; Wang, Wenjing; You, Wenping; Li, Yi; Awati, Neha; Zhao, Xu; Booth, James R; Peng, Danling
2012-07-01
Dyslexia in alphabetic languages has been extensively investigated and suggests a central deficit in orthography to phonology mapping in the left hemisphere. Compared to dyslexia in alphabetic languages, the central deficit for Chinese dyslexia is still unclear. Because of the logographic nature of Chinese characters, some have suggested that Chinese dyslexia should have larger deficits in the semantic system. To investigate this, Chinese children with reading disability (RD) were compared to typically developing (TD) children using functional magnetic resonance imaging (fMRI) on a rhyming judgment task and on a semantic association judgment task. RD children showed less activation for both tasks in right visual (BA18, 19) and left occipito-temporal cortex (BA 37), suggesting a deficit in visuo-orthographic processing. RD children also showed less activation for both tasks in left inferior frontal gyrus (BA44), which additionally showed significant correlations with activation of bilateral visuo-orthographic regions in the RD group, suggesting that the abnormalities in frontal cortex and in posterior visuo-orthographic regions may reflect a deficit in the connection between brain regions. Analyses failed to reveal larger differences between groups for the semantic compared to the rhyming task, suggesting that Chinese dyslexia is similarly impaired in the access to phonology and to semantics from the visual orthography. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vonberg, Isabelle; Ehlen, Felicitas; Fromm, Ortwin; Klostermann, Fabian
2014-01-01
For word production, we may consciously pursue semantic or phonological search strategies, but it is uncertain whether we can retrieve the different aspects of lexical information independently from each other. We therefore studied the spread of semantic information into words produced under exclusively phonemic task demands. 42 subjects participated in a letter verbal fluency task, demanding the production of as many s-words as possible in two minutes. Based on curve fittings for the time courses of word production, output spurts (temporal clusters) considered to reflect rapid lexical retrieval based on automatic activation spread, were identified. Semantic and phonemic word relatedness within versus between these clusters was assessed by respective scores (0 meaning no relation, 4 maximum relation). Subjects produced 27.5 (±9.4) words belonging to 6.7 (±2.4) clusters. Both phonemically and semantically words were more related within clusters than between clusters (phon: 0.33±0.22 vs. 0.19±0.17, p<.01; sem: 0.65±0.29 vs. 0.37±0.29, p<.01). Whereas the extent of phonemic relatedness correlated with high task performance, the contrary was the case for the extent of semantic relatedness. The results indicate that semantic information spread occurs, even if the consciously pursued word search strategy is purely phonological. This, together with the negative correlation between semantic relatedness and verbal output suits the idea of a semantic default mode of lexical search, acting against rapid task performance in the given scenario of phonemic verbal fluency. The simultaneity of enhanced semantic and phonemic word relatedness within the same temporal cluster boundaries suggests an interaction between content and sound-related information whenever a new semantic field has been opened.
Recent Advances in Clinical Natural Language Processing in Support of Semantic Analysis.
Velupillai, S; Mowery, D; South, B R; Kvist, M; Dalianis, H
2015-08-13
We present a review of recent advances in clinical Natural Language Processing (NLP), with a focus on semantic analysis and key subtasks that support such analysis. We conducted a literature review of clinical NLP research from 2008 to 2014, emphasizing recent publications (2012-2014), based on PubMed and ACL proceedings as well as relevant referenced publications from the included papers. Significant articles published within this time-span were included and are discussed from the perspective of semantic analysis. Three key clinical NLP subtasks that enable such analysis were identified: 1) developing more efficient methods for corpus creation (annotation and de-identification), 2) generating building blocks for extracting meaning (morphological, syntactic, and semantic subtasks), and 3) leveraging NLP for clinical utility (NLP applications and infrastructure for clinical use cases). Finally, we provide a reflection upon most recent developments and potential areas of future NLP development and applications. There has been an increase of advances within key NLP subtasks that support semantic analysis. Performance of NLP semantic analysis is, in many cases, close to that of agreement between humans. The creation and release of corpora annotated with complex semantic information models has greatly supported the development of new tools and approaches. Research on non-English languages is continuously growing. NLP methods have sometimes been successfully employed in real-world clinical tasks. However, there is still a gap between the development of advanced resources and their utilization in clinical settings. A plethora of new clinical use cases are emerging due to established health care initiatives and additional patient-generated sources through the extensive use of social media and other devices.
Recent Advances in Clinical Natural Language Processing in Support of Semantic Analysis
Mowery, D.; South, B. R.; Kvist, M.; Dalianis, H.
2015-01-01
Summary Objectives We present a review of recent advances in clinical Natural Language Processing (NLP), with a focus on semantic analysis and key subtasks that support such analysis. Methods We conducted a literature review of clinical NLP research from 2008 to 2014, emphasizing recent publications (2012-2014), based on PubMed and ACL proceedings as well as relevant referenced publications from the included papers. Results Significant articles published within this time-span were included and are discussed from the perspective of semantic analysis. Three key clinical NLP subtasks that enable such analysis were identified: 1) developing more efficient methods for corpus creation (annotation and de-identification), 2) generating building blocks for extracting meaning (morphological, syntactic, and semantic subtasks), and 3) leveraging NLP for clinical utility (NLP applications and infrastructure for clinical use cases). Finally, we provide a reflection upon most recent developments and potential areas of future NLP development and applications. Conclusions There has been an increase of advances within key NLP subtasks that support semantic analysis. Performance of NLP semantic analysis is, in many cases, close to that of agreement between humans. The creation and release of corpora annotated with complex semantic information models has greatly supported the development of new tools and approaches. Research on non-English languages is continuously growing. NLP methods have sometimes been successfully employed in real-world clinical tasks. However, there is still a gap between the development of advanced resources and their utilization in clinical settings. A plethora of new clinical use cases are emerging due to established health care initiatives and additional patient-generated sources through the extensive use of social media and other devices. PMID:26293867
Weiss, Sabine; Müller, Horst M.
2013-01-01
Current grounding theories propose that sensory-motor brain systems are not only modulated by the comprehension of concrete but also partly of abstract language. In order to investigate whether concrete or abstract language elicits similar or distinct brain activity, neuronal synchronization patterns were investigated by means of long-range EEG coherence analysis. Participants performed a semantic judgment task with concrete and abstract sentences. EEG coherence between distant electrodes was analyzed in various frequencies before and during sentence processing using a bivariate AR-model with time-varying parameters. The theta frequency band (3–7 Hz) reflected common and different synchronization networks related to working memory processes and memory-related lexico-semantic retrieval during processing of both sentence types. In contrast, the beta1 band (13–18 Hz) showed prominent differences between both sentence types, whereby concrete sentences were associated with higher coherence implicating a more widespread range and intensity of mental simulation processes. The gamma band (35–40 Hz) reflected the sentences' congruency and indicated the more difficult integration of incongruent final nouns into the sentence context. Most importantly, findings support the notion that different cognitive operations during sentence processing are associated with multiple brain oscillations. PMID:24027515
ERIC Educational Resources Information Center
Klein, Ariel; Badia, Toni
2015-01-01
In this study we show how complex creative relations can arise from fairly frequent semantic relations observed in everyday language. By doing this, we reflect on some key cognitive aspects of linguistic and general creativity. In our experimentation, we automated the process of solving a battery of Remote Associates Test tasks. By applying…
ERIC Educational Resources Information Center
Kim, Albert E.; Oines, Leif; Miyake, Akira
2018-01-01
This study investigated the processes reflected in the widely observed N400 and P600 event-related potential (ERP) effects and tested the hypothesis that the N400 and P600 effects are functionally linked in a tradeoff relationship, constrained in part by individual differences in cognitive ability. Sixty participants read sentences, and ERP…
Meyer, Georg F; Greenlee, Mark; Wuerger, Sophie
2011-09-01
Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.
The costs of emotional attention: affective processing inhibits subsequent lexico-semantic analysis.
Ihssen, Niklas; Heim, Sabine; Keil, Andreas
2007-12-01
The human brain has evolved to process motivationally relevant information in an optimized manner. The perceptual benefit for emotionally arousing material, termed motivated attention, is indexed by electrocortical amplification at various levels of stimulus analysis. An outstanding issue, particularly on a neuronal level, refers to whether and how perceptual enhancement for arousing signals translates into modified processing of information presented in temporal or spatial proximity to the affective cue. The present studies aimed to examine facilitation and interference effects of task-irrelevant emotional pictures on subsequent word identification. In the context of forced-choice lexical decision tasks, pictures varying in hedonic valence and emotional arousal preceded word/ pseudoword targets. Across measures and experiments, high-arousing compared to low-arousing pictures were associated with impaired processing of word targets. Arousing pleasant and unpleasant pictures prolonged word reaction times irrespective of stimulus-onset asynchrony (80 msec, 200 msec, 440 msec) and salient semantic category differences (e.g., erotica vs. mutilation pictures). On a neuronal level, interference was reflected in reduced N1 responses (204-264 msec) to both target types. Paralleling behavioral effects, suppression of the late positivity (404-704 msec) was more pronounced for word compared to pseudoword targets. Regional source modeling indicated that early reduction effects originated from inhibited cortical activity in posterior areas of the left inferior temporal cortex associated with orthographic processing. Modeling of later reduction effects argues for interference in distributed semantic networks comprising left anterior temporal and parietal sources. Thus, affective processing interferes with subsequent lexico-semantic analysis along the ventral stream.
Early Childhood Stuttering and Electrophysiological Indices of Language Processing
Weber-Fox, Christine; Wray, Amanda Hampton; Arnold, Hayley
2013-01-01
We examined neural activity mediating semantic and syntactic processing in 27 preschool-age children who stutter (CWS) and 27 preschool-age children who do not stutter (CWNS) matched for age, nonverbal IQ and language abilities. All participants displayed language abilities and nonverbal IQ within the normal range. Event-related brain potentials (ERPs) were elicited while participants watched a cartoon video and heard naturally spoken sentences that were either correct or contained semantic or syntactic (phrase structure) violations. ERPs in CWS, compared to CWNS, were characterized by longer N400 peak latencies elicited by semantic processing. In the CWS, syntactic violations elicited greater negative amplitudes for the early time window (150–350 ms) over medial sites compared to CWNS. Additionally, the amplitude of the P600 elicited by syntactic violations relative to control words was significant over the left hemisphere for the CWNS but showed the reverse pattern in CWS, a robust effect only over the right hemisphere. Both groups of preschoolage children demonstrated marked and differential effects for neural processes elicited by semantic and phrase structure violations; however, a significant proportion of young CWS exhibit differences in the neural functions mediating language processing compared to CWNS despite normal language abilities. These results are the first to show that differences in event-related brain potentials reflecting language processing occur as early as the preschool years in CWS and provide the first evidence that atypical lateralization of hemispheric speech/language functions previously observed in the brains of adults who stutter begin to emerge near the onset of developmental stuttering. PMID:23773672
Zion-Golumbic, Elana; Kutas, Marta; Bentin, Shlomo
2010-02-01
Prior semantic knowledge facilitates episodic recognition memory for faces. To examine the neural manifestation of the interplay between semantic and episodic memory, we investigated neuroelectric dynamics during the creation (study) and the retrieval (test) of episodic memories for famous and nonfamous faces. Episodic memory effects were evident in several EEG frequency bands: theta (4-8 Hz), alpha (9-13 Hz), and gamma (40-100 Hz). Activity in these bands was differentially modulated by preexisting semantic knowledge and by episodic memory, implicating their different functional roles in memory. More specifically, theta activity and alpha suppression were larger for old compared to new faces at test regardless of fame, but were both larger for famous faces during study. This pattern of selective semantic effects suggests that the theta and alpha responses, which are primarily associated with episodic memory, reflect utilization of semantic information only when it is beneficial for task performance. In contrast, gamma activity decreased between the first (study) and second (test) presentation of a face, but overall was larger for famous than nonfamous faces. Hence, the gamma rhythm seems to be primarily related to activation of preexisting neural representations that may contribute to the formation of new episodic traces. Taken together, these data provide new insights into the complex interaction between semantic and episodic memory for faces and the neural dynamics associated with mnemonic processes.
Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth
2015-09-01
Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings - as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is better specified by their visible features - however, not all of these features will be relevant to uncovering a given association, tapping selection/inhibition processes. To explore potential differences across modalities, we took a commonly-used manipulation of controlled retrieval demands, namely the identification of weak vs. strong associations, and compared word and picture versions. There were 4 key findings: (1) Regions of interest (ROIs) in posterior IFG (BA44) showed graded effects of modality (e.g., words>pictures in left BA44; pictures>words in right BA44). (2) An equivalent response was observed in left mid-IFG (BA45) across modalities, consistent with the multimodal semantic control deficits that typically follow LIFG lesions. (3) The anterior IFG (BA47) ROI showed a stronger response to verbal than pictorial associations, potentially reflecting a role for this region in establishing a meaningful context that can be used to direct semantic retrieval. (4) The left pMTG ROI also responded to difficulty across modalities yet showed a stronger response overall to verbal stimuli, helping to reconcile two distinct literatures that have implicated this site in semantic control and lexical-semantic access respectively. We propose that left anterior IFG and pMTG work together to maintain a meaningful context that shapes ongoing semantic processing, and that this process is more strongly taxed by word than picture associations. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth
2015-01-01
Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings – as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is better specified by their visible features – however, not all of these features will be relevant to uncovering a given association, tapping selection/inhibition processes. To explore potential differences across modalities, we took a commonly-used manipulation of controlled retrieval demands, namely the identification of weak vs. strong associations, and compared word and picture versions. There were 4 key findings: (1) Regions of interest (ROIs) in posterior IFG (BA44) showed graded effects of modality (e.g., words>pictures in left BA44; pictures>words in right BA44). (2) An equivalent response was observed in left mid-IFG (BA45) across modalities, consistent with the multimodal semantic control deficits that typically follow LIFG lesions. (3) The anterior IFG (BA47) ROI showed a stronger response to verbal than pictorial associations, potentially reflecting a role for this region in establishing a meaningful context that can be used to direct semantic retrieval. (4) The left pMTG ROI also responded to difficulty across modalities yet showed a stronger response overall to verbal stimuli, helping to reconcile two distinct literatures that have implicated this site in semantic control and lexical-semantic access respectively. We propose that left anterior IFG and pMTG work together to maintain a meaningful context that shapes ongoing semantic processing, and that this process is more strongly taxed by word than picture associations. PMID:25726898
Neighing, barking, and drumming horses-object related sounds help and hinder picture naming.
Mädebach, Andreas; Wöhner, Stefan; Kieseler, Marie-Luise; Jescheniak, Jörg D
2017-09-01
The study presented here investigated how environmental sounds influence picture naming. In a series of four experiments participants named pictures (e.g., the picture of a horse) while hearing task-irrelevant sounds (e.g., neighing, barking, or drumming). Experiments 1 and 2 established two findings, facilitation from congruent sounds (e.g., picture: horse, sound: neighing) and interference from semantically related sounds (e.g., sound: barking), both relative to unrelated sounds (e.g., sound: drumming). Experiment 3 replicated the effects in a situation in which participants were not familiarized with the sounds prior to the experiment. Experiment 4 replicated the congruency facilitation effect, but showed that semantic interference was not obtained with distractor sounds which were not associated with target pictures (i.e., were not part of the response set). The general pattern of facilitation from congruent sound distractors and interference from semantically related sound distractors resembles the pattern commonly observed with distractor words. This parallelism suggests that the underlying processes are not specific to either distractor words or distractor sounds but instead reflect general aspects of semantic-lexical selection in language production. The results indicate that language production theories need to include a competitive selection mechanism at either the lexical processing stage, or the prelexical processing stage, or both. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Kung, Carmen; Chwilla, Dorothee J; Schriefers, Herbert
2014-01-01
In two ERP experiments, we investigate the on-line interplay of lexical tone, intonation and semantic context during spoken word recognition in Cantonese Chinese. Experiment 1 shows that lexical tone and intonation interact immediately. Words with a low lexical tone at the end of questions (with a rising question intonation) lead to a processing conflict. This is reflected in a low accuracy in lexical identification and in a P600 effect compared to the same words at the end of a statement. Experiment 2 shows that a strongly biasing semantic context leads to much better lexical-identification performance for words with a low tone at the end of questions and to a disappearance of the P600 effect. These results support the claim that semantic context plays a major role in disentangling the tonal information from the intonational information, and thus, in resolving the on-line conflict between intonation and tone. However, the ERP data indicate that the introduction of a semantic context does not entirely eliminate on-line processing problems for words at the end of questions. This is revealed by the presence of an N400 effect for words with a low lexical tone and for words with a high-mid lexical tone at the end of questions. The ERP data thus show that, while semantic context helps in the eventual lexical identification, it makes the deviation of the contextually expected lexical tone from the actual acoustic signal more salient. © 2013 Published by Elsevier Ltd.
Episodic and Semantic Aspects of Memory for Prose.
ERIC Educational Resources Information Center
Dooling, D. James
This report describes research on Bartlett's theory of constructive memory. In experiment one, schematic retention is related to Tulving's distinction between episodic and semantic memory. With the passage of time, memory for prose reflects decreasing output from episodic memory and increasing output from semantic memory. In experiment two,…
How Semantic and Episodic Memory Contribute to Autobiographical Memory. Commentary on Burt
ERIC Educational Resources Information Center
Tendolkar, Indira
2008-01-01
In his article, Chris Burt focuses on the relationship between time and autobiographical memory. The question Burt puts forward is whether temporal markers in reports on autobiographic memories reflect specific temporal information or result from rather complex cognitive processing of time-relevant knowledge. The aspect of time is inherent to the…
Self-Regulated Workplace Learning: A Pedagogical Framework and Semantic Web-Based Environment
ERIC Educational Resources Information Center
Siadaty, Melody; Gasevic, Dragan; Jovanovic, Jelena; Pata, Kai; Milikic, Nikola; Holocher-Ertl, Teresa; Jeremic, Zoran; Ali, Liaqat; Giljanovic, Aleksandar; Hatala, Marek
2012-01-01
Self-regulated learning processes have a potential to enhance the motivation of knowledge workers to take part in learning and reflection about learning, and thus contribute to the resolution of an important research challenge in workplace learning. An equally important research challenge for the successful completion of each step of a…
Trait anxiety and impaired control of reflective attention in working memory.
Hoshino, Takatoshi; Tanno, Yoshihiko
2016-01-01
The present study investigated whether the control of reflective attention in working memory (WM) is impaired in high trait anxiety individuals. We focused on the consequences of refreshing-a simple reflective process of thinking briefly about a just-activated representation in mind-on the subsequent processing of verbal stimuli. Participants performed a selective refreshing task, in which they initially refreshed or read one word from a three-word set, and then refreshed a non-selected item from the initial phrase or read aloud a new word. High trait anxiety individuals exhibited greater latencies when refreshing a word after experiencing the refreshing of a word from the same list of semantic associates. The same pattern was observed for reading a new word after prior refreshing. These findings suggest that high trait anxiety individuals have difficulty resolving interference from active distractors when directing reflective attention towards contents in WM or processing a visually presented word.
Lim, Seung-Lark; O'Doherty, John P.
2013-01-01
We often have to make choices among multiattribute stimuli (e.g., a food that differs on its taste and health). Behavioral data suggest that choices are made by computing the value of the different attributes and then integrating them into an overall stimulus value signal. However, it is not known whether this theory describes the way the brain computes the stimulus value signals, or how the underlying computations might be implemented. We investigated these questions using a human fMRI task in which individuals had to evaluate T-shirts that varied in their visual esthetic (e.g., color) and semantic (e.g., meaning of logo printed in T-shirt) components. We found that activity in the fusiform gyrus, an area associated with the processing of visual features, correlated with the value of the visual esthetic attributes, but not with the value of the semantic attributes. In contrast, activity in posterior superior temporal gyrus, an area associated with the processing of semantic meaning, exhibited the opposite pattern. Furthermore, both areas exhibited functional connectivity with an area of ventromedial prefrontal cortex that reflects the computation of overall stimulus values at the time of decision. The results provide supporting evidence for the hypothesis that some attribute values are computed in cortical areas specialized in the processing of such features, and that those attribute-specific values are then passed to the vmPFC to be integrated into an overall stimulus value signal to guide the decision. PMID:23678116
Lim, Seung-Lark; O'Doherty, John P; Rangel, Antonio
2013-05-15
We often have to make choices among multiattribute stimuli (e.g., a food that differs on its taste and health). Behavioral data suggest that choices are made by computing the value of the different attributes and then integrating them into an overall stimulus value signal. However, it is not known whether this theory describes the way the brain computes the stimulus value signals, or how the underlying computations might be implemented. We investigated these questions using a human fMRI task in which individuals had to evaluate T-shirts that varied in their visual esthetic (e.g., color) and semantic (e.g., meaning of logo printed in T-shirt) components. We found that activity in the fusiform gyrus, an area associated with the processing of visual features, correlated with the value of the visual esthetic attributes, but not with the value of the semantic attributes. In contrast, activity in posterior superior temporal gyrus, an area associated with the processing of semantic meaning, exhibited the opposite pattern. Furthermore, both areas exhibited functional connectivity with an area of ventromedial prefrontal cortex that reflects the computation of overall stimulus values at the time of decision. The results provide supporting evidence for the hypothesis that some attribute values are computed in cortical areas specialized in the processing of such features, and that those attribute-specific values are then passed to the vmPFC to be integrated into an overall stimulus value signal to guide the decision.
Separating the FN400 and N400 potentials across recognition memory experiments
Stróżak, Paweł; Abedzadeh, Delora; Curran, Tim
2016-01-01
There is a growing debate as to whether frontally distributed FN400 potentials reflect familiarity-based recognition or are functionally identical to centro-parietal N400 reflecting semantic processing. We conducted two experiments in which event-related potentials (ERPs) associated with semantic priming and recognition were recorded, either when priming was embedded within a recognition test (Experiment 1), or when these two phases were separated (Experiment 2). In Experiment 1, we observed 300–500 ms differences between primed and unprimed old words as well as differences between old and new primed words, but these two effects did not differ topographically and both showed midline central maxima. In Experiment 2, the N400 for priming was recorded exclusively during encoding and again showed a midline central distribution. The ERP component of recognition was only found for unrelated words (not primed previously during encoding), and also showed a midline central maximum, but, in addition, was present in the left frontal area of the scalp. Conversely, the priming effect was absent in the left frontal cluster. This pattern of results indicate that FN400 and N400 potentials share similar neural generators; but when priming and recognition are not confounded, these potentials do not entirely overlap in terms of topographical distribution and presumably reflect functionally distinct processes. PMID:26776478
Pulvermüller, Friedemann; Shtyrov, Yury; Hauk, Olaf
2009-08-01
How long does it take the human mind to grasp the idea when hearing or reading a sentence? Neurophysiological methods looking directly at the time course of brain activity indexes of comprehension are critical for finding the answer to this question. As the dominant cognitive approaches, models of serial/cascaded and parallel processing, make conflicting predictions on the time course of psycholinguistic information access, they can be tested using neurophysiological brain activation recorded in MEG and EEG experiments. Seriality and cascading of lexical, semantic and syntactic processes receives support from late (latency approximately 1/2s) sequential neurophysiological responses, especially N400 and P600. However, parallelism is substantiated by early near-simultaneous brain indexes of a range of psycholinguistic processes, up to the level of semantic access and context integration, emerging already 100-250ms after critical stimulus information is present. Crucially, however, there are reliable latency differences of 20-50ms between early cortical area activations reflecting lexical, semantic and syntactic processes, which are left unexplained by current serial and parallel brain models of language. We here offer a mechanistic model grounded in cortical nerve cell circuits that builds upon neuroanatomical and neurophysiological knowledge and explains both near-simultaneous activations and fine-grained delays. A key concept is that of discrete distributed cortical circuits with specific inter-area topographies. The full activation, or ignition, of specifically distributed binding circuits explains the near-simultaneity of early neurophysiological indexes of lexical, syntactic and semantic processing. Activity spreading within circuits determined by between-area conduction delays accounts for comprehension-related regional activation differences in the millisecond range.
ERIC Educational Resources Information Center
Lim, Swee Eng; Cheng, Pui Wah Chan; Lam, Mei Seung; Ngan, So Fong
2003-01-01
This study examined some of the affective outcomes for teacher educators and student teachers resulting from the use of semantic webbing/mapping as a strategy for facilitating reflective and critical thinking skills in a kindergarten teacher education program in Hong Kong. Interviews of a random sample of participants and an analysis of their…
Visual naming deficits in dyslexia: An ERP investigation of different processing domains.
Araújo, Susana; Faísca, Luís; Reis, Alexandra; Marques, J Frederico; Petersson, Karl Magnus
2016-10-01
Naming speed deficits are well documented in developmental dyslexia, expressed by slower naming times and more errors in response to familiar items. Here we used event-related potentials (ERPs) to examine at what processing level the deficits in dyslexia emerge during a discrete-naming task. Dyslexic and skilled adult control readers performed a primed object-naming task, in which the relationship between the prime and the target was manipulated along perceptual, semantic and phonological dimensions. A 3×2 design that crossed Relationship Type (Visual, Phonemic Onset, and Semantic) with Relatedness (Related and Unrelated) was used. An attenuated N/P190 - indexing early visual processing - and N300 - which index late visual processing - was observed to pictures preceded by perceptually related (vs. unrelated) primes in the control but not in the dyslexic group. These findings suggest suboptimal processing in early stages of object processing in dyslexia, when integration and mapping of perceptual information to a more form-specific percept in memory take place. On the other hand, both groups showed an N400 effect associated with semantically related pictures (vs. unrelated), taken to reflect intact integration of semantic similarities in both dyslexic and control readers. We also found an electrophysiological effect of phonological priming in the N400 range - that is, an attenuated N400 to objects preceded by phonemic related primes vs. unrelated - while it showed a more widespread distributed and more pronounced over the right hemisphere in the dyslexics. Topographic differences between groups might have originated from a word form encoding process with different characteristics in dyslexics compared to control readers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cox, Gregory E; Hemmer, Pernille; Aue, William R; Criss, Amy H
2018-04-01
The development of memory theory has been constrained by a focus on isolated tasks rather than the processes and information that are common to situations in which memory is engaged. We present results from a study in which 453 participants took part in five different memory tasks: single-item recognition, associative recognition, cued recall, free recall, and lexical decision. Using hierarchical Bayesian techniques, we jointly analyzed the correlations between tasks within individuals-reflecting the degree to which tasks rely on shared cognitive processes-and within items-reflecting the degree to which tasks rely on the same information conveyed by the item. Among other things, we find that (a) the processes involved in lexical access and episodic memory are largely separate and rely on different kinds of information, (b) access to lexical memory is driven primarily by perceptual aspects of a word, (c) all episodic memory tasks rely to an extent on a set of shared processes which make use of semantic features to encode both single words and associations between words, and (d) recall involves additional processes likely related to contextual cuing and response production. These results provide a large-scale picture of memory across different tasks which can serve to drive the development of comprehensive theories of memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Coderre, Emily L; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry
2017-03-01
Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we compared event-related potentials (ERPs) in response to lexico-semantic processing (written words) and visuo-semantic processing (pictures) in adults with ASD and adults with typical development (TD). The ASD group showed successful lexico-semantic and visuo-semantic processing, indicated by similar N400 effects between groups for word and picture stimuli. However, differences in N400 latency and topography in word conditions suggested different lexico-semantic processing mechanisms: an expectancy-based strategy for the TD group but a controlled post-lexical integration strategy for the ASD group.
Nestor, Peter J.; Hodges, John R.; Rowe, James B.
2011-01-01
Behavioural variant frontotemporal dementia is a neurodegenerative disorder with dysfunction and atrophy of the frontal lobes leading to changes in personality, behaviour, empathy, social conduct and insight, with relative preservation of language and memory. As novel treatments begin to emerge, biomarkers of frontotemporal dementia will become increasingly important, including functionally relevant neuroimaging indices of the neurophysiological basis of cognition. We used magnetoencephalography to examine behavioural variant frontotemporal dementia using a semantic decision task that elicits both frontal and temporal activity in healthy people. Twelve patients with behavioural variant frontotemporal dementia (age 50–75) and 16 matched controls made categorical semantic judgements about 400 pictures during continuous magnetoencephalography. Distributed source analysis was used to compare patients and controls. The patients had normal early responses to picture confrontation, indicating intact visual processing. However, a predominantly posterior set of regions including temporoparietal cortex showed reduced source activity 250–310 ms after stimulus onset, in proportion to behavioural measures of semantic association. In contrast, a left frontoparietal network showed reduced source activity at 550–650 ms, proportional to patients’ deficits in attention and orientation. This late deficit probably reflects impairment in the neural substrate of goal-oriented decision making. The results demonstrate behaviourally relevant neural correlates of semantic processing and decision making in behavioural variant frontotemporal dementia, and show for the first time that magnetoencephalography can be used to study cognitive systems in the context of frontotemporal dementia. PMID:21840892
Barber, Horacio A; Kousta, Stavroula-Thaleia; Otten, Leun J; Vigliocco, Gabriella
2010-05-21
A number of recent studies have provided contradictory evidence on the question of whether grammatical class plays a role in the neural representation of lexical knowledge. Most of the previous studies comparing the processing of nouns and verbs, however, confounded word meaning and grammatical class by comparing verbs referring to actions with nouns referring to objects. Here, we recorded electrical brain activity from native Italian speakers reading single words all referring to events (e.g., corsa [the run]; correre [to run]), thus avoiding confounding nouns and verbs with objects and actions. We manipulated grammatical class (noun versus verb) as well as semantic attributes (motor versus sensory events). Activity between 300 and 450ms was more negative for nouns than verbs, and for sensory than motor words, over posterior scalp sites. These grammatical class and semantic effects were not dissociable in terms of latency, duration, or scalp distribution. In a later time window (450-110ms) and at frontal regions, grammatical class and semantic effects interacted; motor verbs were more positive than the other three word categories. We suggest that the lack of a temporal and topographical dissociation between grammatical class and semantic effects in the time range of the N400 component is compatible with an account in which both effects reflect the same underlying process related to meaning retrieval, and we link the later effect with working memory operations associated to the experimental task. Copyright 2010 Elsevier B.V. All rights reserved.
Lexical-semantic processing in the semantic priming paradigm in aphasic patients.
Salles, Jerusa Fumagalli de; Holderbaum, Candice Steffen; Parente, Maria Alice Mattos Pimenta; Mansur, Letícia Lessa; Ansaldo, Ana Inès
2012-09-01
There is evidence that the explicit lexical-semantic processing deficits which characterize aphasia may be observed in the absence of implicit semantic impairment. The aim of this article was to critically review the international literature on lexical-semantic processing in aphasia, as tested through the semantic priming paradigm. Specifically, this review focused on aphasia and lexical-semantic processing, the methodological strengths and weaknesses of the semantic paradigms used, and recent evidence from neuroimaging studies on lexical-semantic processing. Furthermore, evidence on dissociations between implicit and explicit lexical-semantic processing reported in the literature will be discussed and interpreted by referring to functional neuroimaging evidence from healthy populations. There is evidence that semantic priming effects can be found both in fluent and in non-fluent aphasias, and that these effects are related to an extensive network which includes the temporal lobe, the pre-frontal cortex, the left frontal gyrus, the left temporal gyrus and the cingulated cortex.
The Role of Phonology in Children's Acquisition of the Plural
ERIC Educational Resources Information Center
Ettlinger, Marc; Zapf, Jennifer
2011-01-01
The correct use of an affix, such as the English plural suffix, may reflect mastery of a morphological process, but it may also depend on children's syntactic, semantic, and phonological abilities. The present article reports a set of experiments in support of this latter view, specifically focusing on the importance of the phonological make-up of…
Perception of Objects in Natural Scenes: Is It Really Attention Free?
ERIC Educational Resources Information Center
Evans, Karla K.; Treisman, Anne
2005-01-01
Studies have suggested attention-free semantic processing of natural scenes in which concurrent tasks leave category detection unimpaired (e.g., F. Li, R. VanRullen, C. Koch, & P. Perona, 2002). Could this ability reflect detection of disjunctive feature sets rather than high-level binding? Participants detected an animal target in a rapid serial…
ERP Indicators of L2 Proficiency in Word-to-text Integration Processes.
Yang, Chin Lung; Perfetti, Charles A; Tan, Li-Hai; Jiang, Ying
2018-06-04
Studies of bilingual proficiency have largely focused on word and sentence processing, whereas the text level has received relatively little attention. We examined on-line second language (L2) text comprehension in relation to L2 proficiency with ERPs recorded on critical words separated across a sentence boundary from their co-referential antecedents. The integration processes on the critical words were designed to reflect different levels of text representation: word-form, word-meaning, and situational levels (Kintsch, 1998). Across proficiency level, bilinguals showed biphasic N400/late positive component (LPC) effects related to word meaning integration (N400) and mental model updating (LPC) processes. More proficient bilinguals, compared with less proficient bilinguals, showed reduced amplitudes in both N400 and LPC when the integration depended on semantic and conceptual meanings. When the integration was based on word repetitions and inferences, both groups showed reduced N400 negativity while elevated LPC positivity. These effects reflect how memory mechanisms (processes and resources) support the tight coupling among word meaning, readers' memory of the text meaning and the referentially-specified meaning of the text. They further demonstrate the importance of L2 semantic and conceptual processing in modulating the L2 proficiency effect on L2 text integration processes. These results align with the assumption that word meaning processes are causal components in variations of comprehension ability for both monolinguals and bilinguals. Copyright © 2018. Published by Elsevier Ltd.
Localizing semantic interference from distractor sounds in picture naming: A dual-task study.
Mädebach, Andreas; Kieseler, Marie-Luise; Jescheniak, Jörg D
2017-10-13
In this study we explored the locus of semantic interference in a novel picture-sound interference task in which participants name pictures while ignoring environmental distractor sounds. In a previous study using this task (Mädebach, Wöhner, Kieseler, & Jescheniak, in Journal of Experimental Psychology: Human Perception and Performance, 43, 1629-1646, 2017), we showed that semantically related distractor sounds (e.g., BARKING dog ) interfere with a picture-naming response (e.g., "horse") more strongly than unrelated distractor sounds do (e.g., DRUMMING drum ). In the experiment reported here, we employed the psychological refractory period (PRP) approach to explore the locus of this effect. We combined a geometric form classification task (square vs. circle; Task 1) with the picture-sound interference task (Task 2). The stimulus onset asynchrony (SOA) between the tasks was systematically varied (0 vs. 500 ms). There were three central findings. First, the semantic interference effect from distractor sounds was replicated. Second, picture naming (in Task 2) was slower with the short than with the long task SOA. Third, both effects were additive-that is, the semantic interference effects were of similar magnitude at both task SOAs. This suggests that the interference arises during response selection or later stages, not during early perceptual processing. This finding corroborates the theory that semantic interference from distractor sounds reflects a competitive selection mechanism in word production.
Bao, Yan; Yang, Taoxi; Lin, Xiaoxiong; Pöppel, Ernst
2016-09-01
Differences of reaction times to specific stimulus configurations are used as indicators of cognitive processing stages. In this classical experimental paradigm, continuous temporal processing is implicitly assumed. Multimodal response distributions indicate, however, discrete time sampling, which is often masked by experimental conditions. Differences in reaction times reflect discrete temporal mechanisms that are pre-semantically implemented and suggested to be based on entrained neural oscillations. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Kim, Albert E; Oines, Leif; Miyake, Akira
2018-03-01
This study investigated the processes reflected in the widely observed N400 and P600 event-related potential (ERP) effects and tested the hypothesis that the N400 and P600 effects are functionally linked in a tradeoff relationship, constrained in part by individual differences in cognitive ability. Sixty participants read sentences, and ERP effects of semantic anomaly, relative to plausible words, were calculated for each participant. Results suggested qualitatively different ERP patterns across participants: Some individuals generated N400-dominated effects, whereas others generated P600-dominated effects, for the same stimuli. To specify the sources of individual differences in brain responses, we also derived aggregate scores for verbal working memory (WM), nonverbal WM, and language experience/knowledge, based on 6 behavioral measures administered to each participant. Multiple regression analysis pitting these 3 constructs against each other showed that a larger verbal WM capacity was significantly associated with larger P600 and smaller N400 effect amplitudes across individuals, whereas the other constructs did not predict the ERP effects. The results suggest that N400 and P600 brain responses, which may be attributable to semantic integration difficulty and structural processing, respectively, vie for expression when comprehenders encounter semantically unexpected words and that which option wins out is constrained in part by each comprehender's verbal WM capacity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Regel, Stefanie; Meyer, Lars; Gunter, Thomas C.
2014-01-01
Research on language comprehension using event-related potentials (ERPs) reported distinct ERP components reliably related to the processing of semantic (N400) and syntactic information (P600). Recent ERP studies have challenged this well-defined distinction by showing P600 effects for semantic and pragmatic anomalies. So far, it is still unresolved whether the P600 reflects specific or rather common processes. The present study addresses this question by investigating ERPs in response to a syntactic and pragmatic (irony) manipulation, as well as a combined syntactic and pragmatic manipulation. For the syntactic condition, a morphosyntactic violation was applied, whereas for the pragmatic condition, such as “That is rich”, either an ironic or literal interpretation was achieved, depending on the prior context. The ERPs at the critical word showed a LAN-P600 pattern for syntactically incorrect sentences relative to correct ones. For ironic compared to literal sentences, ERPs showed a P200 effect followed by a P600 component. In comparison of the syntax-related P600 to the irony-related P600, distributional differences were found. Moreover, for the P600 time window (i.e., 500–900 ms), different changes in theta power between the syntax and pragmatics effects were found, suggesting that different patterns of neural activity contributed to each respective effect. Thus, both late positivities seem to be differently sensitive to these two types of linguistic information, and might reflect distinct neurocognitive processes, such as reanalysis of the sentence structure versus pragmatic reanalysis. PMID:24844290
A semantic medical multimedia retrieval approach using ontology information hiding.
Guo, Kehua; Zhang, Shigeng
2013-01-01
Searching useful information from unstructured medical multimedia data has been a difficult problem in information retrieval. This paper reports an effective semantic medical multimedia retrieval approach which can reflect the users' query intent. Firstly, semantic annotations will be given to the multimedia documents in the medical multimedia database. Secondly, the ontology that represented semantic information will be hidden in the head of the multimedia documents. The main innovations of this approach are cross-type retrieval support and semantic information preservation. Experimental results indicate a good precision and efficiency of our approach for medical multimedia retrieval in comparison with some traditional approaches.
Palmiero, Massimiliano; Di Matteo, Rosalia; Belardinelli, Marta Olivetti
2014-05-01
Two experiments comparing imaginative processing in different modalities and semantic processing were carried out to investigate the issue of whether conceptual knowledge can be represented in different format. Participants were asked to judge the similarity between visual images, auditory images, and olfactory images in the imaginative block, if two items belonged to the same category in the semantic block. Items were verbally cued in both experiments. The degree of similarity between the imaginative and semantic items was changed across experiments. Experiment 1 showed that the semantic processing was faster than the visual and the auditory imaginative processing, whereas no differentiation was possible between the semantic processing and the olfactory imaginative processing. Experiment 2 revealed that only the visual imaginative processing could be differentiated from the semantic processing in terms of accuracy. These results showed that the visual and auditory imaginative processing can be differentiated from the semantic processing, although both visual and auditory images strongly rely on semantic representations. On the contrary, no differentiation is possible within the olfactory domain. Results are discussed in the frame of the imagery debate.
Wilson, Stephen M; DeMarco, Andrew T; Henry, Maya L; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L; Gorno-Tempini, Maria Luisa
2014-05-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA; also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the ATLs is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA to determine which regions normally involved in syntactic processing are damaged in semantic PPA and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural MRI and fMRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that, in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, whereas anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the ATLs but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left ATL did show abnormal functionality in semantic PPA patients; however, this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the ATL in sentence processing is less likely to relate to syntactic structure-building and more likely to relate to higher-level processes such as combinatorial semantic processing.
