Sample records for reflected pulse shape

  1. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  2. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  3. Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less

  4. Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2018-01-31

    Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less

  5. Ultrasonic monitoring of pitting corrosion

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J. C.; Cegla, F. B.; Bazaz, H.; Lozev, M.

    2013-01-01

    Exposure to corrosive substances in high temperature environments can cause damage accumulation in structural steels, particularly in the chemical and petrochemical industries. The interaction mechanisms are complex and varied; however initial damage propagation often manifests itself in the form of localized areas of increased material loss. Recent development of an ultrasonic wall thickness monitoring sensor capable of withstanding temperatures in excess of 500°C has allowed permanent monitoring within such hostile environments, providing information on how the shape of a pulse which has reflected from a corroding surface can change over time. Reconstructing localized corrosion depth and position may be possible by tracking such changes in reflected pulse shape, providing extra information on the state of the backwall and whether process conditions should be altered to increase plant life. This paper aims to experimentally investigate the effect certain localized features have on reflected pulse shape by `growing' artificial defects into the backwall while wall thickness is monitored using the sensor. The size and complexity of the three dimensional scattering problem lead to the development of a semi-analytical simulation based on the distributed point source method (DPSM) which is capable of simulating pulse reflection from complex surfaces measuring approximately 17×10λ Comparison to experimental results show that amplitude changes are predicted to within approximately 1dB and that pulse shape changes are accurately modelled. All experiments were carried out at room temperature, measurements at high temperature will be studied in the future.

  6. Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses

    NASA Astrophysics Data System (ADS)

    Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.

    We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.

  7. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    NASA Astrophysics Data System (ADS)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  8. Reflection and diffraction corrections for nonlinear materials characterization by quasi-static pulse measurement

    NASA Astrophysics Data System (ADS)

    Nagy, Peter B.; Qu, Jianmin; Jacobs, Laurence J.

    2014-02-01

    A harmonic acoustic tone burst propagating through an elastic solid with quadratic nonlinearity produces not only a parallel burst of second harmonic but also an often neglected quasi-static pulse associated with the acoustic radiation-induced eigenstrain. Although initial analytical and experimental studies by Yost and Cantrell suggested that the pulse might have a right-angled triangular shape with the peak displacement at the leading edge being proportional to the length of the tone burst, more recent theoretical, analytical, numerical, and experimental studies proved that the pulse has a flat-top shape and the peak displacement is proportional to the propagation length. In this paper, analytical and numerical simulation results are presented to illustrate two types of finite-size effects. First, the finite axial dimension of the specimen cannot be simply accounted for by a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. Second, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second harmonic pulses generated by the same transducer. These finite-size effects can make the top of the quasi-static pulse sloped rather than flat and therefore must be taken into consideration in the interpretation of experimental data.

  9. Reflection and diffraction corrections for nonlinear materials characterization by quasi-static pulse measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, Peter B.; Qu, Jianmin; Jacobs, Laurence J.

    A harmonic acoustic tone burst propagating through an elastic solid with quadratic nonlinearity produces not only a parallel burst of second harmonic but also an often neglected quasi-static pulse associated with the acoustic radiation-induced eigenstrain. Although initial analytical and experimental studies by Yost and Cantrell suggested that the pulse might have a right-angled triangular shape with the peak displacement at the leading edge being proportional to the length of the tone burst, more recent theoretical, analytical, numerical, and experimental studies proved that the pulse has a flat-top shape and the peak displacement is proportional to the propagation length. In thismore » paper, analytical and numerical simulation results are presented to illustrate two types of finite-size effects. First, the finite axial dimension of the specimen cannot be simply accounted for by a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. Second, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second harmonic pulses generated by the same transducer. These finite-size effects can make the top of the quasi-static pulse sloped rather than flat and therefore must be taken into consideration in the interpretation of experimental data.« less

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Reflection of an electromagnetic pulse from a subcritical waveguide taper and from a supercritical-density plasma in a waveguide

    NASA Astrophysics Data System (ADS)

    Rukhadze, Anri A.; Tarakanov, V. P.

    2006-09-01

    Two related problems are studied by numerical simulations using the KARAT code: the reflection of the TM01 mode of an electromagnetic pulse from the subcritical taper of the section of a circular waveguide and the reflection of the same pulse from a 'cold' collisionless plasma with a density increasing up to a supercritical value along the waveguide axis. It is shown that in the former case the pulse is totally reflected with an insignificant distortion of its shape, in accordance with the linear theory. In the latter case, the character of reflection depends substantially on the plasma density increase length, the pulse duration, and the wave field amplitude, a significant field deceleration and amplitude growth occurring near the critical point; the pulse absorption in the plasma far exceeds the absorption due to the linear transformation of the incident transverse wave to the longitudinal plasma oscillations.

  11. Development of terahertz otoscope for diagnosing otitis media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jeon, Tae-In; Ji, Young Bin; Bark, Hyeon Sang; Noh, Sam Kyu; Oh, Seung Jae

    2017-03-01

    A novel terahertz (THz) otoscope is designed and fabricated to help physicians to diagnose otitis media (OM) with both THz diagnostics and conventional optical diagnostics. The inclusion of indium tin oxide (ITO) glass in the THz otoscope allows physicians to diagnose OM with both THz and conventional optical diagnostics. To determine THz diagnostics for OM, we observed reflection signals from samples behind a thin dielectric film and found that the presence of water behind the membrane could be distinguished based on THz pulse shape. We verified the potential of this tool for diagnosing OM using mouse skin tissue and a human tympanic membrane samples prior to clinical application. The presence of water absorbed by the human membrane was easily distinguished based on differences in pulse shapes and peak-to-peak amplitudes of reflected THz pulses. The potential for early OM diagnosis using the THz otoscope was confirmed by alteration of THz pulse depending on water absorption level.

  12. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator.

    PubMed

    Lee, Ju-Yeon; Jang, Min; Shin, Sang-Hoon

    2017-01-01

    Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses.

  13. Effect of a target on the stimulated emission of microsecond CO2-laser pulses

    NASA Astrophysics Data System (ADS)

    Baranov, V. Iu.; Dolgov, V. A.; Maliuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The paper reports a change in the pulse shape of a TEA CO2 laser with an unstable cavity under the interaction between the laser radiation and a metal surface in the presence of a breakdown plasma. It is shown that a continuous change in the phase difference between the wave reflected in the cavity and the principal cavity wave gives rise to changes in the pulse shape and the appearance of power fluctuations. The possible effect of these phenomena on the laser treatment of materials is considered.

  14. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    NASA Astrophysics Data System (ADS)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  15. The influence of the Q-switched and free-running Er:YAG laser beam characteristics on the ablation of root canal dentine

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini; Papadopoulos, Dimitrios N.; Khabbaz, Marouan G.; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    2004-06-01

    Laser based dental treatment is attractive to many researchers. Lasers in the 3 μm region, as the Er:YAG, are suitable especially for endodontic applications. In this study a pulsed free-running and Q-switched laser was used for the ablation experiments of root canal dentine. The laser beam was either directly focused on the dental tissue or delivered to it through an infrared fiber. For different spatial beam distributions, energies, number of pulses and both laser operations the quality characteristics (crater's shape formation, ablation efficiency and surface characteristics modification) were evaluated using scanning electron microscopy (SEM). The craters produced, generally, reflect the relevant beam profile. Inhomogeneous spatial beam profiles and short pulse duration result in cracks formation and lower tissue removal efficiency, while longer pulse durations cause hard dentine fusion. Any beam profile modification, due to laser characteristics variations and the specific delivering system properties, is directly reflected in the ablation crater shape and the tissue removal efficiency. Therefore, the laser parameters, as fluence, pulse repetition rate and number of pulses, have to be carefully adjusted in relation to the desirable result.

  16. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    DOEpatents

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  17. The use of the phasor display in studying ionospheric radio echoes

    NASA Astrophysics Data System (ADS)

    From, W. R.; Whitehead, J. D.

    1981-12-01

    The phase and amplitude of a radio pulse reflected from the ionosphere usually vary during the pulse. It is convenient to observe these variations using the X-Y mode of an oscilloscope to display the phasor of the echo. The variations are then seen as an oval or spiral shape traced out by the end point of the phasor. These shapes provide a sensitive method of detecting the presence of more than one echo, and are useful as a measure of dispersion.

  18. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  19. Applications of Space-Time Duality

    NASA Astrophysics Data System (ADS)

    Plansinis, Brent W.

    The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms periodically at finite propagation lengths. Numerical simulations are performed for the specific case where the moving boundary is produced through cross-phase modulation. In this case, the Kerr nonlinearity causes the boundary to change during propagation, leading to unique temporal and spectral behavior.

  20. Demonstration of Flying Mirror with Improved Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirozhkov, Alexander S.; Kando, Masaki; Fukuda, Yuji

    2009-07-25

    A strongly nonlinear wake wave driven by an intense laser pulse can act as a partially reflecting relativistic mirror (the flying mirror)[S. V. Bulanov, et al., Bulletin of the Lebedev Physics Institute, No. 6, 9 (1991); S. V. Bulanov, et al., Phys. Rev. Lett. 91, 085001 (2003)]. Upon reflection from such mirror, a counter-propagating optical-frequency laser pulse is directly converted into high-frequency radiation, with a frequency multiplication factor approx4gamma{sup 2}(the double Doppler effect). We present the results of recent experiment in which the photon number in the reflected radiation was at least several thousand times larger than in our proof-of-principlemore » experiment [M. Kando, et al., Phys. Rev. Lett. 99, 135001 (2007); A. S. Pirozhkov, et al., Phys. Plasmas 14, 123106 (2007)]. The flying mirror holds promise of generating intense coherent ultrashort XUV and x-ray pulses that inherit their temporal shape and polarization from the original optical-frequency (laser) pulses. Furthermore, the reflected radiation bears important information about the reflecting wake wave itself, which can be used for its diagnostics.« less

  1. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections

    PubMed Central

    Alastruey, Jordi; Hunt, Anthony A E; Weinberg, Peter D

    2014-01-01

    We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numerically in models of human compliant vessels, we show that traditional wave intensity analysis identifies the timing, direction and magnitude of the predominant waves that shape aortic pressure and flow waveforms in systole, but fails to identify the effect of peripheral reflections. These reflections persist for several cardiac cycles and make up most of the pressure waveform, especially in diastole and early systole. Ignoring peripheral reflections leads to an erroneous indication of a reflection-free period in early systole and additional error in the estimates of (i) pulse wave velocity at the ascending aorta given by the PU–loop method (9.5% error) and (ii) transit time to a dominant reflection site calculated from the wave intensity profile (27% error). These errors decreased to 1.3% and 10%, respectively, when accounting for peripheral reflections. Using our new analysis, we investigate the effect of vessel compliance and peripheral resistance on wave intensity, peripheral reflections and reflections originating in previous cardiac cycles. PMID:24132888

  2. Digital micromirror device-based ultrafast pulse shaping for femtosecond laser.

    PubMed

    Gu, Chenglin; Zhang, Dapeng; Chang, Yina; Chen, Shih-Chi

    2015-06-15

    In this Letter, we present a new digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., DUPS. To the best of our knowledge, the DUPS is the first binary pulse shaper that can modulate high repetition rate laser sources at up to a 32 kHz rate (limited by the DMD pattern rate). Since pulse modulation occurs in the frequency domain through reflective two-dimensional micromirror arrays, i.e., DMD, the DUPS is not only compact and low in cost, but also possesses a high damage threshold that is critical for high pulse energy laser applications. In this work, a grating pair was introduced in the DUPS to compensate the DMD induced dispersion. Double pulses were generated to validate the effectiveness of the DUPS and calibrate the system. Subsequently, we demonstrated arbitrary phase shaping capability by continuous tuning of group velocity dispersion (GVD) and modulation of half-spectrum shifted by π. The overall efficiency was measured to be 1.7%, while an efficiency of up to 5% can be expected when high efficiency gratings and properly coated DMDs are used.

  3. Compact pulsed high-energy Er:glass laser

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Liu, Jian

    2012-03-01

    Bulk Erbium-doped lasers are widely used for long-distance telemetry and ranging. In some applications such as coherent Doppler radars, laser outputs with a relatively long pulse width, good beam profile and pulse shape are required. High energy Q-switched Er:glass lasers were demonstrated by use of electro-optic (E/O) Q-switching or frustrated total internal reflection (FTIR) Q-switching. However, the output pulse durations in these lasers were fixed to relatively small values and extremely hard to tune. We report here on developing a novel and compact Q-switched Er:Yb co-doped phosphate glass laser at an eye-safe wavelength of 1.5 μm. A rotating mirror was used as a Q-switch. Co-linear pump scheme was used to maintain a good output beam profile. Near-perfect Gaussian temporal shape was obtained in our experiment. By changing motor rotation speed, pulse duration was tunable and up to 240 ns was achieved. In our preliminary experiment, output pulse energies of 44 mJ and 4.5 mJ were obtained in free-running and Q-switched operation modes respectively.

  4. High-mechanical-strength single-pulse draw tower gratings

    NASA Astrophysics Data System (ADS)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  5. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  6. Characteristics of the pulse waveform during altered nitric oxide synthesis in the rabbit.

    PubMed

    Weinberg, P D; Habens, F; Kengatharan, M; Barnes, S E; Matz, J; Anggård, E E; Carrier, M J

    2001-06-01

    Nitrovasodilators produce characteristic changes in the shape of the peripheral pulse wave. Similar changes might also be caused by alteration of endogenous NO activity, which would allow such activity to be assessed in vivo. We investigated whether manipulation of the NO pathway influences the pulse waveform, and the mechanisms involved. The pulse wave in the ear of normal rabbits was examined by reflectance photoplethysmography before and during infusion of vasoactive agents. Pulse wave velocity was assessed by using an additional sensor on the rear foot. A diastolic peak was observed in the ear pulse; its timing was consistent with it being a reflection of the systolic peak from the lower body. The height of the dicrotic notch marking the start of this diastolic wave was decreased by acetylcholine or an NO donor, and further decreased by a phosphodiesterase type V inhibitor. The acetylcholine-induced decreases were blocked by inhibiting NO synthesis with N(G)-nitro-L-arginine methyl ester (L-NAME) but were unaffected by the inactive enantiomer D-NAME. These data demonstrate that NO influences the height of the notch in the pulse wave. Heart rate and blood pressure were altered during acetylcholine or L-NAME infusion, but there were no changes in pulse wave amplitude or velocity, or in the timing of the diastolic peak or dicrotic notch. The slope of the pulse wave between the systolic peak and notch changed substantially. These effects are most convincingly explained by changes in wave reflection, not only from the lower body but also from more proximal sites.

  7. Characteristics of the pulse waveform during altered nitric oxide synthesis in the rabbit

    PubMed Central

    Weinberg, P D; Habens, F; Kengatharan, M; Barnes, S E; Matz, J; Änggård, E E; Carrier, M J

    2001-01-01

    Nitrovasodilators produce characteristic changes in the shape of the peripheral pulse wave. Similar changes might also be caused by alteration of endogenous NO activity, which would allow such activity to be assessed in vivo. We investigated whether manipulation of the NO pathway influences the pulse waveform, and the mechanisms involved. The pulse wave in the ear of normal rabbits was examined by reflectance photoplethysmography before and during infusion of vasoactive agents. Pulse wave velocity was assessed by using an additional sensor on the rear foot. A diastolic peak was observed in the ear pulse; its timing was consistent with it being a reflection of the systolic peak from the lower body. The height of the dicrotic notch marking the start of this diastolic wave was decreased by acetylcholine or an NO donor, and further decreased by a phosphodiesterase type V inhibitor. The acetylcholine-induced decreases were blocked by inhibiting NO synthesis with NG-nitro-L-arginine methyl ester (L-NAME) but were unaffected by the inactive enantiomer D-NAME. These data demonstrate that NO influences the height of the notch in the pulse wave. Heart rate and blood pressure were altered during acetylcholine or L-NAME infusion, but there were no changes in pulse wave amplitude or velocity, or in the timing of the diastolic peak or dicrotic notch. The slope of the pulse wave between the systolic peak and notch changed substantially. These effects are most convincingly explained by changes in wave reflection, not only from the lower body but also from more proximal sites. PMID:11375252

  8. Dynamic behavior of geometrically complex hybrid composite samples in a Split-Hopkinson Pressure Bar system

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Balasubramaniam, S.; Sharafiev, S.; F-X Wagner, M.

    2018-06-01

    The interfaces between layered materials play an important role for the overall mechanical behavior of hybrid composites, particularly during dynamic loading. Moreover, in complex-shaped composites, interfacial failure is strongly affected by the geometry and size of these contact interfaces. As preliminary work for the design of a novel sample geometry that allows to analyze wave reflection phenomena at the interfaces of such materials, a series of experiments using a Split-Hopkinson Pressure Bar technique was performed on five different sample geometries made of a monomaterial steel. A complementary explicit finite element model of the Split-Hopkinson Pressure Bar system was developed and the same sample geometries were studied numerically. The simulated input, reflected and transmitted elastic wave pulses were analyzed for the different sample geometries and were found to agree well with the experimental results. Additional simulations using different composite layers of steel and aluminum (with the same sample geometries) were performed to investigate the effect of material variation on the propagated wave pulses. The numerical results show that the reflected and transmitted wave pulses systematically depend on the sample geometry, and that elastic wave pulse propagation is affected by the properties of individual material layers.

  9. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.« less

  10. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  11. Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles.

    PubMed

    Dimitrov, Vasil; Kakorin, Sergej; Neumann, Eberhard

    2013-05-07

    The results of electrooptical and conductometrical measurements on unilamellar lipid vesicles (of mean radius a = 90 nm), filled with 0.2 M NaCl solution, suspended in 0.33 M sucrose solution of 0.2 mM NaCl, and exposed to a stepwise decaying electric field (time constant τE = 154 μs) in the range 10 ≤ E0 (kV cm(-1)) ≤ 90, are analyzed in terms of cyclic changes in vesicle shape and vesicle membrane conductivity. The two peaks in the dichroitic turbidity relaxations reflect two cycles of rapid membrane electroporation and slower resealing of long-lived electropores. The field-induced changes reflect structural transitions between closed (C) and porated (P) membrane states, qualified by pores of type P1 and of type P2, respectively. The transient change in the membrane conductivity and the transient shape oscillation are based on changes in the pore density of the (larger) P2-pores along a hysteresis cycle. The P2-pore formation leads to transient net ion flows across the P2-pores and to transient changes in the membrane field. The kinetic data are numerically processed in terms of coupled structural relaxation modes. Using the torus-hole pore model, the mean inner pore radii are estimated to be r1 = 0.38 (±0.05) nm and r2 = 1.7 (±0.1) nm, respectively. The observation of a transient oscillation of membrane electroporation and of shape changes in a longer lasting external field pulse is suggestive of potential resonance enhancement, for instance, of electro-uptake by, and of electro-release of biogenic molecules from, biological cells in trains of long-lasting low-intensity voltage pulses.

  12. Cost-effective WDM-PON Delivering Up/Down-stream Data on a Single Wavelength Using Soliton Pulse

    NASA Astrophysics Data System (ADS)

    Tawade, Laxman

    2013-06-01

    This paper presents wavelength division multiplexing passive optical network (WDM-PON) system delivering downstream 2.5 Gbit/s data and upstream 1 Gbit/s data on a single wavelength using pulse source is mode locked laser which generating a single pulse of "sech" shape with specified power and width i.e. soliton pulse. The optical source for downstream data and upstream data is sech pulse generator at central office and reflective semiconductor optical amplifier (RSOA) at each optical network unit. We also investigate analysis of backscattered optical signal for upstream data and downstream data simultaneously. Bit error rate, Q-Factor were measured to demonstrate the proposed scheme. In this paper Long reach aspects of an access network is investigated using single channel scenario.

  13. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOEpatents

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  14. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  15. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  16. Reconfigurable optofluidic switch for generation of optical pulse width modulation based on tunable reflective interface.

    PubMed

    Mansuori, M; Zareei, G H; Hashemi, H

    2015-10-01

    We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.

  17. Ultrafast control of strong light-matter coupling

    NASA Astrophysics Data System (ADS)

    Lange, Christoph; Cancellieri, Emiliano; Panna, Dmitry; Whittaker, David M.; Steger, Mark; Snoke, David W.; Pfeiffer, Loren N.; West, Kenneth W.; Hayat, Alex

    2018-01-01

    We dynamically modulate strong light-matter coupling in a GaAs/AlGaAs microcavity using intense ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle period, however, the Stark shift does not affect the strong coupling. The two regimes are marked by distinctly different line shapes in ultrafast reflectivity measurements—regardless of the Stark field intensity. The crossover marks the transition from adiabatic to diabatic switching of strong light-matter coupling.

  18. Generation of programmable temporal pulse shape and applications in micromachining

    NASA Astrophysics Data System (ADS)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  19. Application of reflectance confocal microscopy to evaluate skin damage after irradiation with an yttrium-scandium-gallium-garnet (YSGG) laser.

    PubMed

    Yue, Xueping; Wang, Hongwei; Li, Qing; Li, Linfeng

    2017-02-01

    The objective of this study was to observe the characteristics of the skin after irradiation with a 2790-nm yttrium-scandium-gallium-garnet (YSGG) laser using reflectance confocal microscopy (RCM). A 2790-nm YSGG laser was used to irradiate fresh foreskin (four doses, at spot density 3) in vitro. The characteristics of microscopic ablative columns (MAC), thermal coagulation zone (TCZ), and microscopic treatment zones (MTZ) were observed immediately after irradiation using digital microscope and RCM. The characteristics of MAC, TCZ, and MTZ with variations in pulse energy were comparatively analyzed. After irradiation, MAC, TCZ, and MTZ characteristics and undamaged skin between MTZs can be observed by RCM. The depth and width of MTZ obviously increased with the increase in pulse energy. At 80, 120, and 160 mJ/microbeam (MB), the MTZ actual area and proportion were about two times that of the theoretical value and three times at 200 mJ/MB. With increases in depth, the single MAC gradually decreased in a fingertip-shaped model, with TCZ slowly increasing, and MTZ slightly decreasing in a columnar shape. RCM was able to determine the characteristics of thermal injury on the skin after the 2790-nm YSGG laser irradiation with different pulse energies. Pulse energy higher than 200 mJ/MB may have much larger thermal injury and side effect. RCM could be used in the clinic in future.

  20. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    NASA Astrophysics Data System (ADS)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  1. Interactions between butterfly-shaped pulses in the inhomogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wen-Jun; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Huang, Long-Gang

    2014-10-15

    Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived.

  2. Eye-Safe KGd(WO4)2:Nd Laser: Nano- and Subnanosecond Pulse Generation in Self-Frequency Raman Conversion Mode with Active Q-Switching

    NASA Astrophysics Data System (ADS)

    Dashkevich, V. I.; Orlovich, V. A.

    2017-03-01

    The shape of the multimode Stokes pulse generated by an eye-safe KGd(WO4)2:Nd laser with self-frequency Raman conversion and active Q-switching was shown to depend on the inhomogeneity of the active-medium pump. The laser generated a short and undistorted Stokes pulse of length 2.5 ns that increased with increasing laser cavity length for a moderately inhomogeneous pump characterized by a higher population inversion in the center of the active element. The energy of the Stokes pulse ( 11.5 mJ) varied little as the output-mirror reflectivity varied in the range 5-45%. The Raman pulse became distorted if the inhomogeneity of the pump was increased considerably. The degree of pump inhomogeneity was negligible with fundamental TEM00 mode selection. The laser generated subnanosecond Stokes pulses with peak power in the MW range.

  3. Optimal control of multiphoton ionization dynamics of small alkali aggregates

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger

    2003-11-01

    We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.

  4. Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination

    NASA Technical Reports Server (NTRS)

    Tao, Jian-Ping

    1998-01-01

    The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent channel and reduce power efficiency. Some particular pulses (filters), such as trapezoid and pulses with different transits (such as weighted raised cosine transit) were found to reduce bandwidth and not generate spectral spikes. Although a solid state power amplifier (SSPA) was simulated in the non-linear (saturation) region, output power spectra did not spread due to the constant envelope 8-PSK signals.

  5. Effect of quench on alpha/beta pulse shape discrimination of liquid scintillation cocktails.

    PubMed

    DeVol, Timothy A; Theisen, Christopher D; DiPrete, David P

    2007-05-01

    The objectives of this paper are (1) to illustrate that knowledge of the external quench parameter is insufficient to properly setup a pulse shape discriminating liquid scintillation counter (LSC) for quantitative measurement, (2) to illustrate dependence on pulse shape discrimination on the radionuclide (more than just radiation and energy), and (3) to compare the pulse shape discrimination (PSD) of two commercial instruments. The effects various quenching agents, liquid scintillation cocktails, radionuclides, and LSCs have on alpha/beta pulse shape discriminating liquid scintillation counting were quantified. Alpha emitting radionuclides (239)Pu and (241)Am and beta emitter (90)Sr/(90)Y were investigated to quantify the nuclide dependence on alpha/beta pulse shape discrimination. Also, chemical and color quenching agents, nitromethane, nitric acid, and yellow dye impact on alpha/beta pulse shape discrimination using PerkinElmer Optiphase "HiSafe" 2 and 3, and Ultima Gold AB liquid scintillation cocktails were determined. The prepared samples were counted on the PerkinElmer Wallac WinSpectral 1414 alpha/beta pulse shape discriminating LSC. It was found that for the same level of quench, as measured by the external quench parameter, different quench agents influenced the pulse shape discrimination and the pulse shape discrimination parameters differently. The radionuclide also affects alpha/beta pulse shape discrimination. By comparison with the PerkinElmer Tri-carb 3150 TR/AB, the Wallac 1414 exhibited better pulse shape discrimination capability under the same experimental conditions.

  6. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  7. Coherent control of alkali cluster fragmentation dynamics

    NASA Astrophysics Data System (ADS)

    Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger

    2003-06-01

    Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of the optimal pulse shape thereby offers new insight into the fragmentation channel during the control process. Characteristic motions of the involved wave packets are proposed, in order to explain the optimized dynamic dissociation pathways.

  8. Waveform synthesizer

    DOEpatents

    Franks, L.A.; Nelson, M.A.

    1979-12-07

    The invention is a method by which an optical pulse of an arbitrary but defined shape may be transformed into a virtual multitude of optical or electrical output pulse shapes. Since the method is not limited to any particular input pulse shape, the output pulse shapes that can be generated thereby are virtually unlimited. Moreover, output pulse widths as narrow as about 0.1 nsec can be readily obtained since optical pulses of less than a few picoseconds are available for use as driving pulses. The range of output pulse widths obtainable is very large, the limiting factors being the driving source energy and the particular shape of the desired output pulse.

  9. Wide-field FTIR microscopy using mid-IR pulse shaping

    PubMed Central

    Serrano, Arnaldo L.; Ghosh, Ayanjeet; Ostrander, Joshua S.; Zanni, Martin T.

    2015-01-01

    We have developed a new table-top technique for collecting wide-field Fourier transform infrared (FTIR) microscopic images by combining a femtosecond pulse shaper with a mid-IR focal plane array. The pulse shaper scans the delay between a pulse pair extremely rapidly for high signal-to-noise, while also enabling phase control of the individual pulses to under-sample the interferograms and subtract background. Infrared absorption images were collected for a mixture of W(CO)6 or Mn2(CO)10 absorbed polystyrene beads, demonstrating that this technique can spatially resolve chemically distinct species. The images are sub-diffraction limited, as measured with a USAF test target patterned on CaF2 and verified with scalar wave simulations. We also find that refractive, rather than reflective, objectives are preferable for imaging with coherent radiation. We discuss this method with respect to conventional FTIR microscopes. PMID:26191843

  10. Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection

    DOE PAGES

    Tsilipakos, Odysseas; Koschny, Thomas; Soukoulis, Costas M.

    2018-03-21

    Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0-2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase responsemore » so that broadband pulses can experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances, thus opening up diverse possibilities in the temporal applications of metasurfaces.« less

  11. Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsilipakos, Odysseas; Koschny, Thomas; Soukoulis, Costas M.

    Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0-2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase responsemore » so that broadband pulses can experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances, thus opening up diverse possibilities in the temporal applications of metasurfaces.« less

  12. Picosecond temporal contrast of Ti:Sapphire lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalashnikov, Mikhail P.; Khodakovskiy, Nikita

    2017-05-01

    The temporal shape of recompressed Ti:sapphire CPA pulses typically contains relatively long pre- and post- pedestals appearing on a picosecond time scale. Despite playing a key role in laser-matter interactions, these artifacts - especially the shape of the leading front of the recompressed pulses - are poorly investigated and understood. The related publications consider picosecond pedestals appearing at both fronts of the main pulse to be related to scattering of the stretched pulse off diffraction gratings inside the stretcher or due to clipping of the pulse spectrum at dielectric coatings. In our experiments we analyzed different types of stretcher-compressor combinations used in Ti:Sapphire laser systems. These include a prism-based stretcher and a bulk compressor, transmission and reflection diffraction gratings - based combinations. We identified pedestals that are typical for the particular stretcher-compressor combination. Especially investigated are those which are coherent with the major recompressed pulse, since with self-phase modulation in power amplifiers they will grow nonlinearly and finally appear symmetric around the major pulse, generating the pre-pedestal from the post-pedestal. Thus, a previously unreported influence of the trailing pedestal has been identified. It is commonly known that recompressed pulses from Ti:sapphire chirped-pulse amplifier systems are accompanied by a slowly decaying ragged post-pedestal. The detailed investigation shows that it consists of numerous pulses with temporal separation in the picosecond range. These are coherent with the main pulse. Moreover, the temporal structure of the trailing pedestal is independent of the particular realization of the Ti:sapphire system and it is present in radiation of any Ti:Sapphire CPA system including Kerr- mode locked master oscillators. Our investigations show that the coherent ragged post-pedestal is the post-radiation of inverted Ti:sapphire medium resulting from phonon-photon interactions.

  13. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yujie, E-mail: styojm@physics.tamu.edu; Voronine, Dmitri V.; Sokolov, Alexei V.

    2015-08-15

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  14. On the use of a chirped Bragg grating as a cavity mirror of a picosecond Nd : YAG laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubko, A E; Shashkov, E V; Smirnov, A V

    2016-02-28

    The first experimental evidence is presented that the use of a chirped volume Bragg grating (CVBG) as a cavity mirror of a Q-switched picosecond Nd : YAG laser with self-mode-locking leads to significant changes in the temporal parameters of the laser output. Measurements have been performed at two positions of the CVBG: with the grating placed so that shorter wavelengths reflected from its front part lead longer wavelengths or with the grating rotated through 180°, so that longer wavelengths are reflected first. In the former case, the duration of individual pulses in a train increased from ∼35 to ∼300 ps,more » whereas the pulse train shape and duration remained the same as in the case of a conventional laser with a mirror cavity. In the latter case, the full width at half maximum of pulse trains increased from ∼70 ns (Nd : YAG laser with a mirror cavity) to ∼1 ms, and the duration of individual pulses increased from 35 ps to ∼1.2 ns, respectively, which is more typical of free-running laser operation. (laser crystals and braggg ratings)« less

  15. Ballistic Deficits for Ionization Chamber Pulses in Pulse Shaping Amplifiers

    NASA Astrophysics Data System (ADS)

    Kumar, G. Anil; Sharma, S. L.; Choudhury, R. K.

    2007-04-01

    In order to understand the dependence of the ballistic deficit on the shape of rising portion of the voltage pulse at the input of a pulse shaping amplifier, we have estimated the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber. These estimations have been made using numerical integration method when the pulses are processed through the CR-RCn (n=1-6) shaping network as well as when the pulses are processed through the complex shaping network of the ORTEC Model 472 spectroscopic amplifier. Further, we have made simulations to see the effect of ballistic deficit on the pulse-height spectra under different conditions. We have also carried out measurements of the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber when these pulses are processed through the ORTEC 572 linear amplifier having a simple CR-RC shaping network. The reasonable matching of the simulated ballistic deficits with the experimental ballistic deficits for the CR-RC shaping network clearly establishes the validity of the simulation technique

  16. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  17. Unsteady Analysis of Inlet-Compressor Acoustic Interactions Using Coupled 3-D and 1-D CFD Codes

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Cole, G. L.

