Science.gov

Sample records for reflecting projectile octupole

  1. Octupole degree of freedom for the critical-point candidate nucleus Sm152 in a reflection-asymmetric relativistic mean-field approach

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, Z. P.; Zhang, S. Q.; Meng, J.

    2010-03-01

    The potential energy surfaces of even-even Sm146-156 are investigated in the constrained reflection-asymmetric relativistic mean-field approach with parameter set PK1. It is shown that the critical-point candidate nucleus Sm152 marks the shape/phase transition not only from U(5) to SU(3) symmetry, but also from the octupole-deformed ground state in Sm150 to the quadrupole-deformed ground state in Sm154. By including the octupole degree of freedom, an energy gap near the Fermi surface for single-particle levels in Sm152 with β2=0.14~0.26 is found and the important role of the octupole deformation driving pair ν2f7/2 and ν1i13/2 is demonstrated.

  2. Nonaxial-octupole effect in superheavy nuclei

    SciTech Connect

    Chen, Y.-S.; Sun, Yang; Gao Zaochun

    2008-06-15

    The triaxial-octupole Y{sub 32} correlation in atomic nuclei has long been expected to exist but experimental evidence has not been clear. We find, in order to explain the very low-lying 2{sup -} bands in the transfermium mass region, that this exotic effect may manifest itself in superheavy elements. Favorable conditions for producing triaxial-octupole correlations are shown to be present in the deformed single-particle spectrum, which is further supported by quantitative Reflection Asymmetric Shell Model calculations. It is predicted that the strong nonaxial-octupole effect may persist up to the element 108. Our result thus represents the first concrete example of spontaneous breaking of both axial and reflection symmetries in the heaviest nuclear systems.

  3. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  4. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-08-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  5. Comment on {open_quotes}Experimental Fusion Barrier Distributions Reflecting Projectile Octupole State Coupling to Prolate and Oblate Target Nuclei{close_quotes}

    SciTech Connect

    Dasso, C.H.; Dasso, C.H.; Fernandez-Niello, J.

    1997-05-01

    The authors comment on the Letter by J.D. Bierman et al., Phys. Rev. Lett. 76, 1587(1996), and show the method by which they have been constructed is not the most appropriate. A Comment on the Letter by J.D. Bierman, {ital et al. }, Phys.Rev.Lett.{bold 76}, 1587 (1996). The authors of the Letter offer a Reply. {copyright} {ital 1997} {ital The American Physical Society}

  6. Search for octupole deformation in neutron rich Xe isotopes

    SciTech Connect

    Bentaleb, M.; Schulz, N.; Lubkiewicz, E.

    1994-07-01

    A search for octupole deformation in neutron rich Xe isotopes has been conducted through gamma-ray spectroscopy of primary fragments produced in the spontaneous fission of {sup 248}Cm. The spectrometer consisted of the Eurogam array and a set of 5 LEPS detectors. Level schemes were constructed for Xe isotopes with masses ranging from 138 to 144. Except for {sup 139}Xe, none of them exhibit an alternating parity quasimolecular band, {alpha} feature usually encountered in octupole deformed nuclei. Substantial evidence for reflection asymmetric shape in the intrinsic system of the nucleus exists for the light actinide nuclei.

  7. Octupole correlations in the heavy elements

    SciTech Connect

    Chasman, R.R.

    1986-01-01

    The effects of octupole correlations on the nuclear structure of the heavy elements are discussed. The cluster model description of the heavy elements is analyzed. The relevance of 2/sup 6/-pole deformation and fast El transitions to an octupole model is considered. 30 refs., 21 figs., 1 tab.

  8. Modified octupoles for damping coherent instabilities

    SciTech Connect

    Cornacchia, M. . Stanford Synchrotron Radiation Lab.); Corbett, W.J. ); Halbach, K. )

    1991-05-01

    The introduction tune spread in circular e{sup +}e{sup {minus}} accelerators with modified octupoles to reduce the loss of dynamic aperture is discussed. The new magnet design features an octupole of field component on-axis and a tapered field structure off-axis to minimize loss of dynamic aperture. Tracking studies show that the modified octupoles can produce the desired tune spread in SPEAR without compromising confinement of the beam. The technique for designing such magnets is presented, together with an example of magnets that give the required field distribution. 7 refs., 7 figs.

  9. Electric Octupole Order in Bilayer Rashba System

    NASA Astrophysics Data System (ADS)

    Hitomi, Takanori; Yanase, Youichi

    2016-12-01

    The odd-parity multipole is an emergent degree of freedom, leading to spontaneous inversion symmetry breaking. The odd-parity multipole order may occur by forming staggered even-parity multipoles in a unit cell. We focus on a locally noncentrosymmetric bilayer Rashba system, and study an odd-parity electric octupole order caused by the antiferro stacking of local electric quadrupoles. Analyzing the forward scattering model, we show that the electric octupole order is stabilized by a layer-dependent Rashba spin-orbit coupling. The roles of the spin-orbit coupling are clarified on the basis of the analytic formula of multipole susceptibility. The spin texture allowed in the D2d point group symmetry and its magnetic response are revealed. Furthermore, we show that the parity-breaking quantum critical point appears in the magnetic field. The possible realization of the electric octupole order in bilayer high-Tc cuprate superconductors is discussed.

  10. 30-MM Tubular Projectile

    DTIC Science & Technology

    1984-10-01

    Suiza tubular projectile 20 9. Inspection of Hispano Suiza sabot 21 10. Inspection of GAU-8 sabot 22 11. Firing data - 30-rn tubular projectile (Hispano... Suiza 23 copper banded) 12. Firing data - 30-m tubular projectile (GAU-8 plastic 24 banded) 13. Firing data - 30-m tubular projectile (GAU-8 copper 25...42 13. In-flight Hispano Suiza tubular projectiles 43 14. In-flight C4U-8 (plastic) tubular projectile 44 15. In-flight GCU-8 (copper) tubular

  11. Octupole correlations in N =88 154Dy : Octupole vibration versus stable deformation

    NASA Astrophysics Data System (ADS)

    Zimba, G. L.; Sharpey-Schafer, J. F.; Jones, P.; Bvumbi, S. P.; Masiteng, L. P.; Majola, S. N. T.; Dinoko, T. S.; Lawrie, E. A.; Lawrie, J. J.; Negi, D.; Papka, P.; Roux, D.; Shirinda, O.; Easton, J. E.; Khumalo, N. A.

    2016-11-01

    We report on low-spin states of 154Dy populated via the reaction 155Gd (3He,4 n ) with a beam energy of 37.5 MeV from the Separated Sector Cyclotron at iThemba Laboratory. The AFRODITE γ-ray spectrometer was used to establish new E 1 transitions between bands of opposite parity. The measurements broaden the N =88 systematics on the relationship between the first excited positive-parity pairing isomer band and the lowest-lying negative-parity band as the nuclear quadrupole deformation decreases with increasing proton number. In a region of strong octupole correlations the data suggest that the spectroscopy of N =88 nuclei is driven by stable octupole deformations and not by vibrations.

  12. Projectile Motion Details.

    ERIC Educational Resources Information Center

    Schnick, Jeffrey W.

    1994-01-01

    Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)

  13. Simultaneous quadrupole and octupole shape phase transitions in Thorium

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Song, B. Y.; Yao, J. M.; Vretenar, D.; Meng, J.

    2013-11-01

    The evolution of quadrupole and octupole shapes in Th isotopes is studied in the framework of nuclear Density Functional Theory. Constrained energy maps and observables calculated with microscopic collective Hamiltonians indicate the occurrence of a simultaneous quantum shape phase transition between spherical and quadrupole-deformed prolate shapes, and between non-octupole and octupole-deformed shapes, as functions of the neutron number. The nucleus 224Th is closest to the critical point of a double phase transition. A microscopic mechanism of this phenomenon is discussed in terms of the evolution of single-nucleon orbitals with deformation.

  14. Design of Octupole Channel for Integrable Optics Test Accelerator

    SciTech Connect

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo; Valishev, Alexander; Wesseln, Steven

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  15. Microscopic analysis of quadrupole-octupole shape evolution

    NASA Astrophysics Data System (ADS)

    Nomura, Kosuke

    2015-05-01

    We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM), that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 - β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  16. Chaos in axially symmetric potentials with octupole deformation

    SciTech Connect

    Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )

    1994-04-11

    Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.

  17. Evidence for Octupole Correlations in Multiple Chiral Doublet Bands

    NASA Astrophysics Data System (ADS)

    Liu, C.; Wang, S. Y.; Bark, R. A.; Zhang, S. Q.; Meng, J.; Qi, B.; Jones, P.; Wyngaardt, S. M.; Zhao, J.; Xu, C.; Zhou, S.-G.; Wang, S.; Sun, D. P.; Liu, L.; Li, Z. Q.; Zhang, N. B.; Jia, H.; Li, X. Q.; Hua, H.; Chen, Q. B.; Xiao, Z. G.; Li, H. J.; Zhu, L. H.; Bucher, T. D.; Dinoko, T.; Easton, J.; Juhász, K.; Kamblawe, A.; Khaleel, E.; Khumalo, N.; Lawrie, E. A.; Lawrie, J. J.; Majola, S. N. T.; Mullins, S. M.; Murray, S.; Ndayishimye, J.; Negi, D.; Noncolela, S. P.; Ntshangase, S. S.; Nyakó, B. M.; Orce, J. N.; Papka, P.; Sharpey-Schafer, J. F.; Shirinda, O.; Sithole, P.; Stankiewicz, M. A.; Wiedeking, M.

    2016-03-01

    Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive- and negative-parity bands have been identified in 78Br. They are interpreted as multiple chiral doublet bands with octupole correlations, which is supported by the microscopic multidimensionally-constrained covariant density functional theory and triaxial particle rotor model calculations. This observation reports the first example of chiral geometry in octupole soft nuclei.

  18. Octupole response and stability of spherical shape in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Abrosimov, V. I.; Davidovskaya, O. I.; Dellafiore, A.; Matera, F.

    2003-11-01

    The isoscalar octupole response of a heavy spherical nucleus is analyzed in a semiclassical model based on the linearized Vlasov equation. The octupole strength function is evaluated with different degrees of approximation. The zero-order fixed-surface response displays a remarkable concentration of strength in the 1ℏ ω and 3ℏ ω regions, in excellent agreement with the quantum single-particle response. The collective fixed-surface response reproduces both the high- and low-energy octupole resonances, but not the low-lying 3 - collective states, while the moving-surface response function gives a good qualitative description of all the main features of the octupole response in heavy nuclei. The role of triangular nucleon orbits, that have been related to a possible instability of the spherical shape with respect to octupole-type deformations, is discussed within this model. It is found that, rather than creating instability, the triangular trajectories are the only classical orbits contributing to the damping of low-energy octupole excitations.

  19. Consistent quadrupole-octupole collective model

    NASA Astrophysics Data System (ADS)

    Dobrowolski, A.; Mazurek, K.; Góźdź, A.

    2016-11-01

    Within this work we present a consistent approach to quadrupole-octupole collective vibrations coupled with the rotational motion. A realistic collective Hamiltonian with variable mass-parameter tensor and potential obtained through the macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS (Bardeen-Cooper-Schrieffer) approach in full vibrational and rotational, nine-dimensional collective space is diagonalized in the basis of projected harmonic oscillator eigensolutions. This orthogonal basis of zero-, one-, two-, and three-phonon oscillator-like functions in vibrational part, coupled with the corresponding Wigner function is, in addition, symmetrized with respect to the so-called symmetrization group, appropriate to the collective space of the model. In the present model it is D4 group acting in the body-fixed frame. This symmetrization procedure is applied in order to provide the uniqueness of the Hamiltonian eigensolutions with respect to the laboratory coordinate system. The symmetrization is obtained using the projection onto the irreducible representation technique. The model generates the quadrupole ground-state spectrum as well as the lowest negative-parity spectrum in 156Gd nucleus. The interband and intraband B (E 1 ) and B (E 2 ) reduced transition probabilities are also calculated within those bands and compared with the recent experimental results for this nucleus. Such a collective approach is helpful in searching for the fingerprints of the possible high-rank symmetries (e.g., octahedral and tetrahedral) in nuclear collective bands.

  20. Periodic orbits and shell structure in octupole deformed potentials

    SciTech Connect

    Heiss, W.D. ); Nazmitdinov, R.G. ); Radu, S. )

    1995-01-15

    The effect of an octupole term in a quadrupole deformed single-particle potential is studied from the classical and quantum-mechanical viewpoint. Whereas the problem is nonintegrable, the quantum-mechanical spectrum nevertheless shows some shell structure in the superdeformed prolate case for particular, yet fairly large octupole strengths; for spherical or oblate deformation the shell structure disappears. This result is associated with classical periodic orbits that are found by employing the removal of resonances method; this approximation method allows determination of the shape of the orbit and of the approximate octupole coupling strength for which it occurs. The validity of the method is confirmed by solving numerically the classical equations of motion. The quantum-mechanical shell structure is analyzed using the particle-number dependence of the fluctuating part of the total energy. In accordance with the classical result, this dependence turns out to be very similar for a superdeformed prolate potential plus octupole term and a hyperdeformed prolate potential without octupole term. In this way the shell structure is explained at least for some few hundred levels. The Fourier transform of the level density further corroborates these findings.

  1. Measurement of tune spread in the Tevatron versus octupole strength

    SciTech Connect

    Marriner, John; Martens, Mike; /Fermilab

    1996-08-01

    An experiment was performed in the Tevatron to measure the tune spread versus octupole strength. The experiment is sensitive to the relationship between octupole strength and current in the T:OZF circuit and to the octupole (and other non-linear focusing fields) in the Tevatron. The major motivation for the experiment was to determine the value of octupole excitation that minimizes the tune spread: this value is an estimate of the value required to obtain ''zero'' total octupole excitation in the extraction process. The experiment was performed using the strip-line kickers at A17 and the resonant Schottky pickups. The horizontal proton kicker was excited with a sine-wave from a vector signal analyzer (HP-89440A) and the horizontal proton signal was received. The gating circuitry normally used to select proton or antiproton bunches was by-passed. The response function was measured and recorded on a floppy disk. Measurements were initially made with a 200 Hz span (0.250 Hz frequency bins) and later with a 100 Hz span (0.125 Hz frequency bins).

  2. Hybrid armature projectile

    DOEpatents

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  3. Teaching Projectile Motion

    ERIC Educational Resources Information Center

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  4. Hybrid armature projectile

    DOEpatents

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  5. Projectile Motion Revisited.

    ERIC Educational Resources Information Center

    Lucie, Pierre

    1979-01-01

    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  6. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions.

    PubMed

    Boyarkin, Oleg V; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ~150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  7. Projectile Motion with Mathematica.

    ERIC Educational Resources Information Center

    de Alwis, Tilak

    2000-01-01

    Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)

  8. A Projectile Motion Bullseye.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)

  9. Small caliber guided projectile

    DOEpatents

    Jones, James F.; Kast, Brian A.; Kniskern, Marc W.; Rose, Scott E.; Rohrer, Brandon R.; Woods, James W.; Greene, Ronald W.

    2010-08-24

    A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.

  10. On high explosive launching of projectiles for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Forest, Charles A.; Clark, David A.; Buttler, William T.; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure

  11. More on Projectile Motion.

    ERIC Educational Resources Information Center

    Molina, M. I.

    2000-01-01

    Mathematically explains why the range of a projectile is most insensitive to aiming errors when the initial angle is close to 45 degrees, whereas other observables such as maximum height or flight time are most insensitive for near-vertical launching conditions. (WRM)

  12. Projectiles and Aerodynamic Forces.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1984-01-01

    Discusses the air resistance on projectiles, examining (in separate sections) air resistance less than gravity and air resistance greater than gravity. Also considers an approximation in which a trajectory is divided into two parts, the first part neglecting gravity and the second part neglecting the air resistance. (JN)

  13. Subcaliber discarding sabot airgun projectiles.

    PubMed

    Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2014-03-01

    Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E < 7.5 J). While the velocity of the discarded Sussex Sabo core projectile was very close to the velocity of a diabolo-type reference projectile (RWS Meisterkugel), energy density was up to 60 % higher. To conclude, this work is the first study to demonstrate the regular function of this uncommon type of airgun projectile.

  14. Projectile Base Flow Analysis

    DTIC Science & Technology

    2007-11-02

    S) AND ADDRESS(ES) DCW Industries, Inc. 5354 Palm Drive La Canada, CA 91011 8. PERFORMING ORGANIZATION...REPORT NUMBER DCW -38-R-05 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office...Turbulence Modeling for CFD, Second Edition, DCW Industries, Inc., La Cañada, CA. Wilcox, D. C. (2001), “Projectile Base Flow Analysis,” DCW

  15. Octupole deformation in sup 221 Fr; E1 transition rates

    SciTech Connect

    Liang, C.F.; Peghaire, A. ); Sheline, R.K. )

    1990-07-10

    Experimental data following the alpha decay of{sup 225}Ac are interpreted in terms of a spectroscopy in {sup 221}Fr consistent with octupole deformation. However, the measured E1 transition probabilities suggest that the low lying bands in {sup 221}Fr are considerably more mixed than in nuclei with slightly higher mass number. It is suggested that this mixing of states in {sup 221}Fr is indicative of the partial collapse of Nilsson-like orbitals into more degenerate shell model orbitals.

  16. Second order phase transitions from octupole-nondeformed to octupole-deformed shape in the alternating parity bands of nuclei around 240Pu based on data

    NASA Astrophysics Data System (ADS)

    Jolos, R. V.; von Brentano, P.; Jolie, J.

    2012-08-01

    Background: Shape phase transitions in finite quantal systems are very interesting phenomena of general physical interest. There is a very restricted number of the examples of nuclei demonstrating this phenomenon.Purpose: Based on experimental excitation spectra, there is a second order phase transition in the alternating parity bands of some actinide nuclei.Method: The mathematical techniques of supersymmetric quantum mechanics, two-center octupole wave functions ansatz, and the Landau theory of phase transitions are used to analyze the experimental data on alternating parity bands.Results: The potential energy of the octupole collective motion is determined and analyzed for all observed values of the angular momentum of the alternating parity band states in 232Th, 238U, and 240Pu.Conclusion: It is shown that as a function of increasing angular momentum there is a second order phase transition from the octupole-nondeformed to the octupole-deformed shape in the considered nuclei.

  17. Skirted projectiles for railguns

    DOEpatents

    Hawke, R.S.; Susoeff, A.R.

    1994-01-04

    A single skirt projectile (20) having an insulating skirt (22) at its rear, or a dual trailing skirt projectile (30, 40, 50, 60) having an insulating skirt (32, 42, 52, 62) succeeded by an arc extinguishing skirt (34, 44, 54, 64), is accelerated by a railgun accelerator 10 having a pair of parallel conducting rails (1a, 1b) which are separated by insulating wall spacers (11). The insulating skirt (22, 32, 42, 52, 62) includes a plasma channel (38). The arc extinguishing skirt (34, 44, 54, 64) interrupts the conduction that occurs in the insulating skirt channel (38) by blocking the plasma arc (3) from conducting current from rail to rail (1a, 1b) at the rear of the projectile (30, 40, 50, 60). The arc extinguishing skirt may be comprised of two plates (36a, 36b) which form a horseshoe wherein the plates are parallel to the rails (1a, b); a chisel-shape design; cross-shaped, or it may be a cylindrical (64). The length of the insulating skirt channel is selected such that there is sufficient plasma in the channel to enable adequate current conduction between the rails (1a, 1b).

  18. Skirted projectiles for railguns

    DOEpatents

    Hawke, Ronald S.; Susoeff, Allan R.

    1994-01-01

    A single skirt projectile (20) having an insulating skirt (22) at its rear, or a dual trailing skirt projectile (30, 40, 50, 60) having an insulating skirt (32, 42, 52, 62) succeeded by an arc extinguishing skirt (34, 44, 54, 64), is accelerated by a railgun accelerator 10 having a pair of parallel conducting rails (1a, 1b) which are separated by insulating wall spacers (11). The insulating skirt (22, 32, 42, 52, 62) includes a plasma channel (38). The arc extinguishing skirt (34, 44, 54, 64) interrupts the conduction that occurs in the insulating skirt channel (38) by blocking the plasma arc (3) from conducting current from rail to rail (1a, 1b) at the rear of the projectile (30, 40, 50, 60). The arc extinguishing skirt may be comprised of two plates (36a, 36b) which form a horseshoe wherein the plates are parallel to the rails (1a, b); a chisel-shape design; cross-shaped, or it may be a cylindrical (64). The length of the insulating skirt channel is selected such that there is sufficient plasma in the channel to enable adequate current conduction between the rails (1a, 1b).

  19. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, T.J.

    1997-05-20

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.

  20. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, Thomas J.

    1997-01-01

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.

  1. NLC Collimation Study Update: Performance with Tail Folding Octupoles (LCC-0118)

    SciTech Connect

    Drozhdin, A

    2004-03-16

    This note describes an update to the study of linear collider collimation system performance performed by the collimation task force and presented in [1, 2, 3]. In particular, the performance of the NLC collimation system with the addition of ''tail-folding'' octupoles is described. These octupoles allow the betatron collimation gaps to be opened by more than a factor of three. We present the optimized gap settings, the location of additional photon masks, and the resulting synchrotron-radiation collimation efficiency. The studies confirm that the tail-folding octupoles are efficient, give additional flexibility, and enhance the collimation system performance.

  2. Intact capture of hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  3. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  4. On quadrupole and octupole gravitational radiation in the ANK formalism

    NASA Astrophysics Data System (ADS)

    Kozameh, Carlos N.; Ortega, R. G.; Rojas, T. A.

    2017-04-01

    Following the approach of Adamo-Newman-Kozameh (ANK) we derive the equations of motion for the center of mass and intrinsic angular moment for isolated sources of gravitational waves in axially symmetric spacetimes. The original ANK formulation is generalized so that the angular momentum coincides with the Komar integral for a rotational Killing symmetry. This is done using the Winicour-Tamburino Linkages which yields the mass dipole-angular momentum tensor for the isolated sources. The ANK formalism then provides a complex worldline in a fiducial flat space to define the notions of center of mass and spin. The equations of motion are derived and then used to analyse a very simple astrophysical process where only quadrupole and octupole contributions are included. The results are then compared with those coming from the post newtonian approximation.

  5. Search for two-phonon octupole excitations in 146Gd

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Kumar Raju, M.; Khumalo, N. A.; Dinoko, T. S.; Jones, P.; Bark, R. A.; Lawrie, E. A.; Majola, S. N. T.; Robledo, L. M.; Rubio, B.; Wiedeking, M.; Easton, J.; Khaleel, E. A.; Kheswa, B. V.; Kheswa, N.; Herbert, M. S.; Lawrie, J. J.; Masiteng, P. L.; Nchodu, M. R.; Ndayishimye, J.; Negi, D.; Noncolela, S. P.; Ntshangase, S. S.; Papka, P.; Roux, D. G.; Shirinda, O.; Sithole, P. S.; Yates, S. W.

    2016-06-01

    The low-spin structure of the nearly spherical nucleus 146Gd was studied using the 144Sm(4He, 2n) fusion-evaporation reaction. High-statistics γ - γ coincidence measurements were performed at iThemba LABS with 7× 109 γ- γ coincidence events recorded. Gated γ-ray energy spectra show evidence for the 6+2 → 3-1 → 0+1 cascade of E3 transitions in agreement with recent findings by Caballero and co-workers, but with a smaller branching ratio of I_{γ} = 4.7(10) for the 6+2 → 3-1 1905.1 keV γ ray. Although these findings may support octupole vibrations in spherical nuclei, sophisticated beyond mean-field calculations including angular-momentum projection are required to interpret in an appropriate way the available data due to the failure of the rotational model assumptions in this nucleus.

  6. Plasma resistivity measurements in the Wisconsin levitated octupole

    SciTech Connect

    Brouchous, D. A.

    1980-11-01

    Resistivity measurements parallel to the magnetic field were made on gun injected plasmas ranging in density from 10/sup 9/cm/sup -3/ to 10/sup 1/parallelcm/sup -3/ in the Wisconsin levitated octupole with toroidal and poloidal magnetic fields. The 10/sup 9/cm/sup -3/ plasma was collisionless with lambda/sub mfp/ > 100 mirror lengths, had T/sub e/ = 10 eV, T/sub i/ = 30 eV and was found to have anomalous resistivity scaling like eta = ..sqrt..T/sub e//n/sub e/ when E/sub parallel/ > E/su c/ is the Dreicer critical field. The 10/sup 12/cm/sup -3/ plasma was collisional with lambda/sub mfp/ < mirror length, had T/sub e/ = T/sub i/ approx. = .2 eV and was found to have Spitzer resistivity when E/sub parallel/ < E/sub c/.

  7. Water Entry of Projectiles

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd T.; Epps, Brenden P.; Belden, Jesse

    2014-01-01

    The free-surface impact of solid objects has been investigated for well over a century. This canonical problem is influenced by many physical parameters, including projectile geometry, material properties, fluid properties, and impact parameters. Through advances in high-speed imaging and visualization techniques, discoveries about the underlying physics have improved our understanding of these phenomena. Improvements to analytical and numerical models have led to critical insights into cavity formation, the depth and time of pinch-off, forces, and trajectories for myriad different impact parameters. This topic spans a wide range of regimes, from low-speed entry phenomena dominated by surface tension to high-speed ballistics, for which cavitation is important. This review surveys experimental, theoretical, and numerical studies over this broad range, utilizing canonical images where possible to enhance intuition and insight into the rich phenomena.

  8. Simulations of octupole compensation of head-tail instability at the Tevatron

    SciTech Connect

    Meiqin Xiao; Tanaji Sen; Frank Schmidts

    2003-05-28

    The proton lifetime in the Tevatron depends sensitively on chromaticities. Too low chromaticities can make the beam unstable due to the weak head-tail instability. One way to compensate this effect is to introduce octupoles to create a larger amplitude dependent betatron tune spread. However, the use of octupoles will also introduce additional side effects such as second order chromaticity, differential tune shifts and chromaticities on both proton and anti-proton helices. The non-linear effects may also reduce the dynamic aperture. There are 67 octupoles in 4 different circuits in the Tevatron which may be used for this purpose. We report on a simulation study to find the best combinations of polarities and strengths of the octupoles.

  9. Description of nuclear octupole and quadrupole deformation close to axial symmetry: Octupole vibrations in the X(5) nuclei Nd150 and Sm152

    NASA Astrophysics Data System (ADS)

    Bizzeti, P. G.; Bizzeti-Sona, A. M.

    2010-03-01

    The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry is used to describe the negative-parity band based on the first octupole vibrational state in nuclei close to the critical point of the U(5)-to-SU(3) phase transition. The situation of Nd150 and Sm152 is discussed in detail. The positive-parity levels of these nuclei, and also the in-band E2 transitions, are reasonably accounted for by the X(5) model. With simple assumptions on the nature of the octupole vibrations, it is also possible to describe the negative-parity sector with comparable accuracy without changing the description of the positive-parity part.

  10. Influence of the octupole mode on nuclear high-K isomeric properties

    NASA Astrophysics Data System (ADS)

    Minkov, Nikolay; Walker, Phil

    2014-05-01

    The influence of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even actinide (U, Pu, Cm, Fm, No), rare-earth (Nd, Sm and Gd), and superheavy (^{270}\\text{Ds}) nuclei is examined within a deformed shell model with pairing interaction. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated over a wide range in the plane of quadrupole and octupole deformations. In most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation. At the same time, the calculations outline three different groups of nuclei: with pronounced, shallow, and missing minima in the 2qp energy surfaces with respect to the octupole deformation. The result indicates regions of nuclei with octupole softness as well as with possible octupole deformation in the high-K isomeric states. These findings show the need for further theoretical analysis as well as of detailed experimental measurements of magnetic moments in heavy deformed nuclei.

  11. Air-Powered Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Andrews, T.; Bjorklund, R. A.; Elliott, D. G.; Jones, L. K.

    1987-01-01

    Air-powered launcher fires plastic projectiles without using explosive propellants. Does not generate high temperatures. Launcher developed for combat training for U.S. Army. With reservoir pressurized, air launcher ready to fire. When pilot valve opened, sleeve (main valve) moves to rear. Projectile rapidly propelled through barrel, pushed by air from reservoir. Potential applications in seismic measurements, avalanche control, and testing impact resistance of windshields on vehicles.

  12. Microspoiler Actuation for Guided Projectiles

    DTIC Science & Technology

    2016-01-06

    between the Georgia Institute of Technology (Georgia Tech ) and the Army Research Laboratory (ARL) for DARPA.  Objective 1: Perform Trade Studies to...required. These prototypes were fabricated at the Georgia Tech Mechanical Engineering machine shop. A detailed description of the selected actuator... Tech fabricated the projectiles according to a detailed specification of the Army-Navy Finner (30mm). Projectile manufacturing methods drew on existing

  13. Observation of the Nuclear Magnetic Octupole Moment of 137Ba+

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew

    Single trapped ions are ideal systems in which to test atomic physics at high precision, which can in turn be used for searches for violations of fundamental symmetries and physics beyond the standard model, in addition to quantum computation and a number of other applications. The ion is confined in ultra-high vacuum, is laser cooled to mK temperatures, and kept well isolated from the environment which allows these experimental efforts. In this thesis, a few diagnostic techniques will be discussed, covering a method to measure the linewidth of a narrowband laser in the presence of magnetic field noise, as well as a procedure to measure the ion's temperature using such a narrowband laser. This work has led to two precision experiments to measure atomic structure in 138Ba+, and 137Ba+ discussed here. First, employing laser and radio frequency spectroscopy techniques in 138Ba+, we measured the Lande- gJ factor of the 5D5/2 level at the part-per-million level, the highest precision to date. Later, the development of apparatus to efficiently trap and laser cool 137Ba+ has enabled a measurement of the hyperfine splittings of the 5D3/2 manifold, culminating in the observation of the nuclear magnetic octupole moment of 137Ba+.

  14. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, R.S.

    1992-10-13

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.

  15. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, R.S.

    1992-09-01

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.

  16. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, Ronald S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles (14, 15, 114, 214, 314, 414) by a plasma arc (3), introduces a breakdown inhibiting gas into the railgun chamber (26) behind the accelerating projectile (14). The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF.sub.6. The gas is introduced between the railgun rails (12) after the projectile (14) has passed through inlets (16) in the rails (12) or the projectile (114); by coating the rails (12) or the projectile (15) with a material (28) which releases the gas after the projectile (14) passes over it; by fabricating the rails (12) or the projectile (15) or insulators out of a material which releases the gas into the portions of the chamber (26) through which the projectile has travelled. The projectile (214, 314, 414) may have a cavity (232, 332, 432) at its rear to control the release of ablation products (4).

  17. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, Ronald S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles (14, 15, 114, 214, 314, 444) by a plasma arc (3), introduces a breakdown inhibiting gas into the railgun chamber (26) behind the accelerating projectile (14). The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF.sub.6. The gas is introduced between the railgun rails (12) after the projectile (14) has passed through inlets (16) in the rails (12) or the projectile (114); by coating the rails (12) or the projectile (15) with a material (28) which releases the gas after the projectile (14 ) passes over it; by fabricating the rails (12) or the projectile (15) or insulators out of a material which releases the gas into the portions of the chamber (26) through which the projectile has travelled. The projectile (214, 314, 414) may have a cavity (232, 332, 432) at its rear to control the release of ablation products (4).

  18. Nature of Collective Dipole and Octupole Transitions in Neutron-Rich Barium Isotopes

    NASA Astrophysics Data System (ADS)

    Bucher, B.; Zhu, S.; ANL, LBNL, LLNL, Rochester, FSU, Liverpool, Maryland, Notre Dame, Ohio, W. Scotland Collaboration

    2016-09-01

    Recently, a direct measurement of octupole strength in 144Ba was carried out via Coulomb excitation with a radioactive beam from Argonne's CARIBU facility using GRETINA and CHICO2. The results verify the presence of enhanced octupole collectivity in this isotope, as predicted by theory. In the neighboring isotope 146Ba, however, the importance of octupole correlations is more uncertain. Specifically, the electric dipole strength, expected to be closely correlated with the octupole one, displays what is perhaps the most significant drop in strength between neighboring isotopes of any medium- to heavy-mass nuclei. To address this puzzling question, a Coulomb excitation experiment was also performed on 146Ba under the same conditions. The new measurement yields an enhanced octupole strength of the same magnitude as that observed in 144Ba. This supports the notion that the strong-weak dipole behavior in this region results from the unique single-particle structure characteristic of Z 56 and N 90 in the presence of a pear-shaped mean-field potential. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DOE DE-AC52-07NA27344 (LLNL), and NSF.

  19. Fluidic control systems for projectiles

    NASA Astrophysics Data System (ADS)

    Garlow, D.; Muggeridge, D.

    1983-06-01

    Current indirect fire weapons, such as artillery and large caliber mortars, are characterized by the low cost and high fire rate of their purely ballistic projectiles. A major prospective development in antiarmor technology will involve the incorporation of terminal guidance technology into these indirect fire projectiles in order to increase their effectiveness. Attention is presently given to the development of a cost-competitive, guided projectile that can survive the shock of gun launching, employing fluidic reaction jet controls in lieu of aerodynamic surfaces. The fluidic reaction jet control system presently described employs warm gas as its working fluid and has survived 15,000-g launch shocks, delivering 15 lbs of thrust control in a two-axis system with a 50-Hz dynamic response.

  20. Sabot-Projectiles for Cannon

    DTIC Science & Technology

    1943-11-01

    model designed for the 20,-^nm Hispano- Suiza cannon. Let Ms be the mass of the sabot in pounds; M . "the mass of the subcali- ber projectile in...its projectile. This model xs designed for the 20-mm Hispano- Suiza cannon, but as with all deep-cup sabots tested, does not prove successful in...the 20-mm Hispano- Suiza , for example, the f. maximum pressure is I48OOO lb/in? and for the 37-mm A.T. gun it is • ^0000 lb/in?). V i Attention

  1. Microscopic description of collective states near the yrast line of nuclei with stable octupole deformation

    NASA Astrophysics Data System (ADS)

    Kvasil, J.; Nazmitdinov, R. G.

    1985-06-01

    Collective states near the yrast line in nuclei with stable octupole deformation are discussed in the framework of the random phase approximation (RPA) based on the cranking model. These vibrational states are characterized by the quantum number of generalized signature (eigenvalue of the operator Sx = PRx-1( π)). In the zero-octupole deformation limit the RPA equations of motion are reduced to the well-known ones characterized by both values of parity and signature, respectively. The connection of the translational and rotational symmetry of the model hamiltonian with the spurious solutions of the RPA equation of motion is discussed. Expressions for the reduced probabilities B(E1), B(E2) and B(E3) are obtained. These expressions confirm the conclusions of phenomenological models for the strong E1 and E3 intraband transitions in nuclei with stable octupole deformation.

  2. Octupole fragmentation and the structure of the O(6)-like Ba nuclei

    SciTech Connect

    Zamfir, N.V.; Casten, R.F.; Cottle, P.D.

    1996-10-01

    The low energy octupole states in {sup 134}Ba were examined using proton inelastic scattering. The data show that there is no significant octupole strength in addition to that corresponding to the lowest 3{sup -} state. Consequently, the strong fragmentation of the low energy octupole state expected for a {gamma} soft nucleus does not occur in {sup 134}Ba. The apparent contradiction that the positive parity states in this nucleus present an O(6) type structure and the negative parity ones do not follow the selection rules of the E3 operator for the O(6) symmetry might be explained by noticing that the wave function of an O(6) nucleus has a significant overlap with the wave function of an U(5) - SU(3) transitional nucleus. 9 refs., 3 figs., 2 tabs.

  3. Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes

    NASA Astrophysics Data System (ADS)

    Minkov, N.; Yotov, P.; Drenska, S.; Scheid, W.; Bonatsos, D.; Lenis, D.; Petrellis, D.

    2006-04-01

    A collective Hamiltonian for the rotation-vibration motion of nuclei is considered in which the axial quadrupole and octupole degrees of freedom are coupled through the centrifugal interaction. The potential of the system depends on the two deformation variables β2 and β3. The system is considered to oscillate between positive and negative β3 values by rounding an infinite potential core in the (β2,β3) plane with β2>0. By assuming a coherent contribution of the quadrupole and octupole oscillation modes in the collective motion, the energy spectrum is derived in an explicit analytic form, providing specific parity shift effects. On this basis several possible ways in the evolution of quadrupole-octupole collectivity are outlined. A particular application of the model to the energy levels and electric transition probabilities in alternating parity spectra of the nuclei Nd150, Sm152, Gd154, and Dy156 is presented.

  4. Projectile-generating explosive access tool

    SciTech Connect

    Jakaboski, Juan-Carlos; Hughs, Chance G; Todd, Steven N

    2013-06-11

    A method for generating a projectile using an explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  5. Having Fun with a 3-D Projectile

    ERIC Educational Resources Information Center

    Lammi, Matthew; Greenhalgh, Scott

    2011-01-01

    The use of projectiles is a concept familiar to most students, whether it is a classic slingshot, bow and arrow, or even a spit wad through a straw. Perhaps the last thing a teacher wants is more projectiles in the classroom. However, the concept of projectiles is relevant to most students and may provide a means of bringing more authenticity into…

  6. Possible octupole deformation in Cs and Ba nuclei from their differential radii

    SciTech Connect

    Sheline, R.K.; Jain, A.K.; Jain, K.

    1988-12-01

    The odd-even staggering of the differential radii of Fr and Ra and the Cs and Ba nuclei is compared. This staggering is inverted in the region of known octupole deformation in the Fr and Ra nuclei. The normal staggering is eliminated in the Cs nuclei and attenuated in the Ba nuclei for neutron numbers 85--88. This fact is used to suggest the possible existence of octupole deformation and its neutron number range in the Cs and Ba nuclear ground states.

  7. Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

    SciTech Connect

    Minkov, N. Drenska, S. B.; Yotov, P.; Bonatsos, D. Scheid, W.

    2007-08-15

    We apply the collective axial quadrupole-octupole Hamiltonian to describe the rotation-vibration motion of odd nuclei with Coriolis coupling between the even-even core and the unpaired nucleon.We consider that the core oscillates coherently with respect to the quadrupole and octupole axialdeformation variables. The coupling between the core and the unpaired nucleon provides a split paritydoublet structure of the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide range of odd-A nuclei. It provides model estimations for the third angular-momentum projection K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

  8. Specifications of the octupole magnets required for the ATF2 ultra-low ß* lattice

    SciTech Connect

    Marin, E.; Modena, M.; Tauchi, T.; Terunuma, N.; Tomas, R.; White, G.R.; /SLAC

    2014-05-28

    The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction for higher chromaticity lattices as the one of CLIC. To this end the ATF2 ultra-low ß* lattice is designed to vertically focus the beam at the focal point or usually referred to as interaction point (IP), down to 23 nm. However when the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design value. The designed spot size is effectively recovered by inserting a pair of octupole magnets. In this note we address the technical specifications required for these octupole magnets.

  9. Time-dependent Hartree-Fock Study of Octupole Vibrations in doubly magic nuclei

    NASA Astrophysics Data System (ADS)

    Simenel, C.; Buete, J.; Vo-Phuoc, K.

    2016-09-01

    Octupole vibrations are studied in some doubly magic nuclei using the time-dependent Hartree-Fock (TDHF) theory with a Skyrme energy density functional. Through the use of the linear response theory, the energies and transition amplitudes of the low-lying vibrational modes for each of the nuclei were determined. Energies were found to be close to experimental results. However, transition amplitudes, quantified by the deformation parameter β3, are underestimated by TDHF. A comparison with single-particle excitations on the Hartree-Fock ground-state shows that the collective octupole vibrations have their energy lowered due to attractive RPA residual interaction.

  10. Changes to the LANL gas driven two stage gun : projectile velocity measurement and etc.

    SciTech Connect

    Gustavsen, R. L.; Sheffield, S. A.; Alcon, R. R.; Medina, R. S.