Late positive slow waves as markers of chunking during encoding
Nogueira, Ana M. L.; Bueno, Orlando F. A.; Manzano, Gilberto M.; Kohn, André F.; Pompéia, Sabine
2015-01-01
Electrophysiological markers of chunking of words during encoding have mostly been shown in studies that present pairs of related stimuli. In these cases it is difficult to disentangle cognitive processes that reflect distinctiveness (i.e., conspicuous items because they are related), perceived association between related items and unified representations of various items, or chunking. Here, we propose a paradigm that enables the determination of a separate Event-related Potential (ERP) marker of these cognitive processes using sequentially related word triads. Twenty-three young healthy individuals viewed 80 15-word lists composed of unrelated items except for the three words in the middle serial positions (triads), which could be either unrelated (control list), related perceptually, phonetically or semantically. ERP amplitudes were measured at encoding of each one of the words in the triads. We analyzed two latency intervals (350–400 and 400–800 ms) at midline locations. Behaviorally, we observed a progressive facilitation in the immediate free recall of the words in the triads depending on the relations between their items (control < perceptual < phonetic < semantic), but only semantically related items were recalled as chunks. P300-like deflections were observed for perceptually deviant stimuli. A reduction of amplitude of a component akin to the N400 was found for words that were phonetically and semantically associated with prior items and therefore were not associated to chunking. Positive slow wave (PSW) amplitudes increased as successive phonetically and semantically related items were presented, but they were observed earlier and were more prominent at Fz for semantic associates. PSWs at Fz and Cz also correlated with recall of semantic word chunks. This confirms prior claims that PSWs at Fz are potential markers of chunking which, in the proposed paradigm, were modulated differently from the detection of deviant stimuli and of relations between stimuli. PMID:26283984
Cantiani, Chiara; Riva, Valentina; Piazza, Caterina; Melesi, Giulia; Mornati, Giulia; Bettoni, Roberta; Marino, Cecilia; Molteni, Massimo
2017-08-01
Children begin to establish lexical-semantic representations during their first year of life, resulting in a rapid growth of vocabulary around 18-24 months of age. The neural mechanisms underlying this initial ability to map words onto conceptual representations remain relatively unknown. In the present study, the electrophysiological underpinnings of these mechanisms are explored during the critical phase of lexical acquisition using a picture-word matching paradigm. Event-Related Potentials (ERPs) elicited by words (either congruous or incongruous with the previous picture context) and pseudo-words are investigated in 20-month-old toddlers (N = 20) and compared to those elicited in a sample of adults (N = 20), reflecting the final and efficient system, and a sample of toddlers at familial risk for language and learning impairment (LLI, N = 15). The results suggest that the architecture underlying spoken word representation and processing is constant throughout development, even if some differences between children and adults emerged. Interestingly, children seem to be faster than adults in processing incongruent words, probably because relying on a different and more superficial strategy. This early strategy does not seem to be present in children at risk for LLI. In addition, both groups of children do not show different and specific electrophysiological underpinnings in response to real but incongruent words and unknown words, suggesting that during the critical phase of lexical acquisition any potential word is processed in a similar way. Overall, children at risk for LLI turned out to be sensitive to verbal incongruity of the lexical-semantic context, although some differences from typically developing children emerged, reflecting slower processing and less automatic responses. Taken together, the findings of this study pave the way to further research to investigate these effects in clinical and at-risk populations with the general purpose of disentangling the underlying mechanisms of lexical acquisition, and potentially predicting later language (dis)abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rodd, Jennifer M; Vitello, Sylvia; Woollams, Anna M; Adank, Patti
2015-02-01
We conducted an Activation Likelihood Estimation (ALE) meta-analysis to identify brain regions that are recruited by linguistic stimuli requiring relatively demanding semantic or syntactic processing. We included 54 functional MRI studies that explicitly varied the semantic or syntactic processing load, while holding constant demands on earlier stages of processing. We included studies that introduced a syntactic/semantic ambiguity or anomaly, used a priming manipulation that specifically reduced the load on semantic/syntactic processing, or varied the level of syntactic complexity. The results confirmed the critical role of the posterior left Inferior Frontal Gyrus (LIFG) in semantic and syntactic processing. These results challenge models of sentence comprehension highlighting the role of anterior LIFG for semantic processing. In addition, the results emphasise the posterior (but not anterior) temporal lobe for both semantic and syntactic processing. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.
De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie
2015-09-01
Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra-categorical auditory discrimination for untrained items follows the temporal hierarchy and transpires in a late stage of semantic processing. On the other hand, correct categorization of individually trained stimuli occurs earlier, during a period contemporaneous with human vs. animal vocalization discrimination, and involves a parallel semantic pathway requiring expertise. Copyright © 2015 Elsevier Inc. All rights reserved.
Yap, Melvin J; Balota, David A; Tan, Sarah E
2013-01-01
The present study sheds light on the interplay between lexical and decision processes in the lexical decision task by exploring the effects of lexical decision difficulty on semantic priming effects. In 2 experiments, we increased lexical decision difficulty by either using transposed letter wordlike nonword distracters (e.g., JUGDE; Experiment 1) or by visually degrading targets (Experiment 2). Although target latencies were considerably slowed by both difficulty manipulations, stimulus quality-but not nonword type-moderated priming effects, consistent with recent work by Lupker and Pexman (2010). To characterize these results in a more fine-grained manner, data were also analyzed at the level of response time (RT) distributions, using a combination of ex-Gaussian, quantile, and diffusion model analyses. The results indicate that for clear targets, priming was reflected by distributional shifting of comparable magnitude across different nonword types. In contrast, priming of degraded targets was reflected by shifting and an increase in the tail of the distribution. We discuss how these findings, along with others, can be accommodated by an embellished multistage activation model that incorporates retrospective prime retrieval and decision-based mechanisms.
Regional brain activation/deactivation during word generation in schizophrenia: fMRI study.
John, John P; Halahalli, Harsha N; Vasudev, Mandapati K; Jayakumar, Peruvumba N; Jain, Sanjeev
2011-03-01
Examination of the brain regions that show aberrant activations and/or deactivations during semantic word generation could pave the way for a better understanding of the neurobiology of cognitive dysfunction in schizophrenia. To examine the pattern of functional magnetic resonance imaging blood oxygen level dependent activations and deactivations during semantic word generation in schizophrenia. Functional magnetic resonance imaging was performed on 24 participants with schizophrenia and 24 matched healthy controls during an overt, paced, 'semantic category word generation' condition and a baseline 'word repetition' condition that modelled all the lead-in/associated processes involved in the performance of the generation task. The brain regions activated during word generation in healthy individuals were replicated with minimal redundancies in participants with schizophrenia. The individuals with schizophrenia showed additional activations of temporo-parieto-occipital cortical regions as well as subcortical regions, despite significantly poorer behavioural performance than the healthy participants. Importantly, the extensive deactivations in other brain regions during word generation in healthy individuals could not be replicated in those with schizophrenia. More widespread activations and deficient deactivations in the poorly performing participants with schizophrenia may reflect an inability to inhibit competing cognitive processes, which in turn could constitute the core information-processing deficit underlying impaired word generation in schizophrenia.
ERIC Educational Resources Information Center
Mayberry, Emily J.; Sage, Karen; Ehsan, Sheeba; Ralph, Matthew A. Lambon
2011-01-01
When relearning words, patients with semantic dementia (SD) exhibit a characteristic rigidity, including a failure to generalise names to untrained exemplars of trained concepts. This has been attributed to an over-reliance on the medial temporal region which captures information in sparse, non-overlapping and therefore rigid representations. The…
Wilson, Stephen M.; DeMarco, Andrew T.; Henry, Maya L.; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L.; Gorno-Tempini, Maria Luisa
2014-01-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA, also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the anterior temporal lobes is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA, in order to determine which regions normally involved in syntactic processing are damaged in semantic PPA, and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural and functional MRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, while anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the anterior temporal lobes, but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left anterior temporal lobe did show abnormal functionality in semantic PPA patients, however this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the anterior temporal lobe in sentence processing is less likely to relate to syntactic structure-building, and more likely to relate to higher level processes such as combinatorial semantic processing. PMID:24345172
Synonym extraction and abbreviation expansion with ensembles of semantic spaces.
Henriksson, Aron; Moen, Hans; Skeppstedt, Maria; Daudaravičius, Vidas; Duneld, Martin
2014-02-05
Terminologies that account for variation in language use by linking synonyms and abbreviations to their corresponding concept are important enablers of high-quality information extraction from medical texts. Due to the use of specialized sub-languages in the medical domain, manual construction of semantic resources that accurately reflect language use is both costly and challenging, often resulting in low coverage. Although models of distributional semantics applied to large corpora provide a potential means of supporting development of such resources, their ability to isolate synonymy from other semantic relations is limited. Their application in the clinical domain has also only recently begun to be explored. Combining distributional models and applying them to different types of corpora may lead to enhanced performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. A combination of two distributional models - Random Indexing and Random Permutation - employed in conjunction with a single corpus outperforms using either of the models in isolation. Furthermore, combining semantic spaces induced from different types of corpora - a corpus of clinical text and a corpus of medical journal articles - further improves results, outperforming a combination of semantic spaces induced from a single source, as well as a single semantic space induced from the conjoint corpus. A combination strategy that simply sums the cosine similarity scores of candidate terms is generally the most profitable out of the ones explored. Finally, applying simple post-processing filtering rules yields substantial performance gains on the tasks of extracting abbreviation-expansion pairs, but not synonyms. The best results, measured as recall in a list of ten candidate terms, for the three tasks are: 0.39 for abbreviations to long forms, 0.33 for long forms to abbreviations, and 0.47 for synonyms. This study demonstrates that ensembles of semantic spaces can yield improved performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. This notion, which merits further exploration, allows different distributional models - with different model parameters - and different types of corpora to be combined, potentially allowing enhanced performance to be obtained on a wide range of natural language processing tasks.
Synonym extraction and abbreviation expansion with ensembles of semantic spaces
2014-01-01
Background Terminologies that account for variation in language use by linking synonyms and abbreviations to their corresponding concept are important enablers of high-quality information extraction from medical texts. Due to the use of specialized sub-languages in the medical domain, manual construction of semantic resources that accurately reflect language use is both costly and challenging, often resulting in low coverage. Although models of distributional semantics applied to large corpora provide a potential means of supporting development of such resources, their ability to isolate synonymy from other semantic relations is limited. Their application in the clinical domain has also only recently begun to be explored. Combining distributional models and applying them to different types of corpora may lead to enhanced performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. Results A combination of two distributional models – Random Indexing and Random Permutation – employed in conjunction with a single corpus outperforms using either of the models in isolation. Furthermore, combining semantic spaces induced from different types of corpora – a corpus of clinical text and a corpus of medical journal articles – further improves results, outperforming a combination of semantic spaces induced from a single source, as well as a single semantic space induced from the conjoint corpus. A combination strategy that simply sums the cosine similarity scores of candidate terms is generally the most profitable out of the ones explored. Finally, applying simple post-processing filtering rules yields substantial performance gains on the tasks of extracting abbreviation-expansion pairs, but not synonyms. The best results, measured as recall in a list of ten candidate terms, for the three tasks are: 0.39 for abbreviations to long forms, 0.33 for long forms to abbreviations, and 0.47 for synonyms. Conclusions This study demonstrates that ensembles of semantic spaces can yield improved performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. This notion, which merits further exploration, allows different distributional models – with different model parameters – and different types of corpora to be combined, potentially allowing enhanced performance to be obtained on a wide range of natural language processing tasks. PMID:24499679
Transcranial Direct Current Stimulation Effects on Semantic Processing in Healthy Individuals.
Joyal, Marilyne; Fecteau, Shirley
2016-01-01
Semantic processing allows us to use conceptual knowledge about the world. It has been associated with a large distributed neural network that includes the frontal, temporal and parietal cortices. Recent studies using transcranial direct current stimulation (tDCS) also contributed at investigating semantic processing. The goal of this article was to review studies investigating semantic processing in healthy individuals with tDCS and discuss findings from these studies in line with neuroimaging results. Based on functional magnetic resonance imaging studies assessing semantic processing, we predicted that tDCS applied over the inferior frontal gyrus, middle temporal gyrus, and posterior parietal cortex will impact semantic processing. We conducted a search on Pubmed and selected 27 articles in which tDCS was used to modulate semantic processing in healthy subjects. We analysed each article according to these criteria: demographic information, experimental outcomes assessing semantic processing, study design, and effects of tDCS on semantic processes. From the 27 reviewed studies, 8 found main effects of stimulation. In addition to these 8 studies, 17 studies reported an interaction between stimulus types and stimulation conditions (e.g. incoherent functional, but not instrumental, actions were processed faster when anodal tDCS was applied over the posterior parietal cortex as compared to sham tDCS). Results suggest that regions in the frontal, temporal, and parietal cortices are involved in semantic processing. tDCS can modulate some aspects of semantic processing and provide information on the functional roles of brain regions involved in this cognitive process. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-01-01
Background During normal semantic processing, the left hemisphere (LH) is suggested to restrict right hemisphere (RH) performance via interhemispheric suppression. However, a lesion in the LH or the use of concurrent tasks to overload the LH's attentional resource balance has been reported to result in RH disinhibition with subsequent improvements in RH performance. The current study examines variations in RH semantic processing in the context of unilateral LH lesions and the manipulation of the interhemispheric processing resource balance, in order to explore the relevance of RH disinhibition to hemispheric contributions to semantic processing following a unilateral LH lesion. Methods RH disinhibition was examined for nine participants with a single LH lesion and 13 matched controls using the dual task paradigm. Hemispheric performance on a divided visual field lexical decision semantic priming task was compared over three verbal memory load conditions, of zero-, two- and six-words. Related stimuli consisted of categorically related, associatively related, and categorically and associatively related prime-target pairs. Response time and accuracy data were recorded and analyzed using linear mixed model analysis, and planned contrasts were performed to compare priming effects in both visual fields, for each of the memory load conditions. Results Control participants exhibited significant bilateral visual field priming for all related conditions (p < .05), and a LH advantage over all three memory load conditions. Participants with LH lesions exhibited an improvement in RH priming performance as memory load increased, with priming for the categorically related condition occurring only in the 2- and 6-word memory conditions. RH disinhibition was also reflected for the LH damage (LHD) group by the removal of the LH performance advantage following the introduction of the memory load conditions. Conclusions The results from the control group are consistent with suggestions of an age related hemispheric asymmetry reduction and indicate that in healthy aging compensatory bilateral activation may reduce the impact of inhibition. In comparison, the results for the LHD group indicate that following a LH lesion RH semantic processing can be manipulated and enhanced by the introduction of a verbal memory task designed to engage LH resources and allow disinhibition of RH processing. PMID:22429687
ERIC Educational Resources Information Center
Coderre, Emily L.; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry
2017-01-01
Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we…
A Semantic Medical Multimedia Retrieval Approach Using Ontology Information Hiding
Guo, Kehua; Zhang, Shigeng
2013-01-01
Searching useful information from unstructured medical multimedia data has been a difficult problem in information retrieval. This paper reports an effective semantic medical multimedia retrieval approach which can reflect the users' query intent. Firstly, semantic annotations will be given to the multimedia documents in the medical multimedia database. Secondly, the ontology that represented semantic information will be hidden in the head of the multimedia documents. The main innovations of this approach are cross-type retrieval support and semantic information preservation. Experimental results indicate a good precision and efficiency of our approach for medical multimedia retrieval in comparison with some traditional approaches. PMID:24082915
Semantic Typicality Effects in Acquired Dyslexia: Evidence for Semantic Impairment in Deep Dyslexia.
Riley, Ellyn A; Thompson, Cynthia K
2010-06-01
BACKGROUND: Acquired deep dyslexia is characterized by impairment in grapheme-phoneme conversion and production of semantic errors in oral reading. Several theories have attempted to explain the production of semantic errors in deep dyslexia, some proposing that they arise from impairments in both grapheme-phoneme and lexical-semantic processing, and others proposing that such errors stem from a deficit in phonological production. Whereas both views have gained some acceptance, the limited evidence available does not clearly eliminate the possibility that semantic errors arise from a lexical-semantic input processing deficit. AIMS: To investigate semantic processing in deep dyslexia, this study examined the typicality effect in deep dyslexic individuals, phonological dyslexic individuals, and controls using an online category verification paradigm. This task requires explicit semantic access without speech production, focusing observation on semantic processing from written or spoken input. METHODS #ENTITYSTARTX00026; PROCEDURES: To examine the locus of semantic impairment, the task was administered in visual and auditory modalities with reaction time as the primary dependent measure. Nine controls, six phonological dyslexic participants, and five deep dyslexic participants completed the study. OUTCOMES #ENTITYSTARTX00026; RESULTS: Controls and phonological dyslexic participants demonstrated a typicality effect in both modalities, while deep dyslexic participants did not demonstrate a typicality effect in either modality. CONCLUSIONS: These findings suggest that deep dyslexia is associated with a semantic processing deficit. Although this does not rule out the possibility of concomitant deficits in other modules of lexical-semantic processing, this finding suggests a direction for treatment of deep dyslexia focused on semantic processing.
Evidence for the contribution of a threshold retrieval process to semantic memory.
Kempnich, Maria; Urquhart, Josephine A; O'Connor, Akira R; Moulin, Chris J A
2017-10-01
It is widely held that episodic retrieval can recruit two processes: a threshold context retrieval process (recollection) and a continuous signal strength process (familiarity). Conversely the processes recruited during semantic retrieval are less well specified. We developed a semantic task analogous to single-item episodic recognition to interrogate semantic recognition receiver-operating characteristics (ROCs) for a marker of a threshold retrieval process. We fitted observed ROC points to three signal detection models: two models typically used in episodic recognition (unequal variance and dual-process signal detection models) and a novel dual-process recollect-to-reject (DP-RR) signal detection model that allows a threshold recollection process to aid both target identification and lure rejection. Given the nature of most semantic questions, we anticipated the DP-RR model would best fit the semantic task data. Experiment 1 (506 participants) provided evidence for a threshold retrieval process in semantic memory, with overall best fits to the DP-RR model. Experiment 2 (316 participants) found within-subjects estimates of episodic and semantic threshold retrieval to be uncorrelated. Our findings add weight to the proposal that semantic and episodic memory are served by similar dual-process retrieval systems, though the relationship between the two threshold processes needs to be more fully elucidated.
Drakesmith, Mark; El-Deredy, Wael; Welbourne, Stephen
2015-01-01
Reading words for meaning relies on orthographic, phonological and semantic processing. The triangle model implicates a direct orthography-to-semantics pathway and a phonologically mediated orthography-to-semantics pathway, which interact with each other. The temporal evolution of processing in these routes is not well understood, although theoretical evidence predicts early phonological processing followed by interactive phonological and semantic processing. This study used electroencephalography-event-related potential (ERP) analysis and magnetoencephalography (MEG) source localisation to identify temporal markers and the corresponding neural generators of these processes in early (∼200 ms) and late (∼400 ms) neurophysiological responses to visual words, pseudowords and consonant strings. ERP showed an effect of phonology but not semantics in both time windows, although at ∼400 ms there was an effect of stimulus familiarity. Phonological processing at ~200 ms was localised to the left occipitotemporal cortex and the inferior frontal gyrus. At 400 ms, there was continued phonological processing in the inferior frontal gyrus and additional semantic processing in the anterior temporal cortex. There was also an area in the left temporoparietal junction which was implicated in both phonological and semantic processing. In ERP, the semantic response at ∼400 ms appeared to be masked by concurrent processes relating to familiarity, while MEG successfully differentiated these processes. The results support the prediction of early phonological processing followed by an interaction of phonological and semantic processing during word recognition. Neuroanatomical loci of these processes are consistent with previous neuropsychological and functional magnetic resonance imaging studies. The results also have implications for the classical interpretation of N400-like responses as markers for semantic processing.
Broderick, Michael P; Anderson, Andrew J; Di Liberto, Giovanni M; Crosse, Michael J; Lalor, Edmund C
2018-03-05
People routinely hear and understand speech at rates of 120-200 words per minute [1, 2]. Thus, speech comprehension must involve rapid, online neural mechanisms that process words' meanings in an approximately time-locked fashion. However, electrophysiological evidence for such time-locked processing has been lacking for continuous speech. Although valuable insights into semantic processing have been provided by the "N400 component" of the event-related potential [3-6], this literature has been dominated by paradigms using incongruous words within specially constructed sentences, with less emphasis on natural, narrative speech comprehension. Building on the discovery that cortical activity "tracks" the dynamics of running speech [7-9] and psycholinguistic work demonstrating [10-12] and modeling [13-15] how context impacts on word processing, we describe a new approach for deriving an electrophysiological correlate of natural speech comprehension. We used a computational model [16] to quantify the meaning carried by words based on how semantically dissimilar they were to their preceding context and then regressed this measure against electroencephalographic (EEG) data recorded from subjects as they listened to narrative speech. This produced a prominent negativity at a time lag of 200-600 ms on centro-parietal EEG channels, characteristics common to the N400. Applying this approach to EEG datasets involving time-reversed speech, cocktail party attention, and audiovisual speech-in-noise demonstrated that this response was very sensitive to whether or not subjects understood the speech they heard. These findings demonstrate that, when successfully comprehending natural speech, the human brain responds to the contextual semantic content of each word in a relatively time-locked fashion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Emotional words facilitate lexical but not early visual processing.
Trauer, Sophie M; Kotz, Sonja A; Müller, Matthias M
2015-12-12
Emotional scenes and faces have shown to capture and bind visual resources at early sensory processing stages, i.e. in early visual cortex. However, emotional words have led to mixed results. In the current study ERPs were assessed simultaneously with steady-state visual evoked potentials (SSVEPs) to measure attention effects on early visual activity in emotional word processing. Neutral and negative words were flickered at 12.14 Hz whilst participants performed a Lexical Decision Task. Emotional word content did not modulate the 12.14 Hz SSVEP amplitude, neither did word lexicality. However, emotional words affected the ERP. Negative compared to neutral words as well as words compared to pseudowords lead to enhanced deflections in the P2 time range indicative of lexico-semantic access. The N400 was reduced for negative compared to neutral words and enhanced for pseudowords compared to words indicating facilitated semantic processing of emotional words. LPC amplitudes reflected word lexicality and thus the task-relevant response. In line with previous ERP and imaging evidence, the present results indicate that written emotional words are facilitated in processing only subsequent to visual analysis.
Guajardo, Lourdes F.; Wicha, Nicole Y. Y.
2014-01-01
Event-related potential studies of grammatical gender agreement often report a left anterior negativity (LAN) when agreement violations occur. Some studies have shown that during sentence comprehension gender violations can also interact with semantic processing to modulate a negativity associated with processing meaning – the N400. Given that the LAN and N400 overlap in time, they are identified by their scalp distributions and purported functional roles. Critically, grammatical gender violations also elicit a right posterior positivity that can overlap temporally with and potentially affect the scalp distribution of the LAN/N400. We measured the effect of grammatical gender violations in the LAN/N400 window and late positive component (LPC) during comprehension of Spanish sentences. A post-nominal adjective could either make sense or not, and either agree or disagree in gender with the preceding noun. We observed a negativity to gender agreement violations in the LAN/N400 window (300–500 ms post stimulus onset) that was smaller than the semantic-congruity N400, but overlapped with it in time and distribution. The early portion of the LPC to gender violations was modulated by sentence constraint, occurring as early as 450ms in highly constraining sentences. A subadditive interaction occurred at the later portion of the LPC with equivalent effects for single and double violations (gender and semantics), reflecting a general stage of reprocessing. Overall, our data support models of language comprehension whereby both semantic and morphosyntactic information can affect processing at similar time points. PMID:24462934
Guajardo, Lourdes F; Wicha, Nicole Y Y
2014-05-01
Event-related potential studies of grammatical gender agreement often report a left anterior negativity (LAN) when agreement violations occur. Some studies have shown that during sentence comprehension gender violations can also interact with semantic processing to modulate a negativity associated with processing meaning - the N400. Given that the LAN and N400 overlap in time, they are identified by their scalp distributions and purported functional roles. Critically, grammatical gender violations also elicit a right posterior positivity that can overlap temporally and potentially affect the scalp distribution of the LAN/N400. We measured the effect of grammatical gender violations in the LAN/N400 window and late positive component (LPC) during comprehension of Spanish sentences. A post-nominal adjective could either make sense or not, and either agree or disagree in gender with the preceding noun. We observed a negativity to gender agreement violations in the LAN/N400 window (300-500ms post stimulus onset) that was smaller than the semantic-congruity N400, but overlapped with it in time and distribution. The early portion of the LPC to gender violations was modulated by sentence constraint, occurring as early as 450ms in highly constraining sentences. A subadditive interaction occurred at the later portion of the LPC with equivalent effects for single and double violations (gender and semantics), reflecting a general stage of reprocessing. Overall, our data support models of language comprehension whereby both semantic and morphosyntactic information can affect processing at similar time points. Copyright © 2014 Elsevier Inc. All rights reserved.
A Tri-network Model of Human Semantic Processing
Xu, Yangwen; He, Yong; Bi, Yanchao
2017-01-01
Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266
Relations between Short-term Memory Deficits, Semantic Processing, and Executive Function
Allen, Corinne M.; Martin, Randi C.; Martin, Nadine
2012-01-01
Background Previous research has suggested separable short-term memory (STM) buffers for the maintenance of phonological and lexical-semantic information, as some patients with aphasia show better ability to retain semantic than phonological information and others show the reverse. Recently, researchers have proposed that deficits to the maintenance of semantic information in STM are related to executive control abilities. Aims The present study investigated the relationship of executive function abilities with semantic and phonological short-term memory (STM) and semantic processing in such patients, as some previous research has suggested that semantic STM deficits and semantic processing abilities are critically related to specific or general executive function deficits. Method and Procedures 20 patients with aphasia and STM deficits were tested on measures of short-term retention, semantic processing, and both complex and simple executive function tasks. Outcome and Results In correlational analyses, we found no relation between semantic STM and performance on simple or complex executive function tasks. In contrast, phonological STM was related to executive function performance in tasks that had a verbal component, suggesting that performance in some executive function tasks depends on maintaining or rehearsing phonological codes. Although semantic STM was not related to executive function ability, performance on semantic processing tasks was related to executive function, perhaps due to similar executive task requirements in both semantic processing and executive function tasks. Conclusions Implications for treatment and interpretations of executive deficits are discussed. PMID:22736889
Anatomy of Language Impairments in Primary Progressive Aphasia
Rogalski, Emily; Cobia, Derin; Harrison, Theresa M.; Wieneke, Christina; Thompson, Cynthia K; Weintraub, Sandra; Mesulam, M.-Marsel
2011-01-01
Primary progressive aphasia (PPA) is a clinical dementia syndrome characterized by progressive decline in language function but relative sparing of other cognitive domains. There are three recognized PPA variants: agrammatic, semantic, and logopenic. Although each PPA subtype is characterized by the nature of the principal deficit, individual patients frequently display subtle impairments in additional language domains. The present study investigated the distribution of atrophy related to performance in specific language domains (i.e., grammatical processing, semantic processing, fluency, and sentence repetition) across PPA variants to better understand the anatomical substrates of language. Results showed regionally specific relationships, primarily in the left hemisphere, between atrophy and impairments in language performance. Most notable was the neuroanatomical distinction between fluency and grammatical processing. Poor fluency was associated with regions dorsal to the traditional boundaries of Broca’s area in the inferior frontal sulcus and the posterior middle frontal gyrus, whereas grammatical processing was associated with more widespread atrophy, including the inferior frontal gyrus and supramarginal gyrus. Repetition performance was correlated with atrophy in the posterior superior temporal gyrus. The correlation of atrophy with semantic processing impairment was localized to the anterior temporal poles. Atrophy patterns were more closely correlated with domain-specific performance than with subtype. These results show that PPA reflects a selective disruption of the language network as a whole, with no rigid boundaries between subtypes. Further, these atrophy patterns reveal anatomical correlates of language that could not have been surmised in patients with aphasia resulting from cerebrovascular lesions. PMID:21368046
Anatomy of language impairments in primary progressive aphasia.
Rogalski, Emily; Cobia, Derin; Harrison, Theresa M; Wieneke, Christina; Thompson, Cynthia K; Weintraub, Sandra; Mesulam, M-Marsel
2011-03-02
Primary progressive aphasia (PPA) is a clinical dementia syndrome characterized by progressive decline in language function but relative sparing of other cognitive domains. There are three recognized PPA variants: agrammatic, semantic, and logopenic. Although each PPA subtype is characterized by the nature of the principal deficit, individual patients frequently display subtle impairments in additional language domains. The present study investigated the distribution of atrophy related to performance in specific language domains (i.e., grammatical processing, semantic processing, fluency, and sentence repetition) across PPA variants to better understand the anatomical substrates of language. Results showed regionally specific relationships, primarily in the left hemisphere, between atrophy and impairments in language performance. Most notable was the neuroanatomical distinction between fluency and grammatical processing. Poor fluency was associated with regions dorsal to the traditional boundaries of Broca's area in the inferior frontal sulcus and the posterior middle frontal gyrus, whereas grammatical processing was associated with more widespread atrophy, including the inferior frontal gyrus and supramarginal gyrus. Repetition performance was correlated with atrophy in the posterior superior temporal gyrus. The correlation of atrophy with semantic processing impairment was localized to the anterior temporal poles. Atrophy patterns were more closely correlated with domain-specific performance than with subtype. These results show that PPA reflects a selective disruption of the language network as a whole, with no rigid boundaries between subtypes. Further, these atrophy patterns reveal anatomical correlates of language that could not have been surmised in patients with aphasia resulting from cerebrovascular lesions.
Zeng, Tao; Mao, Wen; Lu, Qing
2016-05-25
Scalp-recorded event-related potentials are known to be sensitive to particular aspects of sentence processing. The N400 component is widely recognized as an effect closely related to lexical-semantic processing. The absence of an N400 effect in participants performing tasks in Indo-European languages has been considered evidence that failed syntactic category processing appears to block lexical-semantic integration and that syntactic structure building is a prerequisite of semantic analysis. An event-related potential experiment was designed to investigate whether such syntactic primacy can be considered to apply equally to Chinese sentence processing. Besides correct middles, sentences with either single semantic or single syntactic violation as well as double syntactic and semantic anomaly were used in the present research. Results showed that both purely semantic and combined violation induced a broad negativity in the time window 300-500 ms, indicating the independence of lexical-semantic integration. These findings provided solid evidence that lexical-semantic parsing plays a crucial role in Chinese sentence comprehension.
Grilli, Matthew D; Bercel, John J; Wank, Aubrey A; Rapcsak, Steven Z
2018-06-04
Autobiographical facts and personal trait knowledge are conceptualized as distinct types of personal semantics, but the cognitive and neural mechanisms that separate them remain underspecified. One distinction may be their level of specificity, with autobiographical facts reflecting idiosyncratic conceptual knowledge and personal traits representing basic level category knowledge about the self. Given the critical role of the left anterior ventrolateral temporal lobe (AVTL) in the storage and retrieval of semantic information about unique entities, we hypothesized that knowledge of autobiographical facts may depend on the integrity of this region to a greater extent than personal traits. To provide neuropsychological evidence relevant to this issue, we investigated personal semantics, semantic knowledge of non-personal unique entities, and episodic memory in two individuals with well-defined left (MK) versus right (DW) AVTL lesions. Relative to controls, MK demonstrated preserved personal trait knowledge but impaired "experience-far" (i.e., spatiotemporal independent) autobiographical fact knowledge, semantic memory for non-personal unique entities, and episodic memory. In contrast, both experience-far autobiographical facts and personal traits were spared in DW, whereas episodic memory and aspects of semantic memory for non-personal unique entities were impaired. These findings support the notion that autobiographical facts and personal traits have distinct cognitive features and neural mechanisms. They also suggest a common organizing principle for personal and non-personal semantics, namely the specificity of such knowledge to an entity, which is reflected in the contribution of the left AVTL to retrieval. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fine-grained semantic categorization across the abstract and concrete domains.
Ghio, Marta; Vaghi, Matilde Maria Serena; Tettamanti, Marco
2013-01-01
A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains.
Fine-Grained Semantic Categorization across the Abstract and Concrete Domains
Tettamanti, Marco
2013-01-01
A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains. PMID:23825625
Abraham, Joanna; Kannampallil, Thomas G; Srinivasan, Vignesh; Galanter, William L; Tagney, Gail; Cohen, Trevor
2017-01-01
We develop and evaluate a methodological approach to measure the degree and nature of overlap in handoff communication content within and across clinical professions. This extensible, exploratory approach relies on combining techniques from conversational analysis and distributional semantics. We audio-recorded handoff communication of residents and nurses on the General Medicine floor of a large academic hospital (n=120 resident and n=120 nurse handoffs). We measured semantic similarity, a proxy for content overlap, between resident-resident and nurse-nurse communication using multiple steps: a qualitative conversational content analysis; an automated semantic similarity analysis using Reflective Random Indexing (RRI); and comparing semantic similarity generated by RRI analysis with human ratings of semantic similarity. There was significant association between the semantic similarity as computed by the RRI method and human rating (ρ=0.88). Based on the semantic similarity scores, content overlap was relatively higher for content related to patient active problems, assessment of active problems, patient-identifying information, past medical history, and medications/treatments. In contrast, content overlap was limited on content related to allergies, family-related information, code status, and anticipatory guidance. Our approach using RRI analysis provides new opportunities for characterizing the nature and degree of overlap in handoff communication. Although exploratory, this method provides a basis for identifying content that can be used for determining shared understanding across clinical professions. Additionally, this approach can inform the development of flexibly standardized handoff tools that reflect clinical content that are most appropriate for fostering shared understanding during transitions of care. Copyright © 2016 Elsevier Inc. All rights reserved.
Long, Nicole M.; Kahana, Michael J.
2016-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high frequency EEG activity (HFA, 44 – 100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. PMID:27617775
Long, Nicole M; Kahana, Michael J
2017-02-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high-frequency EEG activity (HFA, 44-100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.
Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie
2016-12-01
Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.
The benefits of sensorimotor knowledge: body-object interaction facilitates semantic processing.
Siakaluk, Paul D; Pexman, Penny M; Sears, Christopher R; Wilson, Kim; Locheed, Keri; Owen, William J
2008-04-05
This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable. Responses were faster and more accurate for high BOI words (e.g., mask) than for low BOI words (e.g., ship). In Experiment 2, BOI effects were examined in a semantic lexical decision task (SLDT), which taps both semantic feedback and semantic processing. The BOI effect was larger in the SLDT than in the SCT, suggesting that BOI facilitates both semantic feedback and semantic processing. The findings are consistent with the embodied cognition perspective (e.g., Barsalou's, 1999, Perceptual Symbols Theory), which proposes that sensorimotor interactions with the environment are incorporated in semantic knowledge. 2008 Cognitive Science Society, Inc.
On the right side? A longitudinal study of left- versus right-lateralized semantic dementia.
Kumfor, Fiona; Landin-Romero, Ramon; Devenney, Emma; Hutchings, Rosalind; Grasso, Roberto; Hodges, John R; Piguet, Olivier
2016-03-01
The typical presentation of semantic dementia is associated with marked, left predominant anterior temporal lobe atrophy and with changes in language. About 30% of individuals, however, present with predominant right anterior temporal lobe atrophy, usually accompanied by behavioural changes and prosopagnosia. Here, we aimed to establish whether these initially distinct clinical presentations evolve into a similar syndrome at the neural and behavioural level. Thirty-one patients who presented with predominant anterior temporal lobe atrophy were included. Based on imaging, patients were categorized as either predominant left (n = 22) or right (n = 9) semantic dementia. Thirty-three Alzheimer's disease patients and 25 healthy controls were included for comparison. Participants completed the Addenbrooke's Cognitive Examination, a Face and Emotion Processing Battery and the Cambridge Behavioural Inventory, and underwent magnetic resonance imaging annually. Longitudinal neuroimaging analyses showed greater right temporal pole atrophy in left semantic dementia than Alzheimer's disease, whereas right semantic dementia showed greater orbitofrontal and left temporal lobe atrophy than Alzheimer's disease. Importantly, direct comparisons between semantic dementia groups revealed that over time, left semantic dementia showed progressive thinning in the right temporal pole, whereas right semantic dementia showed thinning in the orbitofrontal cortex and anterior cingulate. Behaviourally, longitudinal analyses revealed that general cognition declined in all patients. In contrast, patients with left and right semantic dementia showed greater emotion recognition decline than Alzheimer's disease. In addition, left semantic dementia showed greater motivation loss than Alzheimer's disease. Correlational analyses revealed that emotion recognition was associated with right temporal pole, right medial orbitofrontal and right fusiform integrity, while changes in motivation were associated with right temporal pole cortical thinning. While left and right semantic dementia show distinct profiles at presentation, both phenotypes develop deficits in emotion recognition and behaviour. These findings highlight the pervasive socio-emotional deficits in frontotemporal dementia, even in patients with an initial language presentation. These changes reflect right anterior temporal and orbitofrontal cortex degeneration, underscoring the role of these regions in social cognition and behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.
Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao
2015-09-01
Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.
Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo
2014-06-03
Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.
An investigation into semantic and phonological processing in individuals with Williams syndrome.
Lee, Cheryl S; Binder, Katherine S
2014-02-01
The current study examined semantic and phonological processing in individuals with Williams syndrome (WS). Previous research in language processing in individuals with WS suggests a complex linguistic system characterized by "deviant" semantic organization and differential phonological processing. Two experiments explored these representations in individuals with WS. The first experiment analyzed the relative typicality and frequency of participants' responses to a semantic and phonological fluency task. The second experiment tapped into online language processing through a semantic priming task and an online sentence reading task measuring the effects of word frequency. Thirteen participants with WS were matched to a group of participants on reading grade level and a group of participants on chronological age. The results of the semantic fluency task, semantic priming task, and word frequency task suggest that semantic organization in individuals with WS appears commensurate with their reading level rather than deviant. The pattern of results suggests that individuals with WS do not appear to have deviant semantic organization, while confirming that online tasks that tap into these processes are a promising direction in investigations that include atypically developing populations. These findings for the phonological tasks warrant further research into phonological processing in individuals with WS.
Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises
NASA Astrophysics Data System (ADS)
Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara
Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.
Semantic processes leading to true and false memory formation in schizophrenia.
Paz-Alonso, Pedro M; Ghetti, Simona; Ramsay, Ian; Solomon, Marjorie; Yoon, Jong; Carter, Cameron S; Ragland, J Daniel
2013-07-01
Encoding semantic relationships between items on word lists (semantic processing) enhances true memories, but also increases memory distortions. Episodic memory impairments in schizophrenia (SZ) are strongly driven by failures to process semantic relations, but the exact nature of these relational semantic processing deficits is not well understood. Here, we used a false memory paradigm to investigate the impact of implicit and explicit semantic processing manipulations on episodic memory in SZ. Thirty SZ and 30 demographically matched healthy controls (HC) studied Deese/Roediger-McDermott (DRM) lists of semantically associated words. Half of the lists had strong implicit semantic associations and the remainder had low strength associations. Similarly, half of the lists were presented under "standard" instructions and the other half under explicit "relational processing" instructions. After study, participants performed recall and old/new recognition tests composed of targets, critical lures, and unrelated lures. HC exhibited higher true memories and better discriminability between true and false memory compared to SZ. High, versus low, associative strength increased false memory rates in both groups. However, explicit "relational processing" instructions positively improved true memory rates only in HC. Finally, true and false memory rates were associated with severity of disorganized and negative symptoms in SZ. These results suggest that reduced processing of semantic relationships during encoding in SZ may stem from an inability to implement explicit relational processing strategies rather than a fundamental deficit in the implicit activation and retrieval of word meanings from patients' semantic lexicon. Copyright © 2013 Elsevier B.V. All rights reserved.
