Sample records for reflectance validation network

  1. Social Network Data Validity: The Example of the Social Network of Caregivers of Older Persons with Alzheimer-Type Dementia

    ERIC Educational Resources Information Center

    Carpentier, Normand

    2007-01-01

    This article offers reflection on the validity of relational data such as used in social network analysis. Ongoing research on the transformation of the support network of caregivers of persons with an Alzheimer-type disease provides the data to fuel the debate on the validity of participant report. More specifically, we sought to understand the…

  2. Networked Participatory Scholarship: Emergent Techno-Cultural Pressures toward Open and Digital Scholarship in Online Networks

    ERIC Educational Resources Information Center

    Veletsianos, George; Kimmons, Royce

    2012-01-01

    We examine the relationship between scholarly practice and participatory technologies and explore how such technologies invite and reflect the emergence of a new form of scholarship that we call "Networked Participatory Scholarship": scholars' participation in online social networks to share, reflect upon, critique, improve, validate, and…

  3. A New Approach to Computing Information in Measurements of Non-Resolved Space Objects by the Falcon Telescope Network

    DTIC Science & Technology

    2014-09-01

    Analysis Simulation for Advanced Tracking (TASAT) satellite modeling tool [8,9]. The method uses the bi-reflectance distribution functions ( BRDF ...directional Reflectance Model Validation and Utilization, Air Force Avionics Laboratory Technical Report, AFAL-TR-73-303, October 1973. [10] Hall, D...failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP 2014 2. REPORT

  4. Self-match based on polling scheme for passive optical network monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Guo, Hao; Jia, Xinhong; Liao, Qinghua

    2018-06-01

    We propose a self-match based on polling scheme for passive optical network monitoring. Each end-user is equipped with an optical matcher that exploits only the specific length patchcord and two different fiber Bragg gratings with 100% reflectivity. The simple and low-cost scheme can greatly simplify the final recognition processing of the network link status and reduce the sensitivity of the photodetector. We analyze the time-domain relation between reflected pulses and establish the calculation model to evaluate the false alarm rate. The feasibility of the proposed scheme and the validity of the time-domain relation analysis are experimentally demonstrated.

  5. Evaluation Of The MODIS-VIIRS Land Surface Reflectance Fundamental Climate Data Record.

    NASA Astrophysics Data System (ADS)

    Roger, J. C.; Vermote, E.; Skakun, S.; Murphy, E.; Holben, B. N.; Justice, C. O.

    2016-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and has been recognized as a key parameter in the understanding of the land-surface-climate processes. Here, we present the validation of the Land surface reflectance used for MODIS and VIIRS data. This methodology uses the 6SV Code and data from the AERONET network. The first part was to define a protocol to use the AERONET data. To correctly take into account the aerosol model, we used the aerosol microphysical properties provided by the AERONET network including size-distribution (%Cf, %Cc, rf, rc, σr, σc), complex refractive indices and sphericity. Over the 670 available AERONET sites, we selected 230 sites with sufficient data. To be useful for validation, the aerosol model should be readily available anytime, which is rarely the case. We then used regressions for each microphysical parameter using the aerosol optical thickness at 440nm and the Angström coefficient as parameters. Comparisons with the AERONET dataset give good APU (Accuracy-Precision-Uncertainties) for each parameter. The second part of the study relies on the theoretical land surface retrieval. We generated TOA synthetic data using aerosol models from AERONET and determined APU on the surface reflectance retrieval while applying the MODIS and VIRRS Atmospheric correction software. Over 250 AERONET sites, the global uncertainties are for MODIS band 1 (red) is always lower than 0.0015 (when surface reflectance is > 0.04). This very good result shows the validity of our reference. Then, we used this reference for validating the MODIS and VIIRS surface reflectance products. The overall accuracy clearly reaches specifications. Finally, we will present an error budget of the surface reflectance retrieval. Indeed, to better understand how to improve the methodology, we defined an exhaustive error budget. We included all inputs i.e. sensor, calibration, aerosol properties, atmospheric conditions… This latter work provides a lot of information, such as the aerosol optical thickness obviously drives the uncertainties of the retrieval, the absorption and the volume concentration of the fine aerosol mode have an important impact as well…

  6. A Ground Validation Network for the Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Morris, K. Robert

    2011-01-01

    A prototype Validation Network (VN) is currently operating as part of the Ground Validation System for NASA's Global Precipitation Measurement (GPM) mission. The VN supports precipitation retrieval algorithm development in the GPM prelaunch era. Postlaunch, the VN will be used to validate GPM spacecraft instrument measurements and retrieved precipitation data products. The period of record for the VN prototype starts on 8 August 2006 and runs to the present day. The VN database includes spacecraft data from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and coincident ground radar (GR) data from operational meteorological networks in the United States, Australia, Korea, and the Kwajalein Atoll in the Marshall Islands. Satellite and ground radar data products are collected whenever the PR satellite track crosses within 200 km of a VN ground radar, and these data are stored permanently in the VN database. VN products are generated from coincident PR and GR observations when a significant rain event occurs. The VN algorithm matches PR and GR radar data (including retrieved precipitation data in the case of the PR) by calculating averages of PR reflectivity (both raw and attenuation corrected) and rain rate, and GR reflectivity at the geometric intersection of the PR rays with the individual GR elevation sweeps. The algorithm thus averages the minimum PR and GR sample volumes needed to "matchup" the spatially coincident PR and GR data types. The result of this technique is a set of vertical profiles for a given rainfall event, with coincident PR and GR samples matched at specified heights throughout the profile. VN data can be used to validate satellite measurements and to track ground radar calibration over time. A comparison of matched TRMM PR and GR radar reflectivity factor data found a remarkably small difference between the PR and GR radar reflectivity factor averaged over this period of record in stratiform and convective rain cases when samples were taken from high in the atmosphere. A significant difference in PR and GR reflectivity was found in convective cases, particularly in convective samples from the lower part of the atmosphere. In this case, the mean difference between PR and corrected GR reflectivity was -1.88 dBZ. The PR-GR bias was found to increase with the amount of PR attenuation correction applied, with the PR-GR bias reaching -3.07 dBZ in cases where the attenuation correction applied is greater than 6 dBZ. Additional analysis indicated that the version 6 TRMM PR retrieval algorithm underestimates rainfall in case of convective rain in the lower part of the atmosphere by 30%-40%.

  7. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.

    PubMed

    Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  8. Topological Vulnerability Evaluation Model Based on Fractal Dimension of Complex Networks.

    PubMed

    Gou, Li; Wei, Bo; Sadiq, Rehan; Sadiq, Yong; Deng, Yong

    2016-01-01

    With an increasing emphasis on network security, much more attentions have been attracted to the vulnerability of complex networks. In this paper, the fractal dimension, which can reflect space-filling capacity of networks, is redefined as the origin moment of the edge betweenness to obtain a more reasonable evaluation of vulnerability. The proposed model combining multiple evaluation indexes not only overcomes the shortage of average edge betweenness's failing to evaluate vulnerability of some special networks, but also characterizes the topological structure and highlights the space-filling capacity of networks. The applications to six US airline networks illustrate the practicality and effectiveness of our proposed method, and the comparisons with three other commonly used methods further validate the superiority of our proposed method.

  9. Statistically Validated Networks in Bipartite Complex Systems

    PubMed Central

    Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Piilo, Jyrki; Mantegna, Rosario N.

    2011-01-01

    Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set. In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing a projected network on one of the two sets (for example the actor network or the movie network). Complex systems are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting system's heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised method to statistically validate each link of a projected network against a null hypothesis that takes into account system heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is able to detect network structures which are very informative about the organization and specialization of the investigated systems, and identifies those relationships between elements of the projected network that cannot be explained simply by system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might have different qualitative nature, generating statistically validated networks in which such difference is preserved. PMID:21483858

  10. Resting-state fMRI data reflects default network activity rather than null data: A defense of commonly employed methods to correct for multiple comparisons.

    PubMed

    Slotnick, Scott D

    2017-07-01

    Analysis of functional magnetic resonance imaging (fMRI) data typically involves over one hundred thousand independent statistical tests; therefore, it is necessary to correct for multiple comparisons to control familywise error. In a recent paper, Eklund, Nichols, and Knutsson used resting-state fMRI data to evaluate commonly employed methods to correct for multiple comparisons and reported unacceptable rates of familywise error. Eklund et al.'s analysis was based on the assumption that resting-state fMRI data reflect null data; however, their 'null data' actually reflected default network activity that inflated familywise error. As such, Eklund et al.'s results provide no basis to question the validity of the thousands of published fMRI studies that have corrected for multiple comparisons or the commonly employed methods to correct for multiple comparisons.

  11. An optical sensor network for vegetation phenology monitoring and satellite data calibration.

    PubMed

    Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal

    2011-01-01

    We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity.

  12. An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration

    PubMed Central

    Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal

    2011-01-01

    We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity. PMID:22164039

  13. Network Indicators of the Social Ecology of Adolescents in Relative and Non-Relative Foster Households

    PubMed Central

    Kothari, Brianne H.; McBeath, Bowen; Sorenson, Paul; Bank, Lew

    2016-01-01

    Though the presence, composition, and quality of social relationships—particularly as found in family networks—has an important influence on adolescent well-being, little is known about the social ecology of youth in foster care. This study examined the social networks of foster youth participating in a large RCT of an intervention for siblings in foster care. Youth reported on the people they lived with and the relatives they were in contact with, which provided indicators of network size, composition, and relationship quality. Cluster analysis was used to identify five family network profiles for youth living in foster homes. Two identified subgroups reflected robust family networks where youth were living with relative caregiver(s) and related youth, and also reported multiple family ties outside the household, including with biological parents. The remaining three profiles reflected youth reports of fewer family connections within or beyond the foster household, with distinctions by whether they lived with siblings and/or reported having positive relationships with their mothers and/or fathers. The identified network profiles were validated using youth- and caregiver-reported measures of mental health functioning, with increased caregiver report of post-traumatic stress symptoms indicated for the three subgroups that were not characterized by a robust family network. PMID:28736465

  14. Assessment of Biases in MODIS Surface Reflectance Due to Lambertian Approximation

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei I.; Privette, Jeffrey L.; Cook, Robert B.; SanthanaVannan, Suresh K.; Vermote, Eric F.; Schaaf, Crystal

    2010-01-01

    Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.

  15. "It Sort of Feels Uncomfortable": Problematising the Assessment of Reflective Practice

    ERIC Educational Resources Information Center

    Tummons, Jonathan

    2011-01-01

    This article forms part of an exploration of assessment on one part-time higher education course: a professional qualification for teachers and trainers in the learning and skills sector, which is delivered on a franchise basis across a network of colleges in the north of England. This article proposes that the validity of the assessment of…

  16. Toward multidomain integrated network management for ATM and SDH networks

    NASA Astrophysics Data System (ADS)

    Galis, Alex; Gantenbein, Dieter; Covaci, Stefan; Bianza, Carlo; Karayannis, Fotis; Mykoniatis, George

    1996-12-01

    ACTS Project AC080 MISA has embarked upon the task of realizing and validating via European field trials integrated end-to-end management of hybrid SDH and ATM networks in the framework of open network provision. This paper reflects the initial work of the project and gives an overview of the proposed MISA system architecture and initial design. We describe our understanding of the underlying enterprise model in the network management context, including the concept of the MISA Global Broadband Connectivity Management service. It supports Integrated Broadband Communication by defining an end-to-end broadband connection service in a multi-domain business environment. Its implementation by the MISA consortium within trials across Europe aims for an efficient management of network resources of the SDH and ATM infrastructure, considering optimum end-to-end quality of service and the needs of a number of telecommunication actors: customers, value-added service providers, and network providers.

  17. Soil Moisture Sensing Using Reflected GPS Signals: Description of the GPS Soil Moisture Product.

    NASA Astrophysics Data System (ADS)

    Larson, Kristine; Small, Eric; Chew, Clara

    2015-04-01

    As first demonstrated by the GPS reflections group in 2008, data from GPS networks can be used to monitor multiple parameters of the terrestrial water cycle. The GPS L-band signals take two paths: (1) the "direct" signal travels from the satellite to the antenna, which is typically located 2-3 meters above the ground; (2) the reflected signal interacts with the Earth's surface before traveling to the antenna. The direct signal is used by geophysicists and surveyors to measure the position of the antenna, while the effects of reflected signals are a source of error. If one focuses on the reflected signal rather than the positioning observables, one has a method that is sensitive to surface soil moisture (top 5 cm), vegetation water content, and snow depth. This method - known as GPS Interferometric Reflectometry (GPS-IR) - has a footprint of ~1000 m2 for most GPS sites. This is intermediate in scale to most in situ and satellite observations. A significant advantage of GPS-IR is that data from existing GPS networks can be used without any changes to the instrumentation. This means that there is a new source of cost-effective instrumentation for satellite validation and climate studies. This presentation will provide an overview of the GPS-IR methodology with an emphasis on the soil moisture product. GPS water cycle products are currently produced on a daily basis for a network of ~500 sites in the western United States; results are freely available at http://xenon.colorado.edu/portal. Plans to expand the GPS-IR method to the network of international GPS sites will also be discussed.

  18. Evaluation of MODIS and VIIRS Albedo Products Using Ground and Airborne Measurements and Development of Ceos/Wgcv/Lpv Albedo Ecv Protocols

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Schaaf, C.; Sun, Q.; Liu, Y.; Saenz, E. J.; Gatebe, C. K.

    2014-12-01

    Surface albedo, defined as the ratio of the hemispheric reflected solar radiation flux to the incident flux upon the surface, is one of the essential climate variables and quantifies the radiation interaction between the atmosphere and the land surface. An absolute accuracy of 0.02-0.05 for global surface albedo is required by climate models. The MODerate resolution Imaging Spectroradiometer (MODIS) standard BRDF/albedo product makes use of a linear "kernel-driven" RossThick-LiSparse Reciprocal (RTLSR) BRDF model to describe the reflectance anisotropy. The surface albedo is calculated by integrating the BRDF over the above ground hemisphere. While MODIS Terra was launched in Dec 1999 and MODIS Aqua in 2002, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite was launched more recently on October 28, 2011. Thus a long term record of BRDF, albedo and Nadir BRDF-Adjusted Reflectance (NBAR) products from VIIRS can be generated through MODIS heritage algorithms. Several investigations have evaluated the MODIS albedo products during the growing season, as well as during dormant and snow covered periods. The Land Product Validation (LPV) sub-group of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. The validation of global surface radiation/albedo products is one of the LPV subgroup activities. In this research, a reference dataset covering various land surface types and vegetation structure is assembled to assess the accuracy of satellite albedo products. This dataset includes in situ data (Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc.) and airborne measurements (e.g. Cloud Absorption Radiometer (CAR)). Spatially representative analysis is applied to each site to establish whether the ground measurements can adequately represent moderate spatial resolution remotely sensed albedo products.

  19. Experimental implementation of array-compressed parallel transmission at 7 tesla.

    PubMed

    Yan, Xinqiang; Cao, Zhipeng; Grissom, William A

    2016-06-01

    To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Design and Validation of a Ten-Port Waveguide Reflectometer Sensor: Application to Efficiency Measurement and Optimization of Microwave-Heating Ovens

    PubMed Central

    Pedreño-Molina, Juan L.; Monzó-Cabrera, Juan; Lozano-Guerrero, Antonio; Toledo-Moreo, Ana

    2008-01-01

    This work presents the design, manufacturing process, calibration and validation of a new microwave ten-port waveguide reflectometer based on the use of neural networks. This low-cost novel device solves some of the shortcomings of previous reflectometers such as non-linear behavior of power sensors, noise presence and the complexity of the calibration procedure, which is often based on complex mathematical equations. These problems, which imply the reduction of the reflection coefficient measurement accuracy, have been overcome by using a higher number of probes than usual six-port configurations and by means of the use of Radial Basis Function (RBF) neural networks in order to reduce the influence of noise and non-linear processes over the measurements. Additionally, this sensor can be reconfigured whenever some of the eight coaxial power detectors fail, still providing accurate values in real time. The ten-port performance has been compared against a high-cost measurement instrument such as a vector network analyzer and applied to the measurement and optimization of energy efficiency of microwave ovens, with good results. PMID:27873961

  1. A pairwise maximum entropy model accurately describes resting-state human brain networks

    PubMed Central

    Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki

    2013-01-01

    The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks. PMID:23340410

  2. GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.

    2018-01-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South Korea has a higher ratio within PEE than that over China and Japan.

  3. Detecting severity of delamination in a lap joint using S-parameters

    NASA Astrophysics Data System (ADS)

    Islam, M. M.; Huang, H.

    2018-03-01

    The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.

  4. Retrieval of the Land Surface Reflectance for Landsat-8 and Sentinel-2 and its validation.

    NASA Astrophysics Data System (ADS)

    Roger, J. C.; Vermote, E.; Skakun, S.; Franch, B.; Holben, B. N.; Justice, C. O.

    2017-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. For 25 years, Vermote and al. develop atmospheric corrections methods to define a land surface reflectance product for various satellites (AVHRR, MODIS, VIIRS…). This presentation highlights the algorithms developed both for Landsant-8 and Sentinel-2. We also emphasize the validation of the "Land surface reflectance" satellite products, which is a very important step to be done. For that purpose, we compared the surface reflectance products to a reference determined by using the accurate radiative transfer code 6S and very detailed measurements of the atmosphere obtained over the AERONET network (which allows to test for a large range of aerosol characteristics); formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. We describe here the protocol we have been working on based on our experience with the AERONET data and its application to Landsat-8 and Sentinel-2). We also derive a detailed error budget in relation to this approach. For a mean loaded atmosphere, t550 less than 0.25, the maximum uncertainty is 0.0025 corresponding to a relative uncertainty (in the RED channels): U < 1% for rsurf > 0.10, and 1% < U <2% for 0.10 >rsurf > 0.04.

  5. Pathway mapping and development of disease-specific biomarkers: protein-based network biomarkers

    PubMed Central

    Chen, Hao; Zhu, Zhitu; Zhu, Yichun; Wang, Jian; Mei, Yunqing; Cheng, Yunfeng

    2015-01-01

    It is known that a disease is rarely a consequence of an abnormality of a single gene, but reflects the interactions of various processes in a complex network. Annotated molecular networks offer new opportunities to understand diseases within a systems biology framework and provide an excellent substrate for network-based identification of biomarkers. The network biomarkers and dynamic network biomarkers (DNBs) represent new types of biomarkers with protein–protein or gene–gene interactions that can be monitored and evaluated at different stages and time-points during development of disease. Clinical bioinformatics as a new way to combine clinical measurements and signs with human tissue-generated bioinformatics is crucial to translate biomarkers into clinical application, validate the disease specificity, and understand the role of biomarkers in clinical settings. In this article, the recent advances and developments on network biomarkers and DNBs are comprehensively reviewed. How network biomarkers help a better understanding of molecular mechanism of diseases, the advantages and constraints of network biomarkers for clinical application, clinical bioinformatics as a bridge to the development of diseases-specific, stage-specific, severity-specific and therapy predictive biomarkers, and the potentials of network biomarkers are also discussed. PMID:25560835

  6. Application of effective wavelengths and BP neural network for the discrimination of varieties of instant milk tea powders using visible and near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Fei; He, Yong; Wang, Li

    2007-11-01

    In order to implement the fast discrimination of different milk tea powders with different internal qualities, visible and near infrared (Vis/NIR) spectroscopy combined with effective wavelengths (EWs) and BP neural network (BPNN) was investigated as a new approach. Five brands of milk teas were obtained and 225 samples were selected randomly for the calibration set, while 75 samples for the validation set. The EWs were selected according to x-loading weights and regression coefficients by PLS analysis after some preprocessing. A total of 18 EWs (400, 401, 452, 453, 502, 503, 534, 535, 594, 595, 635, 636, 688, 689, 987, 988, 995 and 996 nm) were selected as the inputs of BPNN model. The performance was validated by the calibration and validation sets. The threshold error of prediction was set as +/-0.1 and an excellent precision and recognition ratio of 100% for calibration set and 98.7% for validation set were achieved. The prediction results indicated that the EWs reflected the main characteristics of milk tea of different brands based on Vis/NIR spectroscopy and BPNN model, and the EWs would be useful for the development of portable instrument to discriminate the variety and detect the adulteration of instant milk tea powders.

  7. Blood hyperviscosity identification with reflective spectroscopy of tongue tip based on principal component analysis combining artificial neural network.

    PubMed

    Liu, Ming; Zhao, Jing; Lu, XiaoZuo; Li, Gang; Wu, Taixia; Zhang, LiFu

    2018-05-10

    With spectral methods, noninvasive determination of blood hyperviscosity in vivo is very potential and meaningful in clinical diagnosis. In this study, 67 male subjects (41 health, and 26 hyperviscosity according to blood sample analysis results) participate. Reflectance spectra of subjects' tongue tips is measured, and a classification method bases on principal component analysis combined with artificial neural network model is built to identify hyperviscosity. Hold-out and Leave-one-out methods are used to avoid significant bias and lessen overfitting problem, which are widely accepted in the model validation. To measure the performance of the classification, sensitivity, specificity, accuracy and F-measure are calculated, respectively. The accuracies with 100 times Hold-out method and 67 times Leave-one-out method are 88.05% and 97.01%, respectively. Experimental results indicate that the built classification model has certain practical value and proves the feasibility of using spectroscopy to identify hyperviscosity by noninvasive determination.

  8. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions.

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Yehonatan; Reznikov, Natalie; Shahar, Ron; Weiner, Steve

    2017-09-01

    Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA) analysis - an analysis of network topological parameters and regularity of network-forming nodes, was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network) and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes). These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices), analyze the ITA parameters in porcine proximal femora and mandibles and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with 3 edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkable conserved, but locally do adapt to applied stresses.

  9. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  10. Modeling the variations of reflection coefficient of Earth's lower ionosphere using very low frequency radio wave data by artificial neural network

    NASA Astrophysics Data System (ADS)

    Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh

    2016-08-01

    The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.

  11. Toward cost-efficient sampling methods

    NASA Astrophysics Data System (ADS)

    Luo, Peng; Li, Yongli; Wu, Chong; Zhang, Guijie

    2015-09-01

    The sampling method has been paid much attention in the field of complex network in general and statistical physics in particular. This paper proposes two new sampling methods based on the idea that a small part of vertices with high node degree could possess the most structure information of a complex network. The two proposed sampling methods are efficient in sampling high degree nodes so that they would be useful even if the sampling rate is low, which means cost-efficient. The first new sampling method is developed on the basis of the widely used stratified random sampling (SRS) method and the second one improves the famous snowball sampling (SBS) method. In order to demonstrate the validity and accuracy of two new sampling methods, we compare them with the existing sampling methods in three commonly used simulation networks that are scale-free network, random network, small-world network, and also in two real networks. The experimental results illustrate that the two proposed sampling methods perform much better than the existing sampling methods in terms of achieving the true network structure characteristics reflected by clustering coefficient, Bonacich centrality and average path length, especially when the sampling rate is low.

  12. Gene network inherent in genomic big data improves the accuracy of prognostic prediction for cancer patients.

    PubMed

    Kim, Yun Hak; Jeong, Dae Cheon; Pak, Kyoungjune; Goh, Tae Sik; Lee, Chi-Seung; Han, Myoung-Eun; Kim, Ji-Young; Liangwen, Liu; Kim, Chi Dae; Jang, Jeon Yeob; Cha, Wonjae; Oh, Sae-Ock

    2017-09-29

    Accurate prediction of prognosis is critical for therapeutic decisions regarding cancer patients. Many previously developed prognostic scoring systems have limitations in reflecting recent progress in the field of cancer biology such as microarray, next-generation sequencing, and signaling pathways. To develop a new prognostic scoring system for cancer patients, we used mRNA expression and clinical data in various independent breast cancer cohorts (n=1214) from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). A new prognostic score that reflects gene network inherent in genomic big data was calculated using Network-Regularized high-dimensional Cox-regression (Net-score). We compared its discriminatory power with those of two previously used statistical methods: stepwise variable selection via univariate Cox regression (Uni-score) and Cox regression via Elastic net (Enet-score). The Net scoring system showed better discriminatory power in prediction of disease-specific survival (DSS) than other statistical methods (p=0 in METABRIC training cohort, p=0.000331, 4.58e-06 in two METABRIC validation cohorts) when accuracy was examined by log-rank test. Notably, comparison of C-index and AUC values in receiver operating characteristic analysis at 5 years showed fewer differences between training and validation cohorts with the Net scoring system than other statistical methods, suggesting minimal overfitting. The Net-based scoring system also successfully predicted prognosis in various independent GEO cohorts with high discriminatory power. In conclusion, the Net-based scoring system showed better discriminative power than previous statistical methods in prognostic prediction for breast cancer patients. This new system will mark a new era in prognosis prediction for cancer patients.

  13. Gene network inherent in genomic big data improves the accuracy of prognostic prediction for cancer patients

    PubMed Central

    Kim, Yun Hak; Jeong, Dae Cheon; Pak, Kyoungjune; Goh, Tae Sik; Lee, Chi-Seung; Han, Myoung-Eun; Kim, Ji-Young; Liangwen, Liu; Kim, Chi Dae; Jang, Jeon Yeob; Cha, Wonjae; Oh, Sae-Ock

    2017-01-01

    Accurate prediction of prognosis is critical for therapeutic decisions regarding cancer patients. Many previously developed prognostic scoring systems have limitations in reflecting recent progress in the field of cancer biology such as microarray, next-generation sequencing, and signaling pathways. To develop a new prognostic scoring system for cancer patients, we used mRNA expression and clinical data in various independent breast cancer cohorts (n=1214) from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). A new prognostic score that reflects gene network inherent in genomic big data was calculated using Network-Regularized high-dimensional Cox-regression (Net-score). We compared its discriminatory power with those of two previously used statistical methods: stepwise variable selection via univariate Cox regression (Uni-score) and Cox regression via Elastic net (Enet-score). The Net scoring system showed better discriminatory power in prediction of disease-specific survival (DSS) than other statistical methods (p=0 in METABRIC training cohort, p=0.000331, 4.58e-06 in two METABRIC validation cohorts) when accuracy was examined by log-rank test. Notably, comparison of C-index and AUC values in receiver operating characteristic analysis at 5 years showed fewer differences between training and validation cohorts with the Net scoring system than other statistical methods, suggesting minimal overfitting. The Net-based scoring system also successfully predicted prognosis in various independent GEO cohorts with high discriminatory power. In conclusion, the Net-based scoring system showed better discriminative power than previous statistical methods in prognostic prediction for breast cancer patients. This new system will mark a new era in prognosis prediction for cancer patients. PMID:29100405

  14. Bilingual advantages in executive functioning: problems in convergent validity, discriminant validity, and the identification of the theoretical constructs

    PubMed Central

    Paap, Kenneth R.; Sawi, Oliver

    2014-01-01

    A sample of 58 bilingual and 62 monolingual university students completed four tasks commonly used to test for bilingual advantages in executive functioning (EF): antisaccade, attentional network test, Simon, and color-shape switching. Across the four tasks, 13 different indices were derived that are assumed to reflect individual differences in inhibitory control, monitoring, or switching. The effects of bilingualism on the 13 measures were explored by directly comparing the means of the two language groups and through regression analyses using a continuous measure of bilingualism and multiple demographic characteristics as predictors. Across the 13 different measures and two types of data analysis there were very few significant results and those that did occur supported a monolingual advantage. An equally important goal was to assess the convergent validity through cross-task correlations of indices assume to measure the same component of executive functioning. Most of the correlations using difference-score measures were non-significant and many near zero. Although modestly higher levels of convergent validity are sometimes reported, a review of the existing literature suggests that bilingual advantages (or disadvantages) may reflect task-specific differences that are unlikely to generalize to important general differences in EF. Finally, as cautioned by Salthouse, assumed measures of executive functioning may also be threatened by a lack of discriminant validity that separates individual or group differences in EF from those in general fluid intelligence or simple processing speed. PMID:25249988

  15. Analyzing the evolutionary mechanisms of the Air Transportation System-of-Systems using network theory and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Kotegawa, Tatsuya

    Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high robustness is achievable only in exchange of lower passenger travel and fuel burn efficiency. However, increase in the network density can mitigate this trade-off.

  16. GOCI Yonsei aerosol retrieval version 2 aerosol products: improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, M.; Kim, J.; Lee, J.; KIM, M.; Park, Y. J.; Holben, B. N.; Eck, T. F.; Li, Z.; Song, C. H.

    2017-12-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD ( ) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The shows reduced median bias and increased ratio within range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD ( ) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error ( is within -0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan. Hourly AOD products based on the improved GOCI YAER AOD could contribute to better understandings of aerosols in terms of long-term climate changes and short-term air quality monitoring and forecasting perspectives over East Asia, especially rapid diurnal variation and transboundary transport.

  17. A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks

    PubMed Central

    Wang, Ping; Zhang, Lin; Li, Victor O. K.

    2013-01-01

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708

  18. A stratified acoustic model accounting for phase shifts for underwater acoustic networks.

    PubMed

    Wang, Ping; Zhang, Lin; Li, Victor O K

    2013-05-13

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated.

  19. Snow measurement Using P-Band Signals of Opportunity Reflectometry

    NASA Astrophysics Data System (ADS)

    Shah, R.; Yueh, S. H.; Xu, X.; Elder, K.

    2017-12-01

    Snow water storage in land is a critical parameter of the water cycle. In this study, we develop methods for estimating reflectance from bistatic scattering of digital communication Signals of Opportunity (SoOp) across the available microwave spectrum from VHF to Ka band and show results from proof-of-concept experiments at the Fraser Experimental Forest, Colorado to acquire measurements to relate the SoOp phase and reflectivity to a snow-covered soil surface. The forward modeling of this scenario will be presented and multiple sensitivities were conducted. Available SoOp receiver data along with a network of in situ sensor measurements collected since January 2016 will be used to validate theoretical modeling results. In the winter season of 2016 and 2017, we conducted a field experiment using VHF/UHF-band illuminating sources to detect SWE and surface reflectivity. The amplitude of the reflectivity showed sensitivity to the wetness of snow pack and ground reflectivity while the phase showed sensitivity to SWE. This use of this concept can be helpful to measure the snow water storage in land globally.

  20. Exponential lag function projective synchronization of memristor-based multidirectional associative memory neural networks via hybrid control

    NASA Astrophysics Data System (ADS)

    Yuan, Manman; Wang, Weiping; Luo, Xiong; Li, Lixiang; Kurths, Jürgen; Wang, Xiao

    2018-03-01

    This paper is concerned with the exponential lag function projective synchronization of memristive multidirectional associative memory neural networks (MMAMNNs). First, we propose a new model of MMAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying discrete delays and distributed time delays. Second, we design two kinds of hybrid controllers. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the controllers are carefully designed to confirm the process of different types of synchronization in the MMAMNNs. Third, sufficient criteria guaranteeing the synchronization of system are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.

  1. Extracting intrinsic functional networks with feature-based group independent component analysis.

    PubMed

    Calhoun, Vince D; Allen, Elena

    2013-04-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.

  2. Validation of Community Models: Identifying Events in Space Weather Model Timelines

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2009-01-01

    I develop and document a set of procedures which test the quality of predictions of solar wind speed and polarity of the interplanetary magnetic field (IMF) made by coupled models of the ambient solar corona and heliosphere. The Wang-Sheeley-Arge (WSA) model is used to illustrate the application of these validation procedures. I present an algorithm which detects transitions of the solar wind from slow to high speed. I also present an algorithm which processes the measured polarity of the outward directed component of the IMF. This removes high-frequency variations to expose the longer-scale changes that reflect IMF sector changes. I apply these algorithms to WSA model predictions made using a small set of photospheric synoptic magnetograms obtained by the Global Oscillation Network Group as input to the model. The results of this preliminary validation of the WSA model (version 1.6) are summarized.

  3. Whole-brain functional connectivity identification of functional dyspepsia.

    PubMed

    Nan, Jiaofen; Liu, Jixin; Li, Guoying; Xiong, Shiwei; Yan, Xuemei; Yin, Qing; Zeng, Fang; von Deneen, Karen M; Liang, Fanrong; Gong, Qiyong; Qin, Wei; Tian, Jie

    2013-01-01

    Recent neuroimaging studies have shown local brain aberrations in functional dyspepsia (FD) patients, yet little attention has been paid to the whole-brain resting-state functional network abnormalities. The purpose of this study was to investigate whether FD disrupts the patterns of whole-brain networks and the abnormal functional connectivity could reflect the severity of the disease. The dysfunctional interactions between brain regions at rest were investigated in FD patients as compared with 40 age- and gender- matched healthy controls. Multivariate pattern analysis was used to evaluate the discriminative power of our results for classifying patients from controls. In our findings, the abnormal brain functional connections were mainly situated within or across the limbic/paralimbic system, the prefrontal cortex, the tempo-parietal areas and the visual cortex. About 96% of the subjects among the original dataset were correctly classified by a leave one-out cross-validation approach, and 88% accuracy was also validated in a replication dataset. The classification features were significantly associated with the patients' dyspepsia symptoms, the self-rating depression scale and self-rating anxiety scale, but it was not correlated with duration of FD patients (p>0.05). Our results may indicate the effectiveness of the altered brain functional connections reflecting the disease pathophysiology underling FD. These dysfunctional connections may be the epiphenomena or causative agents of FD, which may be affected by clinical severity and its related emotional dimension of the disease rather than the clinical course.

  4. Identification of common coexpression modules based on quantitative network comparison.

    PubMed

    Jo, Yousang; Kim, Sanghyeon; Lee, Doheon

    2018-06-13

    Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method. We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs. We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.

  5. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    PubMed

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation. © 2013 AlphaMed Press.

  6. The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study.

    PubMed

    Artemenko, Christina; Soltanlou, Mojtaba; Ehlis, Ann-Christine; Nuerk, Hans-Christoph; Dresler, Thomas

    2018-03-10

    Arithmetic processing in adults is known to rely on a frontal-parietal network. However, neurocognitive research focusing on the neural and behavioral correlates of arithmetic development has been scarce, even though the acquisition of arithmetic skills is accompanied by changes within the fronto-parietal network of the developing brain. Furthermore, experimental procedures are typically adjusted to constraints of functional magnetic resonance imaging, which may not reflect natural settings in which children and adolescents actually perform arithmetic. Therefore, we investigated the longitudinal neurocognitive development of processes involved in performing the four basic arithmetic operations in 19 adolescents. By using functional near-infrared spectroscopy, we were able to use an ecologically valid task, i.e., a written production paradigm. A common pattern of activation in the bilateral fronto-parietal network for arithmetic processing was found for all basic arithmetic operations. Moreover, evidence was obtained for decreasing activation during subtraction over the course of 1 year in middle and inferior frontal gyri, and increased activation during addition and multiplication in angular and middle temporal gyri. In the self-paced block design, parietal activation in multiplication and left angular and temporal activation in addition were observed to be higher for simple than for complex blocks, reflecting an inverse effect of arithmetic complexity. In general, the findings suggest that the brain network for arithmetic processing is already established in 12-14 year-old adolescents, but still undergoes developmental changes.

  7. Cell-Type-Specific Predictive Network Yields Novel Insights into Mouse Embryonic Stem Cell Self-Renewal and Cell Fate

    PubMed Central

    Dowell, Karen G.; Simons, Allen K.; Wang, Zack Z.; Yun, Kyuson; Hibbs, Matthew A.

    2013-01-01

    Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC) self-renewal by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data: ∼2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by stem cell researchers (at http://StemSight.org) to explore hypotheses about gene function in the context of self-renewal and to prioritize genes of interest for experimental validation. PMID:23468881

  8. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    NASA Astrophysics Data System (ADS)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.

  9. Correcting Bidirectional Effects in Remote Sensing Reflectance from Coastal Waters

    NASA Astrophysics Data System (ADS)

    Stamnes, K. H.; Fan, Y.; Li, W.; Voss, K. J.; Gatebe, C. K.

    2016-02-01

    Understanding bidirectional effects including sunglint is important for GEO-CAPE for several reasons: (i) correct interpretation of ocean color data; (ii) comparing consistency of spectral radiance data derived from space observations with a single instrument for a variety of illumination and viewing conditions; (iii) merging data collected by different instruments operating simultaneously. We present a new neural network (NN) method to correct bidirectional effects in water-leaving radiance for both Case 1 and Case 2 waters. We also discuss a new BRDF and 2D sun-glint model that was validated by comparing simulated surface reflectances with Cloud Absorption Radiometer (CAR) data. Finally, we present an extension of our marine bio-optical model to the UV range that accounts for the seasonal dependence of the inherent optical properties (IOPs).

  10. What do you mean "drunk"? Convergent validation of multiple methods of mapping alcohol expectancy memory networks.

    PubMed

    Reich, Richard R; Ariel, Idan; Darkes, Jack; Goldman, Mark S

    2012-09-01

    The configuration and activation of memory networks have been theorized as mechanisms that underlie the often observed link between alcohol expectancies and drinking. A key component of this network is the expectancy "drunk." The memory network configuration of "drunk" was mapped by using cluster analysis of data gathered from the paired-similarities task (PST) and the Alcohol Expectancy Multi-Axial Assessment (AEMAX). A third task, the free associates task (FA), assessed participants' strongest alcohol expectancy associates and was used as a validity check for the cluster analyses. Six hundred forty-seven 18-19-year-olds completed these measures and a measure of alcohol consumption at baseline assessment for a 5-year longitudinal study. For both the PST and AEMAX, "drunk" clustered with mainly negative and sedating effects (e.g., "sick," "dizzy," "sleepy") in lighter drinkers and with more positive and arousing effects (e.g., "happy," "horny," "outgoing") in heavier drinkers, showing that the cognitive organization of expectancies reflected drinker type (and might influence the choice to drink). Consistent with the cluster analyses, in participants who gave "drunk" as an FA response, heavier drinkers rated the word as more positive and arousing than lighter drinkers. Additionally, gender did not account for the observed drinker-type differences. These results support the notion that for some emerging adults, drinking may be linked to what they mean by the word "drunk." PsycINFO Database Record (c) 2012 APA, all rights reserved.

  11. Application of a neural network for reflectance spectrum classification

    NASA Astrophysics Data System (ADS)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  12. Performance Evaluation of Public Non-Profit Hospitals Using a BP Artificial Neural Network: The Case of Hubei Province in China

    PubMed Central

    Li, Chunhui; Yu, Chuanhua

    2013-01-01

    To provide a reference for evaluating public non-profit hospitals in the new environment of medical reform, we established a performance evaluation system for public non-profit hospitals. The new “input-output” performance model for public non-profit hospitals is based on four primary indexes (input, process, output and effect) that include 11 sub-indexes and 41 items. The indicator weights were determined using the analytic hierarchy process (AHP) and entropy weight method. The BP neural network was applied to evaluate the performance of 14 level-3 public non-profit hospitals located in Hubei Province. The most stable BP neural network was produced by comparing different numbers of neurons in the hidden layer and using the “Leave-one-out” Cross Validation method. The performance evaluation system we established for public non-profit hospitals could reflect the basic goal of the new medical health system reform in China. Compared with PLSR, the result indicated that the BP neural network could be used effectively for evaluating the performance public non-profit hospitals. PMID:23955238

  13. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    NASA Astrophysics Data System (ADS)

    von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.

    2011-02-01

    For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite - ENVISAT - of the European Space Agency - ESA) and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft) observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF) is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC) or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET) over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time. For the investigated Asian region increasing AOT have been found.

  14. [Study of building quantitative analysis model for chlorophyll in winter wheat with reflective spectrum using MSC-ANN algorithm].

    PubMed

    Liang, Xue; Ji, Hai-yan; Wang, Peng-xin; Rao, Zhen-hong; Shen, Bing-hui

    2010-01-01

    Preprocess method of multiplicative scatter correction (MSC) was used to reject noises in the original spectra produced by the environmental physical factor effectively, then the principal components of near-infrared spectroscopy were calculated by nonlinear iterative partial least squares (NIPALS) before building the back propagation artificial neural networks method (BP-ANN), and the numbers of principal components were calculated by the method of cross validation. The calculated principal components were used as the inputs of the artificial neural networks model, and the artificial neural networks model was used to find the relation between chlorophyll in winter wheat and reflective spectrum, which can predict the content of chlorophyll in winter wheat. The correlation coefficient (r) of calibration set was 0.9604, while the standard deviation (SD) and relative standard deviation (RSD) was 0.187 and 5.18% respectively. The correlation coefficient (r) of predicted set was 0.9600, and the standard deviation (SD) and relative standard deviation (RSD) was 0.145 and 4.21% respectively. It means that the MSC-ANN algorithm can reject noises in the original spectra produced by the environmental physical factor effectively and set up an exact model to predict the contents of chlorophyll in living leaves veraciously to replace the classical method and meet the needs of fast analysis of agricultural products.

  15. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    PubMed Central

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks. PMID:26745498

  16. A neural network method to correct bidirectional effects in water-leaving radiance

    NASA Astrophysics Data System (ADS)

    Fan, Yongzhen; Li, Wei; Voss, Kenneth J.; Gatebe, Charles K.; Stamnes, Knut

    2017-02-01

    The standard method to convert the measured water-leaving radiances from the observation direction to the nadir direction developed by Morel and coworkers requires knowledge of the chlorophyll concentration (CHL). Also, the standard method was developed for open ocean water, which makes it unsuitable for turbid coastal waters. We introduce a neural network method to convert the water-leaving radiance (or the corresponding remote sensing reflectance) from the observation direction to the nadir direction. This method does not require any prior knowledge of the water constituents or the inherent optical properties (IOPs). This method is fast, accurate and can be easily adapted to different remote sensing instruments. Validation using NuRADS measurements in different types of water shows that this method is suitable for both open ocean and coastal waters. In open ocean or chlorophyll-dominated waters, our neural network method produces corrections similar to those of the standard method. In turbid coastal waters, especially sediment-dominated waters, a significant improvement was obtained compared to the standard method.

  17. Grand canonical validation of the bipartite international trade network.

    PubMed

    Straka, Mika J; Caldarelli, Guido; Saracco, Fabio

    2017-08-01

    Devising strategies for economic development in a globally competitive landscape requires a solid and unbiased understanding of countries' technological advancements and similarities among export products. Both can be addressed through the bipartite representation of the International Trade Network. In this paper, we apply the recently proposed grand canonical projection algorithm to uncover country and product communities. Contrary to past endeavors, our methodology, based on information theory, creates monopartite projections in an unbiased and analytically tractable way. Single links between countries or products represent statistically significant signals, which are not accounted for by null models such as the bipartite configuration model. We find stable country communities reflecting the socioeconomic distinction in developed, newly industrialized, and developing countries. Furthermore, we observe product clusters based on the aforementioned country groups. Our analysis reveals the existence of a complicated structure in the bipartite International Trade Network: apart from the diversification of export baskets from the most basic to the most exclusive products, we observe a statistically significant signal of an export specialization mechanism towards more sophisticated products.

  18. Grand canonical validation of the bipartite international trade network

    NASA Astrophysics Data System (ADS)

    Straka, Mika J.; Caldarelli, Guido; Saracco, Fabio

    2017-08-01

    Devising strategies for economic development in a globally competitive landscape requires a solid and unbiased understanding of countries' technological advancements and similarities among export products. Both can be addressed through the bipartite representation of the International Trade Network. In this paper, we apply the recently proposed grand canonical projection algorithm to uncover country and product communities. Contrary to past endeavors, our methodology, based on information theory, creates monopartite projections in an unbiased and analytically tractable way. Single links between countries or products represent statistically significant signals, which are not accounted for by null models such as the bipartite configuration model. We find stable country communities reflecting the socioeconomic distinction in developed, newly industrialized, and developing countries. Furthermore, we observe product clusters based on the aforementioned country groups. Our analysis reveals the existence of a complicated structure in the bipartite International Trade Network: apart from the diversification of export baskets from the most basic to the most exclusive products, we observe a statistically significant signal of an export specialization mechanism towards more sophisticated products.

  19. When is hub gene selection better than standard meta-analysis?

    PubMed

    Langfelder, Peter; Mischel, Paul S; Horvath, Steve

    2013-01-01

    Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.

  20. Network switching strategy for energy conservation in heterogeneous networks.

    PubMed

    Song, Yujae; Choi, Wooyeol; Baek, Seungjae

    2017-01-01

    In heterogeneous networks (HetNets), the large-scale deployment of small base stations (BSs) together with traditional macro BSs is an economical and efficient solution that is employed to address the exponential growth in mobile data traffic. In dense HetNets, network switching, i.e., handovers, plays a critical role in connecting a mobile terminal (MT) to the best of all accessible networks. In the existing literature, a handover decision is made using various handover metrics such as the signal-to-noise ratio, data rate, and movement speed. However, there are few studies on handovers that focus on energy efficiency in HetNets. In this paper, we propose a handover strategy that helps to minimize energy consumption at BSs in HetNets without compromising the quality of service (QoS) of each MT. The proposed handover strategy aims to capture the effect of the stochastic behavior of handover parameters and the expected energy consumption due to handover execution when making a handover decision. To identify the validity of the proposed handover strategy, we formulate a handover problem as a constrained Markov decision process (CMDP), by which the effects of the stochastic behaviors of handover parameters and consequential handover energy consumption can be accurately reflected when making a handover decision. In the CMDP, the aim is to minimize the energy consumption to service an MT over the lifetime of its connection, and the constraint is to guarantee the QoS requirements of the MT given in terms of the transmission delay and call-dropping probability. We find an optimal policy for the CMDP using a combination of the Lagrangian method and value iteration. Simulation results verify the validity of the proposed handover strategy.

  1. Neural network method to correct bidirectional effects in water-leaving radiance.

    PubMed

    Fan, Yongzhen; Li, Wei; Voss, Kenneth J; Gatebe, Charles K; Stamnes, Knut

    2016-01-01

    Ocean color algorithms that rely on "atmospherically corrected" nadir water-leaving radiances to infer information about marine constituents such as the chlorophyll concentration depend on a reliable method to convert the angle-dependent measured radiances from the observation direction to the nadir direction. It is also important to convert the measured radiances to the nadir direction when comparing and merging products from different satellite missions. The standard correction method developed by Morel and coworkers requires knowledge of the chlorophyll concentration. Also, the standard method was developed based on the Case 1 (open ocean) assumption, which makes it unsuitable for Case 2 situations such as turbid coastal waters. We introduce a neural network method to convert the angle-dependent water-leaving radiance (or the corresponding remote sensing reflectance) from the observation direction to the nadir direction. This method relies on neither an "atmospheric correction" nor prior knowledge of the water constituents or the inherent optical properties. It directly converts the remote sensing reflectance from an arbitrary slanted viewing direction to the nadir direction by using a trained neural network. This method is fast and accurate, and it can be easily adapted to different remote sensing instruments. Validation using NuRADS measurements in different types of water shows that this method is suitable for both Case 1 and Case 2 waters. In Case 1 or chlorophyll-dominated waters, our neural network method produces corrections similar to those of the standard method. In Case 2 waters, especially sediment-dominated waters, a significant improvement was obtained compared to the standard method.