    2000-01-01

    It is well known that the dynamic response of a mixed compression supersonic inlet is very sensitive to the boundary condition imposed at the subsonic exit (engine face) of the inlet. In previous work, a 3-D computational fluid dynamics (CFD) inlet code (NPARC) was coupled at the engine face to a 3-D turbomachinery code (ADPAC) simulating an isolated rotor and the coupled simulation used to study the unsteady response of the inlet. The main problem with this approach is that the high fidelity turbomachinery simulation becomes prohibitively expensive as more stages are included in the simulation. In this paper, an alternative approach is explored, wherein the inlet code is coupled to a lesser fidelity 1-D transient compressor code (DYNTECC) which simulates the whole compressor. The specific application chosen for this evaluation is the collapsing bump experiment performed at the University of Cincinnati, wherein reflections of a large-amplitude acoustic pulse from a compressor were measured. The metrics for comparison are the pulse strength (time integral of the pulse amplitude) and wave form (shape). When the compressor is modeled by stage characteristics the computed strength is about ten percent greater than that for the experiment, but the wave shapes are in poor agreement. An alternate approach that uses a fixed rise in duct total pressure and temperature (so-called 'lossy' duct) to simulate a compressor gives good pulse shapes but the strength is about 30 percent low.

  18. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu

    2018-06-01

    A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.

  19. Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications

    NASA Astrophysics Data System (ADS)

    Saxena, Shefali; Hawari, Ayman I.

    2017-07-01

    Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.

  20. High efficiency and high-energy intra-cavity beam shaping laser

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  1. Symmetry control in subscale near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Mackinnon, A.; Zylstra, A. B.; Rinderknecht, H. G.; Sio, H.; Petrasso, R. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J.

    2016-05-01

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.

  2. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  3. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Letzring, Samuel A.

    1993-01-01

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.

  4. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  5. A pulse-shape discrimination method for improving Gamma-ray spectrometry based on a new digital shaping filter

    NASA Astrophysics Data System (ADS)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan

    2018-04-01

    It is a usual practice for improving spectrum quality by the mean of designing a good shaping filter to improve signal-noise ratio in development of nuclear spectroscopy. Another method is proposed in the paper based on discriminating pulse-shape and discarding the bad pulse whose shape is distorted as a result of abnormal noise, unusual ballistic deficit or bad pulse pile-up. An Exponentially Decaying Pulse (EDP) generated in nuclear particle detectors can be transformed into a Mexican Hat Wavelet Pulse (MHWP) and the derivation process of the transform is given. After the transform is performed, the baseline drift is removed in the new MHWP. Moreover, the MHWP-shape can be discriminated with the three parameters: the time difference between the two minima of the MHWP, and the two ratios which are from the amplitude of the two minima respectively divided by the amplitude of the maximum in the MHWP. A new type of nuclear spectroscopy was implemented based on the new digital shaping filter and the Gamma-ray spectra were acquired with a variety of pulse-shape discrimination levels. It had manifested that the energy resolution and the peak-Compton ratio were both improved after the pulse-shape discrimination method was used.

  6. Application of nonlinear pulse shaping of femtosecond pulse generation in a fiber amplifier at 500 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Luo, Daping; Wang, Chao; Zhu, Zhiwei; Li, Wenxue

    2018-03-01

    We numerically and experimentally demonstrate that a nonlinear pulse shaping technique based on pre-chirping management in a short gain fiber can be exploited to improve the quality of a compressed pulse. With prior tuning of the pulse chirp, the amplified pulse express different nonlinear propagating processes. A spectrum with s flat top and more smooth wings, showing a similariton feature, generates with the optimal initial pulse chirp, and the shortest pulses with minimal pulse pedestals are obtained. Experimental results show the ability of nonlinear pulse shaping to enhance the quality of compressed pulses, as theoretically expected.

  7. Generation of arbitrarily shaped picosecond optical pulses using an integrated electrooptic waveguide modulator.

    PubMed

    Haner, M; Warren, W S

    1987-09-01

    We have produced complex software adjustable laser pulse shapes with ~10-ps resolution, and pulse energies up to 100 microJ for spectroscopic applications. The key devices are a high damage threshold electrooptic directional coupler and a GaAs circuit for synthesizing arbitrarily shaped microwave pulses.

  8. Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Longo, S.; Roney, J. M.

    2018-03-01

    Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.

  9. Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd-Yag laser.

    PubMed

    Bertrand, C; Laplanche, O; Rocca, J P; Le Petitcorps, Y; Nammour, S

    2007-11-01

    The laser is a very attractive tool for joining dental metallic alloys. However, the choice of the setting parameters can hardly influence the welding performances. The aim of this research was to evaluate the impact of several parameters (pulse shaping, pulse frequency, focal spot size...) on the quality of the microstructure. Grade 1 titanium plates have been welded with a pulsed Nd-Yag laser. Suitable power, pulse duration, focal spot size, and flow of argon gas were fixed by the operator. Five different pulse shapes and three pulse frequencies were investigated. Two pulse shapes available on this laser unit were eliminated because they considerably hardened the metal. As the pulse frequency rose, the metal was more and more ejected, and a plasma on the surface of the metal increased the oxygen contamination in the welded area. Frequencies of 1 or 2 Hz are optimum for a dental use. Three pulse shapes can be used for titanium but the rectangular shape gives better results.

  10. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  11. Waveform synthesizer

    DOEpatents

    Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A method of producing optical and electrical pulses of desired shape. An optical pulse of arbitrary but defined shape illuminates one end of an array of optical fiber waveguides of differing lengths to time differentiate the input pulse. The optical outputs at the other end of the array are combined to form a synthesized pulse of desired shape.

  12. Nonlinear amplification of coherent waves in media with soliton-type refractive index pattern.

    PubMed

    Bugaychuk, S; Conte, R

    2012-08-01

    We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a local and a nonlocal nonlinear responses) and the relaxation is considered. A stable localized spatial structure in the form of a "dark" dissipative soliton is formed in the cavity in the steady state. The envelope of the intensity pattern, as well as of the dynamical grating amplitude, takes the shape of a tanh function. The obtained complex Ginzburg-Landau equation describes the dynamics of this envelope; at the same time, the evolution of this spatial structure changes the parameters of the output waves. New effects are predicted in this system due to the transformation of the dissipative soliton which takes place during the interaction of a pulse with a continuous wave, such as retention of the pulse shape during the transmission of impulses in a long nonlinear cavity, and giant amplification of a seed pulse, which takes energy due to redistribution of the pump continuous energy into the signal.

  13. Symmetry control in subscale near-vacuum hohlraums

    DOE PAGES

    Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; ...

    2016-05-18

    Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce mostmore » experimental observables, including hot spot shape, for a majority of implosions. In conclusion, specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.« less

  14. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation.

    PubMed

    Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János

    2017-11-27

    A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.

  15. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).

  16. Resolving the shape of a sonoluminescence pulse in sulfuric acid by the use of streak camera.

    PubMed

    Huang, Wei; Chen, Weizhong; Cui, Weicheng

    2009-06-01

    A streak camera is used to measure the shape of sonoluminescence pulses from a cavitation bubble levitated stably in a sulfuric acid solution. The shape and response to an acoustic pressure field of the sonoluminescence pulse in 85% by weight sulfuric acid are qualitatively similar to those in water. However, the pulse width in sulfuric acid is wider than that in water by over one order of magnitude. The width of the sonoluminescence pulse is strongly dependent on the concentration of the sulfuric acid solution, while the skewed distribution of the shape remains unchanged.

  17. Analysis of folded pulse forming line operation.

    PubMed

    Domonkos, M T; Watrous, J; Parker, J V; Cavazos, T; Slenes, K; Heidger, S; Brown, D; Wilson, D

    2014-09-01

    A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.

  18. Analysis of folded pulse forming line operation

    NASA Astrophysics Data System (ADS)

    Domonkos, M. T.; Watrous, J.; Parker, J. V.; Cavazos, T.; Slenes, K.; Heidger, S.; Brown, D.; Wilson, D.

    2014-09-01

    A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.

  19. Pulse Shaped Constant Envelope 8-PSK Modulation Study

    NASA Technical Reports Server (NTRS)

    Tao, Jianping; Horan, Sheila

    1997-01-01

    This report provides simulation results for constant envelope pulse shaped 8 Level Phase Shift Keying (8 PSK) modulation for end to end system performance. In order to increase bandwidth utilization, pulse shaping is applied to signals before they are modulated. This report provides simulation results of power spectra and measurement of bit errors produced by pulse shaping in a non-linear channel with Additive White Gaussian Noise (AWGN). The pulse shaping filters can placed before (Type B) or after (Type A) signals are modulated. Three kinds of baseband filters, 5th order Butterworth, 3rd order Bessel and Square-Root Raised Cosine with different BTs or roll off factors, are utilized in the simulations. The simulations were performed on a Signal Processing Worksystem (SPW).

  20. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  1. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  2. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  3. Pulse shaping system

    DOEpatents

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  4. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.

    PubMed

    Shane, Janelle C; Mazilu, Michael; Lee, Woei Ming; Dholakia, Kishan

    2010-03-29

    We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

  5. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    PubMed

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  6. Pulse shaping circuit for active counting of superheated emulsion

    NASA Astrophysics Data System (ADS)

    Murai, Ikuo; Sawamura, Teruko

    2005-08-01

    A pulse shaping circuit for active counting of superheated emulsions is described. A piezoelectric transducer is used for sensing bubble formation acoustically and the acoustic signal is transformed to a shaping pulse for counting. The circuit has a short signal processing time in the order of 10 ms.

  7. Improving the phase response of an atom interferometer by means of temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Fang, Bess; Mielec, Nicolas; Savoie, Denis; Altorio, Matteo; Landragin, Arnaud; Geiger, Remi

    2018-02-01

    We study theoretically and experimentally the influence of temporally shaping the light pulses in an atom interferometer, with a focus on the phase response of the interferometer. We show that smooth light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and thus relax the requirements on the phase noise or frequency noise of the interrogation lasers driving the interferometer. The light pulse shape is also shown to modify the scale factor of the interferometer, which has to be taken into account in the evaluation of its accuracy budget. We discuss the trade-offs to operate when choosing a particular pulse shape, by taking into account phase noise rejection, velocity selectivity, and applicability to large momentum transfer atom interferometry.

  8. Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.

    PubMed

    Zaari, Ryan R; Brown, Alex

    2012-09-14

    The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.

  9. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniyappan, S.; Johnson, R.; Shimada, T.

    2010-10-15

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, {approx}600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  10. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  11. Interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Da-Shuai; Wu, Ge; Gao, Bo; Tian, Xiao-Jian

    2013-01-01

    We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the inter-cavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.

  12. Subharmonic emissions from microbubbles: effect of the driving pulse shape.

    PubMed

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2006-11-01

    The aims of this work are to investigate the response of the ultrasonic contrast agents (UCA) insonified by different arbitrary-shaped pulses at different acoustic pressures and concentration of the contrast agent focusing on subharmonic emission. A transmission setup was developed in order to insonify the contrast agent contained in a measurement chamber. The transmitted ultrasonic signals were generated by an arbitrary wave generator connected to a linear power amplifier able to drive a single-element transducer. The transmitted ultrasonic pulses that passed through the contrast agent-filled chamber were received by a second transducer or a hydrophone aligned with the first one. The radio frequency (RF) signals were acquired by fast echographic multiparameters multi-image novel apparatus (FEMMINA), which is an echographic platform able to acquire ultrasonic signals in a real-time modality. Three sets of ultrasonic signals were devised in order to evaluate subharmonic response of the contrast agent respect with sinusoidal burst signals used as reference pulses. A decreasing up to 30 dB in subharmonic response was detected for a Gaussian-shaped pulse; differences in subharmonic emission up to 21 dB were detected for a composite pulse (two-tone burst) for different acoustic pressures and concentrations. Results from this experimentation demonstrated that the transmitted pulse shape strongly affects subharmonic emission in spite of a second harmonic one. In particular, the smoothness of the initial portion of the shaped pulses can inhibit subharmonic generation from the contrast agents respect with a reference sinusoidal burst signal. It also was shown that subharmonic generation is influenced by the amplitude and the concentration of the contrast agent for each set of the shaped pulses. Subharmonic emissions that derive from a nonlinear mechanism involving nonlinear coupling among different oscillation modes are strongly affected by the shape of the ultrasonic driving pulse.

  13. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  14. Energy resolution improvement of CdTe detectors by using the principal component analysis technique

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2018-02-01

    In this paper, we report on the application of the Principal Component Analysis (PCA) technique for the improvement of the γ-ray energy resolution of CdTe detectors. The PCA technique is used to estimate the amount of charge-trapping effect which is reflected in the shape of each detector pulse, thereby correcting for the charge-trapping effect. The details of the method are described and the results obtained with a CdTe detector are shown. We have achieved an energy resolution of 1.8 % (FWHM) at 662 keV with full detection efficiency from a 1 mm thick CdTe detector which gives an energy resolution of 4.5 % (FWHM) by using the standard pulse processing method.

  15. Pulse Shape Correlation for Laser Detection and Ranging (LADAR)

    DTIC Science & Technology

    2010-03-01

    with the incoming measured laser pulse [3]. All of these shapes are symmetric. Siegman and Liu’s findings indicate that the pulse is seldom symmetric...of Engineering, Air Force Institute of Technology (AETC), Wright Pat- terson AFB, OH, March 2007. 10. Siegman , Anthony E. Lasers . University Science...Pulse Shape Correlation for Laser Detection and Ranging (LADAR) THESIS Brian T. Deas, Major, USAF AFIT/GE/ENG/10-07 DEPARTMENT OF THE AIR FORCE AIR

  16. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  17. Quantitative ESD Guidelines for Charged Spacecraft Derived from the Physics of Discharges

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.

    1992-01-01

    Quantitative guidelines are proposed for Electrostatic Discharge (ESD) pulse shape on charged spacecraft. The guidelines are based on existing ground test data, and on a physical description of the pulsed discharge process. The guidelines are designed to predict pulse shape for surface charging and internal charging on a wide variety of spacecraft structures. The pulses depend on the area of the sample, its capacitance to ground, and the strength of the electric field in the vacuum adjacent to the charged surface. By knowing the pulse shape, current vs. time, one can determine if nearby circuits are threatened by the pulse. The quantitative guidelines might be used to estimate the level of threat to an existing spacecraft, or to redesign a spacecraft to reduce its pulses to a known safe level. The experiments which provide the data and the physics that allow one to interpret the data will be discussed, culminating in examples of how to predict pulse shape/size. This method has been used, but not confirmed, on several spacecraft.

  18. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    PubMed

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

  19. flexTMS--a novel repetitive transcranial magnetic stimulation device with freely programmable stimulus currents.

    PubMed

    Gattinger, Norbert; Moessnang, Georg; Gleich, Bernhard

    2012-07-01

    Transcranial magnetic stimulation (TMS) is able to noninvasively excite neuronal populations due to brief magnetic field pulses. The efficiency and the characteristics of stimulation pulse shapes influence the physiological effect of TMS. However, commercial devices allow only a minimum of control of different pulse shapes. Basically, just sinusoidal and monophasic pulse shapes with fixed pulse widths are available. Only few research groups work on TMS devices with controllable pulse parameters such as pulse shape or pulse width. We describe a novel TMS device with a full-bridge circuit topology incorporating four insulated-gate bipolar transistor (IGBT) modules and one energy storage capacitor to generate arbitrary waveforms. This flexible TMS (flexTMS ) device can generate magnetic pulses which can be adjusted with respect to pulse width, polarity, and intensity. Furthermore, the equipment allows us to set paired pulses with a variable interstimulus interval (ISI) from 0 to 20 ms with a step size of 10  μs. All user-defined pulses can be applied continually with repetition rates up to 30 pulses per second (pps) or, respectively, up to 100 pps in theta burst mode. Offering this variety of flexibility, flexTMS will allow the enhancement of existing TMS paradigms and novel research applications.

  20. Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping.

    PubMed

    Hong, Xu; Zhou, Jianbin; Ni, Shijun; Ma, Yingjie; Yao, Jianfeng; Zhou, Wei; Liu, Yi; Wang, Min

    2018-03-01

    High-precision measurement of X-ray spectra is affected by the statistical fluctuation of the X-ray beam under low-counting-rate conditions. It is also limited by counting loss resulting from the dead-time of the system and pile-up pulse effects, especially in a high-counting-rate environment. In this paper a detection system based on a FAST-SDD detector and a new kind of unit impulse pulse-shaping method is presented, for counting-loss correction in X-ray spectroscopy. The unit impulse pulse-shaping method is evolved by inverse deviation of the pulse from a reset-type preamplifier and a C-R shaper. It is applied to obtain the true incoming rate of the system based on a general fast-slow channel processing model. The pulses in the fast channel are shaped to unit impulse pulse shape which possesses small width and no undershoot. The counting rate in the fast channel is corrected by evaluating the dead-time of the fast channel before it is used to correct the counting loss in the slow channel.

  1. Compton suppression in BEGe detectors by digital pulse shape analysis.

    PubMed

    Mi, Yu-Hao; Ma, Hao; Zeng, Zhi; Cheng, Jian-Ping; Li, Jun-Li; Zhang, Hui

    2017-03-01

    A new method of pulse shape discrimination (PSD) for BEGe detectors is developed to suppress Compton-continuum by digital pulse shape analysis (PSA), which helps reduce the Compton background level in gamma ray spectrometry. A decision parameter related to the rise time of a pulse shape was presented. The method was verified by experiments using 60 Co and 137 Cs sources. The result indicated that the 60 Co Peak to Compton ratio and the Cs-Peak to Co-Compton ratio could be improved by more than two and three times, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.

    2017-10-01

    Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.

  3. Enhanced laser conditioning using temporally shaped pulses

    DOE PAGES

    Kafka, K. R. P.; Papernov, S.; Demos, S. G.

    2018-03-06

    Laser conditioning was investigated as a function of the temporal shape and duration of 351-nm, nanosecond pulses for fused-silica substrates polished via magnetorheological finishing. Here, the aim is to advance our understanding of the dynamics involved to enable improved control of the interaction of laser light with the material to optimize laser conditioning. Gaussian pulses that are temporally truncated at the intensity peak are observed to enhance laser conditioning, in comparison to a Gaussian pulse shape.

  4. Enhanced laser conditioning using temporally shaped pulses.

    PubMed

    Kafka, K R P; Papernov, S; Demos, S G

    2018-03-15

    Laser conditioning was investigated as a function of the temporal shape and duration of 351 nm nanosecond pulses for fused-silica substrates polished via magnetorheological finishing. The aim is to advance our understanding of the dynamics involved to enable improved control of the interaction of laser light with the material to optimize laser conditioning. Gaussian pulses that are temporally truncated at the intensity peak are observed to enhance laser conditioning, in comparison to a Gaussian pulse shape.

  5. Enhanced laser conditioning using temporally shaped pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafka, K. R. P.; Papernov, S.; Demos, S. G.

    Laser conditioning was investigated as a function of the temporal shape and duration of 351-nm, nanosecond pulses for fused-silica substrates polished via magnetorheological finishing. Here, the aim is to advance our understanding of the dynamics involved to enable improved control of the interaction of laser light with the material to optimize laser conditioning. Gaussian pulses that are temporally truncated at the intensity peak are observed to enhance laser conditioning, in comparison to a Gaussian pulse shape.

  6. Terahertz reflection imaging using Kirchhoff migration.

    PubMed

    Dorney, T D; Johnson, J L; Van Rudd, J; Baraniuk, R G; Symes, W W; Mittleman, D M

    2001-10-01

    We describe a new imaging method that uses single-cycle pulses of terahertz (THz) radiation. This technique emulates data-collection and image-processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a simple migration procedure to solve the inverse problem; this permits us to reconstruct the location and shape of targets. These results demonstrate the feasibility of the THz system as a test-bed for the exploration of new seismic processing methods involving complex model systems.

  7. K-mean clustering algorithm for processing signals from compound semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Tada, Tsutomu; Hitomi, Keitaro; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo

    2011-12-01

    The K-mean clustering algorithm was employed for processing signal waveforms from TlBr detectors. The signal waveforms were classified based on its shape reflecting the charge collection process in the detector. The classified signal waveforms were processed individually to suppress the pulse height variation of signals due to the charge collection loss. The obtained energy resolution of a 137Cs spectrum measured with a 0.5 mm thick TlBr detector was 1.3% FWHM by employing 500 clusters.

  8. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  9. Investigation of Fiber Waviness in a Thick Glass Composite Beam Using THz NDE

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.

    2008-01-01

    Fiber waviness in laminated composite material is introduced during manufacture because of uneven curing, resin shrinkage, or ply buckling caused by bending the composite lay-up into its final shape prior to curing. The resulting waviness has a detrimental effect on mechanical properties, therefore this condition is important to detect and characterize. Ultrasonic characterization methods are difficult to interpret because elastic wave propagation is highly dependent on ply orientation and material stresses. By comparison, the pulsed terahertz response of the composite is shown to provide clear indications of the fiber waviness. Pulsed Terahertz NDE is an electromagnetic inspection method that operates in the frequency range between 300 GHz and 3 THz. Its propagation is influenced by refractive index variations and interfaces. This work applies pulsed Terahertz NDE to the inspection of a thick composite beam with fiber waviness. The sample is a laminated glass composite material approximately 15mm thick with a 90-degree bend. Terahertz response from the planar section, away from the bend, is indicative of a homogeneous material with no major reflections from internal plies, while the multiple reflections at the bend area correspond to the fiber waviness. Results of these measurements are presented for the planar and bend areas.

  10. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  11. Maximizing energy deposition by shaping few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Gateau, Julien; Patas, Alexander; Matthews, Mary; Hermelin, Sylvain; Lindinger, Albrecht; Kasparian, Jérôme; Wolf, Jean-Pierre

    2018-07-01

    We experimentally investigate the impact of pulse shape on the dynamics of laser-generated plasma in rare gases. Fast-rising triangular pulses with a slower decay lead to early ionization of the gas and depose energy more efficiently than their temporally reversed counterparts. As a result, in both argon and krypton, the induced shockwave as well as the plasma luminescence are stronger. This is due to an earlier availability of free electrons to undergo inverse Bremsstrahlung on the pulse trailing edge. Our results illustrate the ability of adequately tailored pulse shapes to optimize the energy deposition in gas plasmas.

  12. Short pulse laser stretcher-compressor using a single common reflective grating

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  13. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  14. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    NASA Astrophysics Data System (ADS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  15. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  16. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.

  17. Second-order shaped pulsed for solid-state quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Pinaki

    2008-01-01

    We present the construction and detailed analysis of highly optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semianalytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analyzing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site andmore » nearest-neighbor couplings.« less

  18. Driving qubit phase gates with sech shaped pulses

    NASA Astrophysics Data System (ADS)

    Long, Junling; Ku, Hsiang-Sheng; Wu, Xian; Lake, Russell; Barnes, Edwin; Economou, Sophia; Pappas, David

    As shown in 1932 by Rozen and Zener, the Rabi model has a unique solution whereby, for a given pulse length or amplitude, a sech(t/sigma) shaped pulse can be used to drive complete oscillations around the Bloch sphere that are independent of detuning with only a resultant detuning-dependent phase accumulation. Using this property, single qubit phase gates and two-qubit CZ gates have been proposed. In this work we explore the effect of different drive pulse shapes, i.e. square, Gaussian, and sech, as a function of detuning for Rabi oscillations of a superconducting transmon qubit. An arbitrary, single-qubit phase gate is demonstrated with the sech(t/sigma) pulse, and full tomography is performed to extract the fidelity. This is the first step towards high fidelity, low leakage two qubit CZ gates, and illustrates the efficacy of using analytic solutions of the qubit drive prior to optimal pulse shaping.

  19. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-01

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230fs, which is caused by the spatial--temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

  20. Femtosecond profiling of shaped x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  1. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    NASA Astrophysics Data System (ADS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  2. Optimal Dynamic Detection of Explosives (ODD-EX)

    DTIC Science & Technology

    2011-12-29

    2. Control of nitromethane photoionization efficiency with shaped femtosecond pulses, J. Roslund, O. Shir, A. Dogariu, R. Miles, H. Rabitz, J. Chem...feedback loop. 2. Control of nitromethane photoionization efficiency with shaped femtosecond pulses, J. Roslund, O. Shir, A. Dogariu, R. Miles, H. Rabitz...resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The

  3. The shaped pulses control and operation on the SG-III prototype facility

    NASA Astrophysics Data System (ADS)

    Ping, Li; Wei, Wang; Sai, Jin; Wanqing, Huang; Wenyi, Wang; Jingqin, Su; Runchang, Zhao

    2018-04-01

    The laser driven inertial confined fusion experiments require careful temporal shape control of the laser pulse. Two approaches are introduced to improve the accuracy and efficiency of the close loop feedback system for long term operation in TIL; the first one is a statistical model to analyze the variation of the parameters obtained from previous shots, the other is a matrix algorithm proposed to relate the electrical signal and the impulse amplitudes. With the model and algorithm applied in the pulse shaping in TIL, a variety of shaped pulses were produced with a 10% precision in half an hour for almost three years under different circumstance.

  4. A survey of pulse shape options for a revised plastic ablator ignition design

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Eder, David; Haan, Steven; Hinkel, Denise; Jones, Ogden; Marinak, Michael; Milovich, Jose; Peterson, Jayson; Robey, Harold; Salmonson, Jay; Smalyuk, Vladimir; Weber, Christopher

    2014-10-01

    Recent experimental results using the ``high foot'' pulse shape on the National Ignition Facility (NIF) have shown encouraging progress compared to earlier ``low foot'' experiments. These results strongly suggest that controlling ablation front instability growth can dramatically improve implosion performance, even in the presence of persistent, large, low-mode distortions. In parallel, Hydro. Growth Radiography experiments have so far validated the techniques used for modeling ablation front growth in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified so as to improve implosion performance, namely fuel compressibility, while maintaining the stability properties demonstrated with the high foot. This talk presents a survey of pulse shapes intermediate between the low and high foot extremes in search of a more optimal design. From the database of pulse shapes surveyed, a higher picket version of the original low foot pulse shape shows the most promise for improved compression without loss of stability. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner

    DOEpatents

    Veligdan, J.T.

    1994-03-08

    An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90[degree] angle of incidence. 8 figures.

  6. Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner

    DOEpatents

    Veligdan, James T.

    1994-01-01

    An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90.degree. angle of incidence.

  7. Laser-pulse shape effects on magnetic field generation in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.

    2018-07-01

    Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.

  8. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic techniques are used to characterize structure-function relationships of two-photon absorbing GFP-type probes and optical limiting materials. Fluorescence lifetimes of GFP-type probes are shown to depend on functional group substitution position, therefore, enabling the synthesis of designer probes for the possible study of conformation changes and aggregation in biological systems. Similarly, it is determined that small differences in the structure and dimensionality of organometallic macrocycles result in a diverse set of optical properties, which serves as a basis for the molecular level design of nonlinear optical materials.

  9. Method for distance determination using range-gated imaging suitable for an arbitrary pulse shape

    NASA Astrophysics Data System (ADS)

    Kabashnikov, Vitaly; Kuntsevich, Boris

    2017-10-01

    A method for distance determination with the help of range-gated viewing systems suitable for the arbitrary shape of the illumination pulse is proposed. The method is based on finding the delay time at which maximum of the return pulse energy takes place. The maximum position depends on the pulse and gate durations and, generally speaking, on the pulse shape. If the pulse length is less than or equal to the gate duration, the delay time appropriate to the maximum does not depend on the pulse shape. At equal pulse and gate durations, there is a strict local maximum, which turns into a plateau when pulse is shorter than gate duration. A delay time appropriate to the strict local maximum or the far boundary of the plateau (where non-strict maximum is) is directly related to the distance to the object. These findings are confirmed by analytical relationships for trapezoid pulses and numerical results for the real pulse shape. To verify the proposed method we used a vertical wall located at different distances from 15 to 120m as an observed object. Delay time was changing discretely in increments of 5 ns. Maximum of the signal was determined by visual observation of the object on the monitor screen. The distance defined by the proposed method coincided with the direct measurement with accuracy 1- 2m, which is comparable with the delay time step multiplied by half of the light velocity. The results can be useful in the development of 3-D vision systems.

  10. Flying mirror model for interaction of a super-intense laser pulse with a thin plasma layer: Transparency and shaping of linearly polarized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulagin, Victor V.; Cherepenin, Vladimir A.; Hur, Min Sup

    2007-11-15

    A self-consistent one-dimensional (1D) flying mirror model is developed for description of an interaction of an ultra-intense laser pulse with a thin plasma layer (foil). In this model, electrons of the foil can have large longitudinal displacements and relativistic longitudinal momenta. An approximate analytical solution for a transmitted field is derived. Transmittance of the foil shows not only a nonlinear dependence on the amplitude of the incident laser pulse, but also time dependence and shape dependence in the high-transparency regime. The results are compared with particle-in-cell (PIC) simulations and a good agreement is ascertained. Shaping of incident laser pulses usingmore » the flying mirror model is also considered. It can be used either for removing a prepulse or for reducing the length of a short laser pulse. The parameters of the system for effective shaping are specified. Predictions of the flying mirror model for shaping are compared with the 1D PIC simulations, showing good agreement.« less

  11. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.

    PubMed

    Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R

    2015-10-19

    We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.

  12. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier

    DOE PAGES

    Rogers, III, C. E.; Gould, P. L.

    2016-02-01

    Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  13. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier.

    PubMed

    Rogers, C E; Gould, P L

    2016-02-08

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  14. Research progress at the Slow Positron Facility in the Institute of Materials Structure Science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, T.; Wada, K.; Mochizuki, I.; Kimura, M.; Toge, N.; Shidara, T.; Fukaya, Y.; Maekawa, M.; Kawasuso, A.; Iida, S.; Michishio, K.; Nagashima, Y.

    2017-01-01

    Recent results at the Slow Positron Facility (SPF), Institute of Materials Structure Science (IMSS), KEK are reported. Studies using the total-reflection high-energy positron diffraction (TRHEPD) station revealed the structures of rutile-TiO2(110) (1×2), graphene on Cu (111) and Co (0001), and germanene on Al (111). First observations of the shape resonance in the Ps- photodetachment process were made using the positronium negative ion (Ps-) station. Experiments using the positronium time-of-flight (Ps-TOF) station showed significant enhancement of the Ps formation efficiency and the energy loss in the Ps formation-emission process. A pulse-stretching section has been implemented, which stretches the positron pulse width from 1.2 μs up to almost 20 ms.

  15. Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun

    2011-12-01

    We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.

  16. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co; Arango, Carlos A.; Reyes, Andrés

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding themore » interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.« less

  17. Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic

    NASA Astrophysics Data System (ADS)

    Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie

    2018-02-01

    As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.

  18. Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe

    2018-02-01

    We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

  19. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    DOEpatents

    Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  20. Perspectives of shaped pulses for EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  1. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses

    NASA Astrophysics Data System (ADS)

    Krogen, Peter; Suchowski, Haim; Liang, Houkun; Flemens, Noah; Hong, Kyung-Han; Kärtner, Franz X.; Moses, Jeffrey

    2017-03-01

    The generation of intense mid-infrared (mid-IR) optical pulses with customizable shape and spectra spanning a multiple-octave range of vibrational frequencies is an elusive technological capability. While some recent approaches to mid-IR supercontinuum generation—such as filamentation, multicolour four-wave-mixing and optical rectification—have successfully generated broad spectra, no process has been identified for achieving complex pulse shaping at the generation step. The adiabatic frequency converter allows for a one-to-one transfer of spectral phase through nonlinear frequency conversion over a larger-than-octave-spanning range and with an overall linear phase transfer function. Here, we show that we can convert shaped near-infrared (near-IR) pulses to shaped, energetic, multi-octave-spanning mid-IR pulses lasting only 1.2 optical cycles, and extendable to the sub-cycle regime. We expect this capability to enable a new class of precisely controlled nonlinear interactions in the mid-IR spectral range, from nonlinear vibrational spectroscopy to strong light-matter interactions and single-shot remote sensing.

  2. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  3. MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.

    PubMed

    Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan

    2016-02-01

    A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.

  4. Electrical pulse generator

    DOEpatents

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  5. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    NASA Astrophysics Data System (ADS)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  6. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator.