    2001-01-01

    stage gun. It was necessary to use optical methods because electrical shorting pins damaged the projectile:, turned .the projectile causing tilted impacts, and sprayed the target with bits of broken pin. The first optical method involved cutting shrzllow grooves in the sides of the projectile at precisely measured intervals. Thc projectile pilssed through a single light beam focused in such a way that the grooves would alternately block and transmit light to a sensing system. This system didn't work because the groovas filled with smoke, blocking the light at all times after the projectile first broke the hearn. The second method used light rcflectetl off the projectile at four different positions. Light from a 400 mW laser was split into four oplical fibers. Half of the light reflected from the end of each B9er 'was retutncd to it phototnulitiplier. When the projectile passed in front of a fiber the amount of returned light increased. This system had a very poor signal to noise ratio: the amount of light returned when the projectile passed in front ofthe fiber was scarcely larger than the noise on the signals. 'I'hc third system used four stations at which laser light was transmitted from one optical fiber to another. 'The projectile passed close by tlhe sending or receiving fiber, rapidly cutting off the transmitted light. This method suffered from a lasix speckle pattern which changed with time thereby giving a constiintly changing inlerisiily. The fiber optic beam splitter used to split the laser light in methods two and three was also very nnstable: the amount of light split into any particular fiber varied with teinperature, vibration, and any movement of fibers. The method which was ultimately successful used it SmW, 670 nni laser diode at each of' four positions. A small lens focused this light to a point through which Ilie projectile passed. Transmitted light was imaged into 700 micron plastic fibers which relayed thhe light to a bank of photomultipliers

  11. Novice Rules for Projectile Motion.

    ERIC Educational Resources Information Center

    Maloney, David P.

    1988-01-01

    Investigates several aspects of undergraduate students' rules for projectile motion including general patterns; rules for questions about time, distance, solids and liquids; and changes in rules when asked to ignore air resistance. Reports approach differences by sex and high school physics experience, and that novice rules are situation…

  12. The Projectile Inside the Loop

    ERIC Educational Resources Information Center

    Varieschi, Gabriele U.

    2006-01-01

    The loop-the-loop demonstration can be easily adapted to study the kinematics of projectile motion, when the moving body falls inside the apparatus. Video capturing software can be used to reveal peculiar geometrical effects of this simple but educational experiment.

  13. Projectile Motion Gets the Hose

    ERIC Educational Resources Information Center

    Goff, John Eric; Liyanage, Chinthaka

    2011-01-01

    Students take a weekly quiz in our introductory physics course. During the week in which material focused on projectile motion, we not-so-subtly suggested what problem the students would see on the quiz. The quiz problem was an almost exact replica of a homework problem we worked through in the class preceding the quiz. The goal of the problem is…

  14. Electrical analog to projectile motion

    NASA Astrophysics Data System (ADS)

    Vondracek, Mark

    1998-04-01

    This article describes an electrical analog to traditional projectile problems given in high school and introductory college classes. It also discusses the importance of stressing the understanding of physical laws and principles to students, and that the physics behind a problem is more important than being able to memorize and use various equations.

  15. Reflection asymmetric shapes in nuclei

    SciTech Connect

    Ahmad, I.; Carpenter, M.P.; Emling, H.; Holzmann, R.; Janssens, R.V.F.; Khoo, T.L.; Moore, E.F.; Morss, L.R.; Durell, J.L.; Fitzgerald, J.B.; Mowbary, A.S.; Hotchkiss, M.A.; Phillips, W.R.; Drigert, M.W.; Ye, D.; Benet, P.; Manchester Univ. . Dept. of Physics; EG and G Idaho, Inc., Idaho Falls, ID; Notre Dame Univ., IN; Purdue Univ., Lafayette, IN )

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N{approximately}134, Z{approximately}88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin {approximately}8{Dirac h}. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin {approximately}7{Dirac h}. The nuclei which exhibit octupole deformation in this mass region are {sup 144}Ba, {sup 146}Ba and {sub 146}Ce; {sup 142}Ba, {sup 148}Ce, {sup 150}Ce and {sup 142}Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab.

  16. Direct evidence of octupole deformation in neutron-rich 144Ba

    SciTech Connect

    Bucher, B.; Zhu, S.; Wu, C. Y.; Janssens, R. V. F.; Cline, D.; Hayes, A. B.; Albers, M.; Ayangeakaa, A. D.; Butler, P. A.; Campbell, C. M.; Carpenter, M. P.; Chiara, C. J.; Clark, J.; Crawford, H. L.; Cromaz, M.; David, H. M.; Gregor, E. T.; Kondev, F. G.; Harker, J.; Hoffman, C. R.; Kay, B. P.; Korichi, A.; Lauritsen, T.; Macchiavelli, A. O.; Pardo, R. C.; Richard, A.; Riley, M. A.; Savard, G.; Scheck, M.; Seweryniak, D.; Smith, M. K.; Wiens, A.; Vondrasek, R.

    2016-03-17

    Here, the neutron-rich nucleus 144Ba (t1/2 = 11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV 144Ba beam on a 1.0–mg/cm2 208Pb target. The measured value of the matrix element, < 31–∥M(E3)∥01+ >= 0.65(+17–23) eb3/2, corresponds to a reduced B(E3) transition probability of 48(+25–34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.

  17. Direct evidence of octupole deformation in neutron-rich 144Ba

    DOE PAGES

    Bucher, B.; Zhu, S.; Wu, C. Y.; ...

    2016-03-17

    Here, the neutron-rich nucleus 144Ba (t1/2 = 11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV 144Ba beam on a 1.0–mg/cm2 208Pb target. The measured value of the matrix element, < 31–∥M(E3)∥01+ >= 0.65(+17–23) eb3/2, corresponds to a reduced B(E3) transition probabilitymore » of 48(+25–34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.« less

  18. Microscopic description of octupole shape-phase transitions in light actinide and rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Vretenar, D.; Nikšić, T.; Lu, Bing-Nan

    2014-02-01

    A systematic analysis of low-lying quadrupole and octupole collective states is presented based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm, and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of β2-β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  19. Anharmonicity of the excited octupole band in actinides using supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Jolos, R. V.; von Brentano, P.; Casten, R. F.

    2013-09-01

    Background: Low-lying octupole collective excitations play an important role in the description of the structure of nuclei in the actinide region. Ground state alternating parity rotational bands combining both positive and negative parity states are known in several nuclei. However, only recently it has been discovered in 240Pu an excited positive parity rotational band having an octupole nature and demonstrating strong anharmonicity of the octupole motion in the band head energies.Purpose: To suggest a model describing both ground state and excited alternating parity bands, which includes a description of the anharmonic effects in the bandhead excitation energies and can be used to predict the energies of the excited rotational bands of octupole nature and the E1 transition probabilities.Methods: The mathematical technique of the supersymmetric quantum mechanics with a collective Hamiltonian depending only on the octupole collective variable which keeps axial symmetry is used to describe the ground state and excited alternating parity rotational bands.Results: The excitation energies of the states belonging to the lowest negative parity and the excited positive parity bands are calculated for 232Th, 238U, and 240Pu. The E1 transition matrix elements are also calculated for 240Pu.Conclusions: It is shown that the suggested model describes the excitation energies of the states of the lowest negative parity band with the accuracy around 10 keV. The anharmonicity in the bandhead energy of the excited positive parity band is described also. The bandhead energy of the excited positive parity band is described with the accuracy around 100 keV.

  20. Collision forces for compliant projectiles

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1990-01-01

    Force histories resulting from the impact of compliant projectiles were determined experimentally. A long instrumented rod was used as the target, and the impact force was calculated directly from the measured strain response. Results from a series of tests on several different sized impactors were used to define four dimensionless parameters that determine, for a specified impactor velocity and size, the amplitude, duration, shape, and impulse of the impact force history.

  1. Deceleration of Projectiles in Snow,

    DTIC Science & Technology

    1982-08-01

    contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or...projectile are directly wired els were used in these tests. The snow targets were to recording equipment, and the target is not accel- prepared by sifting...the snow target are identified in The target box was placed in a rigid stand located the figure. The travel times between these impacts on a tangent to

  2. Wind-influenced projectile motion

    NASA Astrophysics Data System (ADS)

    Bernardo, Reginald Christian; Perico Esguerra, Jose; Day Vallejos, Jazmine; Jerard Canda, Jeff

    2015-03-01

    We solved the wind-influenced projectile motion problem with the same initial and final heights and obtained exact analytical expressions for the shape of the trajectory, range, maximum height, time of flight, time of ascent, and time of descent with the help of the Lambert W function. It turns out that the range and maximum horizontal displacement are not always equal. When launched at a critical angle, the projectile will return to its starting position. It turns out that a launch angle of 90° maximizes the time of flight, time of ascent, time of descent, and maximum height and that the launch angle corresponding to maximum range can be obtained by solving a transcendental equation. Finally, we expressed in a parametric equation the locus of points corresponding to maximum heights for projectiles launched from the ground with the same initial speed in all directions. We used the results to estimate how much a moderate wind can modify a golf ball’s range and suggested other possible applications.

  3. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  4. Reflection asymmetry in odd-A and odd-odd actinium nuclei

    SciTech Connect

    Ahmad, I.

    1993-09-01

    Theoretical calculations and measurements indicate that octupole correlations are at a maximum in the ground states of the odd-proton nuclei Ac and Pa. It has been expected that odd-odd nuclei should have even larger amount of octupole-octupole correlations. We have recently made measurements on the structure of {sup 224}Ac. Although spin and parity assignments could not be made, two bands starting at 354.1 and 360.0 keV have properties characteristic of reflection asymmetric shape. These two bands have very similar rotational constants and also similar alpha decay rates, which suggest similarity between the wavefunctions of these bands. These signatures provide evidence for octupole correlations in these nuclides.

  5. Sequential injection gas guns for accelerating projectiles

    DOEpatents

    Lacy, Jeffrey M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  6. Projectile-generating explosive access tool

    DOEpatents

    Jakaboski, Juan-Carlos; Todd, Steven N.

    2011-10-18

    An explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  7. Stopping power: Effect of the projectile deceleration

    SciTech Connect

    Kompaneets, Roman Ivlev, Alexei V.; Morfill, Gregor E.

    2014-11-15

    The stopping force is the force exerted on the projectile by its wake. Since the wake does not instantly adjust to the projectile velocity, the stopping force should be affected by the projectile deceleration caused by the stopping force itself. We address this effect by deriving the corresponding correction to the stopping force in the cold plasma approximation. By using the derived expression, we estimate that if the projectile is an ion passing through an electron-proton plasma, the correction is small when the stopping force is due to the plasma electrons, but can be significant when the stopping force is due to the protons.

  8. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2002-01-09

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant considered for similar concepts in the past. This document reports on the progress made in the program during the past quarter. It reports on projectile development experiments and the development of the electric launch system design.

  9. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2002-10-12

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant investigated for similar concepts in the past. This document reports on the progress made in the program during the past quarter. It reports on projectile development and the development of the electric launch system design.

  10. Graphical Method for Determining Projectile Trajectory

    ERIC Educational Resources Information Center

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  11. Aerodynamic flail for a spinning projectile

    DOEpatents

    Cole, James K.

    1990-01-01

    A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.

  12. Aerodynamic flail for a spinning projectile

    DOEpatents

    Cole, James K.

    1990-05-01

    A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.

  13. Symmetry enriched U(1) topological orders for dipole-octupole doublets on a pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Li, Yao-Dong; Chen, Gang

    2017-01-01

    Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of the newly discovered pyrochlore QSL candidate Ce2Sn2O7 , is a dipole-octupole doublet. The generic model for these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.

  14. Projectile Combustion Effects on Ram Accelerator Performance

    NASA Astrophysics Data System (ADS)

    Chitale, Saarth Anjali

    University of Washington Abstract Projectile Combustion Effects on Ram Accelerator Performance Saarth Anjali Chitale Chair of the Supervisory Committee: Prof. Carl Knowlen William E. Boeing Department of Aeronautics and Astronautics The ram accelerator facility at the University of Washington is used to propel projectiles at supersonic velocities. This concept is similar to an air-breathing ramjet engine in that sub-caliber projectiles, shaped like the ramjet engine center-body, are shot through smooth-bore steel-walled tubes having an internal diameter of 38 mm. The ram accelerator propulsive cycles operate between Mach 2 to 10 and have the potential to accelerate projectile to velocities greater than 8 km/s. The theoretical thrust versus Mach number characteristics can be obtained using knowledge of gas dynamics and thermodynamics that goes into the design of the ram accelerator. The corresponding velocity versus distance profiles obtained from the test runs at the University of Washington, however, are often not consistent with the theoretical predictions after the projectiles reach in-tube Mach numbers greater than 4. The experimental velocities are typically greater than the expected theoretical predictions; which has led to the proposition that the combustion process may be moving up onto the projectile. An alternative explanation for higher than predicted thrust, which is explored here, is that the performance differences can be attributed to the ablation of the projectile body which results in molten metal being added to the flow of the gaseous combustible mixture around the projectile. This molten metal is assumed to mix uniformly and react with the gaseous propellant; thereby enhancing the propellant energy release and altering the predicted thrust-Mach characteristics. This theory predicts at what Mach number the projectile will first experience enhanced thrust and the corresponding velocity-distance profile. Preliminary results are in good agreement

  15. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Unknown

    2001-10-12

    The hypothesis to be tested is that the addition of steel or other synthetic fiber and/or high strength, low cost aggregate to strong grouts or concrete will result in a projectile of sufficient strength to produce cracking and spall enough to make its use cost effective for mining. Based on experiments conducted to date, no conclusions can yet be reached. Results of the experiments conducted suggest that reinforcement of a concrete projectile can yield performance that portends cost effective projectile based excavation. It is recognized that the projectile is but one component of the matrix. The electric launch system to be developed in the next phase of the program is the other factor that weighs heavily in the cost effectiveness equation. At this point, however, emerging low cost options for the projectile are very promising.

  16. Three-phase hypervelocity projectile launcher

    DOEpatents

    Fugelso, L. Erik; Langner, Gerald C.; Burns, Kerry L.; Albright, James N.

    1994-01-01

    A hypervelocity projectile launcher for use in perforating borehole casings provides improved penetration into the surrounding rock structure. The launcher includes a first cylinder of explosive material that defines an axial air-filled cavity, a second cylinder of explosive material defining an axial frustum-shaped cavity abutting and axially aligned with the first cylinder. A pliant washer is located between and axially aligned with the first and second cylinders. The frustum shaped cavity is lined with a metal liner effective to form a projectile when the first and second cylinders are detonated. The washer forms a unique intermediate projectile in advance of the liner projectile and enables the liner projectile to further penetrate into and fracture the adjacent rock structure.

  17. Magnetic detector for projectiles in tubes

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Knowlen, C.; Murakami, D.; Stonich, I.

    1990-01-01

    A new wall-mounted, magnetic detector is presented for measuring projectile passage times in tubes. The detector has the advantages of simplicity over laser and microwave techniques and has other advantages over the electrical contact wire technique. Representative data are presented. The detector is shown to be very insensitive to strong pressure waves and combustion, but able to detect the passage of the projectile (carrying one or two magnets) clearly. Two modes of operation of the detector are described and the use of these detectors to measure projectile velocities, accelerations, and spin rates is discussed.

  18. A Study of the Trajectories of Projectiles.

    ERIC Educational Resources Information Center

    Grant, A. Ruari

    1990-01-01

    Described is a procedure for studying the trajectories of projectiles using ball bearings and aluminum foil. Trajectories were measured with and without the effects of air resistance. Multiflash photography was used to determine the flight paths of all objects. (KR)

  19. Hypervelocity High Speed Projectile Imagery and Video

    NASA Technical Reports Server (NTRS)

    Henderson, Donald J.

    2009-01-01

    This DVD contains video showing the results of hypervelocity impact. One is showing a projectile impact on a Kevlar wrapped Aluminum bottle containing 3000 psi gaseous oxygen. One video show animations of a two stage light gas gun.

  20. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2003-06-06

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant considered for similar concepts in the past. This document reports on the program findings through the first two phases. It presents projectile design and experiment data and the preliminary design for electric launch system. Advanced Power Technologies, Inc., now BAE SYSTEMS Advanced Technologies, Inc., was forced to withdraw from the program with the loss of one of our principal mining partners, however, the experiments conducted suggest that the approach is feasible and can be made cost effective.

  1. A Multipurpose Projectile for Penetrating Urban Targets

    DTIC Science & Technology

    2007-04-01

    experiments were fabricated from Vascomax 300 maraging steel (Allvac, 2006). A photograph of this projectile is shown in Figure 1. Six...The CRH=2 projectiles used in the second set of experiments were also fabricated from Vascomax 300 maraging steel . A photograph of the CRH=2...experiments included steel -reinforcing material (rebar). The rebar, however, was not represented in the Zapotec computational model of the target, nor

  2. Elastic scattering with weakly bound projectiles

    SciTech Connect

    Figueira, J. M.; Abriola, D.; Arazi, A.; Capurro, O. A.; Marti, G. V.; Martinez Heinmann, D.; Pacheco, A. J.; Testoni, J. E.; Barbara, E. de; Fernandez Niello, J. O.; Padron, I.; Gomes, P. R. S.; Lubian, J.

    2007-02-12

    Possible effects of the break-up channel on the elastic scattering threshold anomaly has been investigated. We used the weakly bound 6,7Li nuclei, which is known to undergo break-up, as projectiles in order to study the elastic scattering on a 27Al target. In this contribution we present preliminary results of these experiments, which were analyzed in terms of the Optical Model and compared with other elastic scattering data using weakly bound nuclei as projectile.

  3. Microscopic description of quadrupole-octupole coupling in Sm and Gd isotopes with the Gogny energy density functional

    NASA Astrophysics Data System (ADS)

    Rodríguez-Guzmán, R.; Robledo, L. M.; Sarriguren, P.

    2012-09-01

    The interplay between the collective dynamics of the quadrupole and octupole deformation degree of freedom is discussed in a series of Sm and Gd isotopes both at the mean-field level and beyond, including parity symmetry restoration and configuration mixing. Physical properties such as negative-parity excitation energies and E1 and E3 transition probabilities are discussed and compared to experimental data. Other relevant intrinsic quantities such as dipole moments, ground-state quadrupole moments or correlation energies associated with symmetry restoration and configuration mixing are discussed. For the considered isotopes, the quadrupole-octupole coupling is found to be weak and most of the properties of negative-parity states can be described in terms of the octupole degree of freedom alone.

  4. A novel antiproton radial diagnostic based on octupole induced ballistic loss

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-03-15

    We report results from a novel diagnostic that probes the outer radial profile of trapped antiproton clouds. The diagnostic allows us to determine the profile by monitoring the time history of antiproton losses that occur as an octupole field in the antiproton confinement region is increased. We show several examples of how this diagnostic helps us to understand the radial dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better understanding of these dynamics may aid current attempts to trap antihydrogen atoms.

  5. Evidence for octupole excitations in the odd-odd neutron-rich nucleus {sup 142}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.; Daniel, A. V.; Ter-Akopian, G. M.

    2010-05-15

    High-spin states in the neutron-rich nucleus {sup 142}Cs are reinvestigated from a study of the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. A new level scheme is built and spin-parities are assigned to levels based on angular correlation measurements and systematics. The new structure of {sup 142}Cs is proposed to be related to octupole correlations. The electric dipole moment of {sup 142}Cs is measured and a dramatic decrease of the dipole moments with increasing neutron numbers in the Cs isotopic chain is found.

  6. The child as a projectile.

    PubMed

    Tibbs, R E; Haines, D E; Parent, A D

    1998-12-01

    Unintentional injury is the leading cause of death in children under the age of fourteen. The majority of these injuries/deaths occur when the child becomes airborne during an accident. The most common mechanisms by which children become airborne are motor vehicle collisions, bicycling accidents, and falls. A head injury is seen in a significant number of children in this setting. This includes injury to the scalp, skull, coverings of the brain, or the brain itself. These injuries are the most common cause of death in children resulting from unintentional injury. Other typical injuries include external bruises and abrasions, extremity fractures, and bruising or bleeding of internal organs. We propose to name this constellation of injuries the projectile child syndrome. This refers to those injuries occurring in infants and children as a result of becoming airborne during the events of an accident. The pattern of injuries seen as related to the anatomy of the child is stressed. A review of the impact to society and guidelines for prevention are presented.

  7. Neutron lifetime measurements and effective spectral cleaning with an ultracold neutron trap using a vertical Halbach octupole permanent magnet array

    NASA Astrophysics Data System (ADS)

    Leung, K. K. H.; Geltenbort, P.; Ivanov, S.; Rosenau, F.; Zimmer, O.

    2016-10-01

    Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3-T Halbach octupole permanent (HOPE) magnet array aligned vertically, using the TES port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce nonspecular reflections and was used in combination with a movable polyethylene UCN remover inserted from the top for cleaning of above-threshold UCNs. Loss from UCN depolarization was suppressed with a minimum 2-mT bias field. Without using the UCN remover, a total storage time constant of (712 ±19 )s was observed; with the remover inserted for 80 s and used at either 80 cm or 65 cm from the bottom of the trap, time constants of (824 ±32 )s and (835 ±36 )s were observed. Combining the latter two values, a neutron lifetime of τn=(887 ±39 ) s is extracted after primarily correcting for losses at the UCN valve. The time constants of the UCN population during cleaning were observed and compared to calculations based on kinetic theory as well as Monte Carlo studies. These calculations are used to predict above-threshold populations of ˜5 % ,˜0.5 % , and ˜10-12% remaining after cleaning in the no-remover, 80-cm remover, and 65-cm remover measurements. Thus, by using a nonspecular reflector covering the entire bottom of the trap and a remover at the top of the trap, we have established an effective cleaning procedure for removing a major systematic effect in high-precision τn experiments with magnetically stored UCNs.

  8. Construction and Operational Experience with a Superconducting Octupole Used to Trap Antihydrogen

    SciTech Connect

    Wanderer P.; Escallier, J.; Marone, A.; Parker, B.

    2011-09-06

    A superconducting octupole magnet has seen extensive service as part of the ALPHA experiment at CERN. ALPHA has trapped antihydrogen, a crucial step towards performing precision measurements of anti-atoms. The octupole was made at the Direct Wind facility by the Superconducting Magnet Division at Brookhaven National Laboratory. The magnet was wound with a six-around-one NbTi cable about 1 mm in diameter. It is about 300 mm long, with a radius of 25 mm and a peak field at the conductor of 4.04 T. Specific features of the magnet, including a minimal amount of material in the coil and coil ends with low multipole content, were advantageous to its use in ALPHA. The magnet was operated for six months a year for five years. During this time it underwent about 900 thermal cycles (between 4K and 100K). A novel operational feature is that during the course of data-taking the magnet was repeatedly shut off from its 950 A operating current. The magnet quenches during the shutoff, with a decay constant of 9 ms. Over the course of the five years, the magnet was deliberately quenched many thousands of times. It still performs well.

  9. High-accuracy optical clock based on the octupole transition in 171Yb+.

    PubMed

    Huntemann, N; Okhapkin, M; Lipphardt, B; Weyers, S; Tamm, Chr; Peik, E

    2012-03-02

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The electric-quadrupole moment of the (2)F(7/2) state is measured as -0.041(5)ea(0)(2), where e is the elementary charge and a(0) the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.

  10. Non-Axial Octupole Deformations and Tetrahedral Symmetry in Heavy Nuclei

    SciTech Connect

    Mazurek, Katarzyna; Dudek, Jerzy

    2005-11-21

    The total energies of about 120 nuclei in the Thorium region have been calculated within the macroscopic-microscopic method in the 5-dimensional space of deformation parameters {alpha}20, {alpha}22, {alpha}30, {alpha}32 and {alpha}40. The macroscopic energy term contains the nuclear surface-curvature dependence as proposed within the LSD approach. The microscopic energies are calculated with the Woods-Saxon single particle potential employing the universal set of parameters.We study a possible presence of the octupole axial and non-axial degrees of freedom all-over in the ({beta}, {gamma})-plane focussing on the ground-states, secondary minima and in the saddle points. In fact, a competition between axial and tri-axial octupole deformation parameters is obtained at the saddle points and in the secondary minima for many isotones with N > 136. The presence of the tetrahedral symmetry minima is predicted in numerous nuclei in the discussed region, although most of the time at relatively high excitation energies.

  11. Crystallization of Ca+ ions in a linear rf octupole ion trap

    NASA Astrophysics Data System (ADS)

    Okada, Kunihiro; Yasuda, Kazuhiro; Takayanagi, Toshinobu; Wada, Michiharu; Schuessler, Hans A.; Ohtani, Shunsuke

    2007-03-01

    A laser-cooling experiment with Ca+ ions trapped in a linear rf octupole ion trap is presented. The phase transition of the laser-cooled Ca+ ions from the cloud to the crystal state is observed by an abrupt dip of the laser-induced fluorescence spectrum and indicates that mK temperatures are obtained. We have also performed molecular dynamics simulations under various conditions to confirm this property by deducing axially symmetric structures of Coulomb crystals and by evaluating the translational temperatures of the laser-cooled ions. The simulation results show that for small numbers of ions novel ring-shaped crystals are produced. As the number of ions is increased, cylindrical layers in the ring crystal are sequentially formed. For more than 100 ions, also hexagonal and spiral structures emerge in parts of the large-size ion crystal, which has a length on the order of millimeters for the present geometrical arrangement and voltages. An advantage of the linear rf octupole trap is its large almost-field-free region in the middle of the trap, where the micromotion amplitude is small for trapped ions. These results demonstrate that such a multipole trap has attractive features for quantum computing and ultracold ion-atom collision studies.

  12. Energetic ion bombardment of Ag surfaces by C60+ and Ga+ projectiles.

    PubMed

    Sun, Shixin; Szakal, Christopher; Winograd, Nicholas; Wucher, Andreas

    2005-10-01

    The ion bombardment-induced release of particles from a metal surface is investigated using energetic fullerene cluster ions as projectiles. The total sputter yield as well as partial yields of neutral and charged monomers and clusters leaving the surface are measured and compared with corresponding data obtained with atomic projectile ions of similar impact kinetic energy. It is found that all yields are enhanced by about one order of magnitude under bombardment with the C60+ cluster projectiles compared with Ga+ ions. In contrast, the electronic excitation processes determining the secondary ion formation probability are unaffected. The kinetic energy spectra of sputtered particles exhibit characteristic differences which reflect the largely different nature of the sputtering process for both types of projectiles. In particular, it is found that under C60+ impact (1) the energy spectrum of sputtered atoms peaks at significantly lower kinetic energies than for Ga+ bombardment and (2) the velocity spectra of monomers and dimers are virtually identical, a finding which is in pronounced contrast to all published data obtained for atomic projectiles. The experimental findings are in reasonable agreement with recent molecular dynamics simulations.

  13. Experimental investigation on ballistic stability of high-speed projectile in sand

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Huang, Xianglin; Qi, Yafei; Li, Dacheng; Tao, Jialiang; Huang, Wei

    2017-01-01

    The investigation on ballistic stability of high-speed projectile in granular materials is important to study the EPW (earth-penetrating weapon). Laboratory-scaled sand entry experiments for the trajectory in the sand have been performed at a range of velocities from 30 m/s to 150 m/s. In addition, pressure sensor was embedded in the sand to record the sand stress which reflects the penetration performance of projectile during the impact. The slender projectiles were designed into flat nose shape with three kinds of L/D (length-diameter ratio) to make comparisons on the trajectory when those projectiles were launched at normal and oblique impact angles (0˜25deg) along a view window. A high-speed camera beside window was employed to capture the entire process of projectiles' penetration. Basing on the comparison of different tests, theoretical analysis is carried out on the relationship between ballistic stability and associated conditions. By utilizing DIC technique, the vector field of sand velocity was acquired, and the spreading direction of the impacting energy was observed. It can be concluded that the sand stress is the function of penetrating velocity, L/D and the shot angle. It increases with the growing of penetrating velocity and L/D, decreases with the shot angle. To a certain extent, the biggest initial velocity leads to the highest stress.

  14. One-phonon octupole vibrational states in 211At, 212Rn, 213Fr and 214Ra with N = 126

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.

    2013-12-01

    Excited high spin states in 211At, 212Rn, 213Fr and 214Ra with N = 126 are reorganized and interpreted in terms of the stretched weak coupling of an octupole 3- phonon. Nearly identical sequences of levels with ΔI = 3 and the parity change are found, for the first time, up to 25- for 20 states of 214Ra, up to 35- for 36 states of 212Rn and up to 53/2+ for 16 states of 213Fr. The stretched weak coupling of an octupole phonon is extended up to the highest excitation energy of 11355 keV for 212Rn which has the largest experimental B( E3) value of 44.1(88) W.u. for the 11- → 8{2/+} transition. The stretched weak coupling of an octupole 3- phonon needs to be considered when single particle configurations are assigned to high spin states. Average octupole excitation energies of 657(51) keV for 211At, 1101(28) keV for 212Rn, 667(25) keV for 213Fr, and 709(25) keV for 214Ra are obtained. The calculated level enegies are in a good agreement with the experimental level energies within the error limit of 4.3%.

  15. Additional Crime Scenes for Projectile Motion Unit

    NASA Astrophysics Data System (ADS)

    Fullerton, Dan; Bonner, David

    2011-12-01

    Building students' ability to transfer physics fundamentals to real-world applications establishes a deeper understanding of underlying concepts while enhancing student interest. Forensic science offers a great opportunity for students to apply physics to highly engaging, real-world contexts. Integrating these opportunities into inquiry-based problem solving in a team environment provides a terrific backdrop for fostering communication, analysis, and critical thinking skills. One such activity, inspired jointly by the museum exhibit "CSI: The Experience"2 and David Bonner's TPT article "Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene,"3 provides students with three different crime scenes, each requiring an analysis of projectile motion. In this lesson students socially engage in higher-order analysis of two-dimensional projectile motion problems by collecting information from 3-D scale models and collaborating with one another on its interpretation, in addition to diagramming and mathematical analysis typical to problem solving in physics.

  16. The representational dynamics of remembered projectile locations.

    PubMed

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Oliveira, Armando Mónica

    2013-12-01

    When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target's disappearance and the participant's responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles.

  17. Ocular injuries due to projectile impacts.

    PubMed

    Scott, W R; Lloyd, W C; Benedict, J V; Meredith, R

    2000-01-01

    An animal model has been developed using enucleated porcine eyes to evaluate ocular trauma. The eyes were pressurized to approximately 18 mmHg and mounted in a container with a 10% gelatin mixture. The corneas of sixteen pressurized eyes were impacted by a blunt metal projectile (mass of 2.6 gm, 3.5 gm or 45.5 gm) at velocities of 4.0 to 38.1 m/s. The impacted eyes were evaluated by an ophthalmologist. A numerical classification scheme was used to categorize the severity of the ocular injury. A chi-squared test indicates that the injury level is associated with the kinetic energy (KE) and not the momentum of the projectile. The enucleated eyes began to experience lens dislocations when the KE of the projectile was approximately 0.75 Nm, and retinal injuries when the KE was approximately 1.20 Nm.

  18. Flight trajectory simulation of fluid payload projectiles

    NASA Astrophysics Data System (ADS)

    Vaughn, H. R.; Wolfe, W. P.; Oberkampf, W. L.

    A flight trajectory simulation method has been developed for calculating the six degree-of-freedom motion of fluid filled projectiles. Numerically calculated internal fluid moments and experimentally known aerodynamic forces and moments are coupled to the projectile motion. Comparisons of predicted results with flight test data of an M483 155mm artillery projectile with a highly viscous payload confirm the accuracy of the simulation. This simulation clearly shows that the flight instability is due to the growth of the nutation component of angular motion caused by the viscous effects of the fluid payload. This simulation procedure, when used in conjunction with the previously developed method for calculating internal fluid moments, allows the designer to examine the effects of various liquid payloads and container geometries on the dynamic behavior of flight vehicles.

  19. Analytical performance study of explosively formed projectiles

    NASA Astrophysics Data System (ADS)

    Hussain, G.; Hameed, A.; Hetherington, J. G.; Malik, A. Q.; Sanaullah, K.

    2013-01-01

    Hydrocode simulations are carried out using Ansys Autodyn (version 11.0) to study the effects of the liner material (mild steel, copper, armco iron, tantalum, and aluminum) on the shape, velocity, traveled distance, pressure, internal energy, temperature, divergence or stability, density, compression, and length-to-diameter ratio of explosively formed projectiles. These parameters are determined at the instants of the maximum as well as stable velocity during the flight towards the target. The results of these parameters present the potential capability of each liner material used to fabricate explosively formed projectiles. An experimental analysis is performed to study the velocity status and the length-to-diameter ratio of explosively formed projectiles.

  20. Dynamic effects of interaction of composite projectiles with targets

    NASA Astrophysics Data System (ADS)

    Zakharov, V. M.

    2016-01-01

    The process of high-speed impact of projectiles against targets of finite thickness is experimentally investigated. Medium-hard steel plates are used as targets. The objective of this research is to carry out a comparative analysis of dynamic effects of interaction of various types of projectiles with targets, such as characteristics of destruction of the target, the state of the projectile behind the target, and particularities of the after-penetration stream of fragments after the target has been pierced. The projectiles are made of composites on the basis of tungsten carbide obtained by caking and the SHS-technology. To compare effectiveness of composite projectiles steel projectiles are used. Their effectiveness was estimated in terms of the ballistic limit. High density projectiles obtained by means of the SHS-technology are shown to produce results comparable in terms of the ballistic limit with high-strength projectiles that contain tungsten received by caking.

  1. Optical Flow-Based State Estimation for Guided Projectiles

    DTIC Science & Technology

    2015-06-01

    ARL-TR-7321 ● JUNE 2015 US Army Research Laboratory Optical Flow-Based State Estimation for Guided Projectiles by Moshe... Guided Projectiles by Moshe Hamaoui Weapons and Materials Research Directorate, ARL Approved for public release...

  2. Dynamic effects of interaction of composite projectiles with targets

    SciTech Connect

    Zakharov, V. M.

    2016-01-15

    The process of high-speed impact of projectiles against targets of finite thickness is experimentally investigated. Medium-hard steel plates are used as targets. The objective of this research is to carry out a comparative analysis of dynamic effects of interaction of various types of projectiles with targets, such as characteristics of destruction of the target, the state of the projectile behind the target, and particularities of the after-penetration stream of fragments after the target has been pierced. The projectiles are made of composites on the basis of tungsten carbide obtained by caking and the SHS-technology. To compare effectiveness of composite projectiles steel projectiles are used. Their effectiveness was estimated in terms of the ballistic limit. High density projectiles obtained by means of the SHS-technology are shown to produce results comparable in terms of the ballistic limit with high-strength projectiles that contain tungsten received by caking.

  3. Angular Momentum Population in Projectile Fragmentation

    NASA Astrophysics Data System (ADS)

    Podolyák, Zs.; Gladnishki, K. A.; Gerl, J.; Hellström, M.; Kopatch, Y.; Mandal, S.; Górska, M.; Regan, P. H.; Wollersheim, H. J.; Schmidt, K.-H.; Gsi-Isomer Collaboration

    2004-02-01

    Isomeric states in neutron-deficient nuclei around A ≈190 have been identified following the projectile fragmentation of a relativistic energy 238U beam. The deduced isomeric ratios are compared with a model based on the abrasion-ablation description. The experimental isomeric ratios are lower by a factor of ≈2 than the calculated ones assuming the `sharp cutoff' approximation. The observation of the previously reported isomeric Iπ=43/2- state in 215Ra represents the current record for the highest discrete spin state observed following a projectile fragmentation reaction.

  4. High School Students' Understanding of Projectile Motion Concepts

    ERIC Educational Resources Information Center

    Dilber, Refik; Karaman, Ibrahim; Duzgun, Bahattin

    2009-01-01

    The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion…

  5. High-spin octupole yrast levels in {sup 216}Rn{sub 86}

    SciTech Connect

    Debray, M.E.; Davidson, J.; Davidson, M.; Kreiner, A. J.; Cardona, M. A.; Hojman, D.; Napoli, D.R.; De Angelis, G.; De Poli, M.; Gadea, A.; Lenzi, S.; Bazzacco, D.; Lunardi, S.; Rossi-Alvarez, C.; Ur, C.A.; Medina, N.

    2006-02-15

    The yrast level structure of {sup 216}Rn has been studied using in-beam spectroscopy {alpha}-{gamma}-{gamma} coincidence techniques through the {sup 208}Pb({sup 18}O, 2{alpha}2n) reaction in the 91-93 MeV energy range, using the 8{pi} GASP-ISIS spectrometer at Legnaro. The level scheme of {sup 216}Rn resulting from this study shows alternating parity bands only above a certain excitation energy. From this result, the lightest nucleus showing evidence of octupole collectivity at low spins is still {sup 216}Fr, thereby defining the lowest-mass corner for this kind of phenomenon as N{>=}129 and Z{>=}87.

  6. Rotation induced octupole correlations in the neutron-deficient 109Te nucleus

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Fahlander, C.; Gadea, A.; Farnea, E.; Bazzacco, D.; Belcari, N.; Blasi, N.; Bizzeti, P. G.; Bizzeti-Sona, A.; de Acuña, D.; de Poli, M.; Grawe, H.; Johnson, A.; Lo Bianco, G.; Lunardi, S.; Napoli, D. R.; Nyberg, J.; Pavan, P.; Persson, J.; Rossi Alvarez, C.; Rudolph, D.; Schubart, R.; Spolaore, P.; Wyss, R.; Xu, F.

    1998-10-01

    High spin states in the neutron deficient nucleus 109Te have been populated with the 58Ni+54Fe reaction at 220 MeV and investigated through γ-spectroscopy methods at the GASP spectrometer making use of reaction channel selection with the ISIS Si-ball. The level scheme has been extended up to an excitation energy of ~12.1 MeV. The spins and parities of the observed levels are assigned tentatively supporting the identification of two bands of opposite parity connected by strong dipole transitions inferred to be of E1 character. Octupole correlations in 109Te induced by rotation are suggested as the cause of this effect.

  7. Appraising nuclear-octupole-moment contributions to the hyperfine structures in 211Fr

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2015-11-01

    Hyperfine structures of 211Fr due to the interactions of magnetic dipole (μ ), electric quadrupole (Q ), and magnetic octupole (Ω ) moments with the electrons are investigated using the relativistic coupled-cluster theory with the single, double, and important valence triple excitations approximations. The validity of our calculations is substantiated by comparing these values with the available experimental results. Its Q value has also been elevated by combining the measured hyper-fine-structure constant of the 7 p 2P3 /2 state with our improved calculation. Considering the preliminary value of Ω from the nuclear shell model, its contributions to the hyperfine structures up to the 7 d 2D5 /2 low-lying states in 211Fr are estimated. Hyperfine energy-level splittings of many states have been assessed to find the suitability for carrying out their precise measurements so that Ω of 211Fr can be inferred from them unambiguously.

  8. Excalibur Precision 155mm Projectiles (Excalibur)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-366 Excalibur Precision 155mm Projectiles (Excalibur) As of FY 2017 President’s Budget...Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be

  9. An Inexpensive Mechanical Model for Projectile Motion

    ERIC Educational Resources Information Center

    Kagan, David

    2011-01-01

    As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…

  10. Launching a Projectile into Deep Space

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.

    2004-01-01

    As part of the discussion about Newton's work in a history of mathematics course, one of the presentations calculated the amount of energy necessary to send a projectile into deep space. Afterwards, the students asked for a recalculation with two changes: First the launch under study consisted of a single stage, but the students desired to…

  11. Ballistics projectile image analysis for firearm identification.

    PubMed

    Li, Dongguang

    2006-10-01

    This paper is based upon the observation that, when a bullet is fired, it creates characteristic markings on the cartridge case and projectile. From these markings, over 30 different features can be distinguished, which, in combination, produce a "fingerprint" for a firearm. By analyzing features within such a set of firearm fingerprints, it will be possible to identify not only the type and model of a firearm, but also each and every individual weapon just as effectively as human fingerprint identification. A new analytic system based on the fast Fourier transform for identifying projectile specimens by the line-scan imaging technique is proposed in this paper. This paper develops optical, photonic, and mechanical techniques to map the topography of the surfaces of forensic projectiles for the purpose of identification. Experiments discussed in this paper are performed on images acquired from 16 various weapons. Experimental results show that the proposed system can be used for firearm identification efficiently and precisely through digitizing and analyzing the fired projectiles specimens.