  2. Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements.

    PubMed

    Harmel, Tristan; Gilerson, Alexander; Tonizzo, Alberto; Chowdhary, Jacek; Weidemann, Alan; Arnone, Robert; Ahmed, Sam

    2012-12-10

    Above-water measurements of water-leaving radiance are widely used for water-quality monitoring and ocean-color satellite data validation. Reflected skylight in above-water radiometry needs to be accurately estimated prior to derivation of water-leaving radiance. Up-to-date methods to estimate reflection of diffuse skylight on rough sea surfaces are based on radiative transfer simulations and sky radiance measurements. But these methods neglect the polarization state of the incident skylight, which is generally highly polarized. In this paper, the effects of polarization on the sea surface reflectance and the subsequent water-leaving radiance estimation are investigated. We show that knowledge of the polarization field of the diffuse skylight significantly improves above-water radiometry estimates, in particular in the blue part of the spectrum where the reflected skylight is dominant. A newly developed algorithm based on radiative transfer simulations including polarization is described. Its application to the standard Aerosol Robotic Network-Ocean Color and hyperspectral radiometric measurements of the 1.5-year dataset acquired at the Long Island Sound site demonstrates the noticeable importance of considering polarization for water-leaving radiance estimation. In particular it is shown, based on time series of collocated data acquired in coastal waters, that the azimuth range of measurements leading to good-quality data is significantly increased, and that these estimates are improved by more than 12% at 413 nm. Full consideration of polarization effects is expected to significantly improve the quality of the field data utilized for satellite data validation or potential vicarious calibration purposes.

  3. Evaluation of Treatment- and Disease-Related Symptoms in Advanced Head and Neck Cancer: Validation of the National Comprehensive Cancer Network-Functional Assessment of Cancer Therapy-Head and Neck Cancer Symptom Index-22 (NFHNSI-22)

    PubMed Central

    Pearman, Timothy P.; Beaumont, Jennifer L.; Paul, Diane; Abernethy, Amy P.; Jacobsen, Paul B.; Syrjala, Karen L.; Von Roenn, Jamie; Cella, David

    2018-01-01

    Context The Functional Assessment of Cancer Therapy-Head and Neck is a well-validated assessment of quality of life used with patients diagnosed with head and neck cancers (HCNs). The present study is an attempt to evaluate and modify this instrument as necessary in light of the recent regulatory guidelines from the Food and Drug Administration on the use of patient-reported outcomes in clinical trials. Objectives Overall, the goal was to identify patients’ highest priority cancer symptoms, compare these symptoms with those suggested by oncology experts, and construct a brief symptom index to assess these symptoms and categorize them as treatment-related, disease-related, or related to general function and well-being. Methods Patients (N = 49) with advanced (Stages III and IV) HCNs were recruited from participating National Comprehensive Cancer Network institutions and community cancer support organizations in the Chicago area. Patients completed open-ended interviews and symptom checklists. Participating oncology physician experts also rated symptoms. Content validity was obtained by evaluating results alongside items in the Functional Assessment of Chronic Illness Therapy system. Eleven oncologists categorized symptoms in terms of importance and also whether the symptoms were primarily related to disease, treatment, or functional well-being. Results HCN-related symptoms endorsed as high priority by both patients and oncology experts were selected for the new National Comprehensive Cancer Network-Functional Assessment of Cancer Therapy-Head and Neck Cancer Symptom Index-22. The final version includes 22 items, which are broken down into disease-related symptoms, treatment side effects, or general function and well-being. The new scale has acceptable internal consistency (Cronbach’s coefficient alpha = 0.86), content validity for use in chemotherapy trials of patients with advanced disease, and concurrent validity as demonstrated by moderate-to-strong correlations with the existing Functional Assessment of Chronic Illness Therapy measure. Conclusion The National Comprehensive Cancer Network-Functional Assessment of Cancer Therapy-Head and Neck Cancer Symptom Index-22 adequately reflects symptom and side effect concerns of advanced HCN patients as well as oncology physicians. This instrument can be used to evaluate the most important disease-related symptoms, treatment side effects, and function/well-being in patients with advanced HCNs in clinical practice and research. PMID:23017622

  4. Assessment of VIIRS daily BRDF/Albedo product using in situ measurement of SURFRAD sites and MODIS V006 daily BRDF/Albedo product

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, Z.; Sun, Q.; Schaaf, C.; Roman, M. O.

    2014-12-01

    Surface albedo is defined as the ratio of upwelling to downwelling radiative flux. It's important for understanding the global energy budget. Remote sensing albedo products provide global time continuous coverage to help capture global energy variability and change. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite, launched on October 28, 2011, is aiming to provide continues data record with the MODerate resolution Imaging Spectroradiometer (MODIS), which has been providing Bidirectional Reflectance Distribution Function (BRDF)/Albedo product since 2000. By utilizing the same approach that was used for the most recently V006 daily MODIS BRDF/Albedo product, VIIRS has the ability to keep providing products for research and operational users. Validating albedo product of VIIRS using in situmeasured albedo can assure the quality for land surface climate and biosphere models, and comparing with MODIS product can assure time continues of BRDF/albedo product. The daily BRDF/Albedo product still uses 16-day period multispectral, cloud-cleared, atmospherically-corrected surface reflectances to fit the Ross-Thick/Li-Sparse-Reciprocal semi-empirical BRDF model. But the multiday observations are also weighted based on proximity to the production date in order to emphasis on that individual day. Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs. In situ albedo was driven from downwelling and upwelling radiative flux measured from the towers. Fraction of diffuse sky light was calculated using the direct and diffuse solar recorded in the data. It was further used to translate VIIRS, MODIS black sky and white sky albedos into actual albedo at local solar noon. Results show that VIIRS, MODIS and in situ albedo agree well at SURFARD spatially representative sites. While the VIIRS surface reflectance, snow, and cloud algorithms are still undergoing revision, the result shows that VIIRS can provide comparable albedo products with MODIS. The accuracy of both products can meet the requirement for climate and biosphere models. In situ albedo also can be gained from Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc., which will be used in future validation work.

  5. Global Precipitation Measurement (GPM) Validation Network

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew; Moris, K. Robert

    2010-01-01

    The method averages the minimum TRMM PR and Ground Radar (GR) sample volumes needed to match-up spatially/temporally coincident PR and GR data types. PR and GR averages are calculated at the geometric intersection of the PR rays with the individual Ground Radar(GR)sweeps. Along-ray PR data are averaged only in the vertical, GR data are averaged only in the horizontal. Small difference in PR & GR reflectivity high in the atmosphere, relatively larger differences. Version 6 TRMM PR underestimates rainfall in the case of convective rain in the lower part of the atmosphere by 30 to 40 percent.

  6. Global Precipitation Mission Visualization Tool

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  7. Reflections on Active Networking

    DTIC Science & Technology

    2005-01-01

    Reflections on Active Networking Jonathan M. Smith CIS Department, University of Pennsylvania jms@cis.upenn.edu Abstract Interactions among...called “ Active Networking” came into being. It demonstrates the deep roots Active Networking has in the programming languages, networking and operating...broader research agenda, and the specific goals pursued in the SwitchWare project. I close by speculating on possible futures for Active Networking

  8. Network Security Validation Using Game Theory

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Vicky; Gregoriades, Andreas

    Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.

  9. A decentralized mechanism for improving the functional robustness of distribution networks.

    PubMed

    Shi, Benyun; Liu, Jiming

    2012-10-01

    Most real-world distribution systems can be modeled as distribution networks, where a commodity can flow from source nodes to sink nodes through junction nodes. One of the fundamental characteristics of distribution networks is the functional robustness, which reflects the ability of maintaining its function in the face of internal or external disruptions. In view of the fact that most distribution networks do not have any centralized control mechanisms, we consider the problem of how to improve the functional robustness in a decentralized way. To achieve this goal, we study two important problems: 1) how to formally measure the functional robustness, and 2) how to improve the functional robustness of a network based on the local interaction of its nodes. First, we derive a utility function in terms of network entropy to characterize the functional robustness of a distribution network. Second, we propose a decentralized network pricing mechanism, where each node need only communicate with its distribution neighbors by sending a "price" signal to its upstream neighbors and receiving "price" signals from its downstream neighbors. By doing so, each node can determine its outflows by maximizing its own payoff function. Our mathematical analysis shows that the decentralized pricing mechanism can produce results equivalent to those of an ideal centralized maximization with complete information. Finally, to demonstrate the properties of our mechanism, we carry out a case study on the U.S. natural gas distribution network. The results validate the convergence and effectiveness of our mechanism when comparing it with an existing algorithm.

  10. Validating Large Scale Networks Using Temporary Local Scale Networks

    USDA-ARS?s Scientific Manuscript database

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  11. Exploring the Neural Basis of Avatar Identification in Pathological Internet Gamers and of Self-Reflection in Pathological Social Network Users

    PubMed Central

    Leménager, Tagrid; Dieter, Julia; Hill, Holger; Hoffmann, Sabine; Reinhard, Iris; Beutel, Martin; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl

    2016-01-01

    Background and aims Internet gaming addiction appears to be related to self-concept deficits and increased angular gyrus (AG)-related identification with one’s avatar. For increased social network use, a few existing studies suggest striatal-related positive social feedback as an underlying factor. However, whether an impaired self-concept and its reward-based compensation through the online presentation of an idealized version of the self are related to pathological social network use has not been investigated yet. We aimed to compare different stages of pathological Internet game and social network use to explore the neural basis of avatar and self-identification in addictive use. Methods About 19 pathological Internet gamers, 19 pathological social network users, and 19 healthy controls underwent functional magnetic resonance imaging while completing a self-retrieval paradigm, asking participants to rate the degree to which various self-concept-related characteristics described their self, ideal, and avatar. Self-concept-related characteristics were also psychometrically assessed. Results Psychometric testing indicated that pathological Internet gamers exhibited higher self-concept deficits generally, whereas pathological social network users exhibit deficits in emotion regulation only. We observed left AG hyperactivations in Internet gamers during avatar reflection and a correlation with symptom severity. Striatal hypoactivations during self-reflection (vs. ideal reflection) were observed in social network users and were correlated with symptom severity. Discussion and conclusion Internet gaming addiction appears to be linked to increased identification with one’s avatar, evidenced by high left AG activations in pathological Internet gamers. Addiction to social networks seems to be characterized by emotion regulation deficits, reflected by reduced striatal activation during self-reflection compared to during ideal reflection. PMID:27415603

  12. Exploring the Neural Basis of Avatar Identification in Pathological Internet Gamers and of Self-Reflection in Pathological Social Network Users.

    PubMed

    Leménager, Tagrid; Dieter, Julia; Hill, Holger; Hoffmann, Sabine; Reinhard, Iris; Beutel, Martin; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl

    2016-09-01

    Background and aims Internet gaming addiction appears to be related to self-concept deficits and increased angular gyrus (AG)-related identification with one's avatar. For increased social network use, a few existing studies suggest striatal-related positive social feedback as an underlying factor. However, whether an impaired self-concept and its reward-based compensation through the online presentation of an idealized version of the self are related to pathological social network use has not been investigated yet. We aimed to compare different stages of pathological Internet game and social network use to explore the neural basis of avatar and self-identification in addictive use. Methods About 19 pathological Internet gamers, 19 pathological social network users, and 19 healthy controls underwent functional magnetic resonance imaging while completing a self-retrieval paradigm, asking participants to rate the degree to which various self-concept-related characteristics described their self, ideal, and avatar. Self-concept-related characteristics were also psychometrically assessed. Results Psychometric testing indicated that pathological Internet gamers exhibited higher self-concept deficits generally, whereas pathological social network users exhibit deficits in emotion regulation only. We observed left AG hyperactivations in Internet gamers during avatar reflection and a correlation with symptom severity. Striatal hypoactivations during self-reflection (vs. ideal reflection) were observed in social network users and were correlated with symptom severity. Discussion and conclusion Internet gaming addiction appears to be linked to increased identification with one's avatar, evidenced by high left AG activations in pathological Internet gamers. Addiction to social networks seems to be characterized by emotion regulation deficits, reflected by reduced striatal activation during self-reflection compared to during ideal reflection.

  13. Testing a model of facilitated reflection on network feedback: a mixed method study on integration of rural mental healthcare services for older people.

    PubMed

    Fuller, Jeffrey; Oster, Candice; Muir Cochrane, Eimear; Dawson, Suzanne; Lawn, Sharon; Henderson, Julie; O'Kane, Deb; Gerace, Adam; McPhail, Ruth; Sparkes, Deb; Fuller, Michelle; Reed, Richard L

    2015-11-11

    To test a management model of facilitated reflection on network feedback as a means to engage services in problem solving the delivery of integrated primary mental healthcare to older people. Participatory mixed methods case study evaluating the impact of a network management model using organisational network feedback (through social network analysis, key informant interviews and policy review). A model of facilitated network reflection using network theory and methods. A rural community in South Australia. 32 staff from 24 services and 12 senior service managers from mental health, primary care and social care services. Health and social care organisations identified that they operated in clustered self-managed networks within sectors, with no overarching purposive older people's mental healthcare network. The model of facilitated reflection revealed service goal and role conflicts. These discussions helped local services to identify as a network, and begin the problem-solving communication and referral links. A Governance Group assisted this process. Barriers to integrated servicing through a network included service funding tied to performance of direct care tasks and the lack of a clear lead network administration organisation. A model of facilitated reflection helped organisations to identify as a network, but revealed sensitivity about organisational roles and goals, which demonstrated that conflict should be expected. Networked servicing needed a neutral network administration organisation with cross-sectoral credibility, a mandate and the resources to monitor the network, to deal with conflict, negotiate commitment among the service managers, and provide opportunities for different sectors to meet and problem solve. This requires consistency and sustained intersectoral policies that include strategies and funding to facilitate and maintain health and social care networks in rural communities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Validation of a Method for Measuring Medical Students' Critical Reflections on Professionalism in Gross Anatomy

    ERIC Educational Resources Information Center

    Wittich, Christopher M.; Pawlina, Wojciech; Drake, Richard L.; Szostek, Jason H.; Reed, Darcy A.; Lachman, Nirusha; McBride, Jennifer M.; Mandrekar, Jayawant N.; Beckman, Thomas J.

    2013-01-01

    Improving professional attitudes and behaviors requires critical self reflection. Research on reflection is necessary to understand professionalism among medical students. The aims of this prospective validation study at the Mayo Medical School and Cleveland Clinic Lerner College of Medicine were: (1) to develop and validate a new instrument for…

  15. Creating, generating and comparing random network models with NetworkRandomizer.

    PubMed

    Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni

    2016-01-01

    Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.

  16. Bias Correction of MODIS AOD using DragonNET to obtain improved estimation of PM2.5

    NASA Astrophysics Data System (ADS)

    Gross, B.; Malakar, N. K.; Atia, A.; Moshary, F.; Ahmed, S. A.; Oo, M. M.

    2014-12-01

    MODIS AOD retreivals using the Dark Target algorithm is strongly affected by the underlying surface reflection properties. In particular, the operational algorithms make use of surface parameterizations trained on global datasets and therefore do not account properly for urban surface differences. This parameterization continues to show an underestimation of the surface reflection which results in a general over-biasing in AOD retrievals. Recent results using the Dragon-Network datasets as well as high resolution retrievals in the NYC area illustrate that this is even more significant at the newest C006 3 km retrievals. In the past, we used AERONET observation in the City College to obtain bias-corrected AOD, but the homogeneity assumptions using only one site for the region is clearly an issue. On the other hand, DragonNET observations provide ample opportunities to obtain better tuning the surface corrections while also providing better statistical validation. In this study we present a neural network method to obtain bias correction of the MODIS AOD using multiple factors including surface reflectivity at 2130nm, sun-view geometrical factors and land-class information. These corrected AOD's are then used together with additional WRF meteorological factors to improve estimates of PM2.5. Efforts to explore the portability to other urban areas will be discussed. In addition, annual surface ratio maps will be developed illustrating that among the land classes, the urban pixels constitute the largest deviations from the operational model.

  17. An Evaluation of Two Methods for Generating Synthetic HL7 Segments Reflecting Real-World Health Information Exchange Transactions

    PubMed Central

    Mwogi, Thomas S.; Biondich, Paul G.; Grannis, Shaun J.

    2014-01-01

    Motivated by the need for readily available data for testing an open-source health information exchange platform, we developed and evaluated two methods for generating synthetic messages. The methods used HL7 version 2 messages obtained from the Indiana Network for Patient Care. Data from both methods were analyzed to assess how effectively the output reflected original ‘real-world’ data. The Markov Chain method (MCM) used an algorithm based on transitional probability matrix while the Music Box model (MBM) randomly selected messages of particular trigger type from the original data to generate new messages. The MBM was faster, generated shorter messages and exhibited less variation in message length. The MCM required more computational power, generated longer messages with more message length variability. Both methods exhibited adequate coverage, producing a high proportion of messages consistent with original messages. Both methods yielded similar rates of valid messages. PMID:25954458

  18. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  19. Use of 2d-video Disdrometer to Derive Mean Density-size and Ze-SR Relations: Four Snow Cases from the Light Precipitation Validation Experiment

    NASA Technical Reports Server (NTRS)

    Huang, Gwo-Jong; Bringi, V. N.; Moisseev, Dmitri; Petersen, Walter A.; Bliven, Francis L.; Hudak, David

    2014-01-01

    The application of the 2D-video disdrometer to measure fall speed and snow size distribution and to derive liquid equivalent snow rate, mean density-size and reflectivity-snow rate power law is described. Inversion of the methodology proposed by Böhm provides the pathway to use measured fall speed, area ratio and '3D' size measurement to estimate the mass of each particle. Four snow cases from the Light Precipitation Validation Experiment are analyzed with supporting data from other instruments such as Precipitation Occurrence Sensor System (POSS), Snow Video Imager (SVI), a network of seven snow gauges and three scanning C9 band radars. The radar-based snow accumulations using the 2DVD-derived Ze-SR relation are in good agreement with a network of seven snow gauges and outperform the accumulations derived from a climatological Ze-SR relation used by the Finnish Meteorological Institute (FMI). The normalized bias between radar-derived and gauge accumulation is reduced from 96% when using the fixed FMI relation to 28% when using the Ze-SR relations based on 2DVD data. The normalized standard error is also reduced significantly from 66% to 31%. For two of the days with widely different coefficients of the Ze-SR power law, the reflectivity structure showed significant differences in spatial variability. Liquid water path estimates from radiometric data also showed significant differences between the two cases. Examination of SVI particle images at the measurement site corroborated these differences in terms of unrimed versus rimed snow particles. The findings reported herein support the application of Böhm's methodology for deriving the mean density-size and Ze-SR power laws using data from 2D-video disdrometer.

  20. Citizen science networks in natural history and the collective validation of biodiversity data.

    PubMed

    Turnhout, Esther; Lawrence, Anna; Turnhout, Sander

    2016-06-01

    Biodiversity data are in increasing demand to inform policy and management. A substantial portion of these data is generated in citizen science networks. To ensure the quality of biodiversity data, standards and criteria for validation have been put in place. We used interviews and document analysis from the United Kingdom and The Netherlands to examine how data validation serves as a point of connection between the diverse people and practices in natural history citizen science networks. We found that rather than a unidirectional imposition of standards, validation was performed collectively. Specifically, it was enacted in ongoing circulations of biodiversity records between recorders and validators as they jointly negotiated the biodiversity that was observed and the validity of the records. These collective validation practices contributed to the citizen science character or natural history networks and tied these networks together. However, when biodiversity records were included in biodiversity-information initiatives on different policy levels and scales, the circulation of records diminished. These initiatives took on a more extractive mode of data use. Validation ceased to be collective with important consequences for the natural history networks involved and citizen science more generally. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  1. Large-Scale Brain Network Coupling Predicts Total Sleep Deprivation Effects on Cognitive Capacity

    PubMed Central

    Wang, Lubin; Zhai, Tianye; Zou, Feng; Ye, Enmao; Jin, Xiao; Li, Wuju; Qi, Jianlin; Yang, Zheng

    2015-01-01

    Interactions between large-scale brain networks have received most attention in the study of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that the coupling strength of large-scale brain networks will reflect the pressure for sleep and will predict cognitive performance, referred to as sleep pressure index (SPI). Fourteen healthy subjects underwent this within-subject functional magnetic resonance imaging (fMRI) study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD). Self-reported scores of sleepiness were higher for TSD than for RW. A subsequent working memory (WM) task showed that WM performance was lower after 36 h of TSD. Moreover, SPI was developed based on the coupling strength of salience network (SN) and default mode network (DMN). Significant increase of SPI was observed after 36 h of TSD, suggesting stronger pressure for sleep. In addition, SPI was significantly correlated with both the visual analogue scale score of sleepiness and the WM performance. These results showed that alterations in SN-DMN coupling might be critical in cognitive alterations that underlie the lapse after TSD. Further studies may validate the SPI as a potential clinical biomarker to assess the impact of sleep deprivation. PMID:26218521

  2. Networked localization of sniper shots using acoustics

    NASA Astrophysics Data System (ADS)

    Hengy, S.; Hamery, P.; De Mezzo, S.; Duffner, P.

    2011-06-01

    The presence of snipers in modern conflicts leads to high insecurity for the soldiers. In order to improve the soldier's protection against this threat, the French German Research Institute of Saint-Louis (ISL) initiated studies in the domain of acoustic localization of shots. Mobile antennas mounted on the soldier's helmet were initially used for real-time detection, classification and localization of sniper shots. It showed good performances in land scenarios, but also in urban scenarios if the array was in the shot corridor, meaning that the microphones first detect the direct wave and then the reflections of the Mach and muzzle waves. As soon as the acoustic arrays were not near to the shot corridor (only reflections are detected) this solution lost its efficiency and erroneous estimated position were given. In order to estimate the position of the shooter in every kind of urban scenario, ISL started studying time reversal techniques. Knowing the position of every reflective object in the environment (buildings, walls, ...) it should be possible to estimate the position of the shooter. First, a synthetic propagation algorithm has been developed and validated for real scale applications. It has then been validated for small scale models, allowing us to test our time reversal based algorithms in our laboratory. In this paper we discuss all the challenges that are induced by the application of sniper detection using time reversal techniques. We will discuss all the hard points that can be encountered and try to find some solutions in order to optimize the use of this technique.

  3. Validation of MODIS Aerosol Optical Depth Retrieval Over Land

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.

  4. Multi-attribute integrated measurement of node importance in complex networks.

    PubMed

    Wang, Shibo; Zhao, Jinlou

    2015-11-01

    The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.

  5. Atmospheric correction at AERONET locations: A new science and validation data set

    USGS Publications Warehouse

    Wang, Y.; Lyapustin, A.I.; Privette, J.L.; Morisette, J.T.; Holben, B.

    2009-01-01

    This paper describes an Aerosol Robotic Network (AERONET)-based Surface Reflectance Validation Network (ASRVN) and its data set of spectral surface bidirectional reflectance and albedo based on Moderate Resolution Imaging Spectroradiometer (MODIS) TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50 ?? 50 km2; subsets of MODIS level 1B (L1B) data from MODIS adaptive processing system and AERONET aerosol and water-vapor information. Then, it performs an atmospheric correction (AC) for about 100 AERONET sites based on accurate radiative-transfer theory with complex quality control of the input data. The ASRVN processing software consists of an L1B data gridding algorithm, a new cloud-mask (CM) algorithm based on a time-series analysis, and an AC algorithm using ancillary AERONET aerosol and water-vapor data. The AC is achieved by fitting the MODIS top-of-atmosphere measurements, accumulated for a 16-day interval, with theoretical reflectance parameterized in terms of the coefficients of the Li SparseRoss Thick (LSRT) model of the bidirectional reflectance factor (BRF). The ASRVN takes several steps to ensure high quality of results: 1) the filtering of opaque clouds by a CM algorithm; 2) the development of an aerosol filter to filter residual semitransparent and subpixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing the requirement of the consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of a seasonal backup spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixel. The ASRVN products include three parameters of the LSRT model (kL, kG, and kV), surface albedo, normalized BRF (computed for a standard viewing geometry, VZA = 0, SZA = 45??), and instantaneous BRF (or one-angle BRF value derived from the last day of MODIS measurement for specific viewing geometry) for the MODIS 500-m bands 17. The results are produced daily at a resolution of 1 km in gridded format. We also provide a cloud mask, a quality flag, and a browse bitmap image. The ASRVN data set, including 6 years of MODIS TERRA and 1.5 years of MODIS AQUA data, is available now as a standard MODIS product (MODASRVN) which can be accessed through the Level 1 and Atmosphere Archive and Distribution System website ( http://ladsweb.nascom.nasa.gov/data/search.html). It can be used for a wide range of applications including validation analysis and science research. ?? 2006 IEEE.

  6. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  7. Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex

    PubMed Central

    Lapish, Christopher C.; Durstewitz, Daniel; Chandler, L. Judson; Seamans, Jeremy K.

    2008-01-01

    Successful decision making requires an ability to monitor contexts, actions, and outcomes. The anterior cingulate cortex (ACC) is thought to be critical for these functions, monitoring and guiding decisions especially in challenging situations involving conflict and errors. A number of different single-unit correlates have been observed in the ACC that reflect the diverse cognitive components involved. Yet how ACC neurons function as an integrated network is poorly understood. Here we show, using advanced population analysis of multiple single-unit recordings from the rat ACC during performance of an ecologically valid decision-making task, that ensembles of neurons move through different coherent and dissociable states as the cognitive requirements of the task change. This organization into distinct network patterns with respect to both firing-rate changes and correlations among units broke down during trials with numerous behavioral errors, especially at choice points of the task. These results point to an underlying functional organization into cell assemblies in the ACC that may monitor choices, outcomes, and task contexts, thus tracking the animal's progression through “task space.” PMID:18708525

  8. Sample Entropy Analysis of EEG Signals via Artificial Neural Networks to Model Patients' Consciousness Level Based on Anesthesiologists Experience

    PubMed Central

    Jiang, George J. A.; Fan, Shou-Zen; Abbod, Maysam F.; Huang, Hui-Hsun; Lan, Jheng-Yan; Tsai, Feng-Fang; Chang, Hung-Chi; Yang, Yea-Wen; Chuang, Fu-Lan; Chiu, Yi-Fang; Jen, Kuo-Kuang; Wu, Jeng-Fu; Shieh, Jiann-Shing

    2015-01-01

    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully. PMID:25738152

  9. Practical aspects of complex permittivity reconstruction with neural-network-controlled FDTD modeling of a two-port fixture.

    PubMed

    Eves, E Eugene; Murphy, Ethan K; Yakovlev, Vadim V

    2007-01-01

    The paper discusses characteristics of a new modeling-based technique for determining dielectric properties of materials. Complex permittivity is found with an optimization algorithm designed to match complex S-parameters obtained from measurements and from 3D FDTD simulation. The method is developed on a two-port (waveguide-type) fixture and deals with complex reflection and transmission characteristics at the frequency of interest. A computational part is constructed as an inverse-RBF-network-based procedure that reconstructs dielectric constant and the loss factor of the sample from the FDTD modeling data sets and the measured reflection and transmission coefficients. As such, it is applicable to samples and cavities of arbitrary configurations provided that the geometry of the experimental setup is adequately represented by the FDTD model. The practical implementation of the method considered in this paper is a section of a WR975 waveguide containing a sample of a liquid in a cylindrical cutout of a rectangular Teflon cup. The method is run in two stages and employs two databases--first, built for a sparse grid on the complex permittivity plane, in order to locate a domain with an anticipated solution and, second, made as a denser grid covering the determined domain, for finding an exact location of the complex permittivity point. Numerical tests demonstrate that the computational part of the method is highly accurate even when the modeling data is represented by relatively small data sets. When working with reflection and transmission coefficients measured in an actual experimental fixture and reconstructing a low dielectric constant and the loss factor the technique may be less accurate. It is shown that the employed neural network is capable of finding complex permittivity of the sample when experimental data on the reflection and transmission coefficients are numerically dispersive (noise-contaminated). A special modeling test is proposed for validating the results; it confirms that the values of complex permittivity for several liquids (including salt water acetone and three types of alcohol) at 915 MHz are reconstructed with satisfactory accuracy.

  10. Validation of systems biology derived molecular markers of renal donor organ status associated with long term allograft function.

    PubMed

    Perco, Paul; Heinzel, Andreas; Leierer, Johannes; Schneeberger, Stefan; Bösmüller, Claudia; Oberhuber, Rupert; Wagner, Silvia; Engler, Franziska; Mayer, Gert

    2018-05-03

    Donor organ quality affects long term outcome after renal transplantation. A variety of prognostic molecular markers is available, yet their validity often remains undetermined. A network-based molecular model reflecting donor kidney status based on transcriptomics data and molecular features reported in scientific literature to be associated with chronic allograft nephropathy was created. Significantly enriched biological processes were identified and representative markers were selected. An independent kidney pre-implantation transcriptomics dataset of 76 organs was used to predict estimated glomerular filtration rate (eGFR) values twelve months after transplantation using available clinical data and marker expression values. The best-performing regression model solely based on the clinical parameters donor age, donor gender, and recipient gender explained 17% of variance in post-transplant eGFR values. The five molecular markers EGF, CD2BP2, RALBP1, SF3B1, and DDX19B representing key molecular processes of the constructed renal donor organ status molecular model in addition to the clinical parameters significantly improved model performance (p-value = 0.0007) explaining around 33% of the variability of eGFR values twelve months after transplantation. Collectively, molecular markers reflecting donor organ status significantly add to prediction of post-transplant renal function when added to the clinical parameters donor age and gender.

  11. Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Roy, Rudy A.

    2005-01-01

    Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.

  12. Network testbed creation and validation

    DOEpatents

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  13. Network testbed creation and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less

  14. FLUXNET: A Global Network of Eddy-Covariance Flux Towers

    NASA Astrophysics Data System (ADS)

    Cook, R. B.; Holladay, S. K.; Margle, S. M.; Olsen, L. M.; Gu, L.; Heinsch, F.; Baldocchi, D.

    2003-12-01

    The FLUXNET global network was established to aid in understanding the mechanisms controlling the exchanges of carbon dioxide, water vapor, and energy across a variety of terrestrial ecosystems. Flux tower data are also being used to validate ecosystem model outputs and to provide information for validating remote sensing based products, including surface temperature, reflectance, albedo, vegetation indices, leaf area index, photosynthetically active radiation, and photosynthesis derived from MODIS sensors on the Terra and Aqua satellites. The global FLUXNET database provides consistent and complete flux data to support global carbon cycle science. Currently FLUXNET consists of over 210 sites, with most flux towers operating continuously for 4 years or longer. Gap-filled data are available for 53 sites. The FLUXNET database contains carbon, water vapor, sensible heat, momentum, and radiation flux measurements with associated ancillary and value-added data products. Towers are located in temperate conifer and broadleaf forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra on five continents. Selected MODIS Land products in the immediate vicinity of the flux tower are subsetted and posted on the FLUXNET Web site for 169 flux-towers. The MODIS subsets are prepared in ASCII format for 8-day periods for an area 7 x 7 km around the tower.

  15. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    NASA Astrophysics Data System (ADS)

    Emokpae, Lloyd

    Underwater acoustic networks (UWANs) have applications in environmental state monitoring, oceanic profile measurements, leak detection in oil fields, distributed surveillance, and navigation. For these applications, sets of nodes are employed to collaboratively monitor an area of interest and track certain events or phenomena. In addition, it is common to find autonomous underwater vehicles (AUVs) acting as mobile sensor nodes that perform search-and-rescue missions, reconnaissance in combat zones, and coastal patrol. These AUVs are to work cooperatively to achieve a desired goal and thus need to be able to, in an ad-hoc manner, establish and sustain communication links in order to ensure some desired level of quality of service. Therefore, each node is required to adapt to environmental changes and be able to overcome broken communication links caused by external noise affecting the communication channel due to node mobility. In addition, since radio waves are quickly absorbed in the water medium, it is common for most underwater applications to rely on acoustic (or sound) rather than radio channels for mid-to-long range communications. However, acoustic channels pose multiple challenging issues, most notably the high transmission delay due to slow signal propagation and the limited channel bandwidth due to high frequency attenuation. Moreover, the inhomogeneous property of the water medium affects the sound speed profile while the signal surface and bottom reflections leads to multipath effects. In this dissertation, we address these networking challenges by developing protocols that take into consideration the underwater physical layer dynamics. We begin by introducing a novel surface-based reflection scheme (SBR), which takes advantage of the multipath effects of the acoustic channel. SBR works by using reflections from the water surface, and bottom, to establish non-line-of-sight (NLOS) communication links. SBR makes it possible to incorporate both line-of-sight (LOS) and NLOS links by utilizing directional antennas, which will boost the signal-to-noise ratio (SNR) at the receiver while promoting NLOS usage. In our model, we employ a directional underwater acoustic antenna composed of an array of hydrophones that can be summed up at various phases and amplitudes resulting in a beam-former. We have also adopted a practical multimodal directional transducer concept which generates both directional and omni-directional beam patterns by combining the fundamental vibration modes of a cylindrical acoustic radiator. This allows the transducer to be electrically controlled and steered by simply adjusting the electrical voltage weights. A prototype acoustic modem is then developed to utilize the multimodal directional transducer for both LOS and NLOS communication. The acoustic modem has also been used as a platform for empirically validating our SBR communication model in a tank and with empirical data. Networking protocols have been developed to exploit the SBR communication model. These protocols include node discovery and localization, directional medium access control (D-MAC) and geographical routing. In node discovery and localization, each node will utilize SBR-based range measurements to its neighbors to determine their relative position. The D-MAC protocol utilizes directional antennas to increase the network throughput due to the spatial efficiency of the antenna model. In the proposed reflection-enabled directional MAC protocol (RED-MAC), each source node will be able to determine if an obstacle is blocking the LOS link to the destination and switch to the best NLOS link by utilizing surface/bottom reflections. Finally, we have developed a geographical routing algorithm which aims to establish the best stable route from a source node to a destination node. The optimized route is selected to achieve maximum network throughput. Extensive analysis of the network throughput when utilizing directional antennas is also presented to show the benefits of directional communication on the overall network throughput.

  16. Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber.

    PubMed

    Koch, Ina; Junker, Björn H; Heiner, Monika

    2005-04-01

    Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. The metabolism between sucrose and starch in the potato tuber is of great research interest. Even if the metabolism is one of the best studied in sink organs, it is not yet fully understood. We provide an approach for model validation of metabolic networks using Petri net theory, which we demonstrate for the sucrose breakdown pathway in the potato tuber. We start with hierarchical modelling of the metabolic network as a Petri net and continue with the analysis of qualitative properties of the network. The results characterize the net structure and give insights into the complex net behaviour.

  17. Degrees of separation as a statistical tool for evaluating candidate genes.

    PubMed

    Nelson, Ronald M; Pettersson, Mats E

    2014-12-01

    Selection of candidate genes is an important step in the exploration of complex genetic architecture. The number of gene networks available is increasing and these can provide information to help with candidate gene selection. It is currently common to use the degree of connectedness in gene networks as validation in Genome Wide Association (GWA) and Quantitative Trait Locus (QTL) mapping studies. However, it can cause misleading results if not validated properly. Here we present a method and tool for validating the gene pairs from GWA studies given the context of the network they co-occur in. It ensures that proposed interactions and gene associations are not statistical artefacts inherent to the specific gene network architecture. The CandidateBacon package provides an easy and efficient method to calculate the average degree of separation (DoS) between pairs of genes to currently available gene networks. We show how these empirical estimates of average connectedness are used to validate candidate gene pairs. Validation of interacting genes by comparing their connectedness with the average connectedness in the gene network will provide support for said interactions by utilising the growing amount of gene network information available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor

    NASA Astrophysics Data System (ADS)

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  19. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor.

    PubMed

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  20. Development of Integration Framework for Sensor Network and Satellite Image based on OGC Web Services

    NASA Astrophysics Data System (ADS)

    Ninsawat, Sarawut; Yamamoto, Hirokazu; Kamei, Akihide; Nakamura, Ryosuke; Tsuchida, Satoshi; Maeda, Takahisa

    2010-05-01

    With the availability of network enabled sensing devices, the volume of information being collected by networked sensors has increased dramatically in recent years. Over 100 physical, chemical and biological properties can be sensed using in-situ or remote sensing technology. A collection of these sensor nodes forms a sensor network, which is easily deployable to provide a high degree of visibility into real-world physical processes as events unfold. The sensor observation network could allow gathering of diverse types of data at greater spatial and temporal resolution, through the use of wired or wireless network infrastructure, thus real-time or near-real time data from sensor observation network allow researchers and decision-makers to respond speedily to events. However, in the case of environmental monitoring, only a capability to acquire in-situ data periodically is not sufficient but also the management and proper utilization of data also need to be careful consideration. It requires the implementation of database and IT solutions that are robust, scalable and able to interoperate between difference and distributed stakeholders to provide lucid, timely and accurate update to researchers, planners and citizens. The GEO (Global Earth Observation) Grid is primarily aiming at providing an e-Science infrastructure for the earth science community. The GEO Grid is designed to integrate various kinds of data related to the earth observation using the grid technology, which is developed for sharing data, storage, and computational powers of high performance computing, and is accessible as a set of services. A comprehensive web-based system for integrating field sensor and data satellite image based on various open standards of OGC (Open Geospatial Consortium) specifications has been developed. Web Processing Service (WPS), which is most likely the future direction of Web-GIS, performs the computation of spatial data from distributed data sources and returns the outcome in a standard format. The interoperability capabilities and Service Oriented Architecture (SOA) of web services allow incorporating between sensor network measurement available from Sensor Observation Service (SOS) and satellite remote sensing data from Web Mapping Service (WMS) as distributed data sources for WPS. Various applications have been developed to demonstrate the efficacy of integrating heterogeneous data source. For example, the validation of the MODIS aerosol products (MOD08_D3, the Level-3 MODIS Atmosphere Daily Global Product) by ground-based measurements using the sunphotometer (skyradiometer, Prede POM-02) installed at Phenological Eyes Network (PEN) sites in Japan. Furthermore, the web-based framework system for studying a relationship between calculated Vegetation Index from MODIS satellite image surface reflectance (MOD09GA, the Surface Reflectance Daily L2G Global 1km and 500m Product) and Gross Primary Production (GPP) field measurement at flux tower site in Thailand and Japan has been also developed. The success of both applications will contribute to maximize data utilization and improve accuracy of information by validate MODIS satellite products using high degree of accuracy and temporal measurement of field measurement data.

  1. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y. Je; Jeong, U.; Kim, W.; Holben, B.; Eck, T. F.; Lim, J. H.; Song, C. K.

    2015-09-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorology Satellites (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm over ocean and land together with validation results during the DRAGON-NE Asia 2012 campaign. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type from selected aerosol models in calculating AOD. Assumed aerosol models are compiled from global Aerosol Robotic Networks (AERONET) inversion data, and categorized according to AOD, FMF, and SSA. Nonsphericity is considered, and unified aerosol models are used over land and ocean. Different assumptions for surface reflectance are applied over ocean and land. Surface reflectance over the ocean varies with geometry and wind speed, while surface reflectance over land is obtained from the 1-3 % darkest pixels in a 6 km × 6 km area during 30 days. In the East China Sea and Yellow Sea, significant area is covered persistently by turbid waters, for which the land algorithm is used for aerosol retrieval. To detect turbid water pixels, TOA reflectance difference at 660 nm is used. GOCI YAER products are validated using other aerosol products from AERONET and the MODIS Collection 6 aerosol data from "Dark Target (DT)" and "Deep Blue (DB)" algorithms during the DRAGON-NE Asia 2012 campaign from March to May 2012. Comparison of AOD from GOCI and AERONET gives a Pearson correlation coefficient of 0.885 and a linear regression equation with GOCI AOD =1.086 × AERONET AOD - 0.041. GOCI and MODIS AODs are more highly correlated over ocean than land. Over land, especially, GOCI AOD shows better agreement with MODIS DB than MODIS DT because of the choice of surface reflectance assumptions. Other GOCI YAER products show lower correlation with AERONET than AOD, but are still qualitatively useful.

  2. Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.

    The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.

  3. LAI inversion from optical reflectance using a neural network trained with a multiple scattering model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    1992-01-01

    The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI < 1.0) with varying soil reflectance backgrounds is particularly difficult. Standard multiple regression methods applied to canopies within a single homogeneous soil type yield good results but perform unacceptably when applied across soil boundaries, resulting in absolute percentage errors of >1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.

  4. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  5. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates

    PubMed Central

    Magrou, Loïc; Gămănuț, Bianca; Van Essen, David C.; Burkhalter, Andreas; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry

    2016-01-01

    Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class. PMID:27441598

  6. Virtual Environments for Visualizing Structural Health Monitoring Sensor Networks, Data, and Metadata.

    PubMed

    Napolitano, Rebecca; Blyth, Anna; Glisic, Branko

    2018-01-16

    Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included.

  7. Virtual Environments for Visualizing Structural Health Monitoring Sensor Networks, Data, and Metadata

    PubMed Central

    Napolitano, Rebecca; Blyth, Anna; Glisic, Branko

    2018-01-01

    Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included. PMID:29337877

  8. Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Morris, K. R.; Petersen, W. A.

    2007-01-01

    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.

  9. A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin.

    PubMed

    Wagner, Andreas

    2014-07-07

    Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks. PMID:27105653

  11. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Youfang; Terebus, Anna; Liang, Jie

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. Wemore » further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks.« less

  12. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation

    DOE PAGES

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-04-22

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. Wemore » further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks.« less

  13. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  14. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing

    PubMed Central

    Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386

  15. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.

    PubMed

    Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.

  16. Reflective Thinking Scale: A Validity and Reliability Study

    ERIC Educational Resources Information Center

    Basol, Gulsah; Evin Gencel, Ilke

    2013-01-01

    The purpose of this study was to adapt Reflective Thinking Scale to Turkish and investigate its validity and reliability over a Turkish university students' sample. Reflective Thinking Scale (RTS) is a 5 point Likert scale (ranging from 1 corresponding Agree Completely, 3 to Neutral, and 5 to Not Agree Completely), purposed to measure reflective…

  17. The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing

    PubMed Central

    Iranzo, Jaime

    2016-01-01

    ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. PMID:27486193

  18. Critical thinking evaluation in reflective writing: Development and testing of Carter Assessment of Critical Thinking in Midwifery (Reflection).

    PubMed

    Carter, Amanda G; Creedy, Debra K; Sidebotham, Mary

    2017-11-01

    develop and test a tool designed for use by academics to evaluate pre-registration midwifery students' critical thinking skills in reflective writing. a descriptive cohort design was used. a random sample (n = 100) of archived student reflective writings based on a clinical event or experience during 2014 and 2015. a staged model for tool development was used to develop a fifteen item scale involving item generation; mapping of draft items to critical thinking concepts and expert review to test content validity; inter-rater reliability testing; pilot testing of the tool on 100 reflective writings; and psychometric testing. Item scores were analysed for mean, range and standard deviation. Internal reliability, content and construct validity were assessed. expert review of the tool revealed a high content validity index score of 0.98. Using two independent raters to establish inter-rater reliability, good absolute agreement of 72% was achieved with a Kappa coefficient K = 0.43 (p<0.0001). Construct validity via exploratory factor analysis revealed three factors: analyses context, reasoned inquiry, and self-evaluation. The mean total score for the tool was 50.48 (SD = 12.86). Total and subscale scores correlated significantly. The scale achieved good internal reliability with a Cronbach's alpha coefficient of .93. this study establishedthe reliability and validity of the CACTiM (reflection) for use by academics to evaluate midwifery students' critical thinking in reflective writing. Validation with large diverse samples is warranted. reflective practice is a key learning and teaching strategy in undergraduate Bachelor of Midwifery programmes and essential for safe, competent practice. There is the potential to enhance critical thinking development by assessingreflective writing with the CACTiM (reflection) tool to provide formative and summative feedback to students and inform teaching strategies. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Creation and testing of an artificial neural network based carbonate detector for Mars rovers

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Castano, Rebecca; Gilmore, Martha S.; Merrill, Matthew; Greenwood, James P.

    2005-01-01

    We have developed an artificial neural network (ANN) based carbonate detector capable of running on current and future rover hardware. The detector can identify calcite in visible/NIR (350-2500 nm) spectra of both laboratory specimens covered by ferric dust and rocks in Mars analogue field environments. The ANN was trained using the Backpropagation algorithm with sigmoid activation neurons. For the training dataset, we chose nine carbonate and eight non-carbonate representative mineral spectra from the USGS spectral library. Using these spectra as seeds, we generated 10,000 variants with up to 2% Gaussian noise in each reflectance measurement. We cross-validated several ANN architectures, training on 9,900 spectra and testing on the remaining 100. The best performing ANN correctly detected, with perfect accuracy, the presence (or absence) of carbonate in spectral data taken on field samples from the Mojave desert and clean, pure marbles from CT. Sensitivity experiments with JSC Mars-1 simulant dust suggest the carbonate detector would perform well in aeolian Martian environments.

  20. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks.

    PubMed

    Zaretzki, Jed; Matlock, Matthew; Swamidass, S Joshua

    2013-12-23

    Understanding how xenobiotic molecules are metabolized is important because it influences the safety, efficacy, and dose of medicines and how they can be modified to improve these properties. The cytochrome P450s (CYPs) are proteins responsible for metabolizing 90% of drugs on the market, and many computational methods can predict which atomic sites of a molecule--sites of metabolism (SOMs)--are modified during CYP-mediated metabolism. This study improves on prior methods of predicting CYP-mediated SOMs by using new descriptors and machine learning based on neural networks. The new method, XenoSite, is faster to train and more accurate by as much as 4% or 5% for some isozymes. Furthermore, some "incorrect" predictions made by XenoSite were subsequently validated as correct predictions by revaluation of the source literature. Moreover, XenoSite output is interpretable as a probability, which reflects both the confidence of the model that a particular atom is metabolized and the statistical likelihood that its prediction for that atom is correct.