    PubMed

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-20

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs, which is caused by the spatial-temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged. © 2011 Optical Society of America

  7. Femtosecond profiling of shaped x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M. C.; Grguras, I.; Behrens, C.

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  8. Femtosecond profiling of shaped x-ray pulses

    DOE PAGES

    Hoffmann, M. C.; Grguras, I.; Behrens, C.; ...

    2018-03-26

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolbasin, V. A.; Ivanov, A. I.; Pedash, V. Y.

    The two pulse shape discrimination methods were implemented in real-time. The pulse gradient analysis method was implemented programmatically on PC. The method based on artificial neural network was programmatically implemented using CUDA platform. It is shown that both implementations can provide up to 10{sup 6} pulses per second processing performance. The results for pulse shape discrimination using polycrystalline stilbene and LiF detectors were shown. (authors)

  10. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Poteomkin, A. K.; Gacheva, E. I.; Andrianov, A. V.; Zelenogorskii, V. V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E. A.

    2016-05-01

    A method for shaping photocathode laser driver pulses into 3D ellipsoidal form has been proposed and implemented. The key idea of the method is to use a chirped Bragg grating recorded within the ellipsoid volume and absent outside it. If a beam with a constant (within the grating reflection band) spectral density and uniform (within the grating aperture) cross-section is incident on such a grating, the reflected beam will be a 3D ellipsoid in space and time. 3D ellipsoidal beams were obtained in experiment for the first time. It is expected that such laser beams will allow the electron bunch emittance to be reduced when applied at R± photo injectors.

  11. Improved safety of retinal photocoagulation with a shaped beam and modulated pulse

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Brown, Jefferson; Paulus, Yannis M.; Nomoto, Hiroyuki; Palanker, Daniel

    2010-02-01

    Shorter pulse durations help confine thermal damage during retinal photocoagulation, decrease treatment time and minimize pain. However, safe therapeutic window (the ratio of threshold powers for rupture and mild coagulation) decreases with shorter exposures. A ring-shaped beam enables safer photocoagulation than conventional beams by reducing the maximum temperature in the center of the spot. Similarly, a temporal pulse modulation decreasing its power over time improves safety by maintaining constant temperature for a significant portion of the pulse. Optimization of the beam and pulse shapes was performed using a computational model. In vivo experiments were performed to verify the predicted improvement. With each of these approaches, the pulse duration can be decreased by a factor of two, from 20 ms down to 10 ms while maintaining the same therapeutic window.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginsz, M.; Duchene, G.; Didierjean, F.

    The state-of-the art gamma-ray spectrometers such as AGATA and GRETA are using position sensitive multi-segmented HPGe crystals. Pulse-shape analysis (PSA) allows to retrieve the localisation of the gamma interactions and to perform gamma-ray tracking within germanium. The precision of the localisation depends on the quality of the pulse-shape database used for comparison. The IPHC laboratory developed a new fast scanning table allowing to measure experimental pulse shapes in the whole volume of any crystal. The results of the scan of an AGATA 36-fold segmented tapered coaxial detector are shown here, 48580 experimental pulse shapes are extracted within 2 weeks ofmore » scanning. These data will contribute to AGATA PSA performances, but have also applications for gamma cameras or Compton-suppressed detectors. (authors)« less

  13. Control of nitromethane photoionization efficiency with shaped femtosecond pulses.

    PubMed

    Roslund, Jonathan; Shir, Ofer M; Dogariu, Arthur; Miles, Richard; Rabitz, Herschel

    2011-04-21

    The applicability of adaptive femtosecond pulse shaping is studied for achieving selectivity in the photoionization of low-density polyatomic targets. In particular, optimal dynamic discrimination (ODD) techniques exploit intermediate molecular electronic resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The intensity bias typical of high-photon number, nonresonant ionization is accounted for by reference to a strictly intensity-dependent process. Closed-loop adaptive learning is then able to discover a pulse form that increases the ionization efficiency of nitromethane by ∼150%. The optimally induced molecular dynamics result from entry into a region of parameter space inaccessible with intensity-only control. Finally, the discovered pulse shape is demonstrated to interact with the molecular system in a coherent fashion as assessed from the asymmetry between the response to the optimal field and its time-reversed counterpart.

  14. Measurement of the Shock Velocity and Symmetry History in Decaying Shock Pulses

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Milovich, Jose; Jones, Oggie; Robey, Harry; Smalyuk, Vladimir; Casey, Daniel; Celliers, Peter; Clark, Dan; Giraldez, Emilio; Haan, Steve; Hamza, Alex; Berzak-Hopkins, Laura; Jancaitis, Ken; Kroll, Jeremy; Lafortune, Kai; MacGowan, Brian; Macphee, Andrew; Moody, John; Nikroo, Abbas; Peterson, Luc; Raman, Kumar; Weber, Chris; Widmayer, Clay

    2014-10-01

    Decaying first shock pulses are predicted in simulations to provide more stable implosions and still achieve a low adiabat in the fuel, enabling a higher fuel compression similar to ``low foot'' laser pulses. The first step in testing these predictions was to measure the shock velocity for both a three shock and a four shock adiabat-shaped pulse in a keyhole experimental platform. We present measurements of the shock velocity history, including the decaying shock velocity inside the ablator, and compare it with simulations, as well as with previous low and high foot pulses. Using the measured pulse shape, the predicted adiabat from simulations is presented and compared with the calculated adiabat from low and high foot laser pulse shapes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  15. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.

    PubMed

    Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian

    2012-01-16

    We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

  16. Femtosecond pulse shaping using the geometric phase.

    PubMed

    Gökce, Bilal; Li, Yanming; Escuti, Michael J; Gundogdu, Kenan

    2014-03-15

    We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.

  17. Transmitter Pulse Estimation and Measurements for Airborne TDEM Systems

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Mejzr, I.

    2013-12-01

    The processing and interpretation of Airborne Time Domain EM data requires precise description of the transmitter parameters, including shape, amplitude and length of the transmitted pulse. There are several ways to measure pulse shape of the transmitter loop. Transmitted pulse can be recorded by a current monitor installed on the loop. The current monitor readings do not give exact image due to own time-domain physical characteristics of the current monitor. Another way is to restore the primary pulse shape from the receiver data recorded on-time, if such is possible. The receiver gives exact image of the primary field projection combined with the ground response, which can be minimized at high altitude pass, usually with a transmitter elevation higher than 1500 ft from the ground. The readings on the receiver are depending on receiver position and orientation. Modeling of airborne TDEM transmitter pulse allows us to compare estimated and measured shape of the pulse and apply required corrections. Airborne TDEM system transmitter pulse shape has been studied by authors while developing P-THEM system. The data has been gathered during in-doors and out-doors ground tests in Canada, as well as during flight tests in Canada and in India. The P-THEM system has three-axes receiver that is suspended on a tow-cable in the midpoint between the transmitter and the helicopter. The P-THEM receiver geometry does not require backing coils to dump the primary field. The system records full-wave data from the receiver and current monitor installed on the transmitter loop, including on-time and off-time data. The modeling of the transmitter pulse allowed us to define the difference between estimated and measured values. The higher accuracy pulse shape can be used for better data processing and interpretation. A developed model can be applied to similar systems and configurations.

  18. Effect of temporal pulse shaping on the reduction of laser weld defects in a Pd-Ag-Sn dental alloy.

    PubMed

    Bertrand, C; Poulon-Quintin, A

    2011-03-01

    To describe the influence of pulse shaping on the behavior of a palladium-based dental alloy during laser welding and to show how its choice is effective to promote good weld quality. Single spots, weld beads and welds with 80% overlapping were performed on Pd-Ag-Sn cast plates. A pulsed Nd:Yag laser was used with a specific welding procedure using all the possibilities for pulse-shaping: (1) the square pulse shape as the default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling and (4) a combination of a rising and falling edges called bridge shape. The optimization of the pulse shape is supposed to enhance weldability and produce defect-free welds (cracks, pores…) Vickers microhardness measurements were made on cross sections of the welds. A correlation between laser welding parameters and microstructure evolution was found. Hot cracking and internal porosities were systematically detected when using rapid cooling. The presence of these types of defects was significantly reduced with the slow cooling of the molten pool. The best weld quality was obtained with the use of the bridge shape. The use of a slow cooling ramp is the only way to significantly reduce the presence of typical defects within the welds for this Pd-based alloy studied. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Continuous and lurching traveling pulses in neuronal networks with delay and spatially decaying connectivity

    PubMed Central

    Golomb, David; Ermentrout, G. Bard

    1999-01-01

    Propagation of discharges in cortical and thalamic systems, which is used as a probe for examining network circuitry, is studied by constructing a one-dimensional model of integrate-and-fire neurons that are coupled by excitatory synapses with delay. Each neuron fires only one spike. The velocity and stability of propagating continuous pulses are calculated analytically. Above a certain critical value of the constant delay, these pulses lose stability. Instead, lurching pulses propagate with discontinuous and periodic spatio-temporal characteristics. The parameter regime for which lurching occurs is strongly affected by the footprint (connectivity) shape; bistability may occur with a square footprint shape but not with an exponential footprint shape. For strong synaptic coupling, the velocity of both continuous and lurching pulses increases logarithmically with the synaptic coupling strength gsyn for an exponential footprint shape, and it is bounded for a step footprint shape. We conclude that the differences in velocity and shape between the front of thalamic spindle waves in vitro and cortical paroxysmal discharges stem from their different effective delay; in thalamic networks, large effective delay between inhibitory neurons arises from their effective interaction via the excitatory cells which display postinhibitory rebound. PMID:10557346

  20. Does the estimation of light attenuation in tissue increase the accuracy of reflectance pulse oximetry at low oxygen saturations in vivo?

    PubMed

    Kisch-Wedel, H; Bernreuter, P; Kemming, G; Albert, M; Zwissler, B

    2009-09-01

    A new technique was validated in vivo in reflectance pulse oximetry for measuring low oxygen saturations. Two pairs of light emitter/detector diodes allow for estimation of light attenuation (LA) in tissue, which is assumed to be responsible for the inaccuracy of pulse oximetry at less than 70 % arterial oxygen saturation. For validation, 17 newborn piglets were desaturated stepwise from 21 % to 1.25 % inspiratory oxygen concentration during general anesthesia, and arterial oxygen saturation was measured with the reflectance pulse oximeter adjusted for LA in tissue, with a standard transmission pulse oximeter and a hemoximeter. LA in tissue could be quantified and was different between snout and foreleg (probability level (p) < 0.05). At arterial oxygen saturations above 70 %, the bias between the methods was at 0 %-1 % and the variability 4 %-5 %. From 2 % to 100 % arterial oxygen saturation, the reflectance pulse oximeter estimated oxyhemoglobin saturation more accurately than a conventional transmission pulse oximeter (p < 0.05). At low oxygen saturations below 70 %, the bias and variability of the reflectance pulse oximeter calibration were closer to the hemoximeter measurements than the transmission pulse oximeter (p < 0.05). The variability of the reflectance pulse oximeter was slightly lower than the traditional oximeter by taking into account the LA in tissue (9 % versus 11 % -15 %, ns), and thus, the quality of the individual calibration lines improved (correlation coefficient, p < 0.05).

  1. Digital pulse processing and electronic noise analysis for improving energy resolutions in planar TlBr detectors

    NASA Astrophysics Data System (ADS)

    Tada, Tsutomu; Hitomi, Keitaro; Tanaka, Tomonobu; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo

    2011-05-01

    Digital pulse processing and electronic noise analysis are proposed for improving energy resolution in planar thallium bromide (TlBr) detectors. An energy resolution of 5.8% FWHM at 662 keV was obtained from a 0.5 mm thick planar TlBr detector at room temperature using a digitizer with a sampling rate of 100 MS/s and 8 bit resolution. The electronic noise in the detector-preamplifier system was measured as a function of pulse shaping time in order to investigate the optimum shaping time for the detector. The depth of interaction (DOI) in TlBr detectors for incident gamma-rays was determined by taking the ratio of pulse heights for fast-shaped to slow-shaped signals. FWHM energy resolution of the detector was improved from 5.8% to 4.2% by implementing depth correction and by using the obtained optimum shaping time.

  2. Status of the Ganymede Laser Altimeter (GALA) for ESA's Jupiter Icy Moons Explorer (JUICE)

    NASA Astrophysics Data System (ADS)

    Hussmann, Hauke; Luedicke, Fabian

    2017-04-01

    The Ganymede Laser Altimeter (GALA) is one of the instruments selected for ESA's Jupiter Icy Moons Explorer (JUICE). A fundamental goal of any exploratory space mission is to characterize and measure the shape, topography, and rotation of the target bodies. A state of the art tool for this task is laser altimetry because it can provide absolute topographic height and position with respect to a body centered reference system. With respect to Ganymede, the GALA instrument aims at mapping of global, regional and local topography; confirming the global subsurface ocean and further characterization of the water-ice/liquid shell by monitoring the dynamic response of the ice shell to tidal forces; providing constraints on the forced physical librations and spin-axis obliquity; determining Ganymede's shape; obtaining detailed topographic profiles across the linear features of grooved terrain, impact structures, possible cryo-volcanic features and other different surface units; providing information about slope, roughness and albedo (at 1064nm) of Ganymede's surface. After several flyby's (Ganymede, Europa, Callisto) it is scheduled that the JUICE orbiter will enter first into an elliptical orbit (200 km x 10.000 km) for around 150 days and then into a circular orbit (500 km) around Ganymede for 130 days. Accordingly to the different orbits and trajectories, distances to the moons respectively, the spot size of the GALA laser varies between 21 m and 140 m. GALA uses the direct-detection (classical) approach of laser altimetry. Laser pulses are emitted at a wavelength of 1064 nm by using an actively Q-switched Nd:Yag laser. The pulse energy and pulse repetition frequency are 17 mJ at 30 Hz (nominal), respectively. For targeted observations and flybys the frequency can be switched to 50 Hz. The emission time of each pulse is measured by the detector. The beam is reflected from the surface and received at a 25 cm diameter telescope. The returning laser pulse is refocused onto a silicon avalanche photodiode (APD) through back-end optics including a narrow bandpass interference filter for isolating the 1064 nm wavelength. The APD-signal is then amplified, sampled and fed to a digital range finder. This system determines the time of flight, pulse intensity, width and full shape. The GALA instrument is developed in collaboration of institutes and industry from Germany, Japan, Switzerland and Spain.

  3. Characterization of pulsed flow attenuation on a regulated montane river

    NASA Astrophysics Data System (ADS)

    Fong, C. S.; Yarnell, S. M.; Fleenor, W. E.; Viers, J. H.

    2013-12-01

    A major benefit of hydropower is its ability to respond quickly to fluctuating electrical loads. However, the sharp changes in discharge caused by this practice have detrimental environmental effects downstream. This study investigated the effects of hydrograph shape on attenuation of regulated pulsed flow events by first categorizing, then modeling the downstream movement of representative pulses on the upper Tuolumne River below Holm Powerhouse in the Sierra Nevada mountains of California. This system was managed by a public utility and produced flow pulses primarily for hydroelectricity generation and/or whitewater recreation. Operations were highly influenced by a system-wide "Water First" policy, which prioritized drinking water supply and quality over other beneficial uses. Pulses were therefore associated with a spectrum of time scales, from predetermined schedules decided far in advance to hydropeaking operations responding to real-time demands. We extracted underlying hydrograph shape patterns using principal component analysis on individual pulsed flow events released from 1988-2012 (n=4439). From principal component loadings, six shape categories were determined: rectangular, front-step, back-step, goalpost, centered tower, and other. The rectangular and stepped shapes were the most frequent, composing 62% and 24% of total events, respectively. The rectangular shape was often produced by 'standard' hydropeaking or recreational releases, while the stepped shapes were often used for water conservation or were recreational flows bordered by periods of electricity generation. The stepped shape increased in occurrence after the "Water First" policy took effect in 1993 and dominated two drier years (2007 and 2009). After categorization by shape, magnitude and durational indices were used to fabricate representative pulsed flow events. Attenuation of these representative pulses was then modeled using a 1D hydraulic model of 42 river km prepared in HEC-RAS. As no operational measures or physical structures existed within the system to counter the adverse effects of pulsed flow events, natural attenuation was the only potential major mitigation agent. However, model results demonstrated a clear durational threshold for representative pulses (~ 3-5 hrs) over which the degree of attenuation of ramping rates and peak discharge approached a limit. These thresholds were unique to the study reach and were dependent upon river morphology, bed characteristics, and flow rates. Increasing baseflows did not necessarily increase attenuation of pulses, most likely due to minimal increases in bed friction forces in this fairly steep and confined channel. Simulations of front and back-step representative pulses showed trade-offs between attenuation of peak magnitudes and steepness of ramping rates. Finally, a range of rising ramping rates were shown to steepen downstream above initial rates due to the study reach's channel morphology. Reshaping pulses to be more ecologically benign at all points downstream was infeasible if the system was required to maintain current electricity production and recreational service levels.

  4. Band-selective shaped pulse for high fidelity quantum control in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevelsmore » (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.« less

  5. Alpha-gamma pulse-shape discrimination in Gd3Al2Ga3O12 (GAGG):Ce3+ crystal scintillator using shape indicator

    NASA Astrophysics Data System (ADS)

    Tamagawa, Yoichi; Inukai, Yuji; Ogawa, Izumi; Kobayashi, Masaaki

    2015-09-01

    The pulse-shape discrimination (PSD) in a GAGG single-crystal scintillator was studied by using a shape indicator (SI) parameter of the optimal digital filter method. SI is one of the most useful PSD methods that use typical pulse shapes. Excellent discrimination between 0.662 MeV γ-rays and 5.48 MeV α-rays was achieved. For a cut at SI=0.0056, 99.95% of the γ-rays and only 0.22% of the α-rays were retained. Selection of background events (γ and α) in the GAGG scintillator was achieved by using the PSD method.

  6. Advanced Laser Technologies for High-brightness Photocathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    A laser-excited photocathode RF gun is one of the most reliable high-brightness electron beam sources for XFELs. Several 3D laser shaping methods have been developed as ideal photocathode illumination sources at SPring-8 since 2001. To suppress the emittance growth caused by nonlinear space-charge forces, the 3D cylindrical UV-pulse was optimized spatially as a flattop and temporally as squarely stacked chirped pulses. This shaping system is a serial combination of a deformable mirror that adaptively shapes the spatial profile with a genetic algorithm and a UV-pulse stacker that consists of four birefringent α-BBO crystal rods for temporal shaping. Using this 3D-shaped pulse, a normalized emittance of 1.4 π mm mrad was obtained in 2006. Utilizing laser's Z-polarization, Schottky-effect-gated photocathode gun was proposed in 2006. The cathode work functions are reduced by a laser-induced Schottky effect. As a result of focusing a radially polarized laser pulse with a hollow lens in vacuum, the Z-field (Z-polarization) is generated at the cathode.

  7. Plasma-based generation and control of a single few-cycle high-energy ultrahigh-intensity laser pulse.

    PubMed

    Tamburini, M; Di Piazza, A; Liseykina, T V; Keitel, C H

    2014-07-11

    A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. Here we show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh-intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive result is explained with the larger reflectivity of a heavy foil, which compensates for its lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our multidimensional particle-in-cell simulations show that even few-cycle counterpropagating laser pulses can be further shortened (both temporally and in the number of laser cycles) with pulse amplification. A single few-cycle, multipetawatt laser pulse with several joules of energy and with a peak intensity exceeding 10(23)  W/cm(2) can be generated already employing next-generation high-power laser systems. In addition, the carrier-envelope phase of the generated few-cycle pulse can be tuned provided that the carrier-envelope phase of the initial counterpropagating pulse is controlled.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie

    Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported in this paper. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Finally, reduction in light yield andmore » pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.« less

  9. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  10. Distance Determination by Gated Viewing Systems Taking into Account the Illuminating Pulse Shape

    NASA Astrophysics Data System (ADS)

    Gorobets, V. A.; Kuntsevich, B. F.; Shabrov, D. V.

    2017-11-01

    For gated viewing systems with triangular and trapezoidal illuminating pulses, we have obtained the range-intensity profiles (RIPs) of the signal as the time delay was varied between the leading edges of the gate pulse and the illuminating pulse. We have established that if the duration of the illuminating pulse Δtlas is less than or equal to the duration of the gate pulse ΔtIC, then the expressions for the characteristic distances are the same as for rectangular pulses and they can be used to determine the distance to objects. When Δtlas > ΔtIC, in the case of triangular illuminating pulses the RIP is bell-shaped. For trapezoidal pulses, the RIP is bell-shaped with or without a plateau section. We propose an empirical method for determining the characteristic distances to the RIP maximum and the boundary points for the plateau section, which we then use to calculate the distance to the object. Using calibration constants, we propose a method for determining the distance to an object and we have experimentally confirmed the feasibility of this method.

  11. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  12. Design, fabrication, and performance testing of a vacuum chamber for pulse compressor of a 150 TW Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Tripathi, P. K.; Singh, Rajvir; Bhatnagar, V. K.; Sharma, S. D.; Sharma, Sanjay; Sisodia, B.; Yedle, K.; Kushwaha, R. P.; Sebastin, S.; Mundra, G.

    2012-11-01

    A vacuum chamber, to house the optical pulse compressor of a 150 TW Ti:sapphire laser system, has been designed, fabricated, and tested. As the intensity of the laser pulse becomes very high after pulse compression, there is phase distortion of the laser beam in air. Hence, the beam (after pulse compression) has to be transported in vacuum to avoid this distortion, which affects the laser beam focusability. A breadboard with optical gratings and reflective optics for compression of the optical pulse has to be kept inside the chamber. The chamber is made of SS 316L material in cuboidal shape with inside dimensions 1370×1030×650 mm3, with rectangular and circular demountable ports for entry and exit of the laser beam, evacuation, system cables, and ports to access optics mounted inside the chamber. The front and back sides of the chamber are kept demountable in order to insert the breadboard with optical components mounted on it. Leak tightness of 9×10-9 mbar-lit/sec in all the joints and ultimate vacuum of 6.5×10-6 mbar was achieved in the chamber using a turbo molecular pumping system. The paper describe details of the design/ features of the chamber, important procedure involved in machining, fabrication, processing and final testing.

  13. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1995-01-01

    Laser altimeters measure the time of flight of the laser pulses to determine the range of the target. The simplest altimeter receiver consists of a photodetector followed by a leading edge detector. A time interval unit (TIU) measures the time from the transmitted laser pulse to the leading edge of the received pulse as it crosses a preset threshold. However, the ranging error of this simple detection scheme depends on the received, pulse amplitude, pulse shape, and the threshold. In practice, the pulse shape and the amplitude are determined by the target target characteristics which has to be assumed unknown prior to the measurement. The ranging error can be improved if one also measures the pulse width and use the average of the leading and trailing edges (half pulse width) as the pulse arrival time. The ranging error becomes independent of the received pulse amplitude and the pulse width as long as the pulse shape is symmetric. The pulse width also gives the slope of the target. The ultimate detection scheme is to digitize the received waveform and calculate the centroid as the pulse arrival time. The centroid detection always gives unbiased measurement even for asymmetric pulses. In this report, we analyze the laser altimeter ranging errors for these three detection schemes using the Mars Orbital Laser Altimeter (MOLA) as an example.

  14. Pair Production Induced by Ultrashort and Ultraintense Laser Pulses in Plasmas

    NASA Astrophysics Data System (ADS)

    Luo, Yue-E.; Wang, Xue-Wen; Wang, Yuan-Sheng; Ji, Shen-Tong; Yu, Hong

    2018-06-01

    The probability of Schwinger pair production is calculated, which is induced by an ultraintense and ultrashort laser pulse propagating in a plasma. The dependence of the probability on the amplitude of the laser pulse and the frequency of plasmas is analyzed. Particularly, the effect of the pulse duration on the probability is discussed, by introducing a pulse-shape function to describe the temporal shape of the laser pulse. The results show that a laser with shorter pulse is more efficient in pair production. The probability of pair production increases when the order of the duration is comparable to the period of a laser.

  15. Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion.

    PubMed

    Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A

    2005-10-28

    Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  16. Broadband spectral shaping in regenerative amplifier based on modified polarization-encoded chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Wang, Xinliang; Lu, Xiaoming; Liu, Yanqi; Xu, Yi; Wang, Cheng; Li, Shuai; Yu, Linpeng; Liu, Xingyan; Liu, Keyang; Xu, Rongjie; Leng, Yuxin

    2018-06-01

    We present an intra-cavity spectral shaping method to suppress the spectral narrowing in a Ti:sapphire (Ti:Sa) regenerative amplifier. The spectral shaping is realized by manipulating the stored energies of two Ti:Sa crystals with orthogonal c-axes, changing the length of a quartz plate, and rotating a broadband achromatic half-wave plate. Using this method, in our proof-of-concept experiment, an 84-nm-(FWHM)-broadband amplified pulse with an energy gain larger than 106 is obtained, which supports a 17.8 fs Fourier-transform-limited pulse duration. The pulse is compressed to 18.9 fs.

  17. Ultraviolet and near-infrared femtosecond temporal pulse shaping with a new high-aspect-ratio one-dimensional micromirror array.

    PubMed

    Weber, Stefan M; Extermann, Jérôme; Bonacina, Luigi; Noell, Wilfried; Kiselev, Denis; Waldis, Severin; de Rooij, Nico F; Wolf, Jean-Pierre

    2010-09-15

    We demonstrate the capabilities of a new optical microelectromechanical systems device that we specifically developed for broadband femtosecond pulse shaping. It consists of a one-dimensional array of 100 independently addressable, high-aspect-ratio micromirrors with up to 3 μm stroke. We apply linear and quadratic phase modulations demonstrating the temporal compression of 800 and 400 nm pulses. Because of the device's surface flatness, stroke, and stroke resolution, phase shaping over an unprecedented bandwidth is attainable.

  18. Construction and characterization of ultraviolet acousto-optic based femtosecond pulse shapers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcgrane, Shawn D; Moore, David S; Greenfield, Margo T

    2008-01-01

    We present all the information necessary for construction and characterization of acousto optic pulse shapers, with a focus on ultraviolet wavelengths, Various radio-frequency drive configurations are presented to allow optimization via knowledgeable trade-off of design features. Detailed performance characteristics of a 267 nm acousto-optic modulator (AOM) based pulse shaper are presented, Practical considerations for AOM based pulse shaping of ultra-broad bandwidth (sub-10 fs) amplified femtosecond pulse shaping are described, with particular attention paid to the effects of the RF frequency bandwidth and optical frequency bandwidth on the spatial dispersion of the output laser pulses.

  19. Incorporation of a spatial source distribution and a spatial sensor sensitivity in a laser ultrasound propagation model using a streamlined Huygens' principle.

    PubMed

    Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž

    2016-03-01

    The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Experimental study on the pressure wave propagation in the artificial arterial tree in brain

    NASA Astrophysics Data System (ADS)

    Shimada, Shinya; Tsurusaki, Ryo; Iwase, Fumiaki; Matsukawa, Mami; Lagrée, Pierre-Yves

    2018-07-01

    A pulse wave measurement is effective for the early detection of arteriosclerosis. The pulse wave consists of incident and reflected waves. The reflected wave of the pulse wave measured at the left common carotid artery seems to originate from the vascular beds in the brain. The aim of this study is to know if the reflected waves from the occlusions in cerebral arteries can affect the pulse waveform. The artificial arterial tree in the brain was therefore fabricated using polyurethane tubes. After investigating the effects of the bifurcation angle on the pulse waveform, we attempted to confirm whether the reflected waves from occlusions in the artificial arterial tree in the brain can be experimentally measured at the left common carotid artery. Results indicate that the bifurcation angle did not affect the pulse waveform, and that the reflected wave from an occlusion with a diameter of more than 1 mm in the brain could be observed.

  1. Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wake plasma wave.

    PubMed

    Isanin, A V; Bulanov, S S; Kamenets, F F; Pegoraro, F

    2005-03-01

    During the interaction of a low-frequency relativistic soliton with the electron density modulations of a wake plasma wave, part of the electromagnetic energy of the soliton is reflected in the form of an extremely short and ultraintense electromagnetic pulse. We calculate the spectra of the reflected and of the transmitted electromagnetic pulses analytically. The reflected wave has the form of a single cycle attosecond pulse.

  2. Microwave pulse compression from a storage cavity with laser-induced switching

    DOEpatents

    Bolton, Paul R.

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  3. Pulse shape discrimination and classification methods for continuous depth of interaction encoding PET detectors.

    PubMed

    Roncali, Emilie; Phipps, Jennifer E; Marcu, Laura; Cherry, Simon R

    2012-10-21

    In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm(3) phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors.

  4. Pulse Shape Discrimination and Classification Methods for Continuous Depth of Interaction Encoding PET Detectors

    PubMed Central

    Roncali, Emilie; Phipps, Jennifer E.; Marcu, Laura; Cherry, Simon R.

    2012-01-01

    In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2 × 2 × 20 mm3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors. PMID:23010690

  5. Optical integrator for optical dark-soliton detection and pulse shaping.

    PubMed

    Ngo, Nam Quoc

    2006-09-10

    The design and analysis of an Nth-order optical integrator using the digital filter technique is presented. The optical integrator is synthesized using planar-waveguide technology. It is shown that a first-order optical integrator can be used as an optical dark-soliton detector by converting an optical dark-soliton pulse into an optical bell-shaped pulse for ease of detection. The optical integrators can generate an optical step function, staircase function, and paraboliclike functions from input optical Gaussian pulses. The optical integrators may be potentially used as basic building blocks of all-optical signal processing systems because the time integrals of signals may sometimes be required for further use or analysis. Furthermore, an optical integrator may be used for the shaping of optical pulses or in an optical feedback control system.

  6. Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun

    2018-02-01

    Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.

  7. Neutron/ γ-ray digital pulse shape discrimination with organic scintillators

    NASA Astrophysics Data System (ADS)

    Kaschuck, Y.; Esposito, B.

    2005-10-01

    Neutrons and γ-rays produce light pulses with different shapes when interacting with organic scintillators. This property is commonly used to distinguish between neutrons (n) and γ-rays ( γ) in mixed n/ γ fields as those encountered in radiation physics experiments. Although analog electronic pulse shape discrimination (PSD) modules have been successfully used for many years, they do not allow data reprocessing and are limited in count rate capability (typically up to 200 kHz). The performance of a n/ γ digital pulse shape discrimination (DPSD) system by means of a commercial 12-bit 200 MSamples/s transient recorder card is investigated here. Three organic scintillators have been studied: stilbene, NE213 and anthracene. The charge comparison method has been used to obtain simultaneous n/ γ discrimination and pulse height analysis. The importance of DPSD for high-intensity radiation field measurements and its advantages with respect to analog PSD are discussed. Based on post-experiment simulations with acquired data, the requirements for fast digitizers to provide DPSD with organic scintillators are also analyzed.

  8. Pulsed plane wave analytic solutions for generic shapes and the validation of Maxwell's equations solvers

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Vastano, John A.; Lomax, Harvard

    1992-01-01

    Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.

  9. Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Sergeyev, Sergey V.; Mou, Chengbo; Tsatourian, Veronika; Turitsyn, Sergei; Finot, Christophe; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.

    2014-03-01

    We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.

  10. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    NASA Astrophysics Data System (ADS)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  11. Acousto-optic replication of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  12. Use of pre-pulse in laser spot welding of materials with high optical reflection

    NASA Astrophysics Data System (ADS)

    Mys, Ihor; Geiger, Manfred

    2003-11-01

    Laser micro welding has become a standard manufacturing technique, particularly in industry sectors, such as automotive and aerospace electronics or medical devices, where the requirements for strength, miniaturization and temperature resistance are constantly rising. So far the use of laser micro welding is limited due to the fluctuation of the quality of the welded joints, because the welding results for material with high optical reflection and thermal conductivity, such as copper and copper alloys, depend very strongly on the condition of the material surface. This paper presents investigations on the use of a laser pre-pulse in spot welding of electronic materials with Nd:YAG laser. In order to achieve reproducible joining results two strategies are followed-up. The first one utilizes a reflection-based process control for measuring the reflection during the short pre-pulse. The intensity of the reflected light is used to calculate an appropriated welding pulse power, which corresponds to the measured relative absorption. Adjustment of laser parameters according to the condition of the surface is done in real time before laser main pulse. A second possibility for the stabilization of copper welding is the employment of a short and powerful laser pre-pulse before laser main pulse. This pre-pulse affects the workpiece surface and creates more reproducible absorption conditions for the main pulse, independent from the initial situation on material surface.