Cousins, Katheryn A Q; Grossman, Murray
2017-12-01
Category-specific impairments caused by brain damage can provide important insights into how semantic concepts are organized in the brain. Recent research has demonstrated that disease to sensory and motor cortices can impair perceptual feature knowledge important to the representation of semantic concepts. This evidence supports the grounded cognition theory of semantics, the view that lexical knowledge is partially grounded in perceptual experience and that sensory and motor regions support semantic representations. Less well understood, however, is how heteromodal semantic hubs work to integrate and process semantic information. Although the majority of semantic research to date has focused on how sensory cortical areas are important for the representation of semantic features, new research explores how semantic memory is affected by neurodegeneration in regions important for semantic processing. Here, we review studies that demonstrate impairments to abstract noun knowledge in behavioural variant frontotemporal degeneration (bvFTD) and to action verb knowledge in Parkinson's disease, and discuss how these deficits relate to disease of the semantic selection network. Findings demonstrate that semantic selection processes are supported by the left inferior frontal gyrus (LIFG) and basal ganglia, and that disease to these regions in bvFTD and Parkinson's disease can lead to categorical impairments for abstract nouns and action verbs, respectively.
Individual Variability in the Semantic Processing of English Compound Words
ERIC Educational Resources Information Center
Schmidtke, Daniel; Van Dyke, Julie A.; Kuperman, Victor
2018-01-01
Semantic transparency effects during compound word recognition provide critical insight into the organization of semantic knowledge and the nature of semantic processing. The past 25 years of psycholinguistic research on compound semantic transparency has produced discrepant effects, leaving the existence and nature of its influence unresolved. In…
Hubbard, Nicholas A; Weaver, Travis P; Turner, Monroe P; Rypma, Bart
2018-01-29
Recall accuracy decreases over successive memory trials using similar memoranda. This effect reflects proactive interference (PI) - the tendency for previously studied information to reduce recall of new information. However, recall improves if memoranda for a subsequent trial are semantically dissimilar from the previous trials. This improvement is thought to reflect a release from PI. We tested whether PI is reduced or released from the semantic category for which it had been induced by employing paradigms which featured inducement, semantic switch, and then return-to-original category epochs. Two experiments confirmed that PI was not released after various semantic switch trials (effects from d = -0.93 to -1.6). Combined analyses from both studies demonstrated that the number of intervening new category trials did not reduce or release PI. In fact, in all conditions recall accuracy decreased, demonstrating that PI is maintained and can increase after the new category trials. The release-from-PI account cannot accommodate these broader dynamics of PI. This account is also incongruent with evidence and theory from cognitive psychology, linguistics, and neuroscience. We propose a reintroduction-of-PI account which explains these broader PI dynamics and is consistent with the wider psychological and neurosciences.
Semantic Memory in the Clinical Progression of Alzheimer Disease.
Tchakoute, Christophe T; Sainani, Kristin L; Henderson, Victor W
2017-09-01
Semantic memory measures may be useful in tracking and predicting progression of Alzheimer disease. We investigated relationships among semantic memory tasks and their 1-year predictive value in women with Alzheimer disease. We conducted secondary analyses of a randomized clinical trial of raloxifene in 42 women with late-onset mild-to-moderate Alzheimer disease. We assessed semantic memory with tests of oral confrontation naming, category fluency, semantic recognition and semantic naming, and semantic density in written narrative discourse. We measured global cognition (Alzheimer Disease Assessment Scale, cognitive subscale), dementia severity (Clinical Dementia Rating sum of boxes), and daily function (Activities of Daily Living Inventory) at baseline and 1 year. At baseline and 1 year, most semantic memory scores correlated highly or moderately with each other and with global cognition, dementia severity, and daily function. Semantic memory task performance at 1 year had worsened one-third to one-half standard deviation. Factor analysis of baseline test scores distinguished processes in semantic and lexical retrieval (semantic recognition, semantic naming, confrontation naming) from processes in lexical search (semantic density, category fluency). The semantic-lexical retrieval factor predicted global cognition at 1 year. Considered separately, baseline confrontation naming and category fluency predicted dementia severity, while semantic recognition and a composite of semantic recognition and semantic naming predicted global cognition. No individual semantic memory test predicted daily function. Semantic-lexical retrieval and lexical search may represent distinct aspects of semantic memory. Semantic memory processes are sensitive to cognitive decline and dementia severity in Alzheimer disease.
Representational Similarity of Body Parts in Human Occipitotemporal Cortex.
Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V
2015-09-23
Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex have not yet been explored. In the present fMRI study we used multivoxel pattern analysis and representational similarity analysis to characterize the organization of body maps in human occipitotemporal cortex (OTC). Results indicate that visual and shape dimensions do not fully account for the organization of body part representations in OTC. Instead, the representational structure of body maps in OTC appears strongly related to functional-semantic properties of body parts. We suggest that this organization reflects the unique processing and connectivity demands associated with the different types of information different body parts convey. Copyright © 2015 the authors 0270-6474/15/3512977-09$15.00/0.
Lepage, Martin
2004-03-01
Several brain imaging studies have implicated prefrontal regions bilaterally during cued-recall memory tasks and yet the functional significance of these regions remains poorly understood. Using PET, we examined the neural activity in prefrontal regions of 15 subjects while they performed three cued-recall tasks differing in pre-experimental semantic associations between cues and targets. This manipulation produced varying levels of retrieval performance when one member (a semantic category name) of the triad was used as a cue for the retrieval of the other two members. The percentage of items correctly recalled was 10, 46, and 70 in the low, medium, and high cued-recall conditions, respectively. Linear contrast analyses of the PET data identified brain regions where neural activity varied with the number of items retrieved from memory. A left lateral prefrontal region showed maximal activity during the high cued-recall condition, which likely reflects processes involved in retrieval success and possibly in the generation of memory responses. Three right prefrontal regions (anterior and dorsolateral) showed maximal activity during the low cued-recall condition, which likely reflects processes involved in memory search/monitoring. These findings add further support for a bilateral prefrontal contribution to memory cued-recall tasks and point to differential roles of the two hemispheres.
Argyriou, Paraskevi; Byfield, Sarah; Kita, Sotaro
2015-01-01
Research on the neural basis of metaphor provides contradicting evidence about the role of right and left hemispheres. We used the mouth-opening asymmetry technique to investigate the relative involvement of the two hemispheres whilst right-handed healthy male participants explained the meaning of English phrases. This technique is based on the contralateral cortical control of the facial musculature and reflects the relative hemispheric involvement during different cognitive tasks. In particular, right-handers show a right-sided mouth asymmetry (right side of the mouth opens wider than the left) during linguistic tasks, thus reflecting the left-hemisphere specialization for language. In the current study, we compared the right-sided mouth asymmetry during metaphor explanation (e.g., explain the meaning of the phrase "to spin a yarn") and concrete explanation (e.g., explain the meaning of the phrase "to spin a golf ball") and during the production of content and function words. The expected right-sided mouth asymmetry reduced during metaphorical compared to concrete explanations suggesting the relative right-hemispheric involvement for metaphor processing. Crucially, this right-sided mouth asymmetry reduction was particularly pronounced for the production of content words. Thus, we concluded that semantics is crucial to the right-hemispheric involvement for metaphorical speech production.
Kasparian, Kristina; Steinhauer, Karsten
2016-12-01
First language (L1) attrition is a socio-linguistic circumstance where second language (L2) learning coincides with changes in exposure and use of the native-L1. Attriters often report experiencing a decline in automaticity or proficiency in their L1 after a prolonged period in the L2 environment, while their L2 proficiency continues to strengthen. Investigating the neurocognitive correlates of attrition alongside those of late L2 acquisition addresses the question of whether the brain mechanisms underlying both L1 and L2 processing are strongly determined by proficiency, irrespective of whether the language was acquired from birth or in adulthood. Using event-related-potentials (ERPs), we examined lexical-semantic processing in Italian L1 attriters, compared to adult Italian L2 learners and to Italian monolingual native speakers. We contrasted the processing of classical lexical-semantic violations (Mismatch condition) with sentences that were equally semantically implausible but arguably trickier, as the target-noun was "swapped" with an orthographic neighbor that differed only in its final vowel and gender-marking morpheme (e.g., cappello (hat) vs. cappella (chapel)). Our aim was to determine whether sentences with such "confusable nouns" (Swap condition) would be processed as semantically correct by late L2 learners and L1 attriters, especially for those individuals with lower Italian proficiency scores. We found that lower-proficiency Italian speakers did not show significant N400 effects for Swap violations relative to correct sentences, regardless of whether Italian was the L1 or the L2. Crucially, N400 response profiles followed a continuum of "nativelikeness" predicted by Italian proficiency scores - high-proficiency attriters and high-proficiency Italian learners were indistinguishable from native controls, whereas attriters and L2 learners in the lower-proficiency range showed significantly reduced N400 effects for "Swap" errors. Importantly, attriters and late L2 learners did not differ in their N400 responses when they belonged to the same proficiency subgroup. Attriters also showed an enhanced P600 response to both kinds of lexical-semantic anomalies, which we discuss as reflecting increased conflict-monitoring and conscious "second thought" processes specifically in attriters. Our findings provide some of the first ERP evidence of attrition effects, and are compatible with accounts of ongoing neuroplasticity for language in adulthood. Proficiency, rather than age-of-acquisition, seems to be the key factor in modulating certain neurocognitive responses, not only within L2 learners but also in L1 attriters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Processing temporal agreement in a tenseless language: an ERP study of Mandarin Chinese.
Qiu, Yinchen; Zhou, Xiaolin
2012-03-29
Human languages are equipped with an impressive repertoire of time-encoding devices which vary significantly across different cultures. Previous research on temporal processing has focused on morphosyntactic processes in Indo-European languages. This study investigated the neural correlates of temporal processing in Mandarin Chinese, a language that is not morphologically marked for tense. In a sentence acceptability judgment task, we manipulated the agreement between semantically enriched temporal adverbs or a highly grammaticalized aspectual particle (-guo) and temporal noun phrases. Disagreement of both the temporal adverbs and the aspectual particle elicited a centro-parietal P600 effect in event-related potentials (ERPs) whereas only disagreeing temporal adverbs evoked an additional broadly distributed N400 effect. Moreover, a sustained negativity effect was observed on both the words following the critical ones and the last words in sentences with temporal disagreement. These results reveal both commonalities and differences between Chinese and Indo-European languages in temporal agreement processing. In particular, we demonstrate that temporal reference in Chinese relies on both lexical semantics and morphosyntactic processes and that the level of grammaticalization of linguistic devices representing similar temporal information is reflected in differential ERP responses. Copyright © 2012 Elsevier B.V. All rights reserved.
Trumpp, Natalie M; Traub, Felix; Pulvermüller, Friedemann; Kiefer, Markus
2014-02-01
Classical theories of semantic memory assume that concepts are represented in a unitary amodal memory system. In challenging this classical view, pure or hybrid modality-specific theories propose that conceptual representations are grounded in the sensory-motor brain areas, which typically process sensory and action-related information. Although neuroimaging studies provided evidence for a functional-anatomical link between conceptual processing of sensory or action-related features and the sensory-motor brain systems, it has been argued that aspects of such sensory-motor activation may not directly reflect conceptual processing but rather strategic imagery or postconceptual elaboration. In the present ERP study, we investigated masked effects of acoustic and action-related conceptual features to probe unconscious automatic conceptual processing in isolation. Subliminal feature-specific ERP effects at frontocentral electrodes were observed, which differed with regard to polarity, topography, and underlying brain electrical sources in congruency with earlier findings under conscious viewing conditions. These findings suggest that conceptual acoustic and action representations can also be unconsciously accessed, thereby excluding any postconceptual strategic processes. This study therefore further substantiates a grounding of conceptual and semantic processing in action and perception.
Semantic richness effects in lexical decision: The role of feedback.
Yap, Melvin J; Lim, Gail Y; Pexman, Penny M
2015-11-01
Across lexical processing tasks, it is well established that words with richer semantic representations are recognized faster. This suggests that the lexical system has access to meaning before a word is fully identified, and is consistent with a theoretical framework based on interactive and cascaded processing. Specifically, semantic richness effects are argued to be produced by feedback from semantic representations to lower-level representations. The present study explores the extent to which richness effects are mediated by feedback from lexical- to letter-level representations. In two lexical decision experiments, we examined the joint effects of stimulus quality and four semantic richness dimensions (imageability, number of features, semantic neighborhood density, semantic diversity). With the exception of semantic diversity, robust additive effects of stimulus quality and richness were observed for the targeted dimensions. Our results suggest that semantic feedback does not typically reach earlier levels of representation in lexical decision, and further reinforces the idea that task context modulates the processing dynamics of early word recognition processes.
Syntax does not necessarily precede semantics in sentence processing: ERP evidence from Chinese.
Zhang, Yaxu; Li, Ping; Piao, Qiuhong; Liu, Youyi; Huang, Yongjing; Shu, Hua
2013-07-01
Two event-related potential experiments were conducted to examine whether the processing of syntactic category or syntactic subcategorization frame always needs to temporally precede semantic processing during the reading of Chinese sentences of object-subject-verb construction. The sentences contained (a) no anomalies, (b) semantic only anomalies, (c) syntactic category plus semantic anomalies, or (d) transitivity plus semantic anomalies. In both experiments, all three types of anomalies elicited a broad negativity between 300 and 500 ms. This negativity included an N400 effect, given its distribution. Moreover, syntactic category plus semantic anomalies elicited a P600 response, whereas the other two types of anomalies did not. The finding of N400 effects suggests that semantic integration can be attempted even when the processing of syntactic category or syntactic subcategorization frame is unsuccessful. Thus, syntactic processing is not a necessary prerequisite for the initiation of semantic integration in Chinese. Copyright © 2013 Elsevier Inc. All rights reserved.
The Function of Semantics in Automated Language Processing.
ERIC Educational Resources Information Center
Pacak, Milos; Pratt, Arnold W.
This paper is a survey of some of the major semantic models that have been developed for automated semantic analysis of natural language. Current approaches to semantic analysis and logical interference are based mainly on models of human cognitive processes such as Quillian's semantic memory, Simmon's Protosynthex III and others. All existing…
ERIC Educational Resources Information Center
Mirman, Daniel; Magnuson, James S.
2008-01-01
The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have…
ERIC Educational Resources Information Center
de Wit, Bianca; Kinoshita, Sachiko
2015-01-01
Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…
Semantic Entity Pairing for Improved Data Validation and Discovery
NASA Astrophysics Data System (ADS)
Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Chen, Yanning; Krisnadhi, Adila; Hitzler, Pascal; Narock, Tom; Groman, Robert; Rauch, Shannon
2014-05-01
One of the central incentives for linked data implementations is the opportunity to leverage the rich logic inherent in structured data. The logic embedded in semantic models can strengthen capabilities for data discovery and data validation when pairing entities from distinct, contextually-related datasets. The creation of links between the two datasets broadens data discovery by using the semantic logic to help machines compare similar entities and properties that exist on different levels of granularity. This semantic capability enables appropriate entity pairing without making inaccurate assertions as to the nature of the relationship. Entity pairing also provides a context to accurately validate the correctness of an entity's property values - an exercise highly valued by data management practices who seek to ensure the quality and correctness of their data. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) semantically models metadata surrounding oceanographic researchcruises, but other sources outside of BCO-DMO exist that also model metadata about these same cruises. For BCO-DMO, the process of successfully pairing its entities to these sources begins by selecting sources that are decidedly trustworthy and authoritative for the modeled concepts. In this case, the Rolling Deck to Repository (R2R) program has a well-respected reputation among the oceanographic research community, presents a data context that is uniquely different and valuable, and semantically models its cruise metadata. Where BCO-DMO exposes the processed, analyzed data products generated by researchers, R2R exposes the raw shipboard data that was collected on the same research cruises. Interlinking these cruise entities expands data discovery capabilities but also allows for validating the contextual correctness of both BCO-DMO's and R2R's cruise metadata. Assessing the potential for a link between two datasets for a similar entity consists of aligning like properties and deciding on the appropriate semantic markup to describe the link. This highlights the desire for research organizations like BCO-DMO and R2R to ensure the complete accuracy of their exposed metadata, as it directly reflects on their reputations as successful and trustworthy source of research data. Therefore, data validation reaches beyond simple syntax of property values into contextual correctness. As a human process, this is a time-intensive task that does not scale well for finite human and funding resources. Therefore, to assess contextual correctness across datasets at different levels of granularity, BCO-DMO is developing a system that employs semantic technologies to aid the human process by organizing potential links and calculating a confidence coefficient as to the correctness of the potential pairing based on the distance between certain entity property values. The system allows humans to quickly scan potential links and their confidence coefficients for asserting persistence and correcting and investigating misaligned entity property values.
Gebauer, Jochen E; Haddock, Geoffrey; Broemer, Philip; von Hecker, Ulrich
2013-11-01
Why do some autobiographical events feel as if they happened yesterday, whereas others feel like ancient history? Such temporal distance perceptions have surprisingly little to do with actual calendar time distance. Instead, psychologists have found that people typically perceive positive autobiographical events as overly recent, while perceiving negative events as overly distant. The origins of this temporal distance bias have been sought in self-enhancement strivings and mood congruence between autobiographical events and chronic mood. As such, past research exclusively focused on the evaluative features of autobiographical events, while neglecting semantic features. To close this gap, we introduce a semantic congruence model. Capitalizing on the Big Two self-perception dimensions, Study 1 showed that high semantic congruence between recalled autobiographical events and trait self-perceptions render the recalled events subjectively recent. Specifically, interpersonally warm (competent) individuals perceived autobiographical events reflecting warmth (competence) as relatively recent, but warm (competent) individuals did not perceive events reflecting competence (warmth) as relatively recent. Study 2 found that conscious perceptions of congruence mediate these effects. Studies 3 and 4 showed that neither mood congruence nor self-enhancement account for these results. Study 5 extended the results from the Big Two to the Big Five self-perception dimensions, while affirming the independence of the semantic congruence model from evaluative influences. PsycINFO Database Record (c) 2013 APA, all rights reserved.
About Edible Restaurants: Conflicts between Syntax and Semantics as Revealed by ERPs
Kos, Miriam; Vosse, Theo; van den Brink, Daniëlle; Hagoort, Peter
2010-01-01
In order to investigate conflicts between semantics and syntax, we recorded ERPs, while participants read Dutch sentences. Sentences containing conflicts between syntax and semantics (Fred eats in a sandwich…/Fred eats a restaurant…) elicited an N400. These results show that conflicts between syntax and semantics not necessarily lead to P600 effects and are in line with the processing competition account. According to this parallel account the syntactic and semantic processing streams are fully interactive and information from one level can influence the processing at another level. The relative strength of the cues of the processing streams determines which level is affected most strongly by the conflict. The processing competition account maintains the distinction between the N400 as index for semantic processing and the P600 as index for structural processing. PMID:21833277
Biomedical semantics in the Semantic Web
2011-01-01
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570
Biomedical semantics in the Semantic Web.
Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott
2011-03-07
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.
Intelligence related upper alpha desynchronization in a semantic memory task.
Doppelmayr, M; Klimesch, W; Hödlmoser, K; Sauseng, P; Gruber, W
2005-07-30
Recent evidence shows that event-related (upper) alpha desynchronization (ERD) is related to cognitive performance. Several studies observed a positive, some a negative relationship. The latter finding, interpreted in terms of the neural efficiency hypothesis, suggests that good performance is associated with a more 'efficient', smaller extent of cortical activation. Other studies found that ERD increases with semantic processing demands and that this increase is larger for good performers. Studies supporting the neural efficiency hypothesis used tasks that do not specifically require semantic processing. Thus, we assume that the lack of semantic processing demands may at least in part be responsible for the reduced ERD. In the present study we measured ERD during a difficult verbal-semantic task. The findings demonstrate that during semantic processing, more intelligent (as compared to less intelligent) subjects exhibited a significantly larger upper alpha ERD over the left hemisphere. We conclude that more intelligent subjects exhibit a more extensive activation in a semantic processing system and suggest that divergent findings regarding the neural efficiency hypotheses are due to task specific differences in semantic processing demands.
Spatial and temporal features of superordinate semantic processing studied with fMRI and EEG.
Costanzo, Michelle E; McArdle, Joseph J; Swett, Bruce; Nechaev, Vladimir; Kemeny, Stefan; Xu, Jiang; Braun, Allen R
2013-01-01
The relationships between the anatomical representation of semantic knowledge in the human brain and the timing of neurophysiological mechanisms involved in manipulating such information remain unclear. This is the case for superordinate semantic categorization-the extraction of general features shared by broad classes of exemplars (e.g., living vs. non-living semantic categories). We proposed that, because of the abstract nature of this information, input from diverse input modalities (visual or auditory, lexical or non-lexical) should converge and be processed in the same regions of the brain, at similar time scales during superordinate categorization-specifically in a network of heteromodal regions, and late in the course of the categorization process. In order to test this hypothesis, we utilized electroencephalography and event related potentials (EEG/ERP) with functional magnetic resonance imaging (fMRI) to characterize subjects' responses as they made superordinate categorical decisions (living vs. non-living) about objects presented as visual pictures or auditory words. Our results reveal that, consistent with our hypothesis, during the course of superordinate categorization, information provided by these diverse inputs appears to converge in both time and space: fMRI showed that heteromodal areas of the parietal and temporal cortices are active during categorization of both classes of stimuli. The ERP results suggest that superordinate categorization is reflected as a late positive component (LPC) with a parietal distribution and long latencies for both stimulus types. Within the areas and times in which modality independent responses were identified, some differences between living and non-living categories were observed, with a more widespread spatial extent and longer latency responses for categorization of non-living items.
Spatial and temporal features of superordinate semantic processing studied with fMRI and EEG
Costanzo, Michelle E.; McArdle, Joseph J.; Swett, Bruce; Nechaev, Vladimir; Kemeny, Stefan; Xu, Jiang; Braun, Allen R.
2013-01-01
The relationships between the anatomical representation of semantic knowledge in the human brain and the timing of neurophysiological mechanisms involved in manipulating such information remain unclear. This is the case for superordinate semantic categorization—the extraction of general features shared by broad classes of exemplars (e.g., living vs. non-living semantic categories). We proposed that, because of the abstract nature of this information, input from diverse input modalities (visual or auditory, lexical or non-lexical) should converge and be processed in the same regions of the brain, at similar time scales during superordinate categorization—specifically in a network of heteromodal regions, and late in the course of the categorization process. In order to test this hypothesis, we utilized electroencephalography and event related potentials (EEG/ERP) with functional magnetic resonance imaging (fMRI) to characterize subjects' responses as they made superordinate categorical decisions (living vs. non-living) about objects presented as visual pictures or auditory words. Our results reveal that, consistent with our hypothesis, during the course of superordinate categorization, information provided by these diverse inputs appears to converge in both time and space: fMRI showed that heteromodal areas of the parietal and temporal cortices are active during categorization of both classes of stimuli. The ERP results suggest that superordinate categorization is reflected as a late positive component (LPC) with a parietal distribution and long latencies for both stimulus types. Within the areas and times in which modality independent responses were identified, some differences between living and non-living categories were observed, with a more widespread spatial extent and longer latency responses for categorization of non-living items. PMID:23847490
Model-based semantic dictionaries for medical language understanding.
Rassinoux, A. M.; Baud, R. H.; Ruch, P.; Trombert-Paviot, B.; Rodrigues, J. M.
1999-01-01
Semantic dictionaries are emerging as a major cornerstone towards achieving sound natural language understanding. Indeed, they constitute the main bridge between words and conceptual entities that reflect their meanings. Nowadays, more and more wide-coverage lexical dictionaries are electronically available in the public domain. However, associating a semantic content with lexical entries is not a straightforward task as it is subordinate to the existence of a fine-grained concept model of the treated domain. This paper presents the benefits and pitfalls in building and maintaining multilingual dictionaries, the semantics of which is directly established on an existing concept model. Concrete cases, handled through the GALEN-IN-USE project, illustrate the use of such semantic dictionaries for the analysis and generation of multilingual surgical procedures. PMID:10566333
Long-term priming of the meanings of ambiguous words
ERIC Educational Resources Information Center
Rodd, Jennifer M.; Lopez Cutrin, Belen; Kirsch, Hannah; Millar, Allesandra; Davis, Matthew H.
2013-01-01
Comprehension of semantically ambiguous words (e.g., "bark") is strongly influenced by the relative frequencies of their meanings, such that listeners are biased towards retrieving the most frequent meaning. These biases are often assumed to reflect a highly stable property of an individual's long-term lexical-semantic representations. We present…
The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length
ERIC Educational Resources Information Center
Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam
2017-01-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…
Cross-language parafoveal semantic processing: Evidence from Korean-Chinese bilinguals.
Wang, Aiping; Yeon, Junmo; Zhou, Wei; Shu, Hua; Yan, Ming
2016-02-01
In the present study, we aimed at testing cross-language cognate and semantic preview effects. We tested how native Korean readers who learned Chinese as a second language make use of the parafoveal information during the reading of Chinese sentences. There were 3 types of Korean preview words: cognate translations of the Chinese target words, semantically related noncognate words, and unrelated words. Together with a highly significant cognate preview effect, more critically, we also observed reliable facilitation in processing of the target word from the semantically related previews in all fixation measures. Results from the present study provide first evidence for semantic processing from parafoveally presented Korean words and for cross-language parafoveal semantic processing.
Knowledge of the human body: a distinct semantic domain.
Coslett, H Branch; Saffran, Eleanor M; Schwoebel, John
2002-08-13
Patients with selective deficits in the naming and comprehension of animals, plants, and artifacts have been reported. These descriptions of specific semantic category deficits have contributed substantially to the understanding of the architecture of semantic representations. This study sought to further understanding of the organization of the semantic system by demonstrating that another semantic category, knowledge of the human body, may be selectively preserved. The performance of a patient with semantic dementia was compared with the performance of healthy controls on a variety of tasks assessing distinct types of body representations, including the body schema, body image, and body structural description. Despite substantial deficits on tasks involving language and knowledge of the world generally, the patient performed normally on all tests of body knowledge except body part naming; even in this naming task, however, her performance with body parts was significantly better than on artifacts. The demonstration that body knowledge may be preserved despite substantial semantic deficits involving other types of semantic information argues that body knowledge is a distinct and dissociable semantic category. These data are interpreted as support for a model of semantics that proposes that knowledge is distributed across different cortical regions reflecting the manner in which the information was acquired.
ERIC Educational Resources Information Center
Siakaluk, Paul D.; Pexman, Penny M.; Sears, Christopher R.; Owen, William J.
2007-01-01
The ambiguity disadvantage (slower processing of ambiguous words relative to unambiguous words) has been taken as evidence for a distributed semantic representational system like that embodied in parallel distributed processing (PDP) models. In the present study, we investigated whether semantic ambiguity slows meaning activation, as PDP models…
Levels of processing with free and cued recall and unilateral temporal lobe epilepsy.
Lespinet-Najib, Véronique; N'Kaoua, Bernard; Sauzéon, Hélène; Bresson, Christel; Rougier, Alain; Claverie, Bernard
2004-04-01
This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right "RTLE"=24; left "LTLE"=24) and a normal group (n=24). The results indicated that LTLE patients were impaired for semantic processing (free and cued recall) and for phonetic processing (free and cued recall), while for RTLE patients deficits appeared in free recall with semantic processing. It is suggested that the left temporal lobe is involved in all aspects of verbal memory, and that the right temporal lobe is specialized in semantic processing. Moreover, our data seem to indicate that RTLE patients present a retrieval processing impairment (semantic condition), whereas the LTLE group is characterized by encoding difficulties in the phonetic and semantic condition.
1988-08-01
heavily on the original SPQR component, and uses the same context free grammar to analyze the ISR. The main difference is that, where before SPQR ...ISR is semantically coherent. This has been tested thoroughly on the CASREPS domain, and selects the same parses that SPQR Eid, in less time. There...were a few SPQR patterns that reflected semantic information that could only be provided by time analysis, such as the fact that [pressure during
Semantic networks based on titles of scientific papers
NASA Astrophysics Data System (ADS)
Pereira, H. B. B.; Fadigas, I. S.; Senna, V.; Moret, M. A.
2011-03-01
In this paper we study the topological structure of semantic networks based on titles of papers published in scientific journals. It discusses its properties and presents some reflections on how the use of social and complex network models can contribute to the diffusion of knowledge. The proposed method presented here is applied to scientific journals where the titles of papers are in English or in Portuguese. We show that the topology of studied semantic networks are small-world and scale-free.
Haebig, Eileen; Kaushanskaya, Margarita; Ellis Weismer, Susan
2015-12-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development.
Haebig, Eileen; Kaushanskaya, Margarita; Weismer, Susan Ellis
2016-01-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive vocabulary. Children completed a lexical decision task, involving words with high and low semantic network sizes and nonwords. Children also completed nonverbal updating and shifting tasks. Children responded more accurately to words from high than from low semantic networks; however, follow-up analyses identified weaker semantic network effects in the SLI group. Additionally, updating and shifting abilities predicted lexical processing, demonstrating similarity in the mechanisms which underlie semantic processing in children with ASD, SLI, and typical development. PMID:26210517
'Right Now, Sophie (∗)Swims in the Pool?!': Brain Potentials of Grammatical Aspect Processing.
Flecken, Monique; Walbert, Kelly; Dijkstra, Ton
2015-01-01
We investigated whether brain potentials of grammatical aspect processing resemble semantic or morpho-syntactic processing, or whether they instead are characterized by an entirely distinct pattern in the same individuals. We studied aspect from the perspective of agreement between the temporal information in the context (temporal adverbials, e.g., Right now) and a morpho-syntactic marker of grammatical aspect (e.g., progressive is swimming). Participants read questions providing a temporal context that was progressive (What is Sophie doing in the pool right now?) or habitual (What does Sophie do in the pool every Monday?). Following a lead-in sentence context such as Right now, Sophie…, we measured event-related brain potentials (ERPs) time-locked to verb phrases in four different conditions, e.g., (a) is swimming (control); (b) (∗)is cooking (semantic violation); (c) (∗)are swimming (morpho-syntactic violation); or (d)?swims (aspect mismatch); …in the pool." The collected ERPs show typical N400 and P600 effects for semantics and morpho-syntax, while aspect processing elicited an Early Negativity (250-350 ms). The aspect-related Negativity was short-lived and had a central scalp distribution with an anterior onset. This differentiates it not only from the semantic N400 effect, but also from the typical LAN (Left Anterior Negativity), that is frequently reported for various types of agreement processing. Moreover, aspect processing did not show a clear P600 modulation. We argue that the specific context for each item in this experiment provided a trigger for agreement checking with temporal information encoded on the verb, i.e., morphological aspect marking. The aspect-related Negativity obtained for aspect agreement mismatches reflects a violated expectation concerning verbal inflection (in the example above, the expected verb phrase was Sophie is X-ing rather than Sophie X-s in condition d). The absence of an additional P600 for aspect processing suggests that the mismatch did not require additional reintegration or processing costs. This is consistent with participants' post hoc grammaticality judgements of the same sentences, which overall show a high acceptability of aspect mismatch sentences.
The effect of contextual constraint on parafoveal processing in reading
Schotter, Elizabeth R.; Lee, Michelle; Reiderman, Michael; Rayner, Keith
2015-01-01
Semantic preview benefit in reading is an elusive and controversial effect because empirical studies do not always (but sometimes) find evidence for it. Its presence seems to depend on (at least) the language being read, visual properties of the text (e.g., initial letter capitalization), the type of relationship between preview and target, and as shown here, semantic constraint generated by the prior sentence context. Schotter (2013) reported semantic preview benefit for synonyms, but not semantic associates when the preview/target was embedded in a neutral sentence context. In Experiment 1, we embedded those same previews/targets into constrained sentence contexts and in Experiment 2 we replicated the effects reported by Schotter (2013; in neutral sentence contexts) and Experiment 1 (in constrained contexts) in a within-subjects design. In both experiments, we found an early (i.e., first-pass) apparent preview benefit for semantically associated previews in constrained contexts that went away in late measures (e.g., total time). These data suggest that sentence constraint (at least as manipulated in the current study) does not operate by making a single word form expected, but rather generates expectations about what kinds of words are likely to appear. Furthermore, these data are compatible with the assumption of the E-Z Reader model that early oculomotor decisions reflect “hedged bets” that a word will be identifiable and, when wrong, lead the system to identify the wrong word, triggering regressions. PMID:26257469
Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy
Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth
2015-01-01
The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956
Resolving Conflicts Between Syntax and Plausibility in Sentence Comprehension
Andrews, Glenda; Ogden, Jessica E.; Halford, Graeme S.
2017-01-01
Comprehension of plausible and implausible object- and subject-relative clause sentences with and without prepositional phrases was examined. Undergraduates read each sentence then evaluated a statement as consistent or inconsistent with the sentence. Higher acceptance of consistent than inconsistent statements indicated reliance on syntactic analysis. Higher acceptance of plausible than implausible statements reflected reliance on semantic plausibility. There was greater reliance on semantic plausibility and lesser reliance on syntactic analysis for more complex object-relatives and sentences with prepositional phrases than for less complex subject-relatives and sentences without prepositional phrases. Comprehension accuracy and confidence were lower when syntactic analysis and semantic plausibility yielded conflicting interpretations. The conflict effect on comprehension was significant for complex sentences but not for less complex sentences. Working memory capacity predicted resolution of the syntax-plausibility conflict in more and less complex items only when sentences and statements were presented sequentially. Fluid intelligence predicted resolution of the conflict in more and less complex items under sequential and simultaneous presentation. Domain-general processes appear to be involved in resolving syntax-plausibility conflicts in sentence comprehension. PMID:28458748
Hoffman, Paul
2018-05-25
Semantic cognition refers to the appropriate use of acquired knowledge about the world. This requires representation of knowledge as well as control processes which ensure that currently-relevant aspects of knowledge are retrieved and selected. Although these abilities can be impaired selectively following brain damage, the relationship between them in healthy individuals is unclear. It is also commonly assumed that semantic cognition is preserved in later life, because older people have greater reserves of knowledge. However, this claim overlooks the possibility of decline in semantic control processes. Here, semantic cognition was assessed in 100 young and older adults. Despite having a broader knowledge base, older people showed specific impairments in semantic control, performing more poorly than young people when selecting among competing semantic representations. Conversely, they showed preserved controlled retrieval of less salient information from the semantic store. Breadth of semantic knowledge was positively correlated with controlled retrieval but was unrelated to semantic selection ability, which was instead correlated with non-semantic executive function. These findings indicate that three distinct elements contribute to semantic cognition: semantic representations that accumulate throughout the lifespan, processes for controlled retrieval of less salient semantic information, which appear age-invariant, and mechanisms for selecting task-relevant aspects of semantic knowledge, which decline with age and may relate more closely to domain-general executive control.
Lekeu, Françoise; Van der Linden, Martial; Chicherio, Christian; Collette, Fabienne; Degueldre, Christian; Franck, Georges; Moonen, Gustave; Salmon, Eric
2003-01-01
The goal of this study was to explore in patients with Alzheimer's disease (AD) the brain correlates of free and cued recall performance using an adaptation of the procedure developed by Grober and Buschke (1987). This procedure, which ensures semantic processing and coordinates encoding and retrieval, has been shown to be very sensitive to an early diagnosis of AD. Statistical parametric mapping (SPM 99) was used to establish clinicometabolic correlations between performance at free and cued verbal recall and resting brain metabolism in 31 patients with AD. Results showed that patient's score on free recall correlated with metabolic activity in right frontal regions (BA 10 and BA 45), suggesting that performance reflected a strategic retrieval attempt. Poor retrieval performance was tentatively attributed to a loss of functional correlation between frontal and medial temporal regions in patients with AD compared with elderly controls. Performance on cued recall was correlated to residual metabolic activity in bilateral parahippocampal regions (BA 36), suggesting that performance reflected retrieval of semantic associations, without recollection in AD. In conclusion, this study demonstrates that the diagnostic sensitivity for Alzheimer's disease of the cued recall performance in the Grober and Buschke procedure (1987) depends on the activity of parahippocampal regions, one of the earliest targets of the disease. Moreover, the results suggest that the poor performance of patients with AD during free and cued recall is related to a decreased connectivity between parahippocampal regions and frontal areas.
Different Loci of Semantic Interference in Picture Naming vs. Word-Picture Matching Tasks.
Harvey, Denise Y; Schnur, Tatiana T
2016-01-01
Naming pictures and matching words to pictures belonging to the same semantic category impairs performance relative to when stimuli come from different semantic categories (i.e., semantic interference). Despite similar semantic interference phenomena in both picture naming and word-picture matching tasks, the locus of interference has been attributed to different levels of the language system - lexical in naming and semantic in word-picture matching. Although both tasks involve access to shared semantic representations, the extent to which interference originates and/or has its locus at a shared level remains unclear, as these effects are often investigated in isolation. We manipulated semantic context in cyclical picture naming and word-picture matching tasks, and tested whether factors tapping semantic-level (generalization of interference to novel category items) and lexical-level processes (interactions with lexical frequency) affected the magnitude of interference, while also assessing whether interference occurs at a shared processing level(s) (transfer of interference across tasks). We found that semantic interference in naming was sensitive to both semantic- and lexical-level processes (i.e., larger interference for novel vs. old and low- vs. high-frequency stimuli), consistent with a semantically mediated lexical locus. Interference in word-picture matching exhibited stable interference for old and novel stimuli and did not interact with lexical frequency. Further, interference transferred from word-picture matching to naming. Together, these experiments provide evidence to suggest that semantic interference in both tasks originates at a shared processing stage (presumably at the semantic level), but that it exerts its effect at different loci when naming pictures vs. matching words to pictures.
Different Loci of Semantic Interference in Picture Naming vs. Word-Picture Matching Tasks
Harvey, Denise Y.; Schnur, Tatiana T.
2016-01-01
Naming pictures and matching words to pictures belonging to the same semantic category impairs performance relative to when stimuli come from different semantic categories (i.e., semantic interference). Despite similar semantic interference phenomena in both picture naming and word-picture matching tasks, the locus of interference has been attributed to different levels of the language system – lexical in naming and semantic in word-picture matching. Although both tasks involve access to shared semantic representations, the extent to which interference originates and/or has its locus at a shared level remains unclear, as these effects are often investigated in isolation. We manipulated semantic context in cyclical picture naming and word-picture matching tasks, and tested whether factors tapping semantic-level (generalization of interference to novel category items) and lexical-level processes (interactions with lexical frequency) affected the magnitude of interference, while also assessing whether interference occurs at a shared processing level(s) (transfer of interference across tasks). We found that semantic interference in naming was sensitive to both semantic- and lexical-level processes (i.e., larger interference for novel vs. old and low- vs. high-frequency stimuli), consistent with a semantically mediated lexical locus. Interference in word-picture matching exhibited stable interference for old and novel stimuli and did not interact with lexical frequency. Further, interference transferred from word-picture matching to naming. Together, these experiments provide evidence to suggest that semantic interference in both tasks originates at a shared processing stage (presumably at the semantic level), but that it exerts its effect at different loci when naming pictures vs. matching words to pictures. PMID:27242621
Frequency Drives Lexical Access in Reading but not in Speaking: The Frequency-Lag Hypothesis
Gollan, Tamar H.; Slattery, Timothy J.; Goldenberg, Diane; van Assche, Eva; Duyck, Wouter; Rayner, Keith
2010-01-01
To contrast mechanisms of lexical access in production versus comprehension we compared the effects of word-frequency (high, low), context (none, low-constraining, high-constraining), and level of English proficiency (monolinguals, Spanish-English bilinguals, Dutch-English bilinguals), on picture naming, lexical decision, and eye fixation times. Semantic constraint effects were larger in production than in reading. Frequency effects were larger in production than in reading without constraining context, but larger in reading than in production with constraining context. Bilingual disadvantages were modulated by frequency in production but not in eye fixation times, were not smaller in low-constraining context, and were reduced by high-constraining context only in production and only at the lowest level of English proficiency. These results challenge existing accounts of bilingual disadvantages, and reveal fundamentally different processes during lexical access across modalities, entailing a primarily semantically driven search in production, but a frequency driven search in comprehension. The apparently more interactive process in production than comprehension could simply reflect a greater number of frequency-sensitive processing stages in production. PMID:21219080
Behavioural and electrophysiological effects related to semantic violations during braille reading.