  1. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  2. MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.

    PubMed

    Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan

    2016-02-01

    A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.

  3. A multi-year Record of Total Column and Lower-Tropospheric Methane

    NASA Astrophysics Data System (ADS)

    Worden, J.; Yin, Y.; Frankenberg, C.; Bloom, A. A.

    2017-12-01

    Evaluating carbon / climate interactions and feedbacks and their effects on global fluxes of methane require a record of well-calibrated and validated methane data that is long enough to span several perturbations to rain and drought related to ENSO or other climactic perturbations along with the spatial sampling that can infer how these changes in the water and carbon cycles affect methane fluxes from wetlands and fires. Here we describe the first version of a decadal scale record of total column and lower-tropospheric methane derived from reflected sunlight and thermal IR measurements (SCIAMACHY, GOSAT, TES, and AIRS). We describe the validation of these data sets using independent data such as from TCCON, the surface network, and aircraft and how they can be inter-calibrated using a global atmospheric model as a transfer function to construct a long-term data record. We show how the new lower-tropospheric measurements can potentially provide new insights into wetland fluxes and how they vary inter-annually with rainfall and temperature perturbations.

  4. Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data

    NASA Technical Reports Server (NTRS)

    Deschamps, P.-Y.; Frouin, R.

    1997-01-01

    The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface.

  5. Dynamic Functional Connectivity States Reflecting Psychotic-like Experiences.

    PubMed

    Barber, Anita D; Lindquist, Martin A; DeRosse, Pamela; Karlsgodt, Katherine H

    2018-05-01

    Psychotic-like experiences (PLEs) are associated with lower social and occupational functioning, and lower executive function. Emerging evidence also suggests that PLEs reflect neural dysfunction resembling that of psychotic disorders. The present study examined dynamic connectivity related to a measure of PLEs derived from the Achenbach Adult Self-Report, in an otherwise-healthy sample of adults from the Human Connectome Project. A total of 76 PLE-endorsing and 153 control participants were included in the final sample. To characterize network dysfunction, dynamic connectivity states were examined across large-scale resting-state networks using dynamic conditional correlation and k-means clustering. Three dynamic states were identified. The PLE-endorsing group spent more time than the control group in state 1, a state reflecting hyperconnectivity within visual regions and hypoconnectivity within the default mode network, and less time in state 2, a state characterized by robust within-network connectivity for all networks and strong default mode network anticorrelations. Within the PLE-endorsing group, worse executive function was associated with more time spent in and more transitions into state 1 and less time spent in and fewer transitions into state 3. PLEs are associated with altered large-scale brain dynamics, which tip the system away from spending more time in states reflecting more "typical" connectivity patterns toward more time in states reflecting visual hyperconnectivity and default mode hypoconnectivity. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability

    PubMed Central

    Schütte, Judith; Wang, Huange; Antoniou, Stella; Jarratt, Andrew; Wilson, Nicola K; Riepsaame, Joey; Calero-Nieto, Fernando J; Moignard, Victoria; Basilico, Silvia; Kinston, Sarah J; Hannah, Rebecca L; Chan, Mun Chiang; Nürnberg, Sylvia T; Ouwehand, Willem H; Bonzanni, Nicola; de Bruijn, Marella FTR; Göttgens, Berthold

    2016-01-01

    Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes. DOI: http://dx.doi.org/10.7554/eLife.11469.001 PMID:26901438

  7. iSAFT Protocol Validation Platform for On-Board Data Networks

    NASA Astrophysics Data System (ADS)

    Tavoularis, Antonis; Kollias, Vangelis; Marinis, Kostas

    2014-08-01

    iSAFT is an integrated powerful HW/SW environmentfor the simulation, validation & monitoring of satellite/spacecraft on-board data networks supporting simultaneously a wide range of protocols (RMAP, PTP, CCSDS Space Packet, TM/TC, CANopen, etc.) and network interfaces (SpaceWire, ECSS MIL-STD-1553, ECSS CAN). It is based on over 20 years of TELETEL's experience in the area of protocol validation in the telecommunications and aeronautical sectors, and it has been fully re-engineered in cooperation of TELETEL with ESA & space Primes, to comply with space on-board industrial validation requirements (ECSS, EGSE, AIT, AIV, etc.). iSAFT is highly modular and expandable to support new network interfaces & protocols and it is based on the powerful iSAFT graphical tool chain (Protocol Analyser / Recorder, TestRunner, Device Simulator, Traffic Generator, etc.).

  8. Global terrestrial water storage connectivity revealed using complex climate network analyses

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Chen, J.; Donges, J.

    2015-07-01

    Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.

  9. EIGENVECTOR-BASED CENTRALITY MEASURES FOR TEMPORAL NETWORKS*

    PubMed Central

    TAYLOR, DANE; MYERS, SEAN A.; CLAUSET, AARON; PORTER, MASON A.; MUCHA, PETER J.

    2017-01-01

    Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a principled generalization of network centrality measures that is valid for any eigenvector-based centrality. We consider a temporal network with N nodes as a sequence of T layers that describe the network during different time windows, and we couple centrality matrices for the layers into a supra-centrality matrix of size NT × NT whose dominant eigenvector gives the centrality of each node i at each time t. We refer to this eigenvector and its components as a joint centrality, as it reflects the importances of both the node i and the time layer t. We also introduce the concepts of marginal and conditional centralities, which facilitate the study of centrality trajectories over time. We find that the strength of coupling between layers is important for determining multiscale properties of centrality, such as localization phenomena and the time scale of centrality changes. In the strong-coupling regime, we derive expressions for time-averaged centralities, which are given by the zeroth-order terms of a singular perturbation expansion. We also study first-order terms to obtain first-order-mover scores, which concisely describe the magnitude of nodes’ centrality changes over time. As examples, we apply our method to three empirical temporal networks: the United States Ph.D. exchange in mathematics, costarring relationships among top-billed actors during the Golden Age of Hollywood, and citations of decisions from the United States Supreme Court. PMID:29046619

  10. Do writing and storytelling skill influence assessment of reflective ability in medical students' written reflections?

    PubMed

    Aronson, Louise; Niehaus, Brian; DeVries, Charlie D; Siegel, Jennifer R; O'Sullivan, Patricia S

    2010-10-01

    Increasingly, students are asked to write reflections as part of their medical education, but some question the influence of other factors on the evaluation of these reflections. In this pilot study, the investigators determined whether scores from a validated rubric to measure reflective ability were affected by irrelevant variance resulting from writing or storytelling ability. Students in clerkships wrote reflections on professionalism. All were given identical prompts, with half receiving additional structured guidelines on reflection. Sixty reflections, 30 from each group, were randomly chosen and scored for reflection, writing, and storytelling by trained raters using validated rubrics. There was no correlation between reflection and either writing (r = 0.049, P = .35) or storytelling (r = 0.14, P = .13). The guidelines increased reflection, but not writing or storytelling scores. Reflection is a distinct construct unaffected by learners' writing or storytelling skills. These findings support reflective ability as a distinct skill.

  11. Soil Moisture Active Passive Mission L4_SM Data Product Assessment (Version 2 Validated Release)

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf Helmut; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Chen, Fan; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas; Kimball, John; hide

    2016-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public Version 2 validated release scheduled for 29 April 2016. The assessment of the Version 2 L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to up-scaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the wide geographic range of the sparse network sites, and the global assessment of the assimilation diagnostics, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 2 validation and supports the validated release of the data. An analysis of the time average surface and root zone soil moisture shows that the global pattern of arid and humid regions are captured by the L4_SM estimates. Results from the core validation site comparisons indicate that "Version 2" of the L4_SM data product meets the self-imposed L4_SM accuracy requirement, which is formulated in terms of the ubRMSE: the RMSE (Root Mean Square Error) after removal of the long-term mean difference. The overall ubRMSE of the 3-hourly L4_SM surface soil moisture at the 9 km scale is 0.035 cubic meters per cubic meter requirement. The corresponding ubRMSE for L4_SM root zone soil moisture is 0.024 cubic meters per cubic meter requirement. Both of these metrics are comfortably below the 0.04 cubic meters per cubic meter requirement. The L4_SM estimates are an improvement over estimates from a model-only SMAP Nature Run version 4 (NRv4), which demonstrates the beneficial impact of the SMAP brightness temperature data. L4_SM surface soil moisture estimates are consistently more skillful than NRv4 estimates, although not by a statistically significant margin. The lack of statistical significance is not surprising given the limited data record available to date. Root zone soil moisture estimates from L4_SM and NRv4 have similar skill. Results from comparisons of the L4_SM product to in situ measurements from nearly 400 sparse network sites corroborate the core validation site results. The instantaneous soil moisture and soil temperature analysis increments are within a reasonable range and result in spatially smooth soil moisture analyses. The O-F residuals exhibit only small biases on the order of 1-3 degrees Kelvin between the (re-scaled) SMAP brightness temperature observations and the L4_SM model forecast, which indicates that the assimilation system is largely unbiased. The spatially averaged time series standard deviation of the O-F residuals is 5.9 degrees Kelvin, which reduces to 4.0 degrees Kelvin for the observation-minus-analysis (O-A) residuals, reflecting the impact of the SMAP observations on the L4_SM system. Averaged globally, the time series standard deviation of the normalized O-F residuals is close to unity, which would suggest that the magnitude of the modeled errors approximately reflects that of the actual errors. The assessment report also notes several limitations of the "Version 2" L4_SM data product and science algorithm calibration that will be addressed in future releases. Regionally, the time series standard deviation of the normalized O-F residuals deviates considerably from unity, which indicates that the L4_SM assimilation algorithm either over- or under-estimates the actual errors that are present in the system. Planned improvements include revised land model parameters, revised error parameters for the land model and the assimilated SMAP observations, and revised surface meteorological forcing data for the operational period and underlying climatological data. Moreover, a refined analysis of the impact of SMAP observations will be facilitated by the construction of additional variants of the model-only reference data. Nevertheless, the “Version 2” validated release of the L4_SM product is sufficiently mature and of adequate quality for distribution to and use by the larger science and application communities.

  12. Quantitative precipitation estimation for an X-band weather radar network

    NASA Astrophysics Data System (ADS)

    Chen, Haonan

    Currently, the Next Generation (NEXRAD) radar network, a joint effort of the U.S. Department of Commerce (DOC), Defense (DOD), and Transportation (DOT), provides radar data with updates every five-six minutes across the United States. This network consists of about 160 S-band (2.7 to 3.0 GHz) radar sites. At the maximum NEXRAD range of 230 km, the 0.5 degree radar beam is about 5.4 km above ground level (AGL) because of the effect of earth curvature. Consequently, much of the lower atmosphere (1-3 km AGL) cannot be observed by the NEXRAD. To overcome the fundamental coverage limitations of today's weather surveillance radars, and improve the spatial and temporal resolution issues, the National Science Foundation Engineering Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) was founded to revolutionize weather sensing in the lower atmosphere by deploying a dense network of shorter-range, low-power X-band dual-polarization radars. The distributed CASA radars are operating collaboratively to adapt the changing atmospheric conditions. Accomplishments and breakthroughs after five years operation have demonstrated the success of CASA program. Accurate radar quantitative precipitation estimation (QPE) has been pursued since the beginning of weather radar. For certain disaster prevention applications such as flash flood and landslide forecasting, the rain rate must however be measured at a high spatial and temporal resolution. To this end, high-resolution radar QPE is one of the major research activities conducted by the CASA community. A radar specific differential propagation phase (Kdp)-based QPE methodology has been developed in CASA. Unlike the rainfall estimation based on the power terms such as radar reflectivity (Z) and differential reflectivity (Zdr), Kdp-based QPE is less sensitive to the path attenuation, drop size distribution (DSD), and radar calibration errors. The CASA Kdp-based QPE system is also immune to the partial beam blockage and hail contamination. The performance of the CASA QPE system is validated and evaluated by using rain gauges. In CASA's Integrated Project 1 (IP1) test bed in Southwestern Oklahoma, a network of 20 rainfall gauges is used for cross-comparison. 40 rainfall cases, including severe, multicellular thunderstorms, squall lines and widespread stratiform rain, that happened during years 2007 - 2011, are used for validation and evaluation purpose. The performance scores illustrate that the CASA QPE system is a great improvement compared to the current state-of-the-art. In addition, the high-resolution CASA QPE products such as instantaneous rainfall rate map and hourly rainfall amount measurements can serve as a reliable input for various distributed hydrological models. The CASA QPE system can save lived and properties from hazardous flash floods by incorporating hydraulic and hydrologic models for flood monitoring and warning.

  13. Measuring third year undergraduate nursing students' reflective thinking skills and critical reflection self-efficacy following high fidelity simulation: A pilot study.

    PubMed

    Tutticci, Naomi; Lewis, Peter A; Coyer, Fiona

    2016-05-01

    Critical reflection underpins critical thinking, a highly desirable generic nursing graduate capability. To improve the likelihood of critical thinking transferring to clinical practice, reflective thinking needs to be measured within the learning space of simulation. This study was divided into two phases to address the reliability and validity measures of previously untested surveys. Phase One data was collected from individuals (n = 6) using a 'think aloud' approach and an expert panel to review content validity, and verbatim comment analysis was undertaken. The Reflective Thinking Instrument and Critical Reflection Self-Efficacy Visual Analogue Scale items were contextualised to simulation. The expert review confirmed these instruments exhibited content validity. Phase Two data was collected through an online survey (n = 58). Cronbach's alpha measured internal consistency and was demonstrated by all subscales and the Instrument as a whole (.849). There was a small to medium positive correlation between critical reflection self-efficacy and general self-efficacy (r = .324, n = 56, p = .048). Participant responses were positive regarding the simulation experience. The research findings demonstrated that the Reflective Thinking and Simulation Satisfaction survey is reliable. Further development of this survey to establish validity is recommended to make it viable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Reverse Engineering Validation using a Benchmark Synthetic Gene Circuit in Human Cells

    PubMed Central

    Kang, Taek; White, Jacob T.; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-01-01

    Multi-component biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network. PMID:23654266

  15. Reverse engineering validation using a benchmark synthetic gene circuit in human cells.

    PubMed

    Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-05-17

    Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.

  16. Using Social Network Methods to Study School Leadership

    ERIC Educational Resources Information Center

    Pitts, Virginia M.; Spillane, James P.

    2009-01-01

    Social network analysis is increasingly used in the study of policy implementation and school leadership. A key question that remains is that of instrument validity--that is, the question of whether these social network survey instruments measure what they purport to measure. In this paper, we describe our work to examine the validity of the…

  17. Use of Bayesian Networks to Probabilistically Model and Improve the Likelihood of Validation of Microarray Findings by RT-PCR

    PubMed Central

    English, Sangeeta B.; Shih, Shou-Ching; Ramoni, Marco F.; Smith, Lois E.; Butte, Atul J.

    2014-01-01

    Though genome-wide technologies, such as microarrays, are widely used, data from these methods are considered noisy; there is still varied success in downstream biological validation. We report a method that increases the likelihood of successfully validating microarray findings using real time RT-PCR, including genes at low expression levels and with small differences. We use a Bayesian network to identify the most relevant sources of noise based on the successes and failures in validation for an initial set of selected genes, and then improve our subsequent selection of genes for validation based on eliminating these sources of noise. The network displays the significant sources of noise in an experiment, and scores the likelihood of validation for every gene. We show how the method can significantly increase validation success rates. In conclusion, in this study, we have successfully added a new automated step to determine the contributory sources of noise that determine successful or unsuccessful downstream biological validation. PMID:18790084

  18. Cascade Back-Propagation Learning in Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2003-01-01

    The cascade back-propagation (CBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks. The neural networks would be implemented as analog very-large-scale integrated (VLSI) circuits, and circuits to implement the CBP algorithm would be fabricated on the same VLSI circuit chips with the neural networks. Heretofore, artificial neural networks have learned slowly because it has been necessary to train them via software, for lack of a good on-chip learning technique. The CBP algorithm is an on-chip technique that provides for continuous learning in real time. Artificial neural networks are trained by example: A network is presented with training inputs for which the correct outputs are known, and the algorithm strives to adjust the weights of synaptic connections in the network to make the actual outputs approach the correct outputs. The input data are generally divided into three parts. Two of the parts, called the "training" and "cross-validation" sets, respectively, must be such that the corresponding input/output pairs are known. During training, the cross-validation set enables verification of the status of the input-to-output transformation learned by the network to avoid over-learning. The third part of the data, termed the "test" set, consists of the inputs that are required to be transformed into outputs; this set may or may not include the training set and/or the cross-validation set. Proposed neural-network circuitry for on-chip learning would be divided into two distinct networks; one for training and one for validation. Both networks would share the same synaptic weights.

  19. Systems Genetic Analyses Highlight a TGFβ-FOXO3 Dependent Striatal Astrocyte Network Conserved across Species and Associated with Stress, Sleep, and Huntington's Disease.

    PubMed

    Scarpa, Joseph R; Jiang, Peng; Losic, Bojan; Readhead, Ben; Gao, Vance D; Dudley, Joel T; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2016-07-01

    Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFβ-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network analysis, and we highlight their relevance to motor, mood, and sleep traits through multiple in silico approaches, including an examination of their protein binding partners. Finally, we show that these causal regulators may be therapeutically viable for HD because their downstream network was partially modulated by deep brain stimulation of the subthalamic nucleus, a medical intervention thought to confer some therapeutic benefit to HD patients. In conclusion, we show that an astrocyte transcriptional network is primarily associated to HD in the caudate and provide evidence for its relationship to molecular mechanisms of neural stem cell homeostasis. Furthermore, we present a unified systems-based framework for identifying gene networks that are associated with complex non-motor traits that manifest in the earliest phases of HD. By analyzing and integrating multiple independent datasets, we identify a point of molecular convergence between sleep, stress, and HD that reflects their phenotypic comorbidity and reveals a molecular pathway involved in HD progression.

  20. A Simple and Universal Aerosol Retrieval Algorithm for Landsat Series Images Over Complex Surfaces

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Huang, Bo; Sun, Lin; Zhang, Zhaoyang; Wang, Lunche; Bilal, Muhammad

    2017-12-01

    Operational aerosol optical depth (AOD) products are available at coarse spatial resolutions from several to tens of kilometers. These resolutions limit the application of these products for monitoring atmospheric pollutants at the city level. Therefore, a simple, universal, and high-resolution (30 m) Landsat aerosol retrieval algorithm over complex urban surfaces is developed. The surface reflectance is estimated from a combination of top of atmosphere reflectance at short-wave infrared (2.22 μm) and Landsat 4-7 surface reflectance climate data records over densely vegetated areas and bright areas. The aerosol type is determined using the historical aerosol optical properties derived from the local urban Aerosol Robotic Network (AERONET) site (Beijing). AERONET ground-based sun photometer AOD measurements from five sites located in urban and rural areas are obtained to validate the AOD retrievals. Terra MODerate resolution Imaging Spectrometer Collection (C) 6 AOD products (MOD04) including the dark target (DT), the deep blue (DB), and the combined DT and DB (DT&DB) retrievals at 10 km spatial resolution are obtained for comparison purposes. Validation results show that the Landsat AOD retrievals at a 30 m resolution are well correlated with the AERONET AOD measurements (R2 = 0.932) and that approximately 77.46% of the retrievals fall within the expected error with a low mean absolute error of 0.090 and a root-mean-square error of 0.126. Comparison results show that Landsat AOD retrievals are overall better and less biased than MOD04 AOD products, indicating that the new algorithm is robust and performs well in AOD retrieval over complex surfaces. The new algorithm can provide continuous and detailed spatial distributions of AOD during both low and high aerosol loadings.

  1. Mapping Wintering Waterfowl Distributions Using Weather Surveillance Radar

    PubMed Central

    Buler, Jeffrey J.; Randall, Lori A.; Fleskes, Joseph P.; Barrow, Wylie C.; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998–1999 and 1999–2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of −5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998–1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents. PMID:22911816

  2. Mapping wintering waterfowl distributions using weather surveillance radar.

    PubMed

    Buler, Jeffrey J; Randall, Lori A; Fleskes, Joseph P; Barrow, Wylie C; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.

  3. Intrusion-aware alert validation algorithm for cooperative distributed intrusion detection schemes of wireless sensor networks.

    PubMed

    Shaikh, Riaz Ahmed; Jameel, Hassan; d'Auriol, Brian J; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2009-01-01

    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.

  4. Intrusion-Aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    PubMed Central

    Shaikh, Riaz Ahmed; Jameel, Hassan; d’Auriol, Brian J.; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2009-01-01

    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm. PMID:22454568

  5. Reflections from organization science on the development of primary health care research networks.

    PubMed

    Fenton, E; Harvey, J; Griffiths, F; Wild, A; Sturt, J

    2001-10-01

    In the UK, policy changes in primary health care research and development have led to the establishment of primary care research networks. These organizations aim to increase research culture, capacity and evidence base in primary care. As publicly funded bodies, these networks need to be accountable. Organizational science has studied network organizations including why and how they develop and how they function most effectively. This paper draws on organizational science to reflect on why primary care research networks appear to be appropriate for primary care research and how their structures and processes can best enable the achievement of their aims.

  6. Deriving frequency-dependent spatial patterns in MEG-derived resting state sensorimotor network: A novel multiband ICA technique.

    PubMed

    Nugent, Allison C; Luber, Bruce; Carver, Frederick W; Robinson, Stephen E; Coppola, Richard; Zarate, Carlos A

    2017-02-01

    Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. Hum Brain Mapp 38:779-791, 2017. © 2016 Wiley Periodicals, Inc. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Development and validation of a survey to measure features of clinical networks.

    PubMed

    Brown, Bernadette Bea; Haines, Mary; Middleton, Sandy; Paul, Christine; D'Este, Catherine; Klineberg, Emily; Elliott, Elizabeth

    2016-09-30

    Networks of clinical experts are increasingly being implemented as a strategy to improve health care processes and outcomes and achieve change in the health system. Few are ever formally evaluated and, when this is done, not all networks are equally successful in their efforts. There is a need to formatively assess the strategic and operational management and leadership of networks to identify where functioning could be improved to maximise impact. This paper outlines the development and psychometric evaluation of an Internet survey to measure features of clinical networks and provides descriptive results from a sample of members of 19 diverse clinical networks responsible for evidence-based quality improvement across a large geographical region. Instrument development was based on: a review of published and grey literature; a qualitative study of clinical network members; a program logic framework; and consultation with stakeholders. The resulting domain structure was validated for a sample of 592 clinical network members using confirmatory factor analysis. Scale reliability was assessed using Cronbach's alpha. A summary score was calculated for each domain and aggregate level means and ranges are reported. The instrument was shown to have good construct validity across seven domains as demonstrated by a high level of internal consistency, and all Cronbach's α coefficients were equal to or above 0.75. In the survey sample of network members there was strong reported commitment and belief in network-led quality improvement initiatives, which were perceived to have improved quality of care (72.8 %) and patient outcomes (63.2 %). Network managers were perceived to be effective leaders and clinical co-chairs were perceived as champions for change. Perceived external support had the lowest summary score across the seven domains. This survey, which has good construct validity and internal reliability, provides a valid instrument to use in future research related to clinical networks. The survey will be of use to health service managers to identify strengths and areas where networks can be improved to increase effectiveness and impact on quality of care and patient outcomes. Equally, the survey could be adapted for use in the assessment of other types of networks.

  8. Considering a Twitter-Based Professional Learning Network in Literacy Education

    ERIC Educational Resources Information Center

    Colwell, Jamie; Hutchison, Amy C.

    2018-01-01

    This study explored how 26 preservice secondary content teachers perceived their experiences participating in and developing a Twitter-based professional learning network focused on disciplinary literacy. Participants completed blog reflections and anonymous online surveys to reflect on their experiences, which served as data for this study. A…

  9. Making practice transparent through e-portfolio.

    PubMed

    Stewart, Sarah M

    2013-12-01

    Midwives are required to maintain a professional portfolio as part of their statutory requirements. Some midwives are using open social networking tools and processes to develop an e-portfolio. However, confidentiality of patient and client data and professional reputation have to be taken into consideration when using online public spaces for reflection. There is little evidence about how midwives use social networking tools for ongoing learning. It is uncertain how reflecting in an e-portfolio with an audience impacts on learning outcomes. This paper investigates ways in which reflective midwifery practice be carried out using e-portfolio in open, social networking platforms using collaborative processes. Using an auto-ethnographic approach I explored my e-portfolio and selected posts that had attracted six or more comments. I used thematic analysis to identify themes within the textual conversations in the posts and responses posted by readers. The analysis identified that my collaborative e-portfolio had four themes: to provide commentary and discuss issues; to reflect and process learning; to seek advice, brainstorm and process ideas for practice, projects and research, and provide evidence of professional development. E-portfolio using open social networking tools and processes is a viable option for midwives because it facilitates collaborative reflection and shared learning. However, my experience shows that concerns about what people think, and client confidentiality does impact on the nature of open reflection and learning outcomes. I conclude this paper with a framework for managing midwifery statutory obligations using online public spaces and social networking tools. Copyright © 2013 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  10. Combined Use of Tissue Morphology, Neural Network Analysis of Chromatin Texture and Clinical Variables to Predict Prostate Cancer Agressiveness from Biopsy Water

    DTIC Science & Technology

    2000-10-01

    Purpose: To combine clinical, serum, pathologic and computer derived information into an artificial neural network to develop/validate a model to...Development of an artificial neural network (year 02). Prospective validation of this model (projected year 03). All models will be tested and

  11. Global burned-land estimation in Latin America using MODIS composite data.

    PubMed

    Chuvieco, Emilio; Opazo, Sergio; Sione, Walter; Del Valle, Hector; Anaya, Jesús; Di Bella, Carlos; Cruz, Isabel; Manzo, Lilia; López, Gerardo; Mari, Nicolas; González-Alonso, Federico; Morelli, Fabiano; Setzer, Alberto; Csiszar, Ivan; Kanpandegi, Jon Ander; Bastarrika, Aitor; Libonati, Renata

    2008-01-01

    This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.

  12. A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana

    2004-01-01

    The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new formulation of the MODIS aerosol retrieval over land includes more physically based surface, aerosol and radiative transfer with fewer potentially erroneous assumptions.

  13. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data

    PubMed Central

    Gogoshin, Grigoriy; Boerwinkle, Eric

    2017-01-01

    Abstract Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology—type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types—single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc. PMID:27681505

  14. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data.

    PubMed

    Gogoshin, Grigoriy; Boerwinkle, Eric; Rodin, Andrei S

    2017-04-01

    Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology-type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types-single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc.

  15. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  16. Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences.

    PubMed

    Tan, Li Kuo; Liew, Yih Miin; Lim, Einly; McLaughlin, Robert A

    2017-07-01

    Automated left ventricular (LV) segmentation is crucial for efficient quantification of cardiac function and morphology to aid subsequent management of cardiac pathologies. In this paper, we parameterize the complete (all short axis slices and phases) LV segmentation task in terms of the radial distances between the LV centerpoint and the endo- and epicardial contours in polar space. We then utilize convolutional neural network regression to infer these parameters. Utilizing parameter regression, as opposed to conventional pixel classification, allows the network to inherently reflect domain-specific physical constraints. We have benchmarked our approach primarily against the publicly-available left ventricle segmentation challenge (LVSC) dataset, which consists of 100 training and 100 validation cardiac MRI cases representing a heterogeneous mix of cardiac pathologies and imaging parameters across multiple centers. Our approach attained a .77 Jaccard index, which is the highest published overall result in comparison to other automated algorithms. To test general applicability, we also evaluated against the Kaggle Second Annual Data Science Bowl, where the evaluation metric was the indirect clinical measures of LV volume rather than direct myocardial contours. Our approach attained a Continuous Ranked Probability Score (CRPS) of .0124, which would have ranked tenth in the original challenge. With this we demonstrate the effectiveness of convolutional neural network regression paired with domain-specific features in clinical segmentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterizing English Poetic Style Using Complex Networks

    NASA Astrophysics Data System (ADS)

    Roxas-Villanueva, Ranzivelle Marianne; Nambatac, Maelori Krista; Tapang, Giovanni

    Complex networks have been proven useful in characterizing written texts. Here, we use networks to probe if there exist a similarity within, and difference across, era as reflected within the poem's structure. In literary history, boundary lines are set to distinguish the change in writing styles through time. We obtain the network parameters and motif frequencies of 845 poems published from 1522 to 1931 and relate this to the writing of the Elizabethan, 17th Century, Augustan, Romantic and Victorian eras. Analysis of the different network parameters shows a significant difference of the Augustan era (1667-1780) with the rest. The network parameters and the convex hull and centroids of the motif frequencies reflect the adjectival sequence pattern of the poems of the Augustan era.

  18. The application of a network approach to Health-Related Quality of Life (HRQoL): introducing a new method for assessing HRQoL in healthy adults and cancer patients.

    PubMed

    Kossakowski, Jolanda J; Epskamp, Sacha; Kieffer, Jacobien M; van Borkulo, Claudia D; Rhemtulla, Mijke; Borsboom, Denny

    2016-04-01

    Health-Related Quality of Life (HRQoL) research has typically adopted either a formative approach, in which HRQoL is the common effect of its observables, or a reflective approach--defining HRQoL as a latent variable that determines observable characteristics of HRQoL. Both approaches, however, do not take into account the complex organization of these characteristics. The objective of this study was to introduce a new approach for analyzing HRQoL data, namely a network model (NM). An NM, as opposed to traditional research strategies, accounts for interactions among observables and offers a complementary analytic approach. We applied the NM to samples of Dutch cancer patients (N = 485) and Dutch healthy adults (N = 1742) who completed the 36-item Short Form Health Survey (SF-36). Networks were constructed for both samples separately and for a combined sample with diagnostic status added as an extra variable. We assessed the network structures and compared the structures of the two separate samples on the item and domain levels. The relative importance of individual items in the network structures was determined using centrality analyses. We found that the global structure of the SF-36 is dominant in all networks, supporting the validity of questionnaire's subscales. Furthermore, results suggest that the network structure of both samples was highly similar. Centrality analyses revealed that maintaining a daily routine despite one's physical health predicts HRQoL levels best. We concluded that the NM provides a fruitful alternative to classical approaches used in the psychometric analysis of HRQoL data.

  19. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  20. Validation of POLDER/ADEOS data using a ground-based lidar network: Preliminary results for semi-transparent and cirrus clouds

    NASA Technical Reports Server (NTRS)

    Chepfer, H.; Sauvage, L.; Flamant, P. H.; Pelon, J.; Goloub, P.; Brogniez, G.; spinhirne, J.; Lavorato, M.; Sugimoto, N.

    1998-01-01

    At mid and tropical latitudes, cirrus clouds are present more than 50% of the time in satellites observations. Due to their large spatial and temporal coverage, and associated low temperatures, cirrus clouds have a major influence on the Earth-Ocean-Atmosphere energy balance through their effects on the incoming solar radiation and outgoing infrared radiation. At present the impact of cirrus clouds on climate is well recognized but remains to be asserted more precisely, for their optical and radiative properties are not very well known. In order to understand the effects of cirrus clouds on climate, their optical and radiative characteristics of these clouds need to be determined accurately at different scales in different locations i.e. latitude. Lidars are well suited to observe cirrus clouds, they can detect very thin and semi-transparent layers, and retrieve the clouds geometrical properties i.e. altitude and multilayers, as well as radiative properties i.e. optical depth, backscattering phase functions of ice crystals. Moreover the linear depolarization ratio can give information on the ice crystal shape. In addition, the data collected with an airborne version of POLDER (POLarization and Directionality of Earth Reflectances) instrument have shown that bidirectional polarized measurements can provide information on cirrus cloud microphysical properties (crystal shapes, preferred orientation in space). The spaceborne version of POLDER-1 has been flown on ADEOS-1 platform during 8 months (October 96 - June 97), and the next POLDER-2 instrument will be launched in 2000 on ADEOS-2. The POLDER-1 cloud inversion algorithms are currently under validation. For cirrus clouds, a validation based on comparisons between cloud properties retrieved from POLDER-1 data and cloud properties inferred from a ground-based lidar network is currently under consideration. We present the first results of the validation.

  1. In Silico Enhancing M. tuberculosis Protein Interaction Networks in STRING To Predict Drug-Resistance Pathways and Pharmacological Risks.

    PubMed

    Mei, Suyu

    2018-05-04

    Bacterial protein-protein interaction (PPI) networks are significant to reveal the machinery of signal transduction and drug resistance within bacterial cells. The database STRING has collected a large number of bacterial pathogen PPI networks, but most of the data are of low quality without being experimentally or computationally validated, thus restricting its further biomedical applications. We exploit the experimental data via four solutions to enhance the quality of M. tuberculosis H37Rv (MTB) PPI networks in STRING. Computational results show that the experimental data derived jointly by two-hybrid and copurification approaches are the most reliable to train an L 2 -regularized logistic regression model for MTB PPI network validation. On the basis of the validated MTB PPI networks, we further study the three problems via breadth-first graph search algorithm: (1) discovery of MTB drug-resistance pathways through searching for the paths between known drug-target genes and drug-resistance genes, (2) choosing potential cotarget genes via searching for the critical genes located on multiple pathways, and (3) choosing essential drug-target genes via analysis of network degree distribution. In addition, we further combine the validated MTB PPI networks with human PPI networks to analyze the potential pharmacological risks of known and candidate drug-target genes from the point of view of system pharmacology. The evidence from protein structure alignment demonstrates that the drugs that act on MTB target genes could also adversely act on human signaling pathways.

  2. A regional-scale network for geoid monitoring and satellite gravimetry validation

    NASA Astrophysics Data System (ADS)

    Winester, D.; Pool, D.; Kennedy, J.

    2010-12-01

    In the past two decades, improved measurements of acceleration due to gravity have allowed for accurate detection of temporal gravity change. Terrestrial absolute gravimeters (for example, Micro-g LaCoste FG5 or A-10) can sense changes of gravity induced by elevation or mass changes, including local effects that may bias regional studies. Satellite instrumentation (e.g. GRACE) can detect large scale mass changes on a regular basis. However, the Nyquist wave number for satellite observations is often much too small for the size of regional studies. Also, satellites are limited by their life of deployment. Both techniques are used to (in)validate change models generated from other geophysical observations including water storage(underground and glacial), geoid definition, isostatic adjustments and tectonic(magmatic and faulting)activity. The gap between terrestrial and satellite gravity observations (and between satellite missions) might be bridged by developing a terrestrial network of sites of various observation techniques that define a representative sample of a given, regional study area. This information could then be statistically extrapolated to the extent of the region. The Southern High Plains Aquifer is such a region, since it has widespread relatively uniform geology, has relatively flat topography, and is well monitored for groundwater levels and soil moisture. Each site would have extensive instrumentation for monitoring, at a minimum, gravity (periodic and continuous) using absolute and tidal gravimeters, soil moisture, precipitation, depths to water in wells, evapotranspiration, air pressure, and land surface (GPS). Where possible, the network would build upon existing, data collection infrastructure. Preferably, the region would also have seismic tomography or crustal seismic reflection observations to characterize Moho-depth mass changes and have regional Bouguer anomaly mapping. In addition to information on local hydrology and geology, data collection would allow for characterization of local seasonal corrections, earth tides, atmospheric loading and episodic slip. No test network has yet been funded, but cost and man-power can be estimated. Such a network would rely on co-operation between various federal, state, local and university groups.

  3. Brief report: The Brief Alcohol Social Density Assessment (BASDA): convergent, criterion-related, and incremental validity.

    PubMed

    MacKillop, James; Acker, John D; Bollinger, Jared; Clifton, Allan; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-09-01

    Alcohol misuse is substantially influenced by social factors, but systematic assessments of social network drinking are typically lengthy. The goal of the present study was to provide further validation of a brief measure of social network alcohol use, the Brief Alcohol Social Density Assessment (BASDA), in a sample of emerging adults. Specifically, the study sought to examine the BASDA's convergent, criterion, and incremental validity in relation to well-established measures of drinking motives and problematic drinking. Participants were 354 undergraduates who were assessed using the BASDA, the Alcohol Use Disorders Identification Test (AUDIT), and the Drinking Motives Questionnaire. Significant associations were observed between the BASDA index of alcohol-related social density and alcohol misuse, social motives, and conformity motives, supporting convergent validity. Criterion-related validity was supported by evidence that significantly greater alcohol involvement was present in the social networks of individuals scoring at or above an AUDIT score of 8, a validated criterion for hazardous drinking. Finally, the BASDA index was significantly associated with alcohol misuse above and beyond drinking motives in relation to AUDIT scores, supporting incremental validity. Taken together, these findings provide further support for the BASDA as an efficient measure of drinking in an individual's social network. Methodological considerations as well as recommendations for future investigations in this area are discussed.

  4. Do "TOEFL iBT"® Scores Reflect Improvement in English-Language Proficiency? Extending the TOEFL iBT Validity Argument. Research Report. ETS RR-14-09

    ERIC Educational Resources Information Center

    Ling, Guangming; Powers, Donald E.; Adler, Rachel M.

    2014-01-01

    One fundamental way to determine the validity of standardized English-language test scores is to investigate the extent to which they reflect anticipated learning effects in different English-language programs. In this study, we investigated the extent to which the "TOEFL iBT"® practice test reflects the learning effects of students at…

  5. Development and psychometric evaluation of a new measure to assess pregaming motives in Spanish-speaking young adults.

    PubMed

    Pilatti, Angelina; Read, Jennifer P

    2018-06-01

    The present study was divided into two different stages that sought to develop (Stage 1) and validate (Stage 2) the Argentinean-version of the Pregaming Motives Questionnaire (PMQ-Arg), a new, ecologically valid measure to assess pregaming (i.e., the consumption of alcohol prior to attending a social/sporting event where alcohol may or may not be available) motives among Spanish-speaking youth. Two separate samples of Argentinian young adults (all last-year pregamers) were recruited by disseminating an invitation through online social networks and e-mail listings. In Stage 1, a total of 635 participants answered an open-ended question about their reasons for pregaming. In Stage 2 (n=361), exploratory factor analysis was conducted with the preliminary set of high-quality, high-frequency pregaming motives that were obtained in Stage 1, yielding a final 23-item measure that was grouped in four factors: (i) Intoxication and Fun, (ii) Gathering and Social Enhancement, (iii) Going with the Flow, and (iv) Beverage Preference. Despite some broad similarities with measures that were developed with U.S. young adults, the present results indicated that the narrow content of some items of the PMQ-Arg were somewhat unique, possibly reflecting cultural differences between the United States and Argentina. The findings supported the adequate reliability, discriminant validity, convergent validity, and criterion-related validity of PMQ-Arg scores. The findings suggest that the PMQ-Arg meets the psychometric requirements of validity and reliability for its use to assess reasons for pregaming among Spanish-speaking youth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Walking the Walk? Critical Reflections from an Afro-Irish Emancipatory Research Network

    ERIC Educational Resources Information Center

    Adshead, Maura; Dubula, Vuyiseka

    2016-01-01

    In this article the authors, who are both collaborators in this project, reflect on the challenges faced in developing and sustaining an emancipatory research framework approach to our research network in the context of radically shifting ideals and objectives for higher education in all partner institutions. The article is focused around…

  7. Cross-Cultural Validation of the Five-Factor Structure of Social Goals: A Filipino Investigation

    ERIC Educational Resources Information Center

    King, Ronnel B.; Watkins, David A.

    2012-01-01

    The aim of the present study was to test the cross-cultural validity of the five-factor structure of social goals that Dowson and McInerney proposed. Using both between-network and within-network approaches to construct validation, 1,147 Filipino high school students participated in the study. Confirmatory factor analysis indicated that the…

  8. Validation and Comparison of AATRS AOD L2 Products over China

    NASA Astrophysics Data System (ADS)

    Che, Yahui; Xue, Yong; Guang, Jie; Guo, Jianping; Li, Ying

    2016-04-01

    The Advanced Along-Track Scanning Radiometer (AATSR) aboard on ENVISAT has been used to observe the Earth for more than 10 years since than 2002. One of main applications of AATSR instrument is to observe atmospheric aerosol, especially in retrieval of aerosol optical depth (AOD), taking advantage of its dual-view that helps to separate the contribution of aerosol from top of atmosphere reflectance (A. A. Kokhanovsky and de Leeuw, 2009). The project of Aerosol_CCI, as part of European Space Agency's Climate Change Initiative (CCI), has released new AATSR aerosol AOD products by the of 2015, including the SU v4.21 product from Swansea algorithm, ADV v2.3 product from the ATSR-2/AATSR dual view aerosol retrieval algorithm (ADV) and ORAC v03.04 product from the Oxford-RAL Retrieval of Aerosol and Cloud algorithm. The previous versions of these three AOD level 2 (L2) products in 2008 have been validated over mainland China (Che and Xue, 2015). In this paper, we validated these AATSR AOD products with latest versions in mainland China in 2007, 2008 and 2010 by the means of comparison with the AErosol RObotic NETwork (AERONET) and the China Aerosol Remote Sensing Network (CARSNET). The combination of AERONET and CARSNET helps to make up for the disadvantages of small number and uneven distribution of AEROENT cites. The validation results show different performance of these AOD products over China. The performances of SU and ADV products seem to be the same with close correlation coefficient (CC) about 08~0.9 and root mean square (RMS) within 0.15 in all three years, and sensitive to high AOD values (AOD >1): more AODs and more underestimated. However, these two products do exist difference, which is that the SU algorithm retrieves more high AODs, leading to more space-time validation matches with ground-based data. The ORAC algorithm is different from the others, it can be not only used to retrieve low AODs but also high AODs over different landcover types. Even though ORAC algorithm has ability in retrieving AODs in different values, it shows largest uncertainty in retrieving different AODs.

  9. Ground-based automated radiometric calibration system in Baotou site, China

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Li, Chuanrong; Ma, Lingling; Liu, Yaokai; Meng, Fanrong; Zhao, Yongguang; Pang, Bo; Qian, Yonggang; Li, Wei; Tang, Lingli; Wang, Dongjin

    2017-10-01

    Post-launch vicarious calibration method, as an important post launch method, not only can be used to evaluate the onboard calibrators but also can be allowed for a traceable knowledge of the absolute accuracy, although it has the drawbacks of low frequency data collections due expensive on personal and cost. To overcome the problems, CEOS Working Group on Calibration and Validation (WGCV) Infrared Visible Optical Sensors (IVOS) subgroup has proposed an Automated Radiative Calibration Network (RadCalNet) project. Baotou site is one of the four demonstration sites of RadCalNet. The superiority characteristics of Baotou site is the combination of various natural scenes and artificial targets. In each artificial target and desert, an automated spectrum measurement instrument is developed to obtain the surface reflected radiance spectra every 2 minutes with a spectrum resolution of 2nm. The aerosol optical thickness and column water vapour content are measured by an automatic sun photometer. To meet the requirement of RadCalNet, a surface reflectance spectrum retrieval method is used to generate the standard input files, with the support of surface and atmospheric measurements. Then the top of atmospheric reflectance spectra are derived from the input files. The results of the demonstration satellites, including Landsat 8, Sentinal-2A, show that there is a good agreement between observed and calculated results.

  10. Readiness for self-directed change in professional behaviours: factorial validation of the Self-Reflection and Insight Scale.

    PubMed

    Roberts, Chris; Stark, Patsy

    2008-11-01

    Self-reflection, the practice of inspecting and evaluating one's own thoughts, feelings and behaviour, and insight, the ability to understand one's own thoughts, feelings and behaviour, are central to the self-regulation of behaviours. The Self-Reflection and Insight Scale (SRIS) measures three factors in the self-regulation cycle: need for reflection; engagement in reflection, and insight. We used structural equation modelling to undertake a confirmatory factor analysis of the SRIS. We re-specified our model to analyse all of the data to explain relationships between the SRIS, medical student characteristics, and responses to issues of teaching and learning in professionalism. The factorial validity of a modified SRIS showed all items loading significantly on their expected factors, with a good fit to the data. Each subscale had good internal reliability (> 0.8). There was a strong relationship between the need for reflection and engagement in reflection (r = 0.77). Insight was related to need for reflection (0.22) and age (0.21), but not to the process of engaging in reflection (0.06). Validation of the SRIS provides researchers with a new instrument with which to measure and investigate the processes of self-reflection and insight in the context of students' self-regulation of their professionalism. Insight is related to the motive or need for reflection, but the process of reflection does not lead to insight. Attending to feelings is an important and integral aspect of self-reflection and insight. Effective strategies are needed to develop students' insight as they reflect on their professionalism.

  11. Implementation of WirelessHART in the NS-2 Simulator and Validation of Its Correctness

    PubMed Central

    Zand, Pouria; Mathews, Emi; Havinga, Paul; Stojanovski, Spase; Sisinni, Emiliano; Ferrari, Paolo

    2014-01-01

    One of the first standards in the wireless sensor networks domain, WirelessHART (HART (Highway Addressable Remote Transducer)), was introduced to address industrial process automation and control requirements. This standard can be used as a reference point to evaluate other wireless protocols in the domain of industrial monitoring and control. This makes it worthwhile to set up a reliable WirelessHART simulator in order to achieve that reference point in a relatively easy manner. Moreover, it offers an alternative to expensive testbeds for testing and evaluating the performance of WirelessHART. This paper explains our implementation of WirelessHART in the NS-2 network simulator. According to our knowledge, this is the first implementation that supports the WirelessHART network manager, as well as the whole stack (all OSI (Open Systems Interconnection model) layers) of the WirelessHART standard. It also explains our effort to validate the correctness of our implementation, namely through the validation of the implementation of the WirelessHART stack protocol and of the network manager. We use sniffed traffic from a real WirelessHART testbed installed in the Idrolab plant for these validations. This confirms the validity of our simulator. Empirical analysis shows that the simulated results are nearly comparable to the results obtained from real networks. We also demonstrate the versatility and usability of our implementation by providing some further evaluation results in diverse scenarios. For example, we evaluate the performance of the WirelessHART network by applying incremental interference in a multi-hop network. PMID:24841245

  12. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

    PubMed

    Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B

    2017-11-01

    Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

  13. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology.

    PubMed

    Lamontagne, Marie-Eve

    2013-01-01

    Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.