  13. [Low level alpha activity measurements with pulse shape discrimination--the analytical system and its characteristics].

    PubMed

    Noguchi, M; Satoh, K; Higuchi, H

    1984-12-01

    Pulse shape discrimination of alpha and beta rays with liquid scintillation counting was investigated for the purpose of low level alpha activity measurements. Various liquid scintillators for pulse shape discrimination were examined by means of pulse rise time analysis. A new scintillator of low cost and of superior characteristics was found. The figure of merits better than 3.5 in rise time spectrum and the energy resolution better than 9% were obtained for carefully prepared samples. The background counting rate for a sample of 10 ml was reduced to 0.013 cpm/MeV in the range of alpha ray energy 5 to 7 MeV.

  14. NONLINEAR OPTICAL PHENOMENA: Self-reflection effect in semiconductors in a two-pulse regime

    NASA Astrophysics Data System (ADS)

    Khadzhi, P. I.; Nad'kin, L. Yu

    2004-12-01

    Peculiarities of reflection at the end face of a semi-infinite semiconductor in a two-pulse regime are studied. The reflection functions behave in a complex and ambiguous manner governed by the amplitudes of the fields of incident pulses. The possibility of a complete bleaching of the medium for the field in the M-band is predicted.

  15. Mach stem formation in reflection and focusing of weak shock acoustic pulses.

    PubMed

    Karzova, Maria M; Khokhlova, Vera A; Salze, Edouard; Ollivier, Sébastien; Blanc-Benon, Philippe

    2015-06-01

    The aim of this study is to show the evidence of Mach stem formation for very weak shock waves with acoustic Mach numbers on the order of 10(-3) to 10(-2). Two representative cases are considered: reflection of shock pulses from a rigid surface and focusing of nonlinear acoustic beams. Reflection experiments are performed in air using spark-generated shock pulses. Shock fronts are visualized using a schlieren system. Both regular and irregular types of reflection are observed. Numerical simulations are performed to demonstrate the Mach stem formation in the focal region of periodic and pulsed nonlinear beams in water.

  16. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  17. Comparison of laboratory and ambulatory measures of central blood pressure and pulse wave reflection: hitting the target or missing the mark?

    PubMed

    Burns, Matthew J; Seed, Jeremy D; Incognito, Anthony V; Doherty, Connor J; Notay, Karambir; Millar, Philip J

    2018-04-01

    Prior studies demonstrating clinical significance of noninvasive estimates of central blood pressure (BP) and pulse wave reflection have relied primarily on discrete resting measures. The aim of this study was to compare central BP and pulse wave reflection measures sampled during a single resting laboratory visit against those obtained under ambulatory conditions. The secondary aim was to investigate the reproducibility of ambulatory central BP and pulse wave reflection measurements. Forty healthy participants (21 males; 24 ± 3 years) completed three measurements of brachial artery pulse wave analysis (Oscar 2 with SphygmoCor Inside) in the laboratory followed by 24 hours of ambulatory monitoring. Seventeen participants repeated the 24-hour ambulatory monitoring visit after at least 1 week. Ambulatory measures were divided into daytime (9 AM-9 PM), nighttime (1 AM-6 AM), and 24-hour periods. Compared with laboratory measurements, central systolic BP, augmentation pressure, and augmentation index (with and without heart rate normalization) were higher (all P < .01) during daytime and 24-hour periods but lower during the nighttime period (all P < .001). The drop in nighttime brachial systolic BP was larger than central systolic pressure (Δ -20 ± 6 vs. -15 ± 6 mm Hg; P < .0001). Repeat ambulatory measurements of central BP and pulse wave reflection displayed good-to-excellent intraclass correlation coefficients (r = 0.58-0.86; all P < .01), although measures of pulse wave reflection had higher coefficients of variation (14%-41%). The results highlight absolute differences in central BP and pulse wave reflection between discrete laboratory and ambulatory conditions. The use of ambulatory measures of central BP and pulse wave reflection warrant further investigation for clinical prognostic value. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.

  18. Optical method for the determination of stress in thin films

    DOEpatents

    Maris, H.J.

    1999-01-26

    A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer. 16 figs.

  19. Optical method for the determination of stress in thin films

    DOEpatents

    Maris, Humphrey J.

    1999-01-01

    A method and optical system is disclosed for measuring an amount of stress in a film layer disposed over a substrate. The method includes steps of: (A) applying a sequence of optical pump pulses to the film layer, individual ones of said optical pump pulses inducing a propagating strain pulse in the film layer, and for each of the optical pump pulses, applying at least one optical probe pulse, the optical probe pulses being applied with different time delays after the application of the corresponding optical probe pulses; (B) detecting variations in an intensity of a reflection of portions of the optical probe pulses, the variations being due at least in part to the propagation of the strain pulse in the film layer; (C) determining, from the detected intensity variations, a sound velocity in the film layer; and (D) calculating, using the determined sound velocity, the amount of stress in the film layer. In one embodiment of this invention the step of detecting measures a period of an oscillation in the intensity of the reflection of portions of the optical probe pulses, while in another embodiment the step of detecting measures a change in intensity of the reflection of portions of the optical probe pulses and determines a time at which the propagating strain pulse reflects from a boundary of the film layer.

  20. Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system

    NASA Astrophysics Data System (ADS)

    Morita, Ken; Shiozawa, Kento; Suizu, Koji; Ishitani, Yoshihiro

    2018-05-01

    To achieve the phase matching condition in terahertz (THz) pulse generation by the tilted pulse front technique, it is necessary to rebuild the entire optical setup if the optical conditions, such as excitation wavelength, temperature of nonlinear crystal, and output THz frequency, are changed. We propose THz pulse generation by the tilted pulse front technique using an M-shaped configuration. This system allows us to change the optical conditions only by tuning a few optics and without rebuilding the entire setup. We change the excitation wavelength at a fixed radiation frequency and assess the performance of the proposed system.

  1. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devol, Timothy A.

    2005-06-01

    Comparison of different pulse shape discrimination methods was performed under two different experimental conditions and the best method was identified. Beta/gamma discrimination of 90Sr/90Y and 137Cs was performed using a phoswich detector made of BC400 (2.5 cm OD x 1.2 cm) and BGO (2.5 cm O.D. x 2.5 cm ) scintillators. Alpha/gamma discrimination of 210Po and 137Cs was performed using a CsI:Tl (2.8 x 1.4 x 1.4 cm3) scintillation crystal. The pulse waveforms were digitized with a DGF-4c (X-Ray Instrumentation Associates) and analyzed offline with IGOR Pro software (Wavemetrics, Inc.). The four pulse shape discrimination methods that were compared include:more » rise time discrimination, digital constant fraction discrimination, charge ratio, and constant time discrimination (CTD) methods. The CTD method is the ratio of the pulse height at a particular time after the beginning of the pulse to the time at the maximum pulse height. The charge comparison method resulted in a Figure of Merit (FoM) of 3.3 (9.9 % spillover) and 3.7 (0.033 % spillover) for the phoswich and the CsI:Tl scintillator setups, respectively. The CTD method resulted in a FoM of 3.9 (9.2 % spillover) and 3.2 (0.25 % spillover), respectively. Inverting the pulse shape data typically resulted in a significantly higher FoM than conventional methods, but there was no reduction in % spillover values. This outcome illustrates that the FoM may not be a good scheme for the quantification of a system to perform pulse shape discrimination. Comparison of several pulse shape discrimination (PSD) methods was performed as a means to compare traditional analog and digital PSD methods on the same scintillation pulses. The X-ray Instrumentation Associates DGF-4C (40 Msps, 14-bit) was used to digitize waveforms from a CsI:Tl crystal and BC400/BGO phoswich detector.« less

  2. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    PubMed Central

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-01-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science. PMID:25650004

  3. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore » from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  4. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  5. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE PAGES

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; ...

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore » from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  6. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fraggelakis, F.; Stratakis, E.; Loukakos, P. A.

    2018-06-01

    We demonstrate the capability to exercise advanced control on the laser-induced periodic surface structures (LIPSS) on silicon by combining the effect of temporal shaping, via tuning the interpulse temporal delay between double femtosecond laser pulses, along with the independent manipulation of the polarization state of each of the individual pulses. For this, cross-polarized (CP) as well as counter-rotating (CR) double circularly polarized pulses have been utilized. The pulse duration was 40 fs and the central wavelength of 790 nm. The linearly polarized double pulses are generated by a modified Michelson interferometer allowing the temporal delay between the pulses to vary from Δτ = -80 ps to Δτ = +80 ps with an accuracy of 0.2 fs. We show the significance of fluence balance between the two pulse components and its interplay with the interpulse delay and with the order of arrival of the individually polarized pulse components of the double pulse sequence on the final surface morphology. For the case of CR pulses we found that when the pulses are temporally well separated the surface morphology attains no axial symmetry. But strikingly, when the two CP pulses temporally overlap, we demonstrate, for the first time in our knowledge, the detrimental effect that the phase delay has on the ripple orientation. Our results provide new insight showing that temporal pulse shaping in combination with polarization control gives a powerful tool for drastically controlling the surface nanostructure morphology.

  7. Proximity fuze

    DOEpatents

    Harrison, Thomas R.

    1989-08-22

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation cirtcuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance form the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.

  8. Pulse shaping of on-chip microresonator frequency combs: investigation of temporal coherence

    NASA Astrophysics Data System (ADS)

    Ferdous, F.; Miao, H.; Leaird, D. E.; Srinivasan, K.; Chen, L.; Aksyuk, V.; Weiner, A. M.

    2013-03-01

    We use pulse shaping to investigate the temporal coherence of frequency combs generated in microresonators pumped by a strong CW laser. We observe that different groups of comb lines have different mutual coherence.

  9. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  10. Transparent plastic scintillators for neutron detection based on lithium salicylate

    DOE PAGES

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; ...

    2015-10-14

    Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported in this paper. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Finally, reduction in light yield andmore » pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.« less

  11. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    PubMed

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  12. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  13. Imaging and detection of mines from acoustic measurements

    NASA Astrophysics Data System (ADS)

    Witten, Alan J.; DiMarzio, Charles A.; Li, Wen; McKnight, Stephen W.

    1999-08-01

    A laboratory-scale acoustic experiment is described where a buried target, a hockey puck cut in half, is shallowly buried in a sand box. To avoid the need for source and receiver coupling to the host sand, an acoustic wave is generated in the subsurface by a pulsed laser suspended above the air-sand interface. Similarly, an airborne microphone is suspended above this interface and moved in unison with the laser. After some pre-processing of the data, reflections for the target, although weak, could clearly be identified. While the existence and location of the target can be determined by inspection of the data, its unique shape can not. Since target discrimination is important in mine detection, a 3D imaging algorithm was applied to the acquired acoustic data. This algorithm yielded a reconstructed image where the shape of the target was resolved.

  14. Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe -decay searches

    NASA Astrophysics Data System (ADS)

    Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.

    2015-07-01

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.

  15. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Delaney, A.; Arcone, S.

    2005-12-01

    We have used 400-MHz ground penetrating radar (GPR) to detect crevasses within a shear zone on the Ross Ice Shelf, Antarctica, to support traverse operations. The transducer was attached to a 6.5-m boom and pushed ahead of an enclosed tracked vehicle. Profile speeds of 4.8-11.3 km / hr allowed real-time crevasse image display and a quick, safe stop when required. Thirty-two crevasses were located with radar along the 4.8 km crossing. Generally, crevasse radar images were characterized by dipping reflections above the voids, high-amplitude reflections originating from ice layers at the base of the snow-bridges, and slanting, diffracting reflections from near-vertical crevasse walls. New cracks and narrow crevasses (<50 cm width) show no distinct snow bridge structure, few diffractions, and a distinct band where pulse reflections are absent. Wide (0.5-5.0 m), vertical wall crevasses show distinct dipping snow bridge layering and intense diffractions from ice layers near the base of the snow bridge. Pulse reflections are absent from voids beneath the snow bridges. Old, wide (3.0-8.0 m) and complexly shaped crevasses show well-developed, broad, dipping snow-bridge layers and a high-amplitude, complex, diffraction pattern. The crevasse mitigation process, which included hot-water drilling, destroying the bridges with dynamite, and back-filling with bulldozed snow, afforded an opportunity to ground-truth GPR interpretations by comparing void size and snow-bridge geometry with the radar images. While second and third season radar profiles collected along the identical flagged route confirmed stability of the filled crevasses, those profiles also identified several new cracks opened by ice extension. Our experiments demonstrate capability of high-frequency GPR in a cold-snow environment for both defining snow layers and locating voids.

  16. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.

    PubMed

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel

    2013-07-29

    Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

  17. Strong Field Optical and Quantum Control

    NASA Astrophysics Data System (ADS)

    Schumacher, Douglass William

    1995-01-01

    This work presents the results of an effort to use unique forms of optical radiation to better probe and control matter. Results are presented of a study of intense field photo-ionization of krypton and xenon in a two-color field. The use of a two-color field provides a valuable probe, the relative optical phase, into the dynamics of the ionization process. It is found that phase dependent tunneling character is preserved even though the photoelectron spectra indicate that the experiments performed were well into the multi-photon regime of ionization. Evidence for core scattering of the departing electrons is seen in the changes to the phase dependent spectra as the polarization of the exciting light is varied from linear to slightly elliptical. To further control the optical field, a pulse shaper was constructed using liquid crystal modulators that allowed either spectral phase or spectral amplitude shaping of a short pulse. The results were characterized using cross-correlations. The shaped light was then subsequently amplified in a chirped pulse amplifier. This light was characterized using Frequency Resolved Optical Gating, a newly developed technique for the complete determination of the optical field in a short pulse. The shaped pulses were then used to tailor atomic radial wavepackets in cesium. The evolution of the wavepackets was monitored by measuring atomic auto-interferograms for the case of amplitude shaping, which was used to control the atomic states excited. Cross -interferograms were used for phase shaping, which was used to select the initial phase of the atomic states. The cross-interferograms required the simultaneous amplification of a shaped and an unshaped pulse in our amplifier.

  18. Control of Chemical Dynamics Using Arbitrary Shaped Optical Pulses and Laser-Enhanced NMR Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Goswami, Debabrata

    A key feature of this thesis is the application of novel laser techniques to various fields of spectroscopy. The overall effort has been towards achieving either chemical control or enhanced spectroscopic resolution. The issue of chemical control forms the major bulk. Over the past decade, theoretical and technological developments have made it possible for a modern day chemist to be a more active participant in nature's chemical processes. Consequently, although the idea of manipulating chemical reactions has been a long term dream, it is only now that realization of such dreams has become realistic. One of the major contributions that is leading towards this realization is the development of pulse shaping techniques. Here, we concentrate on the important developments in this area that has come by recently, particularly emphasizing new results from our laboratory. We discuss in detail the current state-of-the-art, and present some experimental and theoretical demonstrations of chemical control by using arbitrarily shaped pulses. The major strength of our approach to pulse shaping has been in considering "robustness in the laboratory" as a primary constraint. Most of the shapes, addressed here, work under adiabatic conditions where the exact shape of the pulse is not critical as long as the basic criteria dictated by the adiabatic theorem are satisfied. A novel approach of "molecular pulse shaping"--using the molecule itself to generate its own pulse shape--is presented as an example of the ultimate form of robustness. Finally, we get into the issue of resolution enhancement by coupling laser radiation into a Nuclear Magnetic Resonance (NMR) spectrometer. Spectroscopic resolution enhancement is an everlasting effort in the field of NMR--even more for biological NMR. We present some of the recent experimental findings in our laboratory that show selective dispersion in the NMR spectrum when it is acquired under a non-resonant laser irradiation of the sample. Albeit promising, the observed effects are weak and the theoretical understanding of these experiments is not profound enough for implementing any immediate applications.

  19. Influence of angular acceleration-deceleration pulse shapes on regional brain strains.

    PubMed

    Yoganandan, Narayan; Li, Jianrong; Zhang, Jiangyue; Pintar, Frank A; Gennarelli, Thomas A

    2008-07-19

    Recognizing the association of angular loading with brain injuries and inconsistency in previous studies in the application of the biphasic loads to animal, physical, and experimental models, the present study examined the role of the acceleration-deceleration pulse shapes on region-specific strains. An experimentally validated two-dimensional finite element model representing the adult male human head was used. The model simulated the skull and falx as a linear elastic material, cerebrospinal fluid as a hydrodynamic material, and cerebrum as a linear viscoelastic material. The angular loading matrix consisted coronal plane rotation about a center of rotation that was acceleration-only (4.5 ms duration, 7.8 krad/s/s peak), deceleration-only (20 ms, 1.4 krad/s/s peak), acceleration-deceleration, and deceleration-acceleration pulses. Both biphasic pulses had peaks separated by intervals ranging from 0 to 25 ms. Principal strains were determined at the corpus callosum, base of the postcentral sulcus, and cerebral cortex of the parietal lobe. The cerebrum was divided into 17 regions and peak values of average maximum principal strains were determined. In all simulations, the corpus callosum responded with the highest strains. Strains were the least under all simulations in the lower parietal lobes. In all regions peak strains were the same for both monophase pulses suggesting that the angular velocity may be a better metric than peak acceleration or deceleration. In contrast, for the biphasic pulse, peak strains were region- and pulse-shape specific. Peak values were lower in both biphasic pulses when there was no time separation between the pulses than the corresponding monophase pulse. Increasing separation time intervals increased strains, albeit non-uniformly. Acceleration followed by deceleration pulse produced greater strains in all regions than the other form of biphasic pulse. Thus, pulse shape appears to have an effect on regional strains in the brain.

  20. Breath Activity Monitoring With Wearable UWB Radars: Measurement and Analysis of the Pulses Reflected by the Human Body.

    PubMed

    Pittella, Erika; Pisa, Stefano; Cavagnaro, Marta

    2016-07-01

    Measurements of ultrawideband (UWB) pulses reflected by the human body are conducted to evidence the differences in the received signal time behaviors due to respiration phases, and to experimentally verify previously obtained numerical results on the body's organs responsible for pulse reflection. Two experimental setups are used. The first one is based on a commercially available impulse radar system integrated on a single chip, while the second one implements an indirect time-domain reflectometry technique using a vector network analyzer controlled by a LabVIEW virtual instrument running on a laptop. When the UWB source is placed close to the human body, a small reflection due to the lung boundaries is present in the received pulse well distanced in time from the reflection due to the air-skin interface; this reflection proved to be linked to the different respiration phases. The changes in the reflected pulse could be used to detect, through wearable radar systems, lung movements associated with the breath activity. The development of a wearable radar system is of great importance because it allows the breath activity sensing without interfering with the subject daily activities.

  1. Variable-pulse-shape pulsed-power accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltzfus, Brian S.; Austin, Kevin; Hutsel, Brian Thomas

    A variable-pulse-shape pulsed-power accelerator is driven by a large number of independent LC drive circuits. Each LC circuit drives one or more coaxial transmission lines that deliver the circuit's output power to several water-insulated radial transmission lines that are connected in parallel at small radius by a water-insulated post-hole convolute. The accelerator can be impedance matched throughout. The coaxial transmission lines are sufficiently long to transit-time isolate the LC drive circuits from the water-insulated transmission lines, which allows each LC drive circuit to be operated without being affected by the other circuits. This enables the creation of any power pulsemore » that can be mathematically described as a time-shifted linear combination of the pulses of the individual LC drive circuits. Therefore, the output power of the convolute can provide a variable pulse shape to a load that can be used for magnetically driven, quasi-isentropic compression experiments and other applications.« less

  2. Pulse shape optimization for electron-positron production in rotating fields

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve

    2017-07-01

    We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.

  3. Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture.

    PubMed

    Wang, Shiguang; Chen, Hongwei; Xin, Ming; Chen, Minghua; Xie, Shizhong

    2009-10-15

    A simple and feasible technique for ultra-wide-band (UWB) pulse bipolar modulation (PBM) and pulse shape modulation (PSM) in the optical domain is proposed and demonstrated. The PBM and PSM are performed using a symmetric phase modulation to intensity modulation conversion architecture, including a couple of phase modulators and an optical bandpass filter (OBPF). Two optical carriers, which are separately phase modulated by two appropriate electrical pulse patterns, are at the long- and short-wavelength linear slopes of the OBPF spectrum, respectively. The high-speed PBM and PSM without limit of chip length, polarity, and shape are implemented in simulation and are also verified by experiment. (c) 2009 Optical Society of America.

  4. Testing low-mode symmetry control with low-adiabat, extended pulse-lengths in BigFoot implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, Matthias; Casey, D. T.; Thomas, C. A.; Baker, K. L.; Spears, B. K.; Khan, S. F.; Hurricane, O. A.; Callahan, D.

    2017-10-01

    The Bigfoot approach to indirect-drive inertial confinement fusion (ICF) has been developed as a compromise trading high-convergence and areal densities for high implosion velocities, large adiabats and hydrodynamic stability. Shape control and predictability are maintained by using relatively short laser pulses and merging the shocks within the DT-ice layer. These design choices ultimately limit the theoretically achievable performance, and one strategy to increase the 1-D performance is to reduce the shell adiabat by extending the pulse shape. However, this can result in loss of low-mode symmetry control, as the hohlraum ``bubble,'' the high-Z material launched by the outer-cone beams during the early part of the laser pulse, has more time to expand and will eventually intercept inner-cone beams preventing them from reaching the hohlraum waist, thus losing equatorial capsule drive. We report on experimental results exploring shape control and predictability with extended pulse shapes in BigFoot implosions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  6. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  7. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  8. Hotspot activity and plume pulses recorded by geometry of spreading axes

    NASA Astrophysics Data System (ADS)

    Abelson, Meir; Agnon, Amotz

    2001-06-01

    Anomalous plan view geometry (planform) of spreading axes is shown to be a faithful indicator of hotspot influence, possibly capable of detecting pulses of hotspot discharge. A planform anomaly (PA) occurs when the orientation of second-order ridge segments is prominently oblique to the spreading direction. PA is found in the vicinity of hotspots at shallow ridges (<1.5 km), suggesting hotspot influence. In places the PA and shallow bathymetry are accompanied by geochemical anomalies, corroborating hotspot influence. This linkage is best expressed in the western Gulf of Aden, where the extent of the PA from the Afar hotspot coincides with the extent of La/Sm and Sr isotopic anomalies. Using fracture mechanics we predict PA to reflect overpressurized melt that dominates the stresses in the crust, consistent with hotspot regime. Accordingly, the temporal variations of the planform previously inferred from magnetic anomalies around the Kolbeinsey Ridge (KR), north of Iceland, record episodes of interaction with the hotspot and major pulses of the plume. This suggestion is corroborated by temporal correlation of episodes showing PA north of Iceland with plume pulses previously inferred by the V-shaped ridges around the Reykjanes Ridge (RR), south of Iceland. In contrast to the RR, the temporal correlation suggests simultaneous incidence of the plume pulses at Iceland and KR, hundreds of kilometers to the north. A deep northward branch of the Iceland plume active during pulse-periods may explain these observations.

  9. Unitary scintillation detector and system

    DOEpatents

    McElhaney, Stephanie A.; Chiles, Marion M.

    1994-01-01

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations.

  10. Extension of FRI for modeling of electrocardiogram signals.

    PubMed

    Quick, R Frank; Crochiere, Ronald E; Hong, John H; Hormati, Ali; Baechler, Gilles

    2012-01-01

    Recent work has developed a modeling method applicable to certain types of signals having a "finite rate of innovation" (FRI). Such signals contain a sparse collection of time- or frequency-limited pulses having a restricted set of allowable pulse shapes. A limitation of past work on FRI is that all of the pulses must have the same shape. Many real signals, including electrocardiograms, consist of pulses with varying widths and asymmetry, and therefore are not well fit by the past FRI methods. We present an extension of FRI allowing pulses having variable pulse width (VPW) and asymmetry. We show example results for electrocardiograms and discuss the possibility of application to signal compression and diagnostics.

  11. A Fiber-Optic System Generating Pulses of High Spectral Density

    NASA Astrophysics Data System (ADS)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  12. Unitary scintillation detector and system

    DOEpatents

    McElhaney, S.A.; Chiles, M.M.

    1994-05-31

    The invention is a unitary alpha, beta, and gamma scintillation detector and system for sensing the presence of alpha, beta, and gamma radiations selectively or simultaneously. The scintillators are mounted in a light-tight housing provided with an entrance window for admitting alpha, beta, and gamma radiation and excluding ambient light from the housing. Light pulses from each scintillator have different decay constants that are converted by a photosensitive device into corresponding differently shaped electrical pulses. A pulse discrimination system identifies the electrical pulses by their respective pulse shapes which are determined by decay time. The identified electrical pulses are counted in separate channel analyzers to indicate the respective levels of sensed alpha, beta, and gamma radiations. 10 figs.

  13. Shaping and timing gradient pulses to reduce MRI acoustic noise.

    PubMed

    Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M

    2010-08-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.

  14. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  15. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  16. Adding a dimension to the infrared spectra of interfaces: 2D SFG spectroscopy via mid-IR pulse shaping

    NASA Astrophysics Data System (ADS)

    Zanni, Martin

    2012-02-01

    Sum-frequency generation spectroscopy provides an infrared spectrum of interfaces and thus has widespread use in the materials and chemical sciences. In this presentation, I will present our recent work in developing a 2D pulse sequence to generate 2D SFG spectra of interfaces, in analogy to 2D infrared spectra used to measure bulk species. To develop this spectroscopy, we have utilized many of the tricks-of-the-trade developed in the 2D IR and 2D Vis communities in the last decade, including mid-IR pulse shaping. With mid-IR pulse shaping, the 2D pulse sequence is manipulated by computer programming in the desired frequency resolution, rotating frame, and signal pathway. We believe that 2D SFG will become an important tool in the interfacial sciences in an analogous way that 2D IR is now being used in many disciplines.

  17. Repetitive output laser system and method using target reflectivity

    DOEpatents

    Johnson, Roy R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target reflection.

  18. Orthogonal on-off control of radar pulses for the suppression of mutual interference

    NASA Astrophysics Data System (ADS)

    Kim, Yong Cheol

    1998-10-01

    Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.

  19. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  20. Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages.

    PubMed

    Laaser, Jennifer E; Xiong, Wei; Zanni, Martin T

    2011-03-24

    Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra. © 2011 American Chemical Society

  1. Computationally efficient optimization of radiation drives

    NASA Astrophysics Data System (ADS)

    Zimmerman, George; Swift, Damian

    2017-06-01

    For many applications of pulsed radiation, the temporal pulse shape is designed to induce a desired time-history of conditions. This optimization is normally performed using multi-physics simulations of the system, adjusting the shape until the desired response is induced. These simulations may be computationally intensive, and iterative forward optimization is then expensive and slow. In principle, a simulation program could be modified to adjust the radiation drive automatically until the desired instantaneous response is achieved, but this may be impracticable in a complicated multi-physics program. However, the computational time increment is typically much shorter than the time scale of changes in the desired response, so the radiation intensity can be adjusted so that the response tends toward the desired value. This relaxed in-situ optimization method can give an adequate design for a pulse shape in a single forward simulation, giving a typical gain in computational efficiency of tens to thousands. This approach was demonstrated for the design of laser pulse shapes to induce ramp loading to high pressure in target assemblies where different components had significantly different mechanical impedance, requiring careful pulse shaping. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  3. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  4. Logic circuit detects both present and missing negative pulses in superimposed wave trains

    NASA Technical Reports Server (NTRS)

    Rice, R. E.

    1967-01-01

    Pulse divide and determination network provides a logical determination of pulse presence within a data train. The network uses digital logic circuitry to divide positive and negative pulses, to shape the separated pulses, and to determine, by means of coincidence logic, if negative pulses are missing from the pulse train.

  5. Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems

    NASA Astrophysics Data System (ADS)

    Slotboom, J.

    1993-10-01

    This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.

  6. Study and Characterization of Subharmonic Emissions by Using Shaped Ultrasonic Driving Pulse

    NASA Astrophysics Data System (ADS)

    Masotti, L.; Biagi, E.; Breschi, L.; Vannacci, E.

    Subharmonic emissions from Ultrasound Contrast Agents (UCAs) were studied by a Pulse Inversion method in order to assess the feasibility of implementation of this technique to subharmonic imaging. Interesting results concerning the dependence of the subharmonic emission with respect to initial pulse shape are presented. The experimentation was performed also by varying the acoustic pressure and concentration of the contrast agent (SonoVue®)

  7. Multi-pulse multi-delay (MPMD) multiple access modulation for UWB

    DOEpatents

    Dowla, Farid U.; Nekoogar, Faranak

    2007-03-20

    A new modulation scheme in UWB communications is introduced. This modulation technique utilizes multiple orthogonal transmitted-reference pulses for UWB channelization. The proposed UWB receiver samples the second order statistical function at both zero and non-zero lags and matches the samples to stored second order statistical functions, thus sampling and matching the shape of second order statistical functions rather than just the shape of the received pulses.

  8. Effect of Pulse Shape on Spall Strength

    NASA Astrophysics Data System (ADS)

    Smirnov, V. I.; Petrov, Yu. V.

    2018-03-01

    This paper analyzes the effect of the time-dependent shape of a load pulse on the spall strength of materials. Within the framework of a classical one-dimensional scheme, triangular pulses with signal rise and decay portions and with no signal rise portions considered. Calculation results for the threshold characteristics of fracture for rail steel are given. The possibility of optimization of fracture by selecting a loading time with the use of an introduced characteristic of dynamic strength (pulse fracture capacity) is demonstrated. The study is carried out using a structure-time fracture criterion.

  9. Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm.

    PubMed

    Tulea, Cristian-Alexander; Caron, Jan; Gehlich, Nils; Lenenbach, Achim; Noll, Reinhard; Loosen, Peter

    2015-10-01

    Hard-tissue ablation was already investigated for a broad variety of pulsed laser systems, which cover almost the entire range of available wavelengths and pulse parameters. Most effective in hard-tissue ablation are Er:YAG and CO2 lasers, both utilizing the effect of absorption of infrared wavelengths by water and so-called explosive vaporization, when a thin water film or water–air spray is supplied. The typical flow rates and the water layer thicknesses are too low for surgical applications where bleeding occurs and wound flushing is necessary. We studied a 20 W ps-laser with 532 nm wavelength and a pulse energy of 1 mJ to effectively ablate bones that are submerged 14 mm under water. For these laser parameters, the plasma-mediated ablation mechanism is dominant. Simulations based on the blow-off model predict the cut depth and cross-sectional shape of the incision. The model is modified considering the cross section of the Gaussian beam, the incident angle, and reflections. The ablation rate amounts to 0.2  mm3/s, corresponding to an increase by at least 50% of the highest values published so far for ultrashort laser ablation of hard tissue.

  10. Considerations in the Design of Future Planetary Laser Altimeters

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Sun, X.

    2017-12-01

    Planetary laser altimeters have generally been designed to provide high accuracy measurements of the nadir range to an uncooperative surface for deriving the shape of the target body, and sometimes specifically for identifying and characterizing potential landing sites. However, experience has shown that in addition to the range measurement, other valuable observations can be acquired, including surface reflectance and surface roughness, despite not being given high priority in the original altimeter design or even anticipated. After nearly 2 decades of planetary laser altimeter design, the requirements are evolving and additional capabilities are becoming equally important. The target bodies, once the terrestrial planets, are now equally asteroids and moons that in many cases do not permit simple orbital operations due to their small mass, radiation issues, or spacecraft fuel limitations. In addition, for a number of reasons, it has become necessary to perform shape determination from a much greater range, even thousands of kilometers, and thus ranging is becoming as important as nadir altimetry. Reflectance measurements have also proved important for assessing the presence of ice, water or CO2, and laser pulse spreading informed knowledge of surface roughness; all indicating a need for improved instrument capability. Recently, the need to obtain accurate range measurement to laser reflectors on landers or on a planetary surface is presenting new science opportunities but for which current designs are far from optimal. These changes to classic laser altimetry have consequences for many instrument functions and capabilities, including beam divergence, laser power, number of beams and detectors, pixelation, energy measurements, pointing stability, polarization, laser wavelengths, and laser pulse rate dependent range. We will discuss how a new consideration of these trades will help make lidars key instruments to execute innovative science in future planetary missions.