  12. Bulldozing Your Way Through Projectile Motion.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1983-01-01

    Presents two models and two demonstrations targeted at student understanding of projectile motion as the sum of two independent, perpendicular vectors. Describes materials required, construction, and procedures used. Includes a discussion of teaching points appropriate to each demonstration or model. (JM)

  13. Teaching Projectile Motion to Eliminate Misconceptions

    ERIC Educational Resources Information Center

    Prescott, Anne; Mitchelmore, Michael

    2005-01-01

    Student misconceptions of projectile motion are well documented, but their effect on the teaching and learning of the mathematics of motion under gravity has not been investigated. An experimental unit was designed that was intended to confront and eliminate misconceptions in senior secondary school students. The approach was found to be…

  14. Trajectory And Heating Of A Hypervelocity Projectile

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.

    1992-01-01

    Technical paper presents derivation of approximate, closed-form equation for relationship between velocity of projectile and density of atmosphere. Results of calculations based on approximate equation agree well with results from numerical integrations of exact equations of motion. Comparisons of results presented in series of graphs.

  15. Phenomenological model for light-projectile breakup

    NASA Astrophysics Data System (ADS)

    Kalbach, C.

    2017-01-01

    Background: Projectile breakup can make a large contribution to reactions induced by projectiles with mass numbers 2, 3, and 4, yet there is no global model for it and no clear agreement on the details of the reaction mechanism. Purpose: This project aims to develop a phenomenological model for light-projectile breakup that can guide the development of detailed theories and provide a useful tool for applied calculations. Method: An extensive database of double-differential cross sections for the breakup of deuterons, 3He ions, and α particles was assembled from the literature and analyzed in a consistent way. Results: Global systematics for the centroid energies, peak widths, and angular distributions of the breakup peaks have been extracted from the data. The dominant mechanism appears to be absorptive breakup, where the unobserved projectile fragment fuses with the target nucleus during the initial interaction. The global target-mass-number and incident-energy dependencies of the absorptive breakup cross section have also been determined, along with channel-specific normalization constants. Conclusions: Results from the model generally agree with the original data after subtraction of a reasonable underlying continuum. Absorptive breakup can account for as much as 50%-60% of the total reaction cross section.

  16. Speed, Acceleration, Chameleons and Cherry Pit Projectiles

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Likar, Andrej

    2012-01-01

    The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…

  17. Batch Computed Tomography Analysis of Projectiles

    DTIC Science & Technology

    2016-05-01

    of the projectiles, which aids in understanding the source of their variability as well as an approach to use this method’s numerical component...respectively, where plots of the profiles contained within each cluster are overlaid to aid in understanding the reason for clustering. The

  18. Method of and apparatus for accelerating a projectile

    DOEpatents

    Goldstein, Yeshayahu S. A.; Tidman, Derek A.

    1986-01-01

    A projectile is accelerated along a confined path by supplying a pulsed high pressure, high velocity plasma jet to the rear of the projectile as the projectile traverses the path. The jet enters the confined path at a non-zero angle relative to the projectile path. The pulse is derived from a dielectric capillary tube having an interior wall from which plasma forming material is ablated in response to a discharge voltage. The projectile can be accelerated in response to the kinetic energy in the plasma jet or in response to a pressure increase of gases in the confined path resulting from the heat added to the gases by the plasma.

  19. Apparatus and method for the acceleration of projectiles to hypervelocities

    DOEpatents

    Hertzberg, Abraham; Bruckner, Adam P.; Bogdanoff, David W.

    1990-01-01

    A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.

  20. Initiation of Gaseous Detonation by Conical Projectiles

    NASA Astrophysics Data System (ADS)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  1. The aerodynamics of some guided projectiles

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    Some characteristic projectile shapes are considered with various added components intended to provide lift, stability, and control. The intent of the additions is to provide some means for altering the normal ballistic flight path of a projectile for various purposes such as: achieving greater accuracy at the impact point, selecting alternate impact points, extending range, improved evasion, and so on. The configurations presented illustrate the effects of a flare, wings, and tails for providing stability and lift, and the effects of aft-tails, a close-coupled flap, and all-moving forward wings for control. The relative merits of the various configurations, all of which provided for flight path alterations are discussed.

  2. Electrical parameters of projectile stun guns.

    PubMed

    McDaniel, Wayne C; Benwell, Andrew; Kovaleski, Scott

    2009-01-01

    Projectile stun guns have been developed as less-lethal devices that law enforcement officers can use to control potentially violent subjects, as an alternative to using firearms. These devices apply high voltage, low amperage, pulsatile electric shocks to the subject, which causes involuntary skeletal muscle contraction and renders the subject unable to further resist. In field use of these devices, the electric shock is often applied to the thorax, which raises the issue of cardiac safety of these devices. An important determinant of the cardiac safety of these devices is their electrical output. Here the outputs of three commercially available projectile stun guns were evaluated with a resistive load and in a human-sized animal model (a 72 kg pig).

  3. Modeling projectile impact onto prestressed ceramic targets

    NASA Astrophysics Data System (ADS)

    Holmquist, T. J.; Johnson, G. R.

    2003-09-01

    This work presents computed results for the responses of ceramic targets, with and without prestress, subjected to projectile impact. Also presented is a computational technique to include prestress. Ceramic materials have been considered for armor applications for many years because of their high strength and low density. Many researchers have demonstrated that providing confinement enhances the ballistic performance of ceramic targets. More recently, prestressing the ceramic is being considered as an additional enhancement technique. This work investigates the effect of prestressing the ceramic for both thin and thick target configurations subjected to projectile impact. In all cases the targets with ceramic prestress provided enhanced ballistic performance. The computed results indicate that prestressed ceramic reduces and/or delays failure, resulting in improved ceramic performance and ballistic efficiency.

  4. Forensic and clinical issues in the use of frangible projectile.

    PubMed

    Komenda, Jan; Hejna, Petr; Rydlo, Martin; Novák, Miroslav; Krajsa, Jan; Racek, František; Rejtar, Pavel; Jedlička, Luděk

    2013-08-01

    Frangible projectiles for firearms, which break apart on impact, are mainly used by law enforcement agencies for training purposes, but can also be used for police interventions. Apart from the usual absence of lead in the projectiles, the main advantage of using frangible projectiles is the reduced risk of ricochet after impact with a hard target. This article describes the design and function of frangible projectiles, and describes gunshot wounds caused by ultra-frangible projectiles which fragment after penetration of soft tissues. Shooting experiments performed by the authors confirmed that differences in the geometry and technology of frangible projectiles can significantly modify their wounding effects. Some frangible projectiles have minimal wounding effects because they remain compact after penetration of soft tissues, comparable to standard fully jacketed projectiles. However, a number of ultra-frangible projectiles disintegrate into very small fragments after impact with a soft tissue substitute. In shooting experiments, we found that the terminal behavior of selected ultra-frangible projectiles was similar in a block of ballistic gel and the soft tissues of the hind leg of a pig, except that the degree of disintegration was less in the gel.

  5. Projectile Ullage Inspection Technique: Laboratory Demonstration Apparatus.

    DTIC Science & Technology

    1983-08-01

    inspection of projectiles was feasible. The mercury manometer was used because it was the only gauge readily available in the laboratory that was...pres- sure. It is suggested that the mercury manometer be replaced by a panel-mounted diaphragm or Bourdon tube gauge. The full-scale pressure range of...When the mercury manometer is used, the volume of the pressure indicator changes linearly with pres- sure (it is assumed that the manometer tube

  6. Reliability Estimates for Flawed Mortar Projectile Bodies

    DTIC Science & Technology

    2009-12-01

    Monte Carlo simulations were used to estimate reliability. Measured distributions of wall thickness, defect rate, material strength, and applied loads...element analysis Case study Monte Carlo simulation a b s t r a c t The Army routinely screens mortar projectiles for defects in safety-critical parts. In...of a safety-critical failure. Limit state functions and Monte Carlo simulations were used to estimate reliability. Measured distributions of wall

  7. Energy loss of hydrogen projectiles in gases

    SciTech Connect

    Schiefermueller, A.; Golser, R.; Stohl, R.; Semrad, D. )

    1993-12-01

    The stopping cross sections of H[sub 2], D[sub 2], He, and Ne for hydrogen projectiles in the energy range 3--20 keV per nucleon have been measured by time of flight. We compare our experimental result to the sum of the individual contributions due to excitation and ionization of the target and of the projectile, respectively, and due to charge exchange, using published cross-section data. Satisfactory agreement is found only for the He target and only at moderate projectile velocities, whereas for H[sub 2] and D[sub 2] the calculated values are about 30% too low. A Monte Carlo program allows us to simulate the measured time-of-flight spectra and to explain minor trends in the experimental data: for increased Ne gas pressure, an increased specific energy loss has been found that can be traced to different regions of impact parameters selected in our transmission geometry. This also explains, in part, the increased specific energy loss for deuterons compared to protons of equal velocity that is most evident for Ne. In contrast, a decrease of the specific energy loss with increasing pressure for He may be explained by impurities in the target gas. If we correct for the effect of impurities, the stopping cross section of He at 4 keV per nucleon is slightly smaller (0.60[times]10[sup [minus]15] eV cm[sup 2]) than published earlier (0.72[times]10[sup [minus]15] eV cm[sup 2]) and depends on the 3.8th power of projectile velocity.

  8. Inductiveless Rail Launchers for Long Projectiles

    DTIC Science & Technology

    2001-04-26

    transient skin effects - Low stress acceleration of launch packages by forces spread over long armatures - Negligible parasitic inductive energy - no...Long projectiles in long but thin armatures can be accelerated at low internal mechanical stress provided that magnetic induction B and current...a large portion of supplied energy (50% for a rectangular current pulse) is accumulated during the launch in the inductive (magnetic) energy of the

  9. Backbending in the pear-shaped Th22390 nucleus: Evidence of a high-spin octupole to quadrupole shape transition in the actinides

    NASA Astrophysics Data System (ADS)

    Maquart, G.; Augey, L.; Chaix, L.; Companis, I.; Ducoin, C.; Dudouet, J.; Guinet, D.; Lehaut, G.; Mancuso, C.; Redon, N.; Stézowski, O.; Vancraeyenest, A.; Astier, A.; Azaiez, F.; Courtin, S.; Curien, D.; Deloncle, I.; Dorvaux, O.; Duchêne, G.; Gall, B.; Grahn, T.; Greenlees, P.; Herzan, A.; Hauschild, K.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lopez-Martens, A.; Nieminen, P.; Petkov, P.; Peura, P.; Porquet, M.-G.; Rahkila, P.; Rinta-Antila, S.; Rousseau, M.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.

    2017-03-01

    Relatively neutron-rich thorium isotopes lie at the heart of a nuclear region of nuclei exhibiting octupole correlation effects. The detailed level structure of 223Th has been investigated in measurements of γ radiation following the fusion-evaporation channel of the 208Pb(18O,3 n )223Th reaction at 85 MeV beam energy. The level structure has been extended up to spin 49 /2 , and 33 new γ rays have been added using triple-γ coincidence data. The spins and parities of the newly observed states have been confirmed by angular distribution ratios. In addition to the two known yrast bands based on a K =5 /2 configuration, a non-yrast band has been established up to spin 35 /2 . We interpret this new structure as based on the same configuration as the yrast band in 221Th having dominant K =1 /2 contribution. At the highest spin a backbending occurs around a rotational frequency of ℏ ω =0.23 MeV, very close to the one predicted in 222Th, where a sharp transition to a reflection-symmetric shape is expected.

  10. A hypervelocity projectile launcher for well perforation

    SciTech Connect

    Albright, J.N.; Fugelso, L.E.; Lagner, G.C.; Burns, K.L.

    1989-01-01

    Current oil well perforation techniques use low- to medium-velocity gun launchers for completing wells in soft rock. Shaped-charge jets are normally used in harder, more competent rock. A device to create a much higher velocity projectile was designed. This launcher will provide an alternative technique to be used when the conventional devices do not yield the maximum well performance. It is an adaptation of the axial cavity in a high explosive (HE) annulus design, with the axial cavity being filled with a low density foam material. Two configurations were tested; both had an HE annulus filled with organic foam, one had a projectile. Comparison of the two shots was made. A time sequence of Image Intensifier Camera photographs and sequential, orthogonal flash x-ray radiographs provided information on the propagation of the foam fragments, the first shock wave disturbance, the projectile motion and deformation, and the direct shock wave transmission from the main HE charge. DYNA2D calculations were made to assist in the experimental interpretation. 25 refs., 9 figs.

  11. Fragmentation of hypervelocity aluminum projectiles on fabrics

    NASA Astrophysics Data System (ADS)

    Rudolph, Martin; Schäfer, Frank; Destefanis, Roberto; Faraud, Moreno; Lambert, Michel

    2012-07-01

    This paper presents work performed for a study investigating the ability of different flexible materials to induce fragmentation of a hypervelocity projectile. Samples were chosen to represent a wide range of industrially available types of flexible materials like ceramic, aramid and carbon fabrics as well as a thin metallic mesh. Impact conditions and areal density were kept constant for all targets. Betacloth and multi-layer insulation (B-MLI) are mounted onto the targets to account for thermal system engineering requirements. All tests were performed using the Space light-gas gun facility (SLGG) of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI. Projectiles were aluminum spheres with 5 mm diameter impacting at approximately 6.3 km/s. Fragmentation was evaluated using a witness plate behind the target. An aramid and a ceramic fabric lead the ranking of fabrics with the best projectile fragmentation and debris cloud dispersion performance. A comparison with an equal-density rigid aluminum plate is presented. The work presented can be applied to optimize the micrometeoroid and space debris (MM/SD) shielding structure of inflatable modules.

  12. Improvements to a model of projectile fragmentation

    NASA Astrophysics Data System (ADS)

    Mallik, S.; Chaudhuri, G.; Das Gupta, S.

    2011-11-01

    In a recent paper [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.83.044612 83, 044612 (2011)] we proposed a model for calculating cross sections of various reaction products which arise from disintegration of projectile-like fragments resulting from heavy-ion collisions at intermediate or higher energy. The model has three parts: (1) abrasion, (2) disintegration of the hot abraded projectile-like fragment (PLF) into nucleons and primary composites using a model of equilibrium statistical mechanics, and (3) possible evaporation of hot primary composites. It was assumed that the PLF resulting from abrasion has one temperature T. Data suggested that, while just one value of T seemed adequate for most cross-section calculations, a single value failed when dealing with very peripheral collisions. We have now introduced a variable T=T(b) where b is the impact parameter of the collision. We argue that there are data which not only show that T must be a function of b but, in addition, also point to an approximate value of T for a given b. We propose a very simple formula: T(b)=D0+D1[As(b)/A0] where As(b) is the mass of the abraded PLF and A0 is the mass of the projectile; D0 and D1 are constants. Using this model we compute cross sections for several collisions and compare with data.

  13. Hign-speed penetration of projectile with cavitator into sand

    NASA Astrophysics Data System (ADS)

    Daurskikh, Anna; Veldanov, Vladislav

    2011-06-01

    Cavitators are used in underwater projectiles design to form a cavern in which projectile could move with no or significantly reduced drag. An investigation of possible application of this structural element for penetration into porous media was conducted. High-speed impact of a conical-shaped head projectile with cavitator was studied in terms of its influence on penetration capacity and projectile stability in sand for impact velocity about 1500 m/s. Cavitators were manufactured of steel with different strength moduli, and thus two penetration regimes (with eroding/non-eroding cavitator) were compared. Numerical simulations showing wave propagation in target and projectile were performed in AUTODYN with Johnson-Cook model for projectile and granular model for sand.

  14. Search for stable octupole deformation in the nucleus /sup 225/Fr

    SciTech Connect

    Burke, D.G.; Kurcewicz, W.; Loevhoeiden, G.; Nyboe, K.; Thorsteinsen, T.F.; Gietz, H.; Kaffrell, N.; Rogowski, J.; Naumann, R.A.; Borge, M.J.G.; and others

    1987-12-10

    The level structure of /sup 225/Fr has been studied from the /sup 225/Rn(..beta../sup -/) decay in on-line experiments at the ISOLDE facility. A level scheme was constructed on the basis of gamma--gamma coincidence data, and the multipolarities of many transitions were established by conversion electron measurements. Levels in /sup 225/Fr were also studied with the /sup 226/Ra(t,..cap alpha..)/sup 225/Fr reaction at the McMaster University Accelerator Laboratory, using a target of /sup 226/Ra(T/sub 1/2/ = 1600y) and a magnetic spectrograph to analyze the alpha spectra. The first three excited states, at 28.5, 82.5 and 128.2 keV, are interpreted as rotational band members based on the ground state, which is known to have I = 3/2. The (t,..cap alpha..) strengths to these levels indicate a 3/2/sup -/(532) assignment to the ground state. No evidence for an octupole deformation in /sup 225/Fr has been found so far, although analysis of data for other excited states is continuing.

  15. Search for the two-phonon octupole vibrational state in {sup 208}Pb

    SciTech Connect

    Blumenthal, D.J.; Henning, W.; Janssens, R.V.F.

    1995-08-01

    We performed an experiment to search for the two-phonon octupole vibrational state in {sup 208}Pb. Thick targets of {sup 208}Pb, {sup 209}Bi, {sup 58,64}Ni, and {sup 160}Gd were bombarded with 1305 MeV beams of were bombard {sup 208}Pb supplied by ATLAS. Gamma rays were detected using the Argonne-Notre Dame BGO gamma-ray facility, consisting of 12 Compton-suppressed germanium detectors surrounding an array of 50 BGO scintillators. We identified some 30 known gamma rays from {sup 208}Pb in the spectra gated by the 5{sup -} {yields} 3{sup -} and 3{sup -} {yields} 0{sup +} transitions in {sup 208}Pb. In addition, after unfolding these spectra for Compton response, we observed broad coincident structures in the energy region expected for the 2-phonon states. Furthermore, we confirmed the placement of a 2485 keV line observed previously in {sup 207}Pb and find no evidence consistent with the placement of this line in {sup 208}Pb. We are currently in the process of investigating the origin of the broadened lines observed in the spectra, extracting the excitation probability of states in {sup 208}Pb, and determining the relative probability of mutual excitation and neutron transfer in this reaction. An additional experiment is also being performed to collect much higher statistics germanium-germanium coincidence data for the thick {sup 208}Pb target.

  16. Evidence for octupole vibration in the superdeformed well of {sup 190}Hg from eurogam

    SciTech Connect

    Crowell, B.; Carpenter, M.P.; Janssens, R.V.F.

    1995-08-01

    Gammasphere experiments in 1993-94 brought to light the existence of an excited superdeformed (SD) band in {sup 190}Hg with the unusual property of decaying entirely to the lowest (yrast) SD band over 3-4 transitions, rather than to the normally deformed states as is usually the case in the A {approximately} 150 and A {approximately} 190 regions of superdeformation. Although M1 transitions between signature-partner SD bands were previously observed in {sup 193}Hg, no such mechanism was available to explain the situation in the even-even nucleus {sup 190}Hg, whose yrast SD band has no signature partner. The best explanation appears to lie in long-standing theoretical predictions that the SD minimum in the potential energy surface would be quite soft with respect to octupole vibrations. This would lead to enhanced E1 transitions connecting the one-phonon and zero-phonon states. The data and this interpretation were published. A shortcoming of the Gammasphere experiments was that they did not allow the definitive measurement of the energies of the gamma-ray transitions connecting the two bands, due to the very weak population of the excited band ({approximately}0.05% of the {sup 190}Hg channel) and also partly, we believed, to the angular distributions of the transitions, which were peaked near 90 degrees, where Gammasphere had few detectors.

  17. Suppression of Quadrupole and Octupole Modes in Red Giants Observed by Kepler *

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Garcia, Rafael A.; Huber, Daniel

    2016-03-01

    An exciting new theoretical result shows that observing suppression of dipole oscillation modes in red giant stars can be used to detect strong magnetic fields in the stellar cores. A fundamental facet of the theory is that nearly all the mode energy leaking into the core is trapped by the magnetic greenhouse effect. This results in clear predictions for how the mode visibility changes as a star evolves up the red giant branch, and how that depends on stellar mass, spherical degree, and mode lifetime. Here, we investigate the validity of these predictions with a focus on the visibility of different spherical degrees. We find that mode suppression weakens for higher degree modes with a reduction in the quadrupole mode visibility of up to 49%, and no detectable suppression of octupole modes, in agreement with theory. We find evidence for the influence of increasing mode lifetimes on the visibilities along the red giant branch, in agreement with previous independent observations. These results support the theory that strong internal magnetic fields cause suppression of non-radial modes in red giants. We also find preliminary evidence that stars with suppressed dipole modes on average have slightly lower metallicity than normal stars.

  18. SEARCH FOR TWO-PHONON OCTUPOLE VIBRATIONAL BANDS IN 88, 89, 92, 93, 94, 96Sr AND 95, 96, 97, 98Zr

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.; Brewer, N. T.; Wang, E. H.; Luo, Y. X.; Zhu, S. J.

    2012-09-01

    Several new gamma transitions were identified in 94Sr, 93Sr, 92Sr, 96Zr and 97Zr from the spontaneous fission of 252Cf. Excited states in 88, 89, 92, 94, 96Sr and 95, 96, 97, 98Zr were reanalyzed and reorganized to propose the new two-phonon octupole vibrational states and bands. The spin and parity of 6+ are assigned to a 4034.5 keV state in 94Sr and 3576.4 keV state in 98Zr. These states are proposed as the two-phonon octupole vibrational states along with the 6+ states at 3483.4 keV in 96Zr, at 3786.0 keV in 92Sr and 3604.2 keV in 96Sr. The positive parity bands in 88, 94, 96Sr and 96, 98Zr are the first two-phonon octupole vibrational bands based on a 6+ state assigned in spherical nuclei. It is thought that in 94, 96Sr and 96, 98Zr a 3- octupole vibrational phonon is weakly coupled to an one-phonon octupole vibrational band to make the two-phonon octupole vibrational band. Also, the high spin states of odd-A95Zr and 97Zr are interpreted to be generated by the neutron 2d5/2 hole and neutron 1g7/2 particle, respectively, weakly coupled to one- and two-phonon octupole vibrational bands of 96Zr. The high spin states of odd-A87Sr are interpreted to be caused by the neutron 1g9/2 hole weakly coupled to 3- and 5- states of 88Sr. New one- and two-POV bands in 95, 97Zr and 87, 89Sr are proposed, for the first time, in the present work.

  19. Flight dynamics of a spinning projectile descending on a parachute

    SciTech Connect

    Benedetti, G.A.

    1989-02-01

    During the past twenty years Sandia National Laboratories and the US Army have vertically gun launched numerous 155mm and eight-inch diameter flight test projectiles. These projectiles are subsequently recovered using an on-board parachute recovery system which is attached to the forward case structure of the projectile. There have been at least five attempts to describe, through analytical and numerical simulations, the translational and rotational motions of a spinning projectile descending on a parachute. However, none of these investigations have correctly described the large nutational motion of the projectile since all of them overlooked the fundamental mechanism which causes these angular motions. Numerical simulations as well as a closed form analytical solution show conclusively that the Magnus moment is responsible for the large nutational motion of the projectile. That is, when the center of pressure for the Magnus force is aft of the center of mass for the projectile, the Magnus moment causes an unstable (or large) nutational motion which always tends to turn the spinning projectile upside down while it is descending on the parachute. Conversely, when the center of mass for the projectile is aft of the center of pressure for the Magnus force, the Magnus moment stabilizes the nutational motion tending to always point the base of the spinning projectile down. The results of this work are utilized to render projectile parachute recovery systems more reliable and to explain what initially may appear to be strange gyrodynamic behavior of a spinning projectile descending on a parachute. 14 refs., 20 figs.

  20. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  1. Forensic imaging of projectiles using cone-beam computed tomography.

    PubMed

    von See, Constantin; Bormann, Kai-Hendrik; Schumann, Paul; Goetz, Friedrich; Gellrich, Nils-Claudius; Rücker, Martin

    2009-09-10

    In patients with gunshot injuries, it is easy to detect a projectile within the body due to the high-density of the object, but artefacts make it difficult to obtain information about the deformation and the exact location of the projectile in surrounding tissues. Cone-beam computed tomography (CBCT) is a new radiological imaging modality that allows radio-opaque objects to be localised and assessed in three dimensions. The full potential of the use of CBCT in forensic medicine has not yet been explored. In this study, three different modern projectiles were fired into the heads of pig cadavers (n=6) under standardised conditions. Tissue destruction and the location of the projectiles were analysed separately using CBCT and multi-slice computed tomography (MDCT). The projectiles had the same kinetic energy but showed considerable differences in deformation behaviour. Within the study groups, tissue destruction was reproducible. CBCT is less severely affected by metallic artefacts than MDCT. Therefore CBCT is superior in visualising bone destruction in the immediate vicinity of the projectile and projectile deformation, whereas MDCT allows soft tissue to be evaluated in more detail. CBCT is an improved diagnostic tool for the evaluation of gunshot injuries. In particular, it is superior to MDCT in detecting structural hard-tissue damage in the immediate vicinity of high-density metal projectiles and in identifying the precise location of a projectile in the body.

  2. Continuous measurements of in-bore projectile velocity

    SciTech Connect

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.; Hickman, R.

    1988-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed. 12 refs., 7 figs.

  3. Approximate analysis of balloting motion of railgun projectiles. Technical report

    SciTech Connect

    Chu, S.H.

    1991-07-01

    This is the final of three reports dealing with the in-bore balloting motion of a projectile fired from an electromagnetic railgun. Knowledge of projectile in-bore motion is important to its design and the design of the railgun. It is a complicated problem since many parameters are involved and it is not easy to determine the interacting relationships between them. To make the problem easier to understand it was analyzed on several levels. Beginning from the basic simple model which computed only the axial motion, more complicated models were introduced in upper levels that included the more significant lateral forces and gun tube vibration effects. This report deals with the approximate analysis of balloting motion. This model considers the effects of the propulsion force, the friction force of the projectile package (projectile and armature), air resistance, gravity, the elastic forces, and the projectile/barrel clearance. To simplify the modeling, a plane motion configuration is assumed. Though the projectile is moving with a varying yaw angle, the axes of the barrel and the projectile package, and the projectile center of gravity are always considered in a plane containing the centerlines of the rails. Equations of motion are derived and solved. A sample computation is performed and the results plotted to give a clearer understanding of projectile in-bore motion.

  4. Work on Sabot-Projectiles and Supplements, 1942-1944

    DTIC Science & Technology

    1946-10-01

    Projectiles by C. L. Critchfield. NDRC Report A-233 (OSRD No. 2067), "Development of Subcaliber Projectiles for the Hispano- Suiza Gun" by C. L. Critchfield...Millar, "Development of Subcaliber Projectiles for the Hispano- Suiza Gun," NDRC Report A-233 (OSRD No. 2067). C 0 N F I D F N T I A L - 18 - however...jectiles for the Hisnano- Suiza Gun," by C. L. Critchfield snd J. -McG. Millnr. * Projectile Test Report AD-P99 Ordnance Research Center, A.P.G. Report on

  5. Penetration into limestone targets with ogive-nose steel projectiles

    SciTech Connect

    Frew, D.J.; Green, M.L.; Forrestal, M.J.; Hanchak, S.J.

    1996-12-01

    We conducted depth of penetration experiments into limestone targets with 3.0 caliber-radius-head, 4340 Rc 45 steel projectiles. Powder guns launched two projectiles with length-to-diameter ratios of ten to striking velocities between 0.4 and 1.5 km/s. Projectiles had diameters and masses of 12.7 mm, 0. 117 kg and 25.4 mm, 0.610 kg. Based on data sets with these two projectile scales, we proposed an empirical penetration equation that described the target by its density and an empirical strength constant determined from penetration depth versus striking velocity data.

  6. Microcraters formed in glass by low density projectiles

    NASA Technical Reports Server (NTRS)

    Mandeville, J.-C.; Vedder, J. F.

    1971-01-01

    Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene with masses between 0.7 and 62 picograms and velocities between 2 and 14 kilometers per second. The morphology of the craters depends on the velocity and angle of incidence of the projectiles. The transitions in morphology of the craters formed by polystyrene spheres occur at higher velocities than they do for more dense projectiles. For oblique impact, the craters are elongated and shallow with the spallation threshold occuring at higher velocity. For normal incidence, the total displaced mass of the target material per unit of projectile kinetic energy increases slowly with the energy.

  7. Projectile fragmentation wall for CHICSi detector

    NASA Astrophysics Data System (ADS)

    Budzanowski, A.; Czech, B.; Siwek, A.; Skwirczyńska, I.; Staszel, P.; CHIC Collaboration

    2002-04-01

    The Forward Wall Detector (FWD) is designed to identify projectile-like fragments from heavy-ion reactions at the CELSIUS storage ring in Uppsala, Sweden. FWD covers the polar angle from 3.9° to 11.7° with geometrical efficiency of 81%. The single-detection module can be either of phoswich type (10 mm fast plastic+80 mm CsI(Tl)) or Δ E- E telescope (750 μm Si+80 mm CsI(Tl)). It is expected to have charge identification up to Z=18 and mass resolution for H and He isotopes.

  8. Tailoring Laminates For Protection Against Projectiles

    NASA Technical Reports Server (NTRS)

    Gassner, John J.; Boyce, Joseph S.; Smirlock, Martin E.; Evans, David A.

    1992-01-01

    Fiber/matrix composite laminates developed to protect military land vehicles against projectiles and spacecraft against impacts by micrometeroids. Although types, sizes, and velocities of expected incident objects differ between terrestrial and outer-space cases, general protection problems and solutions exhibit some common features. Configurations of fibers and matrices optimized with respect to protection, bulk, and weight, to obtain shield that breaks rapidly moving incident object into harmless smaller, more-slowly-moving pieces, containing debris, vaporizes debris, and/or otherwise absorbs kinetic energy of object to prevent harm to vehicle and occupants.

  9. Fundamental Aerodynamic Investigations for Development of Arrow-Stabilized Projectiles

    NASA Technical Reports Server (NTRS)

    Kurzweg, Hermann

    1947-01-01

    The numerous patent applications on arrow-stabilized projectiles indicate that the idea of projectiles without spin is not new, but has appeared in various proposals throughout the last decades. As far as projectiles for subsonic speeds are concerned, suitable shapes have been developed for sometime, for example, numerous grenades. Most of the patent applications, though, are not practicable particularly for projectiles with supersonic speed. This is because the inventor usually does not have any knowledge of aerodynamic flow around the projectile nor any particular understanding of the practical solution. The lack of wind tunnels for the development of projectiles made it necessary to use firing tests for development. These are obviously extremely tedious or expensive and lead almost always to failures. The often expressed opinion that arrow-stabilized projectiles cannot fly supersonically can be traced to this condition. That this is not the case has been shown for the first time by Roechling on long projectiles with foldable fins. Since no aerodynamic investigations were made for the development of these projectiles, only tedious series of firing tests with systematic variation of the fins could lead to satisfactory results. These particular projectiles though have a disadvantage which lies in the nature cf foldable fins. They occasionally do not open uniformly in flight, thus causing unsymmetry in flow and greater scatter. The junctions of fins and body are very bad aerodynamically and increase the drag. It must be possible to develop high-performance arrow-stabilized projectiles based on the aerodynamic research conducted during the last few years at Peenemuende and new construction ideas. Thus the final shape, ready for operational use, could be developed in the wind tunnel without loss of expensive time in firing tests. The principle of arrow-stabilized performance has been applied to a large number of caliburs which were stabilized by various means Most

  10. Evidence for octupole vibration in the triaxial superdeformed well of {sup 164}Lu.

    SciTech Connect

    Bringel, P.; Engelhardt, C.; Hubel, H.; NeuBer-Neffgen, A.; Odegard, S. W.; Hagemann, G. B.; Hansen, C. R.; Herskind, B.; Sletten, G.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Seweryniak, D.; Ma, W. C.; Roux, D. G.; Chowdhury, P.; Physics; Univ. Bonn; Univ. of Oslo; Niels Bohr Inst.; Mississippi State Univ.; Univ. of Massachusetts

    2007-01-01

    High-spin states in {sup 164}Lu were populated in the {sup 121}Sb({sup 48}Ca,5n) reaction at 215 MeV and {gamma}-ray coincidences were measured with the Gammasphere spectrometer. Through this experiment the eight known triaxial superdeformed bands in {sup 164}Lu could be confirmed. Some of these bands were extended to higher as well as to lower spins. Evidence is reported for the first time for weak {delta}I=1,E1 transitions linking TSD3 and TSD1. This observation may imply coupling to octupole vibrational degrees of freedom. The decay mechanism is different from the one observed in the neighboring even-N isotopes, which exhibit wobbling excitations built on the {pi}i{sub 13/2} structure with E2(M1),{delta}I=1 interband decay. An additional sequence decaying at high spin into TSD1 was observed up to I{sup {pi}}=(50{sup -}). This band has a constant dynamic moment of inertia of {approx}70({Dirac_h}/2{pi}){sup 2}MeV{sup -1} and an alignment that is {approx}2({Dirac_h}/2{pi}) larger than that found for TSD1. A revision of the assumed spin-parity-assignment of TSD2 is based on the observed decay-out to normal-deformed structures. The parity and signature quantum numbers of TSD2 are now firmly assigned as ({pi},{alpha})=(+,0), in disagreement with the former assignment of ({pi},{alpha})=(-,1), which was based on the assumption that TSD2 is the signature partner of TSD1. TSD1 and TSD2 show an alignment gain at ({Dirac_h}/2{pi}){omega}{approx}0.67 and 0.60 MeV, respectively. In TSD1 the involvement of the j{sub 15/2} neutron orbital is suggested to be responsible for the high-frequency crossing.

  11. Evidence for octupole vibration in the triaxial superdeformed well of {sup 164}Lu

    SciTech Connect

    Bringel, P.; Engelhardt, C.; Huebel, H.; Neusser-Neffgen, A.; Odega ring rd, S. W.; Hagemann, G. B.; Hansen, C. R.; Herskind, B.; Sletten, G.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Seweryniak, D.; Ma, W. C.; Roux, D. G.; Chowdhury, P.

    2007-04-15

    High-spin states in {sup 164}Lu were populated in the {sup 121}Sb({sup 48}Ca,5n) reaction at 215 MeV and {gamma}-ray coincidences were measured with the Gammasphere spectrometer. Through this experiment the eight known triaxial superdeformed bands in {sup 164}Lu could be confirmed. Some of these bands were extended to higher as well as to lower spins. Evidence is reported for the first time for weak {delta}I=1,E1 transitions linking TSD3 and TSD1. This observation may imply coupling to octupole vibrational degrees of freedom. The decay mechanism is different from the one observed in the neighboring even-N isotopes, which exhibit wobbling excitations built on the {pi}i{sub 13/2} structure with E2(M1),{delta}I=1 interband decay. An additional sequence decaying at high spin into TSD1 was observed up to I{sup {pi}}=(50{sup -}). This band has a constant dynamic moment of inertia of {approx}70({Dirac_h}/2{pi}){sup 2}MeV{sup -1} and an alignment that is {approx}2({Dirac_h}/2{pi}) larger than that found for TSD1. A revision of the assumed spin-parity-assignment of TSD2 is based on the observed decay-out to normal-deformed structures. The parity and signature quantum numbers of TSD2 are now firmly assigned as ({pi},{alpha})=(+,0), in disagreement with the former assignment of ({pi},{alpha})=(-,1), which was based on the assumption that TSD2 is the signature partner of TSD1. TSD1 and TSD2 show an alignment gain at ({Dirac_h}/2{pi}){omega}{approx}0.67 and 0.60 MeV, respectively. In TSD1 the involvement of the j{sub 15/2} neutron orbital is suggested to be responsible for the high-frequency crossing.

  12. Flight Performance of a Man Portable Guided Projectile Concept

    DTIC Science & Technology

    2014-02-01

    2 Figure 2. Snapshots (viewed from base in earth -fixed reference frame) over one revolution of...20 Figure 20. Earth and body-fixed coordinate systems and Euler angles. ........................................24...two-actuator variant, viewed from the base of the projectile in an Earth - fixed frame, is illustrated. The projectile rotates in the clockwise

  13. Microcraters formed in glass by projectiles of various densities

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.; Mandeville, J.-C.

    1974-01-01

    An experiment was conducted investigating the effect of projectile density on the structure and size of craters in soda lime glass and fused quartz. The projectiles were spheres of polystyrene-divinylbenzene (PS-DVB), aluminum, and iron with velocities between 0.5 and 15 km/sec and diameters between 0.4 and 5 microns. The projectile densities spanned the range expected for primary and secondary particles of micrometer size at the lunar surface, and the velocities spanned the lower range of micrometeoroid velocities and the upper range of secondary projectile velocities. There are changes in crater morphology as the impact velocity increases, and the transitions occur at lower velocities for the projectiles of higher density. The sequence of morphological features of the craters found for PS-DVB impacting soda lime glass for increasing impact velocity, described in a previous work (Mandeville and Vedder, 1971), also occurs in fused quartz and in both targets with the more dense aluminum and iron projectiles. Each transition in morphology occurs at impact velocities generating a certain pressure in the target. High density projectiles require a lower velocity than low-density projectiles to generate a given shock pressure.

  14. Corrected Launch Speed for a Projectile Motion Laboratory

    ERIC Educational Resources Information Center

    Sanders, Justin M.; Boleman, Michael W.

    2013-01-01

    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…

  15. Penetration of projectiles into granular targets

    NASA Astrophysics Data System (ADS)

    Ruiz-Suárez, J. C.

    2013-06-01

    Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point.

  16. Locating the source of projectile fluid droplets

    NASA Astrophysics Data System (ADS)

    Varney, Christopher R.; Gittes, Fred

    2011-08-01

    The ill-posed projectile problem of finding the source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime-scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. However, the lack of velocity information makes finding the height of the origin from the impact position and angle of individual drops not possible. From aggregate statistics of the spatter and basic equations of projectile motion, we introduce a reciprocal correlation plot that is effective when the polar launch angle is concentrated in a narrow range. The vertical coordinate depends on the orientation of the spattered surface and equals the tangent of the impact angle for a level surface. When the horizontal plot coordinate is twice the reciprocal of the impact distance, we can infer the source height as the slope of the data points in the reciprocal correlation plot. If the distribution of launch angles is not narrow, failure of the method is evident in the lack of linear correlation. We perform a number of experimental trials, as well as numerical calculations and show that the height estimate is relatively insensitive to aerodynamic drag. Besides its possible relevance for crime investigation, reciprocal-plot analysis of spatter may find application to volcanism and other topics and is most immediately applicable for undergraduate science and engineering students in the context of crime-scene analysis.

  17. Powder metallurgy process for manufacturing core projectile

    NASA Astrophysics Data System (ADS)

    Akbar, Taufik; Setyowati, Vuri Ayu; Widyastuti

    2013-09-01

    Bullets are part of the defense equipment which the development is very rapid. There are a variety of forms but the bullet Lead is a metal that has always been used for applications projectiles. Lead core constituent materials are combined with antimony. In this research will be conducted by making the material for the core projectile with Tin Lead. The addition of Tin will increase the stiffness of Lead which is soft in nature. The Lead Tin composition variation was given in 10% weight of Sn. The manufacturing process using powder metallurgy using temperature and holding time variations of sintering at 100, 150, and 200°C for 1,2, and 3 hours. XRD samples will be tested to determine the form and phase morphology was observed using SEM-EDX. These results revealed that Pb-10%wtSn Composite which is sintered in temperature 200°C for 3 hours has the greatest density, 10.695 g/cm3 as well as the smallest porosity, 2.2%. In agreement with theoretical analysis that increasing higher temperature and longer holding time give decrease in porosity level due to activation energy which further promotes grain growth. Moreover, there is no intermetallic phase formation as well as no oxide found on composites.