  14. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    PubMed Central

    Boehm, Ilka; Geisler, Daniel; King, Joseph A.; Ritschel, Franziska; Seidel, Maria; Deza Araujo, Yacila; Petermann, Juliane; Lohmeier, Heidi; Weiss, Jessika; Walter, Martin; Roessner, Veit; Ehrlich, Stefan

    2014-01-01

    The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high levels of self- and body-focused ruminations when AN patients are at rest. PMID:25324749

  15. Recruiting general practitioners for surveys: reflections on the difficulties and some lessons learned.

    PubMed

    Parkinson, Anne; Jorm, Louisa; Douglas, Kirsty A; Gee, Alison; Sargent, Ginny M; Lujic, Sanja; McRae, Ian S

    2015-01-01

    Surveys of GPs are essential to facilitate future planning and delivery of health services. However, recruitment of GPs into research has been disappointing with response rates declining over recent years. This study identified factors that facilitated or hampered GP recruitment in a recent survey of Australian GPs where a range of strategies were used to improve recruitment following poor initial responses. GP response rates for different stages of the survey were examined and compared with reasons GPs and leaders of university research networks cited for non-participation. Poor initial response rates were improved by including a questionnaire in the mail-out, changing the mail-out source from an unknown research team to locally known network leaders, approaching a group of GPs known to have research and training interests, and offering financial compensation. Response rates increased from below 1% for the first wave to 14.5% in the final wave. Using a known and trusted network of professionals to endorse the survey combined with an explicit compensation payment significantly enhanced GP response rates. To obtain response rates for surveys of GPs that are high enough to sustain external validity requires an approach that persuades GPs and their gatekeepers that it is worth their time to participate.

  16. Examining the Efficacy of the Modified Story Memory Technique (mSMT) in Persons With TBI Using Functional Magnetic Resonance Imaging (fMRI): The TBI-MEM Trial.

    PubMed

    Chiaravalloti, Nancy D; Dobryakova, Ekaterina; Wylie, Glenn R; DeLuca, John

    2015-01-01

    New learning and memory deficits are common following traumatic brain injury (TBI). Yet few studies have examined the efficacy of memory retraining in TBI through the most methodologically vigorous randomized clinical trial. Our previous research has demonstrated that the modified Story Memory Technique (mSMT) significantly improves new learning and memory in multiple sclerosis. The present double-blind, placebo-controlled, randomized clinical trial examined changes in cerebral activation on functional magnetic resonance imaging following mSMT treatment in persons with TBI. Eighteen individuals with TBI were randomly assigned to treatment (n = 9) or placebo (n = 9) groups. Baseline and follow-up functional magnetic resonance imaging was collected during a list-learning task. Significant differences in cerebral activation from before to after treatment were noted in regions belonging to the default mode network and executive control network in the treatment group only. Results are interpreted in light of these networks. Activation differences between the groups likely reflect increased use of strategies taught during treatment. This study demonstrates a significant change in cerebral activation resulting from the mSMT in a TBI sample. Findings are consistent with previous work in multiple sclerosis. Behavioral interventions can show significant changes in the brain, validating clinical utility.

  17. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  18. Towards a first ground-based validation of aerosol optical depths from Sentinel-2 over the complex topography of the Alps

    NASA Astrophysics Data System (ADS)

    Marinelli, Valerio; Cremonese, Edoardo; Diémoz, Henri; Siani, Anna Maria

    2017-04-01

    The European Space Agency (ESA) is spending notable effort to put in operation a new generation of advanced Earth-observation satellites, the Sentinel constellation. In particular, the Sentinel-2 host an instrumental payload mainly consisting in a MultiSpectral Instrument (MSI) imaging sensor, capable of acquiring high-resolution imagery of the Earth surface and atmospheric reflectance at selected spectral bands, hence providing complementary measurements to ground-based radiometric stations. The latter can provide reference data for validating the estimates from spaceborne instruments such as Sentinel-2A (operating since October 2015), whose aerosol optical thickness (AOT) values, can be obtained from correcting SWIR (2190 nm) reflectance with an improved dense dark vegetation (DDV) algorithm. In the Northwestern European Alps (Saint-Christophe, 45.74°N, 7.36°E) a Prede POM-02 sun/sky aerosol photometer has been operating for several years within the EuroSkyRad network by the Environmental Protection Agency of Aosta Valley (ARPA Valle d'Aosta), gathering direct sun and diffuse sky radiance for retrieving columnar aerosol optical properties. This aerosol optical depth (AOD) dataset represents an optimal ground-truth for the corresponding Sentinel-2 estimates obtained with the Sen2cor processor in the challenging environment of the Alps (complex topography, snow-covered surfaces). We show the deviations between the two measurement series and propose some corrections to enhance the overall accuracy of satellite estimates.

  19. Students' Self-Evaluation and Reflection (Part 1): "Measurement"

    ERIC Educational Resources Information Center

    Cambra-Fierro, Jesus; Cambra-Berdun, Jesus

    2007-01-01

    Purpose: The objective of the paper is the development and validation of scales to assess reflective learning. Design/methodology/approach: The research is based on a literature review plus in-classroom experience. For the scale validation process, exploratory and confirmatory analyses were conducted, following proposals made by Anderson and…

  20. Validating Farmers' Indigenous Social Networks for Local Seed Supply in Central Rift Valley of Ethiopia.

    ERIC Educational Resources Information Center

    Seboka, B.; Deressa, A.

    2000-01-01

    Indigenous social networks of Ethiopian farmers participate in seed exchange based on mutual interdependence and trust. A government-imposed extension program must validate the role of local seed systems in developing a national seed industry. (SK)

  1. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  2. An Ionospheric Index Model based on Linear Regression and Neural Network Approaches

    NASA Astrophysics Data System (ADS)

    Tshisaphungo, Mpho; McKinnell, Lee-Anne; Bosco Habarulema, John

    2017-04-01

    The ionosphere is well known to reflect radio wave signals in the high frequency (HF) band due to the present of electron and ions within the region. To optimise the use of long distance HF communications, it is important to understand the drivers of ionospheric storms and accurately predict the propagation conditions especially during disturbed days. This paper presents the development of an ionospheric storm-time index over the South African region for the application of HF communication users. The model will result into a valuable tool to measure the complex ionospheric behaviour in an operational space weather monitoring and forecasting environment. The development of an ionospheric storm-time index is based on a single ionosonde station data over Grahamstown (33.3°S,26.5°E), South Africa. Critical frequency of the F2 layer (foF2) measurements for a period 1996-2014 were considered for this study. The model was developed based on linear regression and neural network approaches. In this talk validation results for low, medium and high solar activity periods will be discussed to demonstrate model's performance.

  3. Modeling an aquatic ecosystem: application of an evolutionary algorithm with genetic doping to reduce prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Buscema, Massimo

    2016-04-01

    Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.

  4. Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.

    PubMed

    Losko, Sascha; Heumann, Klaus

    2017-01-01

    The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

  5. A Hierarchical Convolutional Neural Network for vesicle fusion event classification.

    PubMed

    Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke

    2017-09-01

    Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Generating Poetry Title Based on Semantic Relevance with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Z.; Niu, K.; He, Z. Q.

    2017-09-01

    Several approaches have been proposed to automatically generate Chinese classical poetry (CCP) in the past few years, but automatically generating the title of CCP is still a difficult problem. The difficulties are mainly reflected in two aspects. First, the words used in CCP are very different from modern Chinese words and there are no valid word segmentation tools. Second, the semantic relevance of characters in CCP not only exists in one sentence but also exists between the same positions of adjacent sentences, which is hard to grasp by the traditional text summarization models. In this paper, we propose an encoder-decoder model for generating the title of CCP. Our model encoder is a convolutional neural network (CNN) with two kinds of filters. To capture the commonly used words in one sentence, one kind of filters covers two characters horizontally at each step. The other covers two characters vertically at each step and can grasp the semantic relevance of characters between adjacent sentences. Experimental results show that our model is better than several other related models and can capture the semantic relevance of CCP more accurately.

  7. Exudate detection in color retinal images for mass screening of diabetic retinopathy.

    PubMed

    Zhang, Xiwei; Thibault, Guillaume; Decencière, Etienne; Marcotegui, Beatriz; Laÿ, Bruno; Danno, Ronan; Cazuguel, Guy; Quellec, Gwénolé; Lamard, Mathieu; Massin, Pascale; Chabouis, Agnès; Victor, Zeynep; Erginay, Ali

    2014-10-01

    The automatic detection of exudates in color eye fundus images is an important task in applications such as diabetic retinopathy screening. The presented work has been undertaken in the framework of the TeleOphta project, whose main objective is to automatically detect normal exams in a tele-ophthalmology network, thus reducing the burden on the readers. A new clinical database, e-ophtha EX, containing precisely manually contoured exudates, is introduced. As opposed to previously available databases, e-ophtha EX is very heterogeneous. It contains images gathered within the OPHDIAT telemedicine network for diabetic retinopathy screening. Image definition, quality, as well as patients condition or the retinograph used for the acquisition, for example, are subject to important changes between different examinations. The proposed exudate detection method has been designed for this complex situation. We propose new preprocessing methods, which perform not only normalization and denoising tasks, but also detect reflections and artifacts in the image. A new candidates segmentation method, based on mathematical morphology, is proposed. These candidates are characterized using classical features, but also novel contextual features. Finally, a random forest algorithm is used to detect the exudates among the candidates. The method has been validated on the e-ophtha EX database, obtaining an AUC of 0.95. It has been also validated on other databases, obtaining an AUC between 0.93 and 0.95, outperforming state-of-the-art methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The assessment of commitment: advantages of a unidimensional, target-free approach.

    PubMed

    Klein, Howard J; Cooper, Joseph T; Molloy, Janice C; Swanson, Jacqueline A

    2014-03-01

    This study presents a new approach to assessing commitment reflecting the Klein, Molloy, and Brinsfield (2012) reconceptualization. Klein et al. recast the construct to address issues hindering commitment scholarship, but their claims cannot be tested with existing measures. This paper presents a 4-item measure consistent with the Klein et al. conceptual definition, a measure intended to be unidimensional and applicable across all workplace targets. Our purpose is to present the development of and provide initial validity evidence for this new commitment measure and to compare it to existing alternative measures. Hypotheses around these objectives were tested with data gathered across 5 samples yielding 2,487 participants representing a wide range of jobs, organizations, and industries. Each sample examined a unique set of variables and targets that together provide a comprehensive test of this new measure relative to 8 different targets, several constructs within the nomological network, and 4 prior commitment measures. Results support our hypotheses regarding (a) the measure's properties and structure, (b) convergence and divergence with prior measures of commitment and other constructs in the nomological network, and (c) advantages over prior measures. These findings support the validity of this new approach to assessing commitment, laying the foundation for future research to address critiques of the commitment construct; better examine the multiple commitments individuals simultaneously hold; and bring consistency, synergy, and integration to commitment scholarship across workplace targets. The conceptual, methodological, and practical benefits of the measure are discussed, along with study limitations and future research opportunities.

  9. Fluctuations of Attentional Networks and Default Mode Network during the Resting State Reflect Variations in Cognitive States: Evidence from a Novel Resting-state Experience Sampling Method.

    PubMed

    Van Calster, Laurens; D'Argembeau, Arnaud; Salmon, Eric; Peters, Frédéric; Majerus, Steve

    2017-01-01

    Neuroimaging studies have revealed the recruitment of a range of neural networks during the resting state, which might reflect a variety of cognitive experiences and processes occurring in an individual's mind. In this study, we focused on the default mode network (DMN) and attentional networks and investigated their association with distinct mental states when participants are not performing an explicit task. To investigate the range of possible cognitive experiences more directly, this study proposes a novel method of resting-state fMRI experience sampling, informed by a phenomenological investigation of the fluctuation of mental states during the resting state. We hypothesized that DMN activity would increase as a function of internal mentation and that the activity of dorsal and ventral networks would indicate states of top-down versus bottom-up attention at rest. Results showed that dorsal attention network activity fluctuated as a function of subjective reports of attentional control, providing evidence that activity of this network reflects the perceived recruitment of controlled attentional processes during spontaneous cognition. Activity of the DMN increased when participants reported to be in a subjective state of internal mentation, but not when they reported to be in a state of perception. This study provides direct evidence for a link between fluctuations of resting-state neural activity and fluctuations in specific cognitive processes.

  10. Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships.

    PubMed

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-09

    The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) < 3.10(-3)). In contrast, bounding equations used to limit ρw(667) retrievals according to the water signal at 555 nm, appeared to be valid for all turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for moderately to very turbid waters (ρw(λNIR) < 10(-2)) while the polynomial function, initially developed by Wang et al. (2012) (Opt. Express 20, 741-753) with remote sensing reflectances over the Western Pacific, was also valid for extremely turbid waters (ρw(λNIR) > 10(-2)). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

  11. Radar Observations of Convective Systems from a High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations. Both TEFLUN-A and B were amply supported by surface data, in particular a dense raingauge network, a polarization radar, wind profilers, a mobile radiosonde system, a cloud physics aircraft penetrating the overflown storms, and a network of 10 cm Doppler radars(WSR-88D). This presentation will show some preliminary comparisons between TRMM, EDOP, and WSR-88D reflectivity fields in the case of an MCS, a hurricane, and less organized convection in central Florida. A validation of TRMM reflectivity is important, because TRMM's primary objective is to estimate the rainfall climatology with 35 degrees of the equator. Rainfall is estimated from the radar reflectivity, as well from TRMM's Microwave Imager, which measures at 10.7, 19.4, 21.3, 37, and 85.5 GHz over a broader swath (78 km). While the experiments lasted about three months the cumulative period of near simultaneous observations of storms by ground-based, airborne and space borne radars is only about an hour long. Therefore the comparison is case-study-based, not climatological. We will highlight fundamental differences in the typical reflectivity profiles in stratiform regions of MCS's, Florida convection and hurricanes and will explain why Z-R relationships based on ground-based radar data for convective systems over land should be different from those for hurricanes. These catastrophically intense rainfall from hurricane Georges in Hispaniola and from Mitch in Honduras highlights the importance of accurate Z-R relationships, It will be shown that a Z-R relationship that uses the entire reflectivity profile (rather than just a 1 level) works much better in a variety of cases, making an adjustment of the constants for different precipitation system categories redundant.

  12. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  13. Validation of new satellite aerosol optical depth retrieval algorithm using Raman lidar observations at radiative transfer laboratory in Warsaw

    NASA Astrophysics Data System (ADS)

    Zawadzka, Olga; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Nemuc, Anca; Stebel, Kerstin

    2018-04-01

    During an exceptionally warm September of 2016, the unique, stable weather conditions over Poland allowed for an extensive testing of the new algorithm developed to improve the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth (AOD) retrieval. The development was conducted in the frame of the ESA-ESRIN SAMIRA project. The new AOD algorithm aims at providing the aerosol optical depth maps over the territory of Poland with a high temporal resolution of 15 minutes. It was tested on the data set obtained between 11-16 September 2016, during which a day of relatively clean atmospheric background related to an Arctic airmass inflow was surrounded by a few days with well increased aerosol load of different origin. On the clean reference day, for estimating surface reflectance the AOD forecast available on-line via the Copernicus Atmosphere Monitoring Service (CAMS) was used. The obtained AOD maps were validated against AODs available within the Poland-AOD and AERONET networks, and with AOD values obtained from the PollyXT-UW lidar. of the University of Warsaw (UW).

  14. Computation of the effective mechanical response of biological networks accounting for large configuration changes.

    PubMed

    El Nady, K; Ganghoffer, J F

    2016-05-01

    The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Progressing Knowledge in Alternative and Local Food Networks: Critical Reflections and a Research Agenda

    ERIC Educational Resources Information Center

    Tregear, Angela

    2011-01-01

    In the now extensive literature on alternative food networks (AFNs) (e.g. farmers' markets, community supported agriculture, box schemes), a body of work has pointed to socio-economic problems with such systems, which run counter to headline claims in the literature. This paper argues that rather than being a reflection of inherent complexities in…

  16. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  17. A Sensemaking Approach to Visual Analytics of Attribute-Rich Social Networks

    ERIC Educational Resources Information Center

    Gou, Liang

    2012-01-01

    Social networks have become more complex, in particular considering the fact that elements in social networks are not only abstract topological nodes and links, but contain rich social attributes and reflecting diverse social relationships. For example, in a co-authorship social network in a scientific community, nodes in the social network, which…

  18. Completing sparse and disconnected protein-protein network by deep learning.

    PubMed

    Huang, Lei; Liao, Li; Wu, Cathy H

    2018-03-22

    Protein-protein interaction (PPI) prediction remains a central task in systems biology to achieve a better and holistic understanding of cellular and intracellular processes. Recently, an increasing number of computational methods have shifted from pair-wise prediction to network level prediction. Many of the existing network level methods predict PPIs under the assumption that the training network should be connected. However, this assumption greatly affects the prediction power and limits the application area because the current golden standard PPI networks are usually very sparse and disconnected. Therefore, how to effectively predict PPIs based on a training network that is sparse and disconnected remains a challenge. In this work, we developed a novel PPI prediction method based on deep learning neural network and regularized Laplacian kernel. We use a neural network with an autoencoder-like architecture to implicitly simulate the evolutionary processes of a PPI network. Neurons of the output layer correspond to proteins and are labeled with values (1 for interaction and 0 for otherwise) from the adjacency matrix of a sparse disconnected training PPI network. Unlike autoencoder, neurons at the input layer are given all zero input, reflecting an assumption of no a priori knowledge about PPIs, and hidden layers of smaller sizes mimic ancient interactome at different times during evolution. After the training step, an evolved PPI network whose rows are outputs of the neural network can be obtained. We then predict PPIs by applying the regularized Laplacian kernel to the transition matrix that is built upon the evolved PPI network. The results from cross-validation experiments show that the PPI prediction accuracies for yeast data and human data measured as AUC are increased by up to 8.4 and 14.9% respectively, as compared to the baseline. Moreover, the evolved PPI network can also help us leverage complementary information from the disconnected training network and multiple heterogeneous data sources. Tested by the yeast data with six heterogeneous feature kernels, the results show our method can further improve the prediction performance by up to 2%, which is very close to an upper bound that is obtained by an Approximate Bayesian Computation based sampling method. The proposed evolution deep neural network, coupled with regularized Laplacian kernel, is an effective tool in completing sparse and disconnected PPI networks and in facilitating integration of heterogeneous data sources.

  19. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  20. Benefits of Reflective Practice

    ERIC Educational Resources Information Center

    Wagner, Kathi

    2006-01-01

    In this article, the author discusses what she was able to learn from an exercise in self-reflection regarding her teaching. She also discusses the advantages of reflection for administrators: First, a reflective practice is data-driven, making it a more valid way to evaluate administrators' knowledge and skills. Second, a reflective practice…

  1. Simulation of laser beam reflection at the sea surface modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2013-06-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for the pre-calculation of images for cameras operating in different spectral wavebands (visible, short wave infrared) for a bistatic configuration of laser source and receiver for different atmospheric conditions. In the visible waveband the calculated detected total power of reflected laser light from a 660nm laser source is compared with data collected in a field trial. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser beam reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the view of a camera the sea surface radiance must be calculated for the specific waveband. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). Validation of simulation results is prerequisite before applying the computer simulation to maritime laser applications. For validation purposes data (images and meteorological data) were selected from field measurements, using a 660nm cw-laser diode to produce laser beam reflection at the water surface and recording images by a TV camera. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam.

  2. Intelligent fiber optic sensor for solution concentration examination

    NASA Astrophysics Data System (ADS)

    Borecki, Michal; Kruszewski, Jerzy

    2003-09-01

    This paper presents the working principles of intelligent fiber-optic intensity sensor used for solution concentration examination. The sensor head is the ending of the large core polymer optical fiber. The head works on the reflection intensity basis. The reflected signal level depends on Fresnel reflection and reflection on suspended matter when the head is submersed in solution. The sensor head is mounted on a lift. For detection purposes the signal includes head submerging, submersion, emerging and emergence is measured. This way the viscosity turbidity and refraction coefficient has an effect on measured signal. The signal forthcoming from head is processed electrically in opto-electronic interface. Then it is feed to neural network. The novelty of presented sensor is implementation of neural network that works in generalization mode. The sensor resolution depends on opto-electronic signal conversion precision and neural network learning accuracy. Therefore, the number and quality of points used for learning process is very important. The example sensor application for examination of liquid soap concentration in water is presented in the paper.

  3. The application of neural networks to the SSME startup transient

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.; Maul, William A.

    1991-01-01

    Feedforward neural networks were used to model three parameters during the Space Shuttle Main Engine startup transient. The three parameters were the main combustion chamber pressure, a controlled parameter, the high pressure oxidizer turbine discharge temperature, a redlined parameter, and the high pressure fuel pump discharge pressure, a failure-indicating performance parameter. Network inputs consisted of time windows of data from engine measurements that correlated highly to the modeled parameter. A standard backpropagation algorithm was used to train the feedforward networks on two nominal firings. Each trained network was validated with four additional nominal firings. For all three parameters, the neural networks were able to accurately predict the data in the validation sets as well as the training set.

  4. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology

    PubMed Central

    Lamontagne, Marie-Eve

    2013-01-01

    Introduction Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. Goal of the article To illustrate social network analysis use in the context of systems of care for traumatic brain injury. Method We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. Results The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Conclusion Social network analysis is a useful methodology to objectively characterise integrated networks. PMID:24250281

  5. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community.

  6. Validity of Social, Moral and Emotional Facets of Self-Description Questionnaire II

    ERIC Educational Resources Information Center

    Leung, Kim Chau; Marsh, Herbert W.; Yeung, Alexander Seeshing; Abduljabbar, Adel S.

    2015-01-01

    Studies adopting a construct validity approach can be categorized into within- and between-network studies. Few studies have applied between-network approach and tested the correlations of the social (same-sex relations, opposite-sex relations, parent relations), moral (honesty-trustworthiness), and emotional (emotional stability) facets of the…

  7. Considerations in the use of reflective writing for student assessment: issues of reliability and validity.

    PubMed

    Moniz, Tracy; Arntfield, Shannon; Miller, Kristina; Lingard, Lorelei; Watling, Chris; Regehr, Glenn

    2015-09-01

    Reflective writing is a popular tool to support the growth of reflective capacity in undergraduate medical learners. Its popularity stems from research suggesting that reflective capacity may lead to improvements in skills such as empathy, communication, collaboration and professionalism. This has led to assumptions that reflective writing can also serve as a tool for student assessment. However, evidence to support the reliability and validity of reflective writing as a meaningful assessment strategy is lacking. Using a published instrument for measuring 'reflective capacity' (the Reflection Evaluation for Learners' Enhanced Competencies Tool [REFLECT]), four trained raters independently scored four samples of writing from each of 107 undergraduate medical students to determine the reliability of reflective writing scores. REFLECT scores were then correlated with scores on a Year 4 objective structured clinical examination (OSCE) and Year 2 multiple-choice question (MCQ) examinations to examine, respectively, convergent and divergent validity. Across four writing samples, four-rater Cronbach's α-values ranged from 0.72 to 0.82, demonstrating reasonable inter-rater reliability with four raters using the REFLECT rubric. However, inter-sample reliability was fairly low (four-sample Cronbach's α = 0.54, single-sample intraclass correlation coefficient: 0.23), which suggests that performance on one reflective writing sample was not strongly indicative of performance on the next. Approximately 14 writing samples are required to achieve reasonable inter-sample reliability. The study found weak, non-significant correlations between reflective writing scores and both OSCE global scores (r = 0.13) and MCQ examination scores (r = 0.10), demonstrating a lack of relationship between reflective writing and these measures of performance. Our findings suggest that to draw meaningful conclusions about reflective capacity as a stable construct in individuals requires 14 writing samples per student, each assessed by four or five raters. This calls into question the feasibility and utility of using reflective writing rigorously as an assessment tool in undergraduate medical education. © 2015 John Wiley & Sons Ltd.

  8. Optimization of multilayer neural network parameters for speaker recognition

    NASA Astrophysics Data System (ADS)

    Tovarek, Jaromir; Partila, Pavol; Rozhon, Jan; Voznak, Miroslav; Skapa, Jan; Uhrin, Dominik; Chmelikova, Zdenka

    2016-05-01

    This article discusses the impact of multilayer neural network parameters for speaker identification. The main task of speaker identification is to find a specific person in the known set of speakers. It means that the voice of an unknown speaker (wanted person) belongs to a group of reference speakers from the voice database. One of the requests was to develop the text-independent system, which means to classify wanted person regardless of content and language. Multilayer neural network has been used for speaker identification in this research. Artificial neural network (ANN) needs to set parameters like activation function of neurons, steepness of activation functions, learning rate, the maximum number of iterations and a number of neurons in the hidden and output layers. ANN accuracy and validation time are directly influenced by the parameter settings. Different roles require different settings. Identification accuracy and ANN validation time were evaluated with the same input data but different parameter settings. The goal was to find parameters for the neural network with the highest precision and shortest validation time. Input data of neural networks are a Mel-frequency cepstral coefficients (MFCC). These parameters describe the properties of the vocal tract. Audio samples were recorded for all speakers in a laboratory environment. Training, testing and validation data set were split into 70, 15 and 15 %. The result of the research described in this article is different parameter setting for the multilayer neural network for four speakers.

  9. Functional Inference of Complex Anatomical Tendinous Networks at a Macroscopic Scale via Sparse Experimentation

    PubMed Central

    Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J.

    2012-01-01

    In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines. PMID:23144601

  10. Functional inference of complex anatomical tendinous networks at a macroscopic scale via sparse experimentation.

    PubMed

    Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J

    2012-01-01

    In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.

  11. Social support network typologies and health outcomes of older people in low and middle income countries--a 10/66 Dementia Research Group population-based study.

    PubMed

    Thiyagarajan, Jotheeswaran A; Prince, Martin; Webber, Martin

    2014-08-01

    This study aims to assess the construct validity of the Wenger social support network typology in low and middle income countries. We hypothesize that, in comparison with the integrated network type, the non-integrated network type is associated with loneliness, depression, poor quality of life (less happiness), poor self-reported health, increased disability and higher care needs. Cross-sectional one-phase surveys were conducted of all residents aged 65 and over in catchment areas in eight low and middle income countries (India, China, Cuba, Dominican Republic, Venezuela, Mexico, Peru and Puerto Rico). Wenger's Practitioner Assessment of Network Type (PANT) was used to measure social network type. Family dependent, local self-contained, wider community-focused and private restricted network types were considered non-integrated, in comparison to the locally integrated network type. Overall, 17,031 participants were interviewed. Family dependent and locally integrated network types were the most prevalent. Adjusted pooled estimates across sites showed that loneliness, depression, less happiness, poor health, disability, and need for care were significantly associated with non-integrated network type. The findings of this study support the construct validity of Wenger's network typology in low and middle income countries. However, further research is required to test the criterion validity of Wenger typology using longitudinal data. Identifying older people who are vulnerable could inform the development of social care interventions to support older people and their families in the context of deteriorating health.

  12. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  13. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    PubMed Central

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-01-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209

  14. [Not Available].

    PubMed

    Yanashima, Ryoji; Kitagawa, Noriyuki; Matsubara, Yoshiya; Weatheritt, Robert; Oka, Kotaro; Kikuchi, Shinichi; Tomita, Masaru; Ishizaki, Shun

    2009-01-01

    The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.

  15. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the reflections, but not dip direction, was an important discriminator between radar facies at the William River delta. To extend the use of radar texture beyond the identification of radar facies to sedimentary facies we are investigating how sedimentary features are encoded in GPR data at Borden, Ontario, Canada. At this site, we have collected extensive sedimentary and hydrologic data over the area imaged by GPR. Analysis of this data coupled with synthetic modeling of the radar signal has allowed us to develop insight into the generation of radar texture in complex geologic environments.

  16. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    PubMed Central

    Liu, Yaou; Duan, Yunyun; Li, Kuncheng

    2015-01-01

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535

  17. MLS Multipath Studies. Phase 3. Volume I. Overview and Propagation Model Validation/Refinement Studies.

    DTIC Science & Technology

    1979-04-25

    Airport (Bedford, MA ) and Ft. Devens, MA. (2) validation of the models for building reflections based on elevation field measurements at JFK airport and...angles. 2-60 III. BUILDING REFLECTIONS A. Van Measurements at John F. Kennedy (JFK) International Airport, New York Figure 3-1 shows a map of JFK airport with

  18. Quality control and assurance for validation of DOS/I measurements

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert; Durkin, Amanda; Kwong, Richard; Quang, Timothy; Hill, Brian; Tromberg, Bruce J.; MacKinnon, Nick; Mantulin, William W.

    2010-02-01

    Ongoing multi-center clinical trials are crucial for Biophotonics to gain acceptance in medical imaging. In these trials, quality control (QC) and assurance (QA) are key to success and provide "data insurance". Quality control and assurance deal with standardization, validation, and compliance of procedures, materials and instrumentation. Specifically, QC/QA involves systematic assessment of testing materials, instrumentation performance, standard operating procedures, data logging, analysis, and reporting. QC and QA are important for FDA accreditation and acceptance by the clinical community. Our Biophotonics research in the Network for Translational Research in Optical Imaging (NTROI) program for breast cancer characterization focuses on QA/QC issues primarily related to the broadband Diffuse Optical Spectroscopy and Imaging (DOS/I) instrumentation, because this is an emerging technology with limited standardized QC/QA in place. In the multi-center trial environment, we implement QA/QC procedures: 1. Standardize and validate calibration standards and procedures. (DOS/I technology requires both frequency domain and spectral calibration procedures using tissue simulating phantoms and reflectance standards, respectively.) 2. Standardize and validate data acquisition, processing and visualization (optimize instrument software-EZDOS; centralize data processing) 3. Monitor, catalog and maintain instrument performance (document performance; modularize maintenance; integrate new technology) 4. Standardize and coordinate trial data entry (from individual sites) into centralized database 5. Monitor, audit and communicate all research procedures (database, teleconferences, training sessions) between participants ensuring "calibration". This manuscript describes our ongoing efforts, successes and challenges implementing these strategies.

  19. TELMA: Technology-enhanced learning environment for minimally invasive surgery.

    PubMed

    Sánchez-González, Patricia; Burgos, Daniel; Oropesa, Ignacio; Romero, Vicente; Albacete, Antonio; Sánchez-Peralta, Luisa F; Noguera, José F; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-06-01

    Cognitive skills training for minimally invasive surgery has traditionally relied upon diverse tools, such as seminars or lectures. Web technologies for e-learning have been adopted to provide ubiquitous training and serve as structured repositories for the vast amount of laparoscopic video sources available. However, these technologies fail to offer such features as formative and summative evaluation, guided learning, or collaborative interaction between users. The "TELMA" environment is presented as a new technology-enhanced learning platform that increases the user's experience using a four-pillared architecture: (1) an authoring tool for the creation of didactic contents; (2) a learning content and knowledge management system that incorporates a modular and scalable system to capture, catalogue, search, and retrieve multimedia content; (3) an evaluation module that provides learning feedback to users; and (4) a professional network for collaborative learning between users. Face validation of the environment and the authoring tool are presented. Face validation of TELMA reveals the positive perception of surgeons regarding the implementation of TELMA and their willingness to use it as a cognitive skills training tool. Preliminary validation data also reflect the importance of providing an easy-to-use, functional authoring tool to create didactic content. The TELMA environment is currently installed and used at the Jesús Usón Minimally Invasive Surgery Centre and several other Spanish hospitals. Face validation results ascertain the acceptance and usefulness of this new minimally invasive surgery training environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Sparse brain network using penalized linear regression

    NASA Astrophysics Data System (ADS)

    Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.

    2011-03-01

    Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.

  1. Rationality Validation of a Layered Decision Model for Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Huaqiang; Alves-Foss, James; Zhang, Du

    2007-08-31

    We propose a cost-effective network defense strategy built on three key: three decision layers: security policies, defense strategies, and real-time defense tactics for countering immediate threats. A layered decision model (LDM) can be used to capture this decision process. The LDM helps decision-makers gain insight into the hierarchical relationships among inter-connected entities and decision types, and supports the selection of cost-effective defense mechanisms to safeguard computer networks. To be effective as a business tool, it is first necessary to validate the rationality of model before applying it to real-world business cases. This paper describes our efforts in validating the LDMmore » rationality through simulation.« less

  2. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; Song, Chul H.; Lim, Jae-Hyun; Song, Chang-Keun

    2016-04-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 × AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.

  3. GOCI Yonsei Aerosol Retrieval (YAER) Algorithm and Validation During the DRAGON-NE Asia 2012 Campaign

    NASA Technical Reports Server (NTRS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; hide

    2016-01-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGONNE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.

  4. Bright color optical switching device by polymer network liquid crystal with a specular reflector.

    PubMed

    Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun

    2011-07-04

    The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.

  5. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  6. Validation of in situ networks via field sampling: case study in the South Fork Experimental Watershed

    USDA-ARS?s Scientific Manuscript database

    The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Therefore, these stations are located along field boundaries or in non-representative sites with regards to so...

  7. Validating the BERMS in situ soil moisture network with a large scale temporary network

    USDA-ARS?s Scientific Manuscript database

    Calibration and validation of soil moisture satellite products requires data records of large spatial and temporal extent, but obtaining this data can be challenging. These challenges can include remote locations, and expense of equipment. One location with a long record of soil moisture data is th...

  8. Quantifying seasonal dynamics of canopy structure and function using inexpensive narrowband spectral radiometers

    NASA Astrophysics Data System (ADS)

    Vierling, L. A.; Garrity, S. R.; Campbell, G.; Coops, N. C.; Eitel, J.; Gamon, J. A.; Hilker, T.; Krofcheck, D. J.; Litvak, M. E.; Naupari, J. A.; Richardson, A. D.; Sonnentag, O.; van Leeuwen, M.

    2011-12-01

    Increasing the spatial and temporal density of automated environmental sensing networks is necessary to quantify shifts in plant structure (e.g., leaf area index) and function (e.g., photosynthesis). Improving detection sensitivity can facilitate a mechanistic understanding by better linking plant processes to environmental change. Spectral radiometer measurements can be highly useful for tracking plant structure and function from diurnal to seasonal time scales and calibrating and validating satellite- and aircraft-based spectral measurements. However, dense ground networks of such instruments are challenging to establish due to the cost and complexity of automated instrument deployment. We therefore developed simple to operate, lightweight and inexpensive narrowband (~10nm bandwidth) spectral instruments capable of continuously measuring four to six discrete bands that have proven capacity to describe key physiological processes and structural features of plant canopies. These bands are centered at 530, 570, 675, 800, 880, and 970 nm to enable calculation of the physiological reflectance index (PRI), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and water band index (WBI) collected above and within vegetation canopies. To date, measurements have been collected above grassland, semi-arid shrub steppe, piñon-juniper woodland, dense conifer forest, mixed deciduous-conifer forest, and cropland canopies, with additional measurements collected along vertical transects through a temperate conifer rainforest. Findings from this work indicate not only that key shifts in plant phenology, physiology, and structure can be captured using such instruments, but that the temporally dense nature of the measurements can help to disentangle heretofore unreported complexities of simultaneous phenological and structural change on canopy reflectance.

  9. Research on an uplink carrier sense multiple access algorithm of large indoor visible light communication networks based on an optical hard core point process.

    PubMed

    Nan, Zhufen; Chi, Xuefen

    2016-12-20

    The IEEE 802.15.7 protocol suggests that it could coordinate the channel access process based on the competitive method of carrier sensing. However, the directionality of light and randomness of diffuse reflection would give rise to a serious imperfect carrier sense (ICS) problem [e.g., hidden node (HN) problem and exposed node (EN) problem], which brings great challenges in realizing the optical carrier sense multiple access (CSMA) mechanism. In this paper, the carrier sense process implemented by diffuse reflection light is modeled as the choice of independent sets. We establish an ICS model with the presence of ENs and HNs for the multi-point to multi-point visible light communication (VLC) uplink communications system. Considering the severe optical ICS problem, an optical hard core point process (OHCPP) is developed, which characterizes the optical CSMA for the indoor VLC uplink communications system. Due to the limited coverage of the transmitted optical signal, in our OHCPP, the ENs within the transmitters' carrier sense region could be retained provided that they could not corrupt the ongoing communications. Moreover, because of the directionality of both light emitting diode (LED) transmitters and receivers, theoretical analysis of the HN problem becomes difficult. In this paper, we derive the closed-form expression for approximating the outage probability and transmission capacity of VLC networks with the presence of HNs and ENs. Simulation results validate the analysis and also show the existence of an optimal physical carrier-sensing threshold that maximizes the transmission capacity for a given emission angle of LED.

  10. Correcting Evaluation Bias of Relational Classifiers with Network Cross Validation

    DTIC Science & Technology

    2010-01-01

    classi- fication algorithms: simple random resampling (RRS), equal-instance random resampling (ERS), and network cross-validation ( NCV ). The first two... NCV procedure that eliminates overlap between test sets altogether. The procedure samples for k disjoint test sets that will be used for evaluation...propLabeled ∗ S) nodes from train Pool in f erenceSet =network − trainSet F = F ∪ < trainSet, test Set, in f erenceSet > end for output: F NCV addresses

  11. Discovery and validation of a glioblastoma co-expressed gene module

    PubMed Central

    Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander

    2018-01-01

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392

  12. Discovery and validation of a glioblastoma co-expressed gene module.

    PubMed

    Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander

    2018-02-16

    Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.

  13. Development and Validation of the Air Force Cyber Intruder Alert Testbed (CIAT)

    DTIC Science & Technology

    2016-07-27

    Validation of the Air Force Cyber Intruder Alert Testbed (CIAT) 5a. CONTRACT NUMBER FA8650-16-C-6722 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...network analysts. Therefore, a new cyber STE focused on network analysts called the Air Force Cyber Intruder Alert Testbed (CIAT) was developed. This...Prescribed by ANSI Std. Z39-18 Development and Validation of the Air Force Cyber Intruder Alert Testbed (CIAT) Gregory Funke, Gregory Dye, Brett Borghetti

  14. Evaluation model of distribution network development based on ANP and grey correlation analysis

    NASA Astrophysics Data System (ADS)

    Ma, Kaiqiang; Zhan, Zhihong; Zhou, Ming; Wu, Qiang; Yan, Jun; Chen, Genyong

    2018-06-01

    The existing distribution network evaluation system cannot scientifically and comprehensively reflect the distribution network development status. Furthermore, the evaluation model is monotonous and it is not suitable for horizontal analysis of many regional power grids. For these reason, this paper constructs a set of universal adaptability evaluation index system and model of distribution network development. Firstly, distribution network evaluation system is set up by power supply capability, power grid structure, technical equipment, intelligent level, efficiency of the power grid and development benefit of power grid. Then the comprehensive weight of indices is calculated by combining the AHP with the grey correlation analysis. Finally, the index scoring function can be obtained by fitting the index evaluation criterion to the curve, and then using the multiply plus operator to get the result of sample evaluation. The example analysis shows that the model can reflect the development of distribution network and find out the advantages and disadvantages of distribution network development. Besides, the model provides suggestions for the development and construction of distribution network.

  15. Measurement of alienation among adolescents: construct validity of three scales on powerlessness, meaninglessness and social isolation.

    PubMed

    Rayce, Signe Boe; Kreiner, Svend; Damsgaard, Mogens Trab; Nielsen, Tine; Holstein, Bjørn Evald

    2017-01-01

    Psychological alienation is an important concept in the study of adolescents' health and behavior but no gold standard for measuring alienation among adolescents exists. There is a need for new scales with high validity for use in adolescent health and social research. The purpose of the present study was to develop and validate alienation scales in accordance with Seeman's conceptualization of alienation focusing on three independent variants specifically relevant in adolescent health research: powerlessness, meaninglessness and social isolation. Cross-sectional data from 3083 adolescents aged 13 to 15 years from the Danish contribution to the cross-national study Health Behaviour in School-aged Children (HBSC) were used. We identified and developed items, addressed content and face validity through interviews, and examined the criterion-related construct validity of the scales using graphical loglinear Rasch models (GLLRM). The three scales each comprised three to five face valid items. The powerlessness scale reflected the adolescent's expectancy as to whether his/her behavior can determine the outcome or reinforcement he/she seeks. The meaninglessness scale reflected the expectancy as to whether satisfactory predictions regarding the effects of one's behavior are possible. Finally, the social isolation scale reflected whether the adolescent had a low expectancy for inclusion and social acceptance. All scales contained some uniform local dependency and differential item functioning. However, only to a limited degree, which could be accounted for using GLLRM. Thus the scales fitted GLLRMs and can therefore be considered to be essentially construct valid and essentially objective. The three alienation scales appear to be content and face valid and fulfill the psychometric properties of a good construct valid reflective scale. This suggests that the scales may be appropriate in future large-scale surveys to examine the relation between alienation and a range of adolescent health outcomes such as health, behavior and wellbeing.

  16. Support vector machine classification and characterization of age-related reorganization of functional brain networks

    PubMed Central

    Meier, Timothy B.; Desphande, Alok S.; Vergun, Svyatoslav; Nair, Veena A.; Song, Jie; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Prabhakaran, Vivek

    2012-01-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5 mm3 radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual’s three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. PMID:22227886

  17. Support vector machine classification and characterization of age-related reorganization of functional brain networks.

    PubMed

    Meier, Timothy B; Desphande, Alok S; Vergun, Svyatoslav; Nair, Veena A; Song, Jie; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2012-03-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5mm(3) radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual's three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Similarity between community structures of different online social networks and its impact on underlying community detection

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  19. Validating the Persian Version of Reflective Thinking Questionnaire and Probing Iranian University Students' Reflective Thinking and Academic Achievement

    ERIC Educational Resources Information Center

    Ghanizadeh, Afsaneh; Jahedizadeh, Safoura

    2017-01-01

    Scholars in higher education deem reflective thinking as integral to the development of professional disciplinary practices. One of the major issues in studying reflective thinking pivots around its conceptualization and assessment. Over the years, researchers have used several methods and scales to measure reflective thinking. One of the most…

  20. Reflection: A Socratic approach

    PubMed Central

    Van Seggelen – Damen, Inge C. M.; Van Hezewijk, René; Helsdingen, Anne S.; Wopereis, Iwan G. J. H.

    2017-01-01

    Reflection is a fuzzy concept. In this article we reveal the paradoxes involved in studying the nature of reflection. Whereas some scholars emphasize its discursive nature, we go further and underline its resemblance to the self-biased dialogue Socrates had with the slave in Plato’s Meno. The individual and internal nature of the reflection process creates difficulty for studying it validly and reliably. We focus on methodological issues and use Hans Linschoten’s view of coupled systems to identify, analyze, and interpret empirical research on reflection. We argue that researchers and research participants can take on roles in several possible system couplings. Depending on who controls the manipulation of the stimulus, who controls the measuring instrument, who interprets the measurement and the response, different types of research questions can be answered. We conclude that reflection may be validly studied by combining different couplings of experimenter, manipulation, stimulus, participant, measurement, and response. PMID:29249867

  1. True and fake information spreading over the Facebook

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Chow, Tommy W. S.; Zhong, Lu; Tian, Zhaoyang; Zhang, Qingpeng; Chen, Guanrong

    2018-09-01

    Social networks have involved more and more users who search for and share information extensively and frequently. Tremendous evidence in Facebook, Twitter, Flickr and Google+ alike shows that such social networks are the major information sources as well as the most effective platforms for information transmission and exchange. The dynamic propagation of various information may gradually disseminate, drastically increase, strongly compete with each other, or slowly decrease. These observations had led to the present study of the spreading process of true and fake information over social networks, particularly the Facebook. Specifically, in this paper the topological structure of two huge-scale Facebook network datasets are investigated regarding their statistical properties. Based on that, an information model for simulating the true and fake information spreading over the Facebook is established. Through controlling the spreading parameters in extensive large-scale simulations, it is found that the final density of stiflers increases with the growth of the spreading rate, while it would decline with the increase of the removal rate. Moreover, it is found that the spreading process of the true-fake information is closely related to the node degrees on the network. Hub-individuals with high degrees have large probabilities to learn hidden information and then spread it. Interestingly, it is found that the spreading rate of the true information but not of the fake information has a great effect on the information spreading process, reflecting the human nature in believing and spreading truths in social activities. The new findings validate the proposed model to be capable of characterizing the dynamic evolution of true and fake information over the Facebook, useful and informative for future social science studies.

  2. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.

    PubMed

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-05-17

    Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.

  3. Statistical physics of balance theory

    PubMed Central

    Belaza, Andres M.; Hoefman, Kevin; Bramson, Aaron; van den Heuvel, Milan; Schoors, Koen

    2017-01-01

    Triadic relationships are accepted to play a key role in the dynamics of social and political networks. Building on insights gleaned from balance theory in social network studies and from Boltzmann-Gibbs statistical physics, we propose a model to quantitatively capture the dynamics of the four types of triadic relationships in a network. Central to our model are the triads’ incidence rates and the idea that those can be modeled by assigning a specific triadic energy to each type of triadic relation. We emphasize the role of the degeneracy of the different triads and how it impacts the degree of frustration in the political network. In order to account for a persistent form of disorder in the formation of the triadic relationships, we introduce the systemic variable temperature. In order to learn about the dynamics and motives, we propose a generic Hamiltonian with three terms to model the triadic energies. One term is connected with a three-body interaction that captures balance theory. The other terms take into account the impact of heterogeneity and of negative edges in the triads. The validity of our model is tested on four datasets including the time series of triadic relationships for the standings between two classes of alliances in a massively multiplayer online game (MMOG). We also analyze real-world data for the relationships between the “agents” involved in the Syrian civil war, and in the relations between countries during the Cold War era. We find emerging properties in the triadic relationships in a political network, for example reflecting itself in a persistent hierarchy between the four triadic energies, and in the consistency of the extracted parameters from comparing the model Hamiltonian to the data. PMID:28846726

  4. Statistical physics of balance theory.

    PubMed

    Belaza, Andres M; Hoefman, Kevin; Ryckebusch, Jan; Bramson, Aaron; van den Heuvel, Milan; Schoors, Koen

    2017-01-01

    Triadic relationships are accepted to play a key role in the dynamics of social and political networks. Building on insights gleaned from balance theory in social network studies and from Boltzmann-Gibbs statistical physics, we propose a model to quantitatively capture the dynamics of the four types of triadic relationships in a network. Central to our model are the triads' incidence rates and the idea that those can be modeled by assigning a specific triadic energy to each type of triadic relation. We emphasize the role of the degeneracy of the different triads and how it impacts the degree of frustration in the political network. In order to account for a persistent form of disorder in the formation of the triadic relationships, we introduce the systemic variable temperature. In order to learn about the dynamics and motives, we propose a generic Hamiltonian with three terms to model the triadic energies. One term is connected with a three-body interaction that captures balance theory. The other terms take into account the impact of heterogeneity and of negative edges in the triads. The validity of our model is tested on four datasets including the time series of triadic relationships for the standings between two classes of alliances in a massively multiplayer online game (MMOG). We also analyze real-world data for the relationships between the "agents" involved in the Syrian civil war, and in the relations between countries during the Cold War era. We find emerging properties in the triadic relationships in a political network, for example reflecting itself in a persistent hierarchy between the four triadic energies, and in the consistency of the extracted parameters from comparing the model Hamiltonian to the data.