  11. Wavelength stabilized high pulse power laser diodes for automotive LiDAR

    NASA Astrophysics Data System (ADS)

    Knigge, A.; Klehr, A.; Wenzel, H.; Zeghuzi, A.; Fricke, J.; Maaßdorf, A.; Liero, A.; Tränkle, G.

    2018-03-01

    Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components of systems for free-space communication, metrology, material processing, spectroscopy, and light detection and ranging (LiDAR) as needed for object detection and autonomous driving. Automotive LiDAR systems demand additionally a good beam quality and low wavelength shift with temperature due to the wide operating temperature span. We present here internally wavelength stabilized lasers emitting ns optical pulses from an emission aperture between 30 μm and 100 μm with peak powers of tens of Watts at wavelengths around 905 nm. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is especially optimized for pulsed operation with respect to the implementation of a surface Bragg grating with a high reflectivity. The fabricated 6 mm long distributed Bragg reflector (DBR) broad area (BA) lasers are electrically driven by an in-house developed high-speed unit generating 3 to 10 ns long nearly rectangular shaped current pulses with amplitudes of up to 250 A. Such lasers emit optical pulses with a peak power of more than 30 W at 95 A pulse current up to a temperature of 85°C with a wavelength shift as low as 65 pm/K and a lateral beam propagation factor less than 10. The influence of the lateral aperture width and the pulse length on the beam quality will be shown. A monolithic integration of 3 DBR BA lasers on a single chip whose emission can be combined into a single beam raises the output power to more than 100 W.

  12. Proximity fuze

    DOEpatents

    Harrison, T.R.

    1987-07-10

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.

  13. Proximity fuze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, T.R.

    1987-07-10

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the lightmore » pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.« less

  14. Proximity fuze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, T.R.

    1989-08-22

    A proximity fuze system is described. It includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal dependingmore » upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.« less

  15. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru; Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow; Yuldashev, P.

    2015-10-28

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thinmore » laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.« less

  16. Ring-shaped pulse oximeter and its application: measurement of SpO2 and blood pressure during sleep and during flight.

    PubMed

    Kishimoto, Aya; Tochikubo, Osamu; Ohshige, Kenji; Yanaga, Akihiko

    2005-01-01

    Respiratory and cardiovascular functions show circadian and day-to-day changes. We have developed a wireless ring-shaped pulse oximeter in collaboration with MC Medical Inc. and Advanced Medical Inc. We investigated the accuracy of this pulse oximeter and its application in daily life. Percutaneous arterial oxygen saturation (SpO2) of 47 volunteers was measured simultaneously with the ring-shaped pulse oximeter and a standard pulse oximeter. A total of 103 volunteers underwent measurement of SpO2 for 24 hr, and 11 healthy volunteers underwent measurement of SpO2 and blood pressure (BP) during flight. SpO2 and heart rate (HR) were measured and recorded every 20 sec, cabin barometric pressure and cabin oxygen concentration equivalent to sea level were measured minute-to-minute, and BP was measured every 3 min with a portable BP recorder during each flight. The SpO2 values measured with the ring-shaped pulse oximeter were similar to those measured with the standard method. The mean SpO2 during sleep was significantly lower in the group with high-normal BP or mild hypertension than in the group with normal BP. During flight, the mean change in SpO2 was -2.4 +/- 1.7% during nose-up flight, and 2.1 +/- 2.6% during nose-down flight. There was a significant correlation between change in SpO2 and change in systolic BP during nose-up flight. The wireless ring-shaped pulse oximeter was useful for investigating changes in SpO2 and its effect on BP in daily life during sleep and during air travel.

  17. Laser pulse bidirectional reflectance from CALIPSO mission

    NASA Astrophysics Data System (ADS)

    Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Vaughan, Mark; Liu, Zhaoyan; Rodier, Sharon; Hunt, William; Powell, Kathy; Lucker, Patricia; Trepte, Charles

    2018-06-01

    This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. To better analyze the surface returns, the CALIOP receiver impulse response and the downlinked samples' distribution at 30 m vertical resolution are discussed. The saturated laser pulse magnitudes from snow and ice surfaces are recovered based on information extracted from the tail end of the surface signal. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud-covered regions and MODIS BRDF-albedo model parameters. In addition to the surface bidirectional reflectance, the column top-of-atmosphere bidirectional reflectances are calculated from the CALIOP lidar background data and compared with the bidirectional reflectances derived from WFC radiance measurements. The retrieved CALIOP surface bidirectional reflectance and column top-of-atmosphere bidirectional reflectance results provide unique information to complement existing MODIS standard data products and are expected to have valuable applications for modelers.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Milovich, J. L.; Hinkel, D. E.

    Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes couldmore » be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.« less

  19. Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes

    NASA Astrophysics Data System (ADS)

    Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.

  20. Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumada, Takayuki, E-mail: kumada.takayuki@jaea.go.jp; Otobe, Tomohito; Nishikino, Masaharu

    2016-01-04

    The dynamics of photomechanical spallation during femtosecond laser ablation of fused silica was studied by time-resolved reflectivity with double pump pulses. Oscillation of reflectivity was caused by interference between the probe pulses reflected at the sample surface and the spallation layer, and was enhanced when the surface was irradiated with the second pump pulse within a time interval, Δτ, of several picoseconds after the first pump pulse. However, as Δτ was increased, the oscillation amplitude decreased with an exponential decay time of 10 ps. The oscillation disappeared when Δτ exceeded 20 ps. This result suggests that the formation time of the spallationmore » layer is approximately 10 ps. A second pump pulse with Δτ shorter than 10 ps excites the bulk sample. The spallation layer that is photo-excited by the first and second pump pulses is separated afterward. In contrast, a pulse with Δτ longer than the formation time excites and breaks up the spallation layer that has already been separated from the bulk. The formation time of the spallation layer, as determined in this experiment, is attributed to the characteristic time of the mechanical equilibration corresponding to the thickness divided by the sound velocity of the photo-excited layer.« less

  1. Melanin-targeted nonlinear microscopy for label-free molecular diagnosis and staining (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Warren, Warren S.

    2017-02-01

    Visible absorption in tissue is dominated by a very small number of chromophores (hemoglobins and melanins) with broad optical spectra; for melanins in particular, the optical absorption spectrum is typically featureless. In addition, scattering limits penetration depth. As a result, the most common microscopy application by far is with excised tissue, which can be stained. However, nonlinear optical methods have the additional advantages of greater penetration depth and reduced sensitivity to scattering. Traditional nonlinear microscopy relies on mechanisms which produce light of a different color than the irradiating lasers, such as second harmonic generation or two photon induced fluorescence, and this contrast is sparse in biological issue without expressing or injecting different chromophores. Recently, stable laser sources and pulse shaping/pulse train modulation methods have made it possible to detect a much wider range of nonlinear molecular signatures, even at modest laser powers (much less than a laser pointer). Here we show the utility of a variety of such signatures (pump-probe, pulse-shaped stimulated Raman, cross-phase modulation) to quantitatively image the biochemical composition of transparent or pigmented tissue in a variety of applications, ranging from thin, unstained tissue sections to live knockout mice. The rich biochemical information provided by this method can be used as an indicator of melanocyte activity, which in turn (for example) reflects the status of melanocytic lesions. Comparisons with model systems (synthetic melanin nanoparticles, sepia melanin) and analysis of melanin degradation pathways in vivo have led to a quantitative understanding of the molecular basis of these changes.

  2. Particle Deformation and Concentration Polarization in Electroosmotic Transport of Hydrogels through Pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlassiouk, Ivan V

    2013-01-01

    In this article, we report detection of deformable, hydrogel particles by the resistive-pulse technique using single pores in a polymer film. The hydrogels pass through the pores by electroosmosis and cause formation of a characteristic shape of resistive pulses indicating the particles underwent dehydration and deformation. These effects were explained via a non-homogeneous pressure distribution along the pore axis modeled by the coupled Poisson-Nernst-Planck and Navier Stokes equations. The local pressure drops are induced by the electroosmotic fluid flow. Our experiments also revealed the importance of concentration polarization in the detection of hydrogels. Due to the negative charges as wellmore » as branched, low density structure of the hydrogel particles, concentration of ions in the particles is significantly higher than in the bulk. As a result, when electric field is applied across the membrane, a depletion zone can be created in the vicinity of the particle observed as a transient drop of the current. Our experiments using pores with openings between 200 and 1600 nm indicated the concentration polarization dominated the hydrogels detection for pores wider than 450 nm. The results are of importance for all studies that involve transport of molecules, particles and cells through pores with charged walls. The developed inhomogeneous pressure distribution can potentially influence the shape of the transported species. The concentration polarization changes the interpretation of the resistive pulses; the observed current change does not necessarily reflect only the particle size but also the size of the depletion zone that is formed in the particle vicinity.« less

  3. Lidar Luminance Quantizer

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George

    2011-01-01

    This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events

  4. An analytical model for the calculation of the change in transmembrane potential produced by an ultrawideband electromagnetic pulse.

    PubMed

    Hart, Francis X; Easterly, Clay E

    2004-05-01

    The electric field pulse shape and change in transmembrane potential produced at various points within a sphere by an intense, ultrawideband pulse are calculated in a four stage, analytical procedure. Spheres of two sizes are used to represent the head of a human and the head of a rat. In the first stage, the pulse is decomposed into its Fourier components. In the second stage, Mie scattering analysis (MSA) is performed for a particular point in the sphere on each of the Fourier components, and the resulting electric field pulse shape is obtained for that point. In the third stage, the long wavelength approximation (LWA) is used to obtain the change in transmembrane potential in a cell at that point. In the final stage, an energy analysis is performed. These calculations are performed at 45 points within each sphere. Large electric fields and transmembrane potential changes on the order of a millivolt are produced within the brain, but on a time scale on the order of nanoseconds. The pulse shape within the brain differs considerably from that of the incident pulse. Comparison of the results for spheres of different sizes indicates that scaling of such pulses across species is complicated. Published 2004 Wiley-Liss, Inc.

  5. Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert

    High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO 3more » demultiplexer composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.« less

  6. Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system

    DOE PAGES

    Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert; ...

    2016-12-06

    High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO 3more » demultiplexer composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.« less

  7. T-ray tomography.

    PubMed

    Mittleman, D M; Hunsche, S; Boivin, L; Nuss, M C

    1997-06-15

    We demonstrate tomographic T-ray imaging, using the timing information present in terahertz (THz) pulses in a reflection geometry. THz pulses are reflected from refractive-index discontinuities inside an object, and the time delays of these pulses are used to determine the positions of the discontinuities along the propagation direction. In this fashion a tomographic image can be constructed.

  8. Pure-phase selective excitation in fast-relaxing systems.

    PubMed

    Zangger, K; Oberer, M; Sterk, H

    2001-09-01

    Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T(2) relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90 degrees pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD). Copyright 2001 Academic Press.

  9. Delayed photo-emission model for beam optics codes

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...

    2016-11-22

    Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less

  10. Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Park, Y.; Kulishov, M.; Slavík, R.; Azaña, J.

    2006-12-01

    We propose a novel linear filtering scheme based on ultrafast all-optical differentiation for re-shaping of ultrashort pulses generated from a mode-locked laser into flat-top pulses. The technique is demonstrated using simple all-fiber optical filters, more specifically uniform long period fiber gratings (LPGs) operated in transmission. The large bandwidth typical for these fiber filters allows scaling the technique to the sub-picosecond regime. In the experiments reported here, 600-fs and 1.8-ps Gaussian-like optical pulses (@ 1535 nm) have been re-shaped into 1-ps and 3.2-ps flat-top pulses, respectively, using a single 9-cm long uniform LPG.

  11. A finger-free wrist-worn pulse oximeter for the monitoring of chronic obstructive pulmonary disease

    NASA Astrophysics Data System (ADS)

    Chu, Chang-Sheng; Chuang, Shuang-Chao; Lee, Yeh Wen; Fan, Chih-Hsun; Chung, Lung Pin; Li, Yu-Tang; Chen, Jyh-Chern

    2016-03-01

    Herein, a finger-free wrist-worn pulse oximeter is presented. This device allows patients to measure blood oxygen level and pulse rate without hindering their normal finger movement. This wrist-worn pulse oximeter is built with a reflectance oximetry sensor, which consists of light emitting diodes and photodiode light detectors located side by side. This reflectance oximetry sensor is covered with an optical element with micro structured surface. This micro structured optical element is designed to modulate photon propagation beneath the skin tissue so that the photoplethysmogram signals of reflected lights or backscattered lights detected by the photodetector are therefore enhanced.

  12. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly show the decrease in CO2 concentration over growing cropland in Iowa. In several flights the agreement of the lidar with the column average concentration was < 1ppm, with standard deviation of 0.9 ppm. A summary of these results will be presented.

  13. Adaptive optics to enhance target recognition

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2012-06-01

    Target recognition can be enhanced by reducing image degradation due to atmospheric turbulence. This is accomplished by an adaptive optic system. We discuss the forms of degradation when a target is viewed through the atmosphere1: scintillation from ground targets on a hot day in visible or infrared light; beam spreading and wavering around in time; atmospheric turbulence caused by motion of the target or by weather. In the case of targets we can use a beacon laser that reflects back from the target into a wavefront detector to measure the effects of turbulence on propagation to and from the target before imaging.1 A deformable mirror then corrects the wavefront shape of the transmitted, reflected or scattered data for enhanced imaging. Further, recognition of targets is enhanced by performing accurate distance measurements to localized parts of the target using lidar. Distance is obtained by sending a short pulse to the target and measuring the time for the pulse to return. There is inadequate time to scan the complete field of view so that the beam must be steered to regions of interest such as extremities of the image during image recognition. Distance is particularly valuable to recognize fine features in range along the target or when segmentation is required to separate a target from background or from other targets. We discuss the issues involved.

  14. System for testing optical fibers

    DOEpatents

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  15. A comparative study of optimum and suboptimum direct-detection laser ranging receivers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1978-01-01

    A summary of previously proposed receiver strategies for direct-detection laser ranging receivers is presented. Computer simulations are used to compare performance of candidate implementation strategies in the 1- to 100-photoelectron region. Under the condition of no background radiation, the maximum-likelihood and minimum mean-square error estimators were found to give the same performance for both bell-shaped and rectangular optical-pulse shapes. For signal energies greater than 100 photoelectrons, the root-mean-square range error is shown to decrease as Q to the -1/2 power for bell-shaped pulses and Q to the -1 power for rectangular pulses, where Q represents the average pulse energy. Of several receiver implementations presented, the matched-filter peak detector was found to be preferable. A similar configuration, using a constant-fraction discriminator, exhibited a signal-level dependent time bias.

  16. A compact pulse shape discriminator module for large neutron detector arrays

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  17. Pulse-shaping based two-photon FRET stoichiometry

    PubMed Central

    Flynn, Daniel C.; Bhagwat, Amar R.; Brenner, Meredith H.; Núñez, Marcos F.; Mork, Briana E.; Cai, Dawen; Swanson, Joel A.; Ogilvie, Jennifer P.

    2015-01-01

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor. PMID:25836193

  18. Exploring the Pulse Structure of the Gamma-Ray Bursts from the Swift Burst Alert Telescop

    NASA Astrophysics Data System (ADS)

    Martinez, Juan-Carlos; Team 1: Jon Hakkila, Amy Lien, Judith, Racusin, Team 2: Antonino Cucchiara, David Morris

    2018-01-01

    Gamma-ray bursts (GRBs) are one of the brightest and most intense explosions in our universe. For this project, we studied the shape of 400 single pulse GRBs using data gathered from Swift's Burst Alert Telescope (BAT). Hakkila et al. (2015) have discovered a mathematical Model that describes the GRB’s pulse shapes. Following the method in Hakkila et al. (2015), we fit GRB pulses with the Norris function and examined the residual in the fitting, to see whether the results are consistent with the one reported in Hakkila et al. (2015).

  19. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  20. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform

    PubMed Central

    Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979

  1. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    PubMed

    Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  2. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Azhad U.; Liu, Fangjie; Watson, Brianna R.

    We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. Here, we demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm -1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression frommore » a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.« less

  3. Time history prediction of direct-drive implosions on the Omega facility

    DOE PAGES

    Laffite, S.; Bourgade, J. L.; Caillaud, T.; ...

    2016-01-14

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  4. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  5. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolved measurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape.more » In contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measured neutron number is about 80% of the prediction. For the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  6. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light

    DOE PAGES

    Chowdhury, Azhad U.; Liu, Fangjie; Watson, Brianna R.; ...

    2018-04-23

    We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. Here, we demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm -1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression frommore » a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.« less

  7. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  8. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  9. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media.

    PubMed

    Phillips, C R; Mayer, B W; Gallmann, L; Keller, U

    2016-07-11

    Advances in the amplification and manipulation of ultrashort laser pulses have led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device that is bandwidth- and power-scalable. The approach is based on two-dimensional (2D) patterning of quasi-phase-matching (QPM) gratings combined with optical parametric interactions involving spatially dispersed laser pulses. Our proof of principle experiment demonstrates this technique via mid-infrared optical parametric chirped pulse amplification of few-cycle pulses. Additionally, we present a detailed theoretical and numerical analysis of such 2D-QPM devices and how they can be designed.

  10. THE TEMPORAL AND SPECTRAL CHARACTERISTICS OF 'FAST RISE AND EXPONENTIAL DECAY' GAMMA-RAY BURST PULSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Z. Y.; Ma, L.; Yin, Y.

    2010-08-01

    In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior.more » In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (E{sub p}) in the {nu}f{sub {nu}} spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.« less

  11. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    NASA Astrophysics Data System (ADS)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  12. Efficient photoassociation of ultracold cesium atoms with picosecond pulse laser

    NASA Astrophysics Data System (ADS)

    Hai, Yang; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin

    2017-08-01

    We investigate theoretically the formation of ultracold Cs2 molecules via photoassociation (PA) with three kinds of pulses (the Gaussian pulse, the asymmetric shaped laser pulse SL1 with a large rising time and a small falling time and the asymmetric shaped laser pulse SL2 with a small rising time and a large falling time). For the three kinds of pulses, the final population on vibrational levels from v‧ = 120 to 175 of the excited state displays a regular oscillation change with pulse width and interaction strength, and a high PA efficiency can be achieved with optimised parameters. The PA efficiency in the excited state steered by the SL1-pulse (SL2-pulse) train with optimised parameters which is composed of four SL1 (SL2) pulses is 1.74 times as much as that by the single SL1 (SL2) pulse due to the population accumulation effect. Moreover, a dump laser is employed to transfer the excited molecules from the excited state to the vibrational level v″ = 12 of the ground state to obtain stable molecules.

  13. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  14. Passive and active pulse stacking scheme for pulse shaping

    DOEpatents

    Harney, Robert C.; Schipper, John F.

    1977-01-01

    Apparatus and method for producing a sequence of radiation pulses with a pulse envelope of time variation which is controllable by an external electromagnetic signal applied to an active medium or by a sectored reflector, through which the radiation passes.

  15. Signal-enhancement reflective pulse oximeter with Fresnel lens

    NASA Astrophysics Data System (ADS)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  16. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE PAGES

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; ...

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  17. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  18. An Electronic Patch for wearable health monitoring by reflectance pulse oximetry.

    PubMed

    Haahr, Rasmus G; Duun, Sune B; Toft, Mette H; Belhage, Bo; Larsen, Jan; Birkelund, Karen; Thomsen, Erik V

    2012-02-01

    We report the development of an Electronic Patch for wearable health monitoring. The Electronic Patch is a new health monitoring system incorporating biomedical sensors, microelectronics, radio frequency (RF) communication, and a battery embedded in a 3-dimensional hydrocolloid polymer. In this paper the Electronic Patch is demonstrated with a new optical biomedical sensor for reflectance pulse oximetry so that the Electronic Patch in this case can measure the pulse and the oxygen saturation. The reflectance pulse oximetry solution is based on a recently developed annular backside silicon photodiode to enable low power consumption by the light emitting components. The Electronic Patch has a disposable part of soft adhesive hydrocolloid polymer and a reusable part of hard polylaurinlactam. The disposable part contains the battery. The reusable part contains the reflectance pulse oximetry sensor and microelectronics. The reusable part is 'clicked' into the disposable part when the patch is prepared for use. The patch has a size of 88 mm by 60 mm and a thickness of 5 mm.

  19. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    NASA Astrophysics Data System (ADS)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  20. Fully integrated Q-switch for commercial high-power resonator with solitary XLMA-fiber

    NASA Astrophysics Data System (ADS)

    Lange, R.; Bachert, C.; Rehmann, G.; Weber, H.; Luxen, R.; Enns, H.; Schenk, M.; Hosdorf, S.; Marfels, S.; Bay, M.; Kösters, A.; Krause, V.; Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.

    2018-02-01

    In surface processing applications the correlation of laser power to processing speed demands a further enhancement of the performance of short-pulsed laser sources with respect to the investment costs. The frequently applied concept of master oscillator power amplifier relies on a complex structure, parts of which are highly sensitive to back reflected amplified radiation. Aiming for a simpler, robust source using only a single ytterbium doped XLMA fiber in a q-switched resonator appears as promising design approach eliminating the need for subsequent amplification. This concept requires a high power-tolerant resonator which is provided by the multikilowatt laser platform of Laserline including directly water-cooled active fiber thermal management. Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed. In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.

  1. System for testing optical fibers

    DOEpatents

    Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

  2. Method and apparatus for inspecting conduits

    DOEpatents

    Spisak, Michael J.; Nance, Roy A.

    1997-01-01

    An apparatus and method for ultrasonic inspection of a conduit are provided. The method involves directing a first ultrasonic pulse at a particular area of the conduit at a first angle, receiving the reflected sound from the first ultrasonic pulse, substantially simultaneously or subsequently in very close time proximity directing a second ultrasonic pulse at said area of the conduit from a substantially different angle than said first angle, receiving the reflected sound from the second ultrasonic pulse, and comparing the received sounds to determine if there is a defect in that area of the conduit. The apparatus of the invention is suitable for carrying out the above-described method. The method and apparatus of the present invention provide the ability to distinguish between sounds reflected by defects in a conduit and sounds reflected by harmless deposits associated with the conduit.

  3. Enhancement of Photon Number Reflected by the Relativistic Flying Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kando, M.; Pirozhkov, A. S.; Kawase, K.

    2009-12-04

    Laser light reflection by a relativistically moving electron density modulation (flying mirror) in a wake wave generated in a plasma by a high intensity laser pulse is investigated experimentally. A counterpropagating laser pulse is reflected and upshifted in frequency with a multiplication factor of 37-66, corresponding to the extreme ultraviolet wavelength. The demonstrated flying mirror reflectivity (from 3x10{sup -6} to 2x10{sup -5}, and from 1.3x10{sup -4} to 0.6x10{sup -3}, for the photon number and pulse energy, respectively) is close to the theoretical estimate for the parameters of the experiment.

  4. Method and apparatus for characterizing reflected ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1991-01-01

    The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.

  5. Pulse shape discrimination for background rejection in germanium gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.

    1989-01-01

    A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.

  6. Studies of neutron-γ pulse shape discrimination in EJ-309 liquid scintillator using charge integration method

    NASA Astrophysics Data System (ADS)

    Pawełczak, I. A.; Ouedraogo, S. A.; Glenn, A. M.; Wurtz, R. E.; Nakae, L. F.

    2013-05-01

    Pulse shape discrimination capability based on the charge integration has been investigated for liquid scintillator EJ-309. The effectiveness of neutron-γ discrimination in 4-in. diameter and 3-in. thick EJ-309 cells coupled with 3-in. photomultiplier tubes has been carefully studied in the laboratory environment and compared to the commonly used EJ-301 liquid scintillator formulation. Influences of distortions in pulse shape caused by 13.7-m long cables necessary for some remote operations have been examined. The parameter space for an effective neutron-γ discrimination for these assays, such as position and width of a gate used for integration of the delayed light, has been explored.

  7. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  8. Versatile analog pulse height computer performs real-time arithmetic operations

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Strauss, M. G.

    1967-01-01

    Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.

  9. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  10. Narrowband supercontinuum control using phase shaping

    NASA Astrophysics Data System (ADS)

    Austin, Dane R.; Bolger, Jeremy A.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Brown, Thomas G.

    2006-12-01

    We study theoretically, numerically and experimentally the effect of self-phase modulation of ultrashort pulses with spectrally narrow phase features. We show that spectral enhancement and depletion is caused by changing the relative phase between the initial field and the nonlinearly generated components. Our theoretical results explain observations of supercontinuum enhancement by fiber Bragg gratings, and predict similar enhancements for spectrally shaped pulses in uniform fiber. As proof of principle, we demonstrate this effect in the laboratory using a femtosecond pulse shaper.

  11. Measurement of (222)Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination.

    PubMed

    Mitev, Krasimir K

    2016-04-01

    This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xuesong; Jiang, Lan; Li, Xin, E-mail: lixin02@bit.edu.cn

    2014-07-21

    The dependence of periodic structures and ablated areas on temporal pulse shaping is studied upon irradiation of fused silica by femtosecond laser triple-pulse trains. Three types of periodic structures can be obtained by using pulse trains with designed pulse delays, in which the three-dimensional nanopillar arrays with ∼100–150 nm diameters and ∼200 nm heights are first fabricated in one step. These nanopillars arise from the break of the ridges of ripples in the upper portion, which is caused by the split of orthogonal ripples in the bottom part. The localized transient electron dynamics and corresponding material properties are considered for the morphologicalmore » observations.« less

  13. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  14. Multiplex CARS imaging with spectral notch shaped laser pulses delivered by optical fibers.

    PubMed

    Oh, Seung Ryeol; Park, Joo Hyun; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2017-12-11

    We present an experimental demonstration of single-pulse coherent anti-Stokes Raman spectroscopy (CARS) using a spectrally shaped broadband laser that is delivered by an optical fiber to a sample at its distal end. The optical fiber consists of a fiber Bragg grating component to serve as a narrowband notch filter and a combined large-mode-area fiber to transmit such shaped ultrashort laser pulses without spectral distortion in a long distance. Experimentally, our implementation showed a capability to measure CARS spectra of various samples with molecular vibrations in the fingerprint region. Furthermore, CARS imaging of poly(methyl methacrylate) bead samples was carried out successfully under epi-CARS geometry in which backward-scattered CARS signals were collected into a multimode optical fiber. A compatibility of single-pulse CARS scheme with fiber optics, verified in this study, implies a potential for future realization of compact all-fiber CARS spectroscopic imaging systems.

  15. Recoverable stress induced two-way shape memory effect on NiTi surface using laser-produced shock wave

    NASA Astrophysics Data System (ADS)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Thomas, Zachary; Alal, Orhan; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    The surfaces of Ni50Ti50 shape memory alloys (SMAs) were patterned by laser scribing. This method is more simplistic and efficient than traditional indentation techniques, and has also shown to be an effective method in patterning these materials. Different laser energy densities ranging from 5 mJ/pulse to 56 mJ/pulse were used to observe recovery on SMA surface. The temperature dependent heat profiles of the NiTi surfaces after laser scribing at 56 mJ/pulse show the partially-recovered indents, which indicate a "shape memory effect (SME)" Experimental data is in good agreement with theoretical simulation of laser induced shock wave propagation inside NiTi SMAs. Stress wave closely followed the rise time of the laser pulse to its peak values and initial decay. Further investigations are underway to improve the SME such that the indents are recovered to a greater extent.

  16. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  17. Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.

  18. 2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison

    PubMed Central

    Rock, William; Li, Yun-Liang; Pagano, Philip; Cheatum, Christopher M.

    2013-01-01

    Recent technological advances have led to major changes in the apparatuses used to collect 2D IR spectra. Pulse shaping offers several advantages including rapid data collection, inherent phase stability, and phase cycling capabilities. Visible array detection via upconversion allows the use of visible detectors that are cheaper, faster, more sensitive, and less noisy than IR detectors. However, despite these advantages, many researchers are reluctant to implement these technologies. Here we present a quantitative study of the S/N of 2D IR spectra collected with a traditional four-wave mixing (FWM) apparatus, with a pulse shaping apparatus, and with visible detection via upconversion to address the question of whether or not weak chromophores at low concentrations are still accessible with such an apparatus. We find that the enhanced averaging capability of the pulse shaping apparatus enables the detection of small signals that would be challenging to measure even with the traditional FWM apparatus, and we demonstrate this ability on a sample of cyanylated dihydrofolate reductase (DHFR). PMID:23687988

  19. An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators

    NASA Astrophysics Data System (ADS)

    Polack, J. K.; Flaska, M.; Enqvist, A.; Sosa, C. S.; Lawrence, C. C.; Pozzi, S. A.

    2015-09-01

    Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values.

  20. LIDAR pulse coding for high resolution range imaging at improved refresh rate.

    PubMed

    Kim, Gunzung; Park, Yongwan

    2016-10-17

    In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.

  1. Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Harun, Sulaiman W.

    2018-05-01

    A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.

  2. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  3. Electron acceleration by laser produced wake field: Pulse shape effect

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  4. Time evolution of photon-pulse propagation in scattering and absorbing media: The dynamic radiative transfer system

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.

    2018-03-01

    A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.

  5. Spike Train Similarity Space (SSIMS) Method Detects Effects of Obstacle Proximity and Experience on Temporal Patterning of Bat Biosonar

    PubMed Central

    Accomando, Alyssa W.; Vargas-Irwin, Carlos E.; Simmons, James A.

    2018-01-01

    Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus. In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape. PMID:29472848

  6. Spike Train Similarity Space (SSIMS) Method Detects Effects of Obstacle Proximity and Experience on Temporal Patterning of Bat Biosonar.

    PubMed

    Accomando, Alyssa W; Vargas-Irwin, Carlos E; Simmons, James A

    2018-01-01

    Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus . In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape.

  7. The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors

    NASA Astrophysics Data System (ADS)

    Moongweluwan, M.

    2016-02-01

    The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed.

  8. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng

    2014-06-30

    We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.

  9. High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2013-06-01

    A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.

  10. Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm.

    PubMed

    Heck, Martijn J R; Salumbides, Edcel J; Renault, Amandine; Bente, Erwin A J M; Oei, Yok-Siang; Smit, Meint K; van Veldhoven, René; Nötzel, Richard; Eikema, Kjeld S E; Ubachs, Wim

    2009-09-28

    For the first time a detailed study of hybrid mode-locking in two-section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material.

  11. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  12. Dynamics of shaping ultrashort optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external long-haul single-mode fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Moreno Zarate, Pedro

    2010-02-01

    We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.

  13. Nonlinear effects during interaction of femtosecond doughnut-shaped laser pulses with glasses: overcoming intensity clamping

    NASA Astrophysics Data System (ADS)

    Bulgakova, Nadezhda M.; Zhukov, Vladimir P.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.

    2017-05-01

    Interaction of femtosecond laser pulses with a bulk glass (fused silica as an example) has been studied numerically based on non-linear Maxwell's equations supplemented by the hydrodynamics-type equations for free electron plasma for the cases of Gaussian linearly-polarized and doughnut-shaped radially-polarized laser beams. For Gaussian pulses focused inside glass (800 nm wavelength, 45 fs duration, numerical aperture of 0.25), the free electron density in the laser-excited region remains subcritical while the locally absorbed energy density does not exceed 2000 J/cm3 in the range of pulse energies of 200 nJ - 2 μJ. For doughnut-shaped pulses, the initial high-intensity ring of light is shrinking upon focusing. Upon reaching a certain ionization level on its way, the light ring splits into two branches, one of which shrinks swiftly toward the beam axis well before the geometrical focus, leading to generation of supercritical free electron density. The second branch represents the laser light scattered by the electron plasma away from the beam axis. The final laserexcited volume represents a tube of 0.5-1 μm in radius and 10-15 μm long. The local maximum of absorbed energy can be more than 10 times higher compared to the case of Gaussian beams of the same energy. The corresponding pressure levels have been evaluated. It is anticipated that, in the case of doughnut-shaped pulses, the tube-like shape of the deposited energy should lead to implosion of material that can be used for improving the direct writing of high-refractive index optical structures inside glass or for achieving extreme thermodynamic states of matter.

  14. Using bathymetry and reflective seismic profiles to tests a suspected link between melt flux and cumulative fault heave at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Haughton, G.; Murton, B. J.; Le Bas, T.; Henstock, T.