  18. Operation of polycarbonate projectiles in the ram accelerator

    NASA Astrophysics Data System (ADS)

    Elder, Timothy

    The ram accelerator is a hypervelocity launcher with direct space launch applications in which a sub-caliber projectile, analogous to the center-body of a ramjet engine, flies through fuel and oxidizer that have been premixed in a tube. Shock interactions in the tube ignite the propellant upon entrance of the projectile and the combustion travels with it, creating thrust on the projectile by stabilizing a high pressure region of gas behind it. Conventional ram accelerator projectiles consist of aluminum, magnesium, or titanium nosecones and bodies. An experimental program has been undertaken to determine the performance of polycarbonate projectiles in ram accelerator operation. Experimentation using polycarbonate projectiles has been divided into two series: determining the lower limit for starting velocity (i.e., less than 1100 m/s) and investigating the upper velocity limit. To investigate the influence of body length and starting velocity, a newly developed "combustion gun" was used to launch projectiles to their initial velocities. The combustion gun uses 3-6 m of ram accelerator test section as a breech and 4-6 m of the ram accelerator test section as a launch tube. A fuel-oxidizer mix is combusted in the breech using a spark plug or electric match and bursts a diaphragm, accelerating the ram projectile to its entrance velocity. The combustion gun can be operated at modest fill pressures (20 bar) but can only launch to relatively low velocities (approximately 1000 m/s) without destroying the projectile and obturator upon launch. Projectiles were successfully started at entrance velocities as low as 810 m/s and projectile body lengths as long as 91 mm were used. The tests investigating the upper Mach number limits of polycarbonate projectiles used the conventional single-stage light-gas gun because of its ability to reach higher velocities with a lower acceleration launch. It was determined that polycarbonate projectiles have an upper velocity limit in the

  19. 34. mu. s isomer at high spin in sup 212 Fr: Evidence for a many-particle octupole coupled state

    SciTech Connect

    Byrne, A.P.; Dracoulis, G.D.; Schiffer, K.J.; Davidson, P.M.; Kibedi, T.; Fabricius, B.; Baxter, A.M.; Stuchbery, A.E. Australian National University, G.P.O. Box 4, Canberra, Australian Capital Territory )

    1990-07-01

    A very high spin isomeric state with {tau}{sub {ital m}}=34(3) {mu}s has been observed at an excitation energy of 8.5 MeV in {sup 212}Fr. The experimental evidence favors an {ital E}3 assignment, with a very large {ital E}3 transition strength, {ital B}({ital E}3)=100(12){times}10{sup 3} {ital e}{sup 2}fm{sup 6}, to one of the {gamma} rays de-exciting the isomer. The observed properties are in very good agreement with the characteristics of a 34{sup +} state predicted by the multiparticle octupole vibration model.

  20. Relative spins and excitation energies of superdeformed bands in {sup 190}Hg: Further evidence for octupole vibration

    SciTech Connect

    Crowell, B.; Carpenter, M.; Janssens, R.; Blumenthal, D.; Timar, J.; Wilson, A.; Sharpey-Schafer, J. |; Nakatsukasa, T.; Ahmad, I.; Astier, A.; Azaiez, F.; du Croux, L.; Gall, B.; Hannachi, F.; Khoo, T.; Korichi, A.; Lauritsen, T.; Lopez-Martens, A.

    1995-04-01

    An experiment using the Eurogam phase II {gamma}-ray spectrometer confirms the existence of an excited superdeformed (SD) band in {sup 190}Hg and its very unusual decay into the lowest SD band over 3--4 transitions. The energies of the transitions linking the two SD bands have been firmly established, and their angular distributions are consistent with a dipole character. Comparisons with calculations using random-phase approximation indicate that the excited SD band can be interpreted as an octupole-vibrational structure.

  1. A Methodology for the Development of Direct Fired Flight Projectiles

    NASA Astrophysics Data System (ADS)

    Farina, Anthony P.

    This thesis addresses shortcomings in flight projectile design by describing the creation of an improved product development methodology for direct fired flight projectiles. At the outset, platform based flight projectile design and the requirements for direct fired flight projectiles are considered. The traditional methods and tools used in flight projectile design and development are presented and the improved methodology for the design and development of direct fired flight projectiles is introduced. This methodology improves upon the traditional design methodology for flight projectiles by addressing the difference in fidelity levels of the applicable design tools, classifying designs and components by families and their characteristics, and applying the tools of IPD in a three phased approach for the low, medium and high fidelity models of each discipline to create an efficient design methodology for flight projectiles. This includes an evaluation of the relationship between the number of alternatives at each fidelity level and the time to evaluate each configuration. Early on in the design process, there may be many configurations under evaluation, therefore it will be advantageous to use faster running low fidelity models to reduce the number to only those in the feasible design space, and to use medium fidelity models populated with data from the low fidelity codes as the field narrows, and to use the more time consuming and computationally expensive models with the fewer final design candidates. This new design methodology improves upon the traditional development methods by the use of models of appropriate fidelity levels at each stage of development, and the design process is also improved by proper and timely integration between predictive codes of varying fidelity levels. The utilization of such a highly desirable methodology enables the efficient design of flight projectiles that meets the customer needs of increased levels of performance against new

  2. Parity splitting and E1/E2 branching in the alternating parity band of {sup 240}Pu from two-center octupole wave functions using supersymmetric quantum mechanics

    SciTech Connect

    Jolos, R. V.; Brentano, P. von

    2011-08-15

    An interpretation is suggested of the recently published experimental data on the alternating parity bands in {sup 240}Pu. The interpretation is based on the assumption that the main role in the description of the properties of the alternating parity bands plays the octupole mode which preserves the axial symmetry. The mathematical technique of the supersymmetric quantum mechanics is used for the realization of the model with the two-center octupole wave functions. A good description of the parity splitting and of the ratio of the dipole and quadrupole transitional moments is obtained for the first two bands.

  3. Turbulent Flow Past Projectiles: A Computational Investigation

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Carlucci, Donald; Buckley, Liam; Carlucci, Pasquale; Thangam, Siva

    2010-11-01

    Projectiles with free spinning bases are often used for smart munitions to provide effective control, stability and terminal guidance. Computational investigations are performed for flow past cylinders aligned along their axis where a base freely spins while attached to and separated at various distances from a non-spinning fore-body. The energy spectrum is modified to incorporate the effects of swirl and rotation using a parametric characterization of the model coefficients. An efficient finite-volume algorithm is used to solve the time-averaged equations of motion and energy along with the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation. Computations are performed for both rigid cylinders as well as cylinders with free-spinning bases. Experimental data for a range of spin rates and free stream flow conditions obtained from subsonic wind tunnel with sting-mounted spinning cylinders is used for validating the computational findings.

  4. [Traumatology due to ancient lead missile projectiles].

    PubMed

    Moog, Ferdinand Peter

    2002-01-01

    The lead missiles of slingers in antiquity, known as glans or molybdis, are widely considered to have been very dangerous projectiles of the ancient armies. Ballistic investigations and results of experimental archaeology seem to confirm this. However, the findings of medical history concerning these missiles disagree with this view. In ancient medical texts these missiles are only mentioned sporadically, as in Celsus or Paul of Aigina, and wounds caused by them are merely discussed incidentally. There is so far no evidence at all on them in palaeopathology. It is undisputed however that in individual cases these missiles were able to cause serious injuries, especially when they hit unprotected parts of the body. Accordingly, their main effect seems to have consisted in the intimidation of the enemy.

  5. Projectile impact Hugoniot parameters for selected materials

    SciTech Connect

    Vigil, M G

    1989-08-01

    The Rankine Hugoniot equation relating the conversion of momentum across a shock front and the empirical relationship for shock velocity as a function of particle velocity are used to calculate the impact pressures for selected materials. The shock velocity and particle velocities are then calculated as a function of impact pressures. The calculated data are graphically presented sets of three figures for the selected materials as follows: Impact pressure as a function of impact velocity, impact pressure as a function of particle velocity, impact pressure as a function of shock velocity. Given the projectile impact velocity and material Hugoniot information, this graphical representation of the data allows for a fast approximation of the impact pressure particle velocity, and shock velocity in the target material. 9 refs., 1 fig., 3 tabs.

  6. Projectile transverse motion and stability in electromagnetic induction launchers

    SciTech Connect

    Shokair, I.R.

    1993-08-01

    The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Transverse forces and torques due to energized coils are derived for displaced or tilted projectile elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot code and numerical solutions for the transverse motion are obtained. For the 20 meter navy launcher parameters we find that stability is achieved with a flyway spring constant of k {approx} 1{times} 10{sup 8} N/m{sup 2}. For k {approx} 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of I mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the Projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars.

  7. Trajectory Control of Small Rotating Projectiles by Laser Sparks

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard

    2015-09-01

    The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.

  8. Experimental and numerical study on fragmentation of steel projectiles

    NASA Astrophysics Data System (ADS)

    Råkvaag, K. G.; Børvik, T.; Hopperstad, O. S.; Westermann, I.

    2012-08-01

    A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.

  9. Corrected Launch Speed for a Projectile Motion Laboratory

    NASA Astrophysics Data System (ADS)

    Sanders, Justin M.; Boleman, Michael W.

    2013-09-01

    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range calculated using the speed as determined by the photogates. In this paper, we will discuss the origin of this systematic error and derive a simple formula to correct it. In particular, we find that the launch speed given by our instrument is significantly different from the actual launch speed of our projectile.

  10. Uniform Projectile Motion: Dynamics, Symmetries and Conservation Laws

    NASA Astrophysics Data System (ADS)

    Swaczyna, Martin; Volný, Petr

    2014-04-01

    A geometric nonholonomic theory is applied to the problem of uniform projectile motion, i.e. motion of a projectile with constant instantaneous speed. The problem is investigated from the kinematic and dynamic point of view. Corresponding kinematic parameters of classical and uniform projectile motion are compared, nonholonomic Hamilton equations are derived and their solvability is discussed. Symmetries and conservation laws of the considered system are studied, the nonholonomic formulation of a conservation law of generalized energy is found as one of the corresponding Noetherian first integrals of this nonholonomic system.

  11. The projectile-wall interface in rail launchers

    NASA Astrophysics Data System (ADS)

    Thio, Y. C.; Huerta, M. A.; Boynton, G. C.; Tidman, D. A.; Wang, S. Y.; Winsor, N. K.

    1993-01-01

    At sufficiently high velocity, an energetic gaseous interface is formed between the projectile and the gun wall. We analyze the flow in this interface in the regime of moderately high velocity. The effect of this gaseous interface is to push the gun wall radially outward and shrink the projectile radially inward. Our studies show that significant plasma blow-by can be expected in most experimental railguns in which organic polymers are used as insulators. Since plasma leakage may result in the reduction of propulsion pressure and possibly induce the separation of the primary, the results point to the importance of having sufficiently stiff barrels and structurally stiff but 'ballistically compliant' projectile designs.

  12. Microcraters formed in glass by low density projectiles

    NASA Technical Reports Server (NTRS)

    Mandeville, J.-C.; Vedder, J. F.

    1971-01-01

    Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene (p = 1.06 g/cu cm) with masses between 0.7 and 62 picograms and velocities between 2 and 14 km/s. The morphology of the craters depended on the velocity and the angle of incidence of the projectiles and these are discussed in detail. It was found that the transitions in morphology of the craters formed by polystyrene spheres occurred at higher velocities than they did for more dense projectiles.

  13. Dynamic impact analysis of the M1 105mm projectile

    SciTech Connect

    Walls, J.C.; Webb, D.S.

    1993-06-01

    Evaluation of the effects of [open quotes]rough-handling[close quotes]-induced stresses in the nose region of a 105mm artillery projectile was performed to determine if these stresses could have contributed to the premature explosion of a projectile during a Desert Shield training mission of the 101st Army Airborne in Saudi Arabia. The rough-handling evaluations were simulated by dynamic impact analysis. It was concluded that the combined residual stress and dynamic impact-induced stress would not be of sufficient magnitude to cause cracking of the projectile in the nose region.

  14. Dynamic impact analysis of the M1 105mm projectile

    SciTech Connect

    Walls, J.C.; Webb, D.S.

    1993-06-01

    Evaluation of the effects of {open_quotes}rough-handling{close_quotes}-induced stresses in the nose region of a 105mm artillery projectile was performed to determine if these stresses could have contributed to the premature explosion of a projectile during a Desert Shield training mission of the 101st Army Airborne in Saudi Arabia. The rough-handling evaluations were simulated by dynamic impact analysis. It was concluded that the combined residual stress and dynamic impact-induced stress would not be of sufficient magnitude to cause cracking of the projectile in the nose region.

  15. Guiding supersonic projectiles using optically generated air density channels

    NASA Astrophysics Data System (ADS)

    Johnson, Luke A.; Sprangle, Phillip

    2015-09-01

    We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.

  16. Oblique impact: Projectile richochet, concomitant ejecta and momentum transfer

    NASA Technical Reports Server (NTRS)

    Gault, Donald E.; Schultz, Peter H.

    1987-01-01

    Experimental studies of oblique impact indicate that projectile richochet occurs for trajectory angles less than 30 deg and that the richocheted projectile, accompanied by some target material, are ejected at velocities that are a large fraction of the impact velocity. Because the probability of occurrence of oblique impact less than 30 deg on a planetary body is about one out of every four impact events, oblique impacts would seem to be a potential mechanism to provide a source of meteorites from even the largest atmosphere-free planetary bodies. Because the amount of richocheted target material cannot be determined from previous results, additional experiments in the Ames Vertical Gun laboratory were undertaken toward that purpose using pendulums; one to measure momentum of the richocheted projectile and concomitant target ejecta, and a second to measure the momentum transferred from projectile to target. These experiments are briefly discussed.

  17. 22. Emplacement no. 1 showing well for projectile hoist at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Emplacement no. 1 showing well for projectile hoist at right. at left is passage toward the shot gallery. View looking northwest - Fort Wadsworth Battery Romeyn B. Ayers, South side of Ayers Road, Staten Island, Rosebank, Richmond County, NY

  18. 35. BUILDING NO. 276, MAJOR CALIBER PROJECTILE LOADING (ORIGINALLY NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. BUILDING NO. 276, MAJOR CALIBER PROJECTILE LOADING (ORIGINALLY NO. 6 POWDER MAGAZINE AND MELT LOADING), GENERAL VIEW, SHOWING SOUTHWEST ELEVATION. - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  19. 36. BUILDING NO. 276, MAJOR CALIBER PROJECTILE LOADING (ORIGINALLY NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. BUILDING NO. 276, MAJOR CALIBER PROJECTILE LOADING (ORIGINALLY NO. 6 POWDER MAGAZINE AND MELT LOADING), GENERAL VIEW SHOWING NORTHEAST WALL. - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  20. 32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER SLAB AND UNDERSIDE OF LAUNCHER BRIDGE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  1. 34. BUILDING NO. 276, MAJOR CALIBER PROJECTILE LOADING (ORIGINALLY NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BUILDING NO. 276, MAJOR CALIBER PROJECTILE LOADING (ORIGINALLY NO. 6 POWDER MAGAZINE AND MELT LOADING), LOOKING SOUTH ALONG EAST SIDE OF BUILDING. - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  2. Projectile-power-compressed magnetic-field pulse generator

    SciTech Connect

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-03-17

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure.

  3. Theoretical Design and Modeling of an Infantry Railgun Projectile

    DTIC Science & Technology

    2005-12-01

    to slender body theory [28]. My only aerodynamic wings in both 38 design projectiles are triangular tail fins. These fins are not banked...slender body theory and linear wing plus Newtonian impact theory in the limit of the supersonic flow. Throughout the aerodynamic analysis, I had to make...projectiles in this thesis have characteristics necessary to defeat modern battlefield targets. The primary ballistic objective for this

  4. Infinite penetration of a projectile into a granular medium.

    PubMed

    Pacheco-Vázquez, F; Caballero-Robledo, G A; Solano-Altamirano, J M; Altshuler, E; Batista-Leyva, A J; Ruiz-Suárez, J C

    2011-05-27

    An object falling in a fluid reaches a terminal velocity when the drag force and its weight are balanced. Contrastingly, an object impacting into a granular medium rapidly dissipates all its energy and comes to rest always at a shallow depth. Here we study, experimentally and theoretically, the penetration dynamics of a projectile in a very long silo filled with expanded polystyrene particles. We discovered that, above a critical mass, the projectile reaches a terminal velocity and, therefore, an endless penetration.

  5. a Study of Ricochet Phenomenon for Inclined Impact of Projectile

    NASA Astrophysics Data System (ADS)

    Jo, Jong-Hyun; Lee, Young-Shin

    In this study, the numerical simulation using AUTODYN-3D program was investigated for trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate(PC) plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the PC plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The numerical analyses were used to study the effect of the angle of inclination on the trajectory and kinetic energy of the projectile. The dynamic deformation behaviors tests of PC were compared with numerical simulation results which can be used for predictive purpose. Ricochet phenomenon for angles of inclination of 0° ≤ θ ≤ 20° in the analysis. The projectile perforated the plate for θ > 30°, thus defined a failure envelope for numerical configuration. The numerical analyses was used to study the effect under the projectile impact velocity on the depth of penetration(DOP).

  6. Perforation of woven fabric by spherical projectiles

    SciTech Connect

    Shim, V.P.W.; Tan, V.B.C.; Tay, T.E.

    1995-12-31

    Rectangular specimens of Twaron{reg_sign} fabric, clamped on two opposite sides, are subjected to impact perforation by 9.5 mm diameter spherical steel projectiles at speeds ranging from 140 m/s to 420 m/s. This plain woven fabric, comprising PPTA (poly-paraphenylene terepthalamide) fibers, is commonly employed in flexible an-nor applications. Its perforation response is examined in terms of residual velocity, energy absorbed and resulting deformation patterns. The existence of a critical or transition impact velocity, beyond which there is a significant reduction in energy absorbed by perforation, is observed. Differences in creasing and deformation induced in specimens are also demarcated by this transition impact velocity. Effects of difference in boundary conditions (clamped and free) on yarn breakage are also noted. A numerical model, based on an initially orthogonal network of pin-jointed bars interconnected at nodes, is formulated to simulate the fabric. Fiber yam mechanical properties are represented via a three-element spring-dashpot model which encapsulates viscoelastic behavior and fiber failure. Numerical results exhibit good correlation with experimental observations in terms of prediction of threshold perforation velocity, energy absorbed, occurrence of a transition critical velocity and fabric deformation characteristics.

  7. Reflection Asymmetric Shapes in the Neutron-Rich 140,143Ba Isotopes

    NASA Astrophysics Data System (ADS)

    Zhu Sheng-jiang (S, J. Zhu; Wang, Mu-ge; J, H. Hamilton; A, V. Ramayya; B, R. S. Babu; W, C. Ma; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; T, N. Ginter; J, Komicki; J, D. Cole; R, Aryaeinejad; Y, K. Dardenne; M, W. Drigert; J, O. Rasmussen; Ts, Yu Oganessian; M, A. Stoyer; S, Y. Chu; K, E. Gregorich; M, F. Mohar; S, G. Prussin; I, Y. Lee; N, R. Johnson; F, K. McGowan

    1997-08-01

    Level schemes for the neutron-rich 140,143Ba nuclei have been determined by study of prompt γ-rays in spontaneous fission of 252Cf. The level pattern and enhanced E1 transitions between π = + and π = - bands show reflection asymmetric shapes with simplex quantum number s = +1 in 140Ba and s = ±i in 143Ba, respectively. The octupole deformation stability with spin variation has been discussed.

  8. First observation of excited states in {sup 137}Te and the extent of octupole instability in the lanthanides

    SciTech Connect

    Urban, W.; Korgul, A.; Rzaca-Urban, T.; Schulz, N.; Bentaleb, M.; Lubkiewicz, E.; Durell, J. L.; Leddy, M. J.; Jones, M. A.; Phillips, W. R.

    2000-04-01

    Excited states in {sup 137}Te, populated in spontaneous fission of {sup 248}Cm, were studied by means of prompt-{gamma} spectroscopy, using the EUROGAM2 multidetector array. This is the first observation of excited states in {sup 137}Te. The yrast excitations of {sup 137}Te are due to the three valence neutrons, occupying the {nu}f{sub 7/2} and {nu}h{sub 9/2} orbitals, similarly as observed in its heavier N=85 isotones. Systematic comparison of excited levels in the N=85 isotones shows inconsistencies in spin and parity assignments in {sup 139}Xe and {sup 141}Ba nuclei. The new data for {sup 137}Te do not confirm earlier suggestions that octupole correlations increase in the N=85 isotones, close to the Z=50 closed shell. (c) 2000 The American Physical Society.

  9. gamma-ray spectroscopic study of calcium-48,49 and scandium-50 focusing on low lying octupole vibration excitations

    NASA Astrophysics Data System (ADS)

    McPherson, David M.

    An inverse kinematic proton scattering experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) using the GRETINA-S800 detector system in conjunction with the Ursinus College liquid hydrogen target. gamma-ray yields from the experiment were determined using geant4 simulations, generating state population cross sections. These cross sections were used to extract the delta_3 deformation length for the low-lying octupole vibration excitations in Ca-48,49 using the coupled channels analysis code fresco. Particle-core coupling in Ca-49 was studied in comparison to Ca-48 through determination of the neutron and proton deformation lengths. The total inverse kinematic proton scattering deformation lengths were evaluated for the low-lying octupole vibration excitations in Ca-48,49 to be delta_3(Ca-48, 3. -_1) = 1.0(2)fm,delta_3(Ca-49, 9/2. +_1) = 1.2(1)fm, delta_3 (Ca-49, 9/2. +_1) = 1.5(2)fm, delta_3(Ca-49,5/2. +_1) = 1.1(1)fm. Proton and neutron deformation lengths for two of theseoctupole states were also determined to be delta_p(Ca-48, 3. -_1) = 0.9(1)fm,delta_p (Ca-49, 9/2. +_1) = 1.0(1)fm, delta_n(Ca-48, 3. -_1) = 1.1(3)fm, anddelta_n(Ca-49, 9/2. +_1) = 1.3(3)fm. Additionally, the ratios of the neutronto proton transition matrix elements were also determined for these two states to be M_n/M_p(Ca-48, 3. -_1) = 1.7(6) and M_n/M_p(Ca-49, 9/2. +_1) = 2.0(5).Statistically, the derived values for these two nuclei are nearly identical.

  10. Speciation of sodium nitrate and sodium nitrite using kiloelectronvolt energy atomic and polyatomic and megaelectronvolt energy atomic projectiles with secondary ion mass spectrometry

    PubMed

    Van Stipdonk MJ; Justes; Force; Schweikert

    2000-06-01

    The negative-ion mass spectra produced by kiloelectronvolt energy (CsI)nCs+ (n = 0-2) and megaelectronvolt energy 252Cf fission fragment projectile impacts on NaNO3 and NaNO2 were collected and compared. The mass spectra generated by impacts of the kiloelectronvolt polyatomic primary ions on NaNO3 were markedly different from those derived from the fission fragment impacts, featuring higher relative intensities of nitrate (NO3-) specific secondary ions (those that reflect the sample stoichiometry). The most prominent secondary ion (SI) peaks produced from NaNO3 by the kiloelectronvolt energy projectiles were NO3- and Na(NO3)2-, both of which relate directly back to the chemical composition of the staring material. Likewise, the most prominent peaks produced by the kiloelectronvolt energy polyatomic projectile impacts on NaNO2 were NO2- and Na(NO2)2-. The fission fragment projectiles produced SI spectra from NaNO3 that were dominated by signals characteristic more of NaNO2, indicating that the megaelectronvolt energy ions induce considerable degradation of the nitrate solid. In addition, the fission fragment projectile produced relative negative SI intensity distributions that are remarkably similar to those reported in earlier studies of the use of laser desorption to produce SI signals from NaNO3. Of the projectiles examined in this study, the 20 keV (CsI)Cs+ projectile generated negative-ion mass spectra that best differentiated NaNO3 and NaNO2, primarily by producing a base peak in the NaNO3 spectrum that was unambiguously representative of the original sample stoichiometry.

  11. Projectile and rail launcher design analysis for electromagnetic propulsion to velocities exceeding 10 km/s

    SciTech Connect

    Buckingham, A.C.

    1981-02-24

    Hypersonic projectile launch was achieved using thrust exerted by an expanding electromagnetic field acting on the projectile base. Previous designs were confined to simple parallel-opposing flat rails. The rails carried the induction current used to launch rectangular projectiles. The projectiles weighed up to several grams and were launched at nearly 10 km/s. Here, a revised design for the launcher and projectiles using a more conventional cylindrical bore is described. Projectile spin-stabilization was considered together with the associated added-stress loads to projectile and launcher. In addition, both the design of the projectile configuration and materials capable of withstanding earth orbital, earth- and solar-system-escape launch loads, aerodynamic loads, and ablation and erosion penalties were studied. Projectile masses of ten to several hundred kilograms and launch speeds from 20 to 50 km/s are included in the analysis and discussion.

  12. Experimental study on oblique water entry of projectiles

    NASA Astrophysics Data System (ADS)

    Zhao, Chenggong; Wang, Cong; Wei, Yingjie; Zhang, Xiaoshi; Sun, Tiezhi

    2016-10-01

    An experimental study of oblique water entry of projectiles with different noses has been conducted using high-speed photography technology. The images of the initial water entry impact, cavity evolution, and the closure and shedding of vortices of cavity are presented in the paper. The results reveal that for high-speed oblique water entry (the initial impact velocity >50 m/s), the cavity attached to the projectile is symmetrical and free from the influence of gravity. The shedding of the water-vapor-air mixture in the tail of the cavity produces vortices which disappear in the rear of the projectile trajectory. Particular attention is given to the velocity attenuation of the projectile after water entry. The results show that there is a transition point at the time corresponding to the surface seal of the cavity during the velocity attenuation after oblique water entry, and the rates of velocity attenuation are different before and after this transition point. Additionally, the chronophotography of the cavity evolution shows that the time when the surface seal of the cavity occurs decreases with the increase of the initial impact velocity of the projectile.

  13. Injury Risk Assessment of Non-Lethal Projectile Head Impacts

    PubMed Central

    Oukara, Amar; Nsiampa, Nestor; Robbe, Cyril; Papy, Alexandre

    2014-01-01

    Kinetic energy non-lethal projectiles are used to impart sufficient effect onto a person in order to deter uncivil or hazardous behavior with a low probability of permanent injury. Since their first use, real cases indicate that the injuries inflicted by such projectiles may be irreversible and sometimes lead to death, especially for the head impacts. Given the high velocities and the low masses involved in such impacts, the assessment approaches proposed in automotive crash tests and sports may not be appropriate. Therefore, there is a need of a specific approach to assess the lethality of these projectiles. In this framework, some recent research data referred in this article as “force wall approach” suggest the use of three lesional thresholds (unconsciousness, meningeal damages and bone damages) that depend on the intracranial pressure. Three corresponding critical impact forces are determined for a reference projectile. Based on the principle that equal rigid wall maximal impact forces will produce equal damage on the head, these limits can be determined for any other projectile. In order to validate the consistence of this innovative method, it is necessary to compare the results with other existing assessment methods. This paper proposes a comparison between the “force wall approach” and two different head models. The first one is a numerical model (Strasbourg University Finite Element Head Model-SUFEHM) from Strasbourg University; the second one is a mechanical surrogate (Ballistics Load Sensing Headform-BLSH) from Biokinetics. PMID:25400712

  14. Projectile Remnants in Central Peaks of Lunar Impact Craters

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Yue, Z.; Minton, D.; Melosh, H. J.; Di, K.; Hu, W.; Liu, Y.

    2012-12-01

    It is generally assumed that during the formation of a large impact crater the projectile is largely melted or vaporized and that only traces remain in the final crater. However, using the finite difference hydrocode iSALE, we show that at impact velocities below about 12 km/sec the projectile, while crushed and strongly deformed, may largely survive the impact. In small craters the projectile is nevertheless widely dispersed across the crater floor. But in complex craters much of the projectile debris is swept back into the central peak area by the collapse flow. Furthermore, on the Moon approximately 30% of asteroid impacts occur at velocities less than 12 km/sec, so that the central peaks of many lunar craters should retain a recognizable signature of the projectile. This observation may explain recent observations of exotic Mg-rich spinels and olivine in the central peaks of craters too small to have excavated the deep crust or mantle of the Moon. Similar conclusions apply to central peaks of complex craters on Mars and Rheasilvia crater on Vesta.

  15. Injury risk assessment of non-lethal projectile head impacts.

    PubMed

    Oukara, Amar; Nsiampa, Nestor; Robbe, Cyril; Papy, Alexandre

    2014-01-01

    Kinetic energy non-lethal projectiles are used to impart sufficient effect onto a person in order to deter uncivil or hazardous behavior with a low probability of permanent injury. Since their first use, real cases indicate that the injuries inflicted by such projectiles may be irreversible and sometimes lead to death, especially for the head impacts. Given the high velocities and the low masses involved in such impacts, the assessment approaches proposed in automotive crash tests and sports may not be appropriate. Therefore, there is a need of a specific approach to assess the lethality of these projectiles. In this framework, some recent research data referred in this article as "force wall approach" suggest the use of three lesional thresholds (unconsciousness, meningeal damages and bone damages) that depend on the intracranial pressure. Three corresponding critical impact forces are determined for a reference projectile. Based on the principle that equal rigid wall maximal impact forces will produce equal damage on the head, these limits can be determined for any other projectile. In order to validate the consistence of this innovative method, it is necessary to compare the results with other existing assessment methods. This paper proposes a comparison between the "force wall approach" and two different head models. The first one is a numerical model (Strasbourg University Finite Element Head Model-SUFEHM) from Strasbourg University; the second one is a mechanical surrogate (Ballistics Load Sensing Headform-BLSH) from Biokinetics.

  16. Dependence of debris cloud formation on projectile shape

    NASA Astrophysics Data System (ADS)

    Konrad, C. H.; Chhabildas, L. C.; Boslough, M. B.; Piekutowski, A. J.; Poormon, K. L.; Mullin, S. A.; Littlefield, D. L.

    1994-07-01

    A two-stage lights-gas gun has been used to impact thin zinc bumpers by zinc projectiles over the velocity range of 2.4 km/s to 6.7 km/s to determine the propagation characteristics of the impact generated debris. Constant-mass projectiles in the form of spheres, discs, cylinders, and rods were used in these studies. Radiographic techniques were employed to record the debris cloud generated upon impact and the dynamic formation of the resulting rupture in an aluminum backing plate resulting from the loading of the debris cloud. The characteristics of the debris cloud generated upon impact is found to depend on the projectile shape. The data indicate that the debris front velocity is independent of the shape of the projectile, whereas the debris lateral/radial velocity is strongly dependent on projectile geometry. Spherical impactors generate the most radially dispersed debris cloud while the normal plate impactors result in column-like debris. It has been observed that the debris generated by the impact of thin plates on a thin bumper shield is considerably more damaging to a backwall than the debris generated by an equivalent-mass sphere.

  17. Plasma guiding and deflection of high speed projectiles

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Miles, Richard; PU Team

    2016-09-01

    The deposition of energy in the air in front of a high-speed projectile can lead to both the reduction of drag and the production of steering moments. Modeling has shown that the major contributor to the drag reduction and the steering moment is the high temperature, low density region that is produced by the energy addition. If the energy addition is off axis, it leads to a non symmetric pressure distribution on the projectile as it passes through this region, producing steering control authority that increases nonlinearly with Mach number. Experiments with a tethered projectile and subsequently with a rotating projectile using pulsed laser energy addition were reported. More recent experiments with a 30-mm diameter projectile in M =3.5 flow have been undertaken using a nozzle driven by a pulsed shock tunnel 9.5 m in length and 100 mm internal diameter. Energy was deposited by Nd-YAG laser with pulse energy of about 3 Joules at 1064nm. The laser pulse duration was 5-6 ns. Preliminary results indicate that the laser spark - flow interaction changes the angular momentum of the model for with a laser pulse energy of 2.85 J, the angle between laser spark axis and the flow 30-0 and a flow speed 1100 m/s.

  18. Experimental effect of shots caused by projectiles fired from air guns with kinetic energy below 17 J.

    PubMed

    Smędra-Kaźmirska, Anna; Barzdo, Maciej; Kędzierski, Maciej; Antoszczyk, Łukasz; Szram, Stefan; Berent, Jarosław

    2013-09-01

    Pursuant to the Polish Weapons and Ammunitions Law (Legal Gazette No 53/1999 item 549 with subsequent amendments), air guns with kinetic energy of the fired projectiles below 17 J are not regarded as weapons. The aim of the study was to assess the potential effect of shots caused by projectiles of various mass and structure fired from air guns with kinetic energy below 17 J on human soft tissues. As a model of soft tissue, we used 20% gelatin blocks. After shooting, we measured the depth of gelatin block penetration by pellets fired from various distances and compared these results with autopsy findings. The results demonstrated that examined pneumatic guns may cause serious injuries, including damage to the pleura, pericardium, liver, spleen, kidneys, femoral artery, and thoracic and abdominal aorta. Experiment shown that gelatin blocks do not reflect fully the properties of the human body.

  19. Electron emission in collisions between atoms and dressed projectiles

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Ghosh, T. K.; Mandal, C. R.; Purkait, M.

    2016-12-01

    We present theoretical results for electron emission in collisions between helium atoms and dressed projectiles at high energies. Double-differential cross sections (DDCSs) as a function of the emitted electron energies and angles are calculated. In our study we have applied the three-body formalism using the three-Coulomb wave (3CW-3B) model. The interaction between the dressed projectile and the active electron in the target has been approximated by a model potential having both a long-range Coulomb potential part and a short-range part. However, the active electron in the target has been treated as hydrogenic. We have also studied the projectile charge state dependence of the DDCS. Our theoretical results are compared with available experimental data as well as other theoretical calculations. The comparison shows a good agreement between the present calculations and the measurements. The obtained results are also compatible with other theoretical findings.

  20. Reflection-asymmetric rotor model of odd Aapprox. 219--229 nuclei

    SciTech Connect

    Leander, G.A.; Chen, Y.S.

    1988-06-01

    The low-energy spectroscopy of odd-A nuclei in the mass region Aapprox.219--229 is modeled by coupling states of a deformed shell model including octupole deformation to a reflection-asymmetric rotor core. Theory and experiment are compared for the nuclei in which data are available: /sup 219,221,223,225/Rn, /sup 221,223,225,227/Fr, /sup 219,221,223,225,227/Ra, /sup 219,223,225,227,229/Ac /sup 221,223,225,227,229/Th, and /sup 229/Pa. Overall agreement requires an octupole deformation ..beta../sub 3/approx.0.1. The results throughout the region are synthesized to evaluate the model.

  1. The traumatic potential of a projectile shot from a sling.

    PubMed

    Borovsky, Igor; Lankovsky, Zvi; Kalichman, Leonid; Belkin, Victor

    2017-03-01

    Herein, we analyze the energy parameters of stones of various weights and shapes shot from a sling and based on this data evaluate its traumatic potential. Four police officers proficient in the use of a sling participated in the trials. The following projectile types, shot using an overhead technique at a target 100m away were: round steel balls of different sizes and weights (24mm, 57g; 32mm, 135g; 38mm, 227g); different shaped stones weighing 100-150g and 150-200g and a golf ball (47g). Our data indicated that projectiles shot from unconventional weapons such as a sling, have serious traumatic potential for unprotected individuals and can cause blunt trauma of moderate to critical severity such as fractures of the trunk, limb, and facial skull bone, depending on the weight and shape of the projectile and the distance from the source of danger. Asymmetrically shaped projectiles weighing more than 100g were the most dangerous. Projectiles weighing more than 100g can cause bone fractures of the trunk and limbs at distances of up to 60m from the target and may cause serious head injuries to an unprotected person (Abbreviated Injury Scale 4-5) at distances up to 200m from the target. Due to the traumatic potential of projectiles shot from a sling, the police must wear full riot gear and keep at a distance of at least 60m from the source of danger in order to avoid serious injury. Furthermore, given the potential for serious head injuries, wearing a helmet with a visor is mandatory at distances up to 200m from the source of danger.

  2. Projectile transverse motion and stability in electromagnetic induction launchers

    SciTech Connect

    Shokair, I.R.

    1993-12-31

    The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Linearized transverse forces and torques due to energized coils are derived for displaced or tilted armature elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple linear stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot circuit code and numerical solutions for the transverse motion are obtained. For a launcher with a 10 cm bore radius with a 40 cm long solid armature, we find that stability is achieved with a restoring force (per unit length) constant of k {approx} 1 {times} 10{sup 8} N/m{sup 2}. For k = 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars. Results for a wound armature with uniform current density throughout show very similar displacements.

  3. Level structure and reflection asymmetric shape in sup 223 Ac

    SciTech Connect

    Sheline, R.K.; Liang, C.F.; Paris, P. )

    1990-07-20

    Mass separated sources of {sup 227}Pa (separated as PaF{sub 4}{sup +} ions) were used to study the level structure of {sup 223}Ac following alpha decay. The levels in {sup 223}Ac are interpreted as K = 5/2{sup {plus minus}} parity doublet bands which occur naturally in reflection asymmetric models and the multiphonon octupole model. The anomalous structure of the K = 3/2{sup {minus}} band is explained in terms of Coriolis coupling. The low lying parity doublet bands in {sup 223}Ac, {sup 225}Ac, and {sup 227}Ac are compared and contrasted.

  4. Numerical simulation of fluid flow around a scramaccelerator projectile

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.

    1991-01-01

    Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.

  5. Projectile general motion in a vacuum and a spreadsheet simulation

    NASA Astrophysics Data System (ADS)

    Benacka, Jan

    2015-01-01

    This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students developed the application and investigated the system is given. A questionnaire survey was carried out to find out whether the students found the lessons interesting, learned new skills and wanted to model projectile motion in the air as an example of more realistic motion. The results are discussed.

  6. Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles

    DTIC Science & Technology

    2011-01-12

    distance traveled along flight path, cal V = projectile velocity, m s1 = pitch angle , rad = total incidence angle , rad = yaw angle , rad S, F...3) M Ad 3 2Iy CM (4) T Ad 2m CL md2 Ix CMp (5) Figure 1 shows that the complex incidence angle is the plane projection of the total... angle of attack. As the projectile travels along the trajectory, the complex incidence traces out a series of loops in the pitch-yaw plane, which is

  7. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  8. Cantilever Beam Design for Projectile Internal Moving Mass Systems

    DTIC Science & Technology

    2010-09-01

    25 30 35 40 45 50 55 60 Beam Length (in) M ax im um A ng ul ar D is pl ac em en t ( de g ) 2 3 4 5 6 7 8 9 10 130 140 150 160 170 180 190 200 Beam...Actuated Kinetic Warheads. J. Guid. Control Dynam. 2004, 27 (1), 118–127. 8. Frost, G .; Costello, M . Linear Theory of a Projectile with a Rotating...Internal Part in Atmospheric Flight. J. Guid. Control Dynam. 2004, 27 (5), 898–906. 9. Frost, G .; Costello, M . Control Authority of a Projectile

  9. Momentum distributions of isotopes produced by fragmentation of relativistic C-12 and O-16 projectiles

    NASA Technical Reports Server (NTRS)

    Greiner, D. E.; Lindstrom, P. J.; Heckman, H. H.; Cork, B.; Bieser, F. S.

    1975-01-01

    The fragment momentum distributions in the projectile rest frame are, typically, Gaussian shaped, narrow, consistent with isotropy, depend on fragment and projectile, and have no significant correlation with target mass or beam energy. The nuclear temperature is inferred from the momentum distributions of the fragments and is approximately equal to the projectile nuclear binding energy, indicative of small energy transfer between target and fragment.

  10. BOOM: A Computer-Aided Engineering Tool for Exterior Ballistics of Smart Projectiles

    DTIC Science & Technology

    2011-06-01

    run on PC, Unix, or Mac systems. 15. SUBJECT TERMS projectiles, trajectory , aeroballistics, flight mechanics, smart projectiles 16. SECURITY...system model are provided. The procedure for running BOOM is also outlined, with input data files described in the appendices. Example trajectories ...in equation 9, the aerodynamic forces on the projectile are split into standard steady (SA) and Magnus (MA) terms as follows

  11. Projectile remnants in central peaks of lunar impact craters

    NASA Astrophysics Data System (ADS)

    Yue, Z.; Johnson, B. C.; Minton, D. A.; Melosh, H. J.; di, K.; Hu, W.; Liu, Y.