  5. A conflict management scale for pharmacy.

    PubMed

    Austin, Zubin; Gregory, Paul A; Martin, Craig

    2009-11-12

    To develop and establish the validity and reliability of a conflict management scale specific to pharmacy practice and education. A multistage inventory-item development process was undertaken involving 93 pharmacists and using a previously described explanatory model for conflict in pharmacy practice. A 19-item inventory was developed, field tested, and validated. The conflict management scale (CMS) demonstrated an acceptable degree of reliability and validity for use in educational or practice settings to promote self-reflection and self-awareness regarding individuals' conflict management styles. The CMS provides a unique, pharmacy-specific method for individuals to determine and reflect upon their own conflict management styles. As part of an educational program to facilitate self-reflection and heighten self-awareness, the CMS may be a useful tool to promote discussions related to an important part of pharmacy practice.

  6. Non-destructive Techniques for Classifying Aircraft Coating Degradation

    DTIC Science & Technology

    2015-03-26

    model is bidirectional reflectance distribution func- tions ( BRDF ) which describes how much radiation is reflected for each solid angle and each...incident angle. An intermediate model between ideal reflectors and BRDF is to assume all reflectance is a combination of diffuse and specular reflectance...19 K-Fold Cross Validation

  7. Gene network biological validity based on gene-gene interaction relevance.

    PubMed

    Gómez-Vela, Francisco; Díaz-Díaz, Norberto

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.

  8. BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks

    PubMed Central

    Rialle, Stéphanie; Felicori, Liza; Dias-Lopes, Camila; Pérès, Sabine; El Atia, Sanaâ; Thierry, Alain R.; Amar, Patrick; Molina, Franck

    2010-01-01

    Motivation: Synthetic biology studies how to design and construct biological systems with functions that do not exist in nature. Biochemical networks, although easier to control, have been used less frequently than genetic networks as a base to build a synthetic system. To date, no clear engineering principles exist to design such cell-free biochemical networks. Results: We describe a methodology for the construction of synthetic biochemical networks based on three main steps: design, simulation and experimental validation. We developed BioNetCAD to help users to go through these steps. BioNetCAD allows designing abstract networks that can be implemented thanks to CompuBioTicDB, a database of parts for synthetic biology. BioNetCAD enables also simulations with the HSim software and the classical Ordinary Differential Equations (ODE). We demonstrate with a case study that BioNetCAD can rationalize and reduce further experimental validation during the construction of a biochemical network. Availability and implementation: BioNetCAD is freely available at http://www.sysdiag.cnrs.fr/BioNetCAD. It is implemented in Java and supported on MS Windows. CompuBioTicDB is freely accessible at http://compubiotic.sysdiag.cnrs.fr/ Contact: stephanie.rialle@sysdiag.cnrs.fr; franck.molina@sysdiag.cnrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20628073

  9. In Silico Gene Prioritization by Integrating Multiple Data Sources

    PubMed Central

    Zhou, Yingyao; Shields, Robert; Chanda, Sumit K.; Elston, Robert C.; Li, Jing

    2011-01-01

    Identifying disease genes is crucial to the understanding of disease pathogenesis, and to the improvement of disease diagnosis and treatment. In recent years, many researchers have proposed approaches to prioritize candidate genes by considering the relationship of candidate genes and existing known disease genes, reflected in other data sources. In this paper, we propose an expandable framework for gene prioritization that can integrate multiple heterogeneous data sources by taking advantage of a unified graphic representation. Gene-gene relationships and gene-disease relationships are then defined based on the overall topology of each network using a diffusion kernel measure. These relationship measures are in turn normalized to derive an overall measure across all networks, which is utilized to rank all candidate genes. Based on the informativeness of available data sources with respect to each specific disease, we also propose an adaptive threshold score to select a small subset of candidate genes for further validation studies. We performed large scale cross-validation analysis on 110 disease families using three data sources. Results have shown that our approach consistently outperforms other two state of the art programs. A case study using Parkinson disease (PD) has identified four candidate genes (UBB, SEPT5, GPR37 and TH) that ranked higher than our adaptive threshold, all of which are involved in the PD pathway. In particular, a very recent study has observed a deletion of TH in a patient with PD, which supports the importance of the TH gene in PD pathogenesis. A web tool has been implemented to assist scientists in their genetic studies. PMID:21731658

  10. Construct Validation of Wenger's Support Network Typology.

    PubMed

    Szabo, Agnes; Stephens, Christine; Allen, Joanne; Alpass, Fiona

    2016-10-07

    The study aimed to validate Wenger's empirically derived support network typology of responses to the Practitioner Assessment of Network Type (PANT) in an older New Zealander population. The configuration of network types was tested across ethnic groups and in the total sample. Data (N = 872, Mage = 67 years, SDage = 1.56 years) from the 2006 wave of the New Zealand Health, Work and Retirement study were analyzed using latent profile analysis. In addition, demographic differences among the emerging profiles were tested. Competing models were evaluated based on a range of fit criteria, which supported a five-profile solution. The "locally integrated," "community-focused," "local self-contained," "private-restricted," and "friend- and family-dependent" network types were identified as latent profiles underlying the data. There were no differences between Māori and non-Māori in final profile configurations. However, Māori were more likely to report integrated network types. Findings confirm the validity of Wenger's network types. However, the level to which participants endorse accessibility of family, frequency of interactions, and community engagement can be influenced by sample and contextual characteristics. Future research using the PANT items should empirically verify and derive the social support network types, rather than use a predefined scoring system. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Validating the Chinese Version of the Inventory of School Motivation

    ERIC Educational Resources Information Center

    King, Ronnel B.; Watkins, David A.

    2013-01-01

    The aim of this study is to assess the cross-cultural applicability of the Chinese version of the Inventory of School Motivation (ISM; McInerney & Sinclair, 1991) in the Hong Kong context using both within-network and between-network approaches to construct validation. The ISM measures four types of achievement goals: mastery, performance,…

  12. NNvPDB: Neural Network based Protein Secondary Structure Prediction with PDB Validation.

    PubMed

    Sakthivel, Seethalakshmi; S K M, Habeeb

    2015-01-01

    The predicted secondary structural states are not cross validated by any of the existing servers. Hence, information on the level of accuracy for every sequence is not reported by the existing servers. This was overcome by NNvPDB, which not only reported greater Q3 but also validates every prediction with the homologous PDB entries. NNvPDB is based on the concept of Neural Network, with a new and different approach of training the network every time with five PDB structures that are similar to query sequence. The average accuracy for helix is 76%, beta sheet is 71% and overall (helix, sheet and coil) is 66%. http://bit.srmuniv.ac.in/cgi-bin/bit/cfpdb/nnsecstruct.pl.

  13. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thwaites, D; Holloway, L; Bailey, M

    2015-06-15

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction andmore » mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions, improved treatment quality and potential practice changes. The early indications from the distributed learning and radiomics pilots strengthen this. Improved routine patient data quality should strengthen such rapid learning systems.« less

  14. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping

    PubMed Central

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi

    2015-01-01

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted MHNNA with remote sensing techniques (as based on ALOS images). PMID:26729148

  15. Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

    PubMed Central

    Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.

    2014-01-01

    Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and validated evidence for the existence of the protease web, a network that affects the activity of most proteases and thereby influences the functional state of the proteome and cell activity. PMID:24865846

  16. Detection of algorithmic trading

    NASA Astrophysics Data System (ADS)

    Bogoev, Dimitar; Karam, Arzé

    2017-10-01

    We develop a new approach to reflect the behavior of algorithmic traders. Specifically, we provide an analytical and tractable way to infer patterns of quote volatility and price momentum consistent with different types of strategies employed by algorithmic traders, and we propose two ratios to quantify these patterns. Quote volatility ratio is based on the rate of oscillation of the best ask and best bid quotes over an extremely short period of time; whereas price momentum ratio is based on identifying patterns of rapid upward or downward movement in prices. The two ratios are evaluated across several asset classes. We further run a two-stage Artificial Neural Network experiment on the quote volatility ratio; the first stage is used to detect the quote volatility patterns resulting from algorithmic activity, while the second is used to validate the quality of signal detection provided by our measure.

  17. 1.25-3.125 Gb/s per user PON with RSOA as phase modulator for statistical wavelength ONU

    NASA Astrophysics Data System (ADS)

    Chu, Guang Yong; Polo, Victor; Lerín, Adolfo; Tabares, Jeison; Cano, Iván N.; Prat, Josep

    2015-12-01

    We report a new scheme to support, cost efficiently, ultra-dense wavelength division multiplexing (UDWDM) for optical access networks. As validating experiment, we apply phase modulation of a reflective semiconductor optical amplifier (RSOA) at the ONU with a single DFB, and simplified coherent receiver at OLT for upstream. We extend the limited 3-dB modulation bandwidth of available uncooled To-can packaged RSOA (~400 MHz) and operate it at 3.125 Gb/s with the optimal performance for phase modulation using small and large signal measurement characteristics. The optimal condition is selected at input power of 0 dBm, with 70 mA bias condition. The sensitivities at 3.125 Gb/s (at BER=10-3) for heterodyne and intradyne detection reach -34.3 dBm and -38.8 dBm, respectively.

  18. Direct estimation of land surface albedo from VIIRS data: Algorithm improvement and preliminary validation

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Liang, Shunlin; He, Tao; Yu, Yunyue

    2013-11-01

    surface albedo (LSA), part of the Visible Infrared Imaging Radiometer Suite (VIIRS) surface albedo environmental data record (EDR), is an essential variable regulating shortwave energy exchange between the land surface and the atmosphere. Two sub-algorithms, the dark pixel sub-algorithm (DPSA) and the bright pixel sub-algorithm (BPSA), were proposed for retrieving LSA from VIIRS data. The BPSA estimates LSA directly from VIIRS top-of-atmosphere (TOA) reflectance through simulation of atmospheric radiative transfer. Several changes have been made to improve the BPSA since the deployment of VIIRS. A database of the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) is collected and converted to bidirectional reflectance at VIIRS bands. The converted reflectance is then used as input to the atmospheric radiative transfer model to generate a look-up table (LUT) of regression coefficients with consideration of surface BRDF. Before its implementation in the operational system, the new BPSA is tested on the local infrastructure. The incorporation of the surface BRDF improves the accuracy of LSA estimation and reduces the temporal variation of LSA over stable surfaces. VIIRS LSA retrievals agree well with the MODIS albedo products. Comparison with field measurements at seven Surface Radiation (SURFRAD) Network sites shows that VIIRS LSA retrieved from the LUT with surface BRDF has an R2 value of 0.80 and root mean square error of 0.049, better than MODIS albedo products. The VIIRS results have a slight negative bias of 0.004, whereas the MODIS albedo is underestimated with a larger negative bias of 0.026.

  19. Umyuangcaryaraq "Reflecting": multidimensional assessment of reflective processes on the consequences of alcohol use among rural Yup'ik Alaska Native youth.

    PubMed

    Allen, James; Fok, Carlotta Ching Ting; Henry, David; Skewes, Monica

    2012-09-01

    Concerns in some settings regarding the accuracy and ethics of employing direct questions about alcohol use suggest need for alternative assessment approaches with youth. Umyuangcaryaraq is a Yup'ik Alaska Native word meaning "Reflecting." The Reflective Processes Scale was developed as a youth measure tapping awareness and thinking over potential negative consequences of alcohol misuse as a protective factor that includes cultural elements often shared by many other Alaska Native and American Indian cultures. This study assessed multidimensional structure, item functioning, and validity. Responses from 284 rural Alaska Native youth allowed bifactor analysis to assess structure, estimates of location and discrimination parameters, and convergent and discriminant validity. A bifactor model of the scale items with three content factors provided excellent fit to observed data. Item response theory analysis suggested a binary response format as optimal. Evidence of convergent and discriminant validity was established. The measure provides an assessment of reflective processes about alcohol that Alaska Native youth engage in when thinking about reasons not to drink. The concept of reflective processes has potential to extend understandings of cultural variation in mindfulness, alcohol expectancies research, and culturally mediated protective factors in Alaska Native and American Indian youth.

  20. Chimeras in leaky integrate-and-fire neural networks: effects of reflecting connectivities

    NASA Astrophysics Data System (ADS)

    Tsigkri-DeSmedt, Nefeli Dimitra; Hizanidis, Johanne; Schöll, Eckehard; Hövel, Philipp; Provata, Astero

    2017-07-01

    The effects of attracting-nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which model the exchange of electrical signals between neurons. Earlier investigations have demonstrated that repulsive-nonlocal and hierarchical network connectivity can induce complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are nonlocally linked with positive diffusive coupling on a ring network, the system splits into a number of alternating domains. Half of these domains contain elements whose potential stays near the threshold and they are interrupted by active domains where the elements perform regular LIF oscillations. The active domains travel along the ring with constant velocity, depending on the system parameters. When we introduce reflecting coupling in LIF networks unexpected complex spatio-temporal structures arise. For relatively extensive ranges of parameter values, the system splits into two coexisting domains: one where all elements stay near the threshold and one where incoherent states develop, characterized by multi-leveled mean phase velocity profiles.

  1. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks.

    PubMed

    Wu, Jiaye; Yang, Xiangbo

    2017-10-30

    In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.

  2. Career development for early career academics: benefits of networking and the role of professional societies.

    PubMed

    Ansmann, Lena; Flickinger, Tabor E; Barello, Serena; Kunneman, Marleen; Mantwill, Sarah; Quilligan, Sally; Zanini, Claudia; Aelbrecht, Karolien

    2014-10-01

    Whilst effective networking is vitally important for early career academics, understanding and establishing useful networks is challenging. This paper provides an overview of the benefits and challenges of networking in the academic field, particularly for early career academics, and reflects on the role of professional societies in facilitating networking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Validation of the Social Networking Activity Intensity Scale among Junior Middle School Students in China.

    PubMed

    Li, Jibin; Lau, Joseph T F; Mo, Phoenix K H; Su, Xuefen; Wu, Anise M S; Tang, Jie; Qin, Zuguo

    2016-01-01

    Online social networking use has been integrated into adolescents' daily life and the intensity of online social networking use may have important consequences on adolescents' well-being. However, there are few validated instruments to measure social networking use intensity. The present study aims to develop the Social Networking Activity Intensity Scale (SNAIS) and validate it among junior middle school students in China. A total of 910 students who were social networking users were recruited from two junior middle schools in Guangzhou, and 114 students were retested after two weeks to examine the test-retest reliability. The psychometrics of the SNAIS were estimated using appropriate statistical methods. Two factors, Social Function Use Intensity (SFUI) and Entertainment Function Use Intensity (EFUI), were clearly identified by both exploratory and confirmatory factor analyses. No ceiling or floor effects were observed for the SNAIS and its two subscales. The SNAIS and its two subscales exhibited acceptable reliability (Cronbach's alpha = 0.89, 0.90 and 0.60, and test-retest Intra-class Correlation Coefficient = 0.85, 0.87 and 0.67 for Overall scale, SFUI and EFUI subscale, respectively, p<0.001). As expected, the SNAIS and its subscale scores were correlated significantly with emotional connection to social networking, social networking addiction, Internet addiction, and characteristics related to social networking use. The SNAIS is an easily self-administered scale with good psychometric properties. It would facilitate more research in this field worldwide and specifically in the Chinese population.

  4. Quantitative extraction of the bedrock exposure rate based on unmanned aerial vehicle data and Landsat-8 OLI image in a karst environment

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Li, Qiangzi; Du, Xin; Zhao, Longcai

    2017-12-01

    In the karst regions of southwest China, rocky desertification is one of the most serious problems in land degradation. The bedrock exposure rate is an important index to assess the degree of rocky desertification in karst regions. Because of the inherent merits of macro-scale, frequency, efficiency, and synthesis, remote sensing is a promising method to monitor and assess karst rocky desertification on a large scale. However, actual measurement of the bedrock exposure rate is difficult and existing remote-sensing methods cannot directly be exploited to extract the bedrock exposure rate owing to the high complexity and heterogeneity of karst environments. Therefore, using unmanned aerial vehicle (UAV) and Landsat-8 Operational Land Imager (OLI) data for Xingren County, Guizhou Province, quantitative extraction of the bedrock exposure rate based on multi-scale remote-sensing data was developed. Firstly, we used an object-oriented method to carry out accurate classification of UAVimages. From the results of rock extraction, the bedrock exposure rate was calculated at the 30 m grid scale. Parts of the calculated samples were used as training data; other data were used for model validation. Secondly, in each grid the band reflectivity of Landsat-8 OLI data was extracted and a variety of rock and vegetation indexes (e.g., NDVI and SAVI) were calculated. Finally, a network model was established to extract the bedrock exposure rate. The correlation coefficient of the network model was 0.855, that of the validation model was 0.677 and the root mean square error of the validation model was 0.073. This method is valuable for wide-scale estimation of bedrock exposure rate in karst environments. Using the quantitative inversion model, a distribution map of the bedrock exposure rate in Xingren County was obtained.

  5. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network.

    PubMed

    Newton, Katherine M; Peissig, Peggy L; Kho, Abel Ngo; Bielinski, Suzette J; Berg, Richard L; Choudhary, Vidhu; Basford, Melissa; Chute, Christopher G; Kullo, Iftikhar J; Li, Rongling; Pacheco, Jennifer A; Rasmussen, Luke V; Spangler, Leslie; Denny, Joshua C

    2013-06-01

    Genetic studies require precise phenotype definitions, but electronic medical record (EMR) phenotype data are recorded inconsistently and in a variety of formats. To present lessons learned about validation of EMR-based phenotypes from the Electronic Medical Records and Genomics (eMERGE) studies. The eMERGE network created and validated 13 EMR-derived phenotype algorithms. Network sites are Group Health, Marshfield Clinic, Mayo Clinic, Northwestern University, and Vanderbilt University. By validating EMR-derived phenotypes we learned that: (1) multisite validation improves phenotype algorithm accuracy; (2) targets for validation should be carefully considered and defined; (3) specifying time frames for review of variables eases validation time and improves accuracy; (4) using repeated measures requires defining the relevant time period and specifying the most meaningful value to be studied; (5) patient movement in and out of the health plan (transience) can result in incomplete or fragmented data; (6) the review scope should be defined carefully; (7) particular care is required in combining EMR and research data; (8) medication data can be assessed using claims, medications dispensed, or medications prescribed; (9) algorithm development and validation work best as an iterative process; and (10) validation by content experts or structured chart review can provide accurate results. Despite the diverse structure of the five EMRs of the eMERGE sites, we developed, validated, and successfully deployed 13 electronic phenotype algorithms. Validation is a worthwhile process that not only measures phenotype performance but also strengthens phenotype algorithm definitions and enhances their inter-institutional sharing.

  6. A Prototype of Reflection Pulse Oximeter Designed for Mobile Healthcare.

    PubMed

    Lu, Zhiyuan; Chen, Xiang; Dong, Zhongfei; Zhao, Zhangyan; Zhang, Xu

    2016-09-01

    This paper introduces a pulse oximeter prototype designed for mobile healthcare. In this prototype, a reflection pulse oximeter is embedded into the back cover of a smart handheld device to offer the convenient measurement of both heart rate (HR) and SpO2 (estimation of arterial oxygen saturation) for home or mobile applications. Novel and miniaturized circuit modules including a chopper network and a filtering amplifier were designed to overcome the influence of ambient light and interferences that are caused by embedding the sensor into a flat cover. A method based on adaptive trough detection for improved HR and SpO2 estimation is proposed with appropriate simplification for its implementation on mobile devices. A fast and effective photoplethysmogram validation scheme is also proposed. Clinical experiments have been carried out to calibrate and test our oximeter. Our prototype oximeter can achieve comparable performance to a clinical oximeter with no significant difference revealed by paired t -tests ( p = 0.182 for SpO2 measurement and p = 0.496 for HR measurement). The design of this pulse oximeter will facilitate fast and convenient measurement of SpO2 for mobile healthcare.

  7. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.

    PubMed

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt

    2017-08-01

    The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.

  8. A non-invasive assessment of skin carotenoid status through reflection spectroscopy is a feasible, reliable and potentially valid measure of fruit and vegetable consumption in a diverse community sample

    USDA-ARS?s Scientific Manuscript database

    This study assessed the feasibility, reliability and validity of reflection spectroscopy (RS) to assess skin carotenoids in a racially diverse sample. Study 1 was a cross-sectional study of corner store customers (n= 479) in Eastern North Carolina USA who completed the National Cancer Institute Frui...

  9. Knowledge-Based Transformational Synthesis of Efficient Structures for Concurrent Computation.

    DTIC Science & Technology

    1985-09-30

    this wire network to a smaller wire network , creation of subnetworks to replace an overly-broad fanout network , virtualization which is the creation of...dependencies among the values they contain, reduction of this wire network to a smaller wire network , " creation of subnetworks to replace an overly-broad...fanout network , "rtualization which is the creation of additional array elements and processors to reflect the internal enumera- -4 tions that

  10. Gene expression complex networks: synthesis, identification, and analysis.

    PubMed

    Lopes, Fabrício M; Cesar, Roberto M; Costa, Luciano Da F

    2011-10-01

    Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdös-Rényi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabási-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree variation, decreasing its network recovery rate with the increase of . The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.

  11. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.

    PubMed

    Carbonell, Felix; Bellec, Pierre; Shmuel, Amir

    2011-01-01

    The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.

  12. Comparison of artificial intelligence classifiers for SIP attack data

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Slachta, Jiri

    2016-05-01

    Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.

  13. Micro-level dynamics of the online information propagation: A user behavior model based on noisy spiking neurons.

    PubMed

    Lymperopoulos, Ilias N; Ioannou, George D

    2016-10-01

    We develop and validate a model of the micro-level dynamics underlying the formation of macro-level information propagation patterns in online social networks. In particular, we address the dynamics at the level of the mechanism regulating a user's participation in an online information propagation process. We demonstrate that this mechanism can be realistically described by the dynamics of noisy spiking neurons driven by endogenous and exogenous, deterministic and stochastic stimuli representing the influence modulating one's intention to be an information spreader. Depending on the dynamically changing influence characteristics, time-varying propagation patterns emerge reflecting the temporal structure, strength, and signal-to-noise ratio characteristics of the stimulation driving the online users' information sharing activity. The proposed model constitutes an overarching, novel, and flexible approach to the modeling of the micro-level mechanisms whereby information propagates in online social networks. As such, it can be used for a comprehensive understanding of the online transmission of information, a process integral to the sociocultural evolution of modern societies. The proposed model is highly adaptable and suitable for the study of the propagation patterns of behavior, opinions, and innovations among others. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Communicating immunization science: the genesis and evolution of the National Network for Immunization Information.

    PubMed

    Ledford, Christy J W; Willett, Kristen L; Kreps, Gary L

    2012-01-01

    For 10 years, the National Network for Immunization Information (NNii) has pursued its goal to "provide the public, health professionals, policy makers, and the media with up-to-date, scientifically valid information related to immunizations to help them understand the issues and to make informed decisions." This investigation provides a critical evaluation of the strategic communication planning and implementation of NNii from conception to present day. The study uses a case study methodology, developing a systematic analysis of organizational documents, the media environment, and in-depth interviews by applying Weick's model of organizing as an interpretive framework. Iterative data analysis included open coding, axial coding, and thematic saturation. Themes were compared with phases of strategic communication and present study propositions. Major themes identified included the organization's informative nature, funding credibility, nonbranding, reflective evaluation, collaborative partnerships, and media strategy. NNii meets the requirements of requisite variety, nonsummativity, and organizational flexibility proposed by Weick's model of organizing. However, a lack of systematic evaluation of organization goals prevents it from adapting communication tactics and strategies. In addition, the authors recommend that NNii, while maintaining its informative nature, adopt persuasive strategies to attract and retain the attention of its target audiences.

  15. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    PubMed Central

    Bulea, Thomas C.; Kim, Jonghyun; Damiano, Diane L.; Stanley, Christopher J.; Park, Hyung-Soon

    2015-01-01

    Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG) recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training. PMID:26029077

  16. Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei; Privette, Jeffery L.; Morisette, Jeffery T.; Holben, Brent

    2008-01-01

    This paper describes an AERONET-based Surface Reflectance Validation Network (ASRVN) and its dataset of spectral surface bidirectional reflectance and albedo based on MODIS TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50x50 square kilometer subsets of MODIS L1B data from MODAPS and AERONET aerosol and water vapor information. Then it performs an accurate atmospheric correction for about 100 AERONET sites based on accurate radiative transfer theory with high quality control of the input data. The ASRVN processing software consists of L1B data gridding algorithm, a new cloud mask algorithm based on a time series analysis, and an atmospheric correction algorithm. The atmospheric correction is achieved by fitting the MODIS top of atmosphere measurements, accumulated for 16-day interval, with theoretical reflectance parameterized in terms of coefficients of the LSRT BRF model. The ASRVN takes several steps to ensure high quality of results: 1) cloud mask algorithm filters opaque clouds; 2) an aerosol filter has been developed to filter residual semi-transparent and sub-pixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing requirement of consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of seasonal back-up spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixels. The ASRVN products include three parameters of LSRT model (k(sup L), k(sup G), k(sup V)), surface albedo, NBRF (a normalized BRF computed for a standard viewing geometry, VZA=0 deg., SZA=45 deg.), and IBRF (instantaneous, or one angle, BRF value derived from the last day of MODIS measurement for specific viewing geometry) for MODIS 500m bands 1-7. The results are produced daily at resolution of 1 km in gridded format. We also provide cloud mask, quality flag and a browse bitmap image. The new dataset can be used for a wide range of applications including validation analysis and science research.

  17. The Beck Cognitive Insight Scale (BCIS): translation and validation of the Taiwanese version.

    PubMed

    Kao, Yu-Chen; Liu, Yia-Ping

    2010-04-09

    Over the last few decades, research concerning the insight of patients with schizophrenia and its relationships with other clinical variables has been given much attention in the clinical setting. Since that time, a series of instruments assessing insight have been developed. The purpose of this study was to examine the reliability and validity of the Taiwanese version of the Beck Cognitive Insight Scale (BCIS). The BCIS is a self-administered instrument designed to evaluate cognitive processes that involves reevaluating patients' anomalous experiences and specific misinterpretations. The English language version of the BCIS was translated into Taiwanese for use in this study. A total of 180 subjects with and without psychosis completed the Taiwanese version of the BCIS and additional evaluations to assess researcher-rated insight scales and psychopathology. Psychometric properties (factor structures and various types of reliability and validity) were assessed for this translated questionnaire. Overall, the Taiwanese version of the BCIS showed good reliability and stability over time. This translated scale comprised a two-factor solution corresponding to reflective attitude and certain attitude subscales. Following the validation of the internal structure of the scale, we obtained an R-C (reflective attitude minus certain attitude) index of the translated BCIS, representing the measurement of cognitive insight by subtracting the score of the certain attitude subscale from that of the reflective attitude subscale. As predicted, the differences in mean reflective attitude, certain attitude and R-C index between subjects with and without psychosis were significant. Our data also demonstrated that psychotic patients were significantly less reflective, more confident in their beliefs, and had less cognitive insight compared with nonpsychotic control groups. In light of these findings, we believe that the Taiwanese version of BCIS is a valid and reliable instrument for the assessment of cognitive insight in psychotic patients.

  18. Paleoclimate networks: a concept meeting central challenges in the reconstruction of paleoclimate dynamics

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Goswami, Bedartha; Marwan, Norbert; Breitenbach, Sebastian; Kurths, Jürgen

    2013-04-01

    Statistical analysis of dependencies amongst paleoclimate data helps to infer on the climatic processes they reflect. Three key challenges have to be addressed, however: the datasets are heterogeneous in time (i) and space (ii), and furthermore time itself is a variable that needs to be reconstructed, which (iii) introduces additional uncertainties. To address these issues in a flexible way we developed the paleoclimate network framework, inspired by the increasing application of complex networks in climate research. Nodes in the paleoclimate network represent a paleoclimate archive, and an associated time series. Links between these nodes are assigned, if these time series are significantly similar. Therefore, the base of the paleoclimate network is formed by linear and nonlinear estimators for Pearson correlation, mutual information and event synchronization, which quantify similarity from irregularly sampled time series. Age uncertainties are propagated into the final network analysis using time series ensembles which reflect the uncertainty. We discuss how spatial heterogeneity influences the results obtained from network measures, and demonstrate the power of the approach by inferring teleconnection variability of the Asian summer monsoon for the past 1000 years.

  19. Post Disaster Governance, Complexity and Network Theory: Evidence from Aceh, Indonesia After the Indian Ocean Tsunami 2004.

    PubMed

    Lassa, Jonatan A

    2015-07-01

    This research aims to understand the organizational network typology of large--scale disaster intervention in developing countries and to understand the complexity of post--disaster intervention, through the use of network theory based on empirical data from post--tsunami reconstruction in Aceh, Indonesia, during 2005/-2007. The findings suggest that the ' degrees of separation' (or network diameter) between any two organizations in the field is 5, thus reflecting 'small- world' realities and therefore making no significant difference with the real human networks, as found in previous experiments. There are also significant loops in the network reflecting the fact that some actors tend to not cooperate, which challenges post- disaster coordination. The findings show the landscape of humanitarian actors is not randomly distributed. Many actors were connected to each other through certain hubs, while hundreds of actors make 'scattered' single 'principal--client' links. The paper concludes that by understanding the distribution of degree, centrality, 'degrees of separation' and visualization of the network, authorities can improve their understanding of the realities of coordination, from macro to micro scales.

  20. NCI Awards 18 Grants to Continue the Early Detection Research Network (EDRN) Biomarkers Effort | Division of Cancer Prevention

    Cancer.gov

    The NCI has awarded 18 grants to continue the Early Detection Research Network (EDRN), a national infrastructure that supports the integrated development, validation, and clinical application of biomarkers for the early detection of cancer. The awards fund 7 Biomarker Developmental Laboratories, 8 Clinical Validation Centers, 2 Biomarker Reference Laboratories, and a Data

  1. Cultural Geography Model Validation

    DTIC Science & Technology

    2010-03-01

    the Cultural Geography Model (CGM), a government owned, open source multi - agent system utilizing Bayesian networks, queuing systems, the Theory of...referent determined either from theory or SME opinion. 4. CGM Overview The CGM is a government-owned, open source, data driven multi - agent social...HSCB, validation, social network analysis ABSTRACT: In the current warfighting environment , the military needs robust modeling and simulation (M&S

  2. Brief Report: Independent Validation of Autism Spectrum Disorder Case Status in the Utah Autism and Developmental Disabilities Monitoring (ADDM) Network Site

    ERIC Educational Resources Information Center

    Bakian, Amanda V.; Bilder, Deborah A.; Carbone, Paul S.; Hunt, Tyler D.; Petersen, Brent; Rice, Catherine E.

    2015-01-01

    An independent validation was conducted of the Utah Autism and Developmental Disabilities Monitoring Network's (UT-ADDM) classification of children with autism spectrum disorder (ASD). UT-ADDM final case status (n = 90) was compared with final case status as determined by independent external expert reviewers (EERs). Inter-rater reliability…

  3. Three-dimensional mosaicking of the South Korean radar network

    NASA Astrophysics Data System (ADS)

    Berenguer, Marc; Sempere-Torres, Daniel; Lee, GyuWon

    2016-04-01

    Dense radar networks offer the possibility of improved Quantitative Precipitation Estimation thanks to the additional information collected in the overlapping areas, which allows mitigating errors associated with the Vertical Profile of Reflectivity or path attenuation by intense rain. With this aim, Roca-Sancho et al. (2014) proposed a technique to generate 3-D reflectivity mosaics from the multiple radars of a network. The technique is based on an inverse method that simulates the radar sampling of the atmosphere considering the characteristics (location, frequency and scanning protocol) of each individual radar. This technique has been applied to mosaic the observations of the radar network of South Korea (composed of 14 S-band radars), and integrate the observations of the small X-band network which to be installed near Seoul in the framework of a project funded by the Korea Agency for Infrastructure Technology Advancement (KAIA). The evaluation of the generated 3-D mosaics has been done by comparison with point measurements (i.e. rain gauges and disdrometers) and with the observations of independent radars. Reference: Roca-Sancho, J., M. Berenguer, and D. Sempere-Torres (2014), An inverse method to retrieve 3D radar reflectivity composites, Journal of Hydrology, 519, 947-965, doi: 10.1016/j.jhydrol.2014.07.039.

  4. Stressing out the Social Network.

    PubMed

    Kirkby, Lowry A; Sohal, Vikaas S

    2016-07-20

    In this issue of Neuron, Hultman et al. (2016) find that stress-induced abnormal social behavior reflects aberrant prefrontal regulation of downstream limbic networks. This illustrates how linking aberrant network dynamics to neuropsychiatric disorders may lead to new circuit-based therapeutic interventions. Copyright © 2016. Published by Elsevier Inc.

  5. A Conflict Management Scale for Pharmacy

    PubMed Central

    Gregory, Paul A.; Martin, Craig

    2009-01-01

    Objectives To develop and establish the validity and reliability of a conflict management scale specific to pharmacy practice and education. Methods A multistage inventory-item development process was undertaken involving 93 pharmacists and using a previously described explanatory model for conflict in pharmacy practice. A 19-item inventory was developed, field tested, and validated. Results The conflict management scale (CMS) demonstrated an acceptable degree of reliability and validity for use in educational or practice settings to promote self-reflection and self-awareness regarding individuals' conflict management styles. Conclusions The CMS provides a unique, pharmacy-specific method for individuals to determine and reflect upon their own conflict management styles. As part of an educational program to facilitate self-reflection and heighten self-awareness, the CMS may be a useful tool to promote discussions related to an important part of pharmacy practice. PMID:19960081

  6. Detecting lower-mantle slabs beneath Asia and the Aleutians

    NASA Astrophysics Data System (ADS)

    Schumacher, L.; Thomas, C.

    2016-06-01

    To investigate the descend of subducted slabs we search for and analyse seismic arrivals that reflected off the surface of the slab. In order to distinguish between such arrivals and other seismic phases, we search for waves that reach a seismic array with a backazimuth deviating from the theoretical backazimuth of the earthquake. Source-receiver combinations are chosen in a way that their great circle paths do not intersect the slab region, hence the direct arrivals can serve as reference. We focus on the North and Northwest Pacific region by using earthquakes from Japan, the Philippines and the Hindu Kush area recorded at North American networks (e.g. USArray, Alaska and Canada). Using seismic array techniques for analysing the data and record information on slowness, backazimuth and traveltime of the observed out-of-plane arrivals we use these measurements to trace the wave back through a 1-D velocity model to its scattering/reflection location. We find a number of out-of-plane reflections. Assuming only single scattering, most out-of-plane signals have to travel as P-to-P phases and only a few as S-to-P phases, due to the length of the seismograms we processed. The located reflection points present a view of the 3-D structures within the mantle. In the upper mantle and the transition zone they correlate well with the edges of fast velocity regions in tomographic images. We also find reflection points in the mid- and lower mantle and their locations generally agree with fast velocities mapped by seismic tomography models suggesting that in the subduction regions we map, slabs enter the lower mantle. To validate our approach, we calculate and process synthetic seismograms for 3-D wave field propagation through a model containing a slab-like heterogeneity. We show, that depending on the source-receiver geometry relative to the reflection plane, it is indeed possible to observe and back-trace out-of-plane signals.

  7. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  8. Offline Social Relationships and Online Cancer Communication: Effects of Social and Family Support on Online Social Network Building.

    PubMed

    Namkoong, Kang; Shah, Dhavan V; Gustafson, David H

    2017-11-01

    This study investigates how social support and family relationship perceptions influence breast cancer patients' online communication networks in a computer-mediated social support (CMSS) group. To examine social interactions in the CMSS group, we identified two types of online social networks: open and targeted communication networks. The open communication network reflects group communication behaviors (i.e., one-to-many or "broadcast" communication) in which the intended audience is not specified; in contrast, the targeted communication network reflects interpersonal discourses (i.e., one-to-one or directed communication) in which the audience for the message is specified. The communication networks were constructed by tracking CMSS group usage data of 237 breast cancer patients who participated in one of two National Cancer Institute-funded randomized clinical trials. Eligible subjects were within 2 months of a diagnosis of primary breast cancer or recurrence at the time of recruitment. Findings reveal that breast cancer patients who perceived less availability of offline social support had a larger social network size in the open communication network. In contrast, those who perceived less family cohesion had a larger targeted communication network in the CMSS group, meaning they were inclined to use the CMSS group for developing interpersonal relationships.

  9. Assessment of the coordination of integrated health service delivery networks by the primary health care: COPAS questionnaire validation in the Brazilian context.

    PubMed

    Rodrigues, Ludmila Barbosa Bandeira; Dos Santos, Claudia Benedita; Goyatá, Sueli Leiko Takamatsu; Popolin, Marcela Paschoal; Yamamura, Mellina; Deon, Keila Christiane; Lapão, Luis Miguel Veles; Santos Neto, Marcelino; Uchoa, Severina Alice da Costa; Arcêncio, Ricardo Alexandre

    2015-07-22

    Health systems organized as networks and coordinated by the Primary Health Care (PHC) may contribute to the improvement of clinical care, sanitary conditions, satisfaction of patients and reduction of local budget expenditures. The aim of this study was to adapt and validate a questionnaire - COPAS - to assess the coordination of Integrated Health Service Delivery Networks by the Primary Health Care. A cross sectional approach was used. The population was pooled from Family Health Strategy healthcare professionals, of the Alfenas region (Minas Gerais, Brazil). Data collection was performed from August to October 2013. The results were checked for the presence of floor and ceiling effects and the internal consistency measured through Cronbach alpha. Construct validity was verified through convergent and discriminant values following Multitrait-Multimethod (MTMM) analysis. Floor and ceiling effects were absent. The internal consistency of the instrument was satisfactory; as was the convergent validity, with a few correlations lower then 0.30. The discriminant validity values of the majority of items, with respect to their own dimension, were found to be higher or significantly higher than their correlations with the dimensions to which they did not belong. The results showed that the COPAS instrument has satisfactory initial psychometric properties and may be used by healthcare managers and workers to assess the PHC coordination performance within the Integrated Health Service Delivery Network.

  10. Thermodynamic Constraints Improve Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2017-08-08

    In pursuit of establishing a realistic metabolic phenotypic space, the reversibility of reactions is thermodynamically constrained in modern metabolic networks. The reversibility constraints follow from heuristic thermodynamic poise approximations that take anticipated cellular metabolite concentration ranges into account. Because constraints reduce the feasible space, draft metabolic network reconstructions may need more extensive reconciliation, and a larger number of genes may become essential. Notwithstanding ubiquitous application, the effect of reversibility constraints on the predictive capabilities of metabolic networks has not been investigated in detail. Instead, work has focused on the implementation and validation of the thermodynamic poise calculation itself. With the advance of fast linear programming-based network reconciliation, the effects of reversibility constraints on network reconciliation and gene essentiality predictions have become feasible and are the subject of this study. Networks with thermodynamically informed reversibility constraints outperformed gene essentiality predictions compared to networks that were constrained with randomly shuffled constraints. Unconstrained networks predicted gene essentiality as accurately as thermodynamically constrained networks, but predicted substantially fewer essential genes. Networks that were reconciled with sequence similarity data and strongly enforced reversibility constraints outperformed all other networks. We conclude that metabolic network analysis confirmed the validity of the thermodynamic constraints, and that thermodynamic poise information is actionable during network reconciliation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. A method for validating Rent's rule for technological and biological networks.

    PubMed

    Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro

    2017-07-14

    Rent's rule is empirical power law introduced in an effort to describe and optimize the wiring complexity of computer logic graphs. It is known that brain and neuronal networks also obey Rent's rule, which is consistent with the idea that wiring costs play a fundamental role in brain evolution and development. Here we propose a method to validate this power law for a certain range of network partitions. This method is based on the bifurcation phenomenon that appears when the network is subjected to random alterations preserving its degree distribution. It has been tested on a set of VLSI circuits and real networks, including biological and technological ones. We also analyzed the effect of different types of random alterations on the Rentian scaling in order to test the influence of the degree distribution. There are network architectures quite sensitive to these randomization procedures with significant increases in the values of the Rent exponents.

  12. Effect of a chamber orchestra on direct sound and early reflections for performers on stage: A boundary element method study.

    PubMed

    Panton, Lilyan; Holloway, Damien; Cabrera, Densil

    2017-04-01

    Early reflections are known to be important to musicians performing on stage, but acoustic measurements are usually made on empty stages. This work investigates how a chamber orchestra setup on stage affects early reflections from the stage enclosure. A boundary element method (BEM) model of a chamber orchestra is validated against full scale measurements with seated and standing subjects in an anechoic chamber and against auditorium measurements, demonstrating that the BEM simulation gives realistic results. Using the validated BEM model, an investigation of how a chamber orchestra attenuates and scatters both the direct sound and the first-order reflections is presented for two different sized "shoe-box" stage enclosures. The first-order reflections from the stage are investigated individually: at and above the 250 Hz band, horizontal reflections from stage walls are attenuated to varying degrees, while the ceiling reflection is relatively unaffected. Considering the overall effect of the chamber orchestra on the direct sound and first-order reflections, differences of 2-5 dB occur in the 1000 Hz octave band when the ceiling reflection is excluded (slightly reduced when including the unobstructed ceiling reflection). A tilted side wall case showed the orchestra has a reduced effect with a small elevation of the lateral reflections.

  13. Limitation of degree information for analyzing the interaction evolution in online social networks

    NASA Astrophysics Data System (ADS)

    Shang, Ke-Ke; Yan, Wei-Sheng; Xu, Xiao-Ke

    2014-04-01

    Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.

  14. Valid approximation of spatially distributed grain size distributions - A priori information encoded to a feedforward network

    NASA Astrophysics Data System (ADS)

    Berthold, T.; Milbradt, P.; Berkhahn, V.

    2018-04-01

    This paper presents a model for the approximation of multiple, spatially distributed grain size distributions based on a feedforward neural network. Since a classical feedforward network does not guarantee to produce valid cumulative distribution functions, a priori information is incor porated into the model by applying weight and architecture constraints. The model is derived in two steps. First, a model is presented that is able to produce a valid distribution function for a single sediment sample. Although initially developed for sediment samples, the model is not limited in its application; it can also be used to approximate any other multimodal continuous distribution function. In the second part, the network is extended in order to capture the spatial variation of the sediment samples that have been obtained from 48 locations in the investigation area. Results show that the model provides an adequate approximation of grain size distributions, satisfying the requirements of a cumulative distribution function.

  15. Classification of images acquired with colposcopy using artificial neural networks.

    PubMed

    Simões, Priscyla W; Izumi, Narjara B; Casagrande, Ramon S; Venson, Ramon; Veronezi, Carlos D; Moretti, Gustavo P; da Rocha, Edroaldo L; Cechinel, Cristian; Ceretta, Luciane B; Comunello, Eros; Martins, Paulo J; Casagrande, Rogério A; Snoeyer, Maria L; Manenti, Sandra A

    2014-01-01

    To explore the advantages of using artificial neural networks (ANNs) to recognize patterns in colposcopy to classify images in colposcopy. Transversal, descriptive, and analytical study of a quantitative approach with an emphasis on diagnosis. The training test e validation set was composed of images collected from patients who underwent colposcopy. These images were provided by a gynecology clinic located in the city of Criciúma (Brazil). The image database (n = 170) was divided; 48 images were used for the training process, 58 images were used for the tests, and 64 images were used for the validation. A hybrid neural network based on Kohonen self-organizing maps and multilayer perceptron (MLP) networks was used. After 126 cycles, the validation was performed. The best results reached an accuracy of 72.15%, a sensibility of 69.78%, and a specificity of 68%. Although the preliminary results still exhibit an average efficiency, the present approach is an innovative and promising technique that should be deeply explored in the context of the present study.

  16. Dynamic Trust Management for Mobile Networks and Its Applications

    ERIC Educational Resources Information Center

    Bao, Fenye

    2013-01-01

    Trust management in mobile networks is challenging due to dynamically changing network environments and the lack of a centralized trusted authority. In this dissertation research, we "design" and "validate" a class of dynamic trust management protocols for mobile networks, and demonstrate the utility of dynamic trust management…

  17. The Cyberspace Challenge: Modernity, Post-modernity and Reflections on International Networking Policy.

    ERIC Educational Resources Information Center

    Goodenow, Ronald

    1996-01-01

    Emergence of global communications networks raises questions about the nature of pluralism, community, delivery of education, construction of knowledge, and role of comparative educators in a postindustrial world. Ownership, access, and definition and distribution of knowledge will become major policy issues. Networking experiences in telemedicine…

  18. The Talloires Network: A Global Coalition of Engaged Universities

    ERIC Educational Resources Information Center

    Hollister, Robert M.; Pollock, John P.; Gearan, Mark; Reid, Janice; Stroud, Susan; Babcock, Elizabeth

    2012-01-01

    This article describes and analyzes the origins, work to date, and future of the Talloires Network, an international association of institutions committed to strengthening the civic roles and social responsibilities of higher education. Included are reflections on the network's strategies for advancing civic engagement in higher education…

  19. A Complex Network Approach to Distributional Semantic Models

    PubMed Central

    Utsumi, Akira

    2015-01-01

    A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940

  20. A multi-scale automatic observatory of soil moisture and temperature served for satellite product validation in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Tang, S.; Dong, L.; Lu, P.; Zhou, K.; Wang, F.; Han, S.; Min, M.; Chen, L.; Xu, N.; Chen, J.; Zhao, P.; Li, B.; Wang, Y.