Glyn, Vania; Lim, Vanessa K; Hamm, Jeff P; Mathur, Ashwin; Hughes, Barry
2015-10-01
This study investigated the potential to detect event related potentials (ERPs) occurring in response to a specific task in braille reading. This would expand current methodologies for studying the cognitive processes underlying braille reading. An N400 effect paradigm was utilised, whereby proficient blind braille readers read congruent- and incongruent-ending braille sentences. Kinematic and electroencephalography (EEG) data were obtained simultaneously and synchronised. The ERPs differed between the incongruent and congruent sentences in a manner consistent with the N400 effect found with a previous sighted reading paradigm, demonstrating that ERPs can be obtained during braille reading. The frequency of finger reversals and the degree of intermittency in the finger velocity were significantly higher when reading incongruent versus congruent sentence endings. Both reversals and the potential N400 effect may reflect processes involved in semantic unification. These findings have significant implications for the modelling of braille reading. The refinement of the technique will enable other ERPs to be identified and related to behavioural responses, to further our understanding of the braille reading process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Availability of Semantic Knowledge in Familiar-Only Experiences for Names
ERIC Educational Resources Information Center
Bowles, Ben; Köhler, Stefan
2014-01-01
Situations in which the name of a person is perceived as familiar but does not trigger recall of pertinent semantic knowledge are common in daily life. In current connectionist models of person recognition, such "familiar-only" experiences reflect supra-threshold activation at person-identity nodes but subthreshold activation at nodes…
An Investigation into Semantic and Phonological Processing in Individuals with Williams Syndrome
ERIC Educational Resources Information Center
Lee, Cheryl S.; Binder, Katherine S.
2014-01-01
Purpose: The current study examined semantic and phonological processing in individuals with Williams syndrome (WS). Previous research in language processing in individuals with WS suggests a complex linguistic system characterized by "deviant" semantic organization and differential phonological processing. Method: Two experiments…
Semantic Processing of Mathematical Gestures
ERIC Educational Resources Information Center
Lim, Vanessa K.; Wilson, Anna J.; Hamm, Jeff P.; Phillips, Nicola; Iwabuchi, Sarina J.; Corballis, Michael C.; Arzarello, Ferdinando; Thomas, Michael O. J.
2009-01-01
Objective: To examine whether or not university mathematics students semantically process gestures depicting mathematical functions (mathematical gestures) similarly to the way they process action gestures and sentences. Semantic processing was indexed by the N400 effect. Results: The N400 effect elicited by words primed with mathematical gestures…
Episodic memory, semantic memory, and amnesia.
Squire, L R; Zola, S M
1998-01-01
Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.
Kovalenko, Lyudmyla Y; Chaumon, Maximilien; Busch, Niko A
2012-07-01
Semantic processing of verbal and visual stimuli has been investigated in semantic violation or semantic priming paradigms in which a stimulus is either related or unrelated to a previously established semantic context. A hallmark of semantic priming is the N400 event-related potential (ERP)--a deflection of the ERP that is more negative for semantically unrelated target stimuli. The majority of studies investigating the N400 and semantic integration have used verbal material (words or sentences), and standardized stimulus sets with norms for semantic relatedness have been published for verbal but not for visual material. However, semantic processing of visual objects (as opposed to words) is an important issue in research on visual cognition. In this study, we present a set of 800 pairs of semantically related and unrelated visual objects. The images were rated for semantic relatedness by a sample of 132 participants. Furthermore, we analyzed low-level image properties and matched the two semantic categories according to these features. An ERP study confirmed the suitability of this image set for evoking a robust N400 effect of semantic integration. Additionally, using a general linear modeling approach of single-trial data, we also demonstrate that low-level visual image properties and semantic relatedness are in fact only minimally overlapping. The image set is available for download from the authors' website. We expect that the image set will facilitate studies investigating mechanisms of semantic and contextual processing of visual stimuli.
Forgács, Bálint; Bohrn, Isabel; Baudewig, Jürgen; Hofmann, Markus J; Pléh, Csaba; Jacobs, Arthur M
2012-11-15
The right hemisphere's role in language comprehension is supported by results from several neuropsychology and neuroimaging studies. Special interest surrounds right temporoparietal structures, which are thought to be involved in processing novel metaphorical expressions, primarily due to the coarse semantic coding of concepts. In this event related fMRI experiment we aimed at assessing the extent of semantic distance processing in the comprehension of figurative meaning to clarify the role of the right hemisphere. Four categories of German noun noun compound words were presented in a semantic decision task: a) conventional metaphors; b) novel metaphors; c) conventional literal, and; d) novel literal expressions, controlled for length, frequency, imageability, arousal, and emotional valence. Conventional literal and metaphorical compounds increased BOLD signal change in right temporoparietal regions, suggesting combinatorial semantic processing, in line with the coarse semantic coding theory, but at odds with the graded salience hypothesis. Both novel literal and novel metaphorical expressions increased activity in left inferior frontal areas, presumably as a result of phonetic, morphosyntactic, and semantic unification processes, challenging predictions regarding right hemispheric involvement in processing unusual meanings. Meanwhile, both conventional and novel metaphorical expressions induced BOLD signal change in left hemispherical regions, suggesting that even novel metaphor processing involves more than linking semantically distant concepts. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Laszlo, Sarah; Stites, Mallory; Federmeier, Kara D.
2012-01-01
A growing body of evidence suggests that semantic access is obligatory. Several studies have demonstrated that brain activity associated with semantic processing, measured in the N400 component of the event-related brain potential (ERP), is elicited even by meaningless, orthographically illegal strings, suggesting that semantic access is not gated…
Tune, Sarah; Schlesewsky, Matthias; Small, Steven L.; Sanford, Anthony J.; Bohan, Jason; Sassenhagen, Jona; Bornkessel-Schlesewsky, Ina
2014-01-01
The N400 event-related brain potential (ERP) has played a major role in the examination of how the human brain processes meaning. For current theories of the N400, classes of semantic inconsistencies which do not elicit N400 effects have proven particularly influential. Semantic anomalies that are difficult to detect are a case in point (“borderline anomalies”, e.g. “After an air crash, where should the survivors be buried?”), engendering a late positive ERP response but no N400 effect in English (Sanford, Leuthold, Bohan, & Sanford, 2011). In three auditory ERP experiments, we demonstrate that this result is subject to cross-linguistic variation. In a German version of Sanford and colleagues' experiment (Experiment 1), detected borderline anomalies elicited both N400 and late positivity effects compared to control stimuli or to missed borderline anomalies. Classic easy-to-detect semantic (non-borderline) anomalies showed the same pattern as in English (N400 plus late positivity). The cross-linguistic difference in the response to borderline anomalies was replicated in two additional studies with a slightly modified task (Experiment 2a: German; Experiment 2b: English), with a reliable LANGUAGE × ANOMALY interaction for the borderline anomalies confirming that the N400 effect is subject to systematic cross-linguistic variation. We argue that this variation results from differences in the language-specific default weighting of top-down and bottom-up information, concluding that N400 amplitude reflects the interaction between the two information sources in the form-to-meaning mapping. PMID:24447768
Melcher, Tobias; Gruber, Oliver
2009-02-01
In the current event-related functional magnetic resonance imaging (fMRI) study, we sought to trace back Stroop-interference to circumscribed properties of task-irrelevant word information - response-incompatibility, semantic incongruency and task-reference - that we conceive as conflict factors. Thereby, we particularly wanted to disentangle intermingled contributions of semantic conflict and response conflict to the overall Stroop-interference effect. To delineate neural substrates of single factors, we referred to the logics of cognitive subtraction and cognitive conjunction. Moreover, in a second step, we conducted correlation analyses to determine the relationship between neural activations and behavioral interference costs (i.e., conflict-related reaction time (RT) slowing) so as to further elucidate the functional role of the respective brain regions in conflict processing. Response-incompatibility was associated with activation in the left premotor cortex which can be interpreted as indicating motor competition or conflict, i.e., the presence of competing response tendencies. Accordingly, this activation was positively correlated with behavioral conflict costs. Semantic incongruency exhibited specific activation in the anterior cingulate cortex (ACC), the bilateral insula, and thalamus as well as in left somatosensory cortex. As supported by the consistent negative correlation with behavioral conflict costs, these activations most probably reflect strengthened control efforts to overcome interference and to ensure adequate task performance. Finally, task-reference elicited activation in the left temporo-polar cortex (TPC) and the right medial superior as well as in left rostroventral prefrontal cortex (rvPFC, sub-threshold activation). As strongly supported by prior studies' findings, this neural activation pattern may underlie residual semantic processing of the task-irrelevant word information.
Coggan, David D; Baker, Daniel H; Andrews, Timothy J
2016-01-01
Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they have many of the visual properties found in intact images, but do not convey any semantic information. Images from different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A multivariate pattern analysis revealed categorical patterns of response to intact images emerged ∼80-100 ms after stimulus onset and were still evident when the stimulus was no longer present (∼800 ms). Next, we measured the patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged ∼80-100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to scrambled images were mostly evident while the stimulus was present (∼400 ms). Moreover, scrambled images were able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to which different stages of processing are dependent on lower-level or higher-level properties of the image.
The role of attention in subliminal semantic processing: A mouse tracking study.
Xiao, Kunchen; Yamauchi, Takashi
2017-01-01
Recent evidence suggests that top-down attention facilitates unconscious semantic processing. To clarify the role of attention in unconscious semantic processing, we traced trajectories of the computer mouse in a semantic priming task and scrutinized the extent to which top-down attention enhances unconscious semantic processing in four different stimulus-onset asynchrony (SOA: 50, 200, 500, or 1000ms) conditions. Participants judged whether a target digit (e.g., "6") was larger or smaller than five, preceded by a masked priming digit (e.g., "9"). The pre-prime duration changed randomly from trial to trial to disrupt participants' top-down attention in an uncued condition (in a cued condition, a green square cue was presented to facilitate participants' top-down attention). The results show that top-down attention modifies the time course of subliminal semantic processing, and the temporal attention window lasts more than 1000ms; attention facilitated by the cue may amplify semantic priming to some extent, yet the amplification effect of attention is relatively minor.
Yang, Yang; Wu, Fuyun; Zhou, Xiaolin
2015-01-01
The syntax-first model and the parallel/interactive models make different predictions regarding whether syntactic category processing has a temporal and functional primacy over semantic processing. To further resolve this issue, an event-related potential experiment was conducted on 24 Chinese speakers reading Chinese passive sentences with the passive marker BEI (NP1 + BEI + NP2 + Verb). This construction was selected because it is the most-commonly used Chinese passive and very much resembles German passives, upon which the syntax-first hypothesis was primarily based. We manipulated semantic consistency (consistent vs. inconsistent) and syntactic category (noun vs. verb) of the critical verb, yielding four conditions: CORRECT (correct sentences), SEMANTIC (semantic anomaly), SYNTACTIC (syntactic category anomaly), and COMBINED (combined anomalies). Results showed both N400 and P600 effects for sentences with semantic anomaly, with syntactic category anomaly, or with combined anomalies. Converging with recent findings of Chinese ERP studies on various constructions, our study provides further evidence that syntactic category processing does not precede semantic processing in reading Chinese.
Influences of motor contexts on the semantic processing of action-related language.
Yang, Jie
2014-09-01
The contribution of the sensory-motor system to the semantic processing of language stimuli is still controversial. To address the issue, the present article focuses on the impact of motor contexts (i.e., comprehenders' motor behaviors, motor-training experiences, and motor expertise) on the semantic processing of action-related language and reviews the relevant behavioral and neuroimaging findings. The existing evidence shows that although motor contexts can influence the semantic processing of action-related concepts, the mechanism of the contextual influences is still far from clear. Future investigations will be needed to clarify (1) whether motor contexts only modulate activity in motor regions, (2) whether the contextual influences are specific to the semantic features of language stimuli, and (3) what factors can determine the facilitatory or inhibitory contextual influences on the semantic processing of action-related language.
EEG beta-power changes reflect motor involvement in abstract action language processing.
Schaller, Franziska; Weiss, Sabine; Müller, Horst M
2017-05-01
Brain oscillations in the α- and β-range become suppressed during motor processing and motor imagery. It has recently been discussed that such power changes also occur during action language processing. In our study, we compared β 2 -oscillations (16-25Hz) during the observation of prototypical arm movements (revealed via motion tracking) as well as during semantic processing of concrete and abstract sentences containing arm-related action verbs. Whereas we did find a strong desynchronization in the β 2 -range during action observation, the processing of action sentences evoked a rather weak desynchronization. However, this desynchronization occurred for action verbs in both concrete and abstract contexts. These results might indicate a tendency for abstract action language to be processed similar to concrete action language rather than abstract sentences. The oscillation patterns reflect the close relationship between language comprehension and motor functions - one of the core claims of current theories on embodied cognition. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, Siyuan; Chen, Shi; Wang, Shuang; Zhao, Qingbai; Zhou, Zhijin; Lu, Chunming
2018-02-10
Novel information selection is a crucial process in creativity and was found to be associated with frontal-temporal functional connectivity in the right brain in closed-ended creativity. Since it has distinct cognitive processing from closed-ended creativity, the information selection in open-ended creativity might be underlain by different neural activity. To address this issue, a creative generation task of Chinese two-part allegorical sayings was adopted, and the trials were classified into novel and normal solutions according to participants' self-ratings. The results showed that (1) novel solutions induced a higher lower alpha power in the temporal area, which might be associated with the automatic, unconscious mental process of retrieving extensive semantic information, and (2) upper alpha power in both frontal and temporal areas and frontal-temporal alpha coherence were higher in novel solutions than in normal solutions, which might reflect the selective inhibition of semantic information. Furthermore, lower alpha power in the temporal area showed a reduction with time, while the frontal-temporal and temporal-temporal coherence in the upper alpha band appeared to increase from the early to the middle phase. These dynamic changes in neural activity might reflect the transformation from divergent thinking to convergent thinking in the creative progress. The advantage of the right brain in frontal-temporal connectivity was not found in the present work, which might result from the diversity of solutions in open-ended creativity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Steinhauer, Karsten; Royle, Phaedra; Drury, John E; Fromont, Lauren A
2017-06-09
Which cognitive processes are reflected by the N400 in ERPs is still controversial. Various recent articles (Lau et al., 2008; Brouwer et al., 2012) have revived the idea that only lexical pre-activation processes (such as automatic spreading activation, ASA) are strongly supported, while post-lexical integrative processes are not. Challenging this view, the present ERP study replicates a behavioral study by McKoon and Ratcliff (1995) who demonstrated that a prime-target pair such as finger - hand shows stronger priming when a majority of other pairs in the list share the analogous semantic relationship (here: part-whole), even at short stimulus onset asynchronies (250ms). We created lists with four different types of semantic relationship (synonyms, part-whole, category-member, and opposites) and compared priming for pairs in a consistent list with those in an inconsistent list as well as unrelated items. Highly significant N400 reductions were found for both relatedness priming (unrelated vs. inconsistent) and relational priming (inconsistent vs. consistent). These data are taken as strong evidence that N400 priming effects are not exclusively carried by ASA-like mechanisms during lexical retrieval but also include post-lexical integration in working memory. We link the present findings to a neurocomputational model for relational reasoning (Knowlton et al., 2012) and to recent discussions of context-dependent conceptual activations (Yee and Thompson-Schill, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.
Hodgson, Catherine; Lambon Ralph, Matthew A
2008-01-01
Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study utilised a novel method- tempo picture naming. Experiment 1 showed that, compared to standard deadline naming tasks, participants made more errors on the tempo picture naming tasks. Further, RTs were longer and more errors were produced to living items than non-living items a pattern seen in both semantic dementia and semantically-impaired stroke aphasic patients. Experiment 2 showed that providing the initial phoneme as a cue enhanced performance whereas providing an incorrect phonemic cue further reduced performance. These results support the contention that the tempo picture naming paradigm reduces the time allowed for controlled semantic processing causing increased error rates. This experimental procedure would, therefore, appear to mimic the performance of aphasic patients with multi-modal semantic impairment that results from poor semantic control rather than the degradation of semantic representations observed in semantic dementia [Jefferies, E. A., & Lambon Ralph, M. A. (2006). Semantic impairment in stoke aphasia vs. semantic dementia: A case-series comparison. Brain, 129, 2132-2147]. Further implications for theories of semantic cognition and models of speech processing are discussed.
Demb, J B; Desmond, J E; Wagner, A D; Vaidya, C J; Glover, G H; Gabrieli, J D
1995-09-01
Prefrontal cortical function was examined during semantic encoding and repetition priming using functional magnetic resonance imaging (fMRI), a noninvasive technique for localizing regional changes in blood oxygenation, a correlate of neural activity. Words studied in a semantic (deep) encoding condition were better remembered than words studied in both easier and more difficult nonsemantic (shallow) encoding conditions, with difficulty indexed by response time. The left inferior prefrontal cortex (LIPC) (Brodmann's areas 45, 46, 47) showed increased activation during semantic encoding relative to nonsemantic encoding regardless of the relative difficulty of the nonsemantic encoding task. Therefore, LIPC activation appears to be related to semantic encoding and not task difficulty. Semantic encoding decisions are performed faster the second time words are presented. This represents semantic repetition priming, a facilitation in semantic processing for previously encoded words that is not dependent on intentional recollection. The same LIPC area activated during semantic encoding showed decreased activation during repeated semantic encoding relative to initial semantic encoding of the same words. This decrease in activation during repeated encoding was process specific; it occurred when words were semantically reprocessed but not when words were nonsemantically reprocessed. The results were apparent in both individual and averaged functional maps. These findings suggest that the LIPC is part of a semantic executive system that contributes to the on-line retrieval of semantic information.
The Role of Simple Semantics in the Process of Artificial Grammar Learning.
Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara
2017-10-01
This study investigated the effect of semantic information on artificial grammar learning (AGL). Recursive grammars of different complexity levels (regular language, mirror language, copy language) were investigated in a series of AGL experiments. In the with-semantics condition, participants acquired semantic information prior to the AGL experiment; in the without-semantics control condition, participants did not receive semantic information. It was hypothesized that semantics would generally facilitate grammar acquisition and that the learning benefit in the with-semantics conditions would increase with increasing grammar complexity. Experiment 1 showed learning effects for all grammars but no performance difference between conditions. Experiment 2 replicated the absence of a semantic benefit for all grammars even though semantic information was more prominent during grammar acquisition as compared to Experiment 1. Thus, we did not find evidence for the idea that semantics facilitates grammar acquisition, which seems to support the view of an independent syntactic processing component.
Effects of donepezil on verbal memory after semantic processing in healthy older adults.
FitzGerald, David B; Crucian, Gregory P; Mielke, Jeannine B; Shenal, Brian V; Burks, David; Womack, Kyle B; Ghacibeh, Georges; Drago, Valeria; Foster, Paul S; Valenstein, Edward; Heilman, Kenneth M
2008-06-01
To learn if acetylcholinesterase inhibitors alter verbal recall by improving semantic encoding in a double-blind randomized placebo-controlled trial. Cholinergic supplementation has been shown to improve delayed recall in adults with Alzheimer disease. With functional magnetic resonance imaging, elderly adults, when compared with younger participants, have reduced cortical activation with semantic processing. There have been no studies investigating the effects of cholinergic supplementation on semantic encoding in healthy elderly adults. Twenty elderly participants (mean age 71.5, SD+/-5.2) were recruited. All underwent memory testing before and after receiving donepezil (5 mg, n=11 or 10 mg, n=1) or placebo (n=8) for 6 weeks. Memory was tested using a Levels of Processing task, where a series of words are presented serially. Subjects were either asked to count consonants in a word (superficially process) or decide if the word was "pleasant" or "unpleasant" (semantically process). After 6 weeks of donepezil or placebo treatment, immediate and delayed recall of superficially and semantically processed words was compared with baseline performance. Immediate and delayed recall of superficially processed words did not show significant changes in either treatment group. With semantic processing, both immediate and delayed recall performance improved in the donepezil group. Our results suggest that when using semantic encoding, older normal subjects may be aided by anticholinesterase treatment. However, this treatment does not improve recall of superficially encoded words.
Lexical and sublexical semantic preview benefits in Chinese reading.
Yan, Ming; Zhou, Wei; Shu, Hua; Kliegl, Reinhold
2012-07-01
Semantic processing from parafoveal words is an elusive phenomenon in alphabetic languages, but it has been demonstrated only for a restricted set of noncompound Chinese characters. Using the gaze-contingent boundary paradigm, this experiment examined whether parafoveal lexical and sublexical semantic information was extracted from compound preview characters. Results generalized parafoveal semantic processing to this representative set of Chinese characters and extended the parafoveal processing to radical (sublexical) level semantic information extraction. Implications for notions of parafoveal information extraction during Chinese reading are discussed. 2012 APA, all rights reserved
Less Is More: Semantic Information Survives Interocular Suppression When Attention Is Diverted.
Eo, Kangyong; Cha, Oakyoon; Chong, Sang Chul; Kang, Min-Suk
2016-05-18
The extent of unconscious semantic processing has been debated. It is well established that semantic information is registered in the absence of awareness induced by inattention. However, it has been debated whether semantic information of invisible stimuli is processed during interocular suppression, a procedure that renders one eye's view invisible by presenting a dissimilar stimulus to the other eye. Inspired by recent evidence demonstrating that reduced attention attenuates interocular suppression, we tested a counterintuitive hypothesis that attention withdrawn from the suppressed target location facilitates semantic processing in the absence of awareness induced by interocular suppression. We obtained an electrophysiological marker of semantic processing (N400 component) while human participants' spatial attention was being manipulated with a cueing paradigm during interocular suppression. We found that N400 modulation was absent when participants' attention was directed to the target location, but present when diverted elsewhere. In addition, the correlation analysis across participants indicated that the N400 amplitude was reduced with more attention being directed to the target location. Together, these results indicate that inattention attenuates interocular suppression and thereby makes semantic processing available unconsciously, reconciling conflicting evidence in the literature. We discuss a tight link among interocular suppression, attention, and conscious awareness. Interocular suppression offers a powerful means of studying the extent of unconscious processing by rendering a salient stimulus presented to one eye invisible. Here, we provide evidence that attention is a determining factor for unconscious semantic processing. An electrophysiological marker for semantic processing (N400 component) was present when attention was diverted away from the suppressed stimulus but absent when attention was directed to that stimulus, indicating that inattention facilitates unconscious semantic processing during the interocular suppression. Although contrary to the common sense assumption that attention facilitates information processing, this result is in accordance with recent studies showing that attention modulates interocular suppression but is not necessary for semantic processing. Our finding reconciles the conflicting evidence and advances theories of consciousness. Copyright © 2016 the authors 0270-6474/16/365489-09$15.00/0.
Parmentier, Fabrice B R; Pacheco-Unguetti, Antonia P; Valero, Sara
2018-01-01
Rare changes in a stream of otherwise repeated task-irrelevant sounds break through selective attention and disrupt performance in an unrelated visual task by triggering shifts of attention to and from the deviant sound (deviance distraction). Evidence indicates that the involuntary orientation of attention to unexpected sounds is followed by their semantic processing. However, past demonstrations relied on tasks in which the meaning of the deviant sounds overlapped with features of the primary task. Here we examine whether such processing is observed when no such overlap is present but sounds carry some relevance to the participants' biological need to eat when hungry. We report the results of an experiment in which hungry and satiated participants partook in a cross-modal oddball task in which they categorized visual digits (odd/even) while ignoring task-irrelevant sounds. On most trials the irrelevant sound was a sinewave tone (standard sound). On the remaining trials, deviant sounds consisted of spoken words related to food (food deviants) or control words (control deviants). Questionnaire data confirmed state (but not trait) differences between the two groups with respect to food craving, as well as a greater desire to eat the food corresponding to the food-related words in the hungry relative to the satiated participants. The results of the oddball task revealed that food deviants produced greater distraction (longer response times) than control deviants in hungry participants while the reverse effect was observed in satiated participants. This effect was observed in the first block of trials but disappeared thereafter, reflecting semantic saturation. Our results suggest that (1) the semantic content of deviant sounds is involuntarily processed even when sharing no feature with the primary task; and that (2) distraction by deviant sounds can be modulated by the participants' biological needs.
Pacheco-Unguetti, Antonia P.; Valero, Sara
2018-01-01
Rare changes in a stream of otherwise repeated task-irrelevant sounds break through selective attention and disrupt performance in an unrelated visual task by triggering shifts of attention to and from the deviant sound (deviance distraction). Evidence indicates that the involuntary orientation of attention to unexpected sounds is followed by their semantic processing. However, past demonstrations relied on tasks in which the meaning of the deviant sounds overlapped with features of the primary task. Here we examine whether such processing is observed when no such overlap is present but sounds carry some relevance to the participants’ biological need to eat when hungry. We report the results of an experiment in which hungry and satiated participants partook in a cross-modal oddball task in which they categorized visual digits (odd/even) while ignoring task-irrelevant sounds. On most trials the irrelevant sound was a sinewave tone (standard sound). On the remaining trials, deviant sounds consisted of spoken words related to food (food deviants) or control words (control deviants). Questionnaire data confirmed state (but not trait) differences between the two groups with respect to food craving, as well as a greater desire to eat the food corresponding to the food-related words in the hungry relative to the satiated participants. The results of the oddball task revealed that food deviants produced greater distraction (longer response times) than control deviants in hungry participants while the reverse effect was observed in satiated participants. This effect was observed in the first block of trials but disappeared thereafter, reflecting semantic saturation. Our results suggest that (1) the semantic content of deviant sounds is involuntarily processed even when sharing no feature with the primary task; and that (2) distraction by deviant sounds can be modulated by the participants’ biological needs. PMID:29300763
Working memory and semantic involvement in sentence processing: a case of pure progressive amnesia.
Fossard, Marion; Rigalleau, François; Puel, Michèle; Nespoulous, Jean-Luc; Viallard, Gérard; Démonet, Jean-François; Cardebat, Dominique
2006-01-01
ED, a 83-year-old woman, meets the criteria of pure progressive amnesia, with gradual impairment of episodic and autobiographical memory, sparing of semantic processing and strong working memory (WM) deficit. The dissociation between disturbed WM and spared semantic processing permitted testing the role of WM in processing anaphors like pronouns or repeated names. Results showed a globally normal anaphoric behavior in two experiments requiring anaphoric processing in sentence production and comprehension. We suggest that preserved semantic processing in ED would have compensated for working memory deficit in anaphoric processing.
Age-Related Brain Activation Changes during Rule Repetition in Word-Matching.
Methqal, Ikram; Pinsard, Basile; Amiri, Mahnoush; Wilson, Maximiliano A; Monchi, Oury; Provost, Jean-Sebastien; Joanette, Yves
2017-01-01
Objective: The purpose of this study was to explore the age-related brain activation changes during a word-matching semantic-category-based task, which required either repeating or changing a semantic rule to be applied. In order to do so, a word-semantic rule-based task was adapted from the Wisconsin Sorting Card Test, involving the repeated feedback-driven selection of given pairs of words based on semantic category-based criteria. Method: Forty healthy adults (20 younger and 20 older) performed a word-matching task while undergoing a fMRI scan in which they were required to pair a target word with another word from a group of three words. The required pairing is based on three word-pair semantic rules which correspond to different levels of semantic control demands: functional relatedness, moderately typical-relatedness (which were considered as low control demands), and atypical-relatedness (high control demands). The sorting period consisted of a continuous execution of the same sorting rule and an inferred trial-by-trial feedback was given. Results: Behavioral performance revealed increases in response times and decreases of correct responses according to the level of semantic control demands (functional vs. typical vs. atypical) for both age groups (younger and older) reflecting graded differences in the repetition of the application of a given semantic rule. Neuroimaging findings of significant brain activation showed two main results: (1) Greater task-related activation changes for the repetition of the application of atypical rules relative to typical and functional rules, and (2) Changes (older > younger) in the inferior prefrontal regions for functional rules and more extensive and bilateral activations for typical and atypical rules. Regarding the inter-semantic rules comparison, only task-related activation differences were observed for functional > typical (e.g., inferior parietal and temporal regions bilaterally) and atypical > typical (e.g., prefrontal, inferior parietal, posterior temporal, and subcortical regions). Conclusion: These results suggest that healthy cognitive aging relies on the adaptive changes of inferior prefrontal resources involved in the repetitive execution of semantic rules, thus reflecting graded differences in support of task demands.
Visual and semantic processing of living things and artifacts: an FMRI study.
Zannino, Gian Daniele; Buccione, Ivana; Perri, Roberta; Macaluso, Emiliano; Lo Gerfo, Emanuele; Caltagirone, Carlo; Carlesimo, Giovanni A
2010-03-01
We carried out an fMRI study with a twofold purpose: to investigate the relationship between networks dedicated to semantic and visual processing and to address the issue of whether semantic memory is subserved by a unique network or by different subsystems, according to semantic category or feature type. To achieve our goals, we administered a word-picture matching task, with within-category foils, to 15 healthy subjects during scanning. Semantic distance between the target and the foil and semantic domain of the target-foil pairs were varied orthogonally. Our results suggest that an amodal, undifferentiated network for the semantic processing of living things and artifacts is located in the anterolateral aspects of the temporal lobes; in fact, activity in this substrate was driven by semantic distance, not by semantic category. By contrast, activity in ventral occipito-temporal cortex was driven by category, not by semantic distance. We interpret the latter finding as the effect exerted by systematic differences between living things and artifacts at the level of their structural representations and possibly of their lower-level visual features. Finally, we attempt to reconcile contrasting data in the neuropsychological and functional imaging literature on semantic substrate and category specificity.
Semantic processing of EHR data for clinical research.
Sun, Hong; Depraetere, Kristof; De Roo, Jos; Mels, Giovanni; De Vloed, Boris; Twagirumukiza, Marc; Colaert, Dirk
2015-12-01
There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data. Copyright © 2015 Elsevier Inc. All rights reserved.
Dickson, Danielle S.; Federmeier, Kara D.
2015-01-01
Differences in how the right and left hemispheres (RH, LH) apprehend visual words were examined using event-related potentials (ERPs) in a repetition paradigm with visual half-field (VF) presentation. In both hemispheres (RH/LVF, LH/RVF), initial presentation of items elicited similar and typical effects of orthographic neighborhood size, with larger N400s for orthographically regular items (words and pseudowords) than for irregular items (acronyms and meaningless illegal strings). However, hemispheric differences emerged on repetition effects. When items were repeated in the LH/RVF, orthographically regular items, relative to irregular items, elicited larger repetition effects on both the N250, a component reflecting processing at the level of visual form (orthography), and on the N400, which has been linked to semantic access. In contrast, in the RH/LVF, repetition effects were biased toward irregular items on the N250 and were similar in size across item types for the N400. The results suggest that processing in the LH is more strongly affected by wordform regularity than in the RH, either due to enhanced processing of familiar orthographic patterns or due to the fact that regular forms can be more readily mapped onto phonology. PMID:25278134
Out of the Corner of My Eye: Foveal Semantic Load Modulates Parafoveal Processing in Reading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Brennan R.; Stites, Mallory C.; Federmeier, Kara D.
In two experiments, we examined the impact of foveal semantic expectancy and congruity on parafoveal word processing during reading. Experiment 1 utilized an eye-tracking gaze contingent display change paradigm, and Experiment 2 measured event-related brain potentials (ERP) in a modified RSVP paradigm to track the time-course of foveal semantic influences on convert attentional allocation to parafoveal word processing. Furthermore, eye-tracking and ERP data converged to reveal graded effects of semantic foveal load on parafoveal processing.
Out of the Corner of My Eye: Foveal Semantic Load Modulates Parafoveal Processing in Reading.
Payne, Brennan R.; Stites, Mallory C.; Federmeier, Kara D.
2016-07-18
In two experiments, we examined the impact of foveal semantic expectancy and congruity on parafoveal word processing during reading. Experiment 1 utilized an eye-tracking gaze contingent display change paradigm, and Experiment 2 measured event-related brain potentials (ERP) in a modified RSVP paradigm to track the time-course of foveal semantic influences on convert attentional allocation to parafoveal word processing. Furthermore, eye-tracking and ERP data converged to reveal graded effects of semantic foveal load on parafoveal processing.
Gorlick, Marissa A.; Mather, Mara
2012-01-01
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigated whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural/man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, and size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic/perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. PMID:22142207
Sakaki, Michiko; Gorlick, Marissa A; Mather, Mara
2011-12-01
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events. (c) 2011 APA, all rights reserved.
Network Alterations Supporting Word Retrieval in Patients with Medial Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Protzner, Andrea B.; McAndrews, Mary Pat
2011-01-01
Although the hippocampus is not considered a key structure in semantic memory, patients with medial-temporal lobe epilepsy (mTLE) have deficits in semantic access on some word retrieval tasks. We hypothesized that these deficits reflect the negative impact of focal epilepsy on remote cerebral structures. Thus, we expected that the networks that…
Concept Map Engineering: Methods and Tools Based on the Semantic Relation Approach
ERIC Educational Resources Information Center
Kim, Minkyu
2013-01-01
The purpose of this study is to develop a better understanding of technologies that use natural language as the basis for concept map construction. In particular, this study focuses on the semantic relation (SR) approach to drawing rich and authentic concept maps that reflect students' internal representations of a problem situation. The…
Dancing with the Web: Students Bring Meaning to the Semantic Web
ERIC Educational Resources Information Center
Brooks, Pauline
2012-01-01
This article will discuss the issues concerning the storage, retrieval and use of multimedia technology in dance, and how semantic web technologies can support those requirements. It will identify the key aims and outcomes of four international telematic dance projects, and review the use of reflective practice to engage students in their learning…
[Picture naming and memory in children: phonological and semantic effects].
Scheuer, Claudia Ines; Stivanin, Luciene; Mangilli, Laura Davidson
2004-01-01
[corrected] The relation between picture naming and the short and long term memories. to verify the ability of picture naming based on phonological and semantic queues, relating it to memory. 80 pictures selected from a set of 400 (Cycowicz et al., 1997) were presented to 80 children with ages ranging from 3 to 6 years. Responses were classified in semantic and phonologic errors and number of correct answers. The effect of the articulatory complexity was significant and the effect of the semantic complexity was not significant. Naming is the result of memory activation which is organized in categories, physical properties and function; phonologic effects do interfere in the activity of naming, whereas the semantic effects reflect that the long term memory is organized in categories which are dependant of the context and of the development.
ERIC Educational Resources Information Center
Jared, Debra; Jouravlev, Olessia; Joanisse, Marc F.
2017-01-01
Decomposition theories of morphological processing in visual word recognition posit an early morpho-orthographic parser that is blind to semantic information, whereas parallel distributed processing (PDP) theories assume that the transparency of orthographic-semantic relationships influences processing from the beginning. To test these…
Syntactic processing in the absence of awareness and semantics.
Hung, Shao-Min; Hsieh, Po-Jang
2015-10-01
The classical view that multistep rule-based operations require consciousness has recently been challenged by findings that both multiword semantic processing and multistep arithmetic equations can be processed unconsciously. It remains unclear, however, whether pure rule-based cognitive processes can occur unconsciously in the absence of semantics. Here, after presenting 2 words consciously, we suppressed the third with continuous flash suppression. First, we showed that the third word in the subject-verb-verb format (syntactically incongruent) broke suppression significantly faster than the third word in the subject-verb-object format (syntactically congruent). Crucially, the same effect was observed even with sentences composed of pseudowords (pseudo subject-verb-adjective vs. pseudo subject-verb-object) without any semantic information. This is the first study to show that syntactic congruency can be processed unconsciously in the complete absence of semantics. Our findings illustrate how abstract rule-based processing (e.g., syntactic categories) can occur in the absence of visual awareness, even when deprived of semantics. (c) 2015 APA, all rights reserved).
The role of attention in subliminal semantic processing: A mouse tracking study
Xiao, Kunchen; Yamauchi, Takashi
2017-01-01
Recent evidence suggests that top-down attention facilitates unconscious semantic processing. To clarify the role of attention in unconscious semantic processing, we traced trajectories of the computer mouse in a semantic priming task and scrutinized the extent to which top-down attention enhances unconscious semantic processing in four different stimulus-onset asynchrony (SOA: 50, 200, 500, or 1000ms) conditions. Participants judged whether a target digit (e.g., “6”) was larger or smaller than five, preceded by a masked priming digit (e.g., “9”). The pre-prime duration changed randomly from trial to trial to disrupt participants’ top-down attention in an uncued condition (in a cued condition, a green square cue was presented to facilitate participants’ top-down attention). The results show that top-down attention modifies the time course of subliminal semantic processing, and the temporal attention window lasts more than 1000ms; attention facilitated by the cue may amplify semantic priming to some extent, yet the amplification effect of attention is relatively minor. PMID:28609460
Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging
Ulrich, Martin; Kiefer, Markus; Bongartz, Walter; Grön, Georg; Hoenig, Klaus
2015-01-01
Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes. PMID:25923740
Niikuni, Keiyu; Muramoto, Toshiaki
2014-06-01
This study explored the effects of a comma on the processing of structurally ambiguous Japanese sentences with a semantic bias. A previous study has shown that a comma which is incompatible with an ambiguous sentence's semantic bias affects the processing of the sentence, but the effects of a comma that is compatible with the bias are unclear. In the present study, we examined the role of a comma compatible with the sentence's semantic bias using the self-paced reading method, which enabled us to determine the reading times for the region of the sentence where readers would be expected to solve the ambiguity using semantic information (the "target region"). The results show that a comma significantly increases the reading time of the punctuated word but decreases the reading time in the target region. We concluded that even if the semantic information provided might be sufficient for disambiguation, the insertion of a comma would affect the processing cost of the ambiguity, indicating that readers use both the comma and semantic information in parallel for sentence processing.
How "mere" is the mere ownership effect in memory? Evidence for semantic organization processes.
Englert, Julia; Wentura, Dirk
2016-11-01
Memory is better for items arbitrarily assigned to the self than for items assigned to another person (mere ownership effect, MOE). In a series of six experiments, we investigated the role of semantic processes for the MOE. Following successful replication, we investigated whether the MOE was contingent upon semantic processing: For meaningless stimuli, there was no MOE. Testing for a potential role of semantic elaboration using meaningful stimuli in an encoding task without verbal labels, we found evidence of spontaneous semantic processing irrespective of self- or other-assignment. When semantic organization was manipulated, the MOE vanished if a semantic classification task was added to the self/other assignment but persisted for a perceptual classification task. Furthermore, we found greater clustering of self-assigned than of other-assigned items in free recall. Taken together, these results suggest that the MOE could be based on the organizational principle of a "me" versus "not-me" categorization. Copyright © 2016 Elsevier Inc. All rights reserved.
Lacombe, Jacinthe; Jolicoeur, Pierre; Grimault, Stephan; Pineault, Jessica; Joubert, Sven
2015-10-01
Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level. Copyright © 2015 Elsevier Inc. All rights reserved.
Visual discrimination predicts naming and semantic association accuracy in Alzheimer disease.
Harnish, Stacy M; Neils-Strunjas, Jean; Eliassen, James; Reilly, Jamie; Meinzer, Marcus; Clark, John Greer; Joseph, Jane
2010-12-01
Language impairment is a common symptom of Alzheimer disease (AD), and is thought to be related to semantic processing. This study examines the contribution of another process, namely visual perception, on measures of confrontation naming and semantic association abilities in persons with probable AD. Twenty individuals with probable mild-moderate Alzheimer disease and 20 age-matched controls completed a battery of neuropsychologic measures assessing visual perception, naming, and semantic association ability. Visual discrimination tasks that varied in the degree to which they likely accessed stored structural representations were used to gauge whether structural processing deficits could account for deficits in naming and in semantic association in AD. Visual discrimination abilities of nameable objects in AD strongly predicted performance on both picture naming and semantic association ability, but lacked the same predictive value for controls. Although impaired, performance on visual discrimination tests of abstract shapes and novel faces showed no significant relationship with picture naming and semantic association. These results provide additional evidence to support that structural processing deficits exist in AD, and may contribute to object recognition and naming deficits. Our findings suggest that there is a common deficit in discrimination of pictures using nameable objects, picture naming, and semantic association of pictures in AD. Disturbances in structural processing of pictured items may be associated with lexical-semantic impairment in AD, owing to degraded internal storage of structural knowledge.