    2017-12-01

    The interplay between magma supply and spreading rate is believed to play a major role in determining large scale seafloor morphology. Here we use bathymetry to test this relationship in areas with similar spreading rates and differing magma supplies. By using open source bathymetry data we have developed a repeatable, automated method for categorising seafloor cumulative fault heave and then attempt to identify the controlling variables. We measure the total apparent fault heave along axis and off-axis at 29°N and 60°N on the Mid-Atlantic Ridge then compare this to proxies for deformation and magma supply. Two approaches are adopted for identifying faults: one using bathymetry and the other spreading-parallel seismic reflection data. The first re-examines the orthogonally spreading Broken Spur segment (26°N) spreading at 23 mm yr-1 (full rate). The other examines the Reykjanes Ridge (60°N) spreading obliquely at 21 mm yr-1 (full rate), which may be influenced by the Icelandic hotspot. Each have contrasting residual depth and structure, with the former being typical of slow spreading ridges, with marked axial valleys, whereas the latter is more typical of fast spreading ridge morphology, with smooth axial rise. We find that high total heave (indicating high tectonic spreading) on the Broken Spur segment does not correlate with high mantle Bouguer anomalies (indicating thin crust and low melt flux). From this we hypothesise that total heave on the large scale at the Broken Spur segment is not controlled by crustal thickness or melt supply. At the Raykjanes Ridge, V-shaped ridges have thicker crust (measured seismically) which converge south of Iceland. These are thought to reflect transient (every 4-6 Myrs) pulses of hot mantle radiating away from the Iceland plume. We find ridge-symmetrical variation in fault heave but with a lower frequency (6-8 Myrs) and longer wavelength (3-7 Myrs) than the V-shaped ridges. Our analysis shows that plume pulses do not correlate with cumulative fault heave. Our results raise questions about the relationship between melt flux and tectonic stretching. Other factors may be more significant such as spreading geometry, lithospheric temperature, hydrothermal alteration, or mantle heterogeneities that may not be reflected in melt productivity or faulting.

  15. Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Foulkes, T.; Syed, M.; Taplin, T.

    2015-05-01

    Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.

  16. Lithotripsy Performance of Specially Designed Laser Fiber Tips.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2016-05-01

    We evaluated and compared a standard laser lithotripsy fiber to laser fibers claimed to have lithotripsy performance enhancing features. A special AccuMax™ 200 polished tip fiber and an AccuTrac™ ball-shaped tip fiber, each with an approximately 240 μm core, were compared to a standard 272 μm core fiber (Rocamed™). The polished and ball-shaped tip fibers were used and reused without preparation. The standard fiber was stripped and cleaved according to manufacturer instructions after each experiment. An automated laser fragmentation testing system was used to perform multiple 30-second laser lithotripsy experiments. To mimic most typical lithotripsy conditions soft and hard stone materials were used with high frequency, low pulse energy (20 Hz and 0.5 J) or with low frequency, high pulse energy (5 Hz and 2.0 J) lithotripter settings. Ablation volumes and laser fiber tip photographs before and after lithotripsy were compared. The standard and ball-shaped tip fibers did not differ in ablation volume (p = 0.72) but they ablated 174% and 188% more stone, respectively, than the polished tip fiber (p <0.0001). The ball-shaped tip showed remarkable fiber tip degradation after short-term use at low frequency, high pulse energy settings. When high pulse energy settings were applied first even for short-term use, the ablation volume achieved by the polished and ball-shaped tip fibers at high frequency, low pulse energy settings decreased more than 20%. The standard laser fiber was as good as and sometimes better than the specially designed fibers. Rapid degradation of the specially designed laser fiber tips strongly limits their general usefulness but ball-shaped tip fibers may be useful in specific situations. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Green synthesis of gold nanoparticles of different sizes and shapes using agar-agar water solution and femtosecond pulse laser irradiation

    NASA Astrophysics Data System (ADS)

    Almeida de Matos, Ricardo; da Silva Cordeiro, Thiago; Elgul Samad, Ricardo; Dias Vieira, Nilson; Coronato Courrol, Lilia

    2012-11-01

    We report a method to create gold nanoparticles of different sizes and shapes using agar-agar water solution and irradiation with light from a xenon lamp, followed by ultrashort laser pulses. No additives, such as solvents, surfactants or reducing agents, were used in the procedure. Laser irradiation (laser ablation) was important to the reduction of the nanoparticles diameter and formation of another shapes. Distilled water was used as solvent and agar-agar (hydrophilic colloid extracted from certain seaweeds) was important for the stabilization of gold nanoparticles, avoiding their agglomeration. The formation of gold nanoparticles was confirmed with ultraviolet-visible absorption and TEM microscopy. The gold nanoparticles acquired spherical, prism, and rod shapes depending on the laser parameters. Variation of laser irradiation parameters as pulse energy, irradiation time and repetition rate was assessed. The relevant mechanisms contributing for the gold nanoparticles production are discussed.

  18. Ultrasonic Measurement Of Silicon-Growth Interface

    NASA Technical Reports Server (NTRS)

    Heyser, Richard C.

    1988-01-01

    Position of interface between silicon melt and growing ribbon of silicon measured with aid of reflected ultrasound, according to proposal. Reflections reveal characteristics of ribbon and melt. Ultrasound pulses travel through rods to silicon ribbon growing by dendritic-web process. Rods return reflections of pulses to sonic transducers. Isolate transducers thermally, but not acoustically, from hot silicon melt.

  19. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  20. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  1. What is the Temporal Analog of Reflection and Refraction of Optical Beams?

    PubMed

    Plansinis, B W; Donaldson, W R; Agrawal, G P

    2015-10-30

    It is shown numerically and analytically that when an optical pulse approaches a moving temporal boundary across which the refractive index changes, it undergoes a temporal equivalent of reflection and refraction of optical beams at a spatial boundary. The main difference is that the role of angles is played by changes in the frequency. The frequency dependence of the dispersion of the material in which the pulse is propagating plays a fundamental role in determining the frequency shifts experienced by the reflected and refracted pulses. Our analytic expressions for these frequency shifts allow us to find the condition under which an analog of total internal reflection may occur at the temporal boundary.

  2. Design and performance evaluation of a dispersion compensation unit using several chirping functions in a tanh apodized FBG and comparison with dispersion compensation fiber.

    PubMed

    Mohammed, Nazmi A; Solaiman, Mohammad; Aly, Moustafa H

    2014-10-10

    In this work, various dispersion compensation methods are designed and evaluated to search for a cost-effective technique with remarkable dispersion compensation and a good pulse shape. The techniques consist of different chirp functions applied to a tanh fiber Bragg grating (FBG), a dispersion compensation fiber (DCF), and a DCF merged with an optimized linearly chirped tanh FBG (joint technique). The techniques are evaluated using a standard 10 Gb/s optical link over a 100 km long haul. The linear chirp function is the most appropriate choice of chirping function, with a pulse width reduction percentage (PWRP) of 75.15%, lower price, and poor pulse shape. The DCF yields an enhanced PWRP of 93.34% with a better pulse quality; however, it is the most costly of the evaluated techniques. Finally, the joint technique achieved the optimum PWRP (96.36%) among all the evaluated techniques and exhibited a remarkable pulse shape; it is less costly than the DCF, but more expensive than the chirped tanh FBG.

  3. Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.

    2017-02-01

    The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.

  4. Femtosecond laser pulse shaping at megahertz rate via a digital micromirror device.

    PubMed

    Gu, Chenglin; Chang, Yina; Zhang, Dapeng; Cheng, Jiyi; Chen, Shih-Chi

    2015-09-01

    In this Letter, we present a scanner and digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., S-DUPS, for programmable ultrafast pulse modulation, achieving a shaping rate of 2 MHz. To our knowledge, the S-DUPS is the fastest programmable pulse shaper reported to date. In the S-DUPS, the frequency spectrum of the input pulsed laser is first spread horizontally, and then mapped to a thin stripe on the DMD programmed with phase modulation patterns. A galvanometric scanner, synchronized with the DMD, subsequently scans the spectrum vertically on the DMD to achieve a shaping rate up to 10 s MHz. A grating pair and a cylindrical lens in front of the DMD compensate for the temporal and spatial dispersion of the system. To verify the concept, experiments were conducted with the DMD and the galvanometric scanner operated at 2 kHz and 1 kHz, respectively, achieving a 2 MHz speed for continuous group velocity dispersion tuning, as well as 2% efficiency. Up to 5% efficiency of S-DUPS can be expected with high efficiency gratings and optical components of proper coatings.

  5. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has beenmore » obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.« less

  6. Principal Component Analysis for pulse-shape discrimination of scintillation radiation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2016-01-01

    In this paper, we report on the application of Principal Component analysis (PCA) for pulse-shape discrimination (PSD) of scintillation radiation detectors. The details of the method are described and the performance of the method is experimentally examined by discriminating between neutrons and gamma-rays with a liquid scintillation detector in a mixed radiation field. The performance of the method is also compared against that of the conventional charge-comparison method, demonstrating the superior performance of the method particularly at low light output range. PCA analysis has the important advantage of automatic extraction of the pulse-shape characteristics which makes the PSD method directly applicable to various scintillation detectors without the need for the adjustment of a PSD parameter.

  7. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  8. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  9. From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

    NASA Astrophysics Data System (ADS)

    Wang, He

    The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.

  10. Pulse-height defect due to electron interaction in dead layers of Ge/Li/ gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Larsen, R. N.; Strauss, M. G.

    1969-01-01

    Study shows the pulse-height degradation of gamma ray spectra in germanium/lithium detectors to be due to electron interaction in the dead layers that exist in all semiconductor detectors. A pulse shape discrimination technique identifies and eliminates these defective pulses.

  11. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  12. 80GHz waveform generator by optical Fourier synthesis of four spectral sidebands (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fatome, Julien; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe

    2016-04-01

    Versatile and easy to implement methods to generate arbitrary optical waveforms at high repetition rates are of considerable interest with applications in optical communications, all-optical signal processing, instrumentation systems and microwave signal manipulation. While shaping sinusoidal, Gaussian or hyperbolic secant intensity profiles is commonly achieved by means of modulators or mode-locked lasers, other pulse profiles such as parabolic, triangular or flat-top shapes still remain challenging to synthesize. In this context, several strategies were already explored. First, the linear pulse shaping is a common method to carve an initial ultrashort pulse train into the desired shape. The line-by-line shaping of a coherent frequency comb made of tens of spectral components was also investigated to generate more complex structures whereas Fourier synthesis of a few discrete frequencies spectrum was exploited to efficiently generate high-fidelity ultrafast periodic intensity profiles. Besides linear shaping techniques, several nonlinear methods were implemented to benefit from the adiabatic evolution of the intensity pulse profile upon propagation in optical fibers. Other examples of efficient methods are based on the photonic generation involving specific Mach-Zehnder modulators, microwave photonic filters as well as frequency-to-time conversion. In this contribution, we theoretically and experimentally demonstrate a new approach enabling the synthesis of periodic high-repetition rate pulses with various intensity profiles ranging from parabola to triangular and flat-top pulses. More precisely by linear phase and amplitude shaping of only four spectral lines is it possible to reach the targeted temporal profile. Indeed, tailoring the input symmetric spectrum only requires the determination of two physical parameters: the phase difference between the inner and outer spectral sidebands and the ratio between the amplitude of these sidebands. Therefore, a systematic bidimensional analysis provides the optimum parameters and also highlights that switching between the different waveforms is achieved by simply changing the spectral phase between the inner and outer sidebands. We successfully validate this concept with the generation of high-fidelity ultrafast periodic waveforms at 40 GHz by shaping with a liquid cristal on insulator a four sideband comb resulting from a phase-modulated continuous wave. In order to reach higher repetition rates, we also describe a new scenario to obtain the required initial spectrum by taking advantage of the four-wave mixing process occurring in a highly nonlinear fiber. This approach is experimentally implemented at a repetition rate of 80-GHz by use of intensity and phase measurements that stress that full-duty cycle, high-quality, triangular, parabolic or flat-top profiles are obtained in full agreement with numerical simulations. The reconfigurable property of this photonic waveform generator is confirmed. Finally, the generation of bunch of shaped pulses is investigated, as well as the impact of Brillouin backscattering.

  13. LASER BIOLOGY AND MEDICINE: Arterial pulse shape measurement using self-mixing effect in a diode laser

    NASA Astrophysics Data System (ADS)

    Hast, J.; Myllylä, Risto; Sorvoja, H.; Miettinen, J.

    2002-11-01

    The self-mixing effect in a diode laser and the Doppler technique are used for quantitative measurements of the cardiovascular pulses from radial arteries of human individuals. 738 cardiovascular pulses from 10 healthy volunteers were studied. The Doppler spectrograms reconstructed from the Doppler signal, which is measured from the radial displacement of the radial artery, are compared to the first derivative of the blood pressure signals measured from the middle finger by the Penaz technique. The mean correlation coefficient between the Doppler spectrograms and the first derivative of the blood pressure signals was 0.84, with a standard deviation of 0.05. Pulses with the correlation coefficient less than 0.7 were neglected in the study. Percentage of successfully detected pulses was 95.7%. It is shown that cardiovascular pulse shape from the radial artery can be measured noninvasively by using the self-mixing interferometry.

  14. Control of retinal isomerization in bacteriorhodopsin in the high-intensity regime

    PubMed Central

    Florean, Andrei C.; Cardoza, David; White, James L.; Lanyi, J. K.; Sension, Roseanne J.; Bucksbaum, Philip H.

    2009-01-01

    A learning algorithm was used to manipulate optical pulse shapes and optimize retinal isomerization in bacteriorhodopsin, for excitation levels up to 1.8 × 1016 photons per square centimeter. Below 1/3 the maximum excitation level, the yield was not sensitive to pulse shape. Above this level the learning algorithm found that a Fourier-transform-limited (TL) pulse maximized the 13-cis population. For this optimal pulse the yield increases linearly with intensity well beyond the saturation of the first excited state. To understand these results we performed systematic searches varying the chirp and energy of the pump pulses while monitoring the isomerization yield. The results are interpreted including the influence of 1-photon and multiphoton transitions. The population dynamics in each intermediate conformation and the final branching ratio between the all-trans and 13-cis isomers are modified by changes in the pulse energy and duration. PMID:19564608

  15. Optimal control of the strong-field ionization of silver clusters in helium droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truong, N. X.; Goede, S.; Przystawik, A.

    Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to themore » cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.« less

  16. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  17. DAC-board based X-band EPR spectrometer with arbitrary waveform control

    NASA Astrophysics Data System (ADS)

    Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi

    2013-10-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.

  18. High-energy 100-ns single-frequency all-fiber laser at 1064 nm

    NASA Astrophysics Data System (ADS)

    Fu, Shijie; Shi, Wei; Tang, Zhao; Shi, Chaodu; Bai, Xiaolei; Sheng, Quan; Chavez-Pirson, Arturo; Peyghambarian, N.; Yao, Jianquan

    2018-02-01

    A high-energy, single-frequency fiber laser with long pulse duration of 100 ns has been experimentally investigated in an all-fiber architecture. Only 34-cm long heavily Yb-doped phosphate fiber was employed in power scaling stage to efficiently suppress the Stimulated Brillouin effect (SBS). In the experiment, 0.47 mJ single pulse energy was achieved in power scaling stage at the pump power of 16 W. The pre-shaped pulse was gradually broadened from 103 to 140 ns during the amplification without shape distortion.

  19. Hunting the Dark Matter with DEAP/CLEAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, F.

    2010-02-10

    The potential of the DEAP/CLEAN program for direct Dark Matter detection to test various dark matter models is illustrated. The scintillation pulse of a noble liquid like Argon or Neon has two well distinguished time constants allowing a very reliable correlation between pulse shape and type of event. This pulse shape discrimination already provides the power of rejecting a background10{sup 8}-10{sup 9} times larger than the signal. MiniCLEAN, a 500 kg LAr detector, is currently under construction, and a 3.6 ton detector, DEAP-3600, under development.

  20. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  1. Experimental study on Response Parameters of Ni-rich NiTi Shape Memory Alloy during Wire Electric Discharge Machining

    NASA Astrophysics Data System (ADS)

    Bisaria, Himanshu; Shandilya, Pragya

    2018-03-01

    Nowadays NiTi SMAs are gaining more prominence due to their unique properties such as superelasticity, shape memory effect, high fatigue strength and many other enriched physical and mechanical properties. The current studies explore the effect of machining parameters namely, peak current (Ip), pulse off time (TOFF), and pulse on time (TON) on wire wear ratio (WWR), and dimensional deviation (DD) in WEDM. It was found that high discharge energy was mainly ascribed to high WWR and DD. The WWR and DD increased with the increase in pulse on time and peak current whereas high pulse off time was favourable for low WWR and DD.

  2. Time-resolved gamma spectroscopy of single events

    NASA Astrophysics Data System (ADS)

    Wolszczak, W.; Dorenbos, P.

    2018-04-01

    In this article we present a method of characterizing scintillating materials by digitization of each individual scintillation pulse followed by digital signal processing. With this technique it is possible to measure the pulse shape and the energy of an absorbed gamma photon on an event-by-event basis. In contrast to time-correlated single photon counting technique, the digital approach provides a faster measurement, an active noise suppression, and enables characterization of scintillation pulses simultaneously in two domains: time and energy. We applied this method to study the pulse shape change of a CsI(Tl) scintillator with energy of gamma excitation. We confirmed previously published results and revealed new details of the phenomenon.

  3. Pulse Shape Analysis and Discrimination for Silicon-Photomultipliers in Helium-4 Gas Scintillation Neutron Detector

    NASA Astrophysics Data System (ADS)

    Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas

    2018-01-01

    Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.

  4. Versatile Stimulation Back-End With Programmable Exponential Current Pulse Shapes for a Retinal Visual Prosthesis.

    PubMed

    Maghami, Mohammad Hossein; Sodagar, Amir M; Sawan, Mohamad

    2016-11-01

    This paper reports on the design, implementation, and test of a stimulation back-end, for an implantable retinal prosthesis. In addition to traditional rectangular pulse shapes, the circuit features biphasic stimulation pulses with both rising and falling exponential shapes, whose time constants are digitally programmable. A class-B second generation current conveyor is used as a wide-swing, high-output-resistance stimulation current driver, delivering stimulation current pulses of up to ±96 μA to the target tissue. Duration of the generated current pulses is programmable within the range of 100 μs to 3 ms. Current-mode digital-to-analog converters (DACs) are used to program the amplitudes of the stimulation pulses. Fabricated using the IBM 130 nm process, the circuit consumes 1.5×1.5 mm 2 of silicon area. According to the measurements, the DACs exhibit DNL and INL of 0.23 LSB and 0.364 LSB, respectively. Experimental results indicate that the stimuli generator meets expected requirements when connected to electrode-tissue impedance of as high as 25 k Ω. Maximum power consumption of the proposed design is 3.4 mW when delivering biphasic rectangular pulses to the target load. A charge pump block is in charge of the upconversion of the standard 1.2-V supply voltage to ±3.3V.

  5. Waveform agile high-power fiber laser illuminators for directed-energy weapon systems

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu

    2012-06-01

    A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.

  6. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    NASA Astrophysics Data System (ADS)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  7. Terahertz multistatic reflection imaging.

    PubMed

    Dorney, Timothy D; Symes, William W; Baraniuk, Richard G; Mittleman, Daniel M

    2002-07-01

    We describe a new imaging method using single-cycle pulses of terahertz (THz) radiation. This technique emulates the data collection and image processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a migration procedure to solve the inverse problem; this permits us to reconstruct the location, the shape, and the refractive index of targets. We show examples for both metallic and dielectric model targets, and we perform velocity analysis on dielectric targets to estimate the refractive indices of imaged components. These results broaden the capabilities of THz imaging systems and also demonstrate the viability of the THz system as a test bed for the exploration of new seismic processing methods.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, R.P., E-mail: rpkelley@ufl.edu; Ray, H.; Jordan, K.A.

    An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empiricalmore » analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.« less

  9. Efficient and precise calculation of the b-matrix elements in diffusion-weighted imaging pulse sequences.

    PubMed

    Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S

    2014-06-01

    Precise NMR diffusion measurements require detailed knowledge of the cumulative dephasing effect caused by the numerous gradient pulses present in most NMR pulse sequences. This effect, which ultimately manifests itself as the diffusion-related NMR signal attenuation, is usually described by the b-value or the b-matrix in the case of multidirectional diffusion weighting, the latter being common in diffusion-weighted NMR imaging. Neglecting some of the gradient pulses introduces an error in the calculated diffusion coefficient reaching in some cases 100% of the expected value. Therefore, ensuring the b-matrix calculation includes all the known gradient pulses leads to significant error reduction. Calculation of the b-matrix for simple gradient waveforms is rather straightforward, yet it grows cumbersome when complexly shaped and/or numerous gradient pulses are introduced. Making three broad assumptions about the gradient pulse arrangement in a sequence results in an efficient framework for calculation of b-matrices as well providing some insight into optimal gradient pulse placement. The framework allows accounting for the diffusion-sensitising effect of complexly shaped gradient waveforms with modest computational time and power. This is achieved by using the b-matrix elements of the simple unmodified pulse sequence and minimising the integration of the complexly shaped gradient waveform in the modified sequence. Such re-evaluation of the b-matrix elements retains all the analytical relevance of the straightforward approach, yet at least halves the amount of symbolic integration required. The application of the framework is demonstrated with the evaluation of the expression describing the diffusion-sensitizing effect, caused by different bipolar gradient pulse modules. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    White, Travis L.; Miller, William H.

    1999-02-01

    Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.

  11. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus.

    PubMed

    Giacomelli, L; Conroy, S; Gorini, G; Horton, L; Murari, A; Popovichev, S; Syme, D B

    2014-02-01

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  12. Single-pulse interference caused by temporal reflection at moving refractive-index boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    Here, we show numerically and analytically that temporal reflections from a moving refractive-index boundary act as an analog of Lloyd’s mirror, allowing a single pulse to produce interference fringes in time as it propagates inside a dispersive medium. This interference can be viewed as the pulse interfering with a virtual pulse that is identical to the first, except for a π-phase shift. Furthermore, if a second moving refractive-index boundary is added to create the analog of an optical waveguide, a single pulse can be self-imaged or made to produce two or more pulses by adjusting the propagation length in amore » process similar to the Talbot effect.« less

  13. Single-pulse interference caused by temporal reflection at moving refractive-index boundaries

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2017-09-29

    Here, we show numerically and analytically that temporal reflections from a moving refractive-index boundary act as an analog of Lloyd’s mirror, allowing a single pulse to produce interference fringes in time as it propagates inside a dispersive medium. This interference can be viewed as the pulse interfering with a virtual pulse that is identical to the first, except for a π-phase shift. Furthermore, if a second moving refractive-index boundary is added to create the analog of an optical waveguide, a single pulse can be self-imaged or made to produce two or more pulses by adjusting the propagation length in amore » process similar to the Talbot effect.« less

  14. What is the temporal analog of reflection and refraction of optical beams?

    DOE PAGES

    Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.

    2015-10-28

    It is shown numerically and analytically that when an optical pulse approaches a moving temporal boundary across which the refractive index changes, it undergoes a temporal equivalent of reflection and refraction of optical beams at a spatial boundary. The main difference is that the role of angles is played by changes in the frequency. The frequency dependence of the dispersion of the material in which the pulse is propagating plays a fundamental role in determining the frequency shifts experienced by the reflected and refracted pulses. As a result, our analytic expressions for these frequency shifts allow us to find themore » condition under which an analog of total internal reflection may occur at the temporal boundary.« less

  15. Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.

    A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less

  16. Application of a deconvolution method for identifying burst amplitudes and arrival times in Alcator C-Mod far SOL plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Theodorsen, Audun; Garcia, Odd Erik; Kube, Ralph; Labombard, Brian; Terry, Jim

    2017-10-01

    In the far scrape-off layer (SOL), radial motion of filamentary structures leads to excess transport of particles and heat. Amplitudes and arrival times of these filaments have previously been studied by conditional averaging in single-point measurements from Langmuir Probes and Gas Puff Imaging (GPI). Conditional averaging can be problematic: the cutoff for large amplitudes is mostly chosen by convention; the conditional windows used may influence the arrival time distribution; and the amplitudes cannot be separated from a background. Previous work has shown that SOL fluctuations are well described by a stochastic model consisting of a super-position of pulses with fixed shape and randomly distributed amplitudes and arrival times. The model can be formulated as a pulse shape convolved with a train of delta pulses. By choosing a pulse shape consistent with the power spectrum of the fluctuation time series, Richardson-Lucy deconvolution can be used to recover the underlying amplitudes and arrival times of the delta pulses. We apply this technique to both L and H-mode GPI data from the Alcator C-Mod tokamak. The pulse arrival times are shown to be uncorrelated and uniformly distributed, consistent with a Poisson process, and the amplitude distribution has an exponential tail.

  17. Pulse shape discrimination of Cs2LiYCl6:Ce3+ detectors at high count rate based on triangular and trapezoidal filters

    NASA Astrophysics Data System (ADS)

    Wen, Xianfei; Enqvist, Andreas

    2017-09-01

    Cs2LiYCl6:Ce3+ (CLYC) detectors have demonstrated the capability to simultaneously detect γ-rays and thermal and fast neutrons with medium energy resolution, reasonable detection efficiency, and substantially high pulse shape discrimination performance. A disadvantage of CLYC detectors is the long scintillation decay times, which causes pulse pile-up at moderate input count rate. Pulse processing algorithms were developed based on triangular and trapezoidal filters to discriminate between neutrons and γ-rays at high count rate. The algorithms were first tested using low-rate data. They exhibit a pulse-shape discrimination performance comparable to that of the charge comparison method, at low rate. Then, they were evaluated at high count rate. Neutrons and γ-rays were adequately identified with high throughput at rates of up to 375 kcps. The algorithm developed using the triangular filter exhibits discrimination capability marginally higher than that of the trapezoidal filter based algorithm irrespective of low or high rate. The algorithms exhibit low computational complexity and are executable on an FPGA in real-time. They are also suitable for application to other radiation detectors whose pulses are piled-up at high rate owing to long scintillation decay times.

  18. Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    DOE PAGES

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; ...

    2017-10-16

    A new double time-of- ight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performedmore » using both GEANT4 and MCNP6. The efficiency- corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. As a result, this method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams« less

  19. Methods of Optimal Control of Laser-Plasma Instabilities Using Spike Trains of Uneven Duration and Delay (STUD Pulses)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros

    2013-10-01

    We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.

  20. Optimization of vehicle deceleration to reduce occupant injury risks in frontal impact.

    PubMed

    Mizuno, Koji; Itakura, Takuya; Hirabayashi, Satoko; Tanaka, Eiichi; Ito, Daisuke

    2014-01-01

    In vehicle frontal impacts, vehicle acceleration has a large effect on occupant loadings and injury risks. In this research, an optimal vehicle crash pulse was determined systematically to reduce injury measures of rear seat occupants by using mathematical simulations. The vehicle crash pulse was optimized based on a vehicle deceleration-deformation diagram under the conditions that the initial velocity and the maximum vehicle deformation were constant. Initially, a spring-mass model was used to understand the fundamental parameters for optimization. In order to investigate the optimization under a more realistic situation, the vehicle crash pulse was also optimized using a multibody model of a Hybrid III dummy seated in the rear seat for the objective functions of chest acceleration and chest deflection. A sled test using a Hybrid III dummy was carried out to confirm the simulation results. Finally, the optimal crash pulses determined from the multibody simulation were applied to a human finite element (FE) model. The optimized crash pulse to minimize the occupant deceleration had a concave shape: a high deceleration in the initial phase, low in the middle phase, and high again in the final phase. This crash pulse shape depended on the occupant restraint stiffness. The optimized crash pulse determined from the multibody simulation was comparable to that from the spring-mass model. From the sled test, it was demonstrated that the optimized crash pulse was effective for the reduction of chest acceleration. The crash pulse was also optimized for the objective function of chest deflection. The optimized crash pulse in the final phase was lower than that obtained for the minimization of chest acceleration. In the FE analysis of the human FE model, the optimized pulse for the objective function of the Hybrid III chest deflection was effective in reducing rib fracture risks. The optimized crash pulse has a concave shape and is dependent on the occupant restraint stiffness and maximum vehicle deformation. The shapes of the optimized crash pulse in the final phase were different for the objective functions of chest acceleration and chest deflection due to the inertial forces of the head and upper extremities. From the human FE model analysis it was found that the optimized crash pulse for the Hybrid III chest deflection can substantially reduce the risk of rib cage fractures. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.

  1. Magma Mingling of Multiple Mush Magmas

    NASA Astrophysics Data System (ADS)

    Graham, B.; Leitch, A.; Dunning, G.

    2016-12-01

    This field, petrographic, and geochemical study catalogues complicated magma mingling at the field to thin section scale, and models the emplacement of multiple crystal-rich pulses into a growing magma chamber. Modern theories present magma chambers as short-lived reservoirs that are continuously fed by intermittent magma pulses and suggest processes that occur within them can be highly dynamic. Differences in the rheology of two mingling magmas, largely affected by crystallinity, can result in varied textural features that can be preserved in igneous rocks. Field evidence of complex magma mingling is observed at Wild Cove, located along the northeast shoreline of Fogo Island, Newfoundland, an area interpreted to represent the roof/wall region of the Devonian Fogo Batholith. Fine-grained intermediate enclaves are contained in host rocks of similar composition and occur in round to amoeboid shapes. Dykes of similar composition are also observed near enclaves suggesting they were broken up into globules in localized areas. These provide evidence for a possible mechanism by which enclaves were formed as dykes passed through a more liquid-rich region of the magma chamber. The irregular but sharp nature of the boundaries between units suggest that all co-existed as "mushy" magmas with variable crystallinities reflecting a wide range in temperature between their respective liquidus and solidus. Textural evidence of complex mingling between mush units includes the intrusion of tonalite dykes into quartz diorite and granite mushes. The dykes were later pulled apart and subsequently back-intruded by liquid from the host mush (Figure). Observed magmatic tubes of intermediate magma cross-cutting through magma of near identical composition likely reflect compaction of the underlying mush after intrusion of new pulses of magma into the system. Petrographic examination of contacts between units reveals that few are chilled and medium to coarse grained boundaries are the norm.

  2. Alternating absorption features during attosecond-pulse propagation in a laser-controlled gaseous medium

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Adrian N.; Bell, M. Justine; Beck, Annelise R.; Mashiko, Hiroki; Neumark, Daniel M.; Leone, Stephen R.

    2013-11-01

    Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.

  3. Improved pulse shape discrimination in EJ-301 liquid scintillators

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Masson, D.; Pienaar, J.; Röttger, S.

    2017-06-01

    Digital pulse shape discrimination has become readily available to distinguish nuclear recoil and electronic recoil events in scintillation detectors. We evaluate digital implementations of pulse shape discrimination algorithms discussed in the literature, namely the Charge Comparison Method, Pulse-Gradient Analysis, Fourier Series and Standard Event Fitting. In addition, we present a novel algorithm based on a Laplace Transform. Instead of comparing the performance of these algorithms based on a single Figure of Merit, we evaluate them as a function of recoil energy. Specifically, using commercial EJ-301 liquid scintillators, we examined both the resulting acceptance of nuclear recoils at a given rejection level of electronic recoils, as well as the purity of the selected nuclear recoil event samples. We find that both a Standard Event fit and a Laplace Transform can be used to significantly improve the discrimination capabilities over the whole considered energy range of 0 - 800keVee . Furthermore, we show that the Charge Comparison Method performs poorly in accurately identifying nuclear recoils.

  4. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (<0.02 nm) diode laser that is discretely driven in a new short-pulsed mode, enabling continuously tunable seed pulse widths in the 0.2-to-0.4-ns range. The amplifier gain unit consists of a pair of Brewster-cut 6-bounce zigzag Nd:YAG laser slabs, oriented 90deg relative to each other in the amplifier head. This arrangement creates a net-symmetrical thermal lens effect (an opposing singleaxis effect in each slab), and makes thermo-optical corrections simple by optimizing the curvature of the nearest cavity mirror. Each slab is pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many MHz. Therefore, this design does not need to throw away or dump 99% of the laser energy to produce what is required; this system can be far smaller, more efficient, cheaper, and readily deployed in the field when packaged efficiently. Finally, by producing custom diode seed pulses electronically, two major advantages over commercial systems are realized: First, this pulse shape is customizable and not affected by the cavity length or gain of the amplifier cavity, and second, it can produce adjustable (selectable) pulse widths by simply adding multiple seed diodes and coupling each into commercial, low-cost fiber-optic combiners.