    2016-12-01

    Due to the lack of observing data which match the satellite pixel size, the inversion accuracy of satellite products in Tibetan Plateau(TP) is difficult to be evaluated. Hence, the in situ observations are necessary to support the calibration and validation activities. Under the support of the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) projec a multi-scale automatic observatory of soil moisture and temperature served for satellite product validation (TIPEX-III-SMTN) were established in Tibetan Plateau. The observatory consists of two regional scale networks, including the Naqu network and the Geji network. The Naqu network is located in the north of TP, and characterized by alpine grasslands. The Geji network is located in the west of TP, and characterized by marshes. Naqu network includes 33 stations, which are deployed in a 75KM*75KM region according to a pre-designed pattern. At Each station, soil moisture and temperature are measured by five sensors at five soil depths. One sensor is vertically inserted into 0 2 cm depth to measure the averaged near-surface soil moisture and temperature. The other four sensors are horizontally inserted at 5, 10, 20, and 30 cm depths, respectively. The data are recorded every 10 minutes. A wireless transmission system is applied to transmit the data in real time, and a dual power supply system is adopted to keep the continuity of the observation. The construction of Naqu network has been accomplished in August, 2015, and Geji network will be established before Oct., 2016. Observations acquired from TIPEX-III-SMTN can be used to validate satellite products with different spatial resolution, and TIPEX-III-SMTN can also be used as a complementary of the existing similar networks in this area, such as CTP-SMTMN (the multiscale Soil Moistureand Temperature Monitoring Network on the central TP) . Keywords: multi-scale soil moisture soil temperature, Tibetan Plateau Acknowledgments: This work was jointly supported by CMA Special Fund for Scientific Research in the Public Interest (Grant No. GYHY201406001, GYHY201206008-01), and Climate change special fund (QHBH2014)'

  1. Defining Tools for Teacher Reflection: The Assessment of Learner-Centered Practices (ALCP).

    ERIC Educational Resources Information Center

    McCombs, Barbara L.

    This paper focuses on the development and validation of survey tools that help teachers engage in a guided reflection process. The guided reflection process assists teachers at all levels, kindergarten through college, to reflect on (1) their own beliefs and practices; (2) how these practices are perceived by their students; and (3) the impact of…

  2. How Do I Know That My Supervision Is Reflective? Identifying Factors and Validity of the Reflective Supervision Rating Scale

    ERIC Educational Resources Information Center

    Gallen, Robert T.; Ash, Jordana; Smith, Conner; Franco, Allison; Willford, Jennifer A.

    2016-01-01

    Reflective supervision and consultation (RS/C) is often defined as a "relationship for learning"(Fenichel, 1992, p.9). As such, measurement tools should include the perspective of each participant in the supervisory relationship when assessing RS/C fidelity, delivery quality, and the supervisee's experience. The Reflective Supervision…

  3. Genotet: An Interactive Web-based Visual Exploration Framework to Support Validation of Gene Regulatory Networks.

    PubMed

    Yu, Bowen; Doraiswamy, Harish; Chen, Xi; Miraldi, Emily; Arrieta-Ortiz, Mario Luis; Hafemeister, Christoph; Madar, Aviv; Bonneau, Richard; Silva, Cláudio T

    2014-12-01

    Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation. There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model bacteria (a small genome with high data-completeness).

  4. Validation of the Social Networking Activity Intensity Scale among Junior Middle School Students in China

    PubMed Central

    Li, Jibin; Lau, Joseph T. F.; Mo, Phoenix K. H.; Su, Xuefen; Wu, Anise M. S.; Tang, Jie; Qin, Zuguo

    2016-01-01

    Background Online social networking use has been integrated into adolescents’ daily life and the intensity of online social networking use may have important consequences on adolescents’ well-being. However, there are few validated instruments to measure social networking use intensity. The present study aims to develop the Social Networking Activity Intensity Scale (SNAIS) and validate it among junior middle school students in China. Methods A total of 910 students who were social networking users were recruited from two junior middle schools in Guangzhou, and 114 students were retested after two weeks to examine the test-retest reliability. The psychometrics of the SNAIS were estimated using appropriate statistical methods. Results Two factors, Social Function Use Intensity (SFUI) and Entertainment Function Use Intensity (EFUI), were clearly identified by both exploratory and confirmatory factor analyses. No ceiling or floor effects were observed for the SNAIS and its two subscales. The SNAIS and its two subscales exhibited acceptable reliability (Cronbach’s alpha = 0.89, 0.90 and 0.60, and test-retest Intra-class Correlation Coefficient = 0.85, 0.87 and 0.67 for Overall scale, SFUI and EFUI subscale, respectively, p<0.001). As expected, the SNAIS and its subscale scores were correlated significantly with emotional connection to social networking, social networking addiction, Internet addiction, and characteristics related to social networking use. Conclusions The SNAIS is an easily self-administered scale with good psychometric properties. It would facilitate more research in this field worldwide and specifically in the Chinese population. PMID:27798699

  5. Neural correlates of direct and reflected self-appraisals in adolescents and adults: when social perspective-taking informs self-perception.

    PubMed

    Pfeifer, Jennifer H; Masten, Carrie L; Borofsky, Larissa A; Dapretto, Mirella; Fuligni, Andrew J; Lieberman, Matthew D

    2009-01-01

    Classic theories of self-development suggest people define themselves in part through internalized perceptions of other people's beliefs about them, known as reflected self-appraisals. This study uses functional magnetic resonance imaging to compare the neural correlates of direct and reflected self-appraisals in adolescence (N = 12, ages 11-14 years) and adulthood (N = 12, ages 23-30 years). During direct self-reflection, adolescents demonstrated greater activity than adults in networks relevant to self-perception (medial prefrontal and parietal cortices) and social-cognition (dorsomedial prefrontal cortex, temporal-parietal junction, and posterior superior temporal sulcus), suggesting adolescent self-construals may rely more heavily on others' perspectives about the self. Activity in the medial fronto-parietal network was also enhanced when adolescents took the perspective of someone more relevant to a given domain.

  6. Time-Perception Network and Default Mode Network Are Associated with Temporal Prediction in a Periodic Motion Task

    PubMed Central

    Carvalho, Fabiana M.; Chaim, Khallil T.; Sanchez, Tiago A.; de Araujo, Draulio B.

    2016-01-01

    The updating of prospective internal models is necessary to accurately predict future observations. Uncertainty-driven internal model updating has been studied using a variety of perceptual paradigms, and have revealed engagement of frontal and parietal areas. In a distinct literature, studies on temporal expectations have also characterized a time-perception network, which relies on temporal orienting of attention. However, the updating of prospective internal models is highly dependent on temporal attention, since temporal attention must be reoriented according to the current environmental demands. In this study, we used functional magnetic resonance imaging (fMRI) to evaluate to what extend the continuous manipulation of temporal prediction would recruit update-related areas and the time-perception network areas. We developed an exogenous temporal task that combines rhythm cueing and time-to-contact principles to generate implicit temporal expectation. Two patterns of motion were created: periodic (simple harmonic oscillation) and non-periodic (harmonic oscillation with variable acceleration). We found that non-periodic motion engaged the exogenous temporal orienting network, which includes the ventral premotor and inferior parietal cortices, and the cerebellum, as well as the presupplementary motor area, which has previously been implicated in internal model updating, and the motion-sensitive area MT+. Interestingly, we found a right-hemisphere preponderance suggesting the engagement of explicit timing mechanisms. We also show that the periodic motion condition, when compared to the non-periodic motion, activated a particular subset of the default-mode network (DMN) midline areas, including the left dorsomedial prefrontal cortex (DMPFC), anterior cingulate cortex (ACC), and bilateral posterior cingulate cortex/precuneus (PCC/PC). It suggests that the DMN plays a role in processing contextually expected information and supports recent evidence that the DMN may reflect the validation of prospective internal models and predictive control. Taken together, our findings suggest that continuous manipulation of temporal predictions engages representations of temporal prediction as well as task-independent updating of internal models. PMID:27313526

  7. The IGNITE network: a model for genomic medicine implementation and research.

    PubMed

    Weitzel, Kristin Wiisanen; Alexander, Madeline; Bernhardt, Barbara A; Calman, Neil; Carey, David J; Cavallari, Larisa H; Field, Julie R; Hauser, Diane; Junkins, Heather A; Levin, Phillip A; Levy, Kenneth; Madden, Ebony B; Manolio, Teri A; Odgis, Jacqueline; Orlando, Lori A; Pyeritz, Reed; Wu, R Ryanne; Shuldiner, Alan R; Bottinger, Erwin P; Denny, Joshua C; Dexter, Paul R; Flockhart, David A; Horowitz, Carol R; Johnson, Julie A; Kimmel, Stephen E; Levy, Mia A; Pollin, Toni I; Ginsburg, Geoffrey S

    2016-01-05

    Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these interventions. Through these efforts and collaboration with other stakeholders, IGNITE is poised to have a significant impact on the acceleration of genomic information into medical practice.

  8. [The effect of self-reflection on depression mediated by hardiness].

    PubMed

    Nakajima, Miho; Hattori, Yosuke; Tanno, Yoshihiko

    2015-10-01

    Previous studies have shown that two types of private self-consciousness result in opposing effects on depression; one of which is self-rumination, which leads to maladaptive effect, and the other is self-reflection, which leads to an adaptive effect. Although a number of studies have examined the mechanism of the maladaptive effect of self-rumination, only a few studies have examined the mechanism of the adaptive effect of self-reflection. The present study examined the process of how self-reflection affected depression adaptively, Based on the previous findings, we proposed a hypothetical model assuming that hardiness acts as a mediator of self-reflection. To test the validity of the model, structural equation modeling analysis was performed with the cross-sectional data of 155 undergraduate students. The results. suggest that the hypothetical model is valid. According to the present results and previous findings, it is suggested that self-reflection is associated with low levels of depression and mediated by "rich commitment", one component of hardiness.

  9. Lack of consensus in social systems

    NASA Astrophysics Data System (ADS)

    Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.

    2008-05-01

    We propose an exactly solvable model for the dynamics of voters in a two-party system. The opinion formation process is modeled on a random network of agents. The dynamical nature of interpersonal relations is also reflected in the model, as the connections in the network evolve with the dynamics of the voters. In the infinite time limit, an exact solution predicts the emergence of consensus, for arbitrary initial conditions. However, before consensus is reached, two different metastable states can persist for exponentially long times. One state reflects a perfect balancing of opinions, the other reflects a completely static situation. An estimate of the associated lifetimes suggests that lack of consensus is typical for large systems.

  10. Eye-Tracking as a Tool in Process-Oriented Reading Test Validation

    ERIC Educational Resources Information Center

    Solheim, Oddny Judith; Uppstad, Per Henning

    2011-01-01

    The present paper addresses the continuous need for methodological reflection on how to validate inferences made on the basis of test scores. Validation is a process that requires many lines of evidence. In this article we discuss the potential of eye tracking methodology in process-oriented reading test validation. Methodological considerations…

  11. Effect of response format on cognitive reflection: Validating a two- and four-option multiple choice question version of the Cognitive Reflection Test.

    PubMed

    Sirota, Miroslav; Juanchich, Marie

    2018-03-27

    The Cognitive Reflection Test, measuring intuition inhibition and cognitive reflection, has become extremely popular because it reliably predicts reasoning performance, decision-making, and beliefs. Across studies, the response format of CRT items sometimes differs, based on the assumed construct equivalence of tests with open-ended versus multiple-choice items (the equivalence hypothesis). Evidence and theoretical reasons, however, suggest that the cognitive processes measured by these response formats and their associated performances might differ (the nonequivalence hypothesis). We tested the two hypotheses experimentally by assessing the performance in tests with different response formats and by comparing their predictive and construct validity. In a between-subjects experiment (n = 452), participants answered stem-equivalent CRT items in an open-ended, a two-option, or a four-option response format and then completed tasks on belief bias, denominator neglect, and paranormal beliefs (benchmark indicators of predictive validity), as well as on actively open-minded thinking and numeracy (benchmark indicators of construct validity). We found no significant differences between the three response formats in the numbers of correct responses, the numbers of intuitive responses (with the exception of the two-option version, which had a higher number than the other tests), and the correlational patterns of the indicators of predictive and construct validity. All three test versions were similarly reliable, but the multiple-choice formats were completed more quickly. We speculate that the specific nature of the CRT items helps build construct equivalence among the different response formats. We recommend using the validated multiple-choice version of the CRT presented here, particularly the four-option CRT, for practical and methodological reasons. Supplementary materials and data are available at https://osf.io/mzhyc/ .

  12. Characteristics of color optical shutter with dye-doped polymer network liquid crystal.

    PubMed

    Lee, G H; Hwang, K Y; Jang, J E; Jin, Y W; Lee, S Y; Jung, J E

    2011-03-01

    The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.

  13. Coupling effects on turning points of infectious diseases epidemics in scale-free networks.

    PubMed

    Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung

    2017-05-31

    Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.

  14. Detailed Investigation of Self-Similarity of Strong Shock Reflection Phenomena

    NASA Astrophysics Data System (ADS)

    Kobayashi, Susumu; Adachi, Takashi

    2012-04-01

    This paper experimentally investigates the validity of self-similarity of strong shock reflection phenomena in a shock tube. The models used for the shock-tube experiment are ordinary wedges with various reflecting wedge angles. The triple-point trajectory is approximately a straight line through the wedge apex for each reflecting wedge. However, a detailed measurement of the angle made by the incident and reflected shocks shows that the wave angle varies as the incident shock proceeds. This means that the shock reflection configuration deviates from self-similarity. The most remarkable phenomenon is the dynamic transition from regular to Mach reflection during shock propagation, where the validity of self-similarity breaks down. The flow-field behind the Mach stem is subsonic with respect to the triple point, so the condition on the solid boundary can catch up with the triple point and affect the flow around it. We also explain why the discrepancy between theory and experiment has gone unnoticed for strong shock waves and demonstrate that it is due to the transport properties of the fluid, such as the viscosity.

  15. Beginning Science Teachers' Use of a Digital Video Annotation Tool to Promote Reflective Practices

    ERIC Educational Resources Information Center

    McFadden, Justin; Ellis, Joshua; Anwar, Tasneem; Roehrig, Gillian

    2014-01-01

    The development of teachers as reflective practitioners is a central concept in national guidelines for teacher preparation and induction (National Council for Accreditation of Teacher Education 2008). The Teacher Induction Network (TIN) supports the development of reflective practice for beginning secondary science teachers through the creation…

  16. Validating the TeleStroke Mimic Score: A Prediction Rule for Identifying Stroke Mimics Evaluated Over Telestroke Networks.

    PubMed

    Ali, Syed F; Hubert, Gordian J; Switzer, Jeffrey A; Majersik, Jennifer J; Backhaus, Roland; Shepard, L Wylie; Vedala, Kishore; Schwamm, Lee H

    2018-03-01

    Up to 30% of acute stroke evaluations are deemed stroke mimics, and these are common in telestroke as well. We recently published a risk prediction score for use during telestroke encounters to differentiate stroke mimics from ischemic cerebrovascular disease derived and validated in the Partners TeleStroke Network. Using data from 3 distinct US and European telestroke networks, we sought to externally validate the TeleStroke Mimic (TM) score in a broader population. We evaluated the TM score in 1930 telestroke consults from the University of Utah, Georgia Regents University, and the German TeleMedical Project for Integrative Stroke Care Network. We report the area under the curve in receiver-operating characteristic curve analysis with 95% confidence interval for our previously derived TM score in which lower TM scores correspond with a higher likelihood of being a stroke mimic. Based on final diagnosis at the end of the telestroke consultation, there were 630 of 1930 (32.6%) stroke mimics in the external validation cohort. All 6 variables included in the score were significantly different between patients with ischemic cerebrovascular disease versus stroke mimics. The TM score performed well (area under curve, 0.72; 95% confidence interval, 0.70-0.73; P <0.001), similar to our prior external validation in the Partners National Telestroke Network. The TM score's ability to predict the presence of a stroke mimic during telestroke consultation in these diverse cohorts was similar to its performance in our original cohort. Predictive decision-support tools like the TM score may help highlight key clinical differences between mimics and patients with stroke during complex, time-critical telestroke evaluations. © 2018 American Heart Association, Inc.

  17. Measuring Networking as an Outcome Variable in Undergraduate Research Experiences

    PubMed Central

    Hanauer, David I.; Hatfull, Graham

    2015-01-01

    The aim of this paper is to propose, present, and validate a simple survey instrument to measure student conversational networking. The tool consists of five items that cover personal and professional social networks, and its basic principle is the self-reporting of degrees of conversation, with a range of specific discussion partners. The networking instrument was validated in three studies. The basic psychometric characteristics of the scales were established by conducting a factor analysis and evaluating internal consistency using Cronbach’s alpha. The second study used a known-groups comparison and involved comparing outcomes for networking scales between two different undergraduate laboratory courses (one involving a specific effort to enhance networking). The final study looked at potential relationships between specific networking items and the established psychosocial variable of project ownership through a series of binary logistic regressions. Overall, the data from the three studies indicate that the networking scales have high internal consistency (α = 0.88), consist of a unitary dimension, can significantly differentiate between research experiences with low and high networking designs, and are related to project ownership scales. The ramifications of the networking instrument for student retention, the enhancement of public scientific literacy, and the differentiation of laboratory courses are discussed. PMID:26538387

  18. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks

    PubMed Central

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD. PMID:29262568

  19. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    PubMed

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  20. Mixing weight determination for retrieving optical properties of polluted dust with MODIS and AERONET data

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-En; Hsiao, Ta-Chih; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Liu, Gin-Rong; Liu, Chian-Yi; Lin, Tang-Huang

    2016-08-01

    In this study, an approach in determining effective mixing weight of soot aggregates from dust-soot aerosols is proposed to improve the accuracy of retrieving properties of polluted dusts by means of satellite remote sensing. Based on a pre-computed database containing several variables (such as wavelength, refractive index, soot mixing weight, surface reflectivity, observation geometries and aerosol optical depth (AOD)), the fan-shaped look-up tables can be drawn out accordingly for determining the mixing weights, AOD and single scattering albedo (SSA) of polluted dusts simultaneously with auxiliary regional dust properties and surface reflectivity. To validate the performance of the approach in this study, 6 cases study of polluted dusts (dust-soot aerosols) in Lower Egypt and Israel were examined with the ground-based measurements through AErosol RObotic NETwork (AERONET). The results show that the mean absolute differences could be reduced from 32.95% to 6.56% in AOD and from 2.67% to 0.83% in SSA retrievals for MODIS aerosol products when referenced to AERONET measurements, demonstrating the soundness of the proposed approach under different levels of dust loading, mixing weight and surface reflectivity. Furthermore, the developed algorithm is capable of providing the spatial distribution of the mixing weights and removing the requirement to assume that the dust plume properties are uniform. The case study further shows the spatially variant dust-soot mixing weight would improve the retrieval accuracy in AODmixture and SSAmixture about 10.0% and 1.4% respectively.

  1. Spanish Museum Libraries Network.

    ERIC Educational Resources Information Center

    Lopez de Prado, Rosario

    This paper describes the creation of an automated network of museum libraries in Spain. The only way in which the specialized libraries in the world today can continue to be active and to offer valid information is to automate the service they offer, and create network libraries with cooperative plans. The network can be configured with different…

  2. An event-based architecture for solving constraint satisfaction problems

    PubMed Central

    Mostafa, Hesham; Müller, Lorenz K.; Indiveri, Giacomo

    2015-01-01

    Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed. PMID:26642827

  3. Art in Science Competition invites artworks to the annual exhibition on ISMB 2018 in Chicago.

    PubMed

    Welch, Lonnie; Gaeta, Bruno; Kovats, Diane E; Frenkel Morgenstern, Milana

    2018-01-01

    The International Society of Computational Biology and Bioinformatics (ISCB) brings together scientists from a wide range of disciplines, including biology, medicine, computer science, mathematics and statistics. Practitioners in these fields are constantly dealing with information in visual form: from microscope images and photographs of gels to scatter plots, network graphs and phylogenetic trees, structural formulae and protein models to flow diagrams, visual aids for problem-solving are omnipresent. The ISCB Art in Science Competition 2017 at the ISCB/ECCB 2017 conference in Prague offered a way to show the beauty of science in art form. Past artworks in this annual exhibition at ISMB combined outstanding beauty and aesthetics with deep insight that perfectly validated the exhibit's approach or went beyond the problem's solution. Others were surprising and inspiring through the transition from science to art, opening eyes and minds to reflect on the work being undertaken.

  4. An inversion strategy for energy saving in smart building through wireless monitoring

    NASA Astrophysics Data System (ADS)

    Anselmi, N.; Moriyama, T.

    2017-10-01

    The building plants represent one of the main sources of power consumption and of greenhouse gases emission in urban scenarios. The efficiency of energy management is also related to the indoor environmental conditions that reflect on the user comfort. The constant monitoring of comfort indicators enables the accurate management of building plants with the final objective of reducing energy waste and satisfying the user needs. This paper presents an inversion methodology based on support vector regression for the reconstruction and forecasting of the thermal comfort of users starting from the indoor environmental features of the building. The environmental monitoring is performed by means of a wireless sensor network, which pervasively measures the spatial variability of indoor conditions. The proposed system has been experimentally validated in a real test-site to assess the advantages and the limitations in supporting the management of the building plants towards energy saving.

  5. Inferring causal molecular networks: empirical assessment through a community-based effort

    PubMed Central

    Hill, Steven M.; Heiser, Laura M.; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K.; Carlin, Daniel E.; Zhang, Yang; Sokolov, Artem; Paull, Evan O.; Wong, Chris K.; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V.; Favorov, Alexander V.; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W.; Long, Byron L.; Noren, David P.; Bisberg, Alexander J.; Mills, Gordon B.; Gray, Joe W.; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A.; Fertig, Elana J.; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M.; Spellman, Paul T.; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-01-01

    Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks. PMID:26901648

  6. NASA GPM GV Science Implementation

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.

    2009-01-01

    Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.

  7. Enriching Professional Learning Networks: A Framework for Identification, Reflection, and Intention

    ERIC Educational Resources Information Center

    Krutka, Daniel G.; Carpenter, Jeffrey Paul; Trust, Torrey

    2017-01-01

    Many educators in the 21st century utilize social media platforms to enrich professional learning networks (PLNs). PLNs are uniquely personalized networks that can support participatory and continuous learning. Social media services can mediate professional engagements with a wide variety of people, spaces and tools that might not otherwise be…

  8. A Learning Network as a Development Method--An Example of Small Enterprises and a University Working Together.

    ERIC Educational Resources Information Center

    Tell, Joakim; Halila, Fawzi

    2001-01-01

    Small businesses implementing ISO 14001 standards worked with a university to develop a learning network. The network served as a source of inspiration and reflection as well as a sounding board. It enabled small enterprises to act collectively, compensating for individual lack of resources. (SK)

  9. Analytic Networks in Music Task Definition.

    ERIC Educational Resources Information Center

    Piper, Richard M.

    For a student to acquire the conceptual systems of a discipline, the designer must reflect that structure or analytic network in his curriculum. The four networks identified for music and used in the development of the Southwest Regional Laboratory (SWRL) Music Program are the variable-value, the whole-part, the process-stage, and the class-member…

  10. Togetherness, Teamwork and Challenges: "Reflections on Building an Inclusive Research Network"

    ERIC Educational Resources Information Center

    Riches, Tanya N.; O'Brien, Patricia M.

    2017-01-01

    Background: This article presents a case study of the Centre for Disability Studies' Inclusive Research Network. The network is a dynamic group of around fifteen people who have intellectual and other disabilities, support workers and university researchers. Methods: The study was based upon an evaluation of the group's research practice, as…

  11. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres

    PubMed Central

    Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.

    2016-01-01

    A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865

  12. Real-time monitoring and fault locating using amplified spontaneous emission noise reflection for tree-structured Ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Ab-Rahman, Mohammad Syuhaimi; Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.

    2013-09-01

    Nowadays, optical networks are becoming dense while detecting faulty branches in the tree-structured networks has become problematic. Conventional methods are inconvenient as they require an engineer to visit the failure site to check the optical fiber using an optical time-domain reflectometer. An innovative monitoring technique for tree-structured network topology in Ethernet passive optical networks (EPONs) by using the erbium-doped fiber amplifier to amplify the traffic signal is demonstrated, and in the meantime, a residual amplified spontaneous emission spectrum is used as the input signal to monitor the optical cable from the central office. Fiber Bragg gratings with distinct center wavelengths are employed to reflect the monitoring signals. Faulty branches of the tree-structured EPONs can be identified using a simple and low-cost receiver. We will show that this technique is capable of providing monitoring range up to 32 optical network units using a power meter with a sensitivity of -65 dBm while maintaining the bit error rate of 10-13.

  13. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    NASA Astrophysics Data System (ADS)

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-02-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.

  14. Validation of Radiometric Standards for the Laboratory Calibration of Reflected-Solar Earth Observing Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.

    2007-01-01

    Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.

  15. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Schaut

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system conceptmore » development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough architecture. To validate the performance of the Wing Box trough, a 6 meter aperture by 14 meter long prototype trough was built. For ease of shipping to and assembly at NREL's test facility, the prototype was fabricated in two half modules and joined along the centerline to create the Wing Box trough. The trough components were designed to achieve high precision of the reflective surface while leveraging high volume manufacturing and assembly techniques.« less

  16. Span graphics display utilities handbook, first edition

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Green, J. L.; Newman, R.

    1985-01-01

    The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphite images. This handbook details procedures that can be used to exchange graphic images over SPAN. The intent is to periodically update this handbook to reflect the constantly changing facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite servations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.

  17. A validation study of the psychometric properties of the Groningen Reflection Ability Scale.

    PubMed

    Andersen, Nina Bjerre; O'Neill, Lotte; Gormsen, Lise Kirstine; Hvidberg, Line; Morcke, Anne Mette

    2014-10-10

    Reflection, the ability to examine critically one's own learning and functioning, is considered important for 'the good doctor'. The Groningen Reflection Ability Scale (GRAS) is an instrument measuring student reflection, which has not yet been validated beyond the original Dutch study. The aim of this study was to adapt GRAS for use in a Danish setting and to investigate the psychometric properties of GRAS-DK. We performed a cross-cultural adaptation of GRAS from Dutch to Danish. Next, we collected primary data online, performed a retest, analysed data descriptively, estimated measurement error, performed an exploratory and a confirmatory factor analysis to test the proposed three-factor structure. 361 (69%) of 523 invited students completed GRAS-DK. Their mean score was 88 (SD = 11.42; scale maximum 115). Scores were approximately normally distributed. Measurement error and test-retest score differences were acceptable, apart from a few extreme outliers. However, the confirmatory factor analysis did not replicate the original three-factor model and neither could a one-dimensional structure be confirmed. GRAS is already in use, however we advise that use of GRAS-DK for effect measurements and group comparison awaits further review and validation studies. Our negative finding might be explained by a weak conceptualisation of personal reflection.

  18. Assessing therapy-relevant cognitive capacities in young people: development and psychometric evaluation of the self-reflection and insight scale for youth.

    PubMed

    Sauter, Floor M; Heyne, David; Blöte, Anke W; van Widenfelt, Brigit M; Westenberg, P Michiel

    2010-05-01

    The effectiveness of cognitive-behaviour therapy with young people may be influenced by a young person's capacity for self-reflection and insight. Clinicians who assess clients' proficiencies in these cognitive capacities can better tailor cognitive and behavioural techniques to the client, facilitating engagement and enhancing treatment outcome. It is therefore important that sound instruments for assessing self-reflection and insight in young people are available. The aim of the current study was to translate and adapt the Self-Reflection and Insight Scale (SRIS) for use with a child and adolescent population (Study 1), and to evaluate the psychometric properties of the resulting measure, the Self-Reflection and Insight Scale for Youth (SRIS-Y; Study 2). In Study 1 (n=145), the comprehensibility of the SRIS-Y was assessed in a community sample of children and adolescents. Study 2 (n=215) then explored the reliability and structural, convergent, and divergent validity of the SRIS-Y. The SRIS-Y was found to be comprehensible to young people, and had good reliability and structural validity. It appears that the SRIS-Y is a sound instrument for assessing therapy-relevant cognitive capacities in young people, of potential benefit in both research and clinical contexts. Future research foci include the predictive validity of the instrument.

  19. S68. SYMPTOMS, NEUROCOGNITION, SOCIAL COGNITION AND METACOGNITION IN SCHIZOPHRENIA: A NETWORK ANALYSIS

    PubMed Central

    Hasson-Ohayon, Ilanit; Goldzweig, Gil; Lavie, Adi; Luther, Lauren; Lysaker, Paul

    2018-01-01

    Abstract Background Schizophrenia is associated with broad range of phenomena which affect function and represent significant barriers to recovery. These include semi-independent forms of psychopathology, disturbances in neurocognition, social cognition and metacognition. The current study explores the paths through which these constructs affect each other and whether some of these phenomena play a relatively more or less central role than others as they interact. Answers to these questions seem essential to choosing which of a dizzying array of problems should be targeted by treatment. Methods Data was collected from 81 adult outpatients with schizophrenia or schizoaffective disorder, recruited at a Veterans’ Affairs Medical Center and a community mental health center in Indiana, USA. Network analysis which explored the relative relationships of five groups of symptoms (positive, negative, disorganization, hostility and emotional discomfort), six domains of neurocognition, four domains of social cognition and four domains of metacognition with one another was conducted. The analysis produces the following centrality measures: 1) strength of items within a network according to their sum weighted connections; 2) closeness between items that reflect the distance from a particular item to all others; 3) betweenness which reflect the number of times that an item appears on the shortest path between two other items. Results A clear differentiation between metacognition, social cognition, neurocognition and symptoms was observed. The only outliers were social cognition attribution, which was close to the symptoms area, and the cognitive symptoms factor that was found close to the neuro-cognition area. The social cognition was found in an “intermediate” area between the metacognition and neurocognition. Metacognition variables were the closest to the symptoms variables. The strongest nodes are: metacognition-self reflectivity, theory of mind measures of social cognition and visual memory. The nodes with the highest closeness measure were self-reflectivity sub-scale of metacognition and theory of mind of social cognition. The node with the highest betweenness measure was metacognition self-reflectivity. Discussion The centrality of the self-experience in schizophrenia is emphasized in phenomenological, theoretical as well as empirical literature and can be traced back to earlier writing on schizophrenia. Accordingly, a sense of barren or diminished self, problems in self-reflection and self-clarity as well as difficulties in agency and ownership over one’s thoughts, feelings and sensations which is necessary for creating meaning were reported and discussed. The current study adds to this body of literature the finding that in a network which includes symptoms, social cognition, neuro cognition and metacognition variables, self-reflection is standing out as being a central connector that has the strongest relationship with other variables. As such it impacts all the network, and interventions targeting metacognitive self-reflection are expected to have secondary effects on additional constructs in the network- i.e additional elements of metacognition, social cognition, neurocognition and symptoms.

  20. Hydrometeorological and statistical analyses of heavy rainfall in Midwestern USA

    NASA Astrophysics Data System (ADS)

    Thorndahl, S.; Smith, J. A.; Krajewski, W. F.

    2012-04-01

    During the last two decades the mid-western states of the United States of America has been largely afflicted by heavy flood producing rainfall. Several of these storms seem to have similar hydrometeorological properties in terms of pattern, track, evolution, life cycle, clustering, etc. which raise the question if it is possible to derive general characteristics of the space-time structures of these heavy storms. This is important in order to understand hydrometeorological features, e.g. how storms evolve and with what frequency we can expect extreme storms to occur. In the literature, most studies of extreme rainfall are based on point measurements (rain gauges). However, with high resolution and quality radar observation periods exceeding more than two decades, it is possible to do long-term spatio-temporal statistical analyses of extremes. This makes it possible to link return periods to distributed rainfall estimates and to study precipitation structures which cause floods. However, doing these statistical frequency analyses of rainfall based on radar observations introduces some different challenges, converting radar reflectivity observations to "true" rainfall, which are not problematic doing traditional analyses on rain gauge data. It is for example difficult to distinguish reflectivity from high intensity rain from reflectivity from other hydrometeors such as hail, especially using single polarization radars which are used in this study. Furthermore, reflectivity from bright band (melting layer) should be discarded and anomalous propagation should be corrected in order to produce valid statistics of extreme radar rainfall. Other challenges include combining observations from several radars to one mosaic, bias correction against rain gauges, range correction, ZR-relationships, etc. The present study analyzes radar rainfall observations from 1996 to 2011 based the American NEXRAD network of radars over an area covering parts of Iowa, Wisconsin, Illinois, and Lake Michigan. The radar observations are processed using Hydro-NEXRAD algorithms in order to produce rainfall estimates with a spatial resolution of 1 km and a temporal resolution of 15 min. The rainfall estimates are bias-corrected on a daily basis using a network of rain gauges. Besides a thorough evaluation of the different challenges in investigating heavy rain as described above the study includes suggestions for frequency analysis methods as well as studies of hydrometeorological features of single events.

  1. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China

    Treesearch

    Zhanqing Li; Feng Niu; Kwon-Ho Lee; Jinyuan Xin; Wei Min Hao; Bryce L. Nordgren; Yuesi Wang; Pucai Wang

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) currently provides the most extensive aerosol retrievals on a global basis, but validation is limited to a small number of ground stations. This study presents a comprehensive evaluation of Collection 4 and 5 MODIS aerosol products using ground measurements from the Chinese Sun Hazemeter Network (CSHNET). The...

  2. Are we puppets on a string? Comparing the impact of contingency and validity on implicit and explicit evaluations.

    PubMed

    Peters, Kurt R; Gawronski, Bertram

    2011-04-01

    Research has demonstrated that implicit and explicit evaluations of the same object can diverge. Explanations of such dissociations frequently appeal to dual-process theories, such that implicit evaluations are assumed to reflect object-valence contingencies independent of their perceived validity, whereas explicit evaluations reflect the perceived validity of object-valence contingencies. Although there is evidence supporting these assumptions, it remains unclear if dissociations can arise in situations in which object-valence contingencies are judged to be true or false during the learning of these contingencies. Challenging dual-process accounts that propose a simultaneous operation of two parallel learning mechanisms, results from three experiments showed that the perceived validity of evaluative information about social targets qualified both explicit and implicit evaluations when validity information was available immediately after the encoding of the valence information; however, delaying the presentation of validity information reduced its qualifying impact for implicit, but not explicit, evaluations.

  3. Optimal network alignment with graphlet degree vectors.

    PubMed

    Milenković, Tijana; Ng, Weng Leong; Hayes, Wayne; Przulj, Natasa

    2010-06-30

    Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology.

  4. Improved Diagnostic Accuracy of Alzheimer's Disease by Combining Regional Cortical Thickness and Default Mode Network Functional Connectivity: Validated in the Alzheimer's Disease Neuroimaging Initiative Set.

    PubMed

    Park, Ji Eun; Park, Bumwoo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal ( p < 0.001) and supramarginal gyrus ( p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  5. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  6. SoilSCAPE in-Situ Observations of Soil Moisture for SMAP Validation: Pushing the Envelopes of Spatial Coverage and Energy Efficiency in Sparse Wireless Sensor Networks (Invited)

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A.; Clewley, D.; Akbar, R.; Entekhabi, D.

    2013-12-01

    Soil Moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) is a wireless in-situ sensor network technology, developed under the support of NASA ESTO/AIST program, for multi-scale validation of soil moisture retrievals from the Soil Moisture Active and Passive (SMAP) mission. The SMAP sensor suite is expected to produce soil moisture retrievals at 3 km scale from the radar instrument, at 36 km from the radiometer, and at 10 km from the combination of the two sensors. To validate the retrieved soil moisture maps at any of these scales, it is necessary to perform in-situ observations at multiple scales (ten, hundreds, and thousands of meters), representative of the true spatial variability of soil moisture fields. The most recent SoilSCAPE network, deployed in the California central valley, has been designed, built, and deployed to accomplish this goal, and is expected to become a core validation site for SMAP. The network consists of up to 150 sensor nodes, each comprised of 3-4 soil moisture sensors at various depths, deployed over a spatial extent of 36 km by 36 km. The network contains multiple sub-networks, each having up to 30 nodes, whose location is selected in part based on maximizing the land cover diversity within the 36 km cell. The network has achieved unprecedented energy efficiency, longevity, and spatial coverage using custom-designed hardware and software protocols. The network architecture utilizes a nested strategy, where a number of end devices (EDs) communicate to a local coordinator (LC) using our recently developed hardware with ultra-efficient circuitry and best-effort-timeslot allocation communication protocol. The LCs in turn communicates with the base station (BS) via text messages and a new compression scheme. The hardware and software technologies required to implement this latest deployment of the SoilSCAPE network will be presented in this paper, and several data sets resulting from the measurements will be shown. The data are available publicly in near-real-time from the project web site, and are also available and searchable via an extensive set of metadata fields through the ORNL-DAAC.

  7. Neural Correlates of Direct and Reflected Self-Appraisals in Adolescents and Adults: When Social Perspective-Taking Informs Self-Perception

    PubMed Central

    Pfeifer, Jennifer H.; Masten, Carrie L.; Borofsky, Larissa A.; Dapretto, Mirella; Fuligni, Andrew J.; Lieberman, Matthew D.

    2011-01-01

    Classic theories of self-development suggest people define themselves in part through internalized perceptions of other people’s beliefs about them, known as reflected self-appraisals. This study uses functional magnetic resonance imaging to compare the neural correlates of direct and reflected self-appraisals in adolescence (N = 12, ages 11–14 years) and adulthood (N = 12, ages 23–30 years). During direct self-reflection, adolescents demonstrated greater activity than adults in networks relevant to self-perception (medial prefrontal and parietal cortices) and social-cognition (dorsomedial prefrontal cortex, temporal–parietal junction, and posterior superior temporal sulcus), suggesting adolescent self-construals may rely more heavily on others’ perspectives about the self. Activity in the medial fronto-parietal network was also enhanced when adolescents took the perspective of someone more relevant to a given domain. PMID:19630891

  8. CTD2 Dashboard: a searchable web interface to connect validated results from the Cancer Target Discovery and Development Network

    PubMed Central

    Aksoy, Bülent Arman; Dančík, Vlado; Smith, Kenneth; Mazerik, Jessica N.; Ji, Zhou; Gross, Benjamin; Nikolova, Olga; Jaber, Nadia; Califano, Andrea; Schreiber, Stuart L.; Gerhard, Daniela S.; Hermida, Leandro C.; Jagu, Subhashini

    2017-01-01

    Abstract The Cancer Target Discovery and Development (CTD2) Network aims to use functional genomics to accelerate the translation of high-throughput and high-content genomic and small-molecule data towards use in precision oncology. As part of this goal, and to share its conclusions with the research community, the Network developed the ‘CTD2 Dashboard’ [https://ctd2-dashboard.nci.nih.gov/], which compiles CTD2 Network-generated conclusions, termed ‘observations’, associated with experimental entities, collected by its member groups (‘Centers’). Any researcher interested in learning about a given gene, protein, or compound (a ‘subject’) studied by the Network can come to the CTD2 Dashboard to quickly and easily find, review, and understand Network-generated experimental results. In particular, the Dashboard allows visitors to connect experiments about the same target, biomarker, etc., carried out by multiple Centers in the Network. The Dashboard’s unique knowledge representation allows information to be compiled around a subject, so as to become greater than the sum of the individual contributions. The CTD2 Network has broadly defined levels of validation for evidence (‘Tiers’) pertaining to a particular finding, and the CTD2 Dashboard uses these Tiers to indicate the extent to which results have been validated. Researchers can use the Network’s insights and tools to develop a new hypothesis or confirm existing hypotheses, in turn advancing the findings towards clinical applications. Database URL: https://ctd2-dashboard.nci.nih.gov/ PMID:29220450

  9. Model of bidirectional reflectance distribution function for metallic materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  10. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  11. Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia.

    PubMed

    Caminiti, Silvia P; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F

    2015-01-01

    bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms.

  12. Complete characterization of the stability of cluster synchronization in complex dynamical networks.

    PubMed

    Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi

    2016-04-01

    Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.

  13. Computing preimages of Boolean networks.

    PubMed

    Klotz, Johannes; Bossert, Martin; Schober, Steffen

    2013-01-01

    In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.

  14. Balance of Interactions Determines Optimal Survival in Multi-Species Communities.

    PubMed

    Choudhary, Anshul; Sinha, Sudeshna

    2015-01-01

    We consider a multi-species community modelled as a complex network of populations, where the links are given by a random asymmetric connectivity matrix J, with fraction 1 - C of zero entries, where C reflects the over-all connectivity of the system. The non-zero elements of J are drawn from a Gaussian distribution with mean μ and standard deviation σ. The signs of the elements Jij reflect the nature of density-dependent interactions, such as predatory-prey, mutualism or competition, and their magnitudes reflect the strength of the interaction. In this study we try to uncover the broad features of the inter-species interactions that determine the global robustness of this network, as indicated by the average number of active nodes (i.e. non-extinct species) in the network, and the total population, reflecting the biomass yield. We find that the network transitions from a completely extinct system to one where all nodes are active, as the mean interaction strength goes from negative to positive, with the transition getting sharper for increasing C and decreasing σ. We also find that the total population, displays distinct non-monotonic scaling behaviour with respect to the product μC, implying that survival is dependent not merely on the number of links, but rather on the combination of the sparseness of the connectivity matrix and the net interaction strength. Interestingly, in an intermediate window of positive μC, the total population is maximal, indicating that too little or too much positive interactions is detrimental to survival. Rather, the total population levels are optimal when the network has intermediate net positive connection strengths. At the local level we observe marked qualitative changes in dynamical patterns, ranging from anti-phase clusters of period 2 cycles and chaotic bands, to fixed points, under the variation of mean μ of the interaction strengths. We also study the correlation between synchronization and survival, and find that synchronization does not necessarily lead to extinction. Lastly, we propose an effective low dimensional map to capture the behavior of the entire network, and this provides a broad understanding of the interplay of the local dynamical patterns and the global robustness trends in the network.

  15. Perturbation propagation in random and evolved Boolean networks

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Szejka, Agnes; Drossel, Barbara

    2009-03-01

    In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.

  16. "La Clave Profesional": Validation of a Vocational Guidance Instrument

    ERIC Educational Resources Information Center

    Mudarra, Maria J.; Lázaro Martínez, Ángel

    2014-01-01

    Introduction: The current study demonstrates empirical and cultural validity of "La Clave Profesional" (Spanish adaptation of Career Key, Jones's test based Holland's RIASEC model). The process of providing validity evidence also includes a reflection on personal and career development and examines the relationahsips between RIASEC…

  17. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease.

    PubMed

    Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L

    2018-06-01

    There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.

  18. MetSigDis: a manually curated resource for the metabolic signatures of diseases.

    PubMed

    Cheng, Liang; Yang, Haixiu; Zhao, Hengqiang; Pei, Xiaoya; Shi, Hongbo; Sun, Jie; Zhang, Yunpeng; Wang, Zhenzhen; Zhou, Meng

    2017-08-22

    Complex diseases cannot be understood only on the basis of single gene, single mRNA transcript or single protein but the effect of their collaborations. The combination consequence in molecular level can be captured by the alterations of metabolites. With the rapidly developing of biomedical instruments and analytical platforms, a large number of metabolite signatures of complex diseases were identified and documented in the literature. Biologists' hardship in the face of this large amount of papers recorded metabolic signatures of experiments' results calls for an automated data repository. Therefore, we developed MetSigDis aiming to provide a comprehensive resource of metabolite alterations in various diseases. MetSigDis is freely available at http://www.bio-annotation.cn/MetSigDis/. By reviewing hundreds of publications, we collected 6849 curated relationships between 2420 metabolites and 129 diseases across eight species involving Homo sapiens and model organisms. All of these relationships were used in constructing a metabolite disease network (MDN). This network displayed scale-free characteristics according to the degree distribution (power-law distribution with R2 = 0.909), and the subnetwork of MDN for interesting diseases and their related metabolites can be visualized in the Web. The common alterations of metabolites reflect the metabolic similarity of diseases, which is measured using Jaccard index. We observed that metabolite-based similar diseases are inclined to share semantic associations of Disease Ontology. A human disease network was then built, where a node represents a disease, and an edge indicates similarity of pair-wise diseases. The network validated the observation that linked diseases based on metabolites should have more overlapped genes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Evaluating the intersection of a regional wildlife connectivity network with highways.

    PubMed

    Cushman, Samuel A; Lewis, Jesse S; Landguth, Erin L

    2013-01-01

    Reliable predictions of regional-scale population connectivity are needed to prioritize conservation actions. However, there have been few examples of regional connectivity models that are empirically derived and validated. The central goals of this paper were to (1) evaluate the effectiveness of factorial least cost path corridor mapping on an empirical resistance surface in reflecting the frequency of highway crossings by American black bear, (2) predict the location and predicted intensity of use of movement corridors for American black bear, and (3) identify where these corridors cross major highways and rank the intensity of these crossings. We used factorial least cost path modeling coupled with resistant kernel analysis to predict a network of movement corridors across a 30.2 million hectare analysis area in Montana and Idaho, USA. Factorial least cost path corridor mapping was associated with the locations of actual bear highway crossings. We identified corridor-highway intersections and ranked these based on corridor strength. We found that a major wildlife crossing overpass structure was located close to one of the most intense predicted corridors, and that the vast majority of the predicted corridor network was "protected" under federal management. However, narrow, linear corridors connecting the Greater Yellowstone Ecosystem to the rest of the analysis area had limited protection by federal ownership, making these additionally vulnerable to habitat loss and fragmentation. Factorial least cost path modeling coupled with resistant kernel analysis provides detailed, synoptic information about connectivity across populations that vary in distribution and density in complex landscapes. Specifically, our results could be used to quantify the structure of the connectivity network, identify critical linkage nodes and core areas, map potential barriers and fracture zones, and prioritize locations for mitigation, restoration and conservation actions.

  20. Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska

    NASA Astrophysics Data System (ADS)

    Meade, N. G.; Hinzman, L. D.; Kane, D. L.

    1999-01-01

    A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models

  1. Does counting emotion words on online social networks provide a window into people's subjective experience of emotion? A case study on Facebook.