Remote semantic memory for public figures in HIV infection, alcoholism, and their comorbidity.
Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Thompson, Megan A; Pfefferbaum, Adolf; Sullivan, Edith V
2011-02-01
Impairments in component processes of working and episodic memory mark both HIV infection and chronic alcoholism, with compounded deficits often observed in individuals comorbid for these conditions. Remote semantic memory processes, however, have only seldom been studied in these diagnostic groups. Examination of remote semantic memory could provide insight into the underlying processes associated with storage and retrieval of learned information over extended time periods while elucidating spared and impaired cognitive functions in these clinical groups. We examined component processes of remote semantic memory in HIV infection and chronic alcoholism in 4 subject groups (HIV, ALC, HIV + ALC, and age-matched healthy adults) using a modified version of the Presidents Test. Free recall, recognition, and sequencing of presidential candidates and election dates were assessed. In addition, component processes of working, episodic, and semantic memory were assessed with ancillary cognitive tests. The comorbid group (HIV + ALC) was significantly impaired on sequencing of remote semantic information compared with age-matched healthy adults. Free recall of remote semantic information was also modestly impaired in the HIV + ALC group, but normal performance for recognition of this information was observed. Few differences were observed between the single diagnosis groups (HIV, ALC) and healthy adults, although examination of the component processes underlying remote semantic memory scores elicited differences between the HIV and ALC groups. Selective remote memory processes were related to lifetime alcohol consumption in the ALC group and to viral load and depression level in the HIV group. Hepatitis C diagnosis was associated with lower remote semantic memory scores in all 3 clinical groups. Education level did not account for group differences reported. This study provides behavioral support for the existence of adverse effects associated with the comorbidity of HIV infection and chronic alcoholism on selective component processes of memory function, with untoward effects exacerbated by Hepatitis C infection. The pattern of remote semantic memory function in HIV + ALC is consistent with those observed in neurological conditions primarily affecting frontostriatal pathways and suggests that remote memory dysfunction in HIV + ALC may be a result of impaired retrieval processes rather than loss of remote semantic information per se. Copyright © 2010 by the Research Society on Alcoholism.
Deriving semantic structure from category fluency: clustering techniques and their pitfalls
Voorspoels, Wouter; Storms, Gert; Longenecker, Julia; Verheyen, Steven; Weinberger, Daniel R.; Elvevåg, Brita
2013-01-01
Assessing verbal output in category fluency tasks provides a sensitive indicator of cortical dysfunction. The most common metrics are the overall number of words produced and the number of errors. Two main observations have been made about the structure of the output, first that there is a temporal component to it with words being generated in spurts, and second that the clustering pattern may reflect a search for meanings such that the ‘clustering’ is attributable to the activation of a specific semantic field in memory. A number of sophisticated approaches to examining the structure of this clustering have been developed, and a core theme is that the similarity relations between category members will reveal the mental semantic structure of the category underlying an individual’s responses, which can then be visualized by a number of algorithms, such as MDS, hierarchical clustering, ADDTREE, ADCLUS or SVD. Such approaches have been applied to a variety of neurological and psychiatric populations, and the general conclusion has been that the clinical condition systematically distorts the semantic structure in the patients, as compared to the healthy controls. In the present paper we explore this approach to understanding semantic structure using category fluency data. On the basis of a large pool of patients with schizophrenia (n=204) and healthy control participants (n=204), we find that the methods are problematic and unreliable to the extent that it is not possible to conclude that any putative difference reflects a systematic difference between the semantic representations in patients and controls. Moreover, taking into account the unreliability of the methods, we find that the most probable conclusion to be made is that no difference in underlying semantic representation exists. The consequences of these findings to understanding semantic structure, and the use of category fluency data, in cortical dysfunction are discussed. PMID:24275165
An investigation of time course of category and semantic priming.
Ray, Suchismita
2008-04-01
Low semantically similar exemplars in a category demonstrate the category-priming effect through priming of the category (i.e., exemplar-category-exemplar), whereas high semantically similar exemplars in the same category demonstrate the semantic-priming effect (i.e., direct activation of one high semantically similar exemplar by another). The author asked whether the category- and semantic-priming effects are based on a common memory process. She examined this question by testing the time courses of category- and semantic-priming effects. She tested participants on either category- or semantic-priming paradigm at 2 different time intervals (6 min and 42 min) by using a lexical decision task using exemplars from categories. Results showed that the time course of category priming was different from that of semantic priming. The author concludes that these 2 priming effects are based on 2 separate memory processes.
Sub-Lexical Phonological and Semantic Processing of Semantic Radicals: A Primed Naming Study
ERIC Educational Resources Information Center
Zhou, Lin; Peng, Gang; Zheng, Hong-Ying; Su, I-Fan; Wang, William S.-Y.
2013-01-01
Most sinograms (i.e., Chinese characters) are phonograms (phonetic compounds). A phonogram is composed of a semantic radical and a phonetic radical, with the former usually implying the meaning of the phonogram, and the latter providing cues to its pronunciation. This study focused on the sub-lexical processing of semantic radicals which are…
ERIC Educational Resources Information Center
de Wit, Bianca; Kinoshita, Sachiko
2014-01-01
Semantic priming effects at a short prime-target stimulus onset asynchrony are commonly explained in terms of an automatic spreading activation process. According to this view, the proportion of related trials should have no impact on the size of the semantic priming effect. Using a semantic categorization task ("Is this a living…
Insights from child development on the relationship between episodic and semantic memory.
Robertson, Erin K; Köhler, Stefan
2007-11-05
The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.
Semantic-based crossmodal processing during visual suppression.
Cox, Dustin; Hong, Sang Wook
2015-01-01
To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression, we rendered dynamic and familiar visual events (e.g., a video clip of an approaching train) inaccessible to visual awareness. We manipulated the semantic auditory context of the videos by concurrently pairing them with a semantically matching soundtrack (congruent audiovisual condition), a semantically non-matching soundtrack (incongruent audiovisual condition), or with no soundtrack (neutral video-only condition). We found that participants identified the suppressed visual events significantly faster (an earlier breakup of suppression) in the congruent audiovisual condition compared to the incongruent audiovisual condition and video-only condition. However, this facilitatory influence of semantic auditory input was only observed when audiovisual stimulation co-occurred. Our results suggest that the enhanced visual processing with a semantically congruent auditory input occurs due to audiovisual crossmodal processing rather than semantic priming, which may occur even when visual information is not available to visual awareness.
Steen-Baker, Allison A; Ng, Shukhan; Payne, Brennan R; Anderson, Carolyn J; Federmeier, Kara D; Stine-Morrow, Elizabeth A L
2017-08-01
The facilitation of word processing by sentence context reflects the interaction between the build-up of message-level semantics and lexical processing. Yet, little is known about how this effect varies through adulthood as a function of reading skill. In this study, Participants 18-64 years old with a range of literacy competence read simple sentences as their eye movements were monitored. We manipulated the predictability of a sentence-final target word, operationalized as cloze probability. First fixation durations showed an interaction between age and literacy skill, decreasing with age among more skilled readers but increasing among less skilled readers. This pattern suggests that age-related slowing may impact reading when not buffered by skill, but with continued practice, automatization of reading can continue to develop in adulthood. In absolute terms, readers were sensitive to predictability, regardless of age or literacy, in both early and later measures. Older readers showed differential contextual sensitivity in regression patterns, effects not moderated by literacy skill. Finally, comprehension performance increased with age and literacy skill, but performance among less skilled readers was especially reduced when predictability was low, suggesting that low-literacy adults (regardless of age) struggle when creating mental representations under weaker semantic constraints. Collectively, these findings suggest that aging readers (regardless of reading skill) are more sensitive to context for meaning-integration processes; that less skilled adult readers (regardless of age) depend more on a constrained semantic representation for comprehension; and that the capacity for literacy engagement enables continued development of efficient lexical processing in adult reading development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Barraza, Paulo; Chavez, Mario; Rodríguez, Eugenio
2016-01-01
Similar to linguistic stimuli, music can also prime the meaning of a subsequent word. However, it is so far unknown what is the brain dynamics underlying the semantic priming effect induced by music, and its relation to language. To elucidate these issues, we compare the brain oscillatory response to visual words that have been semantically primed either by a musical excerpt or by an auditory sentence. We found that semantic violation between music-word pairs triggers a classical ERP N400, and induces a sustained increase of long-distance theta phase synchrony, along with a transient increase of local gamma activity. Similar results were observed after linguistic semantic violation except for gamma activity, which increased after semantic congruence between sentence-word pairs. Our findings indicate that local gamma activity is a neural marker that signals different ways of semantic processing between music and language, revealing the dynamic and self-organized nature of the semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Grasping the invisible: semantic processing of abstract words.
Zdrazilova, Lenka; Pexman, Penny M
2013-12-01
The problem of how abstract word meanings are represented has been a challenging one. In the present study, we extended the semantic richness approach (e.g., Yap, Tan, Pexman, & Hargreaves in Psychonomic Bulletin & Review 18:742-750, 2011) to abstract words, examining the effects of six semantic richness variables on lexical-semantic processing for 207 abstract nouns. The candidate richness dimensions were context availability (CA), sensory experience rating (SER), valence, arousal, semantic neighborhood (SN), and number of associates (NoA). The behavioral tasks were lexical decision (LDT) and semantic categorization (SCT). Our results showed that the semantic richness variables were significantly related to both LDT and SCT latencies, even after lexical and orthographic factors were controlled. The patterns of richness effects varied across tasks, with CA effects in the LDT, and SER and valence effects in the SCT. These results provide new insight into how abstract meanings may be grounded, and are consistent with a dynamic, multidimensional framework for semantic processing.
Leveraging the UML Metamodel: Expressing ORM Semantics Using a UML Profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
CUYLER,DAVID S.
2000-11-01
Object Role Modeling (ORM) techniques produce a detailed domain model from the perspective of the business owner/customer. The typical process begins with a set of simple sentences reflecting facts about the business. The output of the process is a single model representing primarily the persistent information needs of the business. This type of model contains little, if any reference to a targeted computerized implementation. It is a model of business entities not of software classes. Through well-defined procedures, an ORM model can be transformed into a high quality objector relational schema.
Guardia, Gabriela D A; Ferreira Pires, Luís; da Silva, Eduardo G; de Farias, Cléver R G
2017-02-01
Gene expression studies often require the combined use of a number of analysis tools. However, manual integration of analysis tools can be cumbersome and error prone. To support a higher level of automation in the integration process, efforts have been made in the biomedical domain towards the development of semantic web services and supporting composition environments. Yet, most environments consider only the execution of simple service behaviours and requires users to focus on technical details of the composition process. We propose a novel approach to the semantic composition of gene expression analysis services that addresses the shortcomings of the existing solutions. Our approach includes an architecture designed to support the service composition process for gene expression analysis, and a flexible strategy for the (semi) automatic composition of semantic web services. Finally, we implement a supporting platform called SemanticSCo to realize the proposed composition approach and demonstrate its functionality by successfully reproducing a microarray study documented in the literature. The SemanticSCo platform provides support for the composition of RESTful web services semantically annotated using SAWSDL. Our platform also supports the definition of constraints/conditions regarding the order in which service operations should be invoked, thus enabling the definition of complex service behaviours. Our proposed solution for semantic web service composition takes into account the requirements of different stakeholders and addresses all phases of the service composition process. It also provides support for the definition of analysis workflows at a high-level of abstraction, thus enabling users to focus on biological research issues rather than on the technical details of the composition process. The SemanticSCo source code is available at https://github.com/usplssb/SemanticSCo. Copyright © 2017 Elsevier Inc. All rights reserved.
When Sufficiently Processed, Semantically Related Distractor Pictures Hamper Picture Naming.
Matushanskaya, Asya; Mädebach, Andreas; Müller, Matthias M; Jescheniak, Jörg D
2016-11-01
Prominent speech production models view lexical access as a competitive process. According to these models, a semantically related distractor picture should interfere with target picture naming more strongly than an unrelated one. However, several studies failed to obtain such an effect. Here, we demonstrate that semantic interference is obtained, when the distractor picture is sufficiently processed. Participants named one of two pictures presented in close temporal succession, with color cueing the target. Experiment 1 induced the prediction that the target appears first. When this prediction was violated (distractor first), semantic interference was observed. Experiment 2 ruled out that the time available for distractor processing was the driving force. These results show that semantically related distractor pictures interfere with the naming response when they are sufficiently processed. The data thus provide further support for models viewing lexical access as a competitive process.
Borovsky, Arielle; Ellis, Erica M; Evans, Julia L; Elman, Jeffrey L
2016-11-01
Although the size of a child's vocabulary associates with language-processing skills, little is understood regarding how this relation emerges. This investigation asks whether and how the structure of vocabulary knowledge affects language processing in English-learning 24-month-old children (N = 32; 18 F, 14 M). Parental vocabulary report was used to calculate semantic density in several early-acquired semantic categories. Performance on two language-processing tasks (lexical recognition and sentence processing) was compared as a function of semantic density. In both tasks, real-time comprehension was facilitated for higher density items, whereas lower density items experienced more interference. The findings indicate that language-processing skills develop heterogeneously and are influenced by the semantic network surrounding a known word. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
Hohlfeld, Annette; Martín-Loeches, Manuel; Sommer, Werner
2015-01-01
The present study contributes to the discussion on the automaticity of semantic processing. Whereas most previous research investigated semantic processing at word level, the present study addressed semantic processing during sentence reading. A dual task paradigm was combined with the recording of event-related brain potentials. Previous research at word level processing reported different patterns of interference with the N400 by additional tasks: attenuation of amplitude or delay of latency. In the present study, we presented Spanish sentences that were semantically correct or contained a semantic violation in a critical word. At different intervals preceding the critical word a tone was presented that required a high-priority choice response. At short intervals/high temporal overlap between the tasks mean amplitude of the N400 was reduced relative to long intervals/low temporal overlap, but there were no shifts of peak latency. We propose that processing at sentence level exerts a protective effect against the additional task. This is in accord with the attentional sensitization model (Kiefer & Martens, 2010), which suggests that semantic processing is an automatic process that can be enhanced by the currently activated task set. The present experimental sentences also induced a P600, which is taken as an index of integrative processing. Additional task effects are comparable to those in the N400 time window and are briefly discussed. PMID:26203312
The neural correlates of semantic richness: evidence from an fMRI study of word learning.
Ferreira, Roberto A; Göbel, Silke M; Hymers, Mark; Ellis, Andrew W
2015-04-01
We investigated the neural correlates of concrete nouns with either many or few semantic features. A group of 21 participants underwent two days of training and were then asked to categorize 40 newly learned words and a set of matched familiar words as living or nonliving in an MRI scanner. Our results showed that the most reliable effects of semantic richness were located in the left angular gyrus (AG) and middle temporal gyrus (MTG), where activation was higher for semantically rich than poor words. Other areas showing the same pattern included bilateral precuneus and posterior cingulate gyrus. Our findings support the view that AG and anterior MTG, as part of the multimodal network, play a significant role in representing and integrating semantic features from different input modalities. We propose that activation in bilateral precuneus and posterior cingulate gyrus reflects interplay between AG and episodic memory systems during semantic retrieval. Copyright © 2015 Elsevier Inc. All rights reserved.
Developmental Levels of Processing in Metaphor Interpretation.
ERIC Educational Resources Information Center
Johnson, Janice; Pascual-Leone, Juan
1989-01-01
Outlines a theory of metaphor that posits varying levels of semantic processing and formalizes the levels in terms of kinds of semantic mapping operators. Predicted complexity of semantic mapping operators was tested using metaphor interpretations of 204 children aged 6-12 years and 24 adults. Processing score increased predictably with age. (SAK)
Semantic Processing of Previews within Compound Words
ERIC Educational Resources Information Center
White, Sarah J.; Bertram, Raymond; Hyona, Jukka
2008-01-01
Previous studies have suggested that previews of words prior to fixation can be processed orthographically, but not semantically, during reading of sentences (K. Rayner, D. A. Balota, & A. Pollatsek, 1986). The present study tested whether semantic processing of previews can occur within words. The preview of the second constituent of…
Semantic and self-referential processing of positive and negative trait adjectives in older adults
Glisky, Elizabeth L.; Marquine, Maria J.
2008-01-01
The beneficial effects of self-referential processing on memory have been demonstrated in numerous experiments with younger adults but have rarely been studied in older individuals. In the present study we tested young people, younger-older adults, and older-older adults in a self-reference paradigm, and compared self-referential processing to general semantic processing. Findings indicated that older adults over the age of 75 and those with below average episodic memory function showed a decreased benefit from both semantic and self-referential processing relative to a structural baseline condition. However, these effects appeared to be confined to the shared semantic processes for the two conditions, leaving the added advantage for self-referential processing unaffected These results suggest that reference to the self engages qualitatively different processes compared to general semantic processing. These processes seem relatively impervious to age and to declining memory and executive function, suggesting that they might provide a particularly useful way for older adults to improve their memories. PMID:18608973
Selective Short-Term Memory Deficits Arise from Impaired Domain-General Semantic Control Mechanisms
ERIC Educational Resources Information Center
Hoffman, Paul; Jefferies, Elizabeth; Ehsan, Sheeba; Hopper, Samantha; Lambon Ralph, Matthew A.
2009-01-01
Semantic short-term memory (STM) patients have a reduced ability to retain semantic information over brief delays but perform well on other semantic tasks; this pattern suggests damage to a dedicated buffer for semantic information. Alternatively, these difficulties may arise from mild disruption to domain-general semantic processes that have…
Räling, Romy; Schröder, Astrid; Wartenburger, Isabell
2016-06-01
Age of acquisition (AOA) has frequently been shown to influence response times and accuracy rates in word processing and constitutes a meaningful variable in aphasic language processing, while its origin in the language processing system is still under debate. To find out where AOA originates and whether and how it is related to another important psycholinguistic variable, namely semantic typicality (TYP), we studied healthy, elderly controls and semantically impaired individuals using semantic priming. For this purpose, we collected reaction times and accuracy rates as well as event-related potential data in an auditory category-member-verification task. The present results confirm a semantic origin of TYP, but question the same for AOA while favouring its origin at the phonology-semantics interface. The data are further interpreted in consideration of recent theories of ageing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Insight in Schizophrenia: Involvement of Self-Reflection Networks?
de Vos, Annerieke E.
2013-01-01
Background: Impaired insight is a common feature in psychosis and an important predictor of variables such as functional outcome, prognosis, and treatment adherence. A cognitive process that may underlie insight in psychosis is self-reflection, or the conscious evaluation of one’s traits and characteristics. The current study aims to investigate the neural correlates of self-reflective processing and its relationship with insight in schizophrenia. Methods: Forty-seven schizophrenia patients and 21 healthy controls performed a self-reflection task in a functional magnetic resonance imaging (fMRI) scanner. The tasks comprised a self-reflection, close other-reflection, and a semantic (baseline) condition. Insight scores were obtained with the Schedule of Assessment of Insight Expanded. In addition, cognitive insight scores were obtained (Beck Cognitive Insight Scale [BCIS]). Results: Schizophrenia patients demonstrated less activation in the posterior cingulate cortex in the self- and other-reflection conditions and less activation in the precuneus in the other-reflection condition compared with healthy controls. Better insight was associated with greater response in the inferior frontal gyrus, anterior insula, and inferior parietal lobule during self-reflection. In addition, better cognitive insight was associated with higher activation in ventromedial prefrontal cortex during self-reflection. Conclusion: In the current study, evidence for a relationship between self-reflection and insight in patients with schizophrenia was found in brain areas related to self-reflection, self/other distinction and source attribution. The findings support the rationale for a treatment that is currently under evaluation, which attempts to increase insight by enhancing self-reflection. PMID:23104865
Insight in schizophrenia: involvement of self-reflection networks?
van der Meer, Lisette; de Vos, Annerieke E; Stiekema, Annemarie P M; Pijnenborg, Gerdina H M; van Tol, Marie-José; Nolen, Willem A; David, Anthony S; Aleman, André
2013-11-01
Impaired insight is a common feature in psychosis and an important predictor of variables such as functional outcome, prognosis, and treatment adherence. A cognitive process that may underlie insight in psychosis is self-reflection, or the conscious evaluation of one's traits and characteristics. The current study aims to investigate the neural correlates of self-reflective processing and its relationship with insight in schizophrenia. Forty-seven schizophrenia patients and 21 healthy controls performed a self-reflection task in a functional magnetic resonance imaging (fMRI) scanner. The tasks comprised a self-reflection, close other-reflection, and a semantic (baseline) condition. Insight scores were obtained with the Schedule of Assessment of Insight Expanded. In addition, cognitive insight scores were obtained (Beck Cognitive Insight Scale [BCIS]). Schizophrenia patients demonstrated less activation in the posterior cingulate cortex in the self- and other-reflection conditions and less activation in the precuneus in the other-reflection condition compared with healthy controls. Better insight was associated with greater response in the inferior frontal gyrus, anterior insula, and inferior parietal lobule during self-reflection. In addition, better cognitive insight was associated with higher activation in ventromedial prefrontal cortex during self-reflection. In the current study, evidence for a relationship between self-reflection and insight in patients with schizophrenia was found in brain areas related to self-reflection, self/other distinction and source attribution. The findings support the rationale for a treatment that is currently under evaluation, which attempts to increase insight by enhancing self-reflection.
Neuropsychological assessment of executive functions in women: effects of age and education.
Plumet, Jocelyne; Gil, Roger; Gaonac'h, Daniel
2005-09-01
The cognitive processes underlying age-related alterations in tests assumed to reflect frontal lobe functions were investigated with a card sorting test and an alternate semantic fluency task. The tests were administered to 133 healthy women belonging to 3 age groups (range=50-92 years) classed according to 2 education levels. The results revealed a negative association between total word fluency and perseveration in the sorting test. Aging similarly affected performance in both education groups in some components of the tasks (atypical word fluency and sensitivity to distraction). However, aging did not affect performance to the same extent in each education group in other components (particularly those reflecting switching abilities and strategies). This quasi-experimental approach provides useful tools to identify specific processing mechanisms underlying executive functions in normal aging. Copyright (c) 2005 APA, all rights reserved.
ERIC Educational Resources Information Center
Wispe, Lauren G.
This paper describes a study of the relationship between terminology in psychological studies and prevailing social conditions at the time of the studies. It is proposed that researchers reflect societal concerns by their choice of semantic markers (terminology). Over 3,000 psychological studies from 1900-72 were analyzed in terms of their…
Amalric, Marie; Dehaene, Stanislas
2017-02-19
Is mathematical language similar to natural language? Are language areas used by mathematicians when they do mathematics? And does the brain comprise a generic semantic system that stores mathematical knowledge alongside knowledge of history, geography or famous people? Here, we refute those views by reviewing three functional MRI studies of the representation and manipulation of high-level mathematical knowledge in professional mathematicians. The results reveal that brain activity during professional mathematical reflection spares perisylvian language-related brain regions as well as temporal lobe areas classically involved in general semantic knowledge. Instead, mathematical reflection recycles bilateral intraparietal and ventral temporal regions involved in elementary number sense. Even simple fact retrieval, such as remembering that 'the sine function is periodical' or that 'London buses are red', activates dissociated areas for math versus non-math knowledge. Together with other fMRI and recent intracranial studies, our results indicated a major separation between two brain networks for mathematical and non-mathematical semantics, which goes a long way to explain a variety of facts in neuroimaging, neuropsychology and developmental disorders.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).
ERIC Educational Resources Information Center
Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili
2012-01-01
Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., and ). The present study examined the…
Double dissociation of semantic categories in Alzheimer's disease.
Gonnerman, L M; Andersen, E S; Devlin, J T; Kempler, D; Seidenberg, M S
1997-04-01
Data that demonstrate distinct patterns of semantic impairment in Alzheimer's disease (AD) are presented. Findings suggest that while groups of mild-moderate patients may not display category specific impairments, some individual patients do show selective impairment of either natural kinds or artifacts. We present a model of semantic organization in which category specific impairments arise from damage to distributed features underlying different types of categories. We incorporate the crucial notions of intercorrelations and distinguishing features, allowing us to demonstrate (1) how category specific impairments can result from widespread damage and (2) how selective deficits in AD reflect different points in the progression of impairment. The different patterns of impairment arise from an interaction between the nature of the semantic categories and the progression of damage.
Mirman, Daniel; Magnuson, James S.
2008-01-01
The authors investigated semantic neighborhood density effects on visual word processing to examine the dynamics of activation and competition among semantic representations. Experiment 1 validated feature-based semantic representations as a basis for computing semantic neighborhood density and suggested that near and distant neighbors have opposite effects on word processing. Experiment 2 confirmed these results: Word processing was slower for dense near neighborhoods and faster for dense distant neighborhoods. Analysis of a computational model showed that attractor dynamics can produce this pattern of neighborhood effects. The authors argue for reconsideration of traditional models of neighborhood effects in terms of attractor dynamics, which allow both inhibitory and facilitative effects to emerge. PMID:18194055
De-Torres, Irene; Dávila, Guadalupe; Berthier, Marcelo L.; Walsh, Seán Froudist; Moreno-Torres, Ignacio; Ruiz-Cruces, Rafael
2013-01-01
Knowledge on the patterns of repetition amongst individuals who develop language deficits in association with right hemisphere lesions (crossed aphasia) is very limited. Available data indicate that repetition in some crossed aphasics experiencing phonological processing deficits is not heavily influenced by lexical-semantic variables (lexicality, imageability, and frequency) as is regularly reported in phonologically-impaired cases with left hemisphere damage. Moreover, in view of the fact that crossed aphasia is rare, information on the role of right cortical areas and white matter tracts underpinning language repetition deficits is scarce. In this study, repetition performance was assessed in two patients with crossed conduction aphasia and striatal/capsular vascular lesions encompassing the right arcuate fasciculus (AF) and inferior frontal-occipital fasciculus (IFOF), the temporal stem and the white matter underneath the supramarginal gyrus. Both patients showed lexicality effects repeating better words than non-words, but manipulation of other lexical-semantic variables exerted less influence on repetition performance. Imageability and frequency effects, production of meaning-based paraphrases during sentence repetition, or better performance on repeating novel sentences than overlearned clichés were hardly ever observed in these two patients. In one patient, diffusion tensor imaging disclosed damage to the right long direct segment of the AF and IFOF with relative sparing of the anterior indirect and posterior segments of the AF, together with fully developed left perisylvian white matter pathways. These findings suggest that striatal/capsular lesions extending into the right AF and IFOF in some individuals with right hemisphere language dominance are associated with atypical repetition patterns which might reflect reduced interactions between phonological and lexical-semantic processes. PMID:24151460
Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues
2017-05-01
The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.
Personal semantic memory: insights from neuropsychological research on amnesia.
Grilli, Matthew D; Verfaellie, Mieke
2014-08-01
This paper provides insight into the cognitive and neural mechanisms of personal semantic memory, knowledge that is specific and unique to individuals, by reviewing neuropsychological research on stable amnesia secondary to medial temporal lobe damage. The results reveal that personal semantic memory does not depend on a unitary set of cognitive and neural mechanisms. Findings show that autobiographical fact knowledge reflects an experience-near type of personal semantic memory that relies on the medial temporal lobe for retrieval, albeit less so than personal episodic memory. Additional evidence demonstrates that new autobiographical fact learning likely relies on the medial temporal lobe, but the extent to which remains unclear. Other findings show that retrieval of personal traits/roles and new learning of personal traits/roles and thoughts/beliefs are independent of the medial temporal lobe and thus may represent highly conceptual types of personal semantic memory that are stored in the neocortex. Published by Elsevier Ltd.
Köster, Moritz; Haese, André; Czernochowski, Daniela
2017-01-01
This EEG study investigated the neuronal processes during intentional compared to incidental learning in young adults and two groups of children aged 10 and 7 years. Theta (3-8 Hz) and alpha (10-16 Hz) neuronal oscillations were analyzed to compare encoding processes during an intentional and an incidental encoding task. In all three age groups, both encoding conditions were associated with an increase in event-related theta activity. Encoding-related alpha suppression increased with age. Memory performance was higher in the intentional compared to the incidental task in all age groups. Furthermore, intentional learning was associated with an improved encoding of perceptual features, which were relevant for the retrieval phase. Theta activity increased from incidental to intentional encoding. Specifically, frontal theta increased in all age groups, while parietal theta increased only in adults and older children. In younger children, parietal theta was similarly high in both encoding phases. While alpha suppression may reflect semantic processes during encoding, increased theta activity during intentional encoding may indicate perceptual binding processes, in accordance with the demands of the encoding task. Higher encoding-related alpha suppression in the older age groups, together with age differences in parietal theta activity during incidental learning in young children, is in line with recent theoretical accounts, emphasizing the role of perceptual processes in mnemonic processing in young children, whereas semantic encoding processes continue to mature throughout middle childhood.
Drijvers, Linda; Mulder, Kimberley; Ernestus, Mirjam
2016-02-01
Reduced forms like yeshay for yesterday often occur in conversations. Previous behavioral research reported a processing advantage for full over reduced forms. The present study investigated whether this processing advantage is reflected in a modulation of alpha (8-12Hz) and gamma (30+Hz) band activity. In three electrophysiological experiments, participants listened to full and reduced forms in isolation (Experiment 1), sentence-final position (Experiment 2), or mid-sentence position (Experiment 3). Alpha power was larger in response to reduced forms than to full forms, but only in Experiments 1 and 2. We interpret these increases in alpha power as reflections of higher auditory cognitive load. In all experiments, gamma power only increased in response to full forms, which we interpret as showing that lexical activation spreads more quickly through the semantic network for full than for reduced forms. These results confirm a processing advantage for full forms, especially in non-medial sentence position. Copyright © 2016 Elsevier Inc. All rights reserved.
A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.
Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel
2012-10-15
A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.
Semantic Processing of Living and Nonliving Concepts across the Cerebral Hemispheres
ERIC Educational Resources Information Center
Pilgrim, L.K.; Moss, H.E.; Tyler, L.K.
2005-01-01
Studies of patients with category-specific semantic deficits suggest that the right and left cerebral hemispheres may be differently involved in the processing of living and nonliving domains concepts. In this study, we investigate whether there are hemisphere differences in the semantic processing of these domains in healthy volunteers. Based on…
Semantic Processing in Children and Adults: Incongruity and the N400
ERIC Educational Resources Information Center
Benau, Erik M.; Morris, Joanna; Couperus, J. W.
2011-01-01
Semantic processing in 10-year-old children and adults was examined using event related potentials (ERPs). The N400 component, an index of semantic processing, was studied in relation to sentences that ended with congruent, moderately incongruent, or strongly incongruent words. N400 amplitude in adults corresponded to levels of semantic…
Jared, Debra; Jouravlev, Olessia; Joanisse, Marc F
2017-03-01
Decomposition theories of morphological processing in visual word recognition posit an early morpho-orthographic parser that is blind to semantic information, whereas parallel distributed processing (PDP) theories assume that the transparency of orthographic-semantic relationships influences processing from the beginning. To test these alternatives, the performance of participants on transparent (foolish), quasi-transparent (bookish), opaque (vanish), and orthographic control words (bucket) was examined in a series of 5 experiments. In Experiments 1-3 variants of a masked priming lexical-decision task were used; Experiment 4 used a masked priming semantic decision task, and Experiment 5 used a single-word (nonpriming) semantic decision task with a color-boundary manipulation. In addition to the behavioral data, event-related potential (ERP) data were collected in Experiments 1, 2, 4, and 5. Across all experiments, we observed a graded effect of semantic transparency in behavioral and ERP data, with the largest effect for semantically transparent words, the next largest for quasi-transparent words, and the smallest for opaque words. The results are discussed in terms of decomposition versus PDP approaches to morphological processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Raucher-Chéné, Delphine; Terrien, Sarah; Gobin, Pamela; Gierski, Fabien; Kaladjian, Arthur; Besche-Richard, Chrystel
2017-09-01
High levels of hypomanic personality traits have been associated with an increased risk of developing bipolar disorder (BD). Changes in semantic content, impaired verbal associations, abnormal prosody, and abnormal speed of language are core features of BD, and are thought to be related to semantic processing abnormalities. In the present study, we used event-related potentials to investigate the relation between semantic processing (N400 component) and hypomanic personality traits. We assessed 65 healthy young adults on the Hypomanic Personality Scale (HPS). Event-related potentials were recorded during a semantic ambiguity resolution task exploring semantic ambiguity (polysemous word ending a sentence) and congruency (target word semantically related to the sentence). As expected, semantic ambiguity and congruency both elicited an N400 effect across our sample. Correlation analyses showed a significant positive relationship between the Social Vitality subscore of the HPS and N400 modulation in the frontal region of interest in the incongruent unambiguous condition, and in the frontocentral region of interest in the incongruent ambiguous condition. We found differences in semantic processing (i.e., detection of incongruence and semantic inhibition) in individuals with higher Social Vitality subscores. In the light of the literature, we discuss the notion that a semantic processing impairment could be a potential marker of vulnerability to BD, and one that needs to be explored further in this clinical population. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.
Fronto-temporal interactions are functionally relevant for semantic control in language processing.
Wawrzyniak, Max; Hoffstaedter, Felix; Klingbeil, Julian; Stockert, Anika; Wrede, Katrin; Hartwigsen, Gesa; Eickhoff, Simon B; Classen, Joseph; Saur, Dorothee
2017-01-01
Semantic cognition, i.e. processing of meaning is based on semantic representations and their controlled retrieval. Semantic control has been shown to be implemented in a network that consists of left inferior frontal (IFG), and anterior and posterior middle temporal gyri (a/pMTG). We aimed to disrupt semantic control processes with continuous theta burst stimulation (cTBS) over left IFG and pMTG and to study whether behavioral effects are moderated by induced alterations in resting-state functional connectivity. To this end, we applied real cTBS over left IFG and left pMTG as well as sham stimulation on 20 healthy participants in a within-subject design. Stimulation was followed by resting-state functional magnetic resonance imaging and a semantic priming paradigm. Resting-state functional connectivity of regions of interest in left IFG, pMTG and aMTG revealed highly interconnected left-lateralized fronto-temporal networks representing the semantic system. We did not find any significant direct modulation of either task performance or resting-state functional connectivity by effective cTBS. However, after sham cTBS, functional connectivity between IFG and pMTG correlated with task performance under high semantic control demands in the semantic priming paradigm. These findings provide evidence for the functional relevance of interactions between IFG and pMTG for semantic control processes. This interaction was functionally less relevant after cTBS over aIFG which might be interpretable in terms of an indirect disruptive effect of cTBS.
Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants.
Ehsan, Sheeba; Baker, Gus A.; Rogers, Timothy T.
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients’ accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants. PMID:22287382
Thompson, Hannah E; Jefferies, Elizabeth
2013-08-01
Research suggests that semantic memory deficits can occur in at least three ways. Patients can (1) show amodal degradation of concepts within the semantic store itself, such as in semantic dementia (SD), (2) have difficulty in controlling activation within the semantic system and accessing appropriate knowledge in line with current goals or context, as in semantic aphasia (SA) and (3) experience a semantic deficit in only one modality following degraded input from sensory cortex. Patients with SA show deficits of semantic control and access across word and picture tasks, consistent with the view that their problems arise from impaired modality-general control processes. However, there are a few reports in the literature of patients with semantic access problems restricted to auditory-verbal materials, who show decreasing ability to retrieve concepts from words when they are presented repeatedly with closely related distractors. These patients challenge the notion that semantic control processes are modality-general and suggest instead a separation of 'access' to auditory-verbal and non-verbal semantic systems. We had the rare opportunity to study such a case in detail. Our aims were to examine the effect of manipulations of control demands in auditory-verbal semantic, non-verbal semantic and non-semantic tasks, allowing us to assess whether such cases always show semantic control/access impairments that follow a modality-specific pattern, or whether there are alternative explanations. Our findings revealed: (1) deficits on executive tasks, unrelated to semantic demands, which were more evident in the auditory modality than the visual modality; (2) deficits in executively-demanding semantic tasks which were accentuated in the auditory-verbal domain compared with the visual modality, but still present on non-verbal tasks, and (3) a coupling between comprehension and executive control requirements, in that mild impairment on single word comprehension was greatly increased on more demanding, associative judgements across modalities. This pattern of results suggests that mild executive-semantic impairment, paired with disrupted connectivity from auditory input, may give rise to semantic 'access' deficits affecting only the auditory modality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integrating a Hypernymic Proposition Interpreter into a Semantic Processor for Biomedical Texts
Fiszman, Marcelo; Rindflesch, Thomas C.; Kilicoglu, Halil
2003-01-01
Semantic processing provides the potential for producing high quality results in natural language processing (NLP) applications in the biomedical domain. In this paper, we address a specific semantic phenomenon, the hypernymic proposition, and concentrate on integrating the interpretation of such predications into a more general semantic processor in order to improve overall accuracy. A preliminary evaluation assesses the contribution of hypernymic propositions in providing more specific semantic predications and thus improving effectiveness in retrieving treatment propositions in MEDLINE abstracts. Finally, we discuss the generalization of this methodology to additional semantic propositions as well as other types of biomedical texts. PMID:14728170
Multi-talker background and semantic priming effect
Dekerle, Marie; Boulenger, Véronique; Hoen, Michel; Meunier, Fanny
2014-01-01
The reported studies have aimed to investigate whether informational masking in a multi-talker background relies on semantic interference between the background and target using an adapted semantic priming paradigm. In 3 experiments, participants were required to perform a lexical decision task on a target item embedded in backgrounds composed of 1–4 voices. These voices were Semantically Consistent (SC) voices (i.e., pronouncing words sharing semantic features with the target) or Semantically Inconsistent (SI) voices (i.e., pronouncing words semantically unrelated to each other and to the target). In the first experiment, backgrounds consisted of 1 or 2 SC voices. One and 2 SI voices were added in Experiments 2 and 3, respectively. The results showed a semantic priming effect only in the conditions where the number of SC voices was greater than the number of SI voices, suggesting that semantic priming depended on prime intelligibility and strategic processes. However, even if backgrounds were composed of 3 or 4 voices, reducing intelligibility, participants were able to recognize words from these backgrounds, although no semantic priming effect on the targets was observed. Overall this finding suggests that informational masking can occur at a semantic level if intelligibility is sufficient. Based on the Effortfulness Hypothesis, we also suggest that when there is an increased difficulty in extracting target signals (caused by a relatively high number of voices in the background), more cognitive resources were allocated to formal processes (i.e., acoustic and phonological), leading to a decrease in available resources for deeper semantic processing of background words, therefore preventing semantic priming from occurring. PMID:25400572
Emmorey, Karen; Petrich, Jennifer; Gollan, Tamar H.
2012-01-01
Bilinguals who are fluent in American Sign Language (ASL) and English often produce code-blends - simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization times (Experiment 2) for code-blends versus ASL signs and English words produced alone. In production, code-blending did not slow lexical retrieval for ASL and actually facilitated access to low-frequency signs. However, code-blending delayed speech production because bimodal bilinguals synchronized English and ASL lexical onsets. In comprehension, code-blending speeded access to both languages. Bimodal bilinguals’ ability to produce code-blends without any cost to ASL implies that the language system either has (or can develop) a mechanism for switching off competition to allow simultaneous production of close competitors. Code-blend facilitation effects during comprehension likely reflect cross-linguistic (and cross-modal) integration at the phonological and/or semantic levels. The absence of any consistent processing costs for code-blending illustrates a surprising limitation on dual-task costs and may explain why bimodal bilinguals code-blend more often than they code-switch. PMID:22773886
Combinatorial semantics strengthens angular-anterior temporal coupling.
Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel
2015-04-01
The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Activation of Anterior Insula during Self-Reflection
Modinos, Gemma; Ormel, Johan; Aleman, André
2009-01-01
Background Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the “self”-network. Methodology/Principal Findings Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. Conclusions/Significance The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self. PMID:19242539
Activation of anterior insula during self-reflection.