  5. Effects of chirp on two-dimensional Fourier transform electronic spectra.

    PubMed

    Tekavec, Patrick F; Myers, Jeffrey A; Lewis, Kristin L M; Fuller, Franklin D; Ogilvie, Jennifer P

    2010-05-24

    We examine the effect that pulse chirp has on the shape of two- dimensional electronic spectra through calculations and experiments. For the calculations we use a model two electronic level system with a solvent interaction represented by a simple Gaussian correlation function and compare the resulting spectra to experiments carried out on an organic dye molecule (Rhodamine 800). Both calculations and experiments show that distortions due to chirp are most significant when the pulses used in the experiment have different amounts of chirp, introducing peak shape asymmetry that could be interpreted as spectrally dependent relaxation. When all pulses have similar chirp the distortions are reduced but still affect the anti-diagonal symmetry of the peak shapes and introduce negative features that could be interpreted as excited state absorption.

  6. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  7. [Low level alpha activity measurements with pulse shape discrimination--application to the determination of alpha-nuclides in environmental samples].

    PubMed

    Satoh, K; Noguchi, M; Higuchi, H; Kitamura, K

    1984-12-01

    Liquid scintillation counting of alpha rays with pulse shape discrimination was applied to the analysis of 226Ra and 239+240Pu in environmental samples and of alpha-emitters in/on a filter paper. The instrument used in this study was either a specially designed detector or a commercial liquid scintillation counter with an automatic sample changer, both of which were connected to the pulse shape discrimination circuit. The background counting rate in alpha energy region of 5-7 MeV was 0.01 or 0.04 cpm/MeV, respectively. The figure of merit indicating the resolving power for alpha- and beta-particles in time spectrum was found to be 5.7 for the commercial liquid scintillation counter.

  8. Significantly different pulse shapes for γ- and α-rays in Gd3Al2Ga3O12:Ce3+ scintillating crystals

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masaaki; Tamagawa, Yoichi; Tomita, Shougo; Yamamoto, Akihiro; Ogawa, Izumi; Usuki, Yoshiyuki

    2012-12-01

    We have found that scintillation in Gd3Al2Ga3O12 (GAGG):Ce3+ garnet single crystals has significantly different pulse shapes for 0.662 MeV γ- and 5.47 MeV α-rays. The decay and rise times for γ-rays are smaller by 50% and threefold, respectively, than those for α-rays. Because the GAGG:Ce is a dense, efficient and fast-response scintillator and because it can be grown in large-size single crystals, it should be a promising unified target and a detector material in the study of neutrinoless double beta decay of 160Gd through the use of pulse shape discrimination between the β-ray signals and the α-ray-induced backgrounds.

  9. Adiabat-shaping in indirect drive inertial confinement fusion

    DOE PAGES

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; ...

    2015-05-05

    Adiabat-shaping techniques were investigated in this paper in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform formore » both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. Finally, this approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.« less

  10. Optical emission and nanoparticle generation in Al plasmas using ultrashort laser pulses temporally optimized by real-time spectroscopic feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillermin, M.; Colombier, J. P.; Audouard, E.

    2010-07-15

    With an interest in pulsed laser deposition and remote spectroscopy techniques, we explore here the potential of laser pulses temporally tailored on ultrafast time scales to control the expansion and the excitation degree of various ablation products including atomic species and nanoparticulates. Taking advantage of automated pulse-shaping techniques, an adaptive procedure based on spectroscopic feedback is applied to regulate the irradiance and enhance the optical emission of monocharged aluminum ions with respect to the neutral signal. This leads to optimized pulses usually consisting in a series of femtosecond peaks distributed on a longer picosecond sequence. The ablation features induced bymore » the optimized pulse are compared with those determined by picosecond pulses generated by imposed second-order dispersion or by double pulse sequences with adjustable picosecond separation. This allows to analyze the influence of fast- and slow-varying envelope features on the material heating and the resulting plasma excitation degree. Using various optimal pulse forms including designed asymmetric shapes, we analyze the establishment of surface pre-excitation that enables conditions of enhanced radiation coupling. Thin films elaborated by unshaped femtosecond laser pulses and by optimized, stretched, or double pulse sequences are compared, indicating that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. A thermodynamic scenario involving supercritical heating is proposed to explain enhanced ionization rates and lower particulates density for optimal pulses. Numerical one-dimensional hydrodynamic simulations for the excited matter support the interpretation of the experimental results in terms of relative efficiency of various relaxation paths for excited matter above or below the thermodynamic stability limits. The calculation results underline the role of the temperature and density gradients along the ablated plasma plume which lead to the spatial distinct locations of excited species. Moreover, the nanoparticles sizes are computed based on liquid layer ejection followed by a Rayleigh and Taylor instability decomposition, in good agreement with the experimental findings.« less

  11. A Compton scattering setup for pulse shape discrimination studies in germanium detectors.

    PubMed

    von Sturm, K; Belogurov, S; Brugnera, R; Garfagnini, A; Lippi, I; Modenese, L; Rosso, D; Turcato, M

    2017-07-01

    Pulse shape discrimination is an important handle to improve sensitivity in low background experiments. A dedicated setup was built to investigate the response of high-purity germanium detectors to single Compton scattered events. Using properly collimated γ-ray sources, it is possible to select events with known interaction location. The aim is to correlate the position dependent signal shape with geometrical and electrical properties of the detector. We report on design and performance of the setup with a first look on data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    NASA Astrophysics Data System (ADS)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging resolution enhancement, while the results of the modeling in the time domain open opportunities for development of flexible pulse shaping benefitting a variety of ultrafast applications.

  13. Time-to-space mapping of femtosecond pulses.

    PubMed

    Nuss, M C; Li, M; Chiu, T H; Weiner, A M; Partovi, A

    1994-05-01

    We report time-to-space mapping of femtosecond light pulses in a temporal holography setup. By reading out a temporal hologram of a short optical pulse with a continuous-wave diode laser, we accurately convert temporal pulse-shape information into a spatial pattern that can be viewed with a camera. We demonstrate real-time acquisition of electric-field autocorrelation and cross correlation of femtosecond pulses with this technique.

  14. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions ofmore » moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.« less

  15. Optimal control of the population dynamics of the ground vibrational state of a polyatomic molecule

    NASA Astrophysics Data System (ADS)

    de Clercq, Ludwig E.; Botha, Lourens R.; Rohwer, Erich G.; Uys, Hermann; Du Plessis, Anton

    2011-03-01

    Simulating coherent control with femtosecond pulses on a polyatomic molecule with anharmonic splitting was demonstrated. The simulation mimicked pulse shaping of a Spatial Light Modulator (SLM) and the interaction was described with the Von Neumann equation. A transform limited pulse with a fluence of 600 J/m2 produced 18% of the population in an arbitrarily chosen upper vibrational state, n =2. Phase only and amplitude only shaped pulse produced optimum values of 60% and 40% respectively, of the population in the vibrational state, n=2, after interaction with the ultra short pulse. The combination of phase and amplitude shaping produced the best results, 80% of the population was in the targeted vibrational state, n=2, after interaction. These simulations were carried out with all the population initially in the ground vibrational level. It was found that even at room temperatures (300 Kelvin) that the population in the selected level is comparable with the case where all population is initially in the ground vibrational state. With a 10% noise added to the amplitude and phase masks, selective excitation of the targeted vibrational state is still possible.

  16. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  17. One-dimensional transient radiative transfer by lattice Boltzmann method.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  18. Feeding a sub-ns-risetime rectangular pulse onto a rod-shaped resistive high-voltage divider in risetime <2 ns

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengzhong; Ma, Lianying

    2004-01-01

    A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.

  19. Origin of the double- and multi-pulse structure of echolocation signals in Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientialis)

    NASA Astrophysics Data System (ADS)

    Li, Songhai; Wang, Kexiong; Wang, Ding; Akamatsu, Tomonari

    2005-12-01

    The signals of dolphins and porpoises often exhibit a multi-pulse structure. Here, echolocation signal recordings were made from four geometrically distinct positions of seven Yangtze finless porpoises temporarily housed in a relatively small, enclosed area. Some clicks demonstrated double-pulse, and others multi-pulse, structure. The interpulse intervals between the first and second pulse of the double- and multi-pulse clicks were significantly different among data from the four different positions (p<0.01, one-way ANOVA). These results indicate that the interpulse interval and structure of the double- and multi-pulse echolocation signals depend on the hydrophone geometry of the animal, and that the double- and multi-pulse structure of echolocation signals in Yangtze finless porpoise is not caused by the phonating porpoise itself, but by the multipath propagation of the signal. Time delays in the 180° phase-shifted surface reflection pulse and the nonphase-shifted bottom reflection pulse of the multi-pulse structures, relative to the direct signal, can be used to calculate the distance to a phonating animal.

  20. Loss of Gα12/13 exacerbates apical area dependence of actomyosin contractility

    PubMed Central

    Xie, Shicong; Mason, Frank M.; Martin, Adam C.

    2016-01-01

    During development, coordinated cell shape changes alter tissue shape. In the Drosophila ventral furrow and other epithelia, apical constriction of hundreds of epithelial cells folds the tissue. Genes in the Gα12/13 pathway coordinate collective apical constriction, but the mechanism of coordination is poorly understood. Coupling live-cell imaging with a computational approach to identify contractile events, we discovered that differences in constriction behavior are biased by initial cell shape. Disrupting Gα12/13 exacerbates this relationship. Larger apical area is associated with delayed initiation of contractile pulses, lower apical E-cadherin and F-actin levels, and aberrantly mobile Rho-kinase structures. Our results suggest that loss of Gα12/13 disrupts apical actin cortex organization and pulse initiation in a size-dependent manner. We propose that Gα12/13 robustly organizes the apical cortex despite variation in apical area to ensure the timely initiation of contractile pulses in a tissue with heterogeneity in starting cell shape. PMID:27489340

  1. Influence of current pulse shape on directly modulated system performance in metro area optical networks

    NASA Astrophysics Data System (ADS)

    Campos, Carmina del Rio; Horche, Paloma R.; Martin-Minguez, Alfredo

    2011-03-01

    Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML-fiber couple.

  2. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping

    DOE PAGES

    Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; ...

    2016-03-18

    Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for future x- and gamma-ray sources.

  3. Relaxation of water infiltration pulses observed with GPR

    NASA Astrophysics Data System (ADS)

    Hantschel, Lisa; Hemmer, Benedikt; Roth, Kurt

    2017-04-01

    We observe the relaxation of infiltration pulses in sandy soil with ground-penetrating radar (GPR). The spatial distribution of water in the infiltration area and its temporal evolution is represented by ordinary reflections at layer boundaries as well as multiple reflections at the wetting front and the pulse boundaries. The structure of these highly resolved signals are reproduced by numerical simulations of electromagnetic wave propagation. The temporally highly resolved electrical fields reveal the origin also of complex reflection signals. The usage of these more complex signals might allow a more detailed representation of the infiltration process by direct analysis as well as in combination with inversion techniques.

  4. Pulse compression at 1.06 μm in dispersion-decreasing holey fibers

    NASA Astrophysics Data System (ADS)

    Tse, M. L. V.; Horak, P.; Price, J. H. V.; Poletti, F.; He, F.; Richardson, D. J.

    2006-12-01

    We report compression of low-power femtosecond pulses at 1.06 μm in a dispersion-decreasing holey fiber. Near-adiabatic compression of 130 fs pulses down to 60 fs has been observed. Measured spectra and pulse shapes agree well with numerical simulations. Compression factors of ten are possible in optimized fibers.

  5. Two-state and two-state plus continuum problems associated with the interaction of intense laser pulses with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C. W.; Payne, M. G.

    1977-02-01

    Two mathematical methods are utilized (one a form of adiabatic approximation, and the other closely related to the Zener method from collision theory) in order to calculate the probability of three-photon ionization when strong counter propagating pulses are tuned very near a two-photon resonant state. In this case the inverted populations predicted by Grischkowsky and Loy for smooth laser pulses lead to larger ionization probabilities than would be obtained for a square pulse of equal peak power and energy per pulse. The line shape of the ionization probability is also quite unusual in this problem. A sharp onset in themore » ionization probability occurs as the lasers are tuned through the exact unperturbed two-photon resonance. Under proper conditions, the change can be from a very small value to one near unity. It occurs in a very small frequency range determined by the larger of the residual Doppler effect and the reciprocal duration of the pulse. Thus, the line shape retains a Doppler-free aspect even at power levels such that power broadening would dwarf even the full Doppler effect in the case of a square pulse of equal energy and peak power. The same mathematical methods have been used to calculate line shapes for the two-photon excitation of fluorescence when the atoms see a pulsed field due to their time of passage across a tightly focused cw laser beam. Thus,the mathematical methods used above permitted accurate analytical calculations under a set of very interesting conditions.« less

  6. Pulse transmission transceiver architecture for low power communications

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  7. Improved sensitivity for W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped pulses

    NASA Astrophysics Data System (ADS)

    Bahrenberg, Thorsten; Rosenski, Yael; Carmieli, Raanan; Zibzener, Koby; Qi, Mian; Frydman, Veronica; Godt, Adelheid; Goldfarb, Daniella; Feintuch, Akiva

    2017-10-01

    Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95 GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D ∼ 1150 MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D ∼ 550 MHz) as a model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D parameter of the Gd(III) complex.

  8. Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector.

    PubMed

    Chang, Chen-Ming; Cates, Joshua W; Levin, Craig S

    2017-01-07

    It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising [Formula: see text] mm LYSO:Ce crystal optically coupled to [Formula: see text] mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was [Formula: see text]% and [Formula: see text]% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.

  9. Ultrahigh-resolution spectroscopy with atomic or molecular dark resonances: Exact steady-state line shapes and asymptotic profiles in the adiabatic pulsed regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanon-Willette, Thomas; Clercq, Emeric de; Arimondo, Ennio

    2011-12-15

    Exact and asymptotic line shape expressions are derived from the semiclassical density matrix representation describing a set of closed three-level {Lambda} atomic or molecular states including decoherences, relaxation rates, and light shifts. An accurate analysis of the exact steady-state dark-resonance profile describing the Autler-Townes doublet, the electromagnetically induced transparency or coherent population trapping resonance, and the Fano-Feshbach line shape leads to the linewidth expression of the two-photon Raman transition and frequency shifts associated to the clock transition. From an adiabatic analysis of the dynamical optical Bloch equations in the weak field limit, a pumping time required to efficiently trap amore » large number of atoms into a coherent superposition of long-lived states is established. For a highly asymmetrical configuration with different decay channels, a strong two-photon resonance based on a lower states population inversion is established when the driving continuous-wave laser fields are greatly unbalanced. When time separated resonant two-photon pulses are applied in the adiabatic pulsed regime for atomic or molecular clock engineering, where the first pulse is long enough to reach a coherent steady-state preparation and the second pulse is very short to avoid repumping into a new dark state, dark-resonance fringes mixing continuous-wave line shape properties and coherent Ramsey oscillations are created. Those fringes allow interrogation schemes bypassing the power broadening effect. Frequency shifts affecting the central clock fringe computed from asymptotic profiles and related to the Raman decoherence process exhibit nonlinear shapes with the three-level observable used for quantum measurement. We point out that different observables experience different shifts on the lower-state clock transition.« less

  10. A Study of Pulse Shape Evolution and X-Ray Reprocessing in Her X-1

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1998-01-01

    This study focused on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium". More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in HerX-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  11. Wedge-shaped slice-selective adiabatic inversion pulse for controlling temporal width of bolus in pulsed arterial spin labeling

    PubMed Central

    Guo, Jia; Buxton, Richard B.; Wong, Eric C.

    2015-01-01

    Purpose In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled via inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as Turbo-ASL and Turbo-QUASAR. Theory and Methods A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS) based WS inversion pulse was implemented. Its performance was tested in simulations, phantom and human experiments, and compared to an SS HS inversion pulse. Results Compared to the SS inversion pulse, the WS inversion pulse is capable of inducing different inversion thicknesses at different locations. It can be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities. Conclusion The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle, and improving temporal resolution and SNR efficiency. PMID:26451521

  12. Neutron time-of-flight spectroscopy measurement using a waveform digitizer

    NASA Astrophysics Data System (ADS)

    Liu, Long-Xiang; Wang, Hong-Wei; Ma, Yu-Gang; Cao, Xi-Guang; Cai, Xiang-Zhou; Chen, Jin-Gen; Zhang, Gui-Lin; Han, Jian-Long; Zhang, Guo-Qiang; Hu, Ji-Feng; Wang, Xiao-He

    2016-05-01

    The photoneutron source (PNS, phase 1), an electron linear accelerator (linac)-based pulsed neutron facility that uses the time-of-flight (TOF) technique, was constructed for the acquisition of nuclear data from the Thorium Molten Salt Reactor (TMSR) at the Shanghai Institute of Applied Physics (SINAP). The neutron detector signal used for TOF calculation, with information on the pulse arrival time, pulse shape, and pulse height, was recorded by using a waveform digitizer (WFD). By using the pulse height and pulse-shape discrimination (PSD) analysis to identify neutrons and γ-rays, the neutron TOF spectrum was obtained by employing a simple electronic design, and a new WFD-based DAQ system was developed and tested in this commissioning experiment. The DAQ system developed is characterized by a very high efficiency with respect to millisecond neutron TOF spectroscopy. Supported by Strategic Priority Research Program of the Chinese Academy of Science(TMSR) (XDA02010100), National Natural Science Foundation of China(NSFC)(11475245,No.11305239), Shanghai Key Laboratory of Particle Physics and Cosmology (11DZ2260700)

  13. Note: Compact high voltage pulse transformer made using a capacitor bank assembled in the shape of primary.

    PubMed

    Shukla, Rohit; Banerjee, Partha; Sharma, Surender K; Das, Rashmita; Deb, Pankaj; Prabaharan, T; Das, Basanta; Adhikary, Biswajit; Verma, Rishi; Shyam, Anurag

    2011-10-01

    The experimental results of an air-core pulse transformer are presented, which is very compact (<10 Kg in weight) and is primed by a capacitor bank that is fabricated in such a way that the capacitor bank with its switch takes the shape of single-turn rectangular shaped primary of the transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 μS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads.

  14. The angular dependence of pulse shape discrimination and detection sensitivity in cylindrical and cubic EJ-309 organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Joyce, M. J.

    2017-01-01

    Liquid scintillators are used widely for neutron detection and for the assay of nuclear materials. However, due to the constituents of the detector and the nitrogen void within the detector cell, usually incorporated to accommodate any expansion that might occur to avoid leakage, fluctuations in detector response have been observed associated with the orientation of the detector when in use. In this work the angular dependence of the pulse-shape discrimination performance in an EJ309 liquid scintillator has been investigated with 252Cf in terms of the separation of γ -ray and neutron events, described quantitatively by the figure-of-merit. A subtle dependence in terms of pulse-shape discrimination is observed. In contrast, a more significant dependence of detection sensitivity with the angle of orientation is evident.

  15. A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.

    Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.

  16. Cavity-dumped femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate

    NASA Astrophysics Data System (ADS)

    Yoon, E.; Joo, T.

    2016-03-01

    A synchronously pumped cavity-dumped femtosecond optical parametric oscillator (OPO) based on a periodically poled stoichiometric lithium tantalate (PPSLT) crystal is reported. The OPO runs in positive group velocity dispersion (GVD) mode to deliver high pulse energy at high repetition rate. It delivers pulse energy over 130 nJ up to 500 kHz and 70 nJ at 1 MHz of repetition rate at 1100 nm. Pulse duration is as short as 42 fs, and the OPO is tunable in the near infrared region from 1050 to 1200 nm. Dispersion property of the OPO was also explored. The cavity-dumped output carries a positive GVD, which can be compensated easily by an external prism pair, and large negative third order dispersion (TOD), which results in a pedestal in the pulse shape. Approaches to obtain clean pulse shape by reducing the large TOD are proposed.

  17. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation.

    PubMed

    Kim, Euiho; Seo, Jiwon

    2017-09-22

    In the Federal Aviation Administration's (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0-77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  18. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    PubMed Central

    Kim, Euiho

    2017-01-01

    In the Federal Aviation Administration’s (FAA) performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME) infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment. PMID:28937615

  19. A Kolsky tension bar technique using a hollow incident tube

    NASA Astrophysics Data System (ADS)

    Guzman, O.; Frew, D. J.; Chen, W.

    2011-04-01

    Load control of the incident pulse profiles in compression Kolsky bar experiments has been widely used to subject the specimen to optimal testing conditions. Tension Kolsky bars have been used to determine dynamic material behavior since the 1960s with limited capability to shape the loading pulses due to the pulse-generating mechanisms. We developed a modified Kolsky tension bar where a hollow incident tube is used to carry the incident stress waves. The incident tube also acts as a gas gun barrel that houses the striker for impact. The main advantage of this new design is that the striker impacts on an impact cap of the incident tube. Compression pulse shapers can be attached to the impact cap, thus fully utilizing the predictive compression pulse-shaping capability in tension experiments. Using this new testing technique, the dynamic tensile material behavior for Al 6061-T6511 and TRIP 800 (transformation-induced plasticity) steel has been obtained.

  20. Frequency-domain coherent multidimensional spectroscopy when dephasing rivals pulsewidth: Disentangling material and instrument response

    DOE PAGES

    Kohler, Daniel D.; Thompson, Blaise J.; Wright, John C.

    2017-08-31

    Ultrafast spectroscopy is often collected in the mixed frequency/time domain, where pulse durations are similar to system dephasing times. In these experiments, expectations derived from the familiar driven and impulsive limits are not valid. This work simulates the mixed-domain four-wave mixing response of a model system to develop expectations for this more complex field-matter interaction. We also explore frequency and delay axes. We show that these line shapes are exquisitely sensitive to excitation pulse widths and delays. Near pulse overlap, the excitation pulses induce correlations that resemble signatures of dynamic inhomogeneity. We describe these line shapes using an intuitive picturemore » that connects to familiar field-matter expressions. We develop strategies for distinguishing pulse-induced correlations from true system inhomogeneity. Our simulations provide a foundation for interpretation of ultrafast experiments in the mixed domain.« less

  1. Single-pulse observations of the Galactic centre magnetar PSR J1745-2900 at 3.1 GHz

    NASA Astrophysics Data System (ADS)

    Yan, W. M.; Wang, N.; Manchester, R. N.; Wen, Z. G.; Yuan, J. P.

    2018-05-01

    We report on single-pulse observations of the Galactic centre magnetar PSR J1745-2900 that were made using the Parkes 64-m radio telescope with a central frequency of 3.1 GHz at five observing epochs between 2013 July and August. The shape of the integrated pulse profiles was relatively stable across the five observations, indicating that the pulsar was in a stable state between MJDs 56475 and 56514. This extends the known stable state of this pulsar to 6.8 months. Short-term pulse shape variations were also detected. It is shown that this pulsar switches between two emission modes frequently and that the typical duration of each mode is about 10 min. No giant pulses or subpulse drifting were observed. Apparent nulls in the pulse emission were detected on MJD 56500. Although there are many differences between the radio emissions of magnetars and normal radio pulsars, they also share some properties. The detection of mode changing and pulse nulling in PSR J1745-2900 suggests that the basic radio emission process for magnetars and normal pulsars is the same.

  2. Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, G. R.

    Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) withmore » nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.« less

  3. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less

  4. Measurement of Ultracold Neutrons Produced by Using Doppler-shifted Bragg Reflection at a Pulsed-neutron Source

    DOE R&D Accomplishments Database

    Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.

  5. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGES

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; ...

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  6. Alpha/beta pulse shape discrimination in plastic scintillation using commercial scintillation detectors.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2010-06-18

    Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ((3)H-(241)Am or (90)Sr/(90)Y-(241)Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste. 2010 Elsevier B.V. All rights reserved.

  7. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    NASA Astrophysics Data System (ADS)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  8. Shaped saturation with inherent radiofrequency-power-efficient trajectory design in parallel transmission.

    PubMed

    Schneider, Rainer; Haueisen, Jens; Pfeuffer, Josef

    2014-10-01

    A target-pattern-driven (TD) trajectory design is introduced in combination with parallel transmit (pTX) radiofrequency (RF) pulses to provide localized suppression of unwanted signals. The design incorporates target-pattern and B1+ information to adjust denser sampling and coverage in k-space regions where the main pattern information lies. Based on this approach, two-dimensional RF spiral saturation pulses sensitive to RF power limits were applied in vivo for the first time. The TD method was compared with two state-of-the-art spiral design methods. Simulations at different spatial fidelities, acceleration factors and anatomical regions were carried out for an eight-channel pTX 3 Tesla (T) coil. Human in vivo experiments were performed on a two-channel pTX 3T scanner saturating shaped patterns in the brain, heart, and thoracic spine. Using the TD trajectory, RF pulse power can be substantially reduced by up to 34% compared with other trajectory designs with the same spatial accuracy. Local and global specific absorption rates are decreased in most cases. The TD trajectory design uses available a priori information to enhance RF power efficiency and spatial response of the RF pulses. Shaped saturation pulses show improved spatial accuracy and saturation performance. Thus, RF pulses can be designed more efficiently and can be further accelerated. Copyright © 2013 Wiley Periodicals, Inc.

  9. Triple pulse shape discrimination and capture-gated spectroscopy in a composite heterogeneous scintillator

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Nattress, J.; Wilhelm, K.; Jovanovic, I.

    2017-06-01

    We demonstrate an all-solid-state design for a composite heterogeneous scintillation detector sensitive to interactions with high-energy photons (gammas), fast neutrons, and thermal neutrons. The scintillator exhibits triple pulse shape discrimination, effectively separating electron recoils, fast neutron recoils, and neutron captures. This is accomplished by combining the properties of two distinct scintillators, whereby a 51-mm diameter, 51-mm tall cylinder of pulse shape discriminating plastic is wrapped by a 320-μm thick sheet of 6LiF:ZnS(Ag), optically coupling the scintillators to each other and to the photomultiplier tube. In this way, the sensitivity to neutron captures is achieved without the need to load the plastic scintillator with a capture agent. We demonstrate a figure of merit of up to 1.2 for fast neutrons/gammas and 5.7 for thermal neutrons/gammas. Intrinsic capture efficiency is found to be 0.46±0.05% and is in good agreement with simulation, while gamma rejection was 10-6 with respect to the capture region and 10-4 with respect to the recoil region using a 300 keVee threshold. Finally, we show an improvement in capture-gated neutron spectroscopy by rejecting accidental gamma coincidences using pulse shape discrimination in the plastic scintillator.

  10. Low-threshold ablation of enamel and dentin using Nd:YAG laser assisted with chromophore with different pulse shapes

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Benazzato, Paolo; Stefani, Alessandro; Villoresi, Paolo

    2004-05-01

    Neodimium laser treatment has several drawbacks when used in the hard tissue cutting, because of the low absorption of the dental tissues at its wavelength. This investigation proved that the Nd:YAG radiation is a powerful ablation tool if it is used with the dye assisted method. Several in vitro tests on enamel and dentin were accomplished changing some laser parameters to have different pulse shapes and durations from 125μs up to 1.4ms. The importance of short time high power peaks, typical of crystal lasers, in the ablation process was investigated. The pulse shapes were analyzed by their intensity in space and time profiles. A first set of results found the optimum dye concentration be used in all the following tests. Furthermore the ablation threshold for this technique was found for each different pulse shapes and durations. A low energy ablation method was found to avoid temperature increase and surface cracks formation. In vitro temperature analysis was reported comparing the differences between no dye application laser treatment and with a dye spray applied. A strong reduction of the temperature increase was found in the dye assisted method. A discussion on the general findings and their possible clinical applications is presented.

  11. Mid-infrared beam splitter for ultrashort pulses.

    PubMed

    Somma, Carmine; Reimann, Klaus; Woerner, Michael; Kiel, Thomas; Busch, Kurt; Braun, Andreas; Matalla, Mathias; Ickert, Karina; Krüger, Olaf

    2017-08-01

    A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

  12. Validation of a pulsed electric field process to pasteurize strawberry puree

    USDA-ARS?s Scientific Manuscript database

    An inexpensive data acquisition method was developed to validate the exact number and shape of the pulses applied during pulsed electric fields (PEF) processing. The novel validation method was evaluated in conjunction with developing a pasteurization PEF process for strawberry puree. Both buffered...

  13. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  14. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  15. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  16. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    PubMed

    Morimoto, Takeshi; Kanda, Hiroyuki; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Kitaguchi, Yoshiyuki; Nishida, Kohji; Fujikado, Takashi

    2014-01-01

    Transcorneal electrical stimulation (TES) activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm) were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all). The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  17. Experiments of a 100 kV-level pulse generator based on metal-oxide varistor

    NASA Astrophysics Data System (ADS)

    Cui, Yan-cheng; Wu, Qi-lin; Yang, Han-wu; Gao, Jing-ming; Li, Song; Shi, Cheng-yu

    2018-03-01

    This paper introduces the development and experiments of a 100 kV-level pulse generator based on a metal-oxide varistor (MOV). MOV has a high energy handling capacity and nonlinear voltage-current (V-I) characteristics, which makes it useful for high voltage pulse shaping. Circuit simulations based on the measured voltage-current characteristics of MOV verified the shaping concept and showed that a circuit containing a two-section pulse forming network (PFN) will result in better defined square pulse than a simple L-C discharging circuit. A reduced-scale experiment was carried out and the result agreed well with simulation prediction. Then a 100 kV-level pulse generator with multiple MOVs in a stack and a two-section pulse forming network (PFN) was experimented. A pulse with a voltage amplitude of 90 kV, rise time of about 50 ns, pulse width of 500 ns, and flat top of about 400 ns was obtained with a water dummy load of 50 Ω. The results reveal that the combination of PFN and MOV is a practical way to generate high voltage pulses with better flat top waveforms, and the load voltage is stable even if the load's impedance varies. Such pulse generator can be applied in many fields such as surface treatment, corona plasma generation, industrial dedusting, and medical disinfection.

  18. Development of the Miniature Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Yasukawa, Y.; Ohshima, K.; Toyama, K.; Tsukahara, Y.; Kamoshita, T.; Takeuchi, T.

    2004-06-01

    Fuji Electric has developed a pulse tube cryocooler (PTC) with in-line configuration with a cooling capacity of 3 W at 70 K and requiring 100 W of electrical input power. The emphasis has been on compactness, lightweight, high performance and low cost. In particular, the dimensions of the PTC have been reduced to a width of 190 mm and a height of 300 mm. Presently, we are developing a U-shaped PTC based on the technology of the in-line PTC. The advantage of the U-shaped PTC is that the cold head is located at the end for easy accessing. The key issue for developing the U-shaped PTC is the design of the flow straightener at the cold head. As a first step in the development we visualized the inside of the pulse tube by using particle image velocimetry (PIV). The design of the flow straightener is based on the visualization results. Preliminary tests indicated that the cooling performance of the U-shaped PTC is 2 W at 70 K while requiring 51 W PV power. We will present the test results on the U-shaped PTC as well as the in-line PTC.

  19. SWIFT OBSERVATIONS OF GAMMA-RAY BURST PULSE SHAPES: GRB PULSE SPECTRAL EVOLUTION CLARIFIED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakkila, Jon; Lien, Amy; Sakamoto, Takanori

    Isolated Swift gamma-ray burst (GRB) pulses, like their higher-energy BATSE counterparts, emit the bulk of their pulsed emission as a hard-to-soft component that can be fitted by the Norris et al. empirical pulse model. This signal is overlaid by a fainter, three-peaked signal that can be modeled by the residual fit of Hakkila and Preece: the two fits combine to reproduce GRB pulses with distinctive three-peaked shapes. The precursor peak appears on or before the pulse rise and is often the hardest component, the central peak is the brightest, and the decay peak converts exponentially decaying emission into a long,more » soft, power-law tail. Accounting for systematic instrumental differences, the general characteristics of the fitted pulses are remarkably similar. Isolated GRB pulses are dominated by hard-to-soft evolution; this is more pronounced for asymmetric pulses than for symmetric ones. Isolated GRB pulses can also exhibit intensity tracking behaviors that, when observed, are tied to the timing of the three peaks: pulses with the largest maximum hardnesses are hardest during the precursor, those with smaller maximum hardnesses are hardest during the central peak, and all pulses can re-harden during the central peak and/or during the decay peak. Since these behaviors are essentially seen in all isolated pulses, the distinction between “hard-to-soft and “intensity-tracking” pulses really no longer applies. Additionally, the triple-peaked nature of isolated GRB pulses seems to indicate that energy is injected on three separate occasions during the pulse duration: theoretical pulse models need to account for this.« less

  20. Hohlraum glint and laser pre-pulse detector for NIF experiments using velocity interferometer system for any reflector.