    PubMed

    Kross, Ethan; Verduyn, Philippe; Boyer, Margaret; Drake, Brittany; Gainsburg, Izzy; Vickers, Brian; Ybarra, Oscar; Jonides, John

    2018-04-05

    Psychologists have long debated whether it is possible to assess how people subjectively feel without asking them. The recent proliferation of online social networks has recently added a fresh chapter to this discussion, with research now suggesting that it is possible to index people's subjective experience of emotion by simply counting the number of emotion words contained in their online social network posts. Whether the conclusions that emerge from this work are valid, however, rests on a critical assumption: that people's usage of emotion words in their posts accurately reflects how they feel. Although this assumption is widespread in psychological research, here we suggest that there are reasons to challenge it. We corroborate these assertions in 2 ways. First, using data from 4 experience-sampling studies of emotion in young adults, we show that people's reports of how they feel throughout the day neither predict, nor are predicted by, their use of emotion words on Facebook. Second, using simulations we show that although significant relationships emerge between the use of emotion words on Facebook and self-reported affect with increasingly large numbers of observations, the relationship between these variables was in the opposite of the theoretically expected direction 50% of the time (i.e., 3 of 6 models that we performed simulations on). In contrast to counting emotion words, we show that judges' ratings of the emotionality of participants' Facebook posts consistently predicts how people feel across all analyses. These findings shed light on how to draw inferences about emotion using online social network data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. ION Configuration Editor

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.

    2013-01-01

    The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.

  3. Research and Simulation on Application of the Mobile IP Network

    NASA Astrophysics Data System (ADS)

    Yibing, Deng; Wei, Hu; Minghui, Li; Feng, Gao; Junyi, Shen

    The paper analysed the mobile node, home agent, and foreign agent of mobile IP network firstly, some key technique, such as mobile IP network basical principle, protocol work principle, agent discovery, registration, and IP packet transmission, were discussed. Then a network simulation model was designed, validating the characteristic of mobile IP network, and some advantages, which were brought by mobile network, were testified. Finally, the conclusion is gained: mobile IP network could realize the expectation of consumer that they can communicate with others anywhere.

  4. Limit of a nonpreferential attachment multitype network model

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2017-02-01

    Here, we deal with a model of multitype network with nonpreferential attachment growth. The connection between two nodes depends asymmetrically on their types, reflecting the implication of time order in temporal networks. Based upon graph limit theory, we analytically determined the limit of the network model characterized by a kernel, in the sense that the number of copies of any fixed subgraph converges when network size tends to infinity. The results are confirmed by extensive simulations. Our work thus provides a theoretical framework for quantitatively understanding grown temporal complex networks as a whole.

  5. Noninvasive glucose monitoring by optical reflective and thermal emission spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Saetchnikov, V. A.; Tcherniavskaia, E. A.; Schiffner, G.

    2005-08-01

    Noninvasive method for blood glucose monitoring in cutaneous tissue based on reflective spectrometry combined with a thermal emission spectroscopy has been developed. Regression analysis, neural network algorithms and cluster analysis are used for data processing.

  6. Exploration and Reflection on Teachers' Self-Growth under Network Environment

    ERIC Educational Resources Information Center

    Li, Shuang

    2010-01-01

    As is well known, it is network that has turned the traditional "man-man" educational system made up of by only teachers and students into a new system of "man-machine-man" composed of network as well as teachers and students. In the new system, teachers' authority has been lowered sharply because students also have access to…

  7. Change through Networking in Vocational Education. New Developments in Vocational Education.

    ERIC Educational Resources Information Center

    Nasta, Tony

    This book explores the role of networks in forming and delivering vocational education in the United Kingdom and in a single European market. In Part 1, the concepts surrounding networking are introduced and related to the environment of accelerating change in vocational education. Part 2 contains the following case studies and reflective articles…

  8. Maximum and minimum return losses from a passive two-port network terminated with a mismatched load

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.

    1993-01-01

    This article presents an analytical method for determining the exact distance a load is required to be offset from a passive two-port network to obtain maximum or minimum return losses from the terminated two-port network. Equations are derived in terms of two-port network S-parameters and load reflection coefficient. The equations are useful for predicting worst-case performances of some types of networks that are terminated with offset short-circuit loads.

  9. Heterogeneous fractionation profiles of meta-analytic coactivation networks.

    PubMed

    Laird, Angela R; Riedel, Michael C; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L; Eickhoff, Simon B; Smith, Stephen M; Fox, Peter T; Sutherland, Matthew T

    2017-04-01

    Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Heterogeneous fractionation profiles of meta-analytic coactivation networks

    PubMed Central

    Laird, Angela R.; Riedel, Michael C.; Okoe, Mershack; Jianu, Radu; Ray, Kimberly L.; Eickhoff, Simon B.; Smith, Stephen M.; Fox, Peter T.; Sutherland, Matthew T.

    2017-01-01

    Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d = 20 to 300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how “parent” functional brain systems decompose into constituent “child” sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication. PMID:28222386

  11. Altered gray matter organization in children and adolescents with ADHD: a structural covariance connectome study

    PubMed Central

    Griffiths, K R; Grieve, S M; Kohn, M R; Clarke, S; Williams, L M; Korgaonkar, M S

    2016-01-01

    Although multiple studies have reported structural deficits in multiple brain regions in attention-deficit hyperactivity disorder (ADHD), we do not yet know if these deficits reflect a more systematic disruption to the anatomical organization of large-scale brain networks. Here we used a graph theoretical approach to quantify anatomical organization in children and adolescents with ADHD. We generated anatomical networks based on covariance of gray matter volumes from 92 regions across the brain in children and adolescents with ADHD (n=34) and age- and sex-matched healthy controls (n=28). Using graph theory, we computed metrics that characterize both the global organization of anatomical networks (interconnectivity (clustering), integration (path length) and balance of global integration and localized segregation (small-worldness)) and their local nodal measures (participation (degree) and interaction (betweenness) within a network). Relative to Controls, ADHD participants exhibited altered global organization reflected in more clustering or network segregation. Locally, nodal degree and betweenness were increased in the subcortical amygdalae in ADHD, but reduced in cortical nodes in the anterior cingulate, posterior cingulate, mid temporal pole and rolandic operculum. In ADHD, anatomical networks were disrupted and reflected an emphasis on subcortical local connections centered around the amygdala, at the expense of cortical organization. Brains of children and adolescents with ADHD may be anatomically configured to respond impulsively to the automatic significance of stimulus input without having the neural organization to regulate and inhibit these responses. These findings provide a novel addition to our current understanding of the ADHD connectome. PMID:27824356

  12. Open Access High Throughput Drug Discovery in the Public Domain: A Mount Everest in the Making

    PubMed Central

    Roy, Anuradha; McDonald, Peter R.; Sittampalam, Sitta; Chaguturu, Rathnam

    2013-01-01

    High throughput screening (HTS) facilitates screening large numbers of compounds against a biochemical target of interest using validated biological or biophysical assays. In recent years, a significant number of drugs in clinical trails originated from HTS campaigns, validating HTS as a bona fide mechanism for hit finding. In the current drug discovery landscape, the pharmaceutical industry is embracing open innovation strategies with academia to maximize their research capabilities and to feed their drug discovery pipeline. The goals of academic research have therefore expanded from target identification and validation to probe discovery, chemical genomics, and compound library screening. This trend is reflected in the emergence of HTS centers in the public domain over the past decade, ranging in size from modestly equipped academic screening centers to well endowed Molecular Libraries Probe Centers Network (MLPCN) centers funded by the NIH Roadmap initiative. These centers facilitate a comprehensive approach to probe discovery in academia and utilize both classical and cutting-edge assay technologies for executing primary and secondary screening campaigns. The various facets of academic HTS centers as well as their implications on technology transfer and drug discovery are discussed, and a roadmap for successful drug discovery in the public domain is presented. New lead discovery against therapeutic targets, especially those involving the rare and neglected diseases, is indeed a Mount Everestonian size task, and requires diligent implementation of pharmaceutical industry’s best practices for a successful outcome. PMID:20809896

  13. Dust transport model validation using satellite- and ground-based methods in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Mahler, Anna-Britt; Thome, Kurt; Yin, Dazhong; Sprigg, William A.

    2006-08-01

    Dust is known to aggravate respiratory diseases. This is an issue in the desert southwestern United States, where windblown dust events are common. The Public Health Applications in Remote Sensing (PHAiRS) project aims to address this problem by using remote-sensing products to assist in public health decision support. As part of PHAiRS, a model for simulating desert dust cycles, the Dust Regional Atmospheric Modeling (DREAM) system is employed to forecast dust events in the southwestern US. Thus far, DREAM has been validated in the southwestern US only in the lower part of the atmosphere by comparison with measurement and analysis products from surface synoptic, surface Meteorological Aerodrome Report (METAR), and upper-air radiosonde. This study examines the validity of the DREAM algorithm dust load prediction in the desert southwestern United States by comparison with satellite-based MODIS level 2 and MODIS Deep Blue aerosol products, and ground-based observations from the AERONET network of sunphotometers. Results indicate that there are difficulties obtaining MODIS L2 aerosol optical thickness (AOT) data in the desert southwest due to low AOT algorithm performance over areas with high surface reflectances. MODIS Deep Blue aerosol products show improvement, but the temporal and vertical resolution of MODIS data limit its utility for DREAM evaluation. AERONET AOT data show low correlation to DREAM dust load predictions. The potential contribution of space- or ground-based lidar to the PHAiRS project is also examined.

  14. Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon.

    PubMed

    Shi, Wei; Yun, Han; Lin, Charlie; Greenberg, Mark; Wang, Xu; Wang, Yun; Fard, Sahba Talebi; Flueckiger, Jonas; Jaeger, Nicolas A F; Chrostowski, Lukas

    2013-03-25

    Wavelength-division-multiplexing (WDM) networks with wide channel grids and bandwidths are promising for low-cost, low-power optical interconnects. Wide-bandwidth, single-band (i.e., no free-spectral range) add-drop filters have been developed on silicon using anti-reflection contra-directional couplers with out-of-phase Bragg gratings. Using such filter components, we demonstrate a 4-channel, coarse-WDM demultiplexer with flat passbands of up to 13 nm and an ultra-compact size of 1.2 × 10(-3) mm(2).

  15. Neural-like growing networks

    NASA Astrophysics Data System (ADS)

    Yashchenko, Vitaliy A.

    2000-03-01

    On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.

  16. Application of Petri net based analysis techniques to signal transduction pathways.

    PubMed

    Sackmann, Andrea; Heiner, Monika; Koch, Ina

    2006-11-02

    Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules.

  17. Application of Petri net based analysis techniques to signal transduction pathways

    PubMed Central

    Sackmann, Andrea; Heiner, Monika; Koch, Ina

    2006-01-01

    Background Signal transduction pathways are usually modelled using classical quantitative methods, which are based on ordinary differential equations (ODEs). However, some difficulties are inherent in this approach. On the one hand, the kinetic parameters involved are often unknown and have to be estimated. With increasing size and complexity of signal transduction pathways, the estimation of missing kinetic data is not possible. On the other hand, ODEs based models do not support any explicit insights into possible (signal-) flows within the network. Moreover, a huge amount of qualitative data is available due to high-throughput techniques. In order to get information on the systems behaviour, qualitative analysis techniques have been developed. Applications of the known qualitative analysis methods concern mainly metabolic networks. Petri net theory provides a variety of established analysis techniques, which are also applicable to signal transduction models. In this context special properties have to be considered and new dedicated techniques have to be designed. Methods We apply Petri net theory to model and analyse signal transduction pathways first qualitatively before continuing with quantitative analyses. This paper demonstrates how to build systematically a discrete model, which reflects provably the qualitative biological behaviour without any knowledge of kinetic parameters. The mating pheromone response pathway in Saccharomyces cerevisiae serves as case study. Results We propose an approach for model validation of signal transduction pathways based on the network structure only. For this purpose, we introduce the new notion of feasible t-invariants, which represent minimal self-contained subnets being active under a given input situation. Each of these subnets stands for a signal flow in the system. We define maximal common transition sets (MCT-sets), which can be used for t-invariant examination and net decomposition into smallest biologically meaningful functional units. Conclusion The paper demonstrates how Petri net analysis techniques can promote a deeper understanding of signal transduction pathways. The new concepts of feasible t-invariants and MCT-sets have been proven to be useful for model validation and the interpretation of the biological system behaviour. Whereas MCT-sets provide a decomposition of the net into disjunctive subnets, feasible t-invariants describe subnets, which generally overlap. This work contributes to qualitative modelling and to the analysis of large biological networks by their fully automatic decomposition into biologically meaningful modules. PMID:17081284

  18. Space evolution model and empirical analysis of an urban public transport network

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  19. Fairness and Using Reflective Journals in Assessment

    ERIC Educational Resources Information Center

    Clarkeburn, Henriikka; Kettula, Kirsi

    2012-01-01

    This study looks at the fairness of assessing learning journals both as the fairness in creating a valid and robust marking process as well as how different student groups may have unfair disadvantages in performing well in reflective assessment tasks. The fairness of a marking process is discussed through reflecting on the practical process and…

  20. Social Networks and Mourning: A Comparative Approach.

    ERIC Educational Resources Information Center

    Rubin, Nissan

    1990-01-01

    Suggests using social network theory to explain varieties of mourning behavior in different societies. Compares participation in funeral ceremonies of members of different social circles in American society and Israeli kibbutz. Concludes that results demonstrated validity of concepts deriving from social network analysis in study of bereavement,…

  1. Social Network Map: Some Further Refinements on Administration.

    ERIC Educational Resources Information Center

    Tracy, Elizabeth M.; Abell, Neil

    1994-01-01

    Notes that social network mapping techniques have been advanced as means of assessing social and environmental resources. Addresses issue of convergent construct validity, correlations among dimensions of perceived social support as measured by social network data with other standardized social support instruments. Findings confirm that structural…

  2. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    PubMed Central

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep. PMID:27247803

  3. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    PubMed Central

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  4. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.

    PubMed

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  5. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    PubMed

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  6. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis.

    PubMed

    Luo, Heng; Ye, Hao; Ng, Hui; Shi, Leming; Tong, Weida; Mattes, William; Mendrick, Donna; Hong, Huixiao

    2015-01-01

    As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. Network analysis is a useful approach for analyzing large and sparse datasets such as the HLA-peptide binding dataset. The modules identified from the network analysis clustered peptides and HLAs with similar sequences and properties of amino acids. Nebula performed well in the predictions of HLA-peptide binding. We demonstrated that network analysis coupled with Nebula is an efficient approach to understand and predict HLA-peptide binding interactions and thus, could further our understanding of ADRs.

  7. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis

    PubMed Central

    2015-01-01

    Background As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. Methods Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. Results Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. Conclusions Network analysis is a useful approach for analyzing large and sparse datasets such as the HLA-peptide binding dataset. The modules identified from the network analysis clustered peptides and HLAs with similar sequences and properties of amino acids. Nebula performed well in the predictions of HLA-peptide binding. We demonstrated that network analysis coupled with Nebula is an efficient approach to understand and predict HLA-peptide binding interactions and thus, could further our understanding of ADRs. PMID:26424483

  8. A trace map comparison algorithm for the discrete fracture network models of rock masses

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Wang, Gang; Li, Mingchao

    2018-06-01

    Discrete fracture networks (DFN) are widely used to build refined geological models. However, validating whether a refined model can match to reality is a crucial problem, concerning whether the model can be used for analysis. The current validation methods include numerical validation and graphical validation. However, the graphical validation, aiming at estimating the similarity between a simulated trace map and the real trace map by visual observation, is subjective. In this paper, an algorithm for the graphical validation of DFN is set up. Four main indicators, including total gray, gray grade curve, characteristic direction and gray density distribution curve, are presented to assess the similarity between two trace maps. A modified Radon transform and loop cosine similarity are presented based on Radon transform and cosine similarity respectively. Besides, how to use Bézier curve to reduce the edge effect is described. Finally, a case study shows that the new algorithm can effectively distinguish which simulated trace map is more similar to the real trace map.

  9. A novel wavelength reused bidirectional RoF-WDM-PON architecture to mitigate reflection and Rayleigh backscattered noise in multi-Gb/s m-QAM OFDM SSB upstream and downstream transmission over a single fiber

    NASA Astrophysics Data System (ADS)

    Patel, Dhananjay; Dalal, U. D.

    2017-05-01

    A novel m-QAM Orthogonal Frequency Division Multiplexing (OFDM) Single Sideband (SSB) architecture is proposed for centralized light source (CLS) bidirectional Radio over Fiber (RoF) - Wavelength Division Multiplexing (WDM) - Passive Optical Network (PON). In bidirectional transmission with carrier reuse over the single fiber, the Rayleigh Backscattering (RB) noise and reflection (RE) interferences from optical components can seriously deteriorate the transmission performance of the fiber optic systems. These interferometric noises can be mitigated by utilizing the optical modulation schemes at the Optical Line Terminal (OLT) and Optical Network Unit (ONU) such that the spectral overlap between the optical data spectrum and the RB and RE noise is minimum. A mathematical model is developed for the proposed architecture to accurately measure the performance of the transmission system and also to analyze the effect of interferometric noise caused by the RB and RE. The model takes into the account the different modulation schemes employed at the OLT and the ONU using a Mach Zehnder Modulator (MZM), the optical launch power and the bit-rates of the downstream and upstream signals, the gain of the amplifiers at the OLT and the ONU, the RB-RE noise, chromatic dispersion of the single mode fiber and optical filter responses. In addition, the model analyzes all the components of the RB-RE noise such as carrier RB, signal RB, carrier RE and signal RE, thus providing the complete representation of all the physical phenomena involved. An optical m-QAM OFDM SSB signal acts as a test signal to validate the model which provides excellent agreement with simulation results. The SSB modulation technique using the MZM at the OLT and the ONU differs in the data transmission technique that takes place through the first-order higher and the lower optical sideband respectively. This spectral gap between the downstream and upstream signals reduces the effect of Rayleigh backscattering and discrete reflections.

  10. Teachers As Researchers: Improving Practice in Rural and Small Schools. Rural, Small Schools Network Information Exchange: Number 11, Fall 1991.

    ERIC Educational Resources Information Center

    Regional Laboratory for Educational Improvement of the Northeast & Islands, Andover, MA.

    This packet includes reprints of journal articles and other information exploring reflective practice and action research among rural educators. The four sections of the packet cover concepts of reflective practice and action research; examples of reflective practice at both the elementary and secondary levels; issues such as encouraging…

  11. Synthesis, structure and optical properties of two isotypic crystals, Na{sub 3}MO{sub 4}Cl (M=W, Mo)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Shujuan; Bai, Chunyan; Zhang, Bingbing

    Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M = W, Mo) have been obtained from the high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Both of them crystallize in the space group P4/nmm of tetragonal system with the unit cells: a=7.5181(15), c=5.360(2) for Na{sub 3}WO{sub 4}Cl and a=7.4942(12), c=5.3409(18) for Na{sub 3}MoO{sub 4}Cl. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. The structural similarities and differences between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Sr{sub 3}MO{sub 4}F (M=Al, Ga) havemore » been discussed. Meanwhile, detailed structure comparison analyses between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Na{sub 3}MO{sub 4}F (M=W, Mo) indicate that the different connection modes of ClNa{sub 6} and FNa{sub 6} make Na{sub 3}MO{sub 4}Cl and Na{sub 3}MO{sub 4}F crystallize in different structures. The IR spectra were used to verify the validity of the structure. The diffuse reflectance spectra show that the UV absorption edges are about 249 nm (4.99 eV) and 265 nm (4.69 eV) for Na{sub 3}WO{sub 4}Cl and Na{sub 3}MoO{sub 4}Cl, respectively. In addition, the first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties. - Graphical abstract: Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M=W, Mo) have been obtained from the high temperature solution. Both of them crystallize in the space group P4/nmm of tetragonal system. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. - Highlights: • Structure and properties of Na{sub 3}MO{sub 4}Cl (M=W, Mo) are reported for the first time. • They show a 3D network built by ClNa{sub 6}, and WO{sub 4} lies in the tunnels of the network. • IR spectra were used to verify the validity of the structure. • Band structures and density of states have been calculated.« less

  12. Fluctuations in Wikipedia access-rate and edit-event data

    NASA Astrophysics Data System (ADS)

    Kämpf, Mirko; Tismer, Sebastian; Kantelhardt, Jan W.; Muchnik, Lev

    2012-12-01

    Internet-based social networks often reflect extreme events in nature and society by drastic increases in user activity. We study and compare the dynamics of the two major complex processes necessary for information spread via the online encyclopedia ‘Wikipedia’, i.e., article editing (information upload) and article access (information viewing) based on article edit-event time series and (hourly) user access-rate time series for all articles. Daily and weekly activity patterns occur in addition to fluctuations and bursting activity. The bursts (i.e., significant increases in activity for an extended period of time) are characterized by a power-law distribution of durations of increases and decreases. For describing the recurrence and clustering of bursts we investigate the statistics of the return intervals between them. We find stretched exponential distributions of return intervals in access-rate time series, while edit-event time series yield simple exponential distributions. To characterize the fluctuation behavior we apply detrended fluctuation analysis (DFA), finding that most article access-rate time series are characterized by strong long-term correlations with fluctuation exponents α≈0.9. The results indicate significant differences in the dynamics of information upload and access and help in understanding the complex process of collecting, processing, validating, and distributing information in self-organized social networks.

  13. Neuroticism and conscientiousness respectively constrain and facilitate short-term plasticity within the working memory neural network.

    PubMed

    Dima, Danai; Friston, Karl J; Stephan, Klaas E; Frangou, Sophia

    2015-10-01

    Individual differences in cognitive efficiency, particularly in relation to working memory (WM), have been associated both with personality dimensions that reflect enduring regularities in brain configuration, and with short-term neural plasticity, that reflects task-related changes in brain connectivity. To elucidate the relationship of these two divergent mechanisms, we tested the hypothesis that personality dimensions, which reflect enduring aspects of brain configuration, inform about the neurobiological framework within which short-term, task-related plasticity, as measured by effective connectivity, can be facilitated or constrained. As WM consistently engages the dorsolateral prefrontal (DLPFC), parietal (PAR), and anterior cingulate cortex (ACC), we specified a WM network model with bidirectional, ipsilateral, and contralateral connections between these regions from a functional magnetic resonance imaging dataset obtained from 40 healthy adults while performing the 3-back WM task. Task-related effective connectivity changes within this network were estimated using Dynamic Causal Modelling. Personality was evaluated along the major dimensions of Neuroticism, Extraversion, Openness to Experience, Agreeableness, and Conscientiousness. Only two dimensions were relevant to task-dependent effective connectivity. Neuroticism and Conscientiousness respectively constrained and facilitated neuroplastic responses within the WM network. These results suggest individual differences in cognitive efficiency arise from the interplay between enduring and short-term plasticity in brain configuration. © 2015 Wiley Periodicals, Inc.

  14. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    PubMed Central

    Moghadas, Amin A.; Shadaram, Mehdi

    2010-01-01

    In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416

  15. An Exploratory Investigation of Functional Network Connectivity of Empathy and Default Mode Networks in a Free-Viewing Task.

    PubMed

    Vemuri, Kavita; Surampudi, Bapi Raju

    2015-08-01

    This study reports dynamic functional network connectivity (dFNC) analysis on time courses of putative empathy networks-cognitive, emotional, and motor-and the default mode network (DMN) identified from independent components (ICs) derived by the group independent component analysis (ICA) method. The functional magnetic resonance imaging (fMRI) data were collected from 15 subjects watching movies of three genres, an animation (S1), Indian Hindi (S2), and a Hollywood English (S3) movie. The hypothesis of the study is that empathic engagement in a movie narrative would modulate the activation with the DMN. The clippings were individually rated for emotional expressions, context, and empathy self-response by the fMRI subjects post scanning and by 40 participants in an independent survey who rated at four time intervals in each clipping. The analysis illustrates the following: (a) the ICA method separated ICs with areas reported for empathy response and anterior/posterior DMNs. An IC indicating insula region activation reported to be crucial for the emotional empathy network was separated for S2 and S3 movies only, but not for S1, (b) the dFNC between DMN and ICs corresponding to cognitive empathy network showed higher positive periodical fluctuating correlations for all three movies, while ICs with areas crucial to motor or emotional empathy display lower positive or negative correlation values with no distinct periodicity. A possible explanation for the lower values and anticorrelation between the DMN and emotional empathy networks could possibly be inhibition due to internal self-reflections, attributed to DMN, while processing and preparing a response to external emotional content. The positive higher correlation values for cognitive empathy networks may reflect a functional overlap with DMN for enhanced internal self-reflections, inferring beliefs and intentions about the 'other', all triggered by the external stimuli. The findings are useful in the study of deviations in functional synergies of large complex networks associated with empathy responses and DMN in clinical applications like autism and schizophrenia.

  16. Global and System-Specific Resting-State fMRI Fluctuations Are Uncorrelated: Principal Component Analysis Reveals Anti-Correlated Networks

    PubMed Central

    Carbonell, Felix; Bellec, Pierre

    2011-01-01

    Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations. PMID:22444074

  17. Improved Diagnostic Accuracy of Alzheimer's Disease by Combining Regional Cortical Thickness and Default Mode Network Functional Connectivity: Validated in the Alzheimer's Disease Neuroimaging Initiative Set

    PubMed Central

    Park, Ji Eun; Park, Bumwoo; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun

    2017-01-01

    Objective To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Materials and Methods Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Results Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Conclusion Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease. PMID:29089831

  18. Shifted intrinsic connectivity of central executive and salience network in borderline personality disorder

    PubMed Central

    Doll, Anselm; Sorg, Christian; Manoliu, Andrei; Wöller, Andreas; Meng, Chun; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M.; Riedl, Valentin

    2013-01-01

    Borderline personality disorder (BPD) is characterized by “stable instability” of emotions and behavior and their regulation. This emotional and behavioral instability corresponds with a neurocognitive triple network model of psychopathology, which suggests that aberrant emotional saliency and cognitive control is associated with aberrant interaction across three intrinsic connectivity networks [i.e., the salience network (SN), default mode network (DMN), and central executive network (CEN)]. The objective of the current study was to investigate whether and how such triple network intrinsic functional connectivity (iFC) is changed in patients with BPD. We acquired resting-state functional magnetic resonance imaging (rs-fMRI) data from 14 patients with BPD and 16 healthy controls. High-model order independent component analysis was used to extract spatiotemporal patterns of ongoing, coherent blood-oxygen-level-dependent signal fluctuations from rs-fMRI data. Main outcome measures were iFC within networks (intra-iFC) and between networks (i.e., network time course correlation inter-iFC). Aberrant intra-iFC was found in patients’ DMN, SN, and CEN, consistent with previous findings. While patients’ inter-iFC of the CEN was decreased, inter-iFC of the SN was increased. In particular, a balance index reflecting the relationship of CEN- and SN-inter-iFC across networks was strongly shifted from CEN to SN connectivity in patients. Results provide first preliminary evidence for aberrant triple network iFC in BPD. Our data suggest a shift of inter-network iFC from networks involved in cognitive control to those of emotion-related activity in BPD, potentially reflecting the persistent instability of emotion regulation in patients. PMID:24198777

  19. Identification of GRB2 and GAB1 Coexpression as an Unfavorable Prognostic Factor for Hepatocellular Carcinoma by a Combination of Expression Profile and Network Analysis

    PubMed Central

    Yang, Mei; Wang, Danhua; Yu, Lingxiang; Guo, Chaonan; Guo, Xiaodong; Lin, Na

    2013-01-01

    Aim To screen novel markers for hepatocellular carcinoma (HCC) by a combination of expression profile, interaction network analysis and clinical validation. Methods HCC significant molecules which are differentially expressed or had genetic variations in HCC tissues were obtained from five existing HCC related databases (OncoDB.HCC, HCC.net, dbHCCvar, EHCO and Liverome). Then, the protein-protein interaction (PPI) network of these molecules was constructed. Three topological features of the network ('Degree', 'Betweenness', and 'Closeness') and the k-core algorithm were used to screen candidate HCC markers which play crucial roles in tumorigenesis of HCC. Furthermore, the clinical significance of two candidate HCC markers growth factor receptor-bound 2 (GRB2) and GRB2-associated-binding protein 1 (GAB1) was validated. Results In total, 6179 HCC significant genes and 977 HCC significant proteins were collected from existing HCC related databases. After network analysis, 331 candidate HCC markers were identified. Especially, GAB1 has the highest k-coreness suggesting its central localization in HCC related network, and the interaction between GRB2 and GAB1 has the largest edge-betweenness implying it may be biologically important to the function of HCC related network. As the results of clinical validation, the expression levels of both GRB2 and GAB1 proteins were significantly higher in HCC tissues than those in their adjacent nonneoplastic tissues. More importantly, the combined GRB2 and GAB1 protein expression was significantly associated with aggressive tumor progression and poor prognosis in patients with HCC. Conclusion This study provided an integrative analysis by combining expression profile and interaction network analysis to identify a list of biologically significant HCC related markers and pathways. Further experimental validation indicated that the aberrant expression of GRB2 and GAB1 proteins may be strongly related to tumor progression and prognosis in patients with HCC. The overexpression of GRB2 in combination with upregulation of GAB1 may be an unfavorable prognostic factor for HCC. PMID:24391994

  20. Remote sensing of an agricultural soil moisture network in Walnut Creek, Iowa

    USDA-ARS?s Scientific Manuscript database

    The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Usually soil moisture sensors are added to existing precipitation networks which have as a singular requiremen...

  1. Signal processing and neural network toolbox and its application to failure diagnosis and prognosis

    NASA Astrophysics Data System (ADS)

    Tu, Fang; Wen, Fang; Willett, Peter K.; Pattipati, Krishna R.; Jordan, Eric H.

    2001-07-01

    Many systems are comprised of components equipped with self-testing capability; however, if the system is complex involving feedback and the self-testing itself may occasionally be faulty, tracing faults to a single or multiple causes is difficult. Moreover, many sensors are incapable of reliable decision-making on their own. In such cases, a signal processing front-end that can match inference needs will be very helpful. The work is concerned with providing an object-oriented simulation environment for signal processing and neural network-based fault diagnosis and prognosis. In the toolbox, we implemented a wide range of spectral and statistical manipulation methods such as filters, harmonic analyzers, transient detectors, and multi-resolution decomposition to extract features for failure events from data collected by data sensors. Then we evaluated multiple learning paradigms for general classification, diagnosis and prognosis. The network models evaluated include Restricted Coulomb Energy (RCE) Neural Network, Learning Vector Quantization (LVQ), Decision Trees (C4.5), Fuzzy Adaptive Resonance Theory (FuzzyArtmap), Linear Discriminant Rule (LDR), Quadratic Discriminant Rule (QDR), Radial Basis Functions (RBF), Multiple Layer Perceptrons (MLP) and Single Layer Perceptrons (SLP). Validation techniques, such as N-fold cross-validation and bootstrap techniques, are employed for evaluating the robustness of network models. The trained networks are evaluated for their performance using test data on the basis of percent error rates obtained via cross-validation, time efficiency, generalization ability to unseen faults. Finally, the usage of neural networks for the prediction of residual life of turbine blades with thermal barrier coatings is described and the results are shown. The neural network toolbox has also been applied to fault diagnosis in mixed-signal circuits.

  2. Pedestrian Validation in Infrared Images by Means of Active Contours and Neural Networks

    DTIC Science & Technology

    2010-01-01

    Research Article Pedestrian Validation in Infrared Images byMeans of Active Contours and Neural Networks Massimo Bertozzi,1 Pietro Cerri,1 Mirko Felisa,1...Stefano Ghidoni,2 andMichael Del Rose3 1VisLab, Dipartimento di Ingegneria dell’Informazione, Università di Parma, 43124 Parma, Italy 2 IAS-Lab...Dipartimento di Ingegneria dell’Informazione, Università di Padova, 35131 Padova, Italy 3Vetronics Research Center, U. S. Army TARDEC, MI 48397, USA

  3. Matching Navy Recruiting Needs with Social Network Profiles Using Lexical Link Analysis. N1 FY10 Research Project

    DTIC Science & Technology

    2010-01-01

    recruiting needs and candidate profiles – Link the features in context of dynamic social network environments, learn from on-going market...universities, companies, etc.) • Friends list fandom (fan of) , • Endorsements (supporter of) • Navy Enlisted Rating descriptions – Hard Cards...the samples into a validation and a learning set Set aside . the validation set. Use the learning set to match the recruit ratings with the

  4. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale

    PubMed Central

    Monacis, Lucia; de Palo, Valeria; Griffiths, Mark D.; Sinatra, Maria

    2017-01-01

    Aim Research into social networking addiction has greatly increased over the last decade. However, the number of validated instruments assessing addiction to social networking sites (SNSs) remains few, and none have been validated in the Italian language. Consequently, this study tested the psychometric properties of the Italian version of the Bergen Social Media Addiction Scale (BSMAS), as well as providing empirical data concerning the relationship between attachment styles and SNS addiction. Methods A total of 769 participants were recruited to this study. Confirmatory factor analysis (CFA) and multigroup analyses were applied to assess construct validity of the Italian version of the BSMAS. Reliability analyses comprised the average variance extracted, the standard error of measurement, and the factor determinacy coefficient. Results Indices obtained from the CFA showed the Italian version of the BSMAS to have an excellent fit of the model to the data, thus confirming the single-factor structure of the instrument. Measurement invariance was established at configural, metric, and strict invariances across age groups, and at configural and metric levels across gender groups. Internal consistency was supported by several indicators. In addition, the theoretical associations between SNS addiction and attachment styles were generally supported. Conclusion This study provides evidence that the Italian version of the BSMAS is a psychometrically robust tool that can be used in future Italian research into social networking addiction. PMID:28494648

  5. Social networking addiction, attachment style, and validation of the Italian version of the Bergen Social Media Addiction Scale.

    PubMed

    Monacis, Lucia; de Palo, Valeria; Griffiths, Mark D; Sinatra, Maria

    2017-06-01

    Aim Research into social networking addiction has greatly increased over the last decade. However, the number of validated instruments assessing addiction to social networking sites (SNSs) remains few, and none have been validated in the Italian language. Consequently, this study tested the psychometric properties of the Italian version of the Bergen Social Media Addiction Scale (BSMAS), as well as providing empirical data concerning the relationship between attachment styles and SNS addiction. Methods A total of 769 participants were recruited to this study. Confirmatory factor analysis (CFA) and multigroup analyses were applied to assess construct validity of the Italian version of the BSMAS. Reliability analyses comprised the average variance extracted, the standard error of measurement, and the factor determinacy coefficient. Results Indices obtained from the CFA showed the Italian version of the BSMAS to have an excellent fit of the model to the data, thus confirming the single-factor structure of the instrument. Measurement invariance was established at configural, metric, and strict invariances across age groups, and at configural and metric levels across gender groups. Internal consistency was supported by several indicators. In addition, the theoretical associations between SNS addiction and attachment styles were generally supported. Conclusion This study provides evidence that the Italian version of the BSMAS is a psychometrically robust tool that can be used in future Italian research into social networking addiction.

  6. Altered Behavioral and Autonomic Pain Responses in Alzheimer’s Disease Are Associated with Dysfunctional Affective, Self-Reflective and Salience Network Resting-State Connectivity

    PubMed Central

    Beach, Paul A.; Huck, Jonathan T.; Zhu, David C.; Bozoki, Andrea C.

    2017-01-01

    While pain behaviors are increased in Alzheimer’s disease (AD) patients compared to healthy seniors (HS) across multiple disease stages, autonomic responses are reduced with advancing AD. To better understand the neural mechanisms underlying these phenomena, we undertook a controlled cross-sectional study examining behavioral (Pain Assessment in Advanced Dementia, PAINAD scores) and autonomic (heart rate, HR) pain responses in 24 HS and 20 AD subjects using acute pressure stimuli. Resting-state fMRI was utilized to investigate how group connectivity differences were related to altered pain responses. Pain behaviors (slope of PAINAD score change and mean PAINAD score) were increased in patients vs. controls. Autonomic measures (HR change intercept and mean HR change) were reduced in severe vs. mildly affected AD patients. Group functional connectivity differences associated with greater pain behavior reactivity in patients included: connectivity within a temporal limbic network (TLN) and between the TLN and ventromedial prefrontal cortex (vmPFC); between default mode network (DMN) subcomponents; between the DMN and ventral salience network (vSN). Reduced HR responses within the AD group were associated with connectivity changes within the DMN and vSN—specifically the precuneus and vmPFC. Discriminant classification indicated HR-related connectivity within the vSN to the vmPFC best distinguished AD severity. Thus, altered behavioral and autonomic pain responses in AD reflects dysfunction of networks and structures subserving affective, self-reflective, salience and autonomic regulation. PMID:28959201

  7. Electroactive semi-interpenetrating polymer networks architecture with tunable IR reflectivity

    NASA Astrophysics Data System (ADS)

    Chevrot, C.; Teyssié, D.; Verge, P.; Goujon, L.; Tran-Van, F.; Vidal, F.; Aubert, P. H.; Peralta, S.; Sauques, L.

    2011-04-01

    A promising alternative of multi-layered devices showing electrochromic properties results from the design of a self-supported semi-interpenetrating polymer network (semi-IPN) including an electronic conductive polymer (ECP) formed within. The formation of the ECP in the network has already been described by oxidative polymerization using iron trichloride as an oxidant and leading to conducting semi-IPN with mixed electronic and ionic conductivities as well as convenient mechanical properties. This presentation relates to the elaboration of such semi-IPN using polyethyleneoxide (PEO) network or a PEO/NBR (Nitrile Butadiene Rubber) IPN in which a linear poly (3,4-ethylenedioxythiophene) (PEDOT) is formed symmetrically and selectively as very thin layers very next to the two main faces of the film matrix. PEO/PEDOT semi-IPNs lead to interesting optical reflective properties in the IR between 0.8 and 25 μm. Reflectance contrasts up to 35 % is observed when, after swelling in an ionic liquid, a low voltage is applied between the two main faces of the film. However the low flexibility and brittleness of the film and a slow degradation in air at temperature up from 60°C prompted to replace the PEO matrix by a flexible PEO/NBR IPN one. Indeed, the combination of NBR and PEO in an IPN leads to materials possessing flexible properties, good ionic conductivity at 25°C as well as a better resistance to thermal ageing. Finally, NBR/PEO/PEDOT semi-IPNs allow observing comparable reflectance contrast in the IR range than those shown by PEO/PEDOT semi-IPNs.

  8. Frameworks for Understanding the Nature of Interactions, Networking, and Community in a Social Networking Site for Academic Practice

    ERIC Educational Resources Information Center

    Conole, Grainne; Galley, Rebecca; Culver, Juliette

    2011-01-01

    This paper describes a new social networking site, Cloudworks, which has been developed to enable discussion and sharing of learning and teaching ideas/designs and to promote reflective academic practice. The site aims to foster new forms of social and participatory practices (peer critiquing, sharing, user-generated content, aggregation, and…

  9. Analysis and Synthesis of Adaptive Neural Elements and Assembles

    DTIC Science & Technology

    1990-12-12

    that neuron-like elements and network architectures that reflect the cellular processes contributing to activity- dependent neuromodulation can simulate...conditioning. Therefore, we were interested in determining whether a small network containing elements with the activity-dependent neuromodulation learning...network that are capable of activity- dependent neuromodulation (i.e., associative enhancement of synaptic strength). The motor elements (MNA and MNB) were

  10. Simulation of a polarized laser beam reflected at the sea surface: modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric

    2015-05-01

    A 3-D simulation of the polarization-dependent reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation considers polarized or unpolarized laser sources and calculates the polarization states upon reflection at the sea surface. It is suitable for the radiance calculation of the scene in different spectral wavebands (e.g. near-infrared, SWIR, etc.) not including the camera degradations. The simulation also considers a bistatic configuration of laser source and receiver as well as different atmospheric conditions. In the SWIR, the detected total power of reflected laser light is compared with data collected in a field trial. Our computer simulation combines the 3-D simulation of a maritime scene (open sea/clear sky) with the simulation of polarized or unpolarized laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the input of a camera equipped with a linear polarizer, the polarized sea surface radiance must be calculated for the specific waveband. The s- and p-polarization states are calculated for the emitted sea surface radiance and the specularly reflected sky radiance to determine the total polarized sea surface radiance of each component. The states of polarization and the radiance of laser light specularly reflected at the wind-roughened sea surface are calculated by considering the s- and p- components of the electric field of laser light with respect to the specular plane of incidence. This is done by using the formalism of their coherence matrices according to E. Wolf [1]. Additionally, an analytical statistical sea surface BRDF (bidirectional reflectance distribution function) is considered for the reflection of laser light radiances. Validation of the simulation results is required to ensure model credibility and applicability to maritime laser applications. For validation purposes, field measurement data (images and meteorological data) was analyzed. An infrared laser, with or without a mounted polarizer, produced laser beam reflection at the water surface and images were recorded by a camera equipped with a polarizer with horizontal or vertical alignment. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam and different alignment for the laser polarizers (vertical/horizontal/without) and the camera (vertical/horizontal).

  11. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    PubMed Central

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-01-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development. PMID:28145494

  12. Middleware enabling computational self-reflection: exploring the need for and some costs of selfreflecting networks with application to homeland defense

    NASA Astrophysics Data System (ADS)

    Kramer, Michael J.; Bellman, Kirstie L.; Landauer, Christopher

    2002-07-01

    This paper will review and examine the definitions of Self-Reflection and Active Middleware. Then it will illustrate a conceptual framework for understanding and enumerating the costs of Self-Reflection and Active Middleware at increasing levels of Application. Then it will review some application of Self-Reflection and Active Middleware to simulations. Finally it will consider the application and additional kinds of costs applying Self-Reflection and Active Middleware to sharing information among the organizations expected to participate in Homeland Defense.

  13. A neural networks application for the study of the influence of transport conditions on the working performance

    NASA Astrophysics Data System (ADS)

    Anghel, D.-C.; Ene, A.; Ştirbu, C.; Sicoe, G.

    2017-10-01

    This paper presents a study about the factors that influence the working performances of workers in the automotive industry. These factors regard mainly the transportations conditions, taking into account the fact that a large number of workers live in places that are far away of the enterprise. The quantitative data obtained from this study will be generalized by using a neural network, software simulated. The neural network is able to estimate the performance of workers even for the combinations of input factors that had been not recorded by the study. The experimental data obtained from the study will be divided in two classes. The first class that contains approximately 80% of data will be used by the Java software for the training of the neural network. The weights resulted from the training process will be saved in a text file. The other class that contains the rest of the 20% of experimental data will be used to validate the neural network. The training and the validation of the networks are performed in a Java software (TrainAndValidate java class). We designed another java class, Test.java that will be used with new input data, for new situations. The experimental data collected from the study. The software that simulated the neural network. The software that estimates the working performance, when new situations are met. This application is useful for human resources department of an enterprise. The output results are not quantitative. They are qualitative (from low performance to high performance, divided in five classes).

  14. Statistically validated mobile communication networks: the evolution of motifs in European and Chinese data

    NASA Astrophysics Data System (ADS)

    Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2014-08-01

    Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.

  15. Spatial reasoning to determine stream network from LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Wang, S.; Elliott, D. B.

    1983-01-01

    In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints.

  16. The Correlation Fractal Dimension of Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Liu, Zhenzhen; Wang, Mogei

    2013-05-01

    The fractality of complex networks is studied by estimating the correlation dimensions of the networks. Comparing with the previous algorithms of estimating the box dimension, our algorithm achieves a significant reduction in time complexity. For four benchmark cases tested, that is, the Escherichia coli (E. Coli) metabolic network, the Homo sapiens protein interaction network (H. Sapiens PIN), the Saccharomyces cerevisiae protein interaction network (S. Cerevisiae PIN) and the World Wide Web (WWW), experiments are provided to demonstrate the validity of our algorithm.

  17. The Network Information Management System (NIMS) in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wales, K. J.

    1983-01-01

    In an effort to better manage enormous amounts of administrative, engineering, and management data that is distributed worldwide, a study was conducted which identified the need for a network support system. The Network Information Management System (NIMS) will provide the Deep Space Network with the tools to provide an easily accessible source of valid information to support management activities and provide a more cost-effective method of acquiring, maintaining, and retrieval data.

  18. Algebraic Approach for Recovering Topology in Distributed Camera Networks

    DTIC Science & Technology

    2009-01-14

    not valid for camera networks. Spatial sam- pling of plenoptic function [2] from a network of cameras is rarely i.i.d. (independent and identi- cally...coverage can be used to track and compare paths in a wireless camera network without any metric calibration information. In particular, these results can...edition edition, 2000. [14] A. Rahimi, B. Dunagan, and T. Darrell. Si- multaneous calibration and tracking with a network of non-overlapping sensors. In

  19. Rainfall Product Evaluation for the TRMM Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Amitai, E.; Wolff, D. B.; Robinson, M.; Silberstein, D. S.; Marks, D. A.; Kulie, M. S.; Fisher, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Evaluation of the Tropical Rainfall Measuring Mission (TRMM) satellite observations is conducted through a comprehensive Ground Validation (GV) Program. Standardized instantaneous and monthly rainfall products are routinely generated using quality-controlled ground based radar data from four primary GV sites. As part of the TRMM GV program, effort is being made to evaluate these GV products and to determine the uncertainties of the rainfall estimates. The evaluation effort is based on comparison to rain gauge data. The variance between the gauge measurement and the true averaged rain amount within the radar pixel is a limiting factor in the evaluation process. While monthly estimates are relatively simple to evaluate, the evaluation of the instantaneous products are much more of a challenge. Scattegrams of point comparisons between radar and rain gauges are extremely noisy for several reasons (e.g. sample volume discrepancies, timing and navigation mismatches, variability of Z(sub e)-R relationships), and therefore useless for evaluating the estimates. Several alternative methods, such as the analysis of the distribution of rain volume by rain rate as derived from gauge intensities and from reflectivities above the gauge network will be presented. Alternative procedures to increase the accuracy of the estimates and to reduce their uncertainties also will be discussed.

  20. 75 FR 60415 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... computer systems and networks. This information collection is required to obtain the necessary data... card reflecting those benefits and privileges, and to maintain a centralized database of the eligible... card reflecting those benefits and privileges, and to maintain a centralized database of the eligible...