Modinos, Gemma; Ormel, Johan; Aleman, André
2009-01-01
Functional neuroimaging studies have suggested activation of midline frontoparietal brain regions to be at the core of self-related processes. However, although some studies reported involvement of the insula, little attention has been paid to this region as forming part of the "self"-network. Using functional magnetic resonance imaging (fMRI), we aimed at replicating and extending previous studies by scanning subjects whilst reflecting upon their own personal qualities as compared to those of an acquaintance. A third condition with statements about general knowledge was used to control for attention, semantic processing and decision making processes. The results showed a significant effect of task in brain activity, consistent with previous findings, by which both person conditions recruited a common set of medial prefrontal and posterior regions, yet significant differences between self and other were found in the medial prefrontal cortex (MPFC) and the anterior cingulate cortex (ACC). Notably, significant neural activation in the left anterior insula was observed as uniquely associated with self-reflection. The results provide further evidence for the specific recruitment of anterior MPFC and ACC regions for self-related processing, and highlight a role for the insula in self-reflection. As the insula is closely connected with ascending internal body signals, this may indicate that the accumulation of changes in affective states that might be implied in self-processing may contribute to our sense of self.
Semantic word category processing in semantic dementia and posterior cortical atrophy.
Shebani, Zubaida; Patterson, Karalyn; Nestor, Peter J; Diaz-de-Grenu, Lara Z; Dawson, Kate; Pulvermüller, Friedemann
2017-08-01
There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two groups of patients whose neurodegenerative diseases preferentially affect specific parts of the brain, to determine whether their performance would vary as a function of semantic categories proposed to recruit those brain regions. Cohorts with (i) Semantic Dementia (SD), who have anterior temporal-lobe atrophy, and (ii) Posterior Cortical Atrophy (PCA), who have predominantly parieto-occipital atrophy, performed a lexical decision test on words from five different lexico-semantic categories: colour (e.g., yellow), form (oval), number (seven), spatial prepositions (under) and function words (also). Sets of pseudo-word foils matched the target words in length and bi-/tri-gram frequency. Word-frequency was matched between the two visual word categories (colour and form) and across the three other categories (number, prepositions, and function words). Age-matched healthy individuals served as controls. Although broad word processing deficits were apparent in both patient groups, the deficit was strongest for colour words in SD and for spatial prepositions in PCA. The patterns of performance on the lexical decision task demonstrate (a) general lexicosemantic processing deficits in both groups, though more prominent in SD than in PCA, and (b) differential involvement of anterior-temporal and posterior-parietal cortex in the processing of specific semantic categories of words. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Majerus, Steve; D'Argembeau, Arnaud
2011-01-01
Many studies suggest that long-term lexical-semantic knowledge is an important determinant of verbal short-term memory (STM) performance. This study explored the impact of emotional valence on word immediate serial recall as a further lexico-semantic long-term memory (LTM) effect on STM. This effect is particularly interesting for the study of…
[Electrophysiological bases of semantic processing of objects].
Kahlaoui, Karima; Baccino, Thierry; Joanette, Yves; Magnié, Marie-Noële
2007-02-01
How pictures and words are stored and processed in the human brain constitute a long-standing question in cognitive psychology. Behavioral studies have yielded a large amount of data addressing this issue. Generally speaking, these data show that there are some interactions between the semantic processing of pictures and words. However, behavioral methods can provide only limited insight into certain findings. Fortunately, Event-Related Potential (ERP) provides on-line cues about the temporal nature of cognitive processes and contributes to the exploration of their neural substrates. ERPs have been used in order to better understand semantic processing of words and pictures. The main objective of this article is to offer an overview of the electrophysiologic bases of semantic processing of words and pictures. Studies presented in this article showed that the processing of words is associated with an N 400 component, whereas pictures elicited both N 300 and N 400 components. Topographical analysis of the N 400 distribution over the scalp is compatible with the idea that both image-mediated concrete words and pictures access an amodal semantic system. However, given the distinctive N 300 patterns, observed only during picture processing, it appears that picture and word processing rely upon distinct neuronal networks, even if they end up activating more or less similar semantic representations.
Uchiyama, Yuji; Toyoda, Hiroshi; Honda, Manabu; Yoshida, Haruyo; Kochiyama, Takanori; Ebe, Kazutoshi; Sadato, Norihiro
2008-07-01
We used functional magnetic resonance imaging in 18 normal volunteers to determine whether there is separate representation of syntactic, semantic, and verbal working memory processing in the left inferior frontal gyrus (GFi). We compared a sentence comprehension task with a short-term memory maintenance task to identify syntactic and semantic processing regions. To investigate the effects of syntactic and verbal working memory load while minimizing the differences in semantic processes, we used comprehension tasks with garden-path (GP) sentences, which require re-parsing, and non-garden-path (NGP) sentences. Compared with the short-term memory task, sentence comprehension activated the left GFi, including Brodmann areas (BAs) 44, 45, and 47, and the left superior temporal gyrus. In GP versus NGP sentences, there was greater activity in the left BAs 44, 45, and 46 extending to the left anterior insula, the pre-supplementary motor area, and the right cerebellum. In the left GFi, verbal working memory activity was located more dorsally (BA 44/45), semantic processing was located more ventrally (BA 47), and syntactic processing was located in between (BA 45). These findings indicate a close relationship between semantic and syntactic processes, and suggest that BA 45 might link verbal working memory and semantic processing via syntactic unification processes.
ERIC Educational Resources Information Center
Maguire, Mandy J.; Brier, Matthew R.; Ferree, Thomas C.
2010-01-01
Despite the importance of semantic relationships to our understanding of semantic knowledge, the nature of the neural processes underlying these abilities are not well understood. In order to investigate these processes, 20 healthy adults listened to thematically related (e.g., leash-dog), taxonomically related (e.g., horse-dog), or unrelated…
ERIC Educational Resources Information Center
Pijnacker, Judith; Davids, Nina; van Weerdenburg, Marjolijn; Verhoeven, Ludo; Knoors, Harry; van Alphen, Petra
2017-01-01
Purpose: Given the complexity of sentence processing and the specific problems that children with specific language impairment (SLI) experience, we investigated the time course and characteristics of semantic processing at the sentence level in Dutch preschoolers with SLI. Method: We measured N400 responses to semantically congruent and…
Cognitive performance across the life course of Bolivian forager-farmers with limited schooling.
Gurven, Michael; Fuerstenberg, Eric; Trumble, Benjamin; Stieglitz, Jonathan; Beheim, Bret; Davis, Helen; Kaplan, Hillard
2017-01-01
Cognitive performance is characterized by at least two distinct life course trajectories. Many cognitive abilities (e.g., "effortful processing" abilities, including fluid reasoning and processing speed) improve throughout early adolescence and start declining in early adulthood, whereas other abilities (e.g., "crystallized" abilities like vocabulary breadth) improve throughout adult life, remaining robust even at late ages. Although schooling may impact performance and cognitive "reserve," it has been argued that these age patterns of cognitive performance are human universals. Here we examine age patterns of cognitive performance among Tsimane forager-horticulturalists of Bolivia and test whether schooling is related to differences in cognitive performance over the life course to assess models of active versus passive cognitive reserve. We used a battery of eight tasks to assess a range of latent cognitive traits reflecting attention, processing speed, verbal declarative memory, and semantic fluency (n = 919 individuals, 49.9% female). Tsimane cognitive abilities show similar age-related differences as observed in industrialized populations: higher throughout adolescence and only slightly lower in later adulthood for semantic fluency but substantially lower performance beginning in early adulthood for all other abilities. Schooling is associated with greater cognitive abilities at all ages controlling for sex but has no attenuating effect on cognitive performance in late adulthood, consistent with models of passive cognitive reserve. We interpret the minimal attenuation of semantic fluency late in life in light of evolutionary theories of postreproductive life span, which emphasize indirect fitness contributions of older adults through the transfer of information, labor, and food to descendant kin. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Eye-Tracking and Corpus-Based Analyses of Syntax-Semantics Interactions in Complement Coercion
Lowder, Matthew W.; Gordon, Peter C.
2016-01-01
Previous work has shown that the difficulty associated with processing complex semantic expressions is reduced when the critical constituents appear in separate clauses as opposed to when they appear together in the same clause. We investigated this effect further, focusing in particular on complement coercion, in which an event-selecting verb (e.g., began) combines with a complement that represents an entity (e.g., began the memo). Experiment 1 compared reading times for coercion versus control expressions when the critical verb and complement appeared together in a subject-extracted relative clause (SRC) (e.g., The secretary that began/wrote the memo) compared to when they appeared together in a simple sentence. Readers spent more time processing coercion expressions than control expressions, replicating the typical coercion cost. In addition, readers spent less time processing the verb and complement in SRCs than in simple sentences; however, the magnitude of the coercion cost did not depend on sentence structure. In contrast, Experiment 2 showed that the coercion cost was reduced when the complement appeared as the head of an object-extracted relative clause (ORC) (e.g., The memo that the secretary began/wrote) compared to when the constituents appeared together in an SRC. Consistent with the eye-tracking results of Experiment 2, a corpus analysis showed that expressions requiring complement coercion are more frequent when the constituents are separated by the clause boundary of an ORC compared to when they are embedded together within an SRC. The results provide important information about the types of structural configurations that contribute to reduced difficulty with complex semantic expressions, as well as how these processing patterns are reflected in naturally occurring language. PMID:28529960
Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig
2013-06-01
Verbal stimuli often induce right-hemispheric activation in patients with aphasia after left-hemispheric stroke. This right-hemispheric activation is commonly attributed to functional reorganization within the language system. Yet previous evidence suggests that functional activation in right-hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made perceptual, semantic, or phonological decisions on the same set of auditorily and visually presented word stimuli. Perceptual decisions required judgements about stimulus-inherent changes in font size (visual modality) or fundamental frequency contour (auditory modality). The semantic judgement required subjects to decide whether a stimulus is natural or man-made; the phonologic decision required a decision on whether a stimulus contains two or three syllables. Compared to phonologic or semantic decision, nonlinguistic perceptual decisions resulted in a stronger right-hemispheric activation. Specifically, the right inferior frontal gyrus (IFG), an area previously suggested to support language recovery after left-hemispheric stroke, displayed modality-independent activation during perceptual processing of word stimuli. Our findings indicate that activation of the right hemisphere during language tasks may, in some instances, be driven by a "nonlinguistic perceptual processing" mode that focuses on nonlinguistic word features. This raises the possibility that stronger activation of right inferior frontal areas during language tasks in aphasic patients with left-hemispheric stroke may at least partially reflect increased attentional focus on nonlinguistic perceptual aspects of language. Copyright © 2012 Wiley Periodicals, Inc.
Li, Yuanqing; Wang, Guangyi; Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.
Long, Jinyi; Yu, Zhuliang; Huang, Biao; Li, Xiaojian; Yu, Tianyou; Liang, Changhong; Li, Zheng; Sun, Pei
2011-01-01
One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: “old people” and “young people.” These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration. PMID:21750692
Adams, Sarah C.; Kiefer, Markus
2012-01-01
Recent studies challenged the classical notion of automaticity and indicated that even unconscious automatic semantic processing is under attentional control to some extent. In line with our attentional sensitization model, these data suggest that a sensitization of semantic pathways by a semantic task set is necessary for subliminal semantic priming to occur while non-semantic task sets attenuate priming. In the present study, we tested whether masked semantic priming is also reduced by phonological task sets using the previously developed induction task paradigm. This would substantiate the notion that attention to semantics is necessary for eliciting unconscious semantic priming. Participants first performed semantic and phonological induction tasks that should either activate a semantic or a phonological task set. Subsequent to the induction task, a masked prime word, either associated or non-associated with the following lexical decision target word, was presented. Across two experiments, we varied the nature of the phonological induction task (word phonology vs. letter phonology) to assess whether the attentional focus on the entire word vs. single letters modulates subsequent masked semantic priming. In both experiments, subliminal semantic priming was only found subsequent to the semantic induction task, but was attenuated following either phonological induction task. These results indicate that attention to phonology attenuates subsequent semantic processing of unconsciously presented primes whether or not attention is directed to the entire word or to single letters. The present findings therefore substantiate earlier evidence that an attentional orientation toward semantics is necessary for subliminal semantic priming to be elicited. PMID:22952461
Hauk, Olaf
2016-08-01
Theoretical developments about the nature of semantic representations and processes should be accompanied by a discussion of how these theories can be validated on the basis of empirical data. Here, I elaborate on the link between theory and empirical research, highlighting the need for temporal information in order to distinguish fundamental aspects of semantics. The generic point that fast cognitive processes demand fast measurement techniques has been made many times before, although arguably more often in the psychophysiological community than in the metabolic neuroimaging community. Many reviews on the neuroscience of semantics mostly or even exclusively focus on metabolic neuroimaging data. Following an analysis of semantics in terms of the representations and processes involved, I argue that fundamental theoretical debates about the neuroscience of semantics can only be concluded on the basis of data with sufficient temporal resolution. Any "semantic effect" may result from a conflation of long-term memory representations, retrieval and working memory processes, mental imagery, and episodic memory. This poses challenges for all neuroimaging modalities, but especially for those with low temporal resolution. It also throws doubt on the usefulness of contrasts between meaningful and meaningless stimuli, which may differ on a number of semantic and non-semantic dimensions. I will discuss the consequences of this analysis for research on the role of convergence zones or hubs and distributed modal brain networks, top-down modulation of task and context as well as interactivity between levels of the processing hierarchy, for example in the framework of predictive coding.
Nonconscious semantic processing of emotional words modulates conscious access
Gaillard, Raphaël; Del Cul, Antoine; Naccache, Lionel; Vinckier, Fabien; Cohen, Laurent; Dehaene, Stanislas
2006-01-01
Whether masked words can be processed at a semantic level remains a controversial issue in cognitive psychology. Although recent behavioral studies have demonstrated masked semantic priming for number words, attempts to generalize this finding to other categories of words have failed. Here, as an alternative to subliminal priming, we introduce a sensitive behavioral method to detect nonconscious semantic processing of words. The logic of this method consists of presenting words close to the threshold for conscious perception and examining whether their semantic content modulates performance in objective and subjective tasks. Our results disclose two independent sources of modulation of the threshold for access to consciousness. First, prior conscious perception of words increases the detection rate of the same words when they are subsequently presented with stronger masking. Second, the threshold for conscious access is lower for emotional words than for neutral ones, even for words that have not been previously consciously perceived, thus implying that written words can receive nonconscious semantic processing. PMID:16648261
A brain electrical signature of left-lateralized semantic activation from single words.
Koppehele-Gossel, Judith; Schnuerch, Robert; Gibbons, Henning
2016-01-01
Lesion and imaging studies consistently indicate a left-lateralization of semantic language processing in human temporo-parietal cortex. Surprisingly, electrocortical measures, which allow a direct assessment of brain activity and the tracking of cognitive functions with millisecond precision, have not yet been used to capture this hemispheric lateralization, at least with respect to posterior portions of this effect. Using event-related potentials, we employed a simple single-word reading paradigm to compare neural activity during three tasks requiring different degrees of semantic processing. As expected, we were able to derive a simple temporo-parietal left-right asymmetry index peaking around 300ms into word processing that neatly tracks the degree of semantic activation. The validity of this measure in specifically capturing verbal semantic activation was further supported by a significant relation to verbal intelligence. We thus posit that it represents a promising tool to monitor verbal semantic processing in the brain with little technological effort and in a minimal experimental setup. Copyright © 2016 Elsevier Inc. All rights reserved.
Distinct neural substrates for semantic knowledge and naming in the temporoparietal network.
Gesierich, Benno; Jovicich, Jorge; Riello, Marianna; Adriani, Michela; Monti, Alessia; Brentari, Valentina; Robinson, Simon D; Wilson, Stephen M; Fairhall, Scott L; Gorno-Tempini, Maria Luisa
2012-10-01
Patients with anterior temporal lobe (ATL) lesions show semantic and lexical retrieval deficits, and the differential role of this area in the 2 processes is debated. Functional neuroimaging in healthy individuals has not clarified the matter because semantic and lexical processes usually occur simultaneously and automatically. Furthermore, the ATL is a region challenging for functional magnetic resonance imaging (fMRI) due to susceptibility artifacts, especially at high fields. In this study, we established an optimized ATL-sensitive fMRI acquisition protocol at 4 T and applied an event-related paradigm to study the identification (i.e., association of semantic biographical information) of celebrities, with and without the ability to retrieve their proper names. While semantic processing reliably activated the ATL, only more posterior areas in the left temporal and temporal-parietal junction were significantly modulated by covert lexical retrieval. These results suggest that within a temporoparietal network, the ATL is relatively more important for semantic processing, and posterior language regions are relatively more important for lexical retrieval.
Subliminal semantic priming in near absence of attention: A cursor motion study.
Xiao, Kunchen; Yamauchi, Takashi
2015-12-15
The role of attention in subliminal semantic priming remains controversial: some researchers argue that attention is necessary for subliminal semantic priming, while others suggest that subliminal semantic processing is free from the influence of attention. The present study employs a cursor motion method to measure priming and evaluate the influence of attention. Specifically, by employing a semantic priming task developed by Naccache, Blandin, and Dehaene (2002), we investigate the extent to which top-down attention influences semantic priming. Results indicate that, consistent with the Naccache et al. (2002) results, attention facilitates priming. However, inconsistent with their theory, significant priming is still observed even in near absence of attention. We suggest that top-down attention helps but is not necessary for subliminal semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.
A redefining Wernicke's area: receptive language and discourse semantics.
Tanner, Dennis C
2007-01-01
This report calls for a more exacting definition of Wernicke's area in the discipline of communication sciences and disorders to reflect an accurate view of brain functioning with regard to decoding discourse semantics. Conventional definitions are provided to delineate the general usages of important terms used by many professional dictionaries and glossaries when defining Wernicke's area, receptive aphasia, understanding, and comprehension. Five levels of semantic decoding are described. A stanza from Tennyson's In Memoriam is used to show the dynamics of discourse semantic decoding and to logically establish that "language understanding" can virtually engage the brain as a whole and the totality of a person's mind. A more accurate definition is provided, indicating that Wernicke's area is not the center for oral language understanding, only an important conduit to language comprehension.
Landi, Nicole; Avery, Trey; Crowley, Michael J; Wu, Jia; Mayes, Linda
2017-01-01
Extant research documents impaired language among children with prenatal cocaine exposure (PCE) relative to nondrug exposed (NDE) children, suggesting that cocaine alters development of neurobiological systems that support language. The current study examines behavioral and neural (electrophysiological) indices of language function in older adolescents. Specifically, we compare performance of PCE (N = 59) and NDE (N = 51) adolescents on a battery of cognitive and linguistic assessments that tap word reading, reading comprehension, semantic and grammatical processing, and IQ. In addition, we examine event related potential (ERP) responses in in a subset of these children across three experimental tasks that examine word level phonological processing (rhyme priming), word level semantic processing (semantic priming), and sentence level semantic processing (semantic anomaly). Findings reveal deficits across a number of reading and language assessments, after controlling for socioeconomic status and exposure to other substances. Additionally, ERP data reveal atypical orthography to phonology mapping (reduced N1/P2 response) and atypical rhyme and semantic processing (N400 response). These findings suggest that PCE continues to impact language and reading skills into the late teenage years.
The accessibility of semantic knowledge for odours that can and cannot be named.
Stevenson, Richard J; Mahmut, Mehmet K
2013-01-01
When faces, objects, or voices are encountered, naming lapses can occur, but this does not preclude knowing other specific semantic information about the nameless thing. In the experiments reported here, we examined whether this is also the case for odours, using a procedure based upon the Pyramid and Palm Trees test. In Experiment 1, participants were presented with a target odour, then two pictures, and had to pick the picture semantically associated with the target. In Experiment 2, participants were presented with a target odour, then two test odours, and again had to pick the semantically associated test stimulus. In each experiment, other tests followed, including a parallel verbal-based test, an odour-naming test, and various ratings. Neither experiment found any evidence of specific semantic knowledge about a target odour, unless the target odour name (Experiment 1) or all of the odour names (Experiment 2) were known. Additional tests suggested that these effects were independent of odour familiarity and similarity. We suggest that the absence of specific semantic information in the absence of a name may reflect poor connectivity between olfactory perceptual and semantic memory systems.
Sanjuán, Ana; Hope, Thomas M.H.; Parker Jones, 'Ōiwi; Prejawa, Susan; Oberhuber, Marion; Guerin, Julie; Seghier, Mohamed L.; Green, David W.; Price, Cathy J.
2015-01-01
We used fMRI in 35 healthy participants to investigate how two neighbouring subregions in the lateral anterior temporal lobe (LATL) contribute to semantic matching and object naming. Four different levels of processing were considered: (A) recognition of the object concepts; (B) search for semantic associations related to object stimuli; (C) retrieval of semantic concepts of interest; and (D) retrieval of stimulus specific concepts as required for naming. During semantic association matching on picture stimuli or heard object names, we found that activation in both subregions was higher when the objects were semantically related (mug–kettle) than unrelated (car–teapot). This is consistent with both LATL subregions playing a role in (C), the successful retrieval of amodal semantic concepts. In addition, one subregion was more activated for object naming than matching semantically related objects, consistent with (D), the retrieval of a specific concept for naming. We discuss the implications of these novel findings for cognitive models of semantic processing and left anterior temporal lobe function. PMID:25496810
How the Emotional Content of Discourse Affects Language Comprehension
Jiménez-Ortega, Laura; Martín-Loeches, Manuel; Casado, Pilar; Sel, Alejandra; Fondevila, Sabela; de Tejada, Pilar Herreros; Schacht, Annekathrin; Sommer, Werner
2012-01-01
Emotion effects on cognition have often been reported. However, only few studies investigated emotional effects on subsequent language processing, and in most cases these effects were induced by non-linguistic stimuli such as films, faces, or pictures. Here, we investigated how a paragraph of positive, negative, or neutral emotional valence affects the processing of a subsequent emotionally neutral sentence, which contained either semantic, syntactic, or no violation, respectively, by means of event-related brain potentials (ERPs). Behavioral data revealed strong effects of emotion; error rates and reaction times increased significantly in sentences preceded by a positive paragraph relative to negative and neutral ones. In ERPs, the N400 to semantic violations was not affected by emotion. In the syntactic experiment, however, clear emotion effects were observed on ERPs. The left anterior negativity (LAN) to syntactic violations, which was not visible in the neutral condition, was present in the negative and positive conditions. This is interpreted as reflecting modulatory effects of prior emotions on syntactic processing, which is discussed in the light of three alternative or complementary explanations based on emotion-induced cognitive styles, working memory, and arousal models. The present effects of emotion on the LAN are especially remarkable considering that syntactic processing has often been regarded as encapsulated and autonomous. PMID:22479432
Neural correlates of early-closure garden-path processing: Effects of prosody and plausibility.
den Ouden, Dirk-Bart; Dickey, Michael Walsh; Anderson, Catherine; Christianson, Kiel
2016-01-01
Functional magnetic resonance imaging (fMRI) was used to investigate neural correlates of early-closure garden-path sentence processing and use of extrasyntactic information to resolve temporary syntactic ambiguities. Sixteen participants performed an auditory picture verification task on sentences presented with natural versus flat intonation. Stimuli included sentences in which the garden-path interpretation was plausible, implausible because of a late pragmatic cue, or implausible because of a semantic mismatch between an optionally transitive verb and the following noun. Natural sentence intonation was correlated with left-hemisphere temporal activation, but also with activation that suggests the allocation of more resources to interpretation when natural prosody is provided. Garden-path processing was associated with upregulation in bilateral inferior parietal and right-hemisphere dorsolateral prefrontal and inferior frontal cortex, while differences between the strength and type of plausibility cues were also reflected in activation patterns. Region of interest (ROI) analyses in regions associated with complex syntactic processing are consistent with a role for posterior temporal cortex supporting access to verb argument structure. Furthermore, ROI analyses within left-hemisphere inferior frontal gyrus suggest a division of labour, with the anterior-ventral part primarily involved in syntactic-semantic mismatch detection, the central part supporting structural reanalysis, and the posterior-dorsal part showing a general structural complexity effect.
Dickson, Danielle S; Federmeier, Kara D
2014-11-01
Differences in how the right and left hemispheres (RH, LH) apprehend visual words were examined using event-related potentials (ERPs) in a repetition paradigm with visual half-field (VF) presentation. In both hemispheres (RH/LVF, LH/RVF), initial presentation of items elicited similar and typical effects of orthographic neighborhood size, with larger N400s for orthographically regular items (words and pseudowords) than for irregular items (acronyms and meaningless illegal strings). However, hemispheric differences emerged on repetition effects. When items were repeated in the LH/RVF, orthographically regular items, relative to irregular items, elicited larger repetition effects on both the N250, a component reflecting processing at the level of visual form (orthography), and on the N400, which has been linked to semantic access. In contrast, in the RH/LVF, repetition effects were biased toward irregular items on the N250 and were similar in size across item types for the N400. The results suggest that processing in the LH is more strongly affected by wordform regularity than in the RH, either due to enhanced processing of familiar orthographic patterns or due to the fact that regular forms can be more readily mapped onto phonology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shared Features Dominate Semantic Richness Effects for Concrete Concepts
ERIC Educational Resources Information Center
Grondin, Ray; Lupker, Stephen J.; McRae, Ken
2009-01-01
When asked to list semantic features for concrete concepts, participants list many features for some concepts and few for others. Concepts with many semantic features are processed faster in lexical and semantic decision tasks [Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). "The impact of feedback semantics in visual word recognition:…
ERIC Educational Resources Information Center
Long, Nicole M.; Kahana, Michael J.
2017-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of…
Orme, Elizabeth; Brown, Louise A.; Riby, Leigh M.
2017-01-01
In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400–800 ms) and late posterior negativity (LPN; 500–900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively ‘pure’ and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively. PMID:28725203
Orme, Elizabeth; Brown, Louise A; Riby, Leigh M
2017-01-01
In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400-800 ms) and late posterior negativity (LPN; 500-900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively 'pure' and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively.
Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D; Weber, Peter B; Kuperman, Rachel A; Auguste, Kurtis I; Brunner, Peter; Schalk, Gerwin; Lin, Jack J; Parvizi, Josef; Crone, Nathan E; Dronkers, Nina F; Knight, Robert T
2017-06-06
Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70-150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.
Visser, M; Forn, C; Lambon Ralph, M A; Hoffman, P; Gómez Ibáñez, A; Sunajuán, Ana; Rosell Negre, P; Villanueva, V; Ávila, C
2018-06-01
According to a large neuropsychological and neuroimaging literature, the bilateral anterior temporal lobe (ATL) is a core region for semantic processing. It seems therefore surprising that semantic memory appears to be preserved in temporal lobe epilepsy (TLE) patients with unilateral ATL resection. However, recent work suggests that the bilateral semantic system is relatively robust against unilateral damage and semantic impairments under these circumstances only become apparent with low frequency specific concepts. In addition, neuroimaging studies have shown that the function of the left and right ATLs differ and therefore left or right ATL resection should lead to a different pattern of impairment. The current study investigated hemispheric differences in the bilateral semantic system by comparing left and right resected TLE patients during verbal semantic processing of low frequency concepts. Picture naming and semantic comprehension tasks with varying word frequencies were included to investigate the pattern of impairment. Left but not right TLE patients showed impaired semantic processing, which was particularly apparent on low frequency items. This indicates that, for verbal information, the bilateral semantic system is more sensitive to damage in the left compared to the right ATL, which is in line with theories that attribute a more prominent role to the left ATL due to connections with pre-semantic verbal regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Li, Xiao-qing; Ren, Gui-qin
2012-01-01
An event-related brain potentials (ERP) experiment was carried out to investigate how and when accentuation influences temporally selective attention and subsequent semantic processing during on-line spoken language comprehension, and how the effect of accentuation on attention allocation and semantic processing changed with the degree of…
ERIC Educational Resources Information Center
Ruff, Ilana; Blumstein, Sheila E.; Myers, Emily B.; Hutchison, Emmette
2008-01-01
Previous studies examining explicit semantic processing have consistently shown activation of the left inferior frontal gyrus (IFG). In contrast, implicit semantic processing tasks have shown activation in posterior areas including the superior temporal gyrus (STG) and the middle temporal gyrus (MTG) with less consistent activation in the IFG.…
ERIC Educational Resources Information Center
Samson, Dana; Connolly, Catherine; Humphreys, Glyn W.
2007-01-01
The contribution of the left inferior prefrontal cortex in semantic processing has been widely investigated in the last decade. Converging evidence from functional imaging studies shows that this region is involved in the "executive" or "controlled" aspects of semantic processing. In this study, we report a single case study of a patient, PW, with…
Towards Semantic Modelling of Business Processes for Networked Enterprises
NASA Astrophysics Data System (ADS)
Furdík, Karol; Mach, Marián; Sabol, Tomáš
The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.
Revealing the dual streams of speech processing.
Fridriksson, Julius; Yourganov, Grigori; Bonilha, Leonardo; Basilakos, Alexandra; Den Ouden, Dirk-Bart; Rorden, Christopher
2016-12-27
Several dual route models of human speech processing have been proposed suggesting a large-scale anatomical division between cortical regions that support motor-phonological aspects vs. lexical-semantic aspects of speech processing. However, to date, there is no complete agreement on what areas subserve each route or the nature of interactions across these routes that enables human speech processing. Relying on an extensive behavioral and neuroimaging assessment of a large sample of stroke survivors, we used a data-driven approach using principal components analysis of lesion-symptom mapping to identify brain regions crucial for performance on clusters of behavioral tasks without a priori separation into task types. Distinct anatomical boundaries were revealed between a dorsal frontoparietal stream and a ventral temporal-frontal stream associated with separate components. Collapsing over the tasks primarily supported by these streams, we characterize the dorsal stream as a form-to-articulation pathway and the ventral stream as a form-to-meaning pathway. This characterization of the division in the data reflects both the overlap between tasks supported by the two streams as well as the observation that there is a bias for phonological production tasks supported by the dorsal stream and lexical-semantic comprehension tasks supported by the ventral stream. As such, our findings show a division between two processing routes that underlie human speech processing and provide an empirical foundation for studying potential computational differences that distinguish between the two routes.
Acoustic and semantic interference effects in words and pictures.
Dhawan, M; Pellegrino, J W
1977-05-01
Interference effects for pictures and words were investigated using a probe-recall task. Word stimuli showed acoustic interference effects for items at the end of the list and semantic interference effects for items at the beginning of the list, similar to results of Kintsch and Buschke (1969). Picture stimuli showed large semantic interference effects at all list positions with smaller acoustic interference effects. The results were related to latency data on picture-word processing and interpreted in terms of the differential order, probability, and/or speed of access to acoustic and semantic levels of processing. A levels of processing explanation of picture-word retention differences was related to dual coding theory. Both theoretical positions converge on an explanation of picture-word retention differences as a function of the relative capacity for semantic or associative processing.
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Imageability and semantic association in the representation and processing of event verbs.
Xu, Xu; Kang, Chunyan; Guo, Taomei
2016-05-01
This study examined the relative salience of imageability (the degree to which a word evokes mental imagery) versus semantic association (the density of semantic network in which a word is embedded) in the representation and processing of four types of event verbs: sensory, cognitive, speech, and motor verbs. ERP responses were recorded, while 34 university students performed on a lexical decision task. Analysis focused primarily on amplitude differences across verb conditions within the N400 time window where activities are considered representing meaning activation. Variation in N400 amplitude across four types of verbs was found significantly associated with the level of imageability, but not the level of semantic association. The findings suggest imageability as a more salient factor relative to semantic association in the processing of these verbs. The role of semantic association and the representation of speech verbs are also discussed.
Action and semantic tool knowledge - Effective connectivity in the underlying neural networks.
Kleineberg, Nina N; Dovern, Anna; Binder, Ellen; Grefkes, Christian; Eickhoff, Simon B; Fink, Gereon R; Weiss, Peter H
2018-04-26
Evidence from neuropsychological and imaging studies indicate that action and semantic knowledge about tools draw upon distinct neural substrates, but little is known about the underlying interregional effective connectivity. With fMRI and dynamic causal modeling (DCM) we investigated effective connectivity in the left-hemisphere (LH) while subjects performed (i) a function knowledge and (ii) a value knowledge task, both addressing semantic tool knowledge, and (iii) a manipulation (action) knowledge task. Overall, the results indicate crosstalk between action nodes and semantic nodes. Interestingly, effective connectivity was weakened between semantic nodes and action nodes during the manipulation task. Furthermore, pronounced modulations of effective connectivity within the fronto-parietal action system of the LH (comprising lateral occipito-temporal cortex, intraparietal sulcus, supramarginal gyrus, inferior frontal gyrus) were observed in a bidirectional manner during the processing of action knowledge. In contrast, the function and value knowledge tasks resulted in a significant strengthening of the effective connectivity between visual cortex and fusiform gyrus. Importantly, this modulation was present in both semantic tasks, indicating that processing different aspects of semantic knowledge about tools evokes similar effective connectivity patterns. Data revealed that interregional effective connectivity during the processing of tool knowledge occurred in a bidirectional manner with a weakening of connectivity between areas engaged in action and semantic knowledge about tools during the processing of action knowledge. Moreover, different semantic tool knowledge tasks elicited similar effective connectivity patterns. © 2018 Wiley Periodicals, Inc.
Chen, Jingjun; Luo, Rong; Liu, Huashan
2017-08-01
With the development of ICT, digital writing is becoming much more common in people's life. Differently from keyboarding alphabets directly to input English words, keyboarding Chinese character is always through typing phonetic alphabets and then identify the glyph provided by Pinyin input-method software while in this process which do not need users to produce orthography spelling, thus it is different from traditional written language production model based on handwriting process. Much of the research in this domain has found that using Pinyin input method is beneficial to Chinese characters recognition, but only a small part explored the effects of individual's Pinyin input experience on the Chinese characters production process. We ask whether using Pinyin input-method will strengthen the semantic-phonology linkage or semantic-orthography linkage in Chinese character mental lexicon. Through recording the RT and accuracy of participants completing semantic-syllable and semantic-glyph consistency judgments, the results found the accuracy of semantic-syllable consistency judgments in high Pinyin input experienced group was higher than that in low-experienced group, and RT was reversed. There were no significant differences on semantic-glyph consistency judgments between the two groups. We conclude that using Pinyin input method in Chinese digital writing can strengthen the semantic-phonology linkage while do not weakening the semantic-orthography linkage in mental lexicon at the same time, which means that Pinyin input method is beneficial to lexical processing involving Chinese cognition.
The influence of speech rate and accent on access and use of semantic information.
Sajin, Stanislav M; Connine, Cynthia M
2017-04-01
Circumstances in which the speech input is presented in sub-optimal conditions generally lead to processing costs affecting spoken word recognition. The current study indicates that some processing demands imposed by listening to difficult speech can be mitigated by feedback from semantic knowledge. A set of lexical decision experiments examined how foreign accented speech and word duration impact access to semantic knowledge in spoken word recognition. Results indicate that when listeners process accented speech, the reliance on semantic information increases. Speech rate was not observed to influence semantic access, except in the setting in which unusually slow accented speech was presented. These findings support interactive activation models of spoken word recognition in which attention is modulated based on speech demands.
The effects of gender and self-insight on early semantic processing.
Xu, Xu; Kang, Chunyan; Guo, Taomei
2014-01-01
This event-related potential (ERP) study explored individual differences associated with gender and level of self-insight in early semantic processing. Forty-eight Chinese native speakers completed a semantic judgment task with three different categories of words: abstract neutral words (e.g., logic, effect), concrete neutral words (e.g., teapot, table), and emotion words (e.g., despair, guilt). They then assessed their levels of self-insight. Results showed that women engaged in greater processing than did men. Gender differences also manifested in the relationship between level of self-insight and word processing. For women, level of self-insight was associated with level of semantic activation for emotion words and abstract neutral words, but not for concrete neutral words. For men, level of self-insight was related to processing speed, particularly in response to abstract and concrete neutral words. These findings provide electrophysiological evidence for the effects of gender and self-insight on semantic processing and highlight the need to take into consideration subject variables in related research.
Aberrant semantic and affective processing in people at risk for psychosis.
Kerns, J G; Berenbaum, H
2000-11-01
Semantic and affective processing were examined in people at risk for psychosis. The participants were 3 groups of college students: 41 people with elevated Perceptual Aberration and Magical Ideation (PerMag) scores, 18 people with elevated Social Anhedonia (SocAnh) scores, and 100 control participants. Participants completed a single-word, continuous presentation pronunciation task that included semantically related words, affectively valenced words, and semantically unrelated and affectively neutral words. PerMag participants exhibited increased semantic priming and increased sensitivity to affectively valenced primes. SocAnh participants had increased sensitivity to affectively valenced targets.
Corpus annotation for mining biomedical events from literature
Kim, Jin-Dong; Ohta, Tomoko; Tsujii, Jun'ichi
2008-01-01
Background Advanced Text Mining (TM) such as semantic enrichment of papers, event or relation extraction, and intelligent Question Answering have increasingly attracted attention in the bio-medical domain. For such attempts to succeed, text annotation from the biological point of view is indispensable. However, due to the complexity of the task, semantic annotation has never been tried on a large scale, apart from relatively simple term annotation. Results We have completed a new type of semantic annotation, event annotation, which is an addition to the existing annotations in the GENIA corpus. The corpus has already been annotated with POS (Parts of Speech), syntactic trees, terms, etc. The new annotation was made on half of the GENIA corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in which 36,114 events are identified. The major challenges during event annotation were (1) to design a scheme of annotation which meets specific requirements of text annotation, (2) to achieve biology-oriented annotation which reflect biologists' interpretation of text, and (3) to ensure the homogeneity of annotation quality across annotators. To meet these challenges, we introduced new concepts such as Single-facet Annotation and Semantic Typing, which have collectively contributed to successful completion of a large scale annotation. Conclusion The resulting event-annotated corpus is the largest and one of the best in quality among similar annotation efforts. We expect it to become a valuable resource for NLP (Natural Language Processing)-based TM in the bio-medical domain. PMID:18182099
Fine, Eric M; Delis, Dean C; Paul, Brianna M; Filoteo, J Vincent
2011-02-01
There has been an increasing interest within neuropsychology in comparing verbal fluency for different grammatical classes (e.g., verb generation vs. noun generation) in neurological populations, including Parkinson's disease (PD). However, to our knowledge, few studies have compared verbal fluency for common nouns and proper names in PD. Common nouns and proper names differ in terms of their semantic characteristics, as categories of common nouns are organized hierarchically based on semantics, while categories of proper nouns lack a well-defined semantic organization. In addition, there is accumulating evidence that the retrieval of these distinct grammatical classes are subserved by somewhat distinct neural systems. Given that verbal fluency deficits are among the first impairments to emerge in PD, and that such deficits are predictors of future cognitive decline, it is important to examine all aspects of verbal fluency in this population. For the current study, we compared the performance of a group of 32 nondemented PD patients with 32 healthy participants (HP) on verbal fluency tasks for common nouns (animals) and proper names (boys' first names). A significant interaction between verbal fluency task and diagnostic status emerged, as the PD group performed significantly worse on only the proper name fluency task. This finding may reflect the absence of well-defined semantic organization that structures the verbal search for first names, thus placing a greater onus on strategic or "executive" verbal retrieval processes.
Language processing and forms of immediate echolalia in autistic children.
Paccia, J M; Curcio, F
1982-03-01
Several aspects of echolalic speech produced by five autistic children were investigated. We found that the incidence of echolalia was influenced by the type of question addressed to the child and, to a lesser extent, by the child's comprehension of the specific relationships expressed in the question. Additionally, acoustic analysis showed that a substantial proportion of echoes involved a prosodic modification of the examiner's question. Further analyses indicated that some of these modified echoes represent more than just a primitive conversational strategy. Specifically, they seem to reflect a higher level of processing and serve a semantic function, that of affirming the examiner's question.
Levels of Processing and the Cue-Dependent Nature of Recollection
ERIC Educational Resources Information Center
Mulligan, Neil W.; Picklesimer, Milton
2012-01-01
Dual-process models differentiate between two bases of memory, recollection and familiarity. It is routinely claimed that deeper, semantic encoding enhances recollection relative to shallow, non-semantic encoding, and that recollection is largely a product of semantic, elaborative rehearsal. The present experiments show that this is not always the…
Orthographic and Semantic Processing in Young Readers
ERIC Educational Resources Information Center
Polse, Lara R.; Reilly, Judy S.