    PubMed

    Moody, J D; Clancy, T J; Frieders, G; Celliers, P M; Ralph, J; Turnbull, D P

    2014-11-01

    Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.

  1. Multiplication and Presence of Shielding Material from Time-Correlated Pulse-Height Measurements of Subcritical Plutonium Assemblies

    DOE PAGES

    Monterial, Mateusz; Marleau, Peter; Paff, Marc; ...

    2017-01-20

    Here, we present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with bothmore » multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.« less

  2. Multiplication and Presence of Shielding Material from Time-Correlated Pulse-Height Measurements of Subcritical Plutonium Assemblies

    NASA Astrophysics Data System (ADS)

    Monterial, Mateusz; Marleau, Peter; Paff, Marc; Clarke, Shaun; Pozzi, Sara

    2017-04-01

    We present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with both multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.

  3. Heat transfer modelling of pulsed laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  4. Picosecond time scale dynamics of short pulse laser-driven shocks in tin

    NASA Astrophysics Data System (ADS)

    Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.

    2009-05-01

    The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.

  5. Passive Q switching and mode-locking of Er:glass lasers using VO2 mirrors

    NASA Astrophysics Data System (ADS)

    Pollack, S. A.; Chang, D. B.; Chudnovky, F. A.; Khakhaev, I. A.

    1995-09-01

    Passive Q switching of an Er:glass laser with the pulse width varying between 14 and 80 ns has been demonstrated, using three resonator vanadium-dioxide-coated (VO2) mirror samples with temperature-dependent reflectivity and differing in the reflectivity contrast. The reflectivity changes because of a phase transition from a semiconductor to a metallic state. Broad band operating characteristics of VO2 mirrors provide Q switching over a wide range of wavelengths. In addition, mode-locked pulses with much shorter time scales have been observed, due to exciton formation and recombination. A simple criterion is derived for the allowable ambient temperatures at which the Q switching operates effectively. A simple relation has also been found relating the duration of the Q-switched pulse to the contrast in reflectivities of the two mirror phases.

  6. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  7. Influence of Plasma Unsteadiness on the Spectrum and Shape of Microwave Pulses in a Plasma Relativistic Microwave Amplifier

    NASA Astrophysics Data System (ADS)

    Kartashov, I. N.; Kuzelev, M. V.; Strelkov, P. S.; Tarakanov, V. P.

    2018-02-01

    Dependence of the shape of a microwave pulse in a plasma relativistic microwave amplifier (PRMA) on the initial plasma electron density in the system is detected experimentally. Depending on the plasma density, fast disruption of amplification, stable operation of the amplifier during the relativistic electron beam (REB) pulse, and its delayed actuation can take place. A reduction in the output signal frequency relative to the input frequency is observed experimentally. The change in the shape of the microwave signal and the reduction in its frequency are explained by a decrease in the plasma density in the system. The dynamics of the plasma density during the REB pulse is determined qualitatively from the experimental data by using the linear theory of a PRMA with a thin-wall hollow electron beam. The processes in a PRMA are analyzed by means of the KARAT particle-in-cell code. It is shown that REB injection is accompanied by an increase in the mean energy of plasma electrons and a significant decrease in their density.

  8. Analysis of mode-locked and intracavity frequency-doubled Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.; Heritier, J.-M.

    1980-01-01

    The paper presents analytical and computer studies of the CW mode-locked and intracavity frequency-doubled Nd:YAG laser which provide new insight into the operation, including the detuning behavior, of this type of laser. Computer solutions show that the steady-state pulse shape for this laser is much closer to a truncated cosine than to a Gaussian; there is little spectral broadening for on-resonance operation; and the chirp is negligible. This leads to a simplified analytical model carried out entirely in the time domain, with atomic linewidth effects ignored. Simple analytical results for on-resonance pulse shape, pulse width, signal intensity, and harmonic conversion efficiency in terms of basic laser parameters are derived from this model. A simplified physical description of the detuning behavior is also developed. Agreement is found with experimental studies showing that the pulsewidth decreases as the modulation frequency is detuned off resonance; the harmonic power output initially increases and then decreases; and the pulse shape develops a sharp-edged asymmetry of opposite sense for opposite signs of detuning.

  9. Sonification of Kepler Field SU UMa Cataclysmic Variable Stars V344 Lyr and V1504 Cyg

    NASA Technical Reports Server (NTRS)

    Tutchton, Roxanne M.; Wood, Matt A.; Still, Martin D.; Howell, Steve B.; Cannizzo, John K.; Smale, Alan P.

    2012-01-01

    Sonification is the conversion of quantitative data into sound. In this work we explain the methods used in the sonification of light curves provided by the Kepler instrument from Q2 through Q6 for the cataclysmic variable systems V344 Lyr and V1504 Cyg . Both systems are SU UMa stars showing dwarf nova outbursts and superoutbursts as well as positive and negative superhumps. Focused sonifications were done from average pulse shapes of each superhump, and separate sonifications of the full, residual light curves were done for both stars. The audio of these data reflected distinct patterns within the evolutions of supercycles and superhumps that matched pervious observations and proved to be effective aids in data analysis.

  10. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    NASA Astrophysics Data System (ADS)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  11. Molecular quantum control landscapes in von Neumann time-frequency phase space

    NASA Astrophysics Data System (ADS)

    Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J.

    2010-10-01

    Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

  12. Molecular quantum control landscapes in von Neumann time-frequency phase space.

    PubMed

    Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J

    2010-10-28

    Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

  13. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  14. Pulse evolution and mode selection characteristics in a TEA-CO2 laser perturbed by injection of external radiation

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.; Kavaya, M. J.; Oppenheim, U. P.

    1983-01-01

    A grating-tunable TEA-CO2 laser with an unstable resonator cavity, modified to allow injection of CW CO2 laser radiation at the resonant transition line by means of an intracavity NaCl window, has been used to study the coupling requirements for generation of single frequency pulses. The width and shape of the mode selection region, and the dependence of the gain-switched spike buildup time and the pulse shapes on the intensity and detuning frequency of the injected radiation are reported. Comparisons of the experimental results with previously reported mode selection behavior are discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to anmore » un-moderated 252Cf source shielded with 5.08 cm of lead.« less

  16. (6)Li-loaded liquid scintillators with pulse shape discrimination.

    PubMed

    Greenwood, L R; Chellew, N R; Zarwell, G A

    1979-04-01

    Excellent pulse height and pulse shape discrimination performance has been obtained for liquid scintillators containing as much as 10 wt.% (6)Li-salicylate dissolved in a toluene-methanol solvent system using naphthalene and 9,10 diphenylanthracene as intermediate and secondary solutes. This solution has improved performance at higher (6)Li-loading than solutions in dioxane-water solvent systems, and remains stable at temperatures as low as -10 degrees C. Cells as large as 5 cm in diameter and 15.2 deep have been prepared which have a higher light output for slow neutron detection than (10)B-loaded liquids. Neutron efficiency calculations are also presented.

  17. SYSTEM FOR AND METHOD OF DETERMINING RANGE

    DOEpatents

    Horrell, M.W.; Sanders, E.R.

    1963-11-01

    A system and method for indicating a predetermined altitude of an object or aircraft is described. The device utilizes a pulse transmit-receive system wherein pulses of predetermined width are transmitted towards the ground and the reflected pulses received gating only pulses having a predetermined width. (AEC)

  18. Influence of lasing parameters on the cleaning efficacy of laser-activated irrigation with pulsed erbium lasers.

    PubMed

    Meire, Maarten A; Havelaerts, Sophie; De Moor, Roeland J

    2016-05-01

    Laser-activated irrigation (LAI) using erbium lasers is an irrigant agitation technique with great potential for improved cleaning of the root canal system, as shown in many in vitro studies. However, lasing parameters for LAI vary considerably and their influence remains unclear. Therefore, this study sought to investigate the influence of pulse energy, pulse frequency, pulse length, irradiation time and fibre tip shape, position and diameter on the cleaning efficacy of LAI. Transparent resin blocks containing standardized root canals (apical diameter of 0.4 mm, 6% taper, 15 mm long, with a coronal reservoir) were used as the test model. A standardized groove in the apical part of each canal wall was packed with stained dentin debris. The canals were filled with irrigant, which was activated by an erbium: yttrium aluminium garnet (Er:YAG) laser (2940 nm, AT Fidelis, Fotona, Ljubljana, Slovenia). In each experiment, one laser parameter was varied, while the others remained constant. In this way, the influence of pulse energy (10-40 mJ), pulse length (50-1000 μs), frequency (5-30 Hz), irradiation time (5-40 s) and fibre tip shape (flat or conical), position (pulp chamber, canal entrance, next to groove) and diameter (300-600 μm) was determined by treating 20 canals per parameter. The amount of debris remaining in the groove after each LAI procedure was scored and compared among the different treatments. The parameters significantly (P < 0.05, Kruskal-Wallis) affecting debris removal from the groove were fibre tip position, pulse length, pulse energy, irradiation time and frequency. Fibre tip shape and diameter had no significant influence on the cleaning efficacy.

  19. Developmental prosopagnosia and super-recognition: no special role for surface reflectance processing

    PubMed Central

    Russell, Richard; Chatterjee, Garga; Nakayama, Ken

    2011-01-01

    Face recognition by normal subjects depends in roughly equal proportions on shape and surface reflectance cues, while object recognition depends predominantly on shape cues. It is possible that developmental prosopagnosics are deficient not in their ability to recognize faces per se, but rather in their ability to use reflectance cues. Similarly, super-recognizers’ exceptional ability with face recognition may be a result of superior surface reflectance perception and memory. We tested this possibility by administering tests of face perception and face recognition in which only shape or reflectance cues are available to developmental prosopagnosics, super-recognizers, and control subjects. Face recognition ability and the relative use of shape and pigmentation were unrelated in all the tests. Subjects who were better at using shape or reflectance cues were also better at using the other type of cue. These results do not support the proposal that variation in surface reflectance perception ability is the underlying cause of variation in face recognition ability. Instead, these findings support the idea that face recognition ability is related to neural circuits using representations that integrate shape and pigmentation information. PMID:22192636

  20. The doppler frequency shift caused by the inhomogeneities of a medium induced by pulses of intense laser radiation

    NASA Astrophysics Data System (ADS)

    Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.

    2008-08-01

    Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.

  1. Observed stratospheric downward reflection, and its relation to upward pulses of wave activity

    NASA Astrophysics Data System (ADS)

    Harnik, N.

    2009-04-01

    We examine the differences between observed stratospheric vertical wave reflection and wave absorption events, which differ in that the wave induced deceleration remains confined to upper levels in the former. The two types of events signify two types of stratospheric winter dynamics, associated with different downward coupling to the troposphere (Perlwitz and Harnik, 2004). Using time lag composites, we find that the main factor influencing which event will occur is the duration, in time, of the upward pulse of wave activity entering the stratosphere from the troposphere. Short pulses accelerate the flow at their trailing edge in the lower stratosphere while they decelerate it at upper levels, resulting in a vertical shear reversal, and corresponding downward reflection, while long pulses continue decelerating the vortex at progressively lower levels. The confinement of deceleration to upper levels for short wave forcing pulses is also found in an idealized model of an interaction between a planetary wave and the stratospheric vortex, though some aspects of the wave geometry evolution, and thus vertical reflection, are not captured realistically in the model. The results suggest the stratospheric influence on the type of wave interaction, in reality, is indirect - through a possible effect on the duration of upward wave fluxes through the tropopause.

  2. An ion source for radiofrequency-pulsed glow discharge time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    González Gago, C.; Lobo, L.; Pisonero, J.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.

    2012-10-01

    A Grimm-type glow discharge (GD) has been designed and constructed as an ion source for pulsed radiofrequency GD spectrometry when coupled to an orthogonal time of flight mass spectrometer. Pulse shapes of argon species and analytes were studied as a function of the discharge conditions using a new in-house ion source (UNIOVI GD) and results have been compared with a previous design (PROTOTYPE GD). Different behavior and shapes of the pulse profiles have been observed for the two sources evaluated, particularly for the plasma gas ionic species detected. In the more analytically relevant region (afterglow), signals for 40Ar+ with this new design were negligible, while maximum intensity was reached earlier in time for 41(ArH)+ than when using the PROTOTYPE GD. Moreover, while maximum 40Ar+ signals measured along the pulse period were similar in both sources, 41(ArH)+ and 80(Ar2)+ signals tend to be noticeable higher using the PROTOTYPE chamber. The UNIOVI GD design was shown to be adequate for sensitive direct analysis of solid samples, offering linear calibration graphs and good crater shapes. Limits of detection (LODs) are in the same order of magnitude for both sources, although the UNIOVI source provides slightly better LODs for those analytes with masses slightly higher than 41(ArH)+.

  3. Detection thresholds for small haptic effects

    NASA Astrophysics Data System (ADS)

    Dosher, Jesse A.; Hannaford, Blake

    2002-02-01

    We are interested in finding out whether or not haptic interfaces will be useful in portable and hand held devices. Such systems will have severe constraints on force output. Our first step is to investigate the lower limits at which haptic effects can be perceived. In this paper we report on experiments studying the effects of varying the amplitude, size, shape, and pulse-duration of a haptic feature. Using a specific haptic device we measure the smallest detectable haptics effects, with active exploration of saw-tooth shaped icons sized 3, 4 and 5 mm, a sine-shaped icon 5 mm wide, and static pulses 50, 100, and 150 ms in width. Smooth shaped icons resulted in a detection threshold of approximately 55 mN, almost twice that of saw-tooth shaped icons which had a threshold of 31 mN.

  4. Influence of shockwave profile on ejecta: An experimental and computational study

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Germann, Timothy; Hammerberg, James; Rigg, Paulo; Stevens, Gerald; Turley, William; Buttler, William

    2009-06-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins, Asay foils, optical shadowgraph, and x-ray attenuation. In addition to the experimental results, SPaSM, a short-ranged parallel molecular dynamics code developed at Los Alamos National Laboratory, was used to investigate the relation between shock-pulse shape and production of ejecta from a first principles point-of-view.

  5. Evidence for free precession in a pulsar

    PubMed

    Stairs; Lyne; Shemar

    2000-08-03

    Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.

  6. Determination of 243Am by pulse shape discrimination liquid scintillation spectrometry.

    PubMed

    Alamelu, D; Bhade, S P D; Reddy, P J; Narayan, K K; Shah, P M; Aggarwal, S K

    2006-05-01

    Alpha specific activity of 243Am was determined using pulse shape discrimination in liquid scintillation spectrometry. 238Pu, 36Cl and 239Np (purified from 243Am) were used for obtaining the spillover of alpha/beta particles into the beta/alpha channels, respectively. Synthetic mixtures of 241Am/243Am were prepared. Using the alpha-specific activity, weights of the stock solutions used and the half-life of 241Am and 243Am isotopes, the expected 241Am/243Am atom ratios in the mixtures were determined and compared with those obtained by thermal ionization mass spectrometry (TIMS). An agreement of about 1% was obtained between the 241Am/243Am atom ratios determined by the two methods. This shows that liquid scintillation counting with pulse shape discrimination can be used for 243Am determination with an accuracy better than 1%.

  7. Pulse-shape discrimination and energy quenching of alpha particles in Cs 2LiLaBr 6:Ce 3+

    DOE PAGES

    Mesick, Katherine Elizabeth; Coupland, Daniel David S.; Stonehill, Laura Catherine

    2016-10-19

    Cs 2LiLaBr 6:Ce 3+ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. Here, we also measured the electron-equivalent-energy ofmore » the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas.« less

  8. Measurements of plasma mirror reflectivity and focal spot quality for tens of picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Forestier-Colleoni, Pierre; Williams, Jackson; Scott, Graeme; Mariscal, Dereck. A.; McGuffey, Christopher; Beg, Farhat N.; Chen, Hui; Neely, David; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the NIF (LLNL) is high-energy ( 4 kJ) with a pulse length of 30ps, and is capable of focusing to an intensity of 1018W/cm2 with a 100 μm focal spot. The ARC laser is at an intensity which can be used to produce proton beams. However, for applications such as radiography and warm dense matter creation, a higher laser intensity may be desired to generate more energetic proton beams. One possibility to increase the intensity is to decrease the focused spot size by employing a smaller f-number optic. But it is difficult to implement such an optic or to bring the final focusing parabola closer to the target within the complicated NIF chamber geometry. A proposal is to use ellipsoidal plasma mirrors (PM) for fast focusing of the ARC laser light, thereby increasing the peak intensity. There is uncertainty, however, in the survivability and reflectivity of PM at such long pulse durations. Here, we show experimental results from the Titan laser to study the reflectivity of flat PM as a function of laser pulse length. A calorimeter was used to measure the PM reflectivity. We also observed degradation of the far and near field energy distribution of the laser after the reflection by the PM for pulse-lengths beyond 10ps. Contract DE-AC52-07NA27344. Funded by the LLNL LDRD program: tracking code 17-ERD-039.

  9. Laser Pulse Bidirectional Reflectance from CALIPSO Mission

    NASA Technical Reports Server (NTRS)

    Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Liu, Zhaoyan; Vaughan, Mark; Lucker, Patricia; Trepte, Charles

    2017-01-01

    In this Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) study, we present a simple way of determining laser pulse bidirectional reflectance over snow/ice surface using the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) 532 nanometer polarization channels' measurements. The saturated laser pulse returns from snow and ice surfaces are recovered based on surface tail information. The method overview and initial assessment of the method performance will be presented. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud cover regions and Moderate Resolution Imaging Spectroradiometer (Earth Observing System (EOS)) (MODIS) Bi-directional Reflectance Distribution Function (BRDF) / Albedo model parameters. The comparisons show that the snow surface bidirectional reflectance over Antarctica for saturation region are generally reliable with a mean value of about 0.90 plus or minus 0.10, while the mean surface reflectance from cloud cover region is about 0.84 plus or minus 0.13 and the calculated MODIS reflectance at 555 nanometers from the BRDF / Albedo model with near nadir illumination and viewing angles is about 0.96 plus or minus 0.04. The comparisons here demonstrate that the snow surface reflectance underneath the cloud with cloud optical depth of about 1 is significantly lower than that for a clear sky condition.

  10. Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination

    PubMed Central

    Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.

    2016-01-01

    In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658

  11. Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination.

    PubMed

    Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R

    2016-11-01

    In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.

  12. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-16

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  13. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  14. Pulse Shape Evolution, HER X-1

    NASA Technical Reports Server (NTRS)

    VanParadijs, Johannes A.

    1998-01-01

    This study focuses on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium." More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published in The Astrophysical Journal, vol. 510, 974. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in Her X-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model in the PhD Thesis of Scott 1993, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  15. Coherent pump pulses in Double Electron Electron Resonance Spectroscopy

    PubMed Central

    Tait, Claudia E.; Stoll, Stefan

    2016-01-01

    The recent introduction of shaped pulses to Double Electron Electron Resonance (DEER) spectroscopy has led to significant enhancements in sensitivity through increased excitation bandwidths and improved control over spin dynamics. The application of DEER has so far relied on the presence of an incoherent pump channel to average out most undesired coherent effects of the pump pulse(s) on the observer spins. However, in fully coherent EPR spectrometers that are increasingly used to generate shaped pulses, the presence of coherent pump pulses means that these effects need to be explicitly considered. In this paper, we examine the effects of coherent rectangular and sech/tanh pump pulses in DEER experiments with up to three pump pulses. We show that, even in the absence of significant overlap of the observer and pump pulse excitation bandwidths, coherence transfer pathways involving both types of pulses generate spin echoes of considerable intensity. These echoes introduce artefacts, which, if not identified and removed, can easily lead to misinterpretation. We demonstrate that the observed echoes can be quantitatively modelled using a simple spin quantum dynamics approach that includes instrumental transfer functions. Based on an analysis of the echo crossing artefacts, we propose efficient phase cycling schemes for their suppression. This enables the use of advanced DEER experiments, characterized by high sensitivity and increased accuracy for long-distance measurements, on novel fully coherent EPR spectrometers. PMID:27339858

  16. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and determines the atmospheric pressure by minimizing the error between the observations and model. We first demonstrated our airborne lidar during flights during summer 2010. We made several improvements and made measurements during the Ascends flights during July 2011. More information about the technique, lidar instrument, airborne measurements, and pressure estimates will be described in the presentation.

  17. Temporal cross-correlation of x-ray free electron and optical lasers using soft x-ray pulse induced transient reflectivity.

    PubMed

    Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W

    2012-05-07

    The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.

  18. Aberration-free, all-reflective laser pulse stretcher

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.; Fochs, Scott N.

    1999-09-28

    An all-reflective pulse stretcher for laser systems employing chirped-pulse amplification enables on-axis use of the focusing mirror which results in ease of use, significantly decreased sensitivity to alignment and near aberration-free performance. By using a new type of diffraction grating which contains a mirror incorporated into the grating, the stretcher contains only three elements: 1) the grating, 2) a spherical or parabolic focusing mirror, and 3) a flat mirror. Addition of a fourth component, a retro-reflector, enables multiple passes of the same stretcher resulting in stretching ratios beyond the current state of the art in a simple and compact design. The pulse stretcher has been used to stretch pulses from 20 fsec to over 600 psec (a stretching ratio in excess of 30,000).

  19. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    NASA Astrophysics Data System (ADS)

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.

    2015-02-01

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C5H12) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 1014 W/cm2, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  20. UWB pulse propagation into human tissues

    NASA Astrophysics Data System (ADS)

    Cavagnaro, Marta; Pittella, Erika; Pisa, Stefano

    2013-12-01

    In this paper the propagation of a UWB pulse into a layered model of the human body is studied to characterize absorption and reflection of the UWB signal due to the different body tissues. Several time behaviours for the incident UWB pulse are considered and compared with reference to the feasibility of breath and heartbeat activity monitoring. Results show that if the UWB source is placed far from the human body, the reflection coming from the interface between air and skin can be used to detect the respiratory activity. On the contrary, if the UWB source is placed close to the human body, a small reflection due to the interface between the posterior lung wall and the bone, which is well distanced in time from the reflections due to the first layers of the body model, can be used to detect lung and heart changes associated with the cardio-respiratory activity.

  1. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    USDA-ARS?s Scientific Manuscript database

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  2. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, R. D., E-mail: rdguerrerom@unal.edu.co; Arango, C. A., E-mail: caarango@icesi.edu.co; Reyes, A., E-mail: areyesv@unal.edu.co

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearlymore » chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.« less

  3. Method of making self-calibrated displacement measurements

    DOEpatents

    Pedersen, Herbert N.

    1977-01-01

    A method for monitoring the displacement of an object having an acoustically reflective surface at least partially submerged in an acoustically conductive medium. The reflective surface is designed to have a stepped interface responsive to an incident acoustic pulse to provide separate discrete reflected pulses to a receiving transducer. The difference in the time of flight of the reflected acoustic signals corresponds to the known step height and the time of travel of the signals to the receiving transducer provides a measure of the displacement of the object. Accordingly, the reference step length enables simultaneous calibration of each displacement measurement.

  4. Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluck, F.; Lehmann, G.; Müller, C.

    Short laser pulse amplification via stimulated Brillouin backscattering in plasma is considered. Previous work distinguishes between the weakly and strongly coupled regime and treats them separately. It is shown here that such a separation is not generally applicable because strong and weak coupling interaction regimes are entwined with each other. An initially weakly coupled amplification scenario may dynamically transform into strong coupling. This happens when the local seed amplitude grows and thus triggers the strongly driven plasma response. On the other hand, when in a strong coupling scenario, the pump pulse gets depleted, and its amplitude might drop below themore » strong coupling threshold. This may cause significant changes in the final seed pulse shape. Furthermore, experimentally used pump pulses are typically Gaussian-shaped. The intensity threshold for strong coupling may only be exceeded around the maximum and not in the wings of the pulse. Also here, a description valid in both strong and weak coupling regimes is required. We propose such a unified treatment which allows us, in particular, to study the dynamic transition between weak and strong coupling. Consequences for the pulse forms of the amplified seed are discussed.« less

  5. Pulse propagation and optically controllable switch in coupled semiconductor-double-quantum-dot nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamedi, H. R., E-mail: hamid.r.hamedi@gmail.com, E-mail: hamid.hamedi@tfai.vu.lt

    The problem of pulse propagation is theoretically investigated through a coupled semiconductor-double-quantum-dot (SDQD) nanostructure. Solving the coupled Maxwell–Bloch equations for the SDQD and field simultaneously, the dynamic control of pulse propagation through the medium is numerically explored. It is found that when all the control fields are in exact resonance with their corresponding transitions, a weak Gaussian-shaped probe pulse is transmitted through the medium nearly without any significant absorption and losses so that it can preserve its shape for quite a long propagation distance. In contrast, when one of the control fields is not in resonance with its corresponding transition,more » the probe pulse will be absorbed by the QD medium after a short distance. Then we consider the probe pulses with higher intensities. It is realized that an intense probe pulse experiences remarkable absorption and broadening during propagation. Finally, we demonstrate that this SDQD system can be employed as an optically controllable switch for the wave propagation to transit from an absorbing phase to a perfect transparency for the probe field. The required time for such switch is also estimated through realistic values.« less

  6. Simultaneous multislice refocusing via time optimal control.

    PubMed

    Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf

    2018-02-09

    Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Optical pulse response of a fibre ring resonator

    NASA Astrophysics Data System (ADS)

    Pandian, G. S.; Seraji, Faramarz E.

    1991-06-01

    This article presents the optical pulse response analysis of a fiber ring resonator. It is shown that several interesting functions, namely optical pulse generation, and equalization of fiber dispersion can be realized by using the resonator. The theory is presented in an easy to understand manner, by first considering the steady-state response. The results of the transient pulse response are explained in relation to the steady state results. The results related to optical pulse shaping will be of interest to the future when coherent optical pulse and switching circuits will become available.

  8. Theoretical and experimental analyses of the performance of two-color laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1985-01-01

    The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented.

  9. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation.

    PubMed

    Wang, Cong; Jiang, Lan; Wang, Feng; Li, Xin; Yuan, Yanping; Xiao, Hai; Tsai, Hai-Lung; Lu, Yongfeng

    2012-07-11

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train.

  10. The stimulated Brillouin scattering during the interaction of picosecond laser pulses with moderate- scale-length plasmas

    NASA Astrophysics Data System (ADS)

    Gaeris, Andres Claudio

    The Stimulated Brillouin Scattering (SBS) instability is studied in moderately short scale-length plasmas. The backscattered and specularly reflected light resulting from the interaction of a pair of high power picosecond duration laser pulses with solid Silicon, Gold and Parylene-N (CH) strip targets was spectrally resolved. The first, weaker laser pulse forms a short scale-length plasma while the second delayed one interacts with the isothermally expanded, underdense region of the plasma. The pulses are generated by the Table Top Terawatt (TTT) laser operating at 1054 nm (infrared) with intensities up to 5.10 16 W/cm2. Single laser pulses only show Lambertian scattering on the target critical surface. Pairs of pulses with high intensity in the second pulse show an additional backscattered, highly blueshifted feature, associated with SBS. Increasing this second pulse intensity even more leads to the appearance of a third feature, even more blueshifted than the second, resulting from the Brillouin sidescattering of the laser pulse reflected on the critical surface. The SBS threshold intensities and enhanced reflectivities for P-polarized light are determined for different plasma density scale-lengths. These measurements agree with the convective thresholds predicted by the SBS theory of Liu, Rosenbluth, and White using plasma profiles simulated by the LILAC code. The spectral position of the Brillouin back- and sidescattered features are determined. The SBS and Doppler shifts are much too small to explain the observed blueshifts. The refractive index shift is of the right magnitude, although more detailed verification is required in the future.

  11. Improved (10)B-loaded liquid scintillator with pulse-shape discrimination.

    PubMed

    Greenwood, L R; Chellew, N R

    1979-04-01

    An improved (10)B-loaded liquid scintillator solution has been developed containing trimethylborate, 1-methylnaphthalene, and 9,10-diphenylanthracene. Cells up to 5 cm in diameter by 15.2 cm long have been prepared and tested with (10)B-loadings up to 7.2% by weight (80% trimethylborate). The solution has excellent light output and pulse-shape discrimination properties and is stable at temperatures as low as -17 degrees C. Neutron efficiency calculations are also presented.

  12. Validation of the pulse decomposition analysis algorithm using central arterial blood pressure

    PubMed Central

    2014-01-01

    Background There is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes. The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA’s premise is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses that are due to the left ventricular ejection and reflections and re-reflections from only two reflection sites within the central arteries. The hypothesis examined here is that the model’s principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures. Methods Central arterial blood pressures of patients (38 m/25 f, mean age: 62.7 y, SD: 11.5 y, mean height: 172.3 cm, SD: 9.7 cm, mean weight: 86.8 kg, SD: 20.1 kg) undergoing cardiac catheterization were monitored using central line catheters while the PDA parameters were extracted from the arterial pulse signal obtained non-invasively using CareTaker system. Results Qualitative validation of the model was achieved with the direct observation of the five component pressure pulses in the central arteries using central line catheters. Statistically significant correlations between P2P1 and systole and T13 and pulse pressure were established (systole: R square: 0.92 (p < 0.0001), diastole: R square: 0.78 (p < 0.0001). Bland-Altman comparisons between blood pressures obtained through the conversion of PDA parameters to blood pressures of non-invasively obtained pulse signatures with catheter-obtained blood pressures fell within the trend guidelines of the Association for the Advancement of Medical Instrumentation SP-10 standard (standard deviation: 8 mmHg(systole: 5.87 mmHg, diastole: 5.69 mmHg)). Conclusions The results indicate that arterial blood pressure can be accurately measured and tracked noninvasively and continuously using the CareTaker system and the PDA algorithm. The results further support the physical model that all of the features of the pressure pulse envelope, whether in the central arteries or in the arterial periphery, can be explained by the interaction of the left ventricular ejection pressure pulse with two centrally located reflection sites. PMID:25005686

  13. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion.

  14. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  15. Theory of repetitively pulsed operation of diode lasers subject to delayed feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napartovich, A P; Sukharev, A G

    2015-03-31

    Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)

  16. Radio Frequency Radiation Dosimetry Handbook (Fifth Edition)

    DTIC Science & Technology

    2009-07-01

    the capacitance of the load . Assuming that the pulse shape is perfectly rectangular, the power dissipation in the sample during the pulse can be...microwave pulses at 2.37 GHz: No effect on vigilance performance in monkeys. Joint Naval Aerospace Medical Research Laboratory Research Report, NAMRL...Klauenberg, B. J., & Erwin, D. N. (1989). Lack of behavioral effects of high-peak-power microwave pulses from an axially extracted virtual cathode

  17. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  18. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  19. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  20. The effects of focusing power on TEA CO2 laser-induced gas breakdown and the consequent pulse shaping effects

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Saleheh; Safari, Ebrahim; Majdabadi, Abbas; Silakhori, Kaveh

    2018-02-01

    Transversely Excited Atmospheric (TEA) CO2 laser pulses were used in order to generate an optical breakdown in a variety of mono- and polyatomic molecules using different focusing powers. The dependence of the spark kernel geometry and the transmitted pulse shapes on the focusing power as well as the pressure, molecular weight, and ionization energy of the gases was investigated in detail. Partial removal of the transmitted pulse tail in the 0.05-2.6 μs range together with shortened spikes in the 10-60 ns range has been observed by applying a 2.5 cm focal length lens for all the gases. At higher focal lengths, this effect is only incompletely observed for He gas. Spatial-temporal analyses of the laser beams and the relevant plasma plumes indicate that this behavior is due to the drop in the plasma density below the critical level, before the laser pulse tail is completed.

Top