  1. Teachers' Grade Assignment and the Predictive Validity of Criterion-Referenced Grades

    ERIC Educational Resources Information Center

    Thorsen, Cecilia; Cliffordson, Christina

    2012-01-01

    Research has found that grades are the most valid instruments for predicting educational success. Why grades have better predictive validity than, for example, standardized tests is not yet fully understood. One possible explanation is that grades reflect not only subject-specific knowledge and skills but also individual differences in other…

  2. Friendship Quality Scale: Conceptualization, Development and Validation

    ERIC Educational Resources Information Center

    Thien, Lei Mee; Razak, Nordin Abd; Jamil, Hazri

    2012-01-01

    The purpose of this study is twofold: (1) to initialize a new conceptualization of positive feature based Friendship Quality (FQUA) scale on the basis of four dimensions: Closeness, Help, Acceptance, and Safety; and (2) to develop and validate FQUA scale in the form of reflective measurement model. The scale development and validation procedures…

  3. [Research on hyperspectral remote sensing in monitoring snow contamination concentration].

    PubMed

    Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan

    2011-05-01

    Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.

  4. High quality garbage: A neural network plastic sorter in hardware and software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanton, S.L.; Alam, M.K.; Hebner, G.A.

    1993-09-01

    In order to produce pure polymer streams from post-consumer waste plastics, a quick, accurate and relatively inexpensive method of sorting needs to be implemented. This technology has been demonstrated by using near-infrared spectroscopy reflectance data and neural network classification techniques. Backpropagation neural network routines have been developed to run real-time sortings in the lab, using a laboratory-grade spectrometer. In addition, a new reflectance spectrometer has been developed which is fast enough for commercial use. Initial training and test sets taken with the laboratory instrument show that a network is capable of learning 100% when classifying 5 groups of plastic (HDPEmore » and LDPE combined), and up to 100% when classifying 6 groups. Initial data sets from the new instrument have classified plastics into all seven groups with varying degrees of success. One of the initial networks has been implemented in hardware, for high speed computations, and thus rapid classification. Two neural accelerator systems have been evaluated, one based on the Intel 8017ONX chip, and another on the AT&T ANNA chip.« less

  5. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent LER Calculations

    NASA Astrophysics Data System (ADS)

    Fasnacht, Z.; Qin, W.; Haffner, D. P.; Loyola, D. G.; Joiner, J.; Krotkov, N. A.; Vasilkov, A. P.; Spurr, R. J. D.

    2017-12-01

    In order to estimate surface reflectance used in trace gas retrieval algorithms, radiative transfer models (RTM) such as the Vector Linearized Discrete Ordinate Radiative Transfer Model (VLIDORT) can be used to simulate the top of the atmosphere (TOA) radiances with advanced models of surface properties. With large volumes of satellite data, these model simulations can become computationally expensive. Look up table interpolation can improve the computational cost of the calculations, but the non-linear nature of the radiances requires a dense node structure if interpolation errors are to be minimized. In order to reduce our computational effort and improve the performance of look-up tables, neural networks can be trained to predict these radiances. We investigate the impact of using look-up table interpolation versus a neural network trained using the smart sampling technique, and show that neural networks can speed up calculations and reduce errors while using significantly less memory and RTM calls. In future work we will implement a neural network in operational processing to meet growing demands for reflectance modeling in support of high spatial resolution satellite missions.

  6. Theoretical reflections on governance in health regions.

    PubMed

    Bretas, Nilo; Shimizu, Helena Eri

    2017-04-01

    This article analyzes governance in health regions, through the contributions of two studies: one on a governance model and the other on duties in the management of public policies networks. The former conducted a meta-analysis of 137 case studies in the literature on collaborative governance aimed at preparing an explanatory and analytical model. Authors identified critical variables that will influence the results: a previous history of conflict or cooperation, incentives for participation, power imbalances, leadership and institutional design. They also identified key factors: face-to-face dialogue, trust building and development of commitment and shared vision. The latter study examined networks of public policies in the analytic tradition and the perspective of governance, incorporating concepts from the field of political science, economics and interorganizational relations, in order to support the management of public policies networks. The study identified network management as equivalent to a strategic game involving functions: network activation, framework of relations, intermediation, facilitation and consensus building and mediation and arbitration. The combination of the two reflections provides a conceptual reference for better understanding of governance in health regions.

  7. Reliability and Validity of the Japanese Version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ)

    PubMed Central

    Nakano, Hideki; Kodama, Takayuki; Ukai, Kazumasa; Kawahara, Satoru; Horikawa, Shiori; Murata, Shin

    2018-01-01

    In this study, we aimed to (1) translate the English version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ), which assesses motor imagery ability, into Japanese, and (2) investigate the reliability and validity of the Japanese KVIQ. We enrolled 28 healthy adults in this study. We used Cronbach’s alpha coefficients to assess reliability reflected by the internal consistency. Additionally, we assessed validity reflected by the criterion-related validity between the Japanese KVIQ and the Japanese version of the Movement Imagery Questionnaire-Revised (MIQ-R) with Spearman’s rank correlation coefficients. The Cronbach’s alpha coefficients for the KVIQ-20 were 0.88 (Visual) and 0.91 (Kinesthetic), which indicates high reliability. There was a significant positive correlation between the Japanese KVIQ-20 (Total) and the Japanese MIQ-R (Total) (r = 0.86, p < 0.01). Our results suggest that the Japanese KVIQ is an assessment that is a reliable and valid index of motor imagery ability. PMID:29724042

  8. Reliability and Validity of the Japanese Version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ).

    PubMed

    Nakano, Hideki; Kodama, Takayuki; Ukai, Kazumasa; Kawahara, Satoru; Horikawa, Shiori; Murata, Shin

    2018-05-02

    In this study, we aimed to (1) translate the English version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ), which assesses motor imagery ability, into Japanese, and (2) investigate the reliability and validity of the Japanese KVIQ. We enrolled 28 healthy adults in this study. We used Cronbach’s alpha coefficients to assess reliability reflected by the internal consistency. Additionally, we assessed validity reflected by the criterion-related validity between the Japanese KVIQ and the Japanese version of the Movement Imagery Questionnaire-Revised (MIQ-R) with Spearman’s rank correlation coefficients. The Cronbach’s alpha coefficients for the KVIQ-20 were 0.88 (Visual) and 0.91 (Kinesthetic), which indicates high reliability. There was a significant positive correlation between the Japanese KVIQ-20 (Total) and the Japanese MIQ-R (Total) (r = 0.86, p < 0.01). Our results suggest that the Japanese KVIQ is an assessment that is a reliable and valid index of motor imagery ability.

  9. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres.

    PubMed

    Ince, Robin A A; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J; Rousselet, Guillaume A; Schyns, Philippe G

    2016-08-22

    A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. © The Author 2016. Published by Oxford University Press.

  10. Reflective Learning in a Chinese MBA Programme: Scale Assessment and Future Recommendations

    ERIC Educational Resources Information Center

    Xiao, Qian; Zhu, Pinghui; Hsu, Maxwell K.; Zhuang, Weiling; Peltier, James

    2016-01-01

    The purpose of this study was twofold: (1) to use Chinese MBA students to validate the expanded reflective learning continuum and address the concerns raised in this regard in business education; (2) to determine whether the continuum concept holds true in a non-western culture and whether the reflective learning continuum remains a powerful force…

  11. Assessing Reflective Thinking in Solving Design Problems: The Development of a Questionnaire

    ERIC Educational Resources Information Center

    Hong, Yi-Chun; Choi, Ikseon

    2015-01-01

    Reflection is a critical factor in solving design problems. Using good methods to observe designers' reflection is essential to inform the design of the learning environments that support the development of design problem-solving skills. In this study, we have developed and validated a novel self-reporting questionnaire as an efficient instrument…

  12. Why the Item "23 + 1" Is Not in a Depression Questionnaire: Validity from a Network Perspective

    ERIC Educational Resources Information Center

    Cramer, Angelique O. J.

    2012-01-01

    What is validity? A simple question but apparently one with many answers, as Paul Newton highlights in his review of the history of validity. The current definition of validity, as entertained in the 1999 "Standards for Educational and Psychological Testing" is indeed a consensus, one between the classical notion of attributes, and measures…

  13. Re-emergence of modular brain networks in stroke recovery.

    PubMed

    Siegel, Joshua S; Seitzman, Benjamin A; Ramsey, Lenny E; Ortega, Mario; Gordon, Evan M; Dosenbach, Nico U F; Petersen, Steven E; Shulman, Gordon L; Corbetta, Maurizio

    2018-04-01

    Studies of stroke have identified local reorganization in perilesional tissue. However, because the brain is highly networked, strokes also broadly alter the brain's global network organization. Here, we assess brain network structure longitudinally in adult stroke patients using resting state fMRI. The topology and boundaries of cortical regions remain grossly unchanged across recovery. In contrast, the modularity of brain systems i.e. the degree of integration within and segregation between networks, was significantly reduced sub-acutely (n = 107), but partially recovered by 3 months (n = 85), and 1 year (n = 67). Importantly, network recovery correlated with recovery from language, spatial memory, and attention deficits, but not motor or visual deficits. Finally, in-depth single subject analyses were conducted using tools for visualization of changes in brain networks over time. This exploration indicated that changes in modularity during successful recovery reflect specific alterations in the relationships between different networks. For example, in a patient with left temporo-parietal stroke and severe aphasia, sub-acute loss of modularity reflected loss of association between frontal and temporo-parietal regions bi-hemispherically across multiple modules. These long-distance connections then returned over time, paralleling aphasia recovery. This work establishes the potential importance of normalization of large-scale modular brain systems in stroke recovery. Copyright © 2017. Published by Elsevier Ltd.

  14. Validation of the Mindful Coping Scale

    ERIC Educational Resources Information Center

    Tharaldsen, Kjersti B.; Bru, Edvin

    2011-01-01

    The aim of this research is to develop and validate a self-report measure of mindfulness and coping, the mindful coping scale (MCS). Dimensions of mindful coping were theoretically deduced from mindfulness theory and coping theory. The MCS was empirically evaluated by use of factor analyses, reliability testing and nomological network validation.…

  15. PROFILES Networks: Three International Examples

    ERIC Educational Resources Information Center

    Rauch, F.; Dulle, M.; Namsone, D.; Gorghiu, G.

    2014-01-01

    This paper explores the effectiveness of networking in promoting inquiry-based science education (IBSE) through raising the self-efficacy of science teachers to take ownership of more effective ways of teaching students, supported by stakeholders (Holbrook & Rannikmae, 2010). As PROFILES project (Professional Reflection Oriented Focus on…

  16. Adjustable Optical-Fiber Attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F.

    1994-01-01

    Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.

  17. Graph distance for complex networks

    NASA Astrophysics Data System (ADS)

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-10-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.

  18. Multiple Score Comparison: a network meta-analysis approach to comparison and external validation of prognostic scores.

    PubMed

    Haile, Sarah R; Guerra, Beniamino; Soriano, Joan B; Puhan, Milo A

    2017-12-21

    Prediction models and prognostic scores have been increasingly popular in both clinical practice and clinical research settings, for example to aid in risk-based decision making or control for confounding. In many medical fields, a large number of prognostic scores are available, but practitioners may find it difficult to choose between them due to lack of external validation as well as lack of comparisons between them. Borrowing methodology from network meta-analysis, we describe an approach to Multiple Score Comparison meta-analysis (MSC) which permits concurrent external validation and comparisons of prognostic scores using individual patient data (IPD) arising from a large-scale international collaboration. We describe the challenges in adapting network meta-analysis to the MSC setting, for instance the need to explicitly include correlations between the scores on a cohort level, and how to deal with many multi-score studies. We propose first using IPD to make cohort-level aggregate discrimination or calibration scores, comparing all to a common comparator. Then, standard network meta-analysis techniques can be applied, taking care to consider correlation structures in cohorts with multiple scores. Transitivity, consistency and heterogeneity are also examined. We provide a clinical application, comparing prognostic scores for 3-year mortality in patients with chronic obstructive pulmonary disease using data from a large-scale collaborative initiative. We focus on the discriminative properties of the prognostic scores. Our results show clear differences in performance, with ADO and eBODE showing higher discrimination with respect to mortality than other considered scores. The assumptions of transitivity and local and global consistency were not violated. Heterogeneity was small. We applied a network meta-analytic methodology to externally validate and concurrently compare the prognostic properties of clinical scores. Our large-scale external validation indicates that the scores with the best discriminative properties to predict 3 year mortality in patients with COPD are ADO and eBODE.

  19. Qualitative validation of the reduction from two reciprocally coupled neurons to one self-coupled neuron in a respiratory network model.

    PubMed

    Dunmyre, Justin R

    2011-06-01

    The pre-Bötzinger complex of the mammalian brainstem is a heterogeneous neuronal network, and individual neurons within the network have varying strengths of the persistent sodium and calcium-activated nonspecific cationic currents. Individually, these currents have been the focus of modeling efforts. Previously, Dunmyre et al. (J Comput Neurosci 1-24, 2011) proposed a model and studied the interactions of these currents within one self-coupled neuron. In this work, I consider two identical, reciprocally coupled model neurons and validate the reduction to the self-coupled case. I find that all of the dynamics of the two model neuron network and the regions of parameter space where these distinct dynamics are found are qualitatively preserved in the reduction to the self-coupled case.

  20. The genomic applications in practice and prevention network.

    PubMed

    Khoury, Muin J; Feero, W Gregory; Reyes, Michele; Citrin, Toby; Freedman, Andrew; Leonard, Debra; Burke, Wylie; Coates, Ralph; Croyle, Robert T; Edwards, Karen; Kardia, Sharon; McBride, Colleen; Manolio, Teri; Randhawa, Gurvaneet; Rasooly, Rebekah; St Pierre, Jeannette; Terry, Sharon

    2009-07-01

    The authors describe the rationale and initial development of a new collaborative initiative, the Genomic Applications in Practice and Prevention Network. The network convened by the Centers for Disease Control and Prevention and the National Institutes of Health includes multiple stakeholders from academia, government, health care, public health, industry and consumers. The premise of Genomic Applications in Practice and Prevention Network is that there is an unaddressed chasm between gene discoveries and demonstration of their clinical validity and utility. This chasm is due to the lack of readily accessible information about the utility of most genomic applications and the lack of necessary knowledge by consumers and providers to implement what is known. The mission of Genomic Applications in Practice and Prevention Network is to accelerate and streamline the effective integration of validated genomic knowledge into the practice of medicine and public health, by empowering and sponsoring research, evaluating research findings, and disseminating high quality information on candidate genomic applications in practice and prevention. Genomic Applications in Practice and Prevention Network will develop a process that links ongoing collection of information on candidate genomic applications to four crucial domains: (1) knowledge synthesis and dissemination for new and existing technologies, and the identification of knowledge gaps, (2) a robust evidence-based recommendation development process, (3) translation research to evaluate validity, utility and impact in the real world and how to disseminate and implement recommended genomic applications, and (4) programs to enhance practice, education, and surveillance.

  1. Application of Multivariable Analysis and FTIR-ATR Spectroscopy to the Prediction of Properties in Campeche Honey

    PubMed Central

    Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.

    2016-01-01

    Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445

  2. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  3. Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Larson, Richard R.

    2009-01-01

    F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.

  4. A validated model for the 22-item Sino-Nasal Outcome Test subdomain structure in chronic rhinosinusitis.

    PubMed

    Feng, Allen L; Wesely, Nicholas C; Hoehle, Lloyd P; Phillips, Katie M; Yamasaki, Alisa; Campbell, Adam P; Gregorio, Luciano L; Killeen, Thomas E; Caradonna, David S; Meier, Josh C; Gray, Stacey T; Sedaghat, Ahmad R

    2017-12-01

    Previous studies have identified subdomains of the 22-item Sino-Nasal Outcome Test (SNOT-22), reflecting distinct and largely independent categories of chronic rhinosinusitis (CRS) symptoms. However, no study has validated the subdomain structure of the SNOT-22. This study aims to validate the existence of underlying symptom subdomains of the SNOT-22 using confirmatory factor analysis (CFA) and to develop a subdomain model that practitioners and researchers can use to describe CRS symptomatology. A total of 800 patients with CRS were included into this cross-sectional study (400 CRS patients from Boston, MA, and 400 CRS patients from Reno, NV). Their SNOT-22 responses were analyzed using exploratory factor analysis (EFA) to determine the number of symptom subdomains. A CFA was performed to develop a validated measurement model for the underlying SNOT-22 subdomains along with various tests of validity and goodness of fit. EFA demonstrated 4 distinct factors reflecting: sleep, nasal, otologic/facial pain, and emotional symptoms (Cronbach's alpha, >0.7; Bartlett's test of sphericity, p < 0.001; Kaiser-Meyer-Olkin >0.90), independent of geographic locale. The corresponding CFA measurement model demonstrated excellent measures of fit (root mean square error of approximation, <0.06; standardized root mean square residual, <0.08; comparative fit index, >0.95; Tucker-Lewis index, >0.95) and measures of construct validity (heterotrait-monotrait [HTMT] ratio, <0.85; composite reliability, >0.7), again independent of geographic locale. The use of the 4-subdomain structure for SNOT-22 (reflecting sleep, nasal, otologic/facial pain, and emotional symptoms of CRS) was validated as the most appropriate to calculate SNOT-22 subdomain scores for patients from different geographic regions using CFA. © 2017 ARS-AAOA, LLC.

  5. Fault identification and localization for Ethernet Passive Optical Network using L-band ASE source and various types of fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi

    2018-01-01

    This paper presents a centralized and fault localization technique for Ethernet Passive Optical Access Network. This technique employs L-band Amplified Spontaneous Emission (ASE) as the monitoring source and various fiber Bragg Gratings (FBGs) as the fiber's identifier. An FBG with a unique combination of Bragg wavelength, reflectivity and bandwidth is inserted at each distribution fiber. The FBG reflection spectrum will be analyzed using an optical spectrum analyzer (OSA) to monitor the condition of the distribution fiber. Various FBGs reflection spectra is employed to optimize the limited bandwidth of monitoring source, thus allows more fibers to be monitored. Basically, one Bragg wavelength is shared by two distinct FBGs with different reflectivity and bandwidth. The experimental result shows that the system is capable to monitor up to 32 customers with OSNR value of ∼1.2 dB and monitoring power received of -24 dBm. This centralized and simple monitoring technique demonstrates a low power, cost efficient and low bandwidth requirement system.

  6. Using L-M BP Algorithm Forecase the 305 Days Production of First-Breed Dairy

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoli; Qi, Guoqiang; Shen, Weizheng; Jian, Sun

    Aiming at the shortage of conventional BP algorithm, a BP neural net works improved by L-M algorithm is put forward. On the basis of the network, a Prediction model for 305 day's milk productions was set up. Traditional methods finish these data must spend at least 305 days, But this model can forecast first-breed dairy's 305 days milk production ahead of 215 days. The validity of the improved BP neural network predictive model was validated through the experiments.

  7. Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region.

    PubMed

    Wei, Xiangqin; Gu, Xingfa; Meng, Qingyan; Yu, Tao; Zhou, Xiang; Wei, Zheng; Jia, Kun; Wang, Chunmei

    2017-07-08

    Leaf area index (LAI) is an important vegetation parameter that characterizes leaf density and canopy structure, and plays an important role in global change study, land surface process simulation and agriculture monitoring. The wide field view (WFV) sensor on board the Chinese GF-1 satellite can acquire multi-spectral data with decametric spatial resolution, high temporal resolution and wide coverage, which are valuable data sources for dynamic monitoring of LAI. Therefore, an automatic LAI estimation algorithm for GF-1 WFV data was developed based on the radiative transfer model and LAI estimation accuracy of the developed algorithm was assessed in an agriculture region with maize as the dominated crop type. The radiative transfer model was firstly used to simulate the physical relationship between canopy reflectance and LAI under different soil and vegetation conditions, and then the training sample dataset was formed. Then, neural networks (NNs) were used to develop the LAI estimation algorithm using the training sample dataset. Green, red and near-infrared band reflectances of GF-1 WFV data were used as the input variables of the NNs, as well as the corresponding LAI was the output variable. The validation results using field LAI measurements in the agriculture region indicated that the LAI estimation algorithm could achieve satisfactory results (such as R² = 0.818, RMSE = 0.50). In addition, the developed LAI estimation algorithm had potential to operationally generate LAI datasets using GF-1 WFV land surface reflectance data, which could provide high spatial and temporal resolution LAI data for agriculture, ecosystem and environmental management researches.

  8. Space and energy. [space systems for energy generation, distribution and control

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  9. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction: COMMUNITY DATA-DRIVEN METABOLIC NETWORK MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela

    Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the networkmore » reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.« less

  10. Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans

    PubMed Central

    Acerbi, Enzo; Viganò, Elena; Poidinger, Michael; Mortellaro, Alessandra; Zelante, Teresa; Stella, Fabio

    2016-01-01

    T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4+ naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments. PMID:26976045

  11. A neural network application to classification of health status of HIV/AIDS patients.

    PubMed

    Kwak, N K; Lee, C

    1997-04-01

    This paper presents an application of neural networks to classify and to predict the health status of HIV/AIDS patients. A neural network model in classifying both the well and not-well health status of HIV/AIDS patients is developed and evaluated in terms of validity and reliability of the test. Several different neural network topologies are applied to AIDS Cost and Utilization Survey (ACSUS) datasets in order to demonstrate the neural network's capability.

  12. Link and Network Layers Design for Ultra-High-Speed Terahertz-Band Communications Networks

    DTIC Science & Technology

    2017-01-01

    throughput, and identify the optimal parameter values for their design (Sec. 6.2.3). Moreover, we validate and test the scheme with experimental data obtained...LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH- SPEED TERAHERTZ-BAND COMMUNICATIONS NETWORKS STATE UNIVERSITY OF NEW YORK (SUNY) AT BUFFALO JANUARY...TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) FEB 2015 – SEP 2016 4. TITLE AND SUBTITLE LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH

  13. Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness.

    PubMed

    Truyers, Carla; Lesaffre, Emmanuel; Bartholomeeusen, Stefaan; Aertgeerts, Bert; Snacken, René; Brochier, Bernard; Yane, Fernande; Buntinx, Frank

    2010-03-22

    Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the H1N1 flu can easily spread from one region to another. In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks.

  14. Developing a Characterisation of Citizenship Education: Issues Arising from Work Undertaken in a Higher Education Network

    ERIC Educational Resources Information Center

    Davies, Ian; Arthur, James; Harrison, Tom; Watson, Helen

    2008-01-01

    In order to understand better the way in which the emerging field of citizenship education is being characterised we reflect on work emerging from a higher education network (citizED) for citizenship education. Three of the four authors of this article are closely involved in that network. CitizED was established with funding from the Teacher…

  15. Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing.

    PubMed

    Tu, Tao; Schneck, Noam; Muraskin, Jordan; Sajda, Paul

    2017-12-13

    Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electroencephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain-network interactions combined with improved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems (MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject's choice for a face versus nonface categorization task. Our simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of saliency and expectations likely encoded in frontal "late" regions on perceptual processes occurring in "early" perceptual regions. SIGNIFICANCE STATEMENT Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious-e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of spatiotemporal networks yield insight into the mechanisms of how we form decisions. Copyright © 2017 the authors 0270-6474/17/3712226-12$15.00/0.

  16. Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing

    PubMed Central

    Schneck, Noam

    2017-01-01

    Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electroencephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain–network interactions combined with improved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems (MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject's choice for a face versus nonface categorization task. Our simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of saliency and expectations likely encoded in frontal “late” regions on perceptual processes occurring in “early” perceptual regions. SIGNIFICANCE STATEMENT Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious—e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of spatiotemporal networks yield insight into the mechanisms of how we form decisions. PMID:29118108

  17. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  18. IN-STREAM AND WATERSHED PREDICTORS OF GENETIC DIVERSITY, EFFECTIVE POPULATION SIZE AND IMMIGRATION ACROSS RIVER-STREAM NETWORKS

    EPA Science Inventory

    The influence of spatial processes on population dynamics within river-stream networks is poorly understood. Utilizing spatially explicit analyses of temporal genetic variance, we examined whether persistence of Central Stonerollers (Campostoma anomalum) reflects differences in h...

  19. Credit Default Swaps networks and systemic risk

    PubMed Central

    Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano

    2014-01-01

    Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities. PMID:25366654

  20. Credit Default Swaps networks and systemic risk.

    PubMed

    Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano

    2014-11-04

    Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.

  1. Credit Default Swaps networks and systemic risk

    NASA Astrophysics Data System (ADS)

    Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano

    2014-11-01

    Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.

  2. NC truck network model development research.

    DOT National Transportation Integrated Search

    2008-09-01

    This research develops a validated prototype truck traffic network model for North Carolina. The model : includes all counties and metropolitan areas of North Carolina and major economic areas throughout the : U.S. Geographic boundaries, population a...

  3. Variability in personality expression across contexts: a social network approach.

    PubMed

    Clifton, Allan

    2014-04-01

    The current research investigated how the contextual expression of personality differs across interpersonal relationships. Two related studies were conducted with college samples (Study 1: N = 52, 38 female; Study 2: N = 111, 72 female). Participants in each study completed a five-factor measure of personality and constructed a social network detailing their 30 most important relationships. Participants used a brief Five-Factor Model scale to rate their personality as they experience it when with each person in their social network. Multiple informants selected from each social network then rated the target participant's personality (Study 1: N = 227, Study 2: N = 777). Contextual personality ratings demonstrated incremental validity beyond standard global self-report in predicting specific informants' perceptions. Variability in these contextualized personality ratings was predicted by the position of the other individuals within the social network. Across both studies, participants reported being more extraverted and neurotic, and less conscientious, with more central members of their social networks. Dyadic social network-based assessments of personality provide incremental validity in understanding personality, revealing dynamic patterns of personality variability unobservable with standard assessment techniques. © 2013 Wiley Periodicals, Inc.

  4. Intelligent QoS routing algorithm based on improved AODV protocol for Ad Hoc networks

    NASA Astrophysics Data System (ADS)

    Huibin, Liu; Jun, Zhang

    2016-04-01

    Mobile Ad Hoc Networks were playing an increasingly important part in disaster reliefs, military battlefields and scientific explorations. However, networks routing difficulties are more and more outstanding due to inherent structures. This paper proposed an improved cuckoo searching-based Ad hoc On-Demand Distance Vector Routing protocol (CSAODV). It elaborately designs the calculation methods of optimal routing algorithm used by protocol and transmission mechanism of communication-package. In calculation of optimal routing algorithm by CS Algorithm, by increasing QoS constraint, the found optimal routing algorithm can conform to the requirements of specified bandwidth and time delay, and a certain balance can be obtained among computation spending, bandwidth and time delay. Take advantage of NS2 simulation software to take performance test on protocol in three circumstances and validate the feasibility and validity of CSAODV protocol. In results, CSAODV routing protocol is more adapt to the change of network topological structure than AODV protocol, which improves package delivery fraction of protocol effectively, reduce the transmission time delay of network, reduce the extra burden to network brought by controlling information, and improve the routing efficiency of network.

  5. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    NASA Astrophysics Data System (ADS)

    Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang

    2018-01-01

    Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  6. Basketball Teams as Strategic Networks

    PubMed Central

    Fewell, Jennifer H.; Armbruster, Dieter; Ingraham, John; Petersen, Alexander; Waters, James S.

    2012-01-01

    We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as “uphill/downhill” flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness. PMID:23139744

  7. Basketball teams as strategic networks.

    PubMed

    Fewell, Jennifer H; Armbruster, Dieter; Ingraham, John; Petersen, Alexander; Waters, James S

    2012-01-01

    We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as "uphill/downhill" flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.

  8. Validating the Use of Deep Learning Neural Networks for Correction of Large Hydrometric Datasets

    NASA Astrophysics Data System (ADS)

    Frazier, N.; Ogden, F. L.; Regina, J. A.; Cheng, Y.

    2017-12-01

    Collection and validation of Earth systems data can be time consuming and labor intensive. In particular, high resolution hydrometric data, including rainfall and streamflow measurements, are difficult to obtain due to a multitude of complicating factors. Measurement equipment is subject to clogs, environmental disturbances, and sensor drift. Manual intervention is typically required to identify, correct, and validate these data. Weirs can become clogged and the pressure transducer may float or drift over time. We typically employ a graphical tool called Time Series Editor to manually remove clogs and sensor drift from the data. However, this process is highly subjective and requires hydrological expertise. Two different people may produce two different data sets. To use this data for scientific discovery and model validation, a more consistent method is needed to processes this field data. Deep learning neural networks have proved to be excellent mechanisms for recognizing patterns in data. We explore the use of Recurrent Neural Networks (RNN) to capture the patterns in the data over time using various gating mechanisms (LSTM and GRU), network architectures, and hyper-parameters to build an automated data correction model. We also explore the required amount of manually corrected training data required to train the network for reasonable accuracy. The benefits of this approach are that the time to process a data set is significantly reduced, and the results are 100% reproducible after training is complete. Additionally, we train the RNN and calibrate a physically-based hydrological model against the same portion of data. Both the RNN and the model are applied to the remaining data using a split-sample methodology. Performance of the machine learning is evaluated for plausibility by comparing with the output of the hydrological model, and this analysis identifies potential periods where additional investigation is warranted.

  9. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set.

    PubMed

    Lenselink, Eelke B; Ten Dijke, Niels; Bongers, Brandon; Papadatos, George; van Vlijmen, Herman W T; Kowalczyk, Wojtek; IJzerman, Adriaan P; van Westen, Gerard J P

    2017-08-14

    The increase of publicly available bioactivity data in recent years has fueled and catalyzed research in chemogenomics, data mining, and modeling approaches. As a direct result, over the past few years a multitude of different methods have been reported and evaluated, such as target fishing, nearest neighbor similarity-based methods, and Quantitative Structure Activity Relationship (QSAR)-based protocols. However, such studies are typically conducted on different datasets, using different validation strategies, and different metrics. In this study, different methods were compared using one single standardized dataset obtained from ChEMBL, which is made available to the public, using standardized metrics (BEDROC and Matthews Correlation Coefficient). Specifically, the performance of Naïve Bayes, Random Forests, Support Vector Machines, Logistic Regression, and Deep Neural Networks was assessed using QSAR and proteochemometric (PCM) methods. All methods were validated using both a random split validation and a temporal validation, with the latter being a more realistic benchmark of expected prospective execution. Deep Neural Networks are the top performing classifiers, highlighting the added value of Deep Neural Networks over other more conventional methods. Moreover, the best method ('DNN_PCM') performed significantly better at almost one standard deviation higher than the mean performance. Furthermore, Multi-task and PCM implementations were shown to improve performance over single task Deep Neural Networks. Conversely, target prediction performed almost two standard deviations under the mean performance. Random Forests, Support Vector Machines, and Logistic Regression performed around mean performance. Finally, using an ensemble of DNNs, alongside additional tuning, enhanced the relative performance by another 27% (compared with unoptimized 'DNN_PCM'). Here, a standardized set to test and evaluate different machine learning algorithms in the context of multi-task learning is offered by providing the data and the protocols. Graphical Abstract .

  10. EO-1 Hyperion reflectance time series at calibration and validation sites: stability and sensitivity to seasonal dynamics

    Treesearch

    Petya K. Entcheva Campbell; Elizabeth M. Middleton; Kurt J. Thome; Raymond F. Kokaly; Karl Fred Huemmrich; David Lagomasino; Kimberly A. Novick; Nathaniel A. Brunsell

    2013-01-01

    This study evaluated Earth Observing 1 (EO-1) Hyperion reflectance time series at established calibration sites to assess the instrument stability and suitability for monitoring vegetation functional parameters. Our analysis using three pseudo-invariant calibration sites in North America indicated that the reflectance time series are devoid of apparent spectral trends...

  11. Semantic networks based on titles of scientific papers

    NASA Astrophysics Data System (ADS)

    Pereira, H. B. B.; Fadigas, I. S.; Senna, V.; Moret, M. A.

    2011-03-01

    In this paper we study the topological structure of semantic networks based on titles of papers published in scientific journals. It discusses its properties and presents some reflections on how the use of social and complex network models can contribute to the diffusion of knowledge. The proposed method presented here is applied to scientific journals where the titles of papers are in English or in Portuguese. We show that the topology of studied semantic networks are small-world and scale-free.

  12. Three-dimensional fusion of spaceborne and ground radar reflectivity data using a neural network-based approach

    NASA Astrophysics Data System (ADS)

    Kou, Leilei; Wang, Zhuihui; Xu, Fen

    2018-03-01

    The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method; interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.

  13. Bearing performance degradation assessment based on time-frequency code features and SOM network

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei

    2017-04-01

    Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.

  14. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Eppenhof, Koen A. J.; Pluim, Josien P. W.

    2017-02-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.

  15. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer.

    PubMed

    Wu, Hao; Wu, Runliu; Chen, Miao; Li, Daojiang; Dai, Jing; Zhang, Yi; Gao, Kai; Yu, Jun; Hu, Gui; Guo, Yihang; Lin, Changwei; Li, Xiaorong

    2017-03-28

    Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.

  16. Mechanisms of complex network growth: Synthesis of the preferential attachment and fitness models

    NASA Astrophysics Data System (ADS)

    Golosovsky, Michael

    2018-06-01

    We analyze growth mechanisms of complex networks and focus on their validation by measurements. To this end we consider the equation Δ K =A (t ) (K +K0) Δ t , where K is the node's degree, Δ K is its increment, A (t ) is the aging constant, and K0 is the initial attractivity. This equation has been commonly used to validate the preferential attachment mechanism. We show that this equation is undiscriminating and holds for the fitness model [Caldarelli et al., Phys. Rev. Lett. 89, 258702 (2002), 10.1103/PhysRevLett.89.258702] as well. In other words, accepted method of the validation of the microscopic mechanism of network growth does not discriminate between "rich-gets-richer" and "good-gets-richer" scenarios. This means that the growth mechanism of many natural complex networks can be based on the fitness model rather than on the preferential attachment, as it was believed so far. The fitness model yields the long-sought explanation for the initial attractivity K0, an elusive parameter which was left unexplained within the framework of the preferential attachment model. We show that the initial attractivity is determined by the width of the fitness distribution. We also present the network growth model based on recursive search with memory and show that this model contains both the preferential attachment and the fitness models as extreme cases.

  17. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  18. Macromolecular networks and intelligence in microorganisms

    PubMed Central

    Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  19. Increased entropy of signal transduction in the cancer metastasis phenotype.

    PubMed

    Teschendorff, Andrew E; Severini, Simone

    2010-07-30

    The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may predispose the tumour to metastasize. These results demonstrate that a metastatic cancer phenotype is characterised by an increase in the randomness of the local information flux patterns. Measures of local randomness in integrated protein interaction mRNA expression networks may therefore be useful for identifying genes and signalling pathways disrupted in one phenotype relative to another. Further exploration of the statistical properties of such integrated cancer expression and protein interaction networks will be a fruitful endeavour.

  20. Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements

    PubMed Central

    Kapucu, Fikret E.; Välkki, Inkeri; Mikkonen, Jarno E.; Leone, Chiara; Lenk, Kerstin; Tanskanen, Jarno M. A.; Hyttinen, Jari A. K.

    2016-01-01

    Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis. PMID:27803660

  1. Measuring reflection on participation in quality improvement activities for maintenance of certification.

    PubMed

    Wittich, Christopher M; Reed, Darcy A; Ting, Henry H; Berger, Richard A; Nowicki, Kelly M; Blachman, Morris J; Mandrekar, Jayawant N; Beckman, Thomas J

    2014-10-01

    To validate a measure of reflection on participation in quality improvement (QI) activities and to identify associations with characteristics of QI projects, participants, and teams. This was a prospective validation study of all Mayo Clinic team participants who submitted QI projects for maintenance of certification (MOC) credit from 2010 to 2012. The authors developed a measure of reflection on participation in QI activities and explored associations between participants' overall reflection scores and characteristics of projects, participants, and teams. A total of 922 participants (567 physicians) on 118 teams completed QI projects and reflections. Factor analysis revealed a two-dimensional model with good internal consistency reliabilities (Cronbach alpha) for high (0.85) and low (0.81) reflection. Reflection scores (mean [standard deviation]) were associated with projects that changed practice (yes: 4.30 [0.51]; no: 3.71 [0.57]; P < .0001), changed the health care system (yes: 4.25 [0.54]; no: 4.03 [0.62]; P < .0001), and impacted patient safety (P < .0001). Physicians' reflection scores (4.27 [0.57]) were higher than support staff scores (4.07 [0.55]; P = .0005). A positive association existed between reflection scores and the number of QI roles per participant (P < .0001). There were no associations with participant gender, team size, or team diversity. The authors identified associations between participant reflection and the impact of QI projects, participants' professional roles, and participants' involvement with projects. With further study, the authors anticipate that the new measure of reflection will be useful for determining meaningful engagement in MOC.

  2. Functional and nonfunctional testing of ATM networks

    NASA Astrophysics Data System (ADS)

    Ricardo, Manuel; Ferreira, M. E. P.; Guimaraes, Francisco E.; Mamede, J.; Henriques, M.; da Silva, Jorge A.; Carrapatoso, E.

    1995-02-01

    ATM network will support new multimedia services that will require new protocols, those services and protocols will need different test strategies and tools. In this paper, the concepts of functional and non-functional testers of ATM networks are discussed, a multimedia service and its requirements are presented and finally, a summary description of an ATM network and of the test tool that will be used to validate it are presented.

  3. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  4. Affective mentalizing and brain activity at rest in the behavioral variant of frontotemporal dementia

    PubMed Central

    Caminiti, Silvia P.; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F.

    2015-01-01

    Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms. PMID:26594631

  5. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    PubMed

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  6. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases

    PubMed Central

    Chernomoretz, Ariel; Agüero, Fernán

    2016-01-01

    Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature. PMID:26735851

  7. A feed-forward Hopfield neural network algorithm (FHNNA) with a colour satellite image for water quality mapping

    NASA Astrophysics Data System (ADS)

    Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar

    2016-06-01

    There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.

  8. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases.

    PubMed

    Berenstein, Ariel José; Magariños, María Paula; Chernomoretz, Ariel; Agüero, Fernán

    2016-01-01

    Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.

  9. The association of personal semantic memory to identity representations: insight into higher-order networks of autobiographical contents.

    PubMed

    Grilli, Matthew D

    2017-11-01

    Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.

  10. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation

    PubMed Central

    Chen, Yu-Wen; Chen, Chien-Chih; Huang, Po-Jung; Tseng, Sheng-Hao

    2016-01-01

    Diffuse reflectance spectroscopy (DRS) based on the frequency-domain (FD) technique has been employed to investigate the optical properties of deep tissues such as breast and brain using source to detector separation up to 40 mm. Due to the modeling and system limitations, efficient and precise determination of turbid sample optical properties from the FD diffuse reflectance acquired at a source-detector separation (SDS) of around 1 mm has not been demonstrated. In this study, we revealed that at SDS of 1 mm, acquiring FD diffuse reflectance at multiple frequencies is necessary for alleviating the influence of inevitable measurement uncertainty on the optical property recovery accuracy. Furthermore, we developed artificial neural networks (ANNs) trained by Monte Carlo simulation generated databases that were capable of efficiently determining FD reflectance at multiple frequencies. The ANNs could work in conjunction with a least-square optimization algorithm to rapidly (within 1 second), accurately (within 10%) quantify the sample optical properties from FD reflectance measured at SDS of 1 mm. In addition, we demonstrated that incorporating the steady-state apparatus into the FD DRS system with 1 mm SDS would enable obtaining broadband absorption and reduced scattering spectra of turbid samples in the wavelength range from 650 to 1000 nm. PMID:27446671

  11. African American Extended Family and Church-Based Social Network Typologies.

    PubMed

    Nguyen, Ann W; Chatters, Linda M; Taylor, Robert Joseph

    2016-12-01

    We examined social network typologies among African American adults and their sociodemographic correlates. Network types were derived from indicators of the family and church networks. Latent class analysis was based on a nationally representative sample of African Americans from the National Survey of American Life. Results indicated four distinct network types: ambivalent, optimal, family centered, and strained. These four types were distinguished by (a) degree of social integration, (b) network composition, and (c) level of negative interactions. In a departure from previous work, a network type composed solely of nonkin was not identified, which may reflect racial differences in social network typologies. Further, the analysis indicated that network types varied by sociodemographic characteristics. Social network typologies have several promising practice implications, as they can inform the development of prevention and intervention programs.

  12. Bidirectional reflectance function in coastal waters: modeling and validation

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir

    2011-11-01

    The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.

  13. Assessing impacts of roads: Application of a standard assessment protocol

    USDA-ARS?s Scientific Manuscript database

    Adaptive management of road networks depends on timely data that accurately reflect the impacts of network impacts on ecosystem processes and associated services. In the absence of reliable data, land managers are left with little more than observations and perceptions to support adaptive management...

  14. Networking: Addressing Urban Students' Self-Esteem.

    ERIC Educational Resources Information Center

    Tobias, Randolf; Turner, Thomas M.

    1997-01-01

    Describes Network in the Schools (NIS), a project to enhance teens' academic achievement and self-esteem, which uses small group classroom discussions regarding self-affirmation, social concerns, self-improvement, and reflection, and meetings for group sharing and self-expression. Presents findings that the program results in enhanced parent…

  15. What Size Is Your Digital Footprint?

    ERIC Educational Resources Information Center

    Hewson, Kurtis

    2013-01-01

    The Professional Learning Network (PLN) is gaining momentum in the education lexicon. It records and reflects the personal development of a community of learners--primarily online through a variety of platforms and social networks--in which educators share resources, provide support, introduce and debate ideas and celebrate learning. These…

  16. Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug-Target Interactions of Natural Products Enables New Targeted Cancer Therapy.

    PubMed

    Fang, Jiansong; Wu, Zengrui; Cai, Chuipu; Wang, Qi; Tang, Yun; Cheng, Feixiong

    2017-11-27

    Natural products with diverse chemical scaffolds have been recognized as an invaluable source of compounds in drug discovery and development. However, systematic identification of drug targets for natural products at the human proteome level via various experimental assays is highly expensive and time-consuming. In this study, we proposed a systems pharmacology infrastructure to predict new drug targets and anticancer indications of natural products. Specifically, we reconstructed a global drug-target network with 7,314 interactions connecting 751 targets and 2,388 natural products and built predictive network models via a balanced substructure-drug-target network-based inference approach. A high area under receiver operating characteristic curve of 0.96 was yielded for predicting new targets of natural products during cross-validation. The newly predicted targets of natural products (e.g., resveratrol, genistein, and kaempferol) with high scores were validated by various literature studies. We further built the statistical network models for identification of new anticancer indications of natural products through integration of both experimentally validated and computationally predicted drug-target interactions of natural products with known cancer proteins. We showed that the significantly predicted anticancer indications of multiple natural products (e.g., naringenin, disulfiram, and metformin) with new mechanism-of-action were validated by various published experimental evidence. In summary, this study offers powerful computational systems pharmacology approaches and tools for the development of novel targeted cancer therapies by exploiting the polypharmacology of natural products.

  17. Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China

    NASA Astrophysics Data System (ADS)

    Zhong, Lingzhi; Yang, Rongfang; Wen, Yixin; Chen, Lin; Gou, Yabin; Li, Ruiyi; Zhou, Qing; Hong, Yang

    2017-11-01

    China operational weather radar network consists of more than 200 ground-based radars (GR(s)). The lack of unified calibrators often result in poor mosaic products as well as its limitation in radar data assimilation in numerical models. In this study, radar reflectivity and precipitation vertical structures observed from space-borne TRMM (Tropical Rainfall Measurement Mission) PR (precipitation radar) and GRs are volumetrically matched and cross-evaluated. It is found that observation of GRs is basically consistent with that of PR. For their overlapping scanning regions, the GRs are often affected by the beam blockage for complex terrain. The statistics show the better agreement among S band A type (SA) radars, S band B type (SB) radars and PR, as well as poor performance of S band C type (SC) radars. The reflectivity offsets between GRs and PR depend on the reflectivity magnitudes: They are positive for weak precipitation and negative for middle and heavy precipitation, respectively. Although the GRs are quite consistent with PR for large sample, an individual GR has its own fluctuated biases monthly. When the sample number is small, the bias statistics may be determined by a single bad GR in a group. Results from this study shed lights that the space-borne precipitation radars could be used to quantitatively calibrate systematic bias existing in different GRs in order to improve the consistency of ground-based weather radar network across China, and also bears the promise to provide a robust reference even form a space and ground constellation network for the dual-frequency precipitation radars onboard the satellites anticipated in the near future.

  18. Fracture network created by 3D printer and its validation using CT images

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Watanabe, N.; Li, K.; Horne, R. N.

    2017-12-01

    Understanding flow mechanisms in fractured media is essential for geoscientific research and geological development industries. This study used 3D printed fracture networks in order to control the properties of fracture distributions inside the sample. The accuracy and appropriateness of creating samples by the 3D printer was investigated by using a X-ray CT scanner. The CT scan images suggest that the 3D printer is able to reproduce complex three-dimensional spatial distributions of fracture networks. Use of hexane after printing was found to be an effective way to remove wax for the post-treatment. Local permeability was obtained by the cubic law and used to calculate the global mean. The experimental value of the permeability was between the arithmetic and geometric means of the numerical results, which is consistent with conventional studies. This methodology based on 3D printed fracture networks can help validate existing flow modeling and numerical methods.

  19. The Development and Validation of the Social Networking Experiences Questionnaire: A Measure of Adolescent Cyberbullying and Its Impact.

    PubMed

    Dredge, Rebecca; Gleeson, John; Garcia, Xochitl de la Piedad

    2015-01-01

    The measurement of cyberbullying has been marked by several inconsistencies that lead to difficulties in cross-study comparisons of the frequency of occurrence and the impact of cyberbullying. Consequently, the first aim of this study was to develop a measure of experience with and impact of cyberbullying victimization in social networking sites in adolescents. The second aim was to investigate the psychometric properties of a purpose-built measure (Social Networking Experiences Questionnaire [SNEQ]). Exploratory factor analysis on 253 adolescent social networking sites users produced a six-factor model of impact. However, one factor was removed because of low internal consistency. Cronbach's alpha was higher than .76 for the victimization and remaining five impact subscales. Furthermore, correlation coefficients for the Victimization scale and related dimensions showed good construct validity. The utility of the SNEQ for victim support personnel, research, and cyberbullying education/prevention programs is discussed.

  20. ENFIN--A European network for integrative systems biology.

    PubMed

    Kahlem, Pascal; Clegg, Andrew; Reisinger, Florian; Xenarios, Ioannis; Hermjakob, Henning; Orengo, Christine; Birney, Ewan

    2009-11-01

    Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.

Top