2015-01-01
This investigation examined orthographic and semantic processing during reading acquisition. Children in first to fourth grade were presented with a target word and two response alternatives, and were asked to identify the semantic match. Words were presented in four conditions: an exact match and unrelated foil (STONE-STONE-EARS), an exact match…
Disentangling Linguistic Modality Effects in Semantic Processing
ERIC Educational Resources Information Center
Moita, Mara; Nunes, Maria Vânia
2017-01-01
Sensory systems are essential for perceiving and conceptualizing our semantic knowledge about the world and the way we interact with it. Despite studies reporting neural changes to compensate for the absence of a given sensory modality, studies focusing on the assessment of semantic processing reveal poor performances by deaf individuals when…
Hemispheric Differences in the Recruitment of Semantic Processing Mechanisms
ERIC Educational Resources Information Center
Kandhadai, Padmapriya; Federmeier, Kara D.
2010-01-01
This study examined how the two cerebral hemispheres recruit semantic processing mechanisms by combining event-related potential measures and visual half-field methods in a word priming paradigm in which semantic strength and predictability were manipulated using lexically associated word pairs. Activation patterns on the late positive complex…
Semantics Does Not Need a Processing License from Syntax in Reading Chinese
ERIC Educational Resources Information Center
Zhang, Yaxu; Yu, Jing; Boland, Julie E.
2010-01-01
Two event-related brain potential experiments were conducted to investigate whether there is a functional primacy of syntactic structure building over semantic processes during Chinese sentence reading. In both experiments, we found that semantic interpretation proceeded despite the impossibility of a well-formed syntactic analysis. In Experiment…
Sentence Processing in High Proficient Kannada--English Bilinguals: A Reaction Time Study
ERIC Educational Resources Information Center
Ravi, Sunil Kumar; Chengappa, Shyamala K.
2015-01-01
The present study aimed at exploring the semantic and syntactic processing differences between native and second languages in 20 early high proficient Kannada--English bilingual adults through accuracy and reaction time (RT) measurements. Subjects participated in a semantic judgement task (using 50 semantically correct and 50 semantically…
Boukadi, Mariem; Potvin, Karel; Macoir, Joël; Jr Laforce, Robert; Poulin, Stéphane; Brambati, Simona M; Wilson, Maximiliano A
2016-06-01
The co-occurrence of semantic impairment and surface dyslexia in the semantic variant of primary progressive aphasia (svPPA) has often been taken as supporting evidence for the central role of semantics in visual word processing. According to connectionist models, semantic access is needed to accurately read irregular words. They also postulate that reliance on semantics is necessary to perform the lexical decision task under certain circumstances (for example, when the stimulus list comprises pseudohomophones). In the present study, we report two svPPA cases: M.F. who presented with surface dyslexia but performed accurately on the lexical decision task with pseudohomophones, and R.L. who showed no surface dyslexia but performed below the normal range on the lexical decision task with pseudohomophones. This double dissociation between reading and lexical decision with pseudohomophones is in line with the dual-route cascaded (DRC) model of reading. According to this model, impairments in visual word processing in svPPA are not necessarily associated with the semantic deficits characterizing this disease. Our findings also call into question the central role given to semantics in visual word processing within the connectionist account. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues
2013-08-01
Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Influence of Semantic Neighbours on Visual Word Recognition
ERIC Educational Resources Information Center
Yates, Mark
2012-01-01
Although it is assumed that semantics is a critical component of visual word recognition, there is still much that we do not understand. One recent way of studying semantic processing has been in terms of semantic neighbourhood (SN) density, and this research has shown that semantic neighbours facilitate lexical decisions. However, it is not clear…
Linguistic processing in idiopathic generalized epilepsy: an auditory event-related potential study.
Henkin, Yael; Kishon-Rabin, Liat; Pratt, Hillel; Kivity, Sara; Sadeh, Michelle; Gadoth, Natan
2003-09-01
Auditory processing of increasing acoustic and linguistic complexity was assessed in children with idiopathic generalized epilepsy (IGE) by using auditory event-related potentials (AERPs) as well as reaction time and performance accuracy. Twenty-four children with IGE [12 with generalized tonic-clonic seizures (GTCSs), and 12 with absence seizures (ASs)] with average intelligence and age-appropriate scholastic skills, uniformly medicated with valproic acid (VPA), and 20 healthy controls, performed oddball discrimination tasks that consisted of the following stimuli: (a) pure tones; (b) nonmeaningful monosyllables that differed by their phonetic features (i.e., phonetic stimuli); and (c) meaningful monosyllabic words from two semantic categories (i.e., semantic stimuli). AERPs elicited by nonlinguistic stimuli were similar in healthy and epilepsy children, whereas those elicited by linguistic stimuli (i.e., phonetic and semantic) differed significantly in latency, amplitude, and scalp distribution. In children with GTCSs, phonetic and semantic processing were characterized by slower processing time, manifested by prolonged N2 and P3 latencies during phonetic processing, and prolongation of all AERPs latencies during semantic processing. In children with ASs, phonetic and semantic processing were characterized by increased allocation of attentional resources, manifested by enhanced N2 amplitudes. Semantic processing also was characterized by prolonged P3 latency. In both patient groups, processing of linguistic stimuli resulted in different patterns of brain-activity lateralization compared with that in healthy controls. Reaction time and performance accuracy did not differ among the study groups. AERPs exposed linguistic-processing deficits related to seizure type in children with IGE. Neurologic follow-up should therefore include evaluation of linguistic functions, and remedial intervention should be provided, accordingly.
Britt, Allison E.; Ferrara, Casey; Mirman, Daniel
2016-01-01
Producing a word requires selecting among a set of similar alternatives. When many semantically related items become activated, the difficulty of the selection process is increased. Experiment 1 tested naming of items with either multiple synonymous labels (“Alternate Names,” e.g., gift/present) or closely semantically related but non-equivalent responses (“Near Semantic Neighbors,” e.g., jam/jelly). Picture naming was fastest and most accurate for pictures with only one label (“High Name Agreement”), slower and less accurate in the Alternate Names condition, and slowest and least accurate in the Near Semantic Neighbors condition. These results suggest that selection mechanisms in picture naming operate at two distinct levels of processing: selecting between similar but non-equivalent names requires two selection processes (semantic and lexical), whereas selecting among equivalent names only requires one selection at the lexical level. Experiment 2 examined how these selection mechanisms are affected by normal aging and found that older adults had significantly more difficulty in the Near Semantic Neighbors condition, but not in the Alternate Names condition. This suggests that aging affects semantic processing and selection more strongly than it affects lexical selection. Experiment 3 examined the role of the left inferior frontal gyrus (LIFG) in these selection processes by testing individuals with aphasia secondary to stroke lesions that either affected the LIFG or spared it. Surprisingly, there was no interaction between condition and lesion group: the presence of LIFG damage was not associated with substantively worse naming performance for pictures with multiple acceptable labels. These results are not consistent with a simple view of LIFG as the locus of lexical selection and suggest a more nuanced view of the neural basis of lexical and semantic selection. PMID:27458393
Chen, Qingrong; Zhang, Jingjing; Xu, Xiaodong; Scheepers, Christoph; Yang, Yiming; Tanenhaus, Michael K
2016-09-01
In an ERP study, classic Chinese poems with a well-known rhyme scheme were used to generate an expectation of a rhyme in the absence of an expectation for a specific character. Critical characters were either consistent or inconsistent with the expected rhyme scheme and semantically congruent or incongruent with the content of the poem. These stimuli allowed us to examine whether a top-down rhyme scheme expectation would affect relatively early components of the ERP associated with character-to-sound mapping (P200) and lexically-mediated semantic processing (N400). The ERP data revealed that rhyme scheme congruence, but not semantic congruence modulated the P200: rhyme-incongruent characters elicited a P200 effect across the head demonstrating that top-down expectations influence early phonological coding of the character before lexical-semantic processing. Rhyme scheme incongruence also produced a right-lateralized N400-like effect. Moreover, compared to semantically congruous poems, semantically incongruous poems produced a larger N400 response only when the character was consistent with the expected rhyme scheme. The results suggest that top-down prosodic expectations can modulate early phonological processing in visual word recognition, indicating that prosodic expectations might play an important role in silent reading. They also suggest that semantic processing is influenced by general knowledge of text genre. Copyright © 2016 Elsevier B.V. All rights reserved.
Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A
2016-02-03
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana
2016-01-01
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633
Tracking hand movements captures the response dynamics of the evaluative priming effect.
Kawakami, Naoaki; Miura, Emi
2018-06-08
We tested the response dynamics of the evaluative priming effect (i.e. facilitation of target responses following evaluatively congruent compared with evaluatively incongruent primes) using a mouse tracking procedure that records hand movements during the execution of categorisation tasks. In Experiment 1, when participants performed the evaluative categorisation task but not the non-evaluative semantic categorisation task, their mouse trajectories for evaluatively incongruent trials curved more toward the opposite response than those for evaluatively congruent trials, indicating the emergence of evaluative priming effects based on response competition. In Experiment 2, implementing a task-switching procedure in which evaluative and non-evaluative categorisation tasks were intermixed, we obtained reliable evaluative priming effects in the non-evaluative semantic categorisation task as well as in the evaluative categorisation task when participants assigned attention to the evaluative stimulus dimension. Analyses of hand movements revealed that the evaluative priming effects in the evaluative categorisation task were reflected in the mouse trajectories, while evaluative priming effects in the non-evaluative categorisation tasks were reflected in initiation times (i.e. the time elapsed between target onset and first mouse movement). Based on these findings, we discuss the methodological benefits of the mouse tracking procedure and the underlying processes of evaluative priming effects.
Effect of semantic coherence on episodic memory processes in schizophrenia.
Battal Merlet, Lâle; Morel, Shasha; Blanchet, Alain; Lockman, Hazlin; Kostova, Milena
2014-12-30
Schizophrenia is associated with severe episodic retrieval impairment. The aim of this study was to investigate the possibility that schizophrenia patients could improve their familiarity and/or recollection processes by manipulating the semantic coherence of to-be-learned stimuli and using deep encoding. Twelve schizophrenia patients and 12 healthy controls of comparable age, gender, and educational level undertook an associative recognition memory task. The stimuli consisted of pairs of words that were either related or unrelated to a given semantic category. The process dissociation procedure was used to calculate the estimates of familiarity and recollection processes. Both groups showed enhanced memory performances for semantically related words. However, in healthy controls, semantic relatedness led to enhanced recollection, while in schizophrenia patients, it induced enhanced familiarity. The familiarity estimates for related words were comparable in both groups, indicating that familiarity could be used as a compensatory mechanism in schizophrenia patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Intuitive (in)coherence judgments are guided by processing fluency, mood and affect.
Sweklej, Joanna; Balas, Robert; Pochwatko, Grzegorz; Godlewska, Małgorzata
2014-01-01
Recently proposed accounts of intuitive judgments of semantic coherence assume that processing fluency results in a positive affective response leading to successful assessment of semantic coherence. The present paper investigates whether processing fluency may indicate semantic incoherence as well. In two studies, we employ a new paradigm in which participants have to detect an incoherent item among semantically coherent words. In Study 1, we show participants accurately indicating an incoherent item despite not being able to provide an accurate solution to coherent words. Further, this effect is modified by affective valence of solution words that are not retrieved from memory. Study 2 replicates those results and extend them by showing that mood moderates incoherence judgments independently of affective valence of solutions. The results support processing fluency account of intuitive semantic coherence judgments and show that it is not fluency per se but fluency variations that drive judgments.
Vowelling and semantic priming effects in Arabic.
Mountaj, Nadia; El Yagoubi, Radouane; Himmi, Majid; Lakhdar Ghazal, Faouzi; Besson, Mireille; Boudelaa, Sami
2015-01-01
In the present experiment we used a semantic judgment task with Arabic words to determine whether semantic priming effects are found in the Arabic language. Moreover, we took advantage of the specificity of the Arabic orthographic system, which is characterized by a shallow (i.e., vowelled words) and a deep orthography (i.e., unvowelled words), to examine the relationship between orthographic and semantic processing. Results showed faster Reaction Times (RTs) for semantically related than unrelated words with no difference between vowelled and unvowelled words. By contrast, Event Related Potentials (ERPs) revealed larger N1 and N2 components to vowelled words than unvowelled words suggesting that visual-orthographic complexity taxes the early word processing stages. Moreover, semantically unrelated Arabic words elicited larger N400 components than related words thereby demonstrating N400 effects in Arabic. Finally, the Arabic N400 effect was not influenced by orthographic depth. The implications of these results for understanding the processing of orthographic, semantic, and morphological structures in Modern Standard Arabic are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Explaining semantic short-term memory deficits: Evidence for the critical role of semantic control
Hoffman, Paul; Jefferies, Elizabeth; Lambon Ralph, Matthew A.
2011-01-01
Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought and can occur as a result of mild disruption to semantic control processes, i.e., mechanisms that bias semantic processing towards task-relevant aspects of knowledge and away from irrelevant information. We tested three semantic STM patients with tasks that tapped four aspects of semantic control: (i) resolving ambiguity between word meanings, (ii) sensitivity to cues, (iii) ignoring irrelevant information and (iv) detecting weak semantic associations. All were impaired in conditions requiring more semantic control, irrespective of the STM demands of the task, suggesting a mild, but task-general, deficit in regulating semantic knowledge. This mild deficit has a disproportionate effect on STM tasks because they have high intrinsic control demands: in STM tasks, control is required to keep information active when it is no longer available in the environment and to manage competition between items held in memory simultaneously. By re-interpreting the core deficit in semantic STM patients in this way, we are able to explain their apparently selective impairment without the need for a specialised STM store. Instead, we argue that semantic STM patients occupy the mildest end of spectrum of semantic control disorders. PMID:21195105
Li, Xiaoqing; Zhao, Haiyan; Lu, Yong
2014-01-01
Sentence comprehension involves timely computing different types of relations between its verbs and noun arguments, such as morphosyntactic, semantic, and thematic relations. Here, we used EEG technique to investigate the potential differences in thematic role computing and lexical-semantic relatedness processing during on-line sentence comprehension, and the interaction between these two types of processes. Mandarin Chinese sentences were used as materials. The basic structure of those sentences is “Noun+Verb+‘le’+a two-character word”, with the Noun being the initial argument. The verb disambiguates the initial argument as an agent or a patient. Meanwhile, the initial argument and the verb are highly or lowly semantically related. The ERPs at the verbs revealed that: relative to the agent condition, the patient condition evoked a larger N400 only when the argument and verb were lowly semantically related; however, relative to the high-relatedness condition, the low-relatedness condition elicited a larger N400 regardless of the thematic relation; although both thematic role variation and semantic relatedness variation elicited N400 effects, the N400 effect elicited by the former was broadly distributed and reached maximum over the frontal electrodes, and the N400 effect elicited by the latter had a posterior distribution. In addition, the brain oscillations results showed that, although thematic role variation (patient vs. agent) induced power decreases around the beta frequency band (15–30 Hz), semantic relatedness variation (low-relatedness vs. high-relatedness) induced power increases in the theta frequency band (4–7 Hz). These results suggested that, in the sentence context, thematic role computing is modulated by the semantic relatedness between the verb and its argument; semantic relatedness processing, however, is in some degree independent from the thematic relations. Moreover, our results indicated that, during on-line sentence comprehension, thematic role computing and semantic relatedness processing are mediated by distinct neural systems. PMID:24755643
Neural correlates of implicit and explicit combinatorial semantic processing
Graves, William W.; Binder, Jeffrey R.; Desai, Rutvik H.; Conant, Lisa L.; Seidenberg, Mark S.
2010-01-01
Language consists of sequences of words, but comprehending phrases involves more than concatenating meanings: A boat house is a shelter for boats, whereas a summer house is a house used during summer, and a ghost house is typically uninhabited. Little is known about the brain bases of combinatorial semantic processes. We performed two fMRI experiments using familiar, highly meaningful phrases (LAKE HOUSE) and unfamiliar phrases with minimal meaning created by reversing the word order of the familiar items (HOUSE LAKE). The first experiment used a 1-back matching task to assess implicit semantic processing, and the second used a classification task to engage explicit semantic processing. These conditions required processing of the same words, but with more effective combinatorial processing in the meaningful condition. The contrast of meaningful versus reversed phrases revealed activation primarily during the classification task, to a greater extent in the right hemisphere, including right angular gyrus, dorsomedial prefrontal cortex, and bilateral posterior cingulate/precuneus, areas previously implicated in semantic processing. Positive correlations of fMRI signal with lexical (word-level) frequency occurred exclusively with the 1-back task and to a greater spatial extent on the left, including left posterior middle temporal gyrus and bilateral parahippocampus. These results reveal strong effects of task demands on engagement of lexical versus combinatorial processing and suggest a hemispheric dissociation between these levels of semantic representation. PMID:20600969
Räling, Romy; Holzgrefe-Lang, Julia; Schröder, Astrid; Wartenburger, Isabell
2015-08-01
Various behavioural studies show that semantic typicality (TYP) and age of acquisition (AOA) of a specific word influence processing time and accuracy during the performance of lexical-semantic tasks. This study examines the influence of TYP and AOA on semantic processing at behavioural (response times and accuracy data) and electrophysiological levels using an auditory category-member-verification task. Reaction time data reveal independent TYP and AOA effects, while in the accuracy data and the event-related potentials predominantly effects of TYP can be found. The present study thus confirms previous findings and extends evidence found in the visual modality to the auditory modality. A modality-independent influence on semantic word processing is manifested. However, with regard to the influence of AOA, the diverging results raise questions on the origin of AOA effects as well as on the interpretation of offline and online data. Hence, results will be discussed against the background of recent theories on N400 correlates in semantic processing. In addition, an argument in favour of a complementary use of research techniques will be made. Copyright © 2015 Elsevier Ltd. All rights reserved.
Self-imagination can enhance memory in individuals with schizophrenia.
Raffard, Stéphane; Bortolon, Catherine; Burca, Mariana; Novara, Caroline; Gely-Nargeot, Marie-Christine; Capdevielle, Delphine; Van der Linden, Martial
2016-01-01
Previous research has demonstrated that self-referential strategies can be applied to improve memory in various memory- impaired populations. However, little is known regarding the relative effectiveness of self-referential strategies in schizophrenia patients. The main aim of this study was to assess the effectiveness of a new self-referential strategy known as self- imagination (SI) on a free recall task. Twenty schizophrenia patients and 20 healthy controls intentionally encoded words under five instructions: superficial processing, semantic processing, semantic self-referential processing, episodic self-referential processing and semantic self- imagining. Other measures included depression, psychotic symptoms and cognitive measures. We found a SI effect in memory as self- imagining resulted in better performance in memory retrieval than semantic and superficial encoding in schizophrenia patients. The memory boost for self-referenced information in comparison to semantic processing was not found for other self-referential strategies. In addition no relationship between clinical variables and free recall performances was found. In controls, the SI condition did not result in better performance. The three self-referential strategies yielded better free recall than both superficial and semantic encoding. This study provides evidence of the clinical utility of self-imagining as a mnemonic strategy in schizophrenia patients.
Neural correlates of successful semantic processing during propofol sedation.
Adapa, Ram M; Davis, Matthew H; Stamatakis, Emmanuel A; Absalom, Anthony R; Menon, David K
2014-07-01
Sedation has a graded effect on brain responses to auditory stimuli: perceptual processing persists at sedation levels that attenuate more complex processing. We used fMRI in healthy volunteers sedated with propofol to assess changes in neural responses to spoken stimuli. Volunteers were scanned awake, sedated, and during recovery, while making perceptual or semantic decisions about nonspeech sounds or spoken words respectively. Sedation caused increased error rates and response times, and differentially affected responses to words in the left inferior frontal gyrus (LIFG) and the left inferior temporal gyrus (LITG). Activity in LIFG regions putatively associated with semantic processing, was significantly reduced by sedation despite sedated volunteers continuing to make accurate semantic decisions. Instead, LITG activity was preserved for words greater than nonspeech sounds and may therefore be associated with persistent semantic processing during the deepest levels of sedation. These results suggest functionally distinct contributions of frontal and temporal regions to semantic decision making. These results have implications for functional imaging studies of language, for understanding mechanisms of impaired speech comprehension in postoperative patients with residual levels of anesthetic, and may contribute to the development of frameworks against which EEG based monitors could be calibrated to detect awareness under anesthesia. Copyright © 2013 Wiley Periodicals, Inc.
Dhillon, Rummit K.; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D.; Weber, Peter B.; Kuperman, Rachel A.; Auguste, Kurtis I.; Brunner, Peter; Lin, Jack J.; Parvizi, Josef; Crone, Nathan E.; Dronkers, Nina F.; Knight, Robert T.
2017-01-01
Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70–150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain. PMID:28533406
Attention and Semantic Processing during Speech: An fMRI Study
ERIC Educational Resources Information Center
Rama, Pia; Relander-Syrjanen, Kristiina; Carlson, Synnove; Salonen, Oili; Kujala, Teija
2012-01-01
This fMRI study was conducted to investigate whether language semantics is processed even when attention is not explicitly directed to word meanings. In the "unattended" condition, the subjects performed a visual detection task while hearing semantically related and unrelated word pairs. In the "phoneme" condition, the subjects made phoneme…
Semantic Processing in the Production of Numerals across Notations
ERIC Educational Resources Information Center
Herrera, Amparo; Macizo, Pedro
2012-01-01
In the present work, we conducted a series of experiments to explore the processing stages required to name numerals presented in different notations. To this end, we used the semantic blocking paradigm previously used in psycholinguist studies. We found a facilitative effect of the semantic blocked context relative to the mixed context for Arabic…
Is Syntactic-Category Processing Obligatory in Visual Word Recognition? Evidence from Chinese
ERIC Educational Resources Information Center
Wong, Andus Wing-Kuen; Chen, Hsuan-Chih
2012-01-01
Three experiments were conducted to investigate how syntactic-category and semantic information is processed in visual word recognition. The stimuli were two-character Chinese words in which semantic and syntactic-category ambiguities were factorially manipulated. A lexical decision task was employed in Experiment 1, whereas a semantic relatedness…
Semantic priming from crowded words.
Yeh, Su-Ling; He, Sheng; Cavanagh, Patrick
2012-06-01
Vision in a cluttered scene is extremely inefficient. This damaging effect of clutter, known as crowding, affects many aspects of visual processing (e.g., reading speed). We examined observers' processing of crowded targets in a lexical decision task, using single-character Chinese words that are compact but carry semantic meaning. Despite being unrecognizable and indistinguishable from matched nonwords, crowded prime words still generated robust semantic-priming effects on lexical decisions for test words presented in isolation. Indeed, the semantic-priming effect of crowded primes was similar to that of uncrowded primes. These findings show that the meanings of words survive crowding even when the identities of the words do not, suggesting that crowding does not prevent semantic activation, a process that may have evolved in the context of a cluttered visual environment.
Cognitive search model and a new query paradigm
NASA Astrophysics Data System (ADS)
Xu, Zhonghui
2001-06-01
This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.
Federmeier, Kara D.
2017-01-01
There is growing recognition that some important forms of long-term memory are difficult to classify into one of the well-studied memory subtypes. One example is personal semantics. Like the episodes that are stored as part of one’s autobiography, personal semantics is linked to an individual, yet, like general semantic memory, it is detached from a specific encoding context. Access to general semantics elicits an electrophysiological response known as the N400, which has been characterized across three decades of research; surprisingly, this response has not been fully examined in the context of personal semantics. In this study, we assessed responses to congruent and incongruent statements about people’s own, personal preferences. We found that access to personal preferences elicited N400 responses, with congruency effects that were similar in latency and distribution to those for general semantic statements elicited from the same participants. These results suggest that the processing of personal and general semantics share important functional and neurobiological features. PMID:26825011
Colangelo, Annette; Buchanan, Lori
2006-12-01
The failure of inhibition hypothesis posits a theoretical distinction between implicit and explicit access in deep dyslexia. Specifically, the effects of failure of inhibition are assumed only in conditions that have an explicit selection requirement in the context of production (i.e., aloud reading). In contrast, the failure of inhibition hypothesis proposes that implicit processing and explicit access to semantic information without production demands are intact in deep dyslexia. Evidence for intact implicit and explicit access requires that performance in deep dyslexia parallels that observed in neurologically intact participants on tasks based on implicit and explicit processes. In other words, deep dyslexics should produce normal effects in conditions with implicit task demands (i.e., lexical decision) and on tasks based on explicit access without production (i.e., forced choice semantic decisions) because failure of inhibition does not impact the availability of lexical information, only explicit retrieval in the context of production. This research examined the distinction between implicit and explicit processes in deep dyslexia using semantic blocking in lexical decision and forced choice semantic decisions as a test for the failure of inhibition hypothesis. The results of the semantic blocking paradigm support the distinction between implicit and explicit processing and provide evidence for failure of inhibition as an explanation for semantic errors in deep dyslexia.
The effect of semantic context on prospective memory performance.
Thomas, Brandon J; McBride, Dawn M
2016-01-01
The current study provides evidence for spontaneous processing in prospective memory (PM) or memory for intentions. Discrepancy-plus-search is the spontaneous processing of PM cues via disruptions in processing fluency of ongoing task items. We tested whether this mechanism can be demonstrated in an ongoing rating task with a dominant semantic context. Ongoing task items were manipulated such that the PM cues were members of a semantic category (i.e., Body Parts) that was congruent or discrepant with the dominant semantic category in the ongoing task. Results showed that participants correctly responded to more PM cues when there was a category discrepancy between the PM cues and ongoing task items. Moreover, participants' identification of PM cues was accompanied by faster ongoing task reaction times when PM cues were discrepant with ongoing task items than when they were congruent. These results suggest that a discrepancy-plus-search process supports PM retrieval in certain contexts, and that some discrepancy-plus-search mechanisms may result from the violation of processing expectations within a semantic context.
Emmorey, Karen; Weisberg, Jill; McCullough, Stephen; Petrich, Jennifer A F
2013-08-01
We examined word-level reading circuits in skilled deaf readers whose primary language is American Sign Language, and hearing readers matched for reading ability (college level). During fMRI scanning, participants performed a semantic decision (concrete concept?), a phonological decision (two syllables?), and a false-font control task (string underlined?). The groups performed equally well on the semantic task, but hearing readers performed better on the phonological task. Semantic processing engaged similar left frontotemporal language circuits in deaf and hearing readers. However, phonological processing elicited increased neural activity in deaf, relative to hearing readers, in the left precentral gyrus, suggesting greater reliance on articulatory phonological codes, and in bilateral parietal cortex, suggesting increased phonological processing effort. Deaf readers also showed stronger anterior-posterior functional segregation between semantic and phonological processes in left inferior prefrontal cortex. Finally, weaker phonological decoding ability did not alter activation in the visual word form area for deaf readers. Copyright © 2013 Elsevier Inc. All rights reserved.
Hemispheric differences in the recruitment of semantic processing mechanisms
Kandhadai, Padmapriya; Federmeier, Kara D.
2010-01-01
This study examined how the two cerebral hemispheres recruit semantic processing mechanisms by combining event-related potential measures and visual half-field methods in a word priming paradigm in which semantic strength and predictability were manipulated using lexically associated word pairs. Activation patterns on the Late Positive Complex (LPC), linked to controlled aspects of processing, showed that previously documented left hemisphere (LH) processing benefits for word pairs with a weak forward but strong backward association stem from the ability to appreciate meaning relations in an order-independent fashion and/or strategically reorder them. Whereas there is a LH benefit for such strategic processing during comprehension in passive tasks, the present study further showed that the RH is also able to make use of these mechanisms when explicit semantic judgments are required. In both hemispheres, N400 responses, linked to initial semantic activation, were largely graded by association strength, with more amplitude reduction for forward associates and strong, symmetrically associated pairs compared to backward associates and matched weak, symmetrically associated pairs. However, responses to moderately associated pairs were more facilitated after initial presentation to the LH than to the RH. This pattern converges with sentence processing findings that point to LH advantages for using context information to predict features of likely upcoming words. Together, the results suggest that an important basis for hemispheric asymmetries in language comprehension arises from when and how each uses top-down semantic mechanisms to shape initial semantic activation over time. PMID:20638397
Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray
2011-06-01
Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.
The Natural History of Human Language: Bridging the Gaps without Magic
NASA Astrophysics Data System (ADS)
Merker, Bjorn; Okanoya, Kazuo
Human languages are quintessentially historical phenomena. Every known aspect of linguistic form and content is subject to change in historical time (Lehmann, 1995; Bybee, 2004). Many facts of language, syntactic no less than semantic, find their explanation in the historical processes that generated them. If adpositions were once verbs, then the fact that they tend to occur on the same side of their arguments as do verbs ("cross-category harmony": Hawkins, 1983) is a matter of historical contingency rather than a reflection of inherent structural constraints on human language (Delancey, 1993).
Wang, Fang; Ouyang, Guang; Zhou, Changsong; Wang, Suiping
2015-01-01
A number of studies have explored the time course of Chinese semantic and syntactic processing. However, whether syntactic processing occurs earlier than semantics during Chinese sentence reading is still under debate. To further explore this issue, an event-related potentials (ERPs) experiment was conducted on 21 native Chinese speakers who read individually-presented Chinese simple sentences (NP1+VP+NP2) word-by-word for comprehension and made semantic plausibility judgments. The transitivity of the verbs was manipulated to form three types of stimuli: congruent sentences (CON), sentences with a semantically violated NP2 following a transitive verb (semantic violation, SEM), and sentences with a semantically violated NP2 following an intransitive verb (combined semantic and syntactic violation, SEM+SYN). The ERPs evoked from the target NP2 were analyzed by using the Residue Iteration Decomposition (RIDE) method to reconstruct the ERP waveform blurred by trial-to-trial variability, as well as by using the conventional ERP method based on stimulus-locked averaging. The conventional ERP analysis showed that, compared with the critical words in CON, those in SEM and SEM+SYN elicited an N400-P600 biphasic pattern. The N400 effects in both violation conditions were of similar size and distribution, but the P600 in SEM+SYN was bigger than that in SEM. Compared with the conventional ERP analysis, RIDE analysis revealed a larger N400 effect and an earlier P600 effect (in the time window of 500-800 ms instead of 570-810ms). Overall, the combination of conventional ERP analysis and the RIDE method for compensating for trial-to-trial variability confirmed the non-significant difference between SEM and SEM+SYN in the earlier N400 time window. Converging with previous findings on other Chinese structures, the current study provides further precise evidence that syntactic processing in Chinese does not occur earlier than semantic processing.
Lee, Yujun; Liu, Xin; Wang, Xiaoming
2015-09-30
The present study examined the relationship between prosody and semantic processing in the written form of modern Chinese by analysing behavioural data and event-related potential data. By manipulating the number of noun syllables in verb-objection, we compare the dynamic neural mechanisms of the structure bisyllabic verb (V2)+monosyllabic noun (N1) (i.e. V2+N1) with V2+N1 (N2, bisyllabic noun). In Chinese, the rhythmic pattern V2+N1 is considered to be a metrical incongruity, whereas V2+N2 is considered to be a metrical congruity. For example, the verb yunshu (to transport) can be followed by liangshi (cereals). However, if yunshu is followed by liang (cereals), yunshu liang is usually considered to be metrically incongruous. This paper shows that (i) V2+N1 elicited more negative amplitudes than V2+N2 in the 90-170 ms and 450-500 ms windows, which indicates that metrical incongruities affect semantic processing in Chinese, and (ii) the acceptance rate for V2+N1 is significantly lower than that of V2+N2, which implies that metrical incongruities disrupt semantic processing in modern Chinese. These results are in agreement with previous studies. This is the first study to find that metrical incongruities disrupt semantic processing in Chinese. This study provides convergent evidence that metrical congruities facilitate semantic processing, whereas metrical incongruities disrupt semantic processing. Video abstract available (Supplemental digital content 1, http://links.lww.com/WNR/A340).
A DNA-based semantic fusion model for remote sensing data.
Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H
2013-01-01
Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.
A DNA-Based Semantic Fusion Model for Remote Sensing Data
Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H.
2013-01-01
Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology. PMID:24116207
Blanchet, Alain; Lockman, Hazlin
2018-01-01
The objective of this electrophysiological study was to investigate the processing of semantic coherence during encoding in relation to episodic memory processes promoted at test, in schizophrenia patients, by using the N400 paradigm. Eighteen schizophrenia patients and 15 healthy participants undertook a recognition memory task. The stimuli consisted of pairs of words either semantically related or unrelated to a given category name (context). During encoding, both groups exhibited an N400 external semantic coherence effect. Healthy controls also showed an N400 internal semantic coherence effect, but this effect was not present in patients. At test, related stimuli were accompanied by an FN400 old/new effect in both groups and by a parietal old/new effect in the control group alone. In the patient group, external semantic coherence effect was associated with FN400, while, in the control group, it was correlated to the parietal old/new effect. Our results indicate that schizophrenia patients can process the contextual information at encoding to enhance familiarity process for related stimuli at test. Therefore, cognitive rehabilitation therapies targeting the implementation of semantic encoding strategies can mobilize familiarity which in turn can overcome the recollection deficit, promoting successful episodic memory performance in schizophrenia patients. PMID:29535872
Olson, Ingrid R.
2012-01-01
Famous people and artifacts are referred to as “unique entities” (UEs) due to the unique nature of the knowledge we have about them. Past imaging and lesion experiments have indicated that the anterior temporal lobes (ATLs) as having a special role in the processing of UEs. It has remained unclear which attributes of UEs were responsible for the observed effects in imaging experiments. In this study, we investigated what factors of UEs influence brain activity. In a training paradigm, we systematically varied the uniqueness of semantic associations, the presence/absence of a proper name, and the number of semantic associations to determine factors modulating activity in regions subserving the processing of UEs. We found that a conjunction of unique semantic information and proper names modulated activity within a section of the left ATL. Overall, the processing of UEs involved a wider left-hemispheric cortical network. Within these regions, brain activity was significantly affected by the unique semantic attributes especially in the presence of a proper name, but we could not find evidence for an effect of the number of semantic associations. Findings are discussed in regard to current models of ATL function, the neurophysiology of semantics, and social cognitive processing. PMID:22021913
Examining Lateralized Semantic Access Using Pictures
ERIC Educational Resources Information Center
Lovseth, Kyle; Atchley, Ruth Ann
2010-01-01
A divided visual field (DVF) experiment examined the semantic processing strategies employed by the cerebral hemispheres to determine if strategies observed with written word stimuli generalize to other media for communicating semantic information. We employed picture stimuli and vary the degree of semantic relatedness between the picture pairs.…
2011-01-01
Background Although many biological databases are applying semantic web technologies, meaningful biological hypothesis testing cannot be easily achieved. Database-driven high throughput genomic hypothesis testing requires both of the capabilities of obtaining semantically relevant experimental data and of performing relevant statistical testing for the retrieved data. Tissue Microarray (TMA) data are semantically rich and contains many biologically important hypotheses waiting for high throughput conclusions. Methods An application-specific ontology was developed for managing TMA and DNA microarray databases by semantic web technologies. Data were represented as Resource Description Framework (RDF) according to the framework of the ontology. Applications for hypothesis testing (Xperanto-RDF) for TMA data were designed and implemented by (1) formulating the syntactic and semantic structures of the hypotheses derived from TMA experiments, (2) formulating SPARQLs to reflect the semantic structures of the hypotheses, and (3) performing statistical test with the result sets returned by the SPARQLs. Results When a user designs a hypothesis in Xperanto-RDF and submits it, the hypothesis can be tested against TMA experimental data stored in Xperanto-RDF. When we evaluated four previously validated hypotheses as an illustration, all the hypotheses were supported by Xperanto-RDF. Conclusions We demonstrated the utility of high throughput biological hypothesis testing. We believe that preliminary investigation before performing highly controlled experiment can be benefited. PMID:21342584
Is semantic verbal fluency impairment explained by executive function deficits in schizophrenia?
Berberian, Arthur A; Moraes, Giovanna V; Gadelha, Ary; Brietzke, Elisa; Fonseca, Ana O; Scarpato, Bruno S; Vicente, Marcella O; Seabra, Alessandra G; Bressan, Rodrigo A; Lacerda, Acioly L
2016-04-19
To investigate if verbal fluency impairment in schizophrenia reflects executive function deficits or results from degraded semantic store or inefficient search and retrieval strategies. Two groups were compared: 141 individuals with schizophrenia and 119 healthy age and education-matched controls. Both groups performed semantic and phonetic verbal fluency tasks. Performance was evaluated using three scores, based on 1) number of words generated; 2) number of clustered/related words; and 3) switching score. A fourth performance score based on the number of clusters was also measured. SZ individuals produced fewer words than controls. After controlling for the total number of words produced, a difference was observed between the groups in the number of cluster-related words generated in the semantic task. In both groups, the number of words generated in the semantic task was higher than that generated in the phonemic task, although a significant group vs. fluency type interaction showed that subjects with schizophrenia had disproportionate semantic fluency impairment. Working memory was positively associated with increased production of words within clusters and inversely correlated with switching. Semantic fluency impairment may be attributed to an inability (resulting from reduced cognitive control) to distinguish target signal from competing noise and to maintain cues for production of memory probes.
Yeari, Menahem; van den Broek, Paul
2016-09-01
It is a well-accepted view that the prior semantic (general) knowledge that readers possess plays a central role in reading comprehension. Nevertheless, computational models of reading comprehension have not integrated the simulation of semantic knowledge and online comprehension processes under a unified mathematical algorithm. The present article introduces a computational model that integrates the landscape model of comprehension processes with latent semantic analysis representation of semantic knowledge. In three sets of simulations of previous behavioral findings, the integrated model successfully simulated the activation and attenuation of predictive and bridging inferences during reading, as well as centrality estimations and recall of textual information after reading. Analyses of the computational results revealed new theoretical insights regarding the underlying mechanisms of the various comprehension phenomena.
Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili
2012-12-01
Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., Chiarello, 2003; Faust, 2012). The present study examined the patterns of hemispheric involvement in fine/coarse semantic processing in native and non-native languages using a split visual field priming paradigm. Thirty native Hebrew speaking students made lexical decision judgments of Hebrew and English target words preceded by strongly, weakly, or unrelated primes. Results indicated that whereas for Hebrew pairs, priming effect for the weakly-related word pairs was obtained only for RH presented target words, for English pairs, no priming effect for the weakly-related pairs emerged for either LH or RH presented targets, suggesting that coarse semantic coding is much weaker for a non-native than native language. Copyright © 2012 Elsevier Inc. All rights reserved.
Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.
Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H
2012-11-27
This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.
The Influence of Task-Irrelevant Music on Language Processing: Syntactic and Semantic Structures
Hoch, Lisianne; Poulin-Charronnat, Benedicte; Tillmann, Barbara
2011-01-01
Recent research has suggested that music and language processing share neural resources, leading to new hypotheses about interference in the simultaneous processing of these two structures. The present study investigated the effect of a musical chord's tonal function on syntactic processing (Experiment 1) and semantic processing (Experiment 2) using a cross-modal paradigm and controlling for acoustic differences. Participants read sentences and performed a lexical decision task on the last word, which was, syntactically or semantically, expected or unexpected. The simultaneously presented (task-irrelevant) musical sequences ended on either an expected tonic or a less-expected subdominant chord. Experiment 1 revealed interactive effects between music-syntactic and linguistic-syntactic processing. Experiment 2 showed only main effects of both music-syntactic and linguistic-semantic expectations. An additional analysis over the two experiments revealed that linguistic violations interacted with musical violations, though not differently as a function of the type of linguistic violations. The present findings were discussed in light of currently available data on the processing of music as well as of syntax and semantics in language, leading to the hypothesis that resources might be shared for structural integration processes and sequencing. PMID:21713122
Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo
2008-01-31
We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.