    2013-06-01

    The projectiles responsible for the formation of large impact craters are often assumed to melt or vaporize during the impact, so that only geochemical traces or small fragments remain in the final crater. In high-speed oblique impacts, some projectile material may survive, but this material is scattered far down-range from the impact site. Unusual minerals, such as magnesium-rich spinel and olivine, observed in the central peaks of many lunar craters are therefore attributed to the excavation of layers below the lunar surface. Yet these minerals are abundant in many asteroids, meteorites and chondrules. Here we use a numerical model to simulate the formation of impact craters and to trace the fate of the projectile material. We find that for vertical impact velocities below about 12kms-1, the projectile may both survive the impact and be swept back into the central peak of the final crater as it collapses, although it would be fragmented and strongly deformed. We conclude that some unusual minerals observed in the central peaks of many lunar impact craters could be exogenic in origin and may not be indigenous to the Moon.

  12. Apparatus for Teaching Physics: A Versatile Projectile Motion Board.

    ERIC Educational Resources Information Center

    Prigo, Robert B.; Korda, Anthony

    1984-01-01

    Describes the design and use of a projectile motion apparatus to illustrate a variety of projective motion results typically discussed in an introductory course. They include independence of horizontal (constant speed) and vertical (constant acceleration) motions, parabolic path shape, and other types of motion. (JN)

  13. The Long Decay Model of One-Dimensional Projectile Motion

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  14. 78. PHOTO OF A PROJECTILE FIRING USING A SABOT TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PHOTO OF A PROJECTILE FIRING USING A SABOT TAKEN WITH A 70 MM MITCHEL MOTION PICTURE CAMERA, Date unknown, circa 1950. (Original photograph in possession of Dave Willis, San Diego, California.) Photograph represents central frame of negative. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  15. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    ERIC Educational Resources Information Center

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  16. Using Tracker as a Pedagogical Tool for Understanding Projectile Motion

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Chew, Charles; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong

    2012-01-01

    This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based…

  17. Using Statcast to lift the discussion of projectile motion

    NASA Astrophysics Data System (ADS)

    Siegel, P. B.

    2017-04-01

    Home run data from Major League Baseball's Statcast can be described by adding a lift force to the equations of projectile motion commonly used in undergraduate computational physics courses. We discuss how the Statcast data can be implemented in the classroom.

  18. Projectile General Motion in a Vacuum and a Spreadsheet Simulation

    ERIC Educational Resources Information Center

    Benacka, Jan

    2015-01-01

    This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students…

  19. Projectile Motion in the "Language" of Orbital Motion

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2011-01-01

    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  20. Characterization of Concrete Material Flow During Projectile Penetration

    NASA Astrophysics Data System (ADS)

    Sobeski, Robert

    The Department of Defense (DoD) has an operational requirement to predict, quickly and accurately, the depth of penetration that a projectile can achieve for a given target and impact scenario. Fast-running analytical models can provide reliable predictions, but they often require the use of one or more dimensionless parameters that are derived from experimental data. These analytical models are continually evolving, and the dimensionless parameters are often adjusted to obtain new analytical models without a true understanding of the change in characteristics of material flow across targets of varying strength and projectile impact velocities. In this dissertation, the penetration of ogive-nose projectiles into concrete targets is investigated using finite element analyses. The Elastic-Plastic Impact Computation (EPIC) code is used to examine the velocity vector fields and their associated direction cosines for high and low-strength concrete target materials during projectile penetration. Two methodologies, referred as Normal Expansion Comparison Methodology (NECM) and Spherical Expansion Comparison Methodology (SECM), are developed in MATLAB to quantify the change in concrete material flow during this short-duration dynamic event. Improved velocity profiles are proposed for better characterization of cavity expansion stresses based on the application of NECM and SECM to EPIC outputs. Structural engineers and model developers working on improving the accuracy of current analytical concrete penetration models and potentially reducing their reliance on fitting parameters will benefit from the findings of this research.

  1. Projectile - Mass asymmetry systematics for low energy incomplete fusion

    NASA Astrophysics Data System (ADS)

    Singh, Pushpendra P.; Yadav, Abhishek; Sharma, Vijay R.; Sharma, Manoj K.; Kumar, Pawan; Sahoo, Rudra N.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Bhowmik, R. K.; Prasad, R.

    2015-06-01

    In the present work, low energy incomplete fusion (ICF) in which only a part of projectile fuses with target nucleus has been investigated in terms of various entrance channel parameters. The ICF strength function has been extracted from the analysis of experimental excitation functions (EFs) measured for different projectile-target combinations from near- to well above- barrier energies in 12C,16O(from 1.02Vb to 1.64Vb)+169Tm systems. Experimental EFs have been analysed in the framework statistical model code PACE4 based on the idea of equilibrated compound nucleus decay. It has been found that the value of ICF fraction (FICF) increases with incident projectile energy. A substantial fraction of ICF (FICF ≈ 7 %) has been accounted even at energy as low as ≈ 7.5% above the barrier (at relative velocity νrel ≈0.027) in 12C+169Tm system, and FICF ≈ 10 % at νrel ≈0.014 in 16O+169Tm system. The probability of ICF is discussed in light of the Morgenstern's mass-asymmetry systematics. The value of FICF for 16O+169Tm systems is found to be 18.3 % higher than that observed for 12C+169Tm systems. Present results together with the re-analysis of existing data for nearby systems conclusively demonstrate strong competition of ICF with CF even at slightly above barrier energies, and strong projectile dependence that seems to supplement the Morgenstern's systematics.

  2. 37. BUILDING NO. 276, MAJOR CALIBER PROJECTILE LOADING (ORIGINALLY NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. BUILDING NO. 276, MAJOR CALIBER PROJECTILE LOADING (ORIGINALLY NO. 6 POWDER MAGAZINE AND MELT LOADING), GENERAL VIEW SHOWING SOUTHEAST WALL. BUILDING NO. 276-D IN BACKGROUND LEFT BEHIND CHUTES. - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  3. High performance projectile seal development for non perfect railgun bores

    SciTech Connect

    Wolfe, T.R.; Vine, F.E. Le; Riedy, P.E.; Panlasigui, A.; Hawke, R.S.; Susoeff, A.R.

    1997-01-01

    The sealing of high pressure gas behind an accelerating projectile has been developed over centuries of use in conventional guns and cannons. The principal concern was propulsion efficiency and trajectory accuracy and repeatability. The development of guns for use as high pressure equation-of-state (EOS) research tools, increased the importance of better seals to prevent gas leakage from interfering with the experimental targets. The development of plasma driven railguns has further increased the need for higher quality seals to prevent gas and plasma blow-by. This paper summarizes more than a decade of effort to meet these increased requirements. In small bore railguns, the first improvement was prompted by the need to contain the propulsive plasma behind the projectile to avoid the initiation of current conducting paths in front of the projectile. The second major requirements arose from the development of a railgun to serve as an EOS tool where it was necessary to maintain an evacuated region in front of the projectile throughout the acceleration process. More recently, the techniques developed for the small bore guns have been applied to large bore railguns and electro-thermal chemical guns in order to maximize their propulsion efficiency. Furthermore, large bore railguns are often less rigid and less straight than conventional homogeneous material guns. Hence, techniques to maintain seals in non perfect, non homogeneous material launchers have been developed and are included in this paper.

  4. The tubular "cookie cutter" bullet: a unique projectile.

    PubMed

    Nolte, K B

    1990-11-01

    Recently marketed PMC (Pan Metal Corporation) Ultramag tubular hollow point ammunition is uniquely constructed with a two-part projectile composed of a tubular copper bullet and a Teflon wad. A fatal gunshot wound with this ammunition is described. A unique radiographic pattern and the results of test firing are also presented.

  5. On transition strengths of E1, E2, & E3 in the regions of mixed quadrupole-octupole collectivity

    NASA Astrophysics Data System (ADS)

    Rasmussen, John; Luo, Y. X.; Hamilton, Joseph; Ramayya, A. V.; Donangelo, Raul

    2010-11-01

    We review the main highlights of experiment and theory for the lowest three electric multipolarities, B(E1), B(E2), and B(E3), for nuclei where quadrupole and octupole collectivity may both occur. The principal regions of interest are around 6 to 12 protons and 6 to 12 neutrons beyond the doubly-closed shell nuclei ^132Sn and ^208Pb. We examine microscopic theoretical calculationsootnotetextW. Zhang et al., Phys. Rev. C 81, 034302 (2010) and references therein. in which deformations are driven by Nilsson orbitals near the Fermi energy. We also focus attention on recent experimentalootnotetextP.E. Garrett et al., Phys. Rev. Letts. 103, 062501 (2009) studies of ^152Sm, where the ground band and associated K=1^- band are mirrored by another 0^+ and 1^- band about 0.7 MeV higher in energy. We suggest that a monopole pairing force alone is insufficient to cause this mirroring, and monopole-plus-quadrupole pairing or a more realistic nucleon-nucleon force is needed.

  6. Evaluation of different projectiles in matched experimental eye impact simulations.

    PubMed

    Weaver, Ashley A; Kennedy, Eric A; Duma, Stefan M; Stitzel, Joel D

    2011-03-01

    Eye trauma results in 30,000 cases of blindness each year in the United States and is the second leading cause of monocular visual impairment. Eye injury is caused by a wide variety of projectile impacts and loading scenarios with common sources of trauma being motor vehicle crashes, military operations, and sporting impacts. For the current study, 79 experimental eye impact tests in literature were computationally modeled to analyze global and localized responses of the eye to a variety of blunt projectile impacts. Simulations were run with eight different projectiles (airsoft pellets, baseball, air gun pellets commonly known as BBs, blunt impactor, paintball, aluminum, foam, and plastic rods) to characterize effects of the projectile size, mass, geometry, material properties, and velocity on eye response. This study presents a matched comparison of experimental test results and computational model outputs including stress, energy, and pressure used to evaluate risk of eye injury. In general, the computational results agreed with the experimental results. A receiver operating characteristic curve analysis was used to establish the stress and pressure thresholds that best discriminated for globe rupture in the matched experimental tests. Globe rupture is predicted by the computational simulations when the corneoscleral stress exceeds 17.21 MPa or the vitreous pressure exceeds 1.01 MPa. Peak stresses were located at the apex of the cornea, the limbus, or the equator depending on the type of projectile impacting the eye. A multivariate correlation analysis revealed that area-normalized kinetic energy was the best single predictor of peak stress and pressure. Additional incorporation of a relative size parameter that relates the projectile area to the area of the eye reduced stress response variability and may be of importance in eye injury prediction. The modeling efforts shed light on the injury response of the eye when subjected to a variety of blunt projectile

  7. A comparison of finite element analysis to smooth particle hydrodynamics for application to projectile impact on cementitious material

    NASA Astrophysics Data System (ADS)

    Nordendale, Nikolas A.; Heard, William F.; Sherburn, Jesse A.; Basu, Prodyot K.

    2016-03-01

    The response of structural components of high-strength cementitious (HSC) materials to projectile impact is characterized by high-rate fragmentation resulting from strong compressive shock waves coupled with reflected tensile waves. Accurate modeling of armor panels of such brittle materials under high-velocity projectile impact is a complex problem requiring meticulous experimental characterization of material properties. In a recent paper by the authors, an approach to handle such problems based on a modified Advanced Fundamental Concrete (AFC) constitutive model was developed. In the HSC panels considered in this study, an analogous approach is applied, and the predictions are verified with ballistic impact test data. Traditional Lagrangian finite element analysis (FEA) of these problems tends to introduce errors and suffers from convergence issues resulting from large deformations at free surfaces. Also, FEA cannot properly account for the issues of secondary impact of spalled fragments when multiple armor panels are used. Smoothed particle hydrodynamics (SPH) is considered to be an attractive alternative to resolve these and other issues. However, SPH-based quantitative results have been found to be less accurate than the FEA-based ones when the deformations are not sufficiently large. This paper primarily focuses on a comparison of FEA and SPH models to predict high-velocity projectile impact on single and stacked HSC panels. Results are compared to recent ballistic experiments performed as a part of this research, and conclusions are drawn based on the findings.

  8. The FRS Ion Catcher - A facility for high-precision experiments with stopped projectile and fission fragments

    NASA Astrophysics Data System (ADS)

    Plaß, W. R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M. P.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kurcewicz, J.; Lang, J.; Moore, I.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfützner, M.; Pietri, S.; Prochazka, A.; Rink, A.-K.; Rinta-Antila, S.; Schäfer, D.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.

    2013-12-01

    At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass measurements and to provide an isobarically clean beam for further experiments, such as mass-selected decay spectroscopy. A versatile RF quadrupole transport and diagnostics unit guides the ions from the stopping cell to the MR-TOF-MS, provides differential pumping, ion identification and includes reference ion sources. The FRS Ion Catcher serves as a test facility for the Low-Energy Branch of the Super-FRS at the Facility for Antiproton and Ion Research (FAIR), where the cryogenic stopping cell and the MR-TOF-MS will be key devices for the research with stopped projectile and fission fragments that will be performed with the experiments MATS and LaSpec. Off-line tests of the stopping cell yield a combined ion survival and extraction efficiency for 219Rn ions of about 30% and an extraction time of about 25 ms. The stopping cell and the MR-TOF-MS were commissioned on-line as part of the FRS Ion Catcher. For the first time, a stopping cell for exotic nuclei was operated on-line at cryogenic temperatures. Using a gas density almost two times higher than ever reached before for a stopping cell with RF ion repelling structures, various 238U projectile fragments were thermalized and extracted with very high efficiency. Direct mass measurements of projectile fragments were performed with the MR-TOF-MS, among them the nuclide 213Rn with a half-life of 19.5 ms only.

  9. Special features of isomeric ratios in nuclear reactions induced by various projectile particles

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Martirosyan, G. V.

    2016-05-01

    Calculations for ( p, n) and (α, p3 n) reactions were performed with the aid of the TALYS-1.4 code. Reactions in which the mass numbers of target and product nuclei were identical were examined in the range of A = 44-124. Excitation functions were obtained for product nuclei in ground and isomeric states, and isomeric ratios were calculated. The calculated data reflect well the dependence of the isomeric ratios on the projectile type. A comparison of the calculated and experimental data reveals, that, for some nuclei in a high-spin state, the calculated data fall greatly short of their experimental counterparts. These discrepancies may be due to the presence of high-spin yrast states and rotational bands in these nuclei. Calculations involving various level-density models included in the TALYS-1.4 code with allowance for the enhancement of collective effects do not remove the discrepancies in the majority of cases.

  10. Reflecting Reflective Practice

    ERIC Educational Resources Information Center

    Galea, Simone

    2012-01-01

    This paper demystifies reflective practice on teaching by focusing on the idea of reflection itself and how it has been conceived by two philosophers, Plato and Irigaray. It argues that reflective practice has become a standardized method of defining the teacher in teacher education and teacher accreditation systems. It explores how practices of…

  11. Computational and Experimental Investigations of Turbulent Flow Past Projectiles

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Carlucci, Pasquale; Carlucci, Donald; Thangam, Siva

    2008-11-01

    Experimental and computational investigations of turbulent flow past projectiles is modeled as axial flow past a cylinder with a free-spinning base. A subsonic wind tunnel with a forward-sting mounted spinning cylinder is used for experiments. In addition, a free-jet facility is used for benchmarking the experimental set up. Experiments are performed for a range of spin rates and free stream flow conditions. An anisotropic two-equation Reynolds-stress model that incorporates the effect of rotation-modified energy spectrum and swirl is used to perform computations for the flow past axially rotating cylinders. Both rigid cylinders as well as that of cylinders with free-spinning base are considered from a computational point of view. Applications involving the design of projectiles are discussed.

  12. a Theoretical Study of Projectile Delta Excitations in

    NASA Astrophysics Data System (ADS)

    Jo, Yung

    1995-01-01

    An approach is proposed for the investigation of the projectile Delta excitations induced by charge exchange reactions in the intermediate energy region. The nuclear structure part of the formalism is based on the particle-hole model and the nuclear reaction part is treated within the plane-wave impulse approximation (PWIA). In the nuclear structure part, all important nuclear medium effects are included. We take into account the nucleon knock-out mode and the related nucleon particle -nucleon hole (NN^{-1}) correlations. In order to perform the calculations, we first set up coupled-channel (CC) equations for the excited nucleons. The Lanczos method is adopted to solve this CC equations. In this dissertation we study the contribution of the projectile delta excitation process to (p, n) reaction spectra from a nuclear target. The spin observables are also calculated and discussed.

  13. Reconnection launcher projectile heating using the modified REGGIE code

    SciTech Connect

    Freemen, J.R.

    1989-01-01

    Modified REGGIE is a variant of the REGGIE reconnection launcher code. It was written to provide a more economical tool for studying multi-stage projectile heating. The validity of the approximations made in modified REGGIE was determined by comparisons with both full REGGIE and WARP-10 computations. Modified REGGIE runs about seven times faster than full REGGIE. Modified REGGIE was used to study projectile heating for a specific force profile proposed by M. Cowan. The total energy dissipated after seven stages was reduced by a factor of about eight compared to the present day conventional discrete coil system. This reduction would allow higher peak velocities to be achieved prior to ablation. 5 refs., 4 figs., 3 tabs.

  14. Developmental changes of misconception and misperception of projectiles.

    PubMed

    Kim, In-Kyeong

    2012-12-01

    This study investigated the developmental changes of perceptual and cognitive commonsense physical knowledge. Children 4 to 9 years old (N = 156; 79 boys, 77 girls) participated. Each child was asked to predict the landing positions of balls that rolled down and fell off a virtual ramp and to choose the most natural-looking motion from different projectile motions depicted. The landing position of the most natural-looking projectile was compared with the predicted landing position and also compared with the actual landing position. The results showed children predicted the ball's landing position closer to the ramp than the actual position. Children also chose the depiction in which the ball fell closer to the ramp than the accurate position, although the error in the prediction task was larger than in the perception task and decreased with age. The results indicated the developmental convergence of explicit reasoning and implicit perception, which suggest a single knowledge system with representational re-description.

  15. Electron loss of fast projectiles in collisions with molecules

    SciTech Connect

    Matveev, V. I.; Makarov, D. N.; Rakhimov, Kh. Yu.

    2011-07-15

    The single- and multiple-electron loss of fast highly charged projectiles in collisions with neutral molecules is studied within the framework of a nonperturbative approach. The cross sections for single-, double-, and triple-electron losses are calculated for the collision system Fe{sup q+}{yields}N{sub 2} (q=24, 25, 26) at the collision energies 10, 100, and 1000 MeV/nucleon. The effects caused by the collision multiplicity and the orientation of the axis of the target molecule are treated. It is shown that the collision multiplicity effect leads to considerable differences for the cases of perpendicular and parallel orientations of the molecular axes with respect to the direction of the projectile motion, while for chaotic orientation such an effect is negligible.

  16. Two dimensional fractional projectile motion in a resisting medium

    NASA Astrophysics Data System (ADS)

    Rosales, Juan; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan

    2014-07-01

    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  17. Two dimensional fractional projectile motion in a resisting medium

    NASA Astrophysics Data System (ADS)

    Rosales, Juan J.; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan

    2014-07-01

    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds ( sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  18. Investigation of shock-induced combustion past blunt projectiles

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, S. N.

    1996-01-01

    A numerical study is conducted to simulate shock-induced combustion in premixed hydrogen-air mixtures at various free-stream conditions and parameters. Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock-induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A seven-species, seven reactions finite rate hydrogen-air chemical reaction mechanism is used combined with a finite-difference, shock-fitting method to solve the complete set of Navier-Stokes and species conservation equations. The study has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one-dimensional wave-interaction model.

  19. Autoionizing states of He: Projectile-velocity-dependent lifetime

    NASA Astrophysics Data System (ADS)

    Otranto, S.; Garibotti, C. R.; Colavecchia, F. D.; Gasaneo, G.

    2001-02-01

    In this work, we study the dependence of the lifetime (τ) of an autoionizing state with the velocity (vP) of an ionic projectile of charge Z. We use a C2 model to represent the final state of the autoionized electron in the continuum of two centers. Explicit calculations for the helium autoionizing states 2s2(1S), 2p2(1D), and 2s2p(1P) are analyzed. We evaluate the decay law for the metastable initial state and find that τ increases as the projectile becomes faster and converges to the photoionization lifetime for high impact energies. A scaling law for τ is obtained in terms of the Sommerfeld parameter (Z/vP). Finally, we evaluate the transition probability for the autoionized electron and show that the mean half-width of the focusing peak decreases as vP increases.

  20. Developmental changes in children's understanding of horizontal projectile motion.

    PubMed

    Mou, Yi; Zhu, Liqi; Chen, Zhe

    2015-08-01

    This study investigated 5- to 13-year-old children's performance in solving horizontal projectile motion problems, in which they predicted the trajectory of a carried object released from a carrier in three different contexts. The results revealed that 5- and 8-year-olds' trajectory predictions were easily distracted by salient contextual features (e.g. the relative spatial locations between objects), whereas a proportion of 11- and 13-year-olds' performance suggested the engagement of the impetus concept in trajectory prediction. The impetus concept is a typical misconception of inertial motion that assumes that motion is caused by force. Children's performance across ages suggested that their naïve knowledge of projectile motion was neither well-developed and coherent nor completely fragmented. Instead, this study presented the dynamic process in which children with age gradually overcame the influences of contextual features and consistently used the impetus concept across motion problems.

  1. Computational fluid dynamics capability for the solid fuel ramjet projectile

    NASA Astrophysics Data System (ADS)

    Nusca, Michael J.; Chakravarthy, Sukumar R.; Goldberg, Uriel C.

    1988-12-01

    A computational fluid dynamics solution of the Navier-Stokes equations has been applied to the internal and external flow of inert solid-fuel ramjet projectiles. Computational modeling reveals internal flowfield details not attainable by flight or wind tunnel measurements, thus contributing to the current investigation into the flight performance of solid-fuel ramjet projectiles. The present code employs numerical algorithms termed total variational diminishing (TVD). Computational solutions indicate the importance of several special features of the code including the zonal grid framework, the TVD scheme, and a recently developed backflow turbulence model. The solutions are compared with results of internal surface pressure measurements. As demonstrated by these comparisons, the use of a backflow turbulence model distinguishes between satisfactory and poor flowfield predictions.

  2. Ballistics considerations for small-caliber, low-density projectiles

    SciTech Connect

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.

    1993-11-01

    One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at {approximately} 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases.

  3. Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Adamczyk, Anne; Dick, Frank

    2008-01-01

    Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.

  4. Transportation Vibration Analysis of the XM982 Projectile

    DTIC Science & Technology

    2007-02-01

    preload TABLES 1 Material properties of the projectile 4 2 Material properties of the rack mount 5 3 Damping properties of strap and Plastisol pad 5 4...analysis is a rack mount consisting of two cradles connected by two bars. Each of the cradles is covered by a thin layer of Plastisol . Attached to the...bars, plastisol , and strap/straps) were modeled in Pro/Engineer and imported into the general purpose finite element package, ABAQUS Explicit. The

  5. Microadaptive Flow Control Applied to a Spinning Projectile

    DTIC Science & Technology

    2005-09-01

    Coanda surface, producing some streamline curvature in the external flow with associated lift on the body. The effectiveness of this configuration...configuration, including Coanda radius and the effect of the step height. An important question concerns the extent to which the flow behaves more or less...the projectile through forced asymmetric flow separation (figures 9 and 10) using the Coanda effect (3, 4). Time-accurate CFD modeling capabilities

  6. Wave propagation in a plate after impact by a projectile

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1987-01-01

    The wave propagation in a circular plate after impact by a cylindrical projectile is studied. In the vicinity of impact, the pressure is computed numerically. An intense pressure pulse is generated that peaks 0.2 microns after impact, then drops sharply to a plateau. The response of the plate is determined adopting a modal solution of Mindlin's equations. Velocity and acceleration histories display both propagating and dispersive features.

  7. Measuring the Effects of Lift and Drag on Projectile Motion

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  8. Control Mechanism Strategies for Spin-Stabilized Projectiles

    DTIC Science & Technology

    2008-09-01

    maneuver footprint shape was dictated by the angle -of-fall and yaw of repose . Shallow angles -of-fall produced footprint ellipses, with a major axis...Magnus moments and yaw of repose . Adding a control mechanism such as fins to guide a spin- stabilized projectile further complicates the resulting...ratio), and the roll window over which the pulsed controller operated. The metrics of this analysis were the maneuver footprint, total angle of attack

  9. Development of a Plastic Rotating Band for High Performance Projectiles

    DTIC Science & Technology

    1974-07-01

    thus: An optimum high explosive projectile design requires a thin , uniform wall which assures a distribution of nearly constant size fragments. Thus...relatively low charge-to-mass ratio and a skewed frag- ment size distribution. The problem of attaching a plastic band to a thin - walled , high perform...40 4 Dexon XPA-3 Formulations with Glass Fibers. .*. . 70 5 Properties of Nylafil/ Foam F-3/15 . . . . . . . 72 6 Property Comparison for Nylon

  10. Structural Analysis of a Kinetic Energy Projectile During Launch

    DTIC Science & Technology

    1981-07-01

    Fracture i,,wei~ I w~emeduu mda Ideftf dr h block rnuwbbev rhis pa2per presents the results of a thro~e pliasti effort. to quantify the i3trut.I,. fli ... 1 .ua ’iitegrity ()f a long rod kinWLetZ nEry punetraLor projectile during lai),t!.. Te fErst plmanc iised thr- f ln .t~e ... nwo rrn’t.nor to

  11. Spins, Parity, Excitation Energies, and Octupole Structure of an Excited Superdeformed Band in {sup 194}Hg and Implications for Identical Bands

    SciTech Connect

    Hackman, G.; Khoo, T.L.; Carpenter, M.P.; Lauritsen, T.; Calderin, I.J.; Janssens, R.V.; Ackermann, D.; Ahmad, I.; Agarwala, S.; Blumenthal, D.J.; Fischer, S.M.; Nisius, D.; Reiter, P.; Young, J.; Amro, H.; Lopez-Martens, A.; Hannachi, F.; Korichi, A.; Amro, H.; Moore, E.F.; Lee, I.Y.; Macchiavelli, A.O.; Do Nakatsukasa, T.

    1997-11-01

    An excited superdeformed band in {sup 194}Hg , observed to decay directly to both normal-deformed and superdeformed yrast states, is proposed to be a K{sup {pi}}=2{sup {minus}} octupole vibrational band, based on its excitation energies, spins, and likely parity. The transition energies are identical to those of the yrast superdeformed band in {sup 192}Hg , but originate from levels with different spins and parities. The evolution of transition energies with spin suggests that cancellations between pairing and particle alignment are partly responsible for the identical transition energies. {copyright} {ital 1997} {ital The American Physical Society}

  12. Observation of hyperfine mixing in measurements of a magnetic octupole decay in isotopically pure nickel-like 129Xe and 132Xe ions

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Brown, G V

    2006-12-21

    We present measurements of high statistical significance of the rate of the magnetic octupole (M3) decay in nickel-like ions of isotopically pure {sup 129}Xe and {sup 132}Xe. On {sup 132}Xe, an isotope with zero nuclear spin and therefore without hyperfine structure, the lifetime of the metastable level was established as (15.06 {+-} 0.24) ms. On {sup 129}Xe, an additional fast (2.7 {+-} 0.1 ms) decay component was established that represents hyperfine mixing with a level that decays by electric quadrupole (E2) radiation.

  13. Dynamics of drag force for projectile impact in granular media

    NASA Astrophysics Data System (ADS)

    Behringer, Lauren; Stevens Bester, Cacey; Behringer, Robert

    2016-11-01

    We study the way in which momentum is dissipated as a free-falling projectile impacts a dense granular target. An empirical force law has been widely accepted to describe this process, defining the stopping force as the sum of depth-dependent static force and velocity-dependent inertial drag. However, a complete understanding of the stopping force, incorporating grain-scale interactions during impact, remains unresolved. Using direct force measurements by way of a photoelastic imaging technique, we explore the complex fluctuating behavior of the forces acting on the projectile decelerating through a granular medium. Our results are used to study the static drag as the projectile comes to rest, as well as its connection to the effect of the container boundary of the granular target. We additionally vary the shape of the impeding object to infer intruder-grain interactions from force measurements. Supported by Duke University Provost's Postdoctoral Program, NASA Grant NNX15AD38G, NSF-DMR-1206351.

  14. GPU-enabled projectile guidance for impact area constraints

    NASA Astrophysics Data System (ADS)

    Rogers, Jonathan

    2013-05-01

    Guided projectile engagement scenarios often involve impact area constraints, in which it may be less desirable to incur miss distance on one side of a target or within a specified boundary near the target area. Current projectile guidance schemes such as impact point predictors cannot handle these constraints within the guidance loop, and may produce dispersion patterns that are insensitive to these constraints. In this paper, a new projectile guidance law is proposed that leverages real-time Monte Carlo impact point prediction to continually evaluate the probability of violating impact area constraints. The desired aim point is then adjusted accordingly. Real-time Monte Carlo simulation is enabled within the feedback loop through use of graphics processing units (GPU's), which provide parallel pipelines through which a dispersion pattern can routinely be predicted. The result is a guidance law that can achieve minimum miss distance while avoiding impact area constraints. The new guidance law is described and formulated as a nonlinear optimization problem which is solved in real-time through massively-parallel Monte Carlo simulation. An example simulation is shown in which impact area constraints are enforced and the methodology of stochastic guidance is demonstrated. Finally, Monte Carlo simulations are shown which demonstrate the ability of the stochastic guidance scheme to avoid an arbitrary set of impact area constraints, generating an impact probability density function that optimally trades miss distance within the restricted impact area. The proposed guidance scheme has applications beyond smart weapons to include missiles, UAV's, and other autonomous systems.

  15. Dual mode fracture of composite laminates penetrated by spherical projectiles

    NASA Astrophysics Data System (ADS)

    Czarnecki, G. J.

    The basic for delamination initiation and propagation within an impacted laminate was studied, with an explanation provided for the fracture mode transformation along the projectile's path. Post-impact observations of graphite/epoxy (AS4/3501-6) laminates penetrated by steel spheres (0.5-inch diameter) reveal a fracture mode, similar to shear plugging adjacent to the impacted surface. This fracture mode is contrasted with that of delamination adjacent to the rear surface. The sudden transition from shear plugging to delamination is believed to occur when the projectile interacts with the returning impact-generated tensile wave. To demonstrate the transition, results are presented from ballistically impacted laminates containing a series of imbedded carbon stress and constantan strain gages. Results are based on impact velocities of 1300, 1850, and 2380 f/s. Transverse stress waves are shown capable of creating delamination until attenuated by a local zone of compressed material associated with the on-coming projectile. Based on experimental results, the location of the fracture mode transition plane is predicted both graphically and through a simple equation of motion.

  16. Chunk projectile launch using the Sandia Hypervelocity Launcher Facility

    SciTech Connect

    Chhabildas, L.C.; Trucano, T.G.; Reinhart, W.D.; Hall, C.A.

    1994-07-01

    An experimental technique is described to launch an intact ``chunk,`` i.e. a 0.3 cm thick by 0.6 cm diameter cylindrical titanium alloy (Ti-6Al-4V) flyer, to 10.2 km/s. The ability to launch fragments having such an aspect ratio is important for hypervelocity impact phenomenology studies. The experimental techniques used to accomplish this launch were similar but not identical to techniques developed for the Sandia HyperVelocity Launcher (HVL). A confined barrel impact is crucial in preventing the two-dimensional effects from dominating the loading response of the projectile chunk. The length to diameter ratio of the metallic chunk that is launched to 10.2 km/s is 0.5 and is an order of magnitude larger than those accomplished using the conventional hypervelocity launcher. The multi-dimensional, finite-difference (finite-volume), hydrodynamic code CTH was used to evaluate and assess the acceleration characteristics i.e., the in-bore ballistics of the chunky projectile launch. A critical analysis of the CTH calculational results led to the final design and the experimental conditions that were used in this study. However, the predicted velocity of the projectile chunk based on CTH calculations was {approximately} 6% lower than the measured velocity of {approximately}10.2 km/S.

  17. Survivability of copper projectiles during hypervelocity impacts in porous ice: A laboratory investigation of the survivability of projectiles impacting comets or other bodies

    NASA Astrophysics Data System (ADS)

    McDermott, K. H.; Price, M. C.; Cole, M.; Burchell, M. J.

    2016-04-01

    During hypervelocity impact (>a few km s-1) the resulting cratering and/or disruption of the target body often outweighs interest on the outcome of the projectile material, with the majority of projectiles assumed to be vaporised. However, on Earth, fragments, often metallic, have been recovered from impact sites, meaning that metallic projectile fragments may survive a hypervelocity impact and still exist within the wall, floor and/or ejecta of the impact crater post-impact. The discovery of the remnant impactor composition within the craters of asteroids, planets and comets could provide further information regarding the impact history of a body. Accordingly, we study in the laboratory the survivability of 1 and 2 mm diameter copper projectiles fired onto ice at speeds between 1.00 and 7.05 km s-1. The projectile was recovered intact at speeds up to 1.50 km s-1, with no ductile deformation, but some surface pitting was observed. At 2.39 km s-1, the projectile showed increasing ductile deformation and broke into two parts. Above velocities of 2.60 km s-1 increasing numbers of projectile fragments were identified post impact, with the mean size of the fragments decreasing with increasing impact velocity. The decrease in size also corresponds with an increase in the number of projectile fragments recovered, as with increasing shock pressure the projectile material is more intensely disrupted, producing smaller and more numerous fragments. The damage to the projectile is divided into four classes with increasing speed and shock pressure: (1) minimal damage, (2) ductile deformation, start of break up, (3) increasing fragmentation, and (4) complete fragmentation. The implications of such behaviour is considered for specific examples of impacts of metallic impactors onto Solar System bodies, including LCROSS impacting the Moon, iron meteorites onto Mars and NASA's ;Deep Impact; mission where a spacecraft impacted a comet.

  18. Numerical study on the high-speed water-entry of hemispherical and ogival projectiles

    NASA Astrophysics Data System (ADS)

    Guo, Zitao; Zhang, Wei; Wei, Gang; Ren, Peng

    2012-03-01

    The water entry problem is considered as a classic problem which has a long research history; however, projectile water entry is still a difficult problem that has not been completely solved. In this paper, the effects of the projectile nose shape on laws of velocity attenuations for all projectiles were studied by a series of numerical simulations using the AUTODYN-2D. The result showed that the drag coefficient increases monotonically with the initial velocities for an identical projectile and decreases with the CRH values for projectiles at the same velocity. A simple and effective model was proposed to determine the relations between the drag coefficients, nose shape coefficient and initial velocities of projectiles.

  19. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  20. Shape Effect Analysis of Aluminum Projectile Impact on Whipple Shields

    NASA Technical Reports Server (NTRS)

    Carrasquilla, Maria J.; Miller, Joshua E.

    2017-01-01

    respect to their mass, size, and material composition needs to be summarized in a form that can be used in MMOD analysis. The mechanism that brings these fragment traits into MMOD analysis is through ballistic limit equations (BLE) that have been developed largely for a few types of materials1. As a BLE provides the failure threshold for a shield or spacecraft component based on parameters such as the projectile impact velocity and size, and the target's materials, thickness, and configuration, it is used to design protective shields for spacecraft such as Whipple shields (WS) to an acceptable risk level. The majority of experiments and simulations to test shields and validate BLEs have, heretofore, largely used spheres as the impactor, not properly reflecting the irregular shapes of MMOD. This shortfall has motivated a numerical impact analysis study of HVI involving non-spherical geometries to identify key parameters that environment models should provide.

  1. Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles

    DTIC Science & Technology

    2010-03-01

    Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles by Gene R. Cooper ARL-TR-5118 March 2010...Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles Gene R. Cooper Weapons and Materials Research Directorate, ARL...September 2007 4. TITLE AND SUBTITLE Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles 5a. CONTRACT NUMBER 5b. GRANT

  2. Considerations of Nose Shape for Thin-Walled Projectile Penetrating Double Reinforced Concrete

    DTIC Science & Technology

    2008-07-01

    experiments were fabricated by ARL from Vascomax 300 maraging steel [6]. A photograph of this projectile is shown in Figure 1. Six projectiles...Experiments The CRH=2 projectiles used in the second set of experiments were also fabricated from Vascomax 300 maraging steel . A photograph of the CRH=2...In the Zapotec simulations, the concrete target material was modeled with a brittle fracture kinetics model [4]. The experiments included steel

  3. A Terminal Guidance Model for Smart Projectiles Employing a Semi-Active Laser Seeker

    DTIC Science & Technology

    2011-08-01

    A Terminal Guidance Model for Smart Projectiles Employing a Semi-Active Laser Seeker by Luke S. Strohm ARL-TR-5654 August 2011...Terminal Guidance Model for Smart Projectiles Employing a Semi-Active Laser Seeker Luke S. Strohm Weapons and Materials Research Directorate...January 2010–31 March 2011 4. TITLE AND SUBTITLE A Terminal Guidance Model for Smart Projectiles Employing a Semi-Active Laser Seeker 5a. CONTRACT

  4. The drag force on a subsonic projectile in a fluid complex plasma

    SciTech Connect

    Ivlev, A. V.; Zhukhovitskii, D. I.

    2012-09-15

    The incompressible Navier-Stokes equation is employed to describe a subsonic particle flow induced in complex plasmas by a moving projectile. Drag forces acting on the projectile in different flow regimes are calculated. It is shown that, along with the regular neutral gas drag, there is an additional force exerted on the projectile due to dissipation in the surrounding particle fluid. This additional force provides significant contribution to the total drag.

  5. Production of exotic nuclei in projectile fragmentation at relativistic and Fermi energies

    NASA Astrophysics Data System (ADS)

    Ogul, R.; Ergun, A.; Buyukcizmeci, N.

    2017-02-01

    Isotopic distributions of projectile fragmentation in peripheral heavy ion collisions of 86Kr on 112Sn are calculated within the statistical multifragmentation model. Obtained data are compared to the experimental cross section measurements. We show the enhancement in the production of neutron-rich isotopes close to the projectile, observed in the experiments. Our results show the universality of the limitation of the excitation energy induced in the projectile residues.

  6. On ballistic parameters of less lethal projectiles influencing the severity of thoracic blunt impacts.

    PubMed

    Pavier, Julien; Langlet, André; Eches, Nicolas; Jacquet, Jean-François

    2015-01-01

    The development and safety certification of less lethal projectiles require an understanding of the influence of projectile parameters on projectile-chest interaction and on the resulting terminal effect. Several energy-based criteria have been developed for chest injury assessment. Many studies consider kinetic energy (KE) or energy density as the only projectile parameter influencing terminal effect. In a common KE range (100-160 J), analysis of the firing tests of two 40 mm projectiles of different masses on animal surrogates has been made in order to investigate the severity of the injuries in the thoracic region. Experimental results have shown that KE and calibre are not sufficient to discriminate between the two projectiles as regards their injury potential. Parameters, such as momentum, shape and impedance, influence the projectile-chest interaction and terminal effect. A simplified finite element model of projectile-structure interaction confirms the experimental tendencies. Within the range of ballistic parameters used, it has been demonstrated that maximum thoracic deflection is a useful parameter to predict the skeletal level of injury, and it largely depends on the projectile pre-impact momentum. However, numerical simulations show that these results are merely valid for the experimental conditions used and cannot be generalised. Nevertheless, the transmitted impulse seems to be a more general factor governing the thorax deflection.

  7. Influence of Nutation of the Projectile on Fracture of the Anisotropic Target

    NASA Astrophysics Data System (ADS)

    Radchenko, Andrey; Radchenko, Pavel

    2012-02-01

    In actual practice the direction of the vector of velocity, as a rule, doesn't coincide with the direction of a longitudinal axis of a moving body, and makes with it some angle named the angle of nutation. The nutation influence on process of interaction of the projectile and a target is defined not only by its size, but also geometrical and kinematic parameters of the process. It is obvious that for a case of the prolonged projectile the angle of nutation influence is more considerable, than for the compact projectile because in this case the nutation angle presence changes not only a picture of strain-stress state of interaction bodies, but also leads to loss of stability in the projectile. The three-dimensional problem of oblique high-velocity interaction of the prolonged cylindrical projectile from steel with an anisotropic target from organoplastic is considered. Lengthening of the projectile makes from 15 to 30 calibers, the range of initial velocities of the projectile from 700 to 3000 m/sec is researched. Modeling is carried out numerically by a method of finite elements. Influence of nutation angle and rotation of the projectile on fracture of target and stability of the projectile is analyzed.

  8. Numerical Study on the High-Speed Water-Entry of Hemispherical and Ogival Projectiles

    NASA Astrophysics Data System (ADS)

    Guo, Zitao; Zhang, Wei; Wei, Gang; Xiao, Xinke

    2011-06-01

    The water entry problem is considered as a classic problem which has a long research history, however, projectile water entry is still a difficult problem that has not been completely solved. In this paper, the effects of the projectile nose shape on laws of velocity attenuations for all projectiles were studied by a series of numerical simulations using the AUTODYN-2D. The projectiles including the hemispherical and ogival projectiles with three CRH (caliber-radius-head) have been set to a constant mass and their water-entry velocities were in the range of 300m/s ~ 1500m/s. The result showed that the drag coefficient increases monotonically with increasing initial velocities for an identical projectile but decrease with the increase of the CRH for ogival projectiles at the same velocity. It was found that the relation between the drag coefficient and the initial velocities for all projectiles can be expressed as a general equation. Correspondingly, the relation between the drag coefficient and the CRH value of ogival projectiles was also presented in this paper.

  9. Analysis of electrostatic charge on small-arms projectiles

    NASA Astrophysics Data System (ADS)

    Vinci, Stephen; Zhu, Jack; Hull, David

    2012-06-01

    Triboelectric (frictional) and combustion processes impart electrostatic charge on projectiles as they are fired. Additional charging and discharging processes alter the magnitude of charge in-flight and are complex functions of a plethora of environmental conditions. There is an interest in using electric-field sensors to help detect and track projectiles in counter-sniper and projectile ranging systems. These applications require knowledge of the quantity of charge, as well as the sensitivity of electric-field sensors. The U.S. Army Research Laboratory (ARL) took part in multiple experiments at Aberdeen Proving Grounds (APG) to simulate a battlefield-like environment. Sensors were placed in strategic locations along the bullets' paths and recorded the electric-field signatures of charged small-arms bullets. The focus of this effort was to analyze the electric-field signatures collected during the APG experiment in order to estimate electrostatic charge on the bullets. Algorithms were written to extract electric-field bullet signatures from raw data; these signatures were further processed to estimate the miss distance, velocity and charge. The estimates of range and velocity were compared to similar estimates from acoustic signatures for verification. Ground-truth Global Positioning System (GPS) data were used to independently calculate ranges, azimuths, and miss distances. Signatures were filtered to remove clutter signals from power lines and other unwanted field sources. Closed-form equations were then fitted to the collected signatures to retrieve estimates for the magnitude of charge on the bullets. Test data, collected with sensors placed on a wall, showed enhanced E-field intensity. A Method of Moments (MoM) model of the wall was created to improve signature simulation. Detectable charges on bullets were found to exist in the 1 pC to 1 nC (10-12 - 10-9 C) range. Relationships between estimated charge, gun type, bullet caliber, noise thresholds and number

  10. Interface Defeat of Long-Rod Projectiles by Ceramic Armor

    DTIC Science & Technology

    2005-09-01

    confinement was launched against a long, stationary rod of tungsten (W) heavy alloy (WHA). The long rod was observed by flash radiography as it interacted...demountable x-ray tubes with 2-mm-diameter anodes, were introduced later for greater resolution of detail. A tungsten wire fiducial in the moving...machined from full-scale projectiles, 33 mm in diameter, that had been swaged to reduce their cross-sectional area by 24%. The rods were 1.58 mm in

  11. Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene

    NASA Astrophysics Data System (ADS)

    Bonner, David

    2010-05-01

    Connecting physics concepts with real-world events allows students to establish a strong conceptual foundation. When such events are particularly interesting to students, it can greatly impact their engagement and enthusiasm in an activity. Activities that involve studying real-world events of high interest can provide students a long-lasting understanding and positive memorable experiences, both of which heighten the learning experiences of those students. One such activity, described in depth in this paper, utilizes a murder mystery and crime scene investigation as an application of basic projectile motion.

  12. Development of Subcaliber Projectiles for the Hispano-Suiza Gun

    DTIC Science & Technology

    1943-11-01

    SUBOALIBER PRO JECTILES FOR THE HISPANO- SUIZA GUN 𔃺TECMEPUC-lT, TJ 0 ABERDEEN P 𔃺i7 CiiTDM. ST~lU-TL A T, 1?7,, by CTa * UG r C. L. Critchfield I P I, 2...FOR THE HISPANO- SUIZA GUN by C. L. Critchfield and J. McG. Millar TECiN•IcAr LITPP.py ABERDE " , :PT’- , Approved on November 12, 1943 for submission...Hispano- Suiza gun ....... 6 2. 20-ram sabot-projectiles of Series B and C ......... ... 12 3. Type C2 at h ft from the muzzle . .......... . 13 h. The 20

  13. Comment on ‘Wind-influenced projectile motion’

    NASA Astrophysics Data System (ADS)

    Winther Andersen, Poul

    2015-11-01

    We comment on the article ‘Wind-influenced projectile motion’ by Bernardo et al (2015 Eur. J. Phys. 36 025016) where they examine the trajectory of a particle that is subjected to gravity and a linear air resistance plus the influence from the wind. They find by using the Lambert W function that the particle's trajectory for a special angle, the critical angle {θ }{{C}}, between the initial velocity and the horizontal is part of a straight line. In this comment we will show that this result can be proved without using the Lambert W function which is not that well known to beginning students of physics.

  14. Ionization of water molecules by fast charged projectiles

    SciTech Connect

    Dubois, A.; Carniato, S.; Fainstein, P. D.; Hansen, J. P.

    2011-07-15

    Single-ionization cross sections of water molecules colliding with fast protons are calculated from lowest-order perturbation theory by taking all electrons and molecular orientations consistently into account. Explicit analytical formulas based on the peaking approximation are obtained for differential ionization cross sections with the partial contribution from the various electron orbitals accounted for. The results, which are in very good agreement with total and partial cross sections at high electron and projectile energies, display a strong variation on molecular orientation and molecular orbitals.

  15. On the Viability of Magnetometer-Based Projectile Orientation Measurements

    DTIC Science & Technology

    2007-11-01

    systems are typically used when one is dealing with inertial navigation problems for gun - and tube-launched projectiles. The first system is a...These devices have sensitivities on the order of 10 μGauss and a range of ±6 Gauss . The earth’s field 7 varies between approximately 0.2 and...0.6 Gauss . When we do the math, unless the angle between the spin axis and the field vector is less than 0.0029 degree (i.e., sin-1 [.00001/.2

  16. Stagnation pressure activated fuel release mechanism for hypersonic projectiles

    DOEpatents

    Cartland, Harry E.; Hunter, John W.

    2003-01-01

    A propulsion-assisted projectile has a body, a cowl forming a combustion section and a nozzle section. The body has a fuel reservoir within a central portion of the body, and a fuel activation system located along the central axis of the body and having a portion of the fuel activation system within the fuel reservoir. The fuel activation system has a fuel release piston with a forward sealing member where the fuel release piston is adapted to be moved when the forward sealing member is impacted with an air flow, and an air-flow channel adapted to conduct ambient air during flight to the fuel release piston.

  17. Granular Medium Impacted by a Projectile: Experiment and Model

    NASA Astrophysics Data System (ADS)

    Crassous, J.; Valance, A.

    2009-06-01

    We present an experiment and a simple model of a granular projectile on a granular medium. Experiment consists in impacting an half space of PVC beads with a single bead. Numerous beads are then ejected around the impact point. The loci of ejection and velocities of the ejecta were measured. The experimental data were compared with the predictions of a simple discrete model. In this model, the energy is transferred from grain to grain on a frozen disordered medium following the law of binary collisions. This theoretical description is in remarkable agreement with the experimental observations. Besides, the present model provides a clear picture of the mechanism of energy propagation.

  18. Ballistic Impact of Braided Composites With a Soft Projectile

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw; Xie, Ming; Braley, Mike

    2004-01-01

    Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Use of a soft projectile allows a large amount of kinetic energy to be transferred into strain energy in the target before penetration occurs. Failure modes were identified for flat aluminum plates and for flat composite plates made from a triaxial braid having a quasi-isotropic fiber architecture with fibers in the 0 and +/- 60 deg. directions. For the aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate to the fixed boundaries. For the composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/- 60 deg. fiber directions until triangular flaps opened to allow the projectile to pass through the plate. The damage size was only slightly larger than the initial impact area. It was difficult to avoid slipping of the fixed edges of the plates during impact, and slipping was shown to have a large effect on the penetration threshold. Failure modes were also identified for composite half-rings fabricated with the 0 deg. fibers aligned circumferentially. Slipping of the edges was not a problem in the half-ring tests. For the composite half-rings, fiber tensile failure also occurred in the back ply. However, cracks initially propagated from this site in a direction transverse to the 0 deg. fibers. The cracks then turned to follow the +/- 60 deg. fibers for a short distance before turning again to follow 0 deg. fibers until two approximately rectangular flaps opened to allow the projectile to pass through the plate. The damage size in the composite half-rings was also only slightly larger than the initial impact area. Cracks did not propagate to the boundaries, and no delamination was observed. The damage tolerance demonstrated by the quasi-isotropic triaxial braid composites

  19. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  20. Real-time estimation of projectile roll angle using magnetometers: in-lab experimental validation

    NASA Astrophysics Data System (ADS)

    Changey, S.; Pecheur, E.; Wey, P.; Sommer, E.

    2013-12-01

    The knowledge of the roll angle of a projectile is decisive to apply guidance and control law. For example, the goal of ISL's project GSP (Guided Supersonic Projectile) is to change the flight path of an airdefence projectile in order to correct the aim error due to the target manoeuvres. The originality of the concept is based on pyrotechnical actuators and onboard sensors which control the angular motion of the projectile. First of all, the control of the actuators requires the precise control of the roll angle of the projectile. To estimate the roll angle of the projectile, two magnetometers are embedded in the projectile to measure the projection of the Earth magnetic field along radial axes of the projectiles. Then, an extended Kalman filter (EKF) is used to compute the roll angle estimation. As the rolling frequency of the GSP is about 22 Hz, it was easy to test the navigation algorithm in laboratory. In a previous paper [1], the In-Lab demonstration of this concept showed that the roll angle estimation was possible with an accuracy of about 1◦ . In this paper, the demonstration is extended to high-speed roll rate, up to 1000 Hz. Thus, two magnetometers, a DSP (Digital Signal Processor) and a LED (Light Eminent Diode), are rotated using a pneumatic motor; the DSP runs an EKF and a guidance algorithm to compute the trigger times of the LED. By using a high-speed camera, the accuracy of the method can be observed and improved.

  1. An Analytic Approach to Projectile Motion in a Linear Resisting Medium

    ERIC Educational Resources Information Center

    Stewart, Sean M.

    2006-01-01

    The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…

  2. The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field

    NASA Technical Reports Server (NTRS)

    Anderson, Jennifer L. B.; Schultz, P. H.

    2005-01-01

    The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.

  3. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    SciTech Connect

    Shama, Mahesh K.; Panda, R. N.; Sharma, Manoj K.; Patra, S. K.

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  4. Spreadsheet Application Showing the Proper Elevation Angle, Points of Shot and Impact of a Projectile

    ERIC Educational Resources Information Center

    Benacka, Jan

    2015-01-01

    This paper provides the formula for the elevation angle at which a projectile has to be fired in a vacuum from a general position to hit a target at a given distance. A spreadsheet application that models the trajectory is presented, and the problem of finding the points of shot and impact of a projectile moving in a vacuum if three points of the…

  5. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics.

    PubMed

    Kohanoff, Jorge; Artacho, Emilio

    2017-01-01

    Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile's energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules.

  6. Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory

    ERIC Educational Resources Information Center

    Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.

    2009-01-01

    Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…

  7. Magnetic induction system for two-stage gun projectile velocity measurements

    SciTech Connect

    Moody, R L; Konrad, C H

    1984-05-01

    A magnetic induction technique for measuring projectile velocities has been implemented on Sandia's two-stage light gas gun. The system has been designed to allow for projectile velocity measurements to an accuracy of approx. 0.2 percent. The velocity system has been successfully tested in a velocity range of 3.5 km/s to 6.5 km/s.

  8. Solution to Projectile Motion with Quadratic Drag and Graphing the Trajectory in Spreadsheets

    ERIC Educational Resources Information Center

    Benacka, Jan

    2010-01-01

    This note gives the analytical solution to projectile motion with quadratic drag by decomposing the velocity vector to "x," "y" coordinate directions. The solution is given by definite integrals. First, the impact angle is estimated from above, then the projectile coordinates are computed, and the trajectory is graphed at various launch angles and…

  9. Fiber-interferometric detection of gun-launched projectiles

    NASA Astrophysics Data System (ADS)

    Goodwin, Peter M.; Marshall, Bruce R.; Gustavsen, Richard L.; Lang, John M.; Pacheco, Adam H.; Loomis, Eric N.; Dattelbaum, Dana M.

    2017-01-01

    We are developing a new diagnostic useful for the non-invasive detection of projectile passage in the launch tube of a gas gun. The sensing element consists of one or more turns of single-mode optical fiber that is epoxy-bonded around the external circumference of the launch tube. The hoop strain induced in the launch tube by the passage of the projectile causes a momentary expansion of the fiber loop. This transient change in path length is detected with high sensitivity using a fiber optic-based interferometer developed by the NSTec Special Technologies Laboratory. We have fielded this new diagnostic, along with fiber optic Bragg grating (FBG) strain gauges we previously used for this purpose, on a variety of gas guns used for shock compression studies at Los Alamos and Sandia National Laboratories. We anticipate that, when coupled with a broad-range analog demodulator circuit, the fiber optic interferometer will have improved dynamic range over that of the FBG strain gauge approach. Moreover, in contrast to the FBG strain gauge which is somewhat temperature sensitive, the interferometric approach requires no alignment immediately prior to the experiment and is therefore easier to implement. Both approaches provide early, pre-event signals useful for triggering high-latency diagnostics.

  10. Target and Projectile: Material Effects on Crater Excavation and Growth

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Burleson, T.; Cintala, Mark J.

    2010-01-01

    Scaling relationships allow the initial conditions of an impact to be related to the excavation flow and final crater size and have proven useful in understanding the various processes that lead to the formation of a planetary-scale crater. In addition, they can be examined and tested through laboratory experiments in which the initial conditions of the impact are known and ejecta kinematics and final crater morphometry are measured directly. Current scaling relationships are based on a point-source assumption and treat the target material as a continuous medium; however, in planetary-scale impacts, this may not always be the case. Fragments buried in a megaregolith, for instance, could easily approach or exceed the dimensions of the impactor; rubble-pile asteroids could present similar, if not greater, structural complexity. Experiments allow exploration into the effects of target material properties and projectile deformation style on crater excavation and dimensions. This contribution examines two of these properties: (1) the deformation style of the projectile, ductile (aluminum) or brittle (soda-lime glass) and (2) the grain size of the target material, 0.5-1 mm vs. 1-3 mm sand.

  11. Improved empirical parameterization for projectile fragmentation cross sections

    NASA Astrophysics Data System (ADS)

    Mei, B.

    2017-03-01

    A new empirical parametrization is developed for calculating the fragment cross sections in projectile fragmentation reactions at high energies (>100 MeV/nucleon). The new parametrization, FRACS, consists of two main parts, i.e., the mass yield and the isobaric distribution, on the basis of previous parametrizations. The formalism for the mass yield is improved to describe the target and the projectile energy dependences observed in measured fragmentation cross sections. The parametrization of the isobaric distribution is also modified to reproduce recent experimental data. Furthermore, an additional term is proposed and first implemented in the FRACS parametrization to account for the evident odd-even staggering effect observed in many experimental cross sections. Comparisons with extensive cross sections measured in various fragmentation reactions reveal that FRACS is in much better agreement with experimental data and can reproduce measured cross sections in most cases within a factor of 1.84, which is a much smaller rms deviation as compared to that of the recent parametrization EPAX3.

  12. Fiber-interferometric detection of gun-launched projectiles

    NASA Astrophysics Data System (ADS)

    Goodwin, Peter; Marshall, Bruce; Gustavsen, Richard; Lang, John; Pacheco, Adam; Loomis, Eric; Dattelbaum, Dana

    2015-06-01

    We are developing a new diagnostic useful for the non-invasive detection of projectile passage in the launch tube of a gas gun. The sensing element consists of a fiber-loop that is epoxy-bonded around the external circumference of launch tube. The hoop strain induced in the launch tube by the passage of the projectile causes a momentary expansion of the fiber loop. This transient change in path length is detected with high sensitivity using a fiber-optic based interferometer developed by the NSTec Special Technologies Laboratory. We have fielded this new diagnostic, along with fiber-Bragg grating (FBG) strain gauges we previously used for this purpose, on a variety of light gas guns used for shock compression studies at Los Alamos. Our preliminary results show that the fiber interferometer has improved sensitivity and dynamic range compared that of the FBG strain gauge approach. Moreover, the interferometric approach requires no hands-on alignment immediately prior to the experiment and is therefore easier to implement. Both approaches provide early, pre-event signals useful for triggering high-latency diagnostics.

  13. Theta gun, a multistage, coaxial, magnetic induction projectile accelerator

    NASA Astrophysics Data System (ADS)

    Burgess, T. J.; Duggin, B. W.; Cowan, M., Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a theta gun to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capacitor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun velocity breakeven in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated.

  14. Earliest Stone-Tipped Projectiles from the Ethiopian Rift Date to >279,000 Years Ago

    PubMed Central

    Sahle, Yonatan; Hutchings, W. Karl; Braun, David R.; Sealy, Judith C.; Morgan, Leah E.; Negash, Agazi; Atnafu, Balemwal

    2013-01-01

    Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology. PMID:24236011

  15. On the Resistance of the Air at High Speeds and on the Automatic Rotation of Projectiles

    NASA Technical Reports Server (NTRS)

    Riabouchinski, D

    1921-01-01

    Here, the laws governing the flow of a compressible fluid through an opening in a thin wall are applied to the resistance of the air at high speeds, especially as applied to the automatic rotation of projectiles. The instability which we observe in projectiles shot into the air without being given a moment of rotation about their axis of symmetry, or without stabilizing planes, is a phenomenon of automatic rotation. It is noted that we can prevent this phenomenon of automatic rotation by bringing the center of gravity sufficiently near one end, or by fitting the projectile with stabilizing planes or a tail. The automatic rotation of projectiles is due to the suction produced by the systematic formation of vortices behind the extremity of the projectile moving with the wind.

  16. Impact Interaction of Projectile with Conducting Wall at the Presence of Electric Current

    NASA Astrophysics Data System (ADS)

    Chemerys, Volodymyr T.; Raychenko, Aleksandr I.; Karpinos, Boris S.

    2002-07-01

    The paper introduces with schemes of possible electromagnetic armor augmentation. The interaction of projectile with a main wall of target after penetration across the pre-defense layer is of interest here. The same problem is of interest for the current-carrying elements of electric guns. The theoretical analysis is done in the paper for the impact when the kinetic energy of projectile is enough to create the liquid layer in the crater of the wall's metal. Spherical head of projectile and right angle of inclination have been taken for consideration. The solution of problem for the liquid layer of metal around the projectile head has resulted a reduction of the resistant properties of wall material under current influence, in view of electromagnetic pressure appearance, what is directed towards the wall likely the projectile velocity vector.

  17. Interactions of relativistic neon to nickel projectiles in hydrogen, elemental production cross sections

    NASA Astrophysics Data System (ADS)

    Knott, C. N.; Albergo, S.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    1996-01-01

    This paper reports the elemental production cross sections for 17 projectile-energy combinations with energies between 338 and 894 MeV/nucleon interacting in a liquid hydrogen target. These results were obtained from two runs at the LBL Bevalac using projectiles ranging from 22Ne to 58Ni. Cross sections were measured for all fragment elements with charges greater than or equal to half the charge of the projectile. The results show that, over the energy and ion range investigated, the general decrease in cross section with decreasing fragment charge is strongly modified by the isospin of the projectile ion. Significant additional modifications of the cross sections due to the internal structure of the nucleus have also been seen. These include both pairing and shell effects. Differences in the cross sections due to the differing energies of the projectile are also considerable.

  18. Impact response of graphite-epoxy flat laminates using projectiles that simulate aircraft engine encounters

    NASA Technical Reports Server (NTRS)

    Preston, J. L., Jr.; Cook, T. S.

    1975-01-01

    An investigation of the response of a graphite-epoxy material to foreign object impact was made by impacting spherical projectiles of gelatin, ice, and steel normally on flat panels. The observed damage was classified as transverse (stress wave delamination and cracking), penetrative, or structural (gross failure): the minimum, or threshold, velocity to cause each class of damage was established as a function of projectile characteristics. Steel projectiles had the lowest transverse damage threshold, followed by gelatin and ice. Making use of the threshold velocities and assuming that the normal component of velocity produces the damage in nonnormal impacts, a set of impact angles and velocities was established for each projectile material which would result in damage to composite fan blades. Analysis of the operating parameters of a typical turbine fan blade shows that small steel projectiles are most likely to cause delamination and penetration damage to unprotected graphite-epoxy composite fan blades.

  19. Projectile acceleration in a single-stage gun at breech pressures below 50 MPa

    NASA Astrophysics Data System (ADS)

    Sasoh, A.; Ohba, S.; Takayama, K.

    Experimental studies were carried out to investigate projectile acceleration in a single-stage gun at breech pressures below 50 MPa. The gun was driven by firing either liquid or solid propellant. In-bore projectile velocity was continuously recorded using the well-known, precise VISAR interferometer technique so that accurate projectile acceleration data could be deduced. Both the attained projectile acceleration and muzzle exit velocity depend upon the charge-to-mass ratio and the pressure at which the blow-out disk ruptures. The results obtained from these experiments render information on the interplay between propellant combustion and projectile acceleration for low in-bore pressure regimes, and they provide the input data required for adequate numerical simulation.

  20. Acceleration of mini-projectiles using a small-caliber electrothermal gun for fusion applications

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1995-12-31

    The small-caliber electrothermal plasma gun SIRENS has been used to accelerate mini-projectiles to demonstrate the feasibility of using such guns as a pellet injector for fueling of future fusion reactors. The gun has been modified to accommodate acceleration of plastic projectiles to simulate frozen hydrogenic pellets required to fuel fusion reactors. Barrel sections are equipped with diagnostics for velocity and position of the projectile. The length of the acceleration path could be varied between 15 and 45 cm. The pulse forming network (PFN) can provide up to 100 kJ discharge energy over 0.1 to 1.0 ms pulse duration. The projectile velocities have been measured via a set of break wires. The ODIN code has been modified to account for the projectile mass, acceleration and friction. Plasma parameters compared to code results are discussed in detail.

  1. Design and performance of Sandia's contactless coilgun for 50 mm projectiles

    NASA Astrophysics Data System (ADS)

    Kaye, Ronald J.; Cnare, Eugene C.; Cowan, M.; Duggin, Billy W.; Lipinski, Ronald J.; Marder, Barry M.; Douglas, Gary M.; Shimp, Kenneth J.

    1991-10-01

    A multi-stage, contactless coilgun is being designed to demonstrate the applicability of this technology to accelerate nominal 50 mm (2 inch) diameter projectiles to velocities of 3 km/s. Forty stages of this design (Phase 1 coilgun) will provide a testbed for coil designs and system components while accelerating 200 to 400 gram projectiles to 1 km/s. We have successfully qualified the Phase 1 gun by operating 40 stages at half energy (10 kJ stored/stage) accelerating 340 gram, room-temperature, aluminum-armature projectiles to 406 m/s. We expect to accelerate 200 gram projectiles cooled to -196 C to three times this velocity when operating at full energy. This paper describes the design and performance of the Phase 1 coilgun and includes discussion of coil development, projectile design, capacitor banks, firing system, and integration.

  2. Comparative Evaluation of Potentially Radiolucent Projectile Components by Radiographs and Computed Tomography.

    PubMed

    Miller, Catherine R; Haag, Michael; Gerrard, Chandra; Hatch, Gary M; Elifritz, Jamie; Simmons, Michael C; Lathrop, Sarah; Nolte, Kurt B

    2016-11-01

    Projectile components that are traditionally radiolucent can be of considerable importance in determination of weapon type and caliber, but they are often missed on evaluation of postmortem radiographs. We hypothesized that these components would be significantly better visualized by evaluation of computed tomography (CT) scans compared to the practice standard of radiography alone. In this project, potentially radiolucent projectile components were both pulled apart and fired, and the radiolucent components were recovered. These components were embedded in blocks of ballistics gelatin and were imaged using both radiography and CT. The scans were evaluated by three blinded, board-certified radiologists for the presence/absence of projectile components and true-negative regions in each block. If a radiologist indicated visualization of a projectile component, they were further requested to describe their observation. It was found that traditionally radiolucent projectile components are not significantly more often identified on CT scans than radiography (p < 0.05).

  3. Numerical Investigation on the High-Speed Water-Entry Behaviors of Cylindrical, Hemispherical and Conical Projectiles

    NASA Astrophysics Data System (ADS)

    Guo, Zi-Tao; Zhang, Wei; Xiao, Xin-Ke

    2009-06-01

    The water entry problem is considered as a classic problem which has a research history of more than 70 years, the water-entry process for projectiles with different nose will be significant for related application and experimental design. In this paper, a series of numerical simulations were conducted to study the water-entry behaviors of cylindrical, hemispherical and conical projectiles using the coupled Lagrange-Euler technology in hydro-code AUTODYN-2D. The detailed cavity expansion process and the cavity characteristics of three projectiles in the early stages of water-entry were obtained. The effects of the projectile nose shape and the projectile velocity on the cavity shapes were studied. Simultaneously, the laws of velocity attenuations for three projectiles were also proposed in this study. The results show that the influence of the projectile velocity on the cavity thickness is much larger than that of the projectile nose shapes, but compared with the effect on the cavity length, the nose shape influence shows little difference with that of the impact velocity. For an identical initial projectile velocity, the cylindrical projectile decays the fastest underwater followed by conical projectiles and hemispherical projectiles.

  4. Time-resolved soft-x-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Brown, G V; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Szymkowiak, A

    2005-11-11

    A microcalorimeter with event mode capability for time-resolved soft-x-ray spectroscopy, and a high-resolution flat-field EUV spectrometer have been employed at the Livermore EBIT-I electron beam ion trap for observations and wavelength measurements of M1, E2, and M3 decays of long-lived levels in the Ni-like ions Xe{sup 26+}, Cs{sup 27+}, and Ba{sup 28+}. Of particular interest is the lowest excited level, 3d{sup 9}4s {sup 3}D{sub 3}, which can only decay via a magnetic octupole (M3) transition. For this level in Xe an excitation energy of (590.40 {+-} 0.03eV) and a level lifetime of (11.5 {+-} 0.5 ms) have been determined.

  5. Measuring the Effects of Lift and Drag on Projectile Motion

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-02-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms-1 (89.5 mph), it experiences a drag force of about 1.5 N. The gravitational force on the ball 1.42 N. Nevertheless, the trajectory of a baseball pitched without spin is not strongly affected by the drag force. Because the ball is relatively heavy and the flight distance is relatively small (about 60 ft), the drag force reduces the ball speed by only about 10% by the time it reaches the batter. As a result, the time taken for the ball to reach the batter is only about 5% longer than in a vacuum, and the actual trajectory is also very similar.2

  6. Adolescents' cognition of projectile motion: a pilot study.

    PubMed

    Zhao, Jun-Yan; Yu, Guoliang

    2009-04-01

    Previous work on the development of intuitive knowledge about projectile motion has shown a dissociation between action knowledge expressed on an action task and conceptual knowledge expressed on a judgment task for young children. The research investigated the generality of dissociation for adolescents. On the action task, participants were asked to swing Ball A of a bifilar pendulum to some height then release it to collide with Ball B, which was projected to hit a target. On the judgment task, participants indicated orally the desired swing angle at which Ball A should be released so that Ball B would strike a target. Unlike previous findings with adults, the adolescents showed conceptual difficulties on the judgment task and well-developed action knowledge on the action task, which suggests dissociation between the two knowledge systems is also present among adolescents. The result further supports the hypothesis that the two knowledge systems follow different developmental trajectories and at different speeds.

  7. Lightweight Exoatmospheric Projectile (LEAP) test program. Supplemental environmental assessment

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The proposed action is to modify previously planned Lightweight Exoatmospheric Projectile (LEAP) Test Program activities (LEAP EA, July 1991, Ref 32) at White Sands Missile Range (WSMR), New Mexico; Kwajalein Missile Range (KMR), U.S. Army Kwajalein Atoll (USAKA); and Wake Island. The proposed action includes modifications of flight trajectories for LEAP flights 3, 5, and 6. Two additional flights, LEAP-X and LEAP-7 have been added to the program. LEAP-X is a single rocket test flight from KMR and LEAP-7 is a two-rocket test flight from KMR and Wake Island. Component/assembly ground tests will take place at Orbital Sciences Corporation (OSC), Space Data Division (SDD), Chandler, Arizona; Phillips Laboratory, Edwards Air Force Base, California; Rocketdyne Division of Rockwell International; Boeing Aerospace and Electronics, Kent, Washington; Hughes Aircraft Corporation, Missile Systems Group, Canoga Park California; Aerojet, Sacramento, California; and Thiokol Corporation, Elkton, Maryland.

  8. OPTIMIZING TRANSPARENT ARMOR DESIGN SUBJECT TO PROJECTILE IMPACT CONDITIONS

    SciTech Connect

    Sun, Xin; Lai, Canhai; Gorsich, Tara; Templeton, Douglas W.

    2009-03-01

    Design and manufacturing of transparent armor have been historically carried out using experimental approaches. In this study, we use advanced computational modeling tools to perform virtual design evaluations of transparent armor systems under different projectile impact conditions. AHPCRC developed modeling software EPIC’06 [1] is used in predicting the penetration resistance of transparent armor systems. LaGrangian-based finite element analyses combined with particle dynamics are used to simulate the damage initiation and propagation process for the armor system under impact conditions. It is found that a 1-parameter single state model can be used to predict the impact penetration depth with relatively good accuracy, suggesting that the finely comminuted glass particles follow the behavior similar to a viscous fluid. Even though the intact strength of borosilicate and soda lime glass are different, the same fractured strength can be used for both glasses to capture the penetration depth.

  9. Exterior Ballistics of a Projectile in Vertical Flight

    DTIC Science & Technology

    1974-11-01

    11I: -. 2305 .340x1053W 990fps I TT +.106 0 0 o,051I I I 400 800 1200 1600 2000 2400 2800 VELOCITY (fps) Figure 3. Coefficient of Drag Versus...relationships 0 0 0 0 in dounward time of flights is reversed 5,000 3.033 3.065 3.098 with the lower drag values requiring a 10,000 6.675 6.824 6.984...5,000 86.862 82.701 79.793 tivity limits for the assumed drag scatter. 0 94.361 90,250 87.393 Thus, no inference concerning projectile *"a" Values In

  10. 3D finite element simulations of high velocity projectile impact

    NASA Astrophysics Data System (ADS)

    Ožbolt, Joško; İrhan, Barış; Ruta, Daniela

    2015-09-01

    An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.

  11. Counter sniper: a small projectile and gunfire localization system

    NASA Astrophysics Data System (ADS)

    Moore, Fritz; Leslie, Daniel H.; Hyman, Howard; Squire, Mark D.

    2001-02-01

    This paper describes a prototype sensor system for detection and 3D tracking of bullets and other small projectiles. The intended purpose of the system is to rapidly locate a sniper to a few meters accuracy at ranges to 1 km in three dimensions. The system detects and tracks a single bullet, and based on the measured 3D trajectory, backtracks to the sniper location. Details of the system are describe including optics, infrared camera, scanning system, laser ranging system, computer control and electronics, and data reduction algorithm. The system has been field tested against bullets, and has been shown to locate a sniper to a few meters accuracy at 500 meters range. Plans for improving tracking performance are also described.

  12. Shock initiation of bare and covered explosives by projectile impact

    SciTech Connect

    Bahl, K L; Vantine, H C; Weingart, R C

    1981-04-22

    Shock initiation thresholds of bare and covered PBX-9404 and an HMX/TATB explosive called RX-26-AF were measured. The shocks were produced by the impact of flat-nosed and round-nosed steel projectiles in the velocity range of 0.5 to 2.2 km/s. Three types of coverings were used, 2 or 6 mm of tantalum, and a composite of aluminum and plastic. An Eulerian code containing material-strength and explosive-initiation models was used to evaluate our ability to calculate the shock initiation thresholds. These code calculations agreed well with the flat-nosed experimental data, but not so well with the round-nosed data.

  13. Projectile Two-dimensional Coordinate Measurement Method Based on Optical Fiber Coding Fire and its Coordinate Distribution Probability

    NASA Astrophysics Data System (ADS)

    Li, Hanshan; Lei, Zhiyong

    2013-01-01

    To improve projectile coordinate measurement precision in fire measurement system, this paper introduces the optical fiber coding fire measurement method and principle, sets up their measurement model, and analyzes coordinate errors by using the differential method. To study the projectile coordinate position distribution, using the mathematical statistics hypothesis method to analyze their distributing law, firing dispersion and probability of projectile shooting the object center were put under study. The results show that exponential distribution testing is relatively reasonable to ensure projectile position distribution on the given significance level. Through experimentation and calculation, the optical fiber coding fire measurement method is scientific and feasible, which can gain accurate projectile coordinate position.

  14. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics

    PubMed Central

    Kohanoff, Jorge

    2017-01-01

    Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile’s energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules. PMID:28267804

  15. Techniques for Transition and Surface Temperature Measurements on Projectiles at Hypersonic Velocities- A Status Report

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2005-01-01

    A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.

  16. Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas; Wirth, Richard; Berndt, Jasper

    2014-05-01

    The possibility of fractionation processes between projectile and target matter is critical with regard to the classification of the impactor type from geochemical analysis of impactites from natural craters. Here we present results of five hypervelocity MEMIN impact experiments (Poelchau et al., 2013) using the Cr-V-Co-Mo-W-rich steel D290-1 as projectile and two different silica-rich lithologies (Seeberger sandstone and Taunus quartzite) as target materials. Our study is focused on geochemical target-projectile interaction occurring in highly shocked and projectile-rich ejecta fragments. In all of the investigated impact experiments, whether sandstone or quartzite targets, the ejecta fragments show (i) shock-metamorphic features e.g., planar-deformation features (PDF) and the formation of silica glasses, (ii) partially melting of projectile and target, and (iii) significant mechanical and chemical mixing of the target rock with projectile material. The silica-rich target melts are strongly enriched in the "projectile tracer elements" Cr, V, and Fe, but have just minor enrichments of Co, W, and Mo. Inter-element ratios of these tracer elements within the contaminated target melts differ strongly from the original ratios in the steel. The fractionation results from differences in the reactivity of the respective elements with oxygen during interaction of the metal melt with silicate melt. Our results indicate that the principles of projectile-target interaction and associated fractionation do not depend on impact energies (at least for the selected experimental conditions) and water-saturation of the target. Partitioning of projectile tracer elements into the silicate target melt is much more enhanced in experiments with a non-porous quartzite target compared with the porous sandstone target. This is mainly the result of higher impact pressures, consequently higher temperatures and longer reaction times at high temperatures in the experiments with quartzite as

  17. Effect of Target Thickness on Cratering and Penetration of Projectiles Impacting at Velocities to 13,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Lambert, C. H., Jr.; Schryer, David R.; Casey, Francis W., Jr.

    1958-01-01

    In order to determine the effects of target thickness on the penetration and cratering of a target resulting from impacts by high-velocity projectiles, a series of experimental tests have been run. The projectile-target material combinations investigated were aluminum projectiles impacting aluminum targets and steel projectiles impacting aluminum and copper targets. The velocity spectrum ranged from 4,000 ft/sec to 13,000 ft/sec. It has been found that the penetration is a function of target thickness provided that the penetration is greater than 20 percent of the target thickness. Targets of a thickness such that the penetration amounts to less than 20 percent of the thickness may be regarded as quasi-infinite. An empirical formula has been established relating the penetration to the target thickness and to the penetration of a projectile of the same mass, configuration, and velocity into a quasi- infinite target. In particular, it has been found that a projectile can completely penetrate a target whose thickness is approximately one and one-half times as great as the penetration of a similar projectile into a quasi-infinite target. The diameter of a crater has also been found to be a function of the target thickness provided that the target thickness is not greater than the projectile length in the case of cylindrical projectiles and not greater than two to three times the projectile diameter in the case of spherical projectiles.

  18. Feasibility of a Sustainer Projectile in the 30-mm, 35-mm, and 40-mm Caliber Range

    DTIC Science & Technology

    1980-08-01

    calibers appropriate for air defense. Sustaining the muzzle velocity has the advantage of decreasing the projectile time of flight, thus reducing the...mm Rocket-Assisted Projectiles Air Defense 30 mm 20 A@SrACT I"Centfate an eerseod if VHW en Identify by blocek number) A sustainer projectile is a...feasibility of RAP’s in the smaller calibers appropriate for air defense, * .i.e., the 30-40 nn caliber range. The nominal objective of this study was to

  19. Projectile motion in real-life situation: Kinematics of basketball shooting

    NASA Astrophysics Data System (ADS)

    Changjan, A.; Mueanploy, W.

    2015-06-01

    Basketball shooting is a basic practice for players. The path of the ball from the players to the hoop is projectile motion. For undergraduate introductory physics courses student must be taught about projectile motion. Basketball shooting can be used as a case study for learning projectile motion from real-life situation. In this research, we discuss the relationship between optimal angle, minimum initial velocity and the height of the ball before the player shoots the ball for basketball shooting problem analytically. We found that the value of optimal angle and minimum initial velocity decreases with increasing the height of the ball before the player shoots the ball.

  20. Two dimensional mesoscale simulations of projectile instability during penetration in dry sand

    NASA Astrophysics Data System (ADS)

    Dwivedi, S. K.; Teeter, R. D.; Felice, C. W.; Gupta, Y. M.

    2008-10-01

    To gain insight into the instability and trajectory change in projectiles penetrating dry sand at high velocities, two dimensional plane strain mesoscale simulations were carried out using representative models of a particulate system and of a small projectile. A program, ISP-SAND, was developed and used to generate the representative particulate system with mean grain sizes of 60 and 120 μm as well as ±30% uniform size distribution from the mean. Target porosities ranged from 30% to 40%. The penetration of ogive nose steel projectiles with caliber radius head of 3.5 and length-to-diameter (l /d) ratio of 3.85 was simulated using the updated Lagrangian explicit parallel finite element code ISP-TROTP. Deformation of the projectile and individual sand grains was analyzed using a nonlinear elastic-inelastic model for these materials. Grain-grain and grain-projectile interactions were analyzed using a contact algorithm with and without friction. Projectile instability was quantified and compared using the lateral displacement of the center of mass, lateral force acting on the projectile, and its rotational momentum about the center of mass. The main source of projectile instability and the ensuing trajectory change in the penetration simulations was found to be the inhomogeneous loading of the projectile due to the heterogeneities and randomness inherent in a particulate media like sand. The granularity of the media has not been considered explicitly in previous work. Projectile instability increased with impact velocity, as expected. However, it also increased for the case of elastic impactor that preserved the nose shape, with an increase in grain size, and for uniform grain sizes. Moreover, friction, inherently present in geologic materials, was found to be a major contributor to instability. Conclusions derived from one projectile depth simulations were confirmed by two deeper penetration simulations considering up to three full lengths of penetration (requiring

  1. The double laser beam forward detection techniques for the anti-missile projectiles of the naval guns

    NASA Astrophysics Data System (ADS)

    Li, Chuan-zeng; Han, Lei; Wang, Shu-shan

    2009-08-01

    In order to achieve the Omni-directional detection and be compatible with the forward intercept warhead to have a good damage effect to the anti-ship missile with a certain distance, so the double laser beam forward detection techniques for the anti-missile of the medium-caliber naval guns was given. The theory of this technique is that translating the speed variable into time variable to identify the target conditions, this method can simplify the design of the software. Due to the size restrictions, a special biconical reflector with two different forward angles was designed to make double laser beams. The receive system was divided into two parts to solve the receive problem of the reflection signals. This technique can exclude the interference of the ocean waves and own projectiles effectively, so the sea-skimming flying reliability is increased.