Bölte, Jens; Böhl, Andrea; Dobel, Christian; Zwitserlood, Pienie
2015-01-01
In three experiments, participants named target pictures by means of German compound words (e.g., Gartenstuhl–garden chair), each accompanied by two different distractor pictures (e.g., lawn mower and swimming pool). Targets and distractor pictures were semantically related either associatively (garden chair and lawn mower) or by a shared semantic category (garden chair and wardrobe). Within each type of semantic relation, target and distractor pictures either shared morpho-phonological (word-form) information (Gartenstuhl with Gartenzwerg, garden gnome, and Gartenschlauch, garden hose) or not. A condition with two completely unrelated pictures served as baseline. Target naming was facilitated when distractor and target pictures were morpho-phonologically related. This is clear evidence for the activation of word-form information of distractor pictures. Effects were larger for associatively than for categorically related distractors and targets, which constitute evidence for lexical competition. Mere categorical relatedness, in the absence of morpho-phonological overlap, resulted in null effects (Experiments 1 and 2), and only speeded target naming when effects reflect only conceptual, but not lexical processing (Experiment 3). Given that distractor pictures activate their word forms, the data cannot be easily reconciled with discrete serial models. The results fit well with models that allow information to cascade forward from conceptual to word-form levels. PMID:26528209
Bölte, Jens; Böhl, Andrea; Dobel, Christian; Zwitserlood, Pienie
2015-01-01
In three experiments, participants named target pictures by means of German compound words (e.g., Gartenstuhl-garden chair), each accompanied by two different distractor pictures (e.g., lawn mower and swimming pool). Targets and distractor pictures were semantically related either associatively (garden chair and lawn mower) or by a shared semantic category (garden chair and wardrobe). Within each type of semantic relation, target and distractor pictures either shared morpho-phonological (word-form) information (Gartenstuhl with Gartenzwerg, garden gnome, and Gartenschlauch, garden hose) or not. A condition with two completely unrelated pictures served as baseline. Target naming was facilitated when distractor and target pictures were morpho-phonologically related. This is clear evidence for the activation of word-form information of distractor pictures. Effects were larger for associatively than for categorically related distractors and targets, which constitute evidence for lexical competition. Mere categorical relatedness, in the absence of morpho-phonological overlap, resulted in null effects (Experiments 1 and 2), and only speeded target naming when effects reflect only conceptual, but not lexical processing (Experiment 3). Given that distractor pictures activate their word forms, the data cannot be easily reconciled with discrete serial models. The results fit well with models that allow information to cascade forward from conceptual to word-form levels.
ERIC Educational Resources Information Center
Kuchinke, Lars; van der Meer, Elke; Krueger, Frank
2009-01-01
Conceptual knowledge of our world is represented in semantic memory in terms of concepts and semantic relations between concepts. We used functional magnetic resonance imaging (fMRI) to examine the cortical regions underlying the processing of sequential and taxonomic relations. Participants were presented verbal cues and performed three tasks:…
Complexity and Hemispheric Abilities: Evidence for a Differential Impact on Semantics and Phonology
ERIC Educational Resources Information Center
Tremblay, Tania; Monetta, Laura; Joanette, Yves
2009-01-01
The main goal of this study was to determine whether the phonological and semantic processing of words are similarly influenced by an increase in processing complexity. Thirty-six French-speaking young adults performed both semantic and phonological word judgment tasks, using a divided visual field procedure. The phonological complexity of words…
ERIC Educational Resources Information Center
Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey
2009-01-01
To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…
The Benefits of Sensorimotor Knowledge: Body-Object Interaction Facilitates Semantic Processing
ERIC Educational Resources Information Center
Siakaluk, Paul D.; Pexman, Penny M.; Sears, Christopher R.; Wilson, Kim; Locheed, Keri; Owen, William J.
2008-01-01
This article examined the effects of body-object interaction (BOI) on semantic processing. BOI measures perceptions of the ease with which a human body can physically interact with a word's referent. In Experiment 1, BOI effects were examined in 2 semantic categorization tasks (SCT) in which participants decided if words are easily imageable.…
ERIC Educational Resources Information Center
Hargreaves, Ian S.; White, Michelle; Pexman, Penny M.; Pittman, Dan; Goodyear, Brad G.
2012-01-01
Task effects in semantic processing were investigated by contrasting the neural activation associated with two semantic categorization tasks (SCT) using event-related fMRI. The two SCTs involved different decision categories: "is it an animal?" vs. "is it a concrete thing?" Participants completed both tasks and, across participants, the same core…
ERIC Educational Resources Information Center
Kamio, Yoko; Robins, Diana; Kelley, Elizabeth; Swainson, Brook; Fein, Deborah
2007-01-01
Although autism is associated with impaired language functions, the nature of semantic processing in high-functioning pervasive developmental disorders (HFPDD) without a history of early language delay has been debated. In this study, we aimed to examine whether the automatic lexical/semantic aspect of language is impaired or intact in these…
ERIC Educational Resources Information Center
Haebig, Eileen; Kaushanskaya, Margarita; Weismer, Susan Ellis
2015-01-01
Children with autism spectrum disorder (ASD) and specific language impairment (SLI) often have immature lexical-semantic knowledge; however, the organization of lexical-semantic knowledge is poorly understood. This study examined lexical processing in school-age children with ASD, SLI, and typical development, who were matched on receptive…
ERIC Educational Resources Information Center
Tivarus, Madalina E.; Hillier, Ashleigh; Schmalbrock, Petra; Beversdorf, David Q.
2008-01-01
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We…
Semantic Boost on Episodic Associations: An Empirically-Based Computational Model
ERIC Educational Resources Information Center
Silberman, Yaron; Bentin, Shlomo; Miikkulainen, Risto
2007-01-01
Words become associated following repeated co-occurrence episodes. This process might be further determined by the semantic characteristics of the words. The present study focused on how semantic and episodic factors interact in incidental formation of word associations. First, we found that human participants associate semantically related words…
Semantic Search of Web Services
ERIC Educational Resources Information Center
Hao, Ke
2013-01-01
This dissertation addresses semantic search of Web services using natural language processing. We first survey various existing approaches, focusing on the fact that the expensive costs of current semantic annotation frameworks result in limited use of semantic search for large scale applications. We then propose a vector space model based service…
What Do Graded Effects of Semantic Transparency Reveal about Morphological Processing?
ERIC Educational Resources Information Center
Feldman, Laurie Beth; Soltano, Emily G.; Pastizzo, Matthew J.; Francis, Sarah E.
2004-01-01
We examined the influence of semantic transparency on morphological facilitation in English in three lexical decision experiments. Decision latencies to visual targets (e.g., CASUALNESS) were faster after semantically transparent (e.g., CASUALLY) than semantically opaque (e.g., CASUALTY) primes whether primes were auditory and presented…
The Role of Simple Semantics in the Process of Artificial Grammar Learning
ERIC Educational Resources Information Center
Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara
2017-01-01
This study investigated the effect of semantic information on artificial grammar learning (AGL). Recursive grammars of different complexity levels (regular language, mirror language, copy language) were investigated in a series of AGL experiments. In the with-semantics condition, participants acquired semantic information prior to the AGL…
Data-driven Ontology Development: A Case Study at NASA's Atmospheric Science Data Center
NASA Astrophysics Data System (ADS)
Hertz, J.; Huffer, E.; Kusterer, J.
2012-12-01
Well-founded ontologies are key to enabling transformative semantic technologies and accelerating scientific research. One example is semantically enabled search and discovery, making scientific data accessible and more understandable by accurately modeling a complex domain. The ontology creation process remains a challenge for many anxious to pursue semantic technologies. The key may be that the creation process -- whether formal, community-based, automated or semi-automated -- should encompass not only a foundational core and supplemental resources but also a focus on the purpose or mission the ontology is created to support. Are there tools or processes to de-mystify, assess or enhance the resulting ontology? We suggest that comparison and analysis of a domain-focused ontology can be made using text engineering tools for information extraction, tokenizers, named entity transducers and others. The results are analyzed to ensure the ontology reflects the core purpose of the domain's mission and that the ontology integrates and describes the supporting data in the language of the domain - how the science is analyzed and discussed among all users of the data. Commonalities and relationships among domain resources describing the Clouds and Earth's Radiant Energy (CERES) Bi-Directional Scan (BDS) datasets from NASA's Atmospheric Science Data Center are compared. The domain resources include: a formal ontology created for CERES; scientific works such as papers, conference proceedings and notes; information extracted from the datasets (i.e., header metadata); and BDS scientific documentation (Algorithm Theoretical Basis Documents, collection guides, data quality summaries and others). These resources are analyzed using the open source software General Architecture for Text Engineering, a mature framework for computational tasks involving human language.
Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study
Parker Jones, ‘Ōiwi; Prejawa, Susan; Hope, Thomas M. H.; Oberhuber, Marion; Seghier, Mohamed L.; Leff, Alex P.; Green, David W.; Price, Cathy J.
2014-01-01
The aim of this paper was to investigate the neurological underpinnings of auditory-to-motor translation during auditory repetition of unfamiliar pseudowords. We tested two different hypotheses. First we used functional magnetic resonance imaging in 25 healthy subjects to determine whether a functionally defined area in the left temporo-parietal junction (TPJ), referred to as Sylvian-parietal-temporal region (Spt), reflected the demands on auditory-to-motor integration during the repetition of pseudowords relative to a semantically mediated nonverbal sound-naming task. The experiment also allowed us to test alternative accounts of Spt function, namely that Spt is involved in subvocal articulation or auditory processing that can be driven either bottom-up or top-down. The results did not provide convincing evidence that activation increased in either Spt or any other cortical area when non-semantic auditory inputs were being translated into motor outputs. Instead, the results were most consistent with Spt responding to bottom up or top down auditory processing, independent of the demands on auditory-to-motor integration. Second, we investigated the lesion sites in eight patients who had selective difficulties repeating heard words but with preserved word comprehension, picture naming and verbal fluency (i.e., conduction aphasia). All eight patients had white-matter tract damage in the vicinity of the arcuate fasciculus and only one of the eight patients had additional damage to the Spt region, defined functionally in our fMRI data. Our results are therefore most consistent with the neurological tradition that emphasizes the importance of the arcuate fasciculus in the non-semantic integration of auditory and motor speech processing. PMID:24550807
Hoffman, Paul; Jefferies, Elizabeth; Ralph, Matthew A Lambon
2011-02-01
More efficient processing of high frequency (HF) words is a ubiquitous finding in healthy individuals, yet frequency effects are often small or absent in stroke aphasia. We propose that some patients fail to show the expected frequency effect because processing of HF words places strong demands on semantic control and regulation processes, counteracting the usual effect. This may occur because HF words appear in a wide range of linguistic contexts, each associated with distinct semantic information. This theory predicts that in extreme circumstances, patients with impaired semantic control should show an outright reversal of the normal frequency effect. To test this prediction, we tested two patients with impaired semantic control with a delayed repetition task that emphasised activation of semantic representations. By alternating HF and low frequency (LF) trials, we demonstrated a significant repetition advantage for LF words, principally because of perseverative errors in which patients produced the previous LF response in place of the HF target. These errors indicated that HF words were more weakly activated than LF words. We suggest that when presented with no contextual information, patients generate a weak and unstable pattern of semantic activation for HF words because information relating to many possible contexts and interpretations is activated. In contrast, LF words are associated with more stable patterns of activation because similar semantic information is activated whenever they are encountered. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wright, Paul; Randall, Billi; Clarke, Alex; Tyler, Lorraine K
2015-09-01
The anterior temporal lobe (ATL) plays a prominent role in models of semantic knowledge, although it remains unclear how the specific subregions within the ATL contribute to semantic memory. Patients with neurodegenerative diseases, like semantic dementia, have widespread damage to the ATL thus making inferences about the relationship between anatomy and cognition problematic. Here we take a detailed anatomical approach to ask which substructures within the ATL contribute to conceptual processing, with the prediction that the perirhinal cortex (PRc) will play a critical role for concepts that are more semantically confusable. We tested two patient groups, those with and without damage to the PRc, across two behavioural experiments - picture naming and word-picture matching. For both tasks, we manipulated the degree of semantic confusability of the concepts. By contrasting the performance of the two groups, along with healthy controls, we show that damage to the PRc results in worse performance in processing concepts with higher semantic confusability across both experiments. Further by correlating the degree of damage across anatomically defined regions of interest with performance, we find that PRc damage is related to performance for concepts with increased semantic confusability. Our results show that the PRc supports a necessary and crucial neurocognitve function that enables fine-grained conceptual processes to take place through the resolution of semantic confusability. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Semantic Neighborhood Effects for Abstract versus Concrete Words
Danguecan, Ashley N.; Buchanan, Lori
2016-01-01
Studies show that semantic effects may be task-specific, and thus, that semantic representations are flexible and dynamic. Such findings are critical to the development of a comprehensive theory of semantic processing in visual word recognition, which should arguably account for how semantic effects may vary by task. It has been suggested that semantic effects are more directly examined using tasks that explicitly require meaning processing relative to those for which meaning processing is not necessary (e.g., lexical decision task). The purpose of the present study was to chart the processing of concrete versus abstract words in the context of a global co-occurrence variable, semantic neighborhood density (SND), by comparing word recognition response times (RTs) across four tasks varying in explicit semantic demands: standard lexical decision task (with non-pronounceable non-words), go/no-go lexical decision task (with pronounceable non-words), progressive demasking task, and sentence relatedness task. The same experimental stimulus set was used across experiments and consisted of 44 concrete and 44 abstract words, with half of these being low SND, and half being high SND. In this way, concreteness and SND were manipulated in a factorial design using a number of visual word recognition tasks. A consistent RT pattern emerged across tasks, in which SND effects were found for abstract (but not necessarily concrete) words. Ultimately, these findings highlight the importance of studying interactive effects in word recognition, and suggest that linguistic associative information is particularly important for abstract words. PMID:27458422
Semantic Neighborhood Effects for Abstract versus Concrete Words.
Danguecan, Ashley N; Buchanan, Lori
2016-01-01
Studies show that semantic effects may be task-specific, and thus, that semantic representations are flexible and dynamic. Such findings are critical to the development of a comprehensive theory of semantic processing in visual word recognition, which should arguably account for how semantic effects may vary by task. It has been suggested that semantic effects are more directly examined using tasks that explicitly require meaning processing relative to those for which meaning processing is not necessary (e.g., lexical decision task). The purpose of the present study was to chart the processing of concrete versus abstract words in the context of a global co-occurrence variable, semantic neighborhood density (SND), by comparing word recognition response times (RTs) across four tasks varying in explicit semantic demands: standard lexical decision task (with non-pronounceable non-words), go/no-go lexical decision task (with pronounceable non-words), progressive demasking task, and sentence relatedness task. The same experimental stimulus set was used across experiments and consisted of 44 concrete and 44 abstract words, with half of these being low SND, and half being high SND. In this way, concreteness and SND were manipulated in a factorial design using a number of visual word recognition tasks. A consistent RT pattern emerged across tasks, in which SND effects were found for abstract (but not necessarily concrete) words. Ultimately, these findings highlight the importance of studying interactive effects in word recognition, and suggest that linguistic associative information is particularly important for abstract words.
Must analysis of meaning follow analysis of form? A time course analysis
Feldman, Laurie B.; Milin, Petar; Cho, Kit W.; Moscoso del Prado Martín, Fermín; O’Connor, Patrick A.
2015-01-01
Many models of word recognition assume that processing proceeds sequentially from analysis of form to analysis of meaning. In the context of morphological processing, this implies that morphemes are processed as units of form prior to any influence of their meanings. Some interpret the apparent absence of differences in recognition latencies to targets (SNEAK) in form and semantically similar (sneaky-SNEAK) and in form similar and semantically dissimilar (sneaker-SNEAK) prime contexts at a stimulus onset asynchrony (SOA) of 48 ms as consistent with this claim. To determine the time course over which degree of semantic similarity between morphologically structured primes and their targets influences recognition in the forward masked priming variant of the lexical decision paradigm, we compared facilitation for the same targets after semantically similar and dissimilar primes across a range of SOAs (34–100 ms). The effect of shared semantics on recognition latency increased linearly with SOA when long SOAs were intermixed (Experiments 1A and 1B) and latencies were significantly faster after semantically similar than dissimilar primes at homogeneous SOAs of 48 ms (Experiment 2) and 34 ms (Experiment 3). Results limit the scope of form-then-semantics models of recognition and demonstrate that semantics influences even the very early stages of recognition. Finally, once general performance across trials has been accounted for, we fail to provide evidence for individual differences in morphological processing that can be linked to measures of reading proficiency. PMID:25852512
Must analysis of meaning follow analysis of form? A time course analysis.
Feldman, Laurie B; Milin, Petar; Cho, Kit W; Moscoso Del Prado Martín, Fermín; O'Connor, Patrick A
2015-01-01
Many models of word recognition assume that processing proceeds sequentially from analysis of form to analysis of meaning. In the context of morphological processing, this implies that morphemes are processed as units of form prior to any influence of their meanings. Some interpret the apparent absence of differences in recognition latencies to targets (SNEAK) in form and semantically similar (sneaky-SNEAK) and in form similar and semantically dissimilar (sneaker-SNEAK) prime contexts at a stimulus onset asynchrony (SOA) of 48 ms as consistent with this claim. To determine the time course over which degree of semantic similarity between morphologically structured primes and their targets influences recognition in the forward masked priming variant of the lexical decision paradigm, we compared facilitation for the same targets after semantically similar and dissimilar primes across a range of SOAs (34-100 ms). The effect of shared semantics on recognition latency increased linearly with SOA when long SOAs were intermixed (Experiments 1A and 1B) and latencies were significantly faster after semantically similar than dissimilar primes at homogeneous SOAs of 48 ms (Experiment 2) and 34 ms (Experiment 3). Results limit the scope of form-then-semantics models of recognition and demonstrate that semantics influences even the very early stages of recognition. Finally, once general performance across trials has been accounted for, we fail to provide evidence for individual differences in morphological processing that can be linked to measures of reading proficiency.
Preserved learning of novel information in amnesia: evidence for multiple memory systems.
Gordon, B
1988-06-01
Four of five patients with marked global amnesia, and others with new learning impairments, showed normal processing facilitation for novel stimuli (nonwords) and/or for familiar stimuli (words) on a word/nonword (lexical) decision task. The data are interpreted as a reflection of the learning capabilities of in-line neural processing stages with multiple, distinct, informational codes. These in-line learning processes are separate from the recognition/recall memory impaired by amygdalohippocampal/dosomedial thalamic damage, but probably supplement such memory in some tasks in normal individuals. Preserved learning of novel information seems incompatible with explanations of spared learning in amnesia that are based on the episodic/semantic or memory/habit distinctions, but is consistent with the procedural/declarative hypothesis.
Peelle, Jonathan E.; Bonner, Michael F.; Grossman, Murray
2016-01-01
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. PMID:27030767
Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F; Grossman, Murray; Hamilton, Roy H
2016-03-30
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend "plaid" and "jacket" as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of "plaid jacket." Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like "tiny radish" relative to non-meaningful combinations, such as "fast blueberry," when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., "leaf" and "wet" can be combined into the more complex representation "wet leaf"). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. Copyright © 2016 the authors 0270-6474/16/363829-10$15.00/0.
Recall of remote episodic memory in amnesia.
Zola-Morgan, S; Cohen, N J; Squire, L R
1983-01-01
Recall of remote episodic memory was assessed in three types of amnesic patient whose remote semantic memory had been evaluated previously. Patients with Korsakoff's syndrome, case N.A. and patients receiving electroconvulsive therapy all succeeded in recalling specific autobiographical episodes in response to single-word cues, and in many conditions performed as well as control subjects. Their pattern of performance generally paralleled that obtained in previous tests of remote semantic memory. These results argue against a view that amnesia reflects a selective deficit of episodic memory and suggest that the semantic-episodic distinction cannot illuminate the fundamental deficit in amnesia. Nor can the facts of amnesia confirm or deny the validity of this distinction in normal memory.
Titles change the esthetic appreciations of paintings.
Gerger, Gernot; Leder, Helmut
2015-01-01
Esthetic experiences of artworks are influenced by contextualizing information such as titles. However, how titles contribute to positive esthetic experiences is still an open issue. Considering that fluency, as well as effortful elaborate processing, potentially influence esthetic experiences, we tested how three different title types-semantically matching (fluent), semantically non-matching (non-fluent), and an "untitled" condition (control)-affected experiences of abstract, semi-abstract, and representational art. While participants viewed title/artwork combinations we assessed facial electromygraphic (fEMG) recordings over M. corrugator supercilii and M. zygomaticus major muscle to capture subtle changes in emotional and cognitive processing, and asked for subjective liking and interest. Matching titles, but also the more effortful untitled condition, produced higher liking compared to non-fluently processed, non-matching titles especially in abstract art. These results were reflected in fEMG with stronger M. corrugator activations in the non-matching condition followed by the untitled condition. This implies high cognitive effort as well as negative emotions. Only in the matching condition, M. zygomaticus was more strongly activated indicating positive emotions due to fluency. Interest, however, was hardly affected. These results show that high levels of dis-fluency and cognitive effort reduce liking. However, fluency as well as moderate levels of effort contribute to more positive esthetic experiences.
Titles change the esthetic appreciations of paintings
Gerger, Gernot; Leder, Helmut
2015-01-01
Esthetic experiences of artworks are influenced by contextualizing information such as titles. However, how titles contribute to positive esthetic experiences is still an open issue. Considering that fluency, as well as effortful elaborate processing, potentially influence esthetic experiences, we tested how three different title types—semantically matching (fluent), semantically non-matching (non-fluent), and an “untitled” condition (control)—affected experiences of abstract, semi-abstract, and representational art. While participants viewed title/artwork combinations we assessed facial electromygraphic (fEMG) recordings over M. corrugator supercilii and M. zygomaticus major muscle to capture subtle changes in emotional and cognitive processing, and asked for subjective liking and interest. Matching titles, but also the more effortful untitled condition, produced higher liking compared to non-fluently processed, non-matching titles especially in abstract art. These results were reflected in fEMG with stronger M. corrugator activations in the non-matching condition followed by the untitled condition. This implies high cognitive effort as well as negative emotions. Only in the matching condition, M. zygomaticus was more strongly activated indicating positive emotions due to fluency. Interest, however, was hardly affected. These results show that high levels of dis-fluency and cognitive effort reduce liking. However, fluency as well as moderate levels of effort contribute to more positive esthetic experiences. PMID:26379527
Zack, Martin; Poulos, Constantine X; Woodford, Tracy M
2006-01-01
Words denoting negative affect (NEG) have been found to prime alcohol-related words (ALC) on semantic priming tasks, and this effect is tied to severity of addiction. Previous research suggested that high doses of benzodiazepines may dampen NEG-ALC priming. The present study tested this possibility and the role of motivation for alcohol in this process. A placebo-controlled, double blind, between-within, counterbalanced design was employed. Two groups of male problem drinkers (n = 6/group) received a high (15-mg) or low (5-mg) dose of diazepam versus placebo on two identical test sessions. A lexical decision task assessed priming. Under placebo, significant NEG-->ALC priming emerged in each group. High-dose diazepam selectively reversed this effect, while low-dose selectively enhanced it. Correlations between NEG-->ALC priming and desire for alcohol provided further support that semantic priming of ALC concepts reflects a motivational process. The bi-directional effects found here parallel the effects of high- versus low-dose benzodiazepines on alcohol self-administration in animals. High-dose diazepam reduces prime-induced activation of ALC concepts in problem drinkers. Low-dose diazepam facilitates this process, and cross-priming of motivation for alcohol appears to explain this effect. Neurochemical modulation of the alcohol memory network may contribute to the motivational effects of benzodiazepines in problem drinkers.
The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A.
2015-01-01
The ability to represent concepts and the relationships between them is critical to human cognition. How does the brain code relationships between items that share basic conceptual properties (e.g., dog and wolf) while simultaneously representing associative links between dissimilar items that co-occur in particular contexts (e.g., dog and bone)? To clarify the neural bases of these semantic components in neurologically intact participants, both types of semantic relationship were investigated in an fMRI study optimized for anterior temporal lobe (ATL) coverage. The clear principal finding was that the same core semantic network (ATL, superior temporal sulcus, ventral prefrontal cortex) was equivalently engaged when participants made semantic judgments on the basis of association or conceptual similarity. Direct comparisons revealed small, weaker differences for conceptual similarity > associative decisions (e.g., inferior prefrontal cortex) and associative > conceptual similarity (e.g., ventral parietal cortex) which appear to reflect graded differences in task difficulty. Indeed, once reaction time was entered as a covariate into the analysis, no associative versus category differences remained. The paper concludes with a discussion of how categorical/feature-based and associative relationships might be represented within a single, unified semantic system. PMID:25636912
Distributed semantic networks and CLIPS
NASA Technical Reports Server (NTRS)
Snyder, James; Rodriguez, Tony
1991-01-01
Semantic networks of frames are commonly used as a method of reasoning in many problems. In most of these applications the semantic network exists as a single entity in a single process environment. Advances in workstation hardware provide support for more sophisticated applications involving multiple processes, interacting in a distributed environment. In these applications the semantic network may well be distributed over several concurrently executing tasks. This paper describes the design and implementation of a frame based, distributed semantic network in which frames are accessed both through C Language Integrated Production System (CLIPS) expert systems and procedural C++ language programs. The application area is a knowledge based, cooperative decision making model utilizing both rule based and procedural experts.
The timing of anterior temporal lobe involvement in semantic processing.
Jackson, Rebecca L; Lambon Ralph, Matthew A; Pobric, Gorana
2015-07-01
Despite indications that regions within the anterior temporal lobe (ATL) might make a crucial contribution to pan-modal semantic representation, to date there have been no investigations of when during semantic processing the ATL plays a critical role. To test the timing of the ATL involvement in semantic processing, we studied the effect of double-pulse TMS on behavioral responses in semantic and difficulty-matched control tasks. Chronometric TMS was delivered over the left ATL (10 mm from the tip of the temporal pole along the middle temporal gyrus). During each trial, two pulses of TMS (40 msec apart) were delivered either at baseline (before stimulus presentation) or at one of the experimental time points 100, 250, 400, and 800 msec poststimulus onset. A significant disruption to performance was identified from 400 msec on the semantic task but not on the control assessment. Our results not only reinforce the key role of the left ATL in semantic representation but also indicate that its contribution is especially important around 400 msec poststimulus onset. Together, these facts suggest that the ATL may be one of the neural sources of the N400 ERP component.
Nakayama, Masataka; Saito, Satoru
2015-08-01
The present study investigated principles of phonological planning, a common serial ordering mechanism for speech production and phonological short-term memory. Nakayama and Saito (2014) have investigated the principles by using a speech-error induction technique, in which participants were exposed to an auditory distracIor word immediately before an utterance of a target word. They demonstrated within-word adjacent mora exchanges and serial position effects on error rates. These findings support, respectively, the temporal distance and the edge principles at a within-word level. As this previous study induced errors using word distractors created by exchanging adjacent morae in the target words, it is possible that the speech errors are expressions of lexical intrusions reflecting interactive activation of phonological and lexical/semantic representations. To eliminate this possibility, the present study used nonword distractors that had no lexical or semantic representations. This approach successfully replicated the error patterns identified in the abovementioned study, further confirming that the temporal distance and edge principles are organizing precepts in phonological planning.
Remembering the Important Things: Semantic Importance in Stream Reasoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Rui; Greaves, Mark T.; Smith, William P.
Reasoning and querying over data streams rely on the abil- ity to deliver a sequence of stream snapshots to the processing algo- rithms. These snapshots are typically provided using windows as views into streams and associated window management strategies. Generally, the goal of any window management strategy is to preserve the most im- portant data in the current window and preferentially evict the rest, so that the retained data can continue to be exploited. A simple timestamp- based strategy is rst-in-rst-out (FIFO), in which items are replaced in strict order of arrival. All timestamp-based strategies implicitly assume that a temporalmore » ordering reliably re ects importance to the processing task at hand, and thus that window management using timestamps will maximize the ability of the processing algorithms to deliver accurate interpretations of the stream. In this work, we explore a general no- tion of semantic importance that can be used for window management for streams of RDF data using semantically-aware processing algorithms like deduction or semantic query. Semantic importance exploits the infor- mation carried in RDF and surrounding ontologies for ranking window data in terms of its likely contribution to the processing algorithms. We explore the general semantic categories of query contribution, prove- nance, and trustworthiness, as well as the contribution of domain-specic ontologies. We describe how these categories behave using several con- crete examples. Finally, we consider how a stream window management strategy based on semantic importance could improve overall processing performance, especially as available window sizes decrease.« less
A Comparison of Five FMRI Protocols for Mapping Speech Comprehension Systems
Binder, Jeffrey R.; Swanson, Sara J.; Hammeke, Thomas A.; Sabsevitz, David S.
2008-01-01
Aims Many fMRI protocols for localizing speech comprehension have been described, but there has been little quantitative comparison of these methods. We compared five such protocols in terms of areas activated, extent of activation, and lateralization. Methods FMRI BOLD signals were measured in 26 healthy adults during passive listening and active tasks using words and tones. Contrasts were designed to identify speech perception and semantic processing systems. Activation extent and lateralization were quantified by counting activated voxels in each hemisphere for each participant. Results Passive listening to words produced bilateral superior temporal activation. After controlling for pre-linguistic auditory processing, only a small area in the left superior temporal sulcus responded selectively to speech. Active tasks engaged an extensive, bilateral attention and executive processing network. Optimal results (consistent activation and strongly lateralized pattern) were obtained by contrasting an active semantic decision task with a tone decision task. There was striking similarity between the network of brain regions activated by the semantic task and the network of brain regions that showed task-induced deactivation, suggesting that semantic processing occurs during the resting state. Conclusions FMRI protocols for mapping speech comprehension systems differ dramatically in pattern, extent, and lateralization of activation. Brain regions involved in semantic processing were identified only when an active, non-linguistic task was used as a baseline, supporting the notion that semantic processing occurs whenever attentional resources are not controlled. Identification of these lexical-semantic regions is particularly important for predicting language outcome in patients undergoing temporal lobe surgery. PMID:18513352
The numerical distance effect is task dependent.
Goldfarb, Liat; Henik, Avishai; Rubinsten, Orly; Bloch-David, Yafit; Gertner, Limor
2011-11-01
Number comparison tasks produce a distance effect e.g., Moyer & Landauer (Nature 215: 1519-1520, 1967). It has been suggested that this effect supports the existence of semantic mental representations of numbers. In a matching task, a distance effect also appears, which suggests that the effect has an automatic semantic component. Recently, Cohen (Psychonomic Bulletin & Review 16: 332-336, 2009) suggested that in both automatic and intentional tasks, the distance effect might reflect not a semantic number representation, but a physical similarity between digits. The present article (1) compares the distance effect in the automatic matching task with that in the intentional number comparison task and suggests that, in the latter, the distance effect does include an additional semantic component; and (2) indicates that the distance effect in the standard automatic matching task is questionable and that its appearance in previous matching tasks was based on the specific analysis and design that were applied.
Extracting and Comparing Places Using Geo-Social Media
NASA Astrophysics Data System (ADS)
Ostermann, F. O.; Huang, H.; Andrienko, G.; Andrienko, N.; Capineri, C.; Farkas, K.; Purves, R. S.
2015-08-01
Increasing availability of Geo-Social Media (e.g. Facebook, Foursquare and Flickr) has led to the accumulation of large volumes of social media data. These data, especially geotagged ones, contain information about perception of and experiences in various environments. Harnessing these data can be used to provide a better understanding of the semantics of places. We are interested in the similarities or differences between different Geo-Social Media in the description of places. This extended abstract presents the results of a first step towards a more in-depth study of semantic similarity of places. Particularly, we took places extracted through spatio-temporal clustering from one data source (Twitter) and examined whether their structure is reflected semantically in another data set (Flickr). Based on that, we analyse how the semantic similarity between places varies over space and scale, and how Tobler's first law of geography holds with regards to scale and places.
Semantic Web Applications and Tools for the Life Sciences: SWAT4LS 2010
2012-01-01
As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data. PMID:22373274
Semantic Web applications and tools for the life sciences: SWAT4LS 2010.
Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea
2012-01-25
As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.
How Semantic Radicals in Chinese characters Facilitate Hierarchical Category-Based Induction.
Wang, Xiaoxi; Ma, Xie; Tao, Yun; Tao, Yachen; Li, Hong
2018-04-03
Prior studies indicate that the semantic radical in Chinese characters contains category information that can support the independent retrieval of category information through the lexical network to the conceptual network. Inductive reasoning relies on category information; thus, semantic radicals may influence inductive reasoning. As most natural concepts are hierarchically structured in the human brain, this study examined how semantic radicals impact inductive reasoning for hierarchical concepts. The study used animal and plant nouns, organized in basic, superordinate, and subordinate levels; half had a semantic radical and half did not. Eighteen participants completed an inductive reasoning task. Behavioural and event-related potential (ERP) data were collected. The behavioural results showed that participants reacted faster and more accurately in the with-semantic-radical condition than in the without-semantic-radical condition. For the ERPs, differences between the conditions were found, and these differences lasted from the very early cognitive processing stage (i.e., the N1 time window) to the relatively late processing stages (i.e., the N400 and LPC time windows). Semantic radicals can help to distinguish the hierarchies earlier (in the N400 period) than characters without a semantic radical (in the LPC period). These results provide electrophysiological evidence that semantic radicals may improve sensitivity to distinguish between hierarchical concepts.
2014-01-01
Background The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. Results For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. Conclusions Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing. PMID:24456150
E-Government Goes Semantic Web: How Administrations Can Transform Their Information Processes
NASA Astrophysics Data System (ADS)
Klischewski, Ralf; Ukena, Stefan
E-government applications and services are built mainly on access to, retrieval of, integration of, and delivery of relevant information to citizens, businesses, and administrative users. In order to perform such information processing automatically through the Semantic Web,1 machine-readable2 enhancements of web resources are needed, based on the understanding of the content and context of the information in focus. While these enhancements are far from trivial to produce, administrations in their role of information and service providers so far find little guidance on how to migrate their web resources and enable a new quality of information processing; even research is still seeking best practices. Therefore, the underlying research question of this chapter is: what are the appropriate approaches which guide administrations in transforming their information processes toward the Semantic Web? In search for answers, this chapter analyzes the challenges and possible solutions from the perspective of administrations: (a) the reconstruction of the information processing in the e-government in terms of how semantic technologies must be employed to support information provision and consumption through the Semantic Web; (b) the required contribution to the transformation is compared to the capabilities and expectations of administrations; and (c) available experience with the steps of transformation are reviewed and discussed as to what extent they can be expected to successfully drive the e-government to the Semantic Web. This research builds on studying the case of Schleswig-Holstein, Germany, where semantic technologies have been used within the frame of the Access-eGov3 project in order to semantically enhance electronic service interfaces with the aim of providing a new way of accessing and combining e-government services.
ERIC Educational Resources Information Center
Nobre, Alexandre de Pontes; de Salles, Jerusa Fumagalli
2016-01-01
The aim of this study was to investigate relations between lexical-semantic processing and two components of reading: visual word recognition and reading comprehension. Sixty-eight children from private schools in Porto Alegre, Brazil, from 7 to 12 years, were evaluated. Reading was assessed with a word/nonword reading task and a reading…
The Neural Correlates of Infant and Adult Goal Prediction: Evidence for Semantic Processing Systems
ERIC Educational Resources Information Center
Reid, Vincent M.; Hoehl, Stefanie; Grigutsch, Maren; Groendahl, Anna; Parise, Eugenio; Striano, Tricia
2009-01-01
The sequential nature of action ensures that an individual can anticipate the conclusion of an observed action via the use of semantic rules. The semantic processing of language and action has been linked to the N400 component of the event-related potential (ERP). The authors developed an ERP paradigm in which infants and adults observed simple…
Semantic Richness and Word Learning in Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Gladfelter, Allison; Goffman, Lisa
2018-01-01
Semantically rich learning contexts facilitate semantic, phonological, and articulatory aspects of word learning in children with typical development (TD). However, because children with autism spectrum disorder (ASD) show differences at each of these processing levels, it is unclear whether they will benefit from semantic cues in the same manner…
Auditory Distraction in Semantic Memory: A Process-Based Approach
ERIC Educational Resources Information Center
Marsh, John E.; Hughes, Robert W.; Jones, Dylan M.
2008-01-01
Five experiments demonstrate auditory-semantic distraction in tests of memory for semantic category-exemplars. The effects of irrelevant sound on category-exemplar recall are shown to be functionally distinct from those found in the context of serial short-term memory by showing sensitivity to: The lexical-semantic, rather than acoustic,…
Influences of Semantic and Prosodic Cues on Word Repetition and Categorization in Autism
ERIC Educational Resources Information Center
Singh, Leher; Harrow, MariLouise S.
2014-01-01
Purpose: To investigate sensitivity to prosodic and semantic cues to emotion in individuals with high-functioning autism (HFA). Method: Emotional prosody and semantics were independently manipulated to assess the relative influence of prosody versus semantics on speech processing. A sample of 10-year-old typically developing children (n = 10) and…
ERIC Educational Resources Information Center
Nesic, Sasa; Gasevic, Dragan; Jazayeri, Mehdi; Landoni, Monica
2011-01-01
Semantic web technologies have been applied to many aspects of learning content authoring including semantic annotation, semantic search, dynamic assembly, and personalization of learning content. At the same time, social networking services have started to play an important role in the authoring process by supporting authors' collaborative…
Shimotake, Akihiro; Matsumoto, Riki; Ueno, Taiji; Kunieda, Takeharu; Saito, Satoru; Hoffman, Paul; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu; Takahashi, Ryosuke; Ikeda, Akio; Lambon Ralph, Matthew A.
2015-01-01
Semantic memory is a crucial higher cortical function that codes the meaning of objects and words, and when impaired after neurological damage, patients are left with significant disability. Investigations of semantic dementia have implicated the anterior temporal lobe (ATL) region, in general, as crucial for multimodal semantic memory. The potentially crucial role of the ventral ATL subregion has been emphasized by recent functional neuroimaging studies, but the necessity of this precise area has not been selectively tested. The implantation of subdural electrode grids over this subregion, for the presurgical assessment of patients with partial epilepsy or brain tumor, offers the dual yet rare opportunities to record cortical local field potentials while participants complete semantic tasks and to stimulate the functionally identified regions in the same participants to evaluate the necessity of these areas in semantic processing. Across 6 patients, and utilizing a variety of semantic assessments, we evaluated and confirmed that the anterior fusiform/inferior temporal gyrus is crucial in multimodal, receptive, and expressive, semantic processing. PMID:25491206
Coronel, Jason C; Federmeier, Kara D
2016-04-01
There is growing recognition that some important forms of long-term memory are difficult to classify into one of the well-studied memory subtypes. One example is personal semantics. Like the episodes that are stored as part of one's autobiography, personal semantics is linked to an individual, yet, like general semantic memory, it is detached from a specific encoding context. Access to general semantics elicits an electrophysiological response known as the N400, which has been characterized across three decades of research; surprisingly, this response has not been fully examined in the context of personal semantics. In this study, we assessed responses to congruent and incongruent statements about people's own, personal preferences. We found that access to personal preferences elicited N400 responses, with congruency effects that were similar in latency and distribution to those for general semantic statements elicited from the same participants. These results suggest that the processing of personal and general semantics share important functional and neurobiological features. Copyright © 2016 Elsevier Ltd. All rights reserved.
Implicit and explicit forgetting: when is gist remembered?
Dorfman, J; Mandler, G
1994-08-01
Recognition (YES/NO) and stem completion (cued: complete with a word from the list; and uncued: complete with the first word that comes to mind) were tested following either semantic or non-semantic processing of a categorized input list. Item/instance information was tested by contrasting target items from the input list with new items that were categorically related to them; gist/categorical information was tested by comparing target items semantically related to the input items with unrelated new items. For both recognition and stem completion, regardless of initial processing condition, item information decayed rapidly over a period of one week. Gist information was maintained over the same period when initial processing was semantic but only in the cued condition for completion. These results are discussed in terms of dual process theory, which postulates activation/integration of a representation as primarily relevant to implicit item information and elaboration of a representation as mainly relevant to semantic (i.e. categorical) information.