  2. Reflection Coefficients.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  3. Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei

    SciTech Connect

    Spevak, V.; Auerbach, N.; Flambaum, V.V.

    1997-09-01

    Collective P- and T-odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole, and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than 2 orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P-odd effects in atoms and molecules. A simple estimate is given and a detailed theoretical treatment of the collective T-, P-odd electric moments in reflection asymmetric, odd-mass nuclei is presented. In the present work we improve on the simple liquid drop model by evaluating the Strutinsky shell correction and include corrections due to pairing. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac, and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation. {copyright} {ital 1997} {ital The American Physical Society}

  4. Projectile containing metastable intermolecular composites and spot fire method of use

    DOEpatents

    Asay, Blaine W.; Son, Steven F.; Sanders, V. Eric; Foley, Timothy; Novak, Alan M.; Busse, James R.

    2012-07-31

    A method for altering the course of a conflagration involving firing a projectile comprising a powder mixture of oxidant powder and nanosized reductant powder at velocity sufficient for a violent reaction between the oxidant powder and the nanosized reductant powder upon impact of the projectile, and causing impact of the projectile at a location chosen to draw a main fire to a spot fire at such location and thereby change the course of the conflagration, whereby the air near the chosen location is heated to a temperature sufficient to cause a spot fire at such location. The invention also includes a projectile useful for such method and said mixture preferably comprises a metastable intermolecular composite.

  5. A Web-Based Video Digitizing System for the Study of Projectile Motion.

    ERIC Educational Resources Information Center

    Chow, John W.; Carlton, Les G.; Ekkekakis, Panteleimon; Hay, James G.

    2000-01-01

    Discusses advantages of a video-based, digitized image system for the study and analysis of projectile motion in the physics laboratory. Describes the implementation of a web-based digitized video system. (WRM)

  6. 'The Monkey and the Hunter' and Other Projectile Motion Experiments with Logo.

    ERIC Educational Resources Information Center

    Kolodiy, George Oleh

    1988-01-01

    Presents the LOGO computer language as a source to experience and investigate scientific laws. Discusses aspects and uses of LOGO. Lists two LOGO programs, one to simulate a gravitational field and the other projectile motion. (MVL)

  7. Application of isochronous mass spectrometry for the study of angular momentum population in projectile fragmentation reactions

    NASA Astrophysics Data System (ADS)

    Tu, X. L.; Kelić-Heil, A.; Litvinov, Yu. A.; Podolyák, Zs.; Zhang, Y. H.; Huang, W. J.; Xu, H. S.; Blaum, K.; Bosch, F.; Chen, R. J.; Chen, X. C.; Fu, C. Y.; Gao, B. S.; Ge, Z.; Hu, Z. G.; Liu, D. W.; Litvinov, S. A.; Ma, X. W.; Mao, R. S.; Mei, B.; Shuai, P.; Sun, B. H.; Sun, Y.; Sun, Z. Y.; Walker, P. M.; Wang, M.; Winckler, N.; Xia, J. W.; Xiao, G. Q.; Xing, Y. M.; Xu, X.; Yamaguchi, T.; Yan, X. L.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhang, W.; Zhao, H. W.; Zhao, T. C.; Zhou, X. H.

    2017-01-01

    Isochronous mass spectrometry was applied to measure isomeric yield ratios of fragmentation reaction products. This approach is complementary to conventional γ -ray spectroscopy in particular for measuring yield ratios for long-lived isomeric states. Isomeric yield ratios for the high-spin I =19 /2 ℏ states in the mirror nuclei 53Fe and 53Co are measured to study angular momentum population following the projectile fragmentation of 78Kr at energies of ˜480 A MeV on a beryllium target. The 19/2 state isomeric ratios of 53Fe produced from different projectiles in the literature have also been extracted as a function of mass number difference between projectile and fragment (mass loss). The results are compared to abrabla07 model calculations. The isomeric ratios of 53Fe produced using different projectiles suggest that the theory underestimates not only the previously reported dependence on the spin but also the dependence on the mass loss.

  8. Prediction of initiation of low and high explosive fillers due to fragment or projectile impact

    NASA Technical Reports Server (NTRS)

    Zabel, P. H.; Parr, V. B.

    1980-01-01

    A methodology is presented which provides predictions for the probability of initiation of explosion in high explosive filled warheads and in propellant filled rocket motor cases given the impact of compact fragments or of small projectiles. Equations of velocities at which 50 percent of the explosive filled cases will initiate either high or low order are developed for compact fragments, and for projectiles. These data are used to establish the standard deviation of the data from the 50 percent initiation line. Standard deviation is used to provide predictions of the probability of initiation given the impact velocity and other pertinent parameters using equations and logic which are established in a computer model. This computer model uses fragment material properties and encounter parameters to predict fragment impact initiation, and projectile and casing material properties and encounter parameters to predict projectile impact initiation.

  9. Results of a preliminary assessment of an explosive projectile launch system

    SciTech Connect

    Reaugh, J.E.

    1995-07-31

    This report presents results on a preliminary assessment of accelerating a projectile by a sequence of timed explosions. Computerized simulations were performed with CALE, a two-dimensional Arbitrary Language Eulerian program to examine principles and preferred operating parameters.

  10. Target-projectile interaction during impact melting at Kamil Crater, Egypt

    NASA Astrophysics Data System (ADS)

    Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi

    2016-05-01

    In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (<0.1 wt% of projectile contamination). The dark glass is a silicate melt with variable contents of Al2O3 (0.84-18.7 wt%), FeOT (1.83-61.5 wt%), and NiO (<0.01-10.2 wt%). The dark glass typically includes fragments (from few μm to several mm in size) of shocked sandstone, diaplectic glass, lechatelierite, and Ni-Fe metal blebs. The metal blebs are enriched in Ni compared to the Gebel Kamil meteorite. The dark glass is thus a mixture of target and projectile melts (11-12 wt% of projectile contamination). Based on recently proposed models for target-projectile interaction and for impact glass formation, we suggest a scenario for the glass formation at Kamil. During the transition from the contact and compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as

  11. Estimating the magnus moment effect on stability of 30-mm boomed projectiles

    NASA Astrophysics Data System (ADS)

    Byers, R. H.; Cobb, K.

    1985-08-01

    This report documents the results obtained from a comparison of free-flight spark range tests and PRODASMAGNUS computer stability results for 30mm spin stabilized projectiles. Two configurations were considered, each with the same boom diameter of 0.5, 1.0 inch and 1.25 inch boom lengths. The results show that PRODASMAGNUS can accurately predict the effects of a boom's presence on projectile stability.

  12. Computational Simulation of High-Speed Projectiles in Air, Water, and Sand

    DTIC Science & Technology

    2007-12-03

    swimmer systems. The water entry phase of flight is interesting and challenging due to projectile transitioning from flight in air to supercavitating...lethality and cavity generation concerns, with minimizing drag in air being a tertiary consideration. The overall goal of the presented work is to develop...compacted at the nose of the projectile to a voidage of around 0.825 in both cases, and a large cavity filled with air is formed as the granular

  13. [A sign of the rotational impact of the gunshot projectile on the flat bone].

    PubMed

    Leonov, S V

    2014-01-01

    The objective of the present work was to study the mechanisms of formation of the gunshot fracture of the flat bones with special reference to the translational and rotational motion of the projectile. A total of 120 real and experimental injuries of this type were available for the investigation with the use of simulation by the finite-elemental analysis. A set of morphological features has been identified that make it possible to determine the direction of rotation of the gunshot projectile.

  14. Comments on the Flight Stability of the XM736 8-Inch Binary Projectile

    DTIC Science & Technology

    1982-10-01

    nutational frequency. ** The physical significance of this assumption is that centrifugal forces exerted on the liquid due to its spin far outshadow...is assumed to be 45 degrees) ■^ Iy = axial and transverse moments of inertia of the complete projectile (without liquid) 18 I :-V I xc ,1...yc Fast precession al Frequency, h’’ 1,1 = axial and transverse moments of inertia of the loose xc v c component p = projectile spin rate (also

  15. Non-lead, environmentally safe projectiles and method of making same

    DOEpatents

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.

    2000-01-01

    A projectile, such as a bullet, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A base constituent, made of a material having density greater than lead, is combined with a binder constituent having less density. The binder constituent is malleable and ductile metallic phase material that forms projectile shapes when subjected to a consolidation force, such as compression. The metal constituents can be selected, rationed, and consolidated to achieve desired frangibility characteristics.

  16. Non-lead environmentally safe projectiles and method of making same

    DOEpatents

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.

    1999-01-01

    A projectile, such as a bullet, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A base constituent, made of a material having density greater than lead, is combined with a binder constituent having less density. The binder constituent is malleable and ductile metallic base material that forms projectile shapes when subjected to a consolidation force, such as compression. The metal constituents can be selected, rationed, and consolidated to achieve desired frangibility characteristics.

  17. Non-lead, environmentally safe projectiles and method of making same

    DOEpatents

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.

    1998-01-01

    A projectile, such as a bullet, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A base constituent, made of a material having density greater than lead, is combined with a binder constituent having less density. The binder constituent is malleable and ductile metallic phase material that forms projectile shapes when subjected to a consolidation force, such as compression. The metal constituents can be selected, rationed, and consolidated to achieve desired frangibility characteristics.

  18. Characteristics study of projectile's lightest fragment for 84Kr36-emulsion interaction at around 1 A GeV

    NASA Astrophysics Data System (ADS)

    Marimuthu, N.; Singh, V.; Inbanathan, S. S. R.

    2017-04-01

    In this article, we present the results of our investigations on the projectile's lightest fragment (proton) multiplicity and probability distributions with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectile's lightest fragment (proton) are correlated with the compound particles, shower particles, black particles, grey particles; alpha (helium nucleus) fragments and heavily ionizing charged particles. It is found that projectile's lightest fragment (proton) is strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectile's lightest fragment (proton) increases with increasing compound, shower and heavily ionizing charge particles. Normalized projectile's lightest fragment (proton) is strongly correlated with compound particles, shower particles and heavily ionizing charge particles. The multiplicity distribution of the projectile's lightest fragment (proton) emitted in the 84Kr36 + emulsion interaction at around 1 A GeV with different target has been well explained by KNO scaling. The mean multiplicity of projectile's lightest fragments (proton) depends on the mass number of the projectile and does not significantly dependent of the projectile energy. The mean multiplicity of projectile's lightest fragment (proton) increases with increasing the target mass number.

  19. Characteristics study of projectile's lightest fragment for 84Kr36-emulsion interaction at around 1 A GeV

    NASA Astrophysics Data System (ADS)

    Marimuthu, N.; Singh, V.; Inbanathan, S. S. R.

    2016-12-01

    In this article, we present the results of our investigations on the projectile's lightest fragment (proton) multiplicity and probability distributions with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectile's lightest fragment (proton) are correlated with the compound particles, shower particles, black particles, grey particles; alpha (helium nucleus) fragments and heavily ionizing charged particles. It is found that projectile's lightest fragment (proton) is strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectile's lightest fragment (proton) increases with increasing compound, shower and heavily ionizing charge particles. Normalized projectile's lightest fragment (proton) is strongly correlated with compound particles, shower particles and heavily ionizing charge particles. The multiplicity distribution of the projectile's lightest fragment (proton) emitted in the 84Kr36 + emulsion interaction at around 1 A GeV with different target has been well explained by KNO scaling. The mean multiplicity of projectile's lightest fragments (proton) depends on the mass number of the projectile and does not significantly dependent of the projectile energy. The mean multiplicity of projectile's lightest fragment (proton) increases with increasing the target mass number.

  20. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Park, C.; Bowen, S. W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.

  1. Basic simple modeling of balloting motion of railgun projectiles. Technical report

    SciTech Connect

    Chu, S.H.

    1991-07-01

    This is the second of three basic reports dealing with the in-bore balloting motion of a projectile launched in an electromagnetic railgun. The first report addressed axial projectile motion without cocking and was titled A Basic Single Model of In-bore Motion of Railgun Projectiles. Understanding the inbore motion of a projectile is important to its design and its ability to hit a target with some effectiveness. Analysis of in-bore motion is a complicated problem since many parameters are involved and the interacting relationships between them must be determined. To make the problem easier to understand, it was analyzed on several levels beginning with the basic simple model which computed only the axial motion and followed by more complicated models in the upper analysis levels that included as many lateral forces and gun tube vibration effects as possible. This report deals with the second basic or zero level of balloting analysis. A basic simple model considering only the effect of the propulsion force, the friction force of the armature, and the clearance between the projectile and the barrel is presented. The computation of the axial projectile motion with a certain cocking angle is the goal of this analysis. Equations of motion are derived and solved. A sample computation with available data is performed and the results plotted to give a clearer understanding of balloting action.

  2. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    NASA Astrophysics Data System (ADS)

    Paris, V.; Weiss, A.; Vizel, A.; Ran, E.; Aizik, F.

    2012-08-01

    In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH) armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile's core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  3. Numerical Simulations of Fragmentation Onset Velocity of Projectile Impact on Thin Bumper

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Caixia, Jiang; Wenlai, Ma; Baojun, Pang

    2007-12-01

    The conventional spacecraft meteoroids and orbital debris shielding system is the Whipple shield. In general there is a threshold velocity that is just sufficient to shatter the projectile for each system consisting of a projectile and bumper. This velocity is known as the fragmentation onset velocity. To determine the fragmentation onset velocity experimentally, a number of experiments have been conducted with different projectile/bumper configuration. The numerical simulations of fragmentation onset velocity of different material projectile hypervelocity impacts on bumpers with different combination of impact velocities and bumper-thicker-to-projectile-diameter ratios (t/D) have been performed using the SPH technique of AUTODYN. The spherical projectile materials are aluminum, steel and copper. All bumper material is aluminum alloy 6061-T6. The simulation velocities were in the range of 1 km/s˜7 km/s. The ratios of t/D were varied from 0.01 to 0.8. The material model contains Mie-Gruneisen (shock) equation of state, Steinberg-Guinan strength model, principal tensile stress failure model and Grady fragmentation failure model. The simulation results are given and compared with the experimental results. The simulation results are consistent very well with the experimental results. The effects of t/D and material shock impedance etc. on fragmentation onset velocity have been given in Figures and equations.

  4. Numerical Simulations of Fragmentation Onset Velocity of Projectile Impact on Thin Bumper

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jiang, Caixia; Ma, Wenlai; Pang, Baojun

    2007-06-01

    The conventional spacecraft meteoroids and orbital debris shielding system is the Whipple shield. In general there is a threshold velocity that is just sufficient to shatter the projectile for each system consisting of a projectile and bumper. This velocity is known as the fragmentation onset velocity. To determine the fragmentation onset velocity experimentally, a number of experiments have been conducted with different projectile/bumper configuration. The numerical simulation of fragmentation onset velocity of different material projectile hypervelocity impacts on bumpers with different combination of impact velocities and bumper-thicker-to-projectile-diameter ratios (t/D) has been performed using the SPH technique of AUTODYN. The spherical projectile materials are aluminum, steel and copper. All bumper materials are aluminum alloy 6061-T6. The simulation velocities were in the range of 1km/s-7km/s. The ratios of t/D were varied from 0.01 to 0.80. The material models were consisted of Mie-Gruneisen (shock) equation of state, Steinberg-Guinan strength model and Grady fragmentation failure model. The simulation results are given and compared with the experimental results. The simulation results are consistent very well with the experimental results.

  5. Experimental investigation on underwater trajectory deviation of high-speed projectile with different nose shape

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qi, Yafei; Huang, Wei; Gao, Yubo

    2017-01-01

    The investigation on free-surface impact of projectiles has last for more than one hundred years due to its noticeable significance on improving defensive weapon technology. Laboratory-scaled water entry experiments for trajectory stability had been performed with four kinds of projectiles at a speed range of 20˜200 m/s. The nose shapes of the cylindrical projectiles were designed into flat, ogive, hemi-sphere and cone to make comparisons on the trajectory deviation when they were launched into water at a certain angle of 0˜20°. Two high-speed cameras positioned orthogonal to each other and normal to the water tank were employed to capture the entire process of projectiles' penetration. From the experimental results, the consecutive images in two planes were presented to display the general process of the trajectory deviation. Compared with the effect of impact velocities and nose shape on trajectory deviation, it merited conclude that flat projectiles had a better trajectory stability, while ogival projectiles experienced the largest attitude change. The characteristics of pressure waves were also investigated.

  6. Experimental investigation on ballistic stability of high-speed projectile in sand

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qi, Yafei; Huang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    The investigation on ballistic stability of high-speed projectile in granular materials is important to the study of the earth penetrating weapon(EPW). Laboratory-scaled sand entry experiments for the trajectory in the sand have been performed with four different nosed projectiles at a range of velocities from 20 m/s to 250 m/s. The slender projectiles were designed into flat, ogival, hemi-sperical, truncated-ogival nose shapes to make comparisons on the trajectory when those projectiles were launched at vertical and oblique impact angles (0° ~ 25°) along a view window. A high-speed camera placed at the side of the window was employed to capture the entire process of projectiles' penetration. Basing on the comparison of different tests, theoretical analysis is carried out on the relationships between ballistic stability and associated conditions. It can be obtained that projectile with flat nose has the best ballistic stability, followed by truncated-ogival nose, and ogival nose is the least at the same velocity. Additionally, a semi-empirical model based on a corrected drag coefficient is established to predict the depth of penetration. National Natural Science Foundation of China (NO.: 11372088)

  7. Pepper spray projectile/disperser for countering hostage and barricade situations

    NASA Astrophysics Data System (ADS)

    Kelly, Roy

    1997-01-01

    An improved less-than-lethal projectile for use in hostage, barricade and tactical assault situations has been developed. The projectile is launched from a standoff position and disperse the incapacitating agent oleoresin capsicum in the form of atomized droplets. A literature search followed by an experimental study were conducted of the mechanism of barrier defeat for various shaped projectiles against the targets of interest in this work: window glass, plasterboard and plywood. Some of the trade- offs between velocity, standoff, projectile shape and size, penetration, and residual energy were quantified. Analysis of the ballistic trajectory and recoil, together with calculations of he amount of pepper spray needed to incapacitate the occupants of a typical barricaded structure, indicated the suitability of using a fin stabilized projectile fired from a conventional 37 mm riot control gas gun. Two projectile designs were considered, manufactured and tested. The results of static tests to simulate target impact, together with live firing trials against a variety of targets, showed that rear ejection of the atomized spray was more reproducible and effective than nose ejection. The performance characteristics of the finalized design were investigated in trials using the standard barrier for testing barrier penetrating tear gas agents as defined by the National Institute of Justice.

  8. Study of hypervelocity projectile impact on thick metal plates

    DOE PAGES

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; ...

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments:more » Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.« less

  9. Study of hypervelocity projectile impact on thick metal plates

    SciTech Connect

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; Machorro, Eric

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.

  10. Molecular depth profiling in ice matrices using C 60 projectiles

    NASA Astrophysics Data System (ADS)

    Wucher, A.; Sun, S.; Szakal, C.; Winograd, N.

    2004-06-01

    The prospects of molecular sputter depth profiling using C 60+ projectiles were investigated on thick ice layers prepared by freezing aqueous solutions of histamine onto a metal substrate. The samples were analyzed in a ToF-SIMS spectrometer equipped with a liquid metal Ga + ion source and a newly developed fullerene ion source. The C 60+ beam was used to erode the surface, while static ToF-SIMS spectra were taken with both ion beams alternatively between sputtering cycles. We find that the signals both related to the ice matrix and to the histamine are about two orders of magnitude higher under 20-keV C 60 than under 15-keV Ga bombardment. Histamine related molecular signals are found to increase drastically if the freshly introduced surface is pre-sputtered with C 60 ions, until at a total ion fluence of about 10 13 cm -2 the spectra are completely dominated by the molecular ion and characteristic fragments of histamine. At larger fluence, the signal is found to decrease with a disappearance cross section of approximately 10 -14 cm 2, until at total fluences of about 10 14 cm -2 a steady state with stable molecular signals is reached. In contrast, no appreciable molecular signal could be observed if Ga + ions were used to erode the surface.

  11. Ballistic Impact of Braided Composites with a Soft Projectile

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike

    2002-01-01

    Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.

  12. Global optical model potential for A=3 projectiles

    NASA Astrophysics Data System (ADS)

    Pang, D. Y.; Roussel-Chomaz, P.; Savajols, H.; Varner, R. L.; Wolski, R.

    2009-02-01

    A global optical model potential (GDP08) for He3 projectiles has been obtained by simultaneously fitting the elastic scattering data of He3 from targets of 40⩽AT⩽209 at incident energies of 30⩽Einc⩽217 MeV. Uncertainties and correlation coefficients between the global potential parameters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of H3 as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for He3-nucleus and H3-nucleus scattering from different targets of 6⩽AT⩽232 at incident energies of 4⩽Einc⩽450 MeV. The optical potential for the doubly-magic nucleus Ca40, the low-energy correction to the real potential for nuclei with 58≲AT≲120 at Einc<30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.

  13. Sand Behavior Induced by High-Speed Penetration of Projectile. Phenomenological studies of the response of granular and geological media to high-speed (Mach 1-5) projectiles

    DTIC Science & Technology

    2011-02-07

    are summarized as follows: Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato starch . Circumferential...Distribution Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato starch as shown in Fig.11. It was found that...The major results are summarized as follows: 1. Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato

  14. The Reflective Learning Continuum: Reflecting on Reflection

    ERIC Educational Resources Information Center

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  15. Meso-scale hypervelocity cratering experiments (MEMIN project): Characterization of projectile material

    NASA Astrophysics Data System (ADS)

    Domke, Isabelle; Deutsch, Alex; Hecht, Lutz; Kenkmann, Thomas; Berndt, Jasper

    2010-05-01

    The DFG-funded "MEMIN" (multidisciplinary experimental and modelling impact crater research network) research group is aimed at a better understanding of the impact cratering process by combining (i) numerical modelling of crater formation, (ii) investigation of terrestrial craters and (iii) meso-scale hypervelocity impact experiments using the large two-stage light gas gun at the Ernst-Mach-Institute (EMI; Efringen-Kirchen, Germany). In the framework of MEMIN, 1 cm-sized projectiles of the steel SAE 4130 (mass of 4.1 g) have been fired with a velocity of ~ 5.3 km s-1 onto blocks of Seeberger sandstone (size 100 x 100 x 50 cm, grain size 169+/-8 μm; porosity 12-20 vol.%). One goal of MEMIN is to document, analyze, and understand the fate of the projectile and its distribution between crater and ejecta; hence, the use of well-analyzed projectile material is mandatory. For this purpose, we use optical, and electron microscopy, electron microprobe (WWU, and MfN), and LA-ICP-MS microanalysis (WWU). Currently we evaluate which steel or iron meteorite is adequate for the intended use. Important properties of a projectile are (i) textural and chemical homogeneity, (ii) clear chemical distinction to the target sandstone, (iii) presence of elements such as Co, Ni, Cr, PGE that as "meteoritic component" are used in terrestrial craters to trace projectile matter, and characterize the type of the projectile (i.e., meteorite group), and finally (iv) mechanical properties that guarantee stability during sphere production, launch and flight. Strong chemical differences to the target material and geochemical homogeneity of the projectile will allow detection of small volumes of projectile matter by high spatial resolution in-situ analysis with the LA-ICP-MS. Steel SAE 4130 is heterogeneous at the 100-µm scale and has low trace element contents. In future, we plan the use of the alloyed heat treatable steel D290-1 as projectile as its texture is quite homogenous at the scale of

  16. Contrasting behavior in octupole structures observed at high spin in {sup 220}Ra and {sup 222}Th

    SciTech Connect

    Smith, J.F.; Cocks, J.F.C.; Schulz, N.; Aieche, M.; Bentaleb, M.; Butler, P.A.; Hannachi, F.; Jones, G.D.; Jones, P.M.; Julin, R.; Juutinen, S.; Kulessa, R.; Lubkiewicz, E.; Plochocki, A.; Riess, F.; Ruchowska, E.; Savelius, A.; Sens, J.C.; Simpson, J.; Wolf, E. |||||||

    1995-08-07

    Alternating-parity states connected by strong {ital E}1 transitions, characteristic of a reflection-asymmetric rotor, have been observed to high spins in the isotones {sup 220}Ra and {sup 222}Th. This level structure is observed up to {ital J}{sup {pi}}=29{sup {minus}}(31{sup {minus}}) in {sup 220}Ra while it cannot be seen beyond {ital J}{sup +}=24{sup +}(25{sup {minus}}) in {sup 222}Th. These observations are consistent with Woods-Saxon-Bogolyubov cranking calculations which predict that the yrast band of {sup 222}Th will undergo a shape transition at {ital J}=24{h_bar}, in contrast to that of {sup 220}Ra which maintains its reflection asymmetry to higher spins.

  17. Phenomenological Studies of the Response of Granular and Geological Media to High-Speed (Mach 1-5) Projectiles

    DTIC Science & Technology

    2011-10-06

    principal results are summarized as follows: Sands around the penetrated projectile were smashed to fine powder of 5 f.ll11 or less like a potato starch ...results are summarized as follows: 1. Sands around the penetrated projectile were smashed to fine powder of 5 1-1m or less like a potato starch . 2...Observation of Fractured Grains and Their Distribution Sands around the penetrated projectile were smashed to fine powder of 5 11m or less like a potato

  18. Submerged Reflectance

    DTIC Science & Technology

    1976-08-01

    at 450 and viewed at 0* (i.e., viewed nor1al to the surface). Instruments for performing this particular bi-directional reflectance measurement are...are described below. 3.1 THEORY OF ABSOLUTE SUBMERGED REFLECTANCE MEASUREMENT An absolute measurement of the reflectance of a surface can be obtained by...relative reflectance measurement is shown in Figure 2. The irradiance across the target will vary within the field of view of the photometer because

  19. Numerical Study on the High-Speed Water-Entry Behaviors of Cylindrical, Hemispherical and Conical Projectiles

    NASA Astrophysics Data System (ADS)

    Guo, Zitao; Zhang, Wei; Luan, Shuping; Xiao, Xinke

    2009-12-01

    The water entry problem is considered as a classic problem which has a research history of more than 70 years, the water-entry process for projectiles with different nose will be significant for related application and experimental design. In this paper, a series of numerical simulations were conducted to study the water-entry behaviors of cylindrical, hemispherical and conical projectiles using the coupled Lagrange-Euler technology in the non-linear finite element code AUTODYN-2D. The detailed cavity expansion process and the cavity characteristics of three projectiles in the early stages of water-entry were obtained. The effects of the projectile nose shape and the projectile velocity on the cavity shapes were studied. Simultaneously, the laws of velocity attenuations for three projectiles were also proposed in this study. The results show that cylindrical projectile has the minimum ratio of the cavity length to the cavity half thickness among the three projectiles when they have identical impact velocities and the smoothed nose shape of projectiles can help reduce the water resistance, thus slowing down the velocity attenuations.

  20. Transition from fractal cracking to fragmentation due to projectile penetration

    NASA Astrophysics Data System (ADS)

    Kun, F.; Halász, Z.

    2014-12-01

    We present a theoretical study of the fracture of two-dimensional disc-shaped samples due to the penetration of a projectile focusing on the dynamics of fracturing and on the geometrical structure of the generated crack pattern. The penetration of a cone is simulated into a plate of circular shape using a discrete element model of heterogeneous brittle materials varying the speed of penetration in a broad range. As the cone penetrates a destroyed zone is created from which cracks run to the external boundary of the plate. Computer simulations revealed that in the low speed limit of loading two cracks are generated with nearly straight shape. Increasing the penetration speed the crack pattern remains regular, however, both the number of cracks and their fractal dimension increases. High speed penetration gives rise to a crack network such that the sample gets fragmented into a large number of pieces. We give a quantitative analysis of the evolution of the system from simple cracking through fractal cracks to fragmentation with a connected crack network. Simulations showed that in the low speed limit of loading the growing cracks proceed in discrete jumps separated by periods when the crack tips are pinned. The statistics of the size of jumps and of the waitng times shows scale free behaviour, i.e. power law distributions are obtained with universal exponents. Dependence on the loading speed was pointed out only for the cutoffs of the distributions. In the high speed limit of loading the sample falls apart forming a large number of fragments. The size of fragments proved to be power law distributed where dependence on the loading speed is observed only for the cutoffs. The value of the exponent has good agreement with experiments.

  1. Hybrid Projectile Body Angle Estimation for Selectable Range Increase

    NASA Astrophysics Data System (ADS)

    Gioia, Christopher J.

    A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. A simple launch timer was first envisioned to control the transformation point in order to achieve maximum distance. However, this timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It was also necessary to filter out noise from a simulated inertial measurement unit (IMU), GPS receiver, and magnetometer. An Extended Kalman Filter (EKF) was chosen to estimate the Euler angles, position and velocity of the HP while an algorithm determined when to deploy the wings. A parametric study was done to verify the optimum deployment condition using a Simulink aerodynamic model. Because range is directly related to launch angle, various launch angles were simulated in the model. By fixing the glide slope angle to -10° as a deployment condition for all launch angles, the range differed only by a maximum of 6.1% from the maximum possible range. Based on these findings, the body angle deployment condition provides the most flexible option to maintain maximum distance without the need of reprogramming. Position and velocity estimates were also determined from the EKF using the GPS measurements. Simulations showed that the EKF estimates exhibited low root mean squared error values, corresponding to less than 3% of the total position values. Because the HP was in flight for less than a minute in this experiment, the drift encountered was acceptable.

  2. Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).

    NASA Astrophysics Data System (ADS)

    Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe

  3. A Six Degree of Freedom Trajectory Analysis of Spin-Stabilized Projectiles

    NASA Astrophysics Data System (ADS)

    Gkritzapis, Dimitrios N.; Panagiotopoulos, Elias E.; Margaris, Dionissios P.; Papanikas, Dimitrios G.

    2007-12-01

    A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high and low spin-stabilized projectiles via atmospheric flight to final impact point. The projectile is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The projectile maneuvering motion depends on the most significant force and moment variations in addition to gravity and Magnus Effect. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy's book. The aforementioned variable flight model is compared with a trajectory atmospheric motion based on appropriate constant mean values of the aerodynamic projectile coefficients. Static stability, also called gyroscopic stability, is examined as a necessary condition for stable flight motion in order to locate the initial spinning projectile rotation. Static stability examination takes into account the overturning moment variations with Mach number flight motion. The developed method gives satisfactory results compared with published data of verified experiments and computational codes on atmospheric dynamics model analysis.

  4. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  5. On the universal scaling in the electronic stopping cross section for heavy ion projectiles

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Martínez-Flores, C.; Trujillo-López, L. N.; Serkovic-Loli, L. N.

    2016-02-01

    Energy deposition of heavy ions when penetrating a material is of crucial importance in determining the damage to materials with implications in areas such as material science, plasma physics, radiotherapy and dosimetry. Due to the N-body electron problem, it has been thought that the electronic stopping cross section is unique for a given projectile-target combination and differs from system to system. In this work, we show that within the Bethe theory, there is a universal scaling when the electronic stopping cross sections and projectile kinetic energy are scaled properly in terms of the target mean excitation energy, ?, for all projectile-target combinations. We show that the scaling is given by ? as a function of ?, thus showing the importance of the characterization of the mean excitation energy. The scaling law expresses a systematic and universal behavior among complex projectile-target systems in the energy deposition, characterized by the minimum momentum transfer during the slowing down process. We provide an analytic expression for the universal scaling law for the stopping cross section of any projectile-target combination valid at high collision energies. Finally, we verify the universal scaling law by comparison to atomic and molecular experimental data available in the literature. We expect our findings will motivate further experimental work to verify our universal scaling for more complex systems in the absence of experimental data.

  6. Hydrocode Simulation with Modified Johnson-Cook Model and Experimental Analysis of Explosively Formed Projectiles

    NASA Astrophysics Data System (ADS)

    Hussain, G.; Hameed, A.; Hetherington, J. G.; Barton, P. C.; Malik, A. Q.

    2013-04-01

    The formation of mild steel (MS) and copper (Cu) explosively formed projectiles (EFPs) was simulated in AUTODYN using both the Johnson-Cook (JC) and modified Johnson-Cook (JCM) constitutive models. The JC model was modified by increasing the hardening constant by 10%. The previously established semi-empirical equations for diameter, length, velocity, and depth of penetration were used to verify the design of the EFP. The length-to-diameter (L/D) ratio of the warhead used in the simulation varied between 1 < L/D < 2. To avoid projectile distortion or breakup for large standoff applications, the design of the EFP warhead was modified to obtain a lower L/D ratio. Simulations from the JC model underestimated the EFP diameter, resulting in an unrealistically elongated projectile. This shortcoming was resolved by employing the JCM model, giving good agreement with the experimental results. The projectile velocity and hole characteristics in 10-mm-thick aluminum target plates were studied for both models. The semi-empirical equations and the JC model overestimated the projectile velocity, whereas the JCM model underestimated the velocity slightly when compared to the experimental results. The depths of penetration calculated by the semi-empirical equations in the aluminum (Al) target plate were 55 and 52 mm for Cu and MS EFPs, respectively.

  7. Numerical Investigation of Bending-Body Projectile Aerodynamics for Maneuver Control

    NASA Astrophysics Data System (ADS)

    Youn, Eric; Silton, Sidra

    2015-11-01

    Precision munitions are an active area of research for the U.S. Army. Canard-control actuators have historically been the primary mechanism used to maneuver fin-stabilized, gun-launched munitions. Canards are small, fin-like control surfaces mounted at the forward section of the munition to provide the pitching moment necessary to rotate the body in the freestream flow. The additional lift force due to the rotated body and the canards then alters the flight path toward the intended target. As velocity and maneuverability requirements continue to increase, investigation of other maneuver mechanisms becomes necessary. One option for a projectile with a large length-to-diameter ratio (L/D) is a bending-body design, which imparts a curvature to the projectile body along its axis. This investigation uses full Navier-Stokes computational fluid dynamics simulations to evaluate the effectiveness of an 8-degree bent nose tip on an 8-degree bent forward section of an L/D =10 projectile. The aerodynamic control effectiveness of the bending-body concept is compared to that of a standard L/D =10 straight-body projectile as well as that of the same projectile with traditional canards. All simulations were performed at supersonic velocities between Mach 2-4.

  8. Penetration Experiments with Limestone Targets and Ogive-Nose Steel Projectiles

    SciTech Connect

    Forrestal, M.J.; Frew, D.J.; Hanchak, S.J.

    1999-04-08

    We conducted three sets of depth-of-penetration experiments with limestone targets and 3.0 caliber-radius-head (CRH), ogive-nose steel rod projectiles. The limestone targets had a nominal unconfined compressive strength of 60 MPa, a density of 2.31 kg/m{sup 3}, a porosity of 15%, and a water content less than 0.4%. The ogive-nose rod projectiles with length-to-diameter ratios often were machined from 4340 R{sub c} 45 and Aer Met 100 R{sub c} 53 steel, round stock and had diameters and masses of 7.1 mm, 0.020 kg; 12.7 mm, 0.117 kg; and 25.4 mm, 0.931 kg. Powder guns or a two-stage, light-gas gun launched the projectiles at normal impacts to striking velocities between 0.4 and 1.9 km/s. For the 4340 R{sub c} 45 and Aer Met 100 R{sub c} 53 steel projectiles, penetration depth increased as striking velocity increased to a striking velocity of 1.5 and 1.7 km/s, respectively. For larger striking velocities, the projectiles deformed during penetration without nose erosion, deviated from the shot line, and exited the sides of the target. We also developed an analytical penetration equation that described the target resistance by its density and a strength parameter determined from depth of penetration versus striking velocity data.

  9. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    PubMed

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  10. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    PubMed Central

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion. PMID:25097873

  11. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ.

  12. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.

    PubMed

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael

    2015-05-01

    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations.

  13. Effect upon the Sputtering Threshold Due to Accumulation of Projectiles in Target Material

    NASA Astrophysics Data System (ADS)

    Kenmotsu, Takahiro; Wada, Motoi; Hyakutake, Toru; Nishiyama, Masaki; Muramoto, Tetsuya; Nishida, Michio

    In order to quantify the accumulation effect of projectiles in target material for sputtering, sputtering yields of carbon for pure graphite and the projectile retaining carbon target material bombarded by xenon and helium ions are calculated with a Monte Carlo code ACAT. The ACAT results have indicated that the threshold energy for sputtering is reduced due to the accumulation of the xenon atoms in graphite. Meanwhile, the threshold energy for carbon sputtering is not largely influenced by the retained helium atoms in graphite. Mass ratio of the projectile to the target atom is the important factor for the low energy sputtering yield. An empirical formula for sputtering yields for graphite retaining xenon atoms has been proposed.

  14. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    SciTech Connect

    Foster, M; Colgan, J; Wong, T G; Madison, D H

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  15. On the non-equilibrium dynamics of cavitation around the underwater projectile in variable motion

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Lu, C. J.; Li, J.; Chen, X.; Gong, Z. X.

    2015-12-01

    In this work, the dynamic behavior of the non-equilibrium cavitation occurring around the underwater projectiles navigating with variable speed was numerically and theoretically investigated. The cavity collapse induced by the decelerating motion of the projectiles can be classified into two types: periodic oscillation and damped oscillation. In each type the evolution of the total mass of vapor in cavity are found to have strict correlation with the pressure oscillation in far field. By defining the equivalent radius of cavity, we introduce the specific kinetic energy of collapse and demonstrate that its change-rate is in good agreement with the pressure disturbance. We numerically investigated the influence of angle of attack on the collapse effect. The result shows that when the projectile decelerates, an asymmetric-focusing effect of the pressure induced by collapse occurs on its pressure side. We analytically explained such asymmetric-focusing effect.

  16. Projectile motion of a once rotating object: physical quantities at the point of return

    NASA Astrophysics Data System (ADS)

    Arabasi, Sameer

    2016-09-01

    Vertical circular motion is a widely used example to explain non-uniform circular motion in most undergraduate general physics textbooks. However, most of these textbooks do not elaborate on the case when this motion turns into projectile motion under certain conditions. In this paper, we describe thoroughly when a mass attached to a cord, moving in a vertical circular motion, turns into a projectile and its location and velocity when it rejoins the circular orbit. This paper provides an intuitive understanding, supported by basic kinematic equations, to give an interesting elegant connection between circular motion and projectile motion—something lacking in most physics textbooks—and will be very useful to present to an undergraduate class to deepen their understanding of both models of motion.

  17. Hypervelocity impact on brittle materials of semi-infinite thickness: fracture morphology related to projectile diameter

    NASA Astrophysics Data System (ADS)

    Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.

    Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.

  18. Study on measurement method for projectile location based on light screen

    NASA Astrophysics Data System (ADS)

    Han, Feng; Liu, QunHua; Sun, GuoBin

    2008-09-01

    In weapon-ammunition system, firing accuracy of projectile is major characteristic parameter weighing fire effect and capability of weapon-ammunition system for target. At present, firing accuracy of projectile is obtained by measuring the two-dimensional coordinates of projectile for target. In order to measure the parameters of two-dimensional coordinates of projectile for target, a new type of measurement system is proposed. The measurement system is composed of four high sensitivity light screens (known as target) with special geometrical frame. Light source of the screens is formed by special infrared LED array. The PIN infrared photodiodes array is used as the sensors. The longest effective distance between light source and sensors is 4m. It is impossible to achieve using traditional methods. Four light screens and high-precision timers are combined in order to acquire the value of time when the projectile flies across the position of four light screens. The real-time data acquirement and processing and display of two-dimensional coordinates and the projectile velocity can be realized. The principle of measurement system and the design of high sensitivity light screen are introduced emphatically. The measurement system was verified by using five kinds of small caliber pellets. As compared with the paper target sheet, the measurement system designed can meet the demand of check-up test of gun, bullet and ammunition. The firing testing in the target field has proved that the measurement system has the advantages of simple construction, easy operation and high precision and high sensitivity.

  19. Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.

    1995-01-01

    The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.

  20. Computational studies of projectile melt in impact with typical whipple shields

    SciTech Connect

    Rhoades, C.E. Jr.; Alme, M.L.

    1994-12-01

    Protecting space-based structures against the impact of orbital debris is an important problem of current interest. This paper presents scaling results based on simulations with the CALE computer program of aluminum projectile impacting typical aluminum Whipple shields at speeds of 6 to 14 km/s. The objective was to determine the extent of projectile and shield material melting. The approach was to perform a matrix of computer simulations varying the impact speed from 6 to 14 km/s and varying the areal density of the shield from 5 percent to 80 percent of the centerline areal density of the projectile. The projectile radius was fixed at 9.5 mm (mass = 1.27 grams). The melt state of the projectile material and the shield material was assessed after release of the initial shock. The post-release specific energy in the projectile and in the shield was compared with the enthalpy of incipient melt and the enthalpy of complete melt provided in the Hultgren Tables. Material with specific energy greater than the enthalpy of complete melt was assumed to be fully melted. Material with specific energy greater than the enthalpy of incipient melt but less than that of complete melt was assumed to be partially solid and partially melted mixed phase material with no strength. Material with specific energy less than the enthalpy of incipient melt was assumed to be in a solid state with strength. It is likely that this solid material is in a highly fragmented state as a result of the initial shock.

  1. Systematic study of probable projectile-target combinations for the synthesis of the superheavy nucleus 302120

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Safoora, V.

    2016-08-01

    Probable projectile-target combinations for the synthesis of the superheavy element 302120 have been studied taking the Coulomb and proximity potential as the interaction barrier. The probabilities of the compound nucleus formation PCN for the projectile-target combinations found in the cold reaction valley of 302120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion, and evaporation residue cross sections for the reactions of all probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of the superheavy element 302120 in heavy-ion fusion reactions. The calculated fusion and evaporation cross sections for the more asymmetric ("hotter") projectile-target combination is found to be higher than the less asymmetric ("colder") combination. It can be seen from the nature of the quasifission barrier height, mass asymmetry, the probability of compound nucleus formation, survival probability, and excitation energy, the systems 44Ar+258No , 46Ar+256No , 48Ca+254Fm , 50Ca+252Fm , 54Ti+248Cf , and 58Cr+244Cm in deep region I of the cold reaction valley and the systems 62Fe+240Pu , 64Fe+238Pu , 68Ni+234U , 70Ni+232U , 72Ni+230U , and 74Zn+228Th in the other cold valleys are identified as the better projectile-target combinations for the synthesis of 302120. Our predictions on the synthesis of 302120 superheavy nuclei using the combinations 54Cr+248Cm , 58Fe+244Pu , 64Ni+238U , and 50Ti+249Cf are compared with available experimental data and other theoretical predictions.

  2. Refrigeration and freezing of porcine tissue does not affect the retardation of fragment simulating projectiles.

    PubMed

    Breeze, J; Carr, D J; Mabbott, A; Beckett, S; Clasper, J C

    2015-05-01

    Explosively propelled fragments are the most common cause of injury to UK service personnel in modern conflicts. Numerical injury models to simulate such injuries utilise algorithms based upon gelatin and animal tissue testing but data is limited on many fragment simulating projectiles and these simulants cannot represent human anatomy. Testing with post mortem specimens may overcome this limitation but no information exists about how post mortem tissue changes and storage conditions in humans or animals may affect projectile penetration. Two chisel nosed cylinders (0.49 g and 1.10 g) and a 0.51 g (5 mm) sphere were fired into three groups of porcine tissue (fresh, refrigerated and frozen then refrigerated) and compared to 20% gelatin. Depth of projectile penetration was ascertained with the assistance of computed tomography and kinetic energy absorption by tissues measured using Doppler radar and high speed photography. No difference in depth of penetration was found between porcine tissue stored in the different manners compared with 20% gelatin by impact velocities less than 100 m/s. Insufficient numbers of projectiles were retained in tissue at higher velocities for statistical analysis to be undertaken. Energy absorbed per millimetre of tissue ranged between 0.42 and 0.98 J/mm for different porcine tissue despite differing storage. This pilot study would suggest that the effect of refrigerating or freezing porcine tissue followed by thawing has no effect on its ability to retard these projectiles. Further research is required to ascertain if these results occur at greater velocities and for other types of projectile.

  3. Physics Learning Achievement Study: Projectile, Using Mathematica Program of Faculty of Science and Technology Phetchabun Rajabhat University Students

    ERIC Educational Resources Information Center

    Hutem, Artit; Kerdmee, Supoj

    2013-01-01

    The propose of this study is to study Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and Technology Phetchabun Rajabhat University students who study the projectile motion experiment set. The samples are…

  4. Determination of 2,4,6-trinitrotoluene surface contamination on M107 artillery projectiles and sampling method evaluation

    NASA Astrophysics Data System (ADS)

    Grossman, S.

    2005-06-01

    The Army is interested in determining the explosive signatures of different types of munitions ranging from landmines to artillery projectiles. While a significant amount of work has been performed to determine the explosive signature of landmines, a relatively little amount of research has focused on artillery projectiles. This paper focuses on determining the levels of 2,4,6-trinitrotoluene (TNT) existing on the exterior surface of M107 artillery projectiles. The hypothesis is that there will be detectable levels of TNT on the surfaces of these projectiles due to their manufacture as well as their storage conditions. It is believed that this surface contamination provides one source of TNT that can then contaminate the surrounding environment. It is the goal of this research to determine whether or not projectiles that are manufactured and stored in similar fashions will exhibit a predictable range of TNT concentrations. This data can then be used to predict the level of environmental contamination that would occur if the projectile were present. Initially, the problem of sample collection is addressed. Specifically, quantifying the collection efficiency of different sampling techniques is investigated. This experimental aspect is crucial in determining the total quantity of TNT found of the surfaces of the projectiles. Considerations such as total amount of TNT removed compared to total amount of TNT present (on control samples) as well as the method's ease of use in the field are addressed. Data collected from M107 projectiles being stored at an Army test facility will then be analyzed and discussed.

  5. Estimating 3D positions and velocities of projectiles from monocular views.

    PubMed

    Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P

    2009-05-01

    In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.

  6. MC DRAG - A Computer Program for Estimating the Drag Coefficients of Projectiles

    DTIC Science & Technology

    1981-02-01

    CALIBERS AERO RANGE MC DRAG BOATTAIL LENGTH = .69 CALIBERS 2 4 6 8 10 12 BOATTAIL ANGLE (DEGREES) . 5 1.5 2.0 2.5 3.0...Program for Estimating the Drag Coefficients of Projectiles 5 . TYPE OF REPORT & PERIOD COVERED Final 6. PERFORMING ORG. REPORT NUMBER 7. AUTHORf...range of 0.5 to 5 and a projectile diameter range of 4 to 400 millimetres. A user’s guide and a FORTRAN listing of MC DRAG is provided. The program

  7. Tissue preservation and projectile context in a Spanish Civil War victim.

    PubMed

    Ferllini, Roxana

    2010-07-01

    Exhumations of mass graves containing the remains of those executed during the Spanish Civil War and the subsequent Franco regime are currently being conducted at the request of surviving relatives. This individual case report illustrates how soft tissue preservation, through copper ion contact in one particular victim aided in preserving the projectile in an anatomical context, thereby permitting the correct interpretation of the projectile's path and angle, which otherwise would not have been possible as no bone tissue was affected. The information obtained has important relevance for human rights investigations and the work of the forensic anthropologist.

  8. Non-lead, environmentally safe projectiles and method of making same

    DOEpatents

    Lowden, R.A.; McCoig, T.M.; Dooley, J.B.

    1998-06-02

    A projectile, such as a bullet, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A base constituent, made of a material having density greater than lead, is combined with a binder constituent having less density. The binder constituent is malleable and ductile metallic phase material that forms projectile shapes when subjected to a consolidation force, such as compression. The metal constituents can be selected, rationed, and consolidated to achieve desired frangibility characteristics. 7 figs.

  9. Axisymmetric Simulation of Bulging Process in Polymeric Materials during Projectile Impact

    NASA Astrophysics Data System (ADS)

    Lim, Kyung-Hun; Kim, See-Jo; Shin, Hyung-Seop; Choi, Joon-Hong; Kim, Jeong-Tae

    Combination of different materials used both in the projectile and the sandwich panel is getting more important in designing for maximization of energy absorption during impact. In the present study, we have simulated the bulging process during projectile impact for axisymmetric impact problems. We have discussed the bulging velocity tendency depending on some important geometrical and material parameters such as the yield strength, and tensile limit of the core for several different core thickness and different elapsed time after impact by using the AUTODYN commercial software. From our simulation, we have found that material properties have more dominant effects than the geometric properties on the bulging velocity.

  10. Study of the beam-foil excitation mechanism using Cl projectiles, 2 10 MeV

    NASA Astrophysics Data System (ADS)

    Jupén, C.; Denne, B.; Ekberg, J. O.; Engström, L.; Litzén, U.; Martinson, I.; Tai-Meng, W.; Trigueiros, A.; Veje, E.

    1982-11-01

    We have studied beam-foil excitation of chlorine projectiles by means of optical spectrometry, in the projectile energy range 2-10 MeV. This is a preliminary report, concentrating on the 3p and 3d level excitations in Cl VII (sodium-like chlorine) and in Cl VIII (neon-like chlorine). A discussion of the results is given, and it is concluded that the 3p and 3d levels in Cl VII and Cl VIII are populated by the same mechanism, namely molecular-orbital electron promotions.

  11. Simultaneous ejection of two molecular ions from keV gold atomic and polyatomic projectile impacts.

    PubMed

    Rickman, R D; Verkhoturov, S V; Parilis, E S; Schweikert, E A

    2004-01-30

    We present the first experimental data on the simultaneous ejection of two molecular ions from the impact of Au(+)(n) (1< or =n< or =4) with energies ranging between 17 and 56 keV. The yields from single phenylalanine (Ph) emission, coemission of two Ph ions, and emission of the Ph dimer were measured. Large increases (1 to 2 orders of magnitude) in coemitted ion yields were observed with increasing projectile energy and complexity. Correlation coefficients were calculated for the coemission of two Ph ions; their behavior suggests differences in emission pathways for bombardment by atomic and polyatomic projectiles.

  12. Dependence of low energy incomplete fusion on projectile's α-Q-value

    NASA Astrophysics Data System (ADS)

    Yadav, Abhishek; Singh, Pushpendra P.; Kumar, P.; Shuaib, Mohd; Sharma, Vijay R.; Bala, Indu; Singh, D. P.; Gupta, Sunita; Gupta, U.; Sharma, M. K.; Kumar, R.; Muralithar, S.; Singh, R. P.; Singh, B. P.; Prasad, R.

    2015-06-01

    An attempt has been made to understand the effect of entrance-channel parameters on low-energy incomplete fusion and a strong projectile dependence in terms of projectile's α-Q-value has been observed. In the present work, the excitation functions of 16O,13,12C+159Tb systems have been measured and compared with PACE4 predictions to study the involvement of different reaction processes. The strength of incomplete fusion reactions for all the studied systems have been extraced and compared to find out the systematics.

  13. Dynamic Response in an Elastic-Plastic Projectile Due to Normal Impact

    DTIC Science & Technology

    1985-06-01

    A^’Avm^l ™A/679o/ TECHNICAL REPORT ARLCB-TR-8501 9 DYNAMIC RESPONSE IN AN ELASTIC-PLASTIC PROJECTILE DUE TO NORMAL IMPACT P . C. T. CHEN J. E...PROJECTILE DUE TO NORMAL IMPACT 5. TYPE OF REPORT 4 PERIOD COVERED Final S. PERFORMING ORG. REPORT NUMBER 7. AUTHORfa; P . C. T. Chen, J...the following material data will be used: E = 208 GPa, p = 0.783 g/cc, v = 0.293 ay = 1.3 GPa, Ep = 4 GPa, CD 1 Cristescu, N., Dynamic

  14. Development of odd-Z-projectile reactions for transactinide element synthesis

    SciTech Connect

    Folden, III, Charles Marvin

    2004-01-01

    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile

  15. Reflecting on Reflecting on Practice

    ERIC Educational Resources Information Center

    Wilson, Arthur L.

    2009-01-01

    This article discusses three broad themes--reflection, power, and negotiation--that are evidenced in all of the articles in this issue. In this article, the author tries to transgress the articles at some middling altitude to seek some broader thematics. His observations about reflection, power, and negotiation do transcend individual efforts,…

  16. Eulerian simulation of the perforation of aluminum plates by nondeforming projectiles

    SciTech Connect

    Silling, S.A.

    1992-03-01

    A new algorithm for the treatment of sliding interfaces between solids with or without friction in an Eulerian wavecode is described. The algorithm has been implemented in the two-dimensional version of the CTH code. The code was used to simulate penetration and perforation of aluminum plates by rigid, conical-nosed tungsten projectiles. Comparison with experimental data is provided.

  17. Model of Predictive Control of a Direct-Fire Projectile Equipped With Canards

    DTIC Science & Technology

    2005-03-01

    matrices, which are sent to the MPC routine. The MPC routine calculates the optimal control sequence over the length of the update interval. When... 0767 . 19. Burchett, B.; Peterson, A.; Costello, M. Prediction of Swerving Motion of a Dual-Spin Projectile With Lateral Pulsejets in Atmospheric

  18. Preservice Elementary School Teachers' Conceptual Change about Projectile Motion: Refutation Text, Demonstration, Affective Factors, and Relevance.

    ERIC Educational Resources Information Center

    Hynd, Cynthia; And Others

    1997-01-01

    Investigates changes in preservice teachers' conceptions about projectile motion brought about by a combination of reading and demonstration and appeal to usefulness. Results indicate the effectiveness of a combined Demo-Text condition on immediate posttests and effectiveness of text in producing long-term change. Analysis also indicates an…

  19. Measurement of projectile trajectory in dielectric target with micropower-impluse radar

    SciTech Connect

    Baum, D.W.; Kuklo, R.M.; Rosenbury, E.T.; Simonson, S.C.

    1997-11-20

    The micropower-impulse radar has been adapted for non-intrusive tracking of projectiles in dielectric targets. The main application of this technique is intended to be the validation of continuum mechanics simulation codes and material models used in the study of the interaction between high-velocity penetrators and concrete targets. Two experiments have been conducted in which a gun-launched 90-mm-diameter projectile was fired at velocities of 160 and 230 m/s into a cubical box filled with dry sand and tracked with the micropower-impulse radar. The system was adjusted so that a 2-m range in sand was divided into 511 timing intervals, which were swept every 0.1 ms. As the projectile took approximately 40 ms to come to rest this meant that there were 400measurements of its position. The CALE continuum mechanics simulation was used to model the projectile motion in the target, and close agreement was found with the measured trajectory.

  20. Energy distribution of the particles obtained after irradiation of carbon nanotubes with carbon projectiles

    NASA Astrophysics Data System (ADS)

    Denton, Cristian D.; Moreno-Marín, Juan Carlos; Heredia-Avalos, Santiago

    2015-06-01

    The idea of using carbon nanotubes (CNTs) as masks against irradiation has recently emerged, because of the region of a given material covered by a CNT can be protected from the effects of irradiation, creating nanowires. In this case, it is interesting to know in detail the number of generated recoils and their energy. In order to obtain these data, we simulate the irradiation of CNTs with carbon ions using a molecular dynamics code. To describe the interaction between carbon ions we use the Brenner potential joined smoothly to the Universal ZBL potential at short distances. We have analyzed the energy distributions of the carbon atoms emerging from the CNT for single projectile irradiation with incident energies from 30 eV to 5 keV. Our results show that the number and the energy of the recoil carbon atoms emerging from the CNT increases with the projectile incident energy. In average, each projectile with incident energy of 1 keV produces ∼3.6 recoils, which have a mean energy of 150 eV, while projectiles with 5 keV produce ∼7 recoils with a mean energy of 400 eV.

  1. Projectile Motion with a Drag Force: Were the Medievals Right After All?

    ERIC Educational Resources Information Center

    La Rocca, Paola; Riggi, Francesco

    2009-01-01

    An educational and historical study of the projectile motion with drag forces dependent on speed shows, by simple results, that trajectories quite similar to those depicted before the Galilean era may be obtained with a realistic choice of quantities involved. Numerical simulations of the trajectory in space and velocity coordinates help us to…

  2. Jamming effectiveness analysis of IR smoke projectile based on sight optical observation

    NASA Astrophysics Data System (ADS)

    Wang, Longtao; Liu, Zhenxing; Wang, Falong

    2013-09-01

    This text makes use of the similar of the principle between IR imaging guided missile detection system and the general sight optics probe. In this text, the synopsis analysis on the jamming effectiveness of the IR smoke projectile resist the IR imaging guided missile is discussed. This research of the jamming technique to IR imaging guided missile have a very realistic meaning.

  3. Scaling phenomena of isobaric yields in projectile fragmentation, spallation, and fission reactions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Huang, Ling; Song, Yi-Dan

    2017-02-01

    Background: The isobaric ratio difference scaling phenomenon, which has been found for the fragments produced in projectile fragmentation reactions, is related to the nuclear density change in reaction systems. Purpose: To verify whether the isobaric ratio difference scaling exists in the fragments produced in the spallation and fission reactions. Methods: The isobaric ratio difference scaling, denoted by SΔ lnR21 , is in theory deduced within the framework of the canonical ensemble theory at the grand-canonical limitation. The fragments measured in a series of projectile fragmentation, spallation, and fission reactions have been analyzed. Results: A good SΔ lnR21 scaling phenomenon is shown for the fragments produced both in the projectile fragmentation reactions and in the spallation reactions, whereas the SΔ lnR21 scaling phenomenon for the fragments in the fission reaction is less obvious. Conclusions: The SΔ lnR21 scaling is used to probe the properties of the equilibrium system at the time of fragment formation. The good scaling of SΔ lnR21 suggests that the equilibrium state can be achieved in the projectile fragmentation and spallation reactions. Whereas in the fission reaction, the result of SΔ lnR21 indicates that the equilibrium of the system is hard to achieve.

  4. Amazing Physics: Learning about Work, Energy and Projectile Motion in a Historical Context

    ERIC Educational Resources Information Center

    Tural, Guner

    2013-01-01

    Teaching physics through a historical context provides effective learning and increases students' motivation for and interest in physics. For example, trebuchets and mangonels may be interesting historical contexts for learning about energy, work, and projectile motion. In this study, the implementation of physics lessons related to these subjects…

  5. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    SciTech Connect

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C.

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed.

  6. Minimum velocity necessary for nonconventional projectiles to penetrate the eye: an experimental study using pig eyes.

    PubMed

    Marshall, John W; Dahlstrom, Dean B; Powley, Kramer D

    2011-06-01

    To satisfy the Criminal Code of Canada's definition of a firearm, a barreled weapon must be capable of causing serious bodily injury or death to a person. Canadian courts have accepted the forensically established criteria of "penetration or rupture of an eye" as serious bodily injury. The minimal velocity of nonconventional ammunition required to penetrate the eye including airsoft projectiles has yet to be established. To establish minimal threshold requirements for eye penetration, empirical tests were conducted using a variety of airsoft projectiles. Using the data obtained from these tests, and previous research using "air gun" projectiles, an "energy density" parameter was calculated for the minimum penetration threshold of an eye. Airsoft guns capable of achieving velocities in excess of 99 m/s (325 ft/s) using conventional 6-mm airsoft ammunition will satisfy the forensically established criteria of "serious bodily injury." The energy density parameter for typical 6-mm plastic airsoft projectiles is 4.3 to 4.8 J/cm². This calculation also encompasses 4.5-mm steel BBs.

  7. The scaling and dynamics of a projectile obliquely impacting a granular medium.

    PubMed

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing

    2012-01-01

    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  8. Moments on a Coning Projectile by a Spinning Liquid in Porous Media

    DTIC Science & Technology

    2005-09-01

    Axial Porous Media Configuration For this problem the moment arm 0R0 = in Eqs. (3 & 5) and the position vector becomes ( )θsinrθ,cosrx,=R since...Sedney, R., “moment on a Liquid-Filled Spinning and Nutating Projectile: Solid Body Rotation,” ARBRL-TR-02470, US Army Ballistic Research

  9. Development of a numerical model for the ballistic penetration of Fackler gelatine by small calibre projectiles

    NASA Astrophysics Data System (ADS)

    Gilson, L.; Rabet, L.; Imad, A.; Kakogiannis, D.; Coghe, F.

    2016-05-01

    Among the different material surrogates used to study the effect of small calibre projectiles on the human body, ballistic gelatine is one of the most commonly used because of its specific material properties. For many applications, numerical simulations of this material could give an important added value to understand the different phenomena observed during ballistic testing. However, the material response of gelatine is highly non-linear and complex. Recent developments in this field are available in the literature. Experimental and numerical data on the impact of rigid steel spheres in gelatine available in the literature were considered as a basis for the selection of the best model for further work. For this a comparison of two models for Fackler gelatine has been made. The selected model is afterwards exploited for a real threat consisting of two types of ammunitions: 9 mm and .44 Magnum calibre projectiles. A high-speed camera and a pressure sensor were used in order to measure the velocity decay of the projectiles and the pressure at a given location in the gelatine during penetration of the projectile. The observed instability of the 9 mm bullets was also studied. Four numerical models were developed and solved with LS-DYNA and compared with the experimental data. Good agreement was obtained between the models and the experiments validating the selected gelatine model for future use.

  10. Approximate Formula for the Vertical Asymptote of Projectile Motion in Midair

    ERIC Educational Resources Information Center

    Chudinov, Peter Sergey

    2010-01-01

    The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion--the vertical…

  11. On projectile fragmentation at high-velocity perforation of a thin bumper

    NASA Astrophysics Data System (ADS)

    Myagkov, N. N.; Stepanov, V. V.

    2014-09-01

    By means of 3D numerical simulations, we study the statistical properties of the fragments cloud formed during high-velocity impact of a spherical projectile on a mesh bumper. We present a quantitative description of the projectile fragmentation, and study the nature of the transition from the damage to the fragmentation of the projectile when the impact velocity varies. A distinctive feature of the present work is that the calculations are carried out by smoothed particle hydrodynamics (SPH) method applied to the equations of mechanics of deformable solids (MDS). We describe the materials behavior by the Mie-Grüneisen equation of state and the Johnson-Cook model for the yield strength. The maximum principal stress spall model is used as the fracture model. It is shown that the simulation results of fragmentation based on the MDS equations by the SPH method are qualitatively consistent with the results obtained earlier on the basis of the molecular dynamics and discrete element models. It is found that the power-law distribution exponent does not depend on energy imparted to the projectile during the high-velocity impact. At the same time, our calculations show that the critical impact velocity, the power-law exponent and other critical exponents depend on the fracture criterion.

  12. Application of Computational Fluid Dynamics to a Preliminary Extended Area Protection System (EAPS) Projectile

    DTIC Science & Technology

    2006-09-01

    Computational model of a preliminary EAPS projectile configuration. 4 3.2 Computational Mesh The grids for this study were created using GRIDGEN (10), a...Journal 1982, 18 (2), 159–167. 10. Pointwise, Inc. Gridgen Version 15 On-line User’s Manual. Bedford, TX, 2005. 11. Metacomp Technologies. CFD

  13. The Effect of Cooperative Learning on Grade 12 Learners' Performance in Projectile Motions, South Africa

    ERIC Educational Resources Information Center

    Kibirige, Israel; Lehong, Moyahabo Jeridah

    2016-01-01

    The study explored the effect of cooperative learning on Grade 12 learners' performance in projectile motions. A quasi-experimental research design with non-equivalent control group was used. Two schools were purposively selected from Maleboho Central circuit in South Africa based on their performance in Physical Sciences Grade 12 results of 2011.…

  14. A numerical study of nonstationary plasma and projectile motion in a rail gun

    NASA Astrophysics Data System (ADS)

    Zvezdin, A. M.; Kovalev, V. L.

    1992-10-01

    Changes in plasma parameters and projectile velocity and acceleration in a rail gun during the launch are investigated numerically. The method involves determining the velocity and magnetic induction using a difference scheme and an explicit nonlinear method with flow correction for calculating plasma density. The accuracy of the method proposed here is demonstrated by comparing the results with data in the literature.

  15. On the Locus Formed by the Maximum Heights of Projectile Motion with Air Resistance

    ERIC Educational Resources Information Center

    Hernandez-Saldana, H.

    2010-01-01

    We present an analysis on the locus formed by the set of maxima of the trajectories of a projectile launched in a medium with linear drag. Such a place, the locus of apexes, is written in terms of the Lambert "W" function in polar coordinates, confirming the special role played by this function in the problem. To characterize the locus, a study of…

  16. Analytical evaluation of the trajectories of hypersonic projectiles launched into space

    NASA Astrophysics Data System (ADS)

    Stutz, John David

    An equation of motion has been derived that may be solved using simple analytic functions which describes the motion of a projectile launched from the surface of the Earth into space accounting for both Newtonian gravity and aerodynamic drag. The equation of motion is based upon the Kepler equation of motion differential and variable transformations with the inclusion of a decaying angular momentum driving function and appropriate simplifying assumptions. The new equation of motion is first compared to various numerical and analytical trajectory approximations in a non-rotating Earth reference frame. The Modified Kepler solution is then corrected to include Earth rotation and compared to a rotating Earth simulation. Finally, the modified equation of motion is used to predict the apogee and trajectory of projectiles launched into space by the High Altitude Research Project from 1961 to 1967. The new equation of motion allows for the rapid equalization of projectile trajectories and intercept solutions that may be used to calculate firing solutions to enable ground launched projectiles to intercept or rendezvous with targets in low Earth orbit such as ballistic missiles.

  17. The Cretaceous-Tertiary Impact Crater and the Cosmic Projectile that Produced it

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.

    1997-01-01

    Evidence gathered to date from topographic data, geophysical data, well logs, and drill-core samples indicates that the buried Chicxulub basin, the source crater for the approximately 65 Ma Cretaceous-Tertiary (K/T) boundary deposits, is approximately 300 km in diameter. A prominent topographic ridge and a ring of gravity anomalies mark the position of the basin rim at approximately 150 km from the center. Wells in this region recovered thick sequences of impact-generated breccias at 200-300 m below present sea level. Inside the rim, which has been severely modified by erosion following impact, the subsurface basin continues to deepen until near the center it is approximately 1 km deep. The best planetary analog for this crater appears to be the 270 km-diameter Mead basin on Venus. Seismic reflection data indicate that the central zone of downward displacement and excavation (the transient crater is approximately 130 km in diameter, consistent with previous studies of gravity anomaly data). Our analysis of projectile characteristics utilizes this information, coupled with conventional scaling relationships, and geochemical constraints on the mass of extraterrestrial material deposited within the K/T boundary layer. Results indicate that the Chicxulub crater would most likely be formed by a long-period comet composed primarily of nonsilicate materials (ice, hydrocarbons, etc.) and subordinate amounts (less than or equal to 50 percent) primitive chondritic material. This collision would have released the energy equivalent to between 4 x 10(exp 8) and 4 x 10(exp 9) megatons of TNT. Studies of terrestrial impact rates suggest that such an event would have a mean production rate of approximately 1.25 x 10(exp -9) y(exp -1). This rate is considerably lower than that of the major mass extinctions over the last 250 million years (approximately 5 x 10(exp -7) y(exp -1). Consequently, while there is substantial circumstantial evidence establishing the cause-effect link

  18. The Cretaceous-Tertiary impact crater and the cosmic projectile that produced it.

    PubMed

    Sharpton, V L; Marin, L E

    1997-05-30

    Evidence gathered to date from topographic data, geophysical data, well logs, and drill-core samples indicates that the buried Chicxulub basin, the source crater for the approximately 65 Ma Cretaceous-Tertiary (K/T) boundary deposits, is approximately 300 km in diameter. A prominent topographic ridge and a ring of gravity anomalies mark the position of the basin rim at approximately 150 km from the center. Wells in this region recovered thick sequences of impact-generated breccias at 200-300 m below present sea level. Inside the rim, which has been severely modified by erosion following impact, the subsurface basin continues to deepen until near the center it is approximately 1 km deep. The best planetary analog for this crater appears to be the 270 km-diameter Mead basin on Venus. Seismic reflection data indicate that the central zone of downward displacement and excavation (the transient crater is approximately 130 km in diameter, consistent with previous studies of gravity anomaly data). Our analysis of projectile characteristics utilizes this information, coupled with conventional scaling relationships, and geochemical constraints on the mass of extraterrestrial material deposited within the K/T boundary layer. Results indicate that the Chicxulub crater would most likely be formed by a long-period comet composed primarily of nonsilicate materials (ice, hydrocarbons, etc.) and subordinate amounts (< or = 50%) primitive chondritic material. This collision would have released the energy equivalent to between 4 x 10(8) and 4 x 10(9) megatons of TNT. Studies of terrestrial impact rates suggest that such an event would have a mean production rate of approximately 1.25 x 10(-9) y-1. This rate is considerably lower than that of the major mass extinctions over the last 250 million years (approximately 5 x 10(-7) y-1). Consequently, while there is substantial circumstantial evidence establishing the cause-effect link between the Chicxulub basin forming event and the K

  19. Resistance and rupture analysis of single- and few-layer graphene nanosheets impacted by various projectiles

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, Sadegh; Liu, Ling

    2016-09-01

    In this paper, a quasi-classical model for the collision of various nanoparticles with single- and few-layer graphene nanosheets was introduced as a multi-scale approach that couples non-equilibrium molecular dynamics with the Finite Element Method. As a resistance criterion, it was observed that the coefficient of restitution and the induced stresses depend on the impact velocity of projectile. These parameters were evaluated computationally, and it was revealed that certain resulting behaviors differ from behaviors at the macro scale. By obtaining an out-of-plane yield stress limit of 1.0 TPa for graphene, the stress analysis of single- and multi-layer graphene sheets revealed that the limit projectile velocity needed for the yielding of graphene sheets increases with the increase in the number of layers. For aluminum nanoparticles, this increase is almost linear, and for other metals, it slightly deviates from the linear trend. It was also observed that the graphene sheets have a different rupture form when impacted by gaseous molecules than by metal particles. Considering the very high momentum of gas molecules and their shock-like behavior during high-speed collisions with a graphene sheet, pores with a size of one carbon atom can be created in graphene sheets. Since a single-layer graphene sheet can withstand a projectile which is 3.64 times larger than a projectile impacting a 20-layer graphene sheet, spaced graphene sheets seem to be more effective in absorbing the impact energy of projectiles than conventional few-layer graphene sheets.

  20. Numerical analysis of projectile impact in woven texile structures

    NASA Technical Reports Server (NTRS)

    Roylance, D.

    1977-01-01

    Computer codes were developed for simulating the dynamic fracture and viscoelastic constitutive response due to stress wave interaction and reflections caused by ballistic impact on woven textiles. The method, which was developed for use in the design and analysis of protection devices for personnel armor, has potential for use in studies of rotor blade burst containment at high velocity. Alterations in coding required for burst containment problems are discussed.

  1. Evidence for hidden quadrupolar fluctuations behind the octupole order in Ce0.7La0.3B6 from resonant x-ray diffraction in magnetic fields

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Michimura, Shinji; Inami, Toshiya; Otsubo, Toru; Tanida, Hiroshi; Iga, Fumitoshi; Sera, Masafumi

    2014-01-01

    The multipole ordered phase in Ce0.7La0.3B6, emerging below 1.5 K and named phase IV, has been studied by resonant x-ray diffraction in magnetic fields. By utilizing diamond x-ray phase plates to rotate the incident linear polarization and a conventional crystal analyzer system, full linear polarization analysis has been performed to identify the order parameters. The analysis shows that the Γ5g(Oyz, Ozx, Oxy) quadrupoles are more induced by the field than the Γ3g (O20 and O22) quadrupoles on the Γ5u (Tx+y +zβ) antiferro-octupole order in phase IV. The problem is that this result is contradictory to a mean-field calculation, which inevitably gives the Γ3g quadrupole as the main induced moment. This result indicates that the Γ5g quadrupole order is close in energy. We consider that a large fluctuation of the Γ5g quadrupole is hidden behind the primary ordering of the Γ5u octupole and that the multipolar fluctuation significantly affects the ordering phenomenon.

  2. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    PubMed

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  3. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis

    PubMed Central

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-01-01

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment. PMID:27322266

  4. Electron-Electron Interaction in Ion-Atom Collisions Studied by Projectile State-Resolved Auger Electron Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lee, Do-Hyung

    1990-01-01

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KLL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O^{q+} and F^ {q+} incident on H_2 and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionized by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180^circ Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross sections of the electron -electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron -electron ionization (eeI) were determined. Projectile 2l capture with 1s to 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory. Projectile 1s to 2p excitation by a target electron was observed an an eeE process with Li-like projectiles. Projectile 1s ionization by a target electron was observed as an eeI process with Be-like projectiles

  5. Reflectance Modeling

    NASA Technical Reports Server (NTRS)

    Smith, J. A. (Principal Investigator)

    1985-01-01

    The overall goal of this work has been to develop a set of computational tools and media abstractions for the terrain bidirectional reflectance problem. The modeling of soil and vegetation surfaces has been emphasized with a gradual increase in the complexity of the media geometries treated. Pragmatic problems involved in the combined modeling of soil, vegetation, and atmospheric effects have been of interest and one of the objectives has been to describe the canopy reflectance problem in a classical radiative transfer sense permitting easier inclusion of our work by other workers in the radiative transfer field.

  6. sup 219 Fr, a transitional reflection asymmetric nucleus

    SciTech Connect

    Liang, C.F.; Paris, P. ); Kvasil, J.; Sheline, R.K. )

    1991-08-01

    Mass-separated sources of {sup 223}Ac (separated as AcF{sub 2}{sup +}) were used to study the level structure of {sup 219}Fr following alpha decay. The levels in {sup 219}Fr are interpreted in terms of {ital K}=1/2{sup {plus minus}}, 3/2{sup {plus minus}}, and 5/2{sup {plus minus}} parity doublet bands which have a natural theoretical explanation in terms of reflection asymmetric models. The 9/2{sup {minus}} ground-state member of the {ital K}=1/2{sup {minus}} band in {sup 219}Fr can be understood in terms of both reflection asymmetry and the collapse of the quadrupole-octupole Nilsson orbitals towards the {ital h}{sub 9/2} orbitals of spherical symmetry. Comparison of the {ital K}=1/2{sup {minus}} ground-state bands in {sup 219}Fr and {sup 221}Fr reveals the details of this transformation. Theoretical analysis of the microscopic structure of several of the positive-parity bands indicates the presence of important Nilsson configurations arising from the shell below.

  7. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    PubMed

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  8. Neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice; Menelle, Alain

    2015-10-01

    The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples) and two examples related to the materials for energy.

  9. Aerodynamic Characterizations of Asymmetric and Maneuvering 105-, 120-, and 155-mm Fin-Stabilized Projectiles Derived from Telemetry Experiments

    DTIC Science & Technology

    2011-04-01

    in table 1. Figure 3. The 155-mm airframe. 5 Table 1. Physical properties of projectiles. Projectile (mm) Mass (kg) Axial Inertia...VAPP-8 Aerodynamic Coefficients The aerodynamic coefficients derived for the 10-5mm airframe are shown in figures 14 and 15. Zero-yaw axial force...coefficients ( 0xC ) for VAPP-8 and VAPP-7 agree well. The zero-yaw axial force coefficient increases slightly as Mach number increases. The pitching

  10. Degree of impactor fragmentation under collision with a regolith surface—Laboratory impact experiments of rock projectiles

    NASA Astrophysics Data System (ADS)

    Nagaoka, Hiroki; Takasawa, Susumu; Nakamura, Akiko M.; Sangen, Kazuyoshi

    2014-01-01

    Some meteorites consist of a mix of components of various parent bodies that were presumably brought together by past collisions. Impact experiments have been performed to investigate the degree of target fragmentation during such collisions. However, much less attention has been paid to the fate of the impactors. Here, we report the results of our study of the empirical relationship between the degree of projectile fragmentation and the impact conditions. Millimeter-sized pyrophyllite and basalt projectiles were impacted onto regolith-like sand targets and an aluminum target at velocities of up to 960 m s-1. Experiments using millimeter-sized pyrophyllite blocks as targets were also conducted to fill the gap between this study and the previous studies of centimeter-sized rock targets. The catastrophic disruption threshold for a projectile is defined as the energy density at which the mass of the largest fragment is the half of the original mass. The thresholds with the sand target were 4.5 ± 1.1 × 104 and 9.0 ± 1.9 × 104 J kg-1, for pyrophyllite and basalt projectiles, respectively. These values are two orders of magnitude larger than the threshold for impacts between pyrophyllite projectiles onto aluminum targets, but are qualitatively consistent with the fact that the compressive and tensile strengths of basalt are larger than those of pyrophyllite. The threshold for pyrophyllite projectiles and the aluminum target agrees with the threshold for aluminum projectiles and pyrophyllite targets within the margin of error. Consistent with a previous result, the threshold depended on the size of the rocks with a power of approximately -0.4 (Housen and Holsapple 1999). Destruction of rock projectiles occurred when the peak pressure was about ten times the tensile strength of the rocks.

  11. Effect of Grain Scale Properties on Bulk Deformation of Granular Deposits Due to High Speed Projectile Impact

    DTIC Science & Technology

    2012-09-16

    science, for example, requires the mechanical information on meteoroid impact to planets and asteroids in order to understand the formation and...and processes [3]. Civil engineering researchers have been studied the stability of soil ground and earth structures against the projectile impact or...cylindrical projectile (15mm in diameter and 26mm in length) vertically hit to a sand deposit in a PMMA container (100mm in inner diameter and 300mm in inner

  12. Explosive-magnetic generators as power sources for railgun accelerators of solid projectiles

    SciTech Connect

    Anisimov, A.G.; Bashkatov, Yu.L.; Shvetsov, G.A.

    1987-01-01

    The authors study the feasibility of and establish the requirements for using an explosive-magnetic generator as a power source for a railgun accelerator. They determine the dependence of the generator inductance on the coordinates such as to provide constant acceleration motion. They construct single and three-element plane MK generators which are able to provide this acceleration regime. In experiments involving the acceleration of solid projectiles in a 0.8-m-long railgun accelerator they achieve velocities of 5 km/sec with a projectile whose mass was 1.2-1.3 g. The acceleration to higher velocities is found to depend on increasing the scale of the experiment (railgun length, current density, and electric impulse duration) as well as on proper electrode material selection and on evacuation of the channel.

  13. Neutron multiplicity distributions for neutron-rich projectile fragments at the NSCL

    NASA Astrophysics Data System (ADS)

    Mazza, Maria; Christ, Peter; Stephenson, Sharon; MoNA Collaboration

    2016-09-01

    Projectile fragmentation is one of the mechanisms used at nuclear science facilities around the world for the production of rare isotope beams. The study of the projectile fragmentation mechanism informs beam simulation codes, but relatively few studies of the fragmentation process have been done, especially at intermediate energies. The MoNA Collaboration used an 86 MeV/u 32Mg beam on a natural beryllium target at the National Superconducting Cyclotron Laboratory to produce neutron multiplicities distributions in coincidence with charged fragments for isotopes ranging from 29Na to 20F. Particle identification for the isotopes from fluorine, neon, and sodium will be presented, as well as preliminary neutron multiplicities distributions. Supported by NSF Grants 1203357, 1613429 and HHMI Grant 52007540.

  14. Design considerations for a passive magnetic induction signal generator for sensing hypervelocity projectile passage

    SciTech Connect

    Hawke, R.S.; Susoeff, A.R.; Greenwood, D.W.

    1995-01-01

    Measurement of projectile passage after hypervelocity launch is an important measurement and/or trigger needed for electromagnetic launcher development. One method is to use a magnetic induction technique which takes advantage of the fact that a metal object passing through a magnetic field can move the magnetic flux aside and thereby produce a voltage in a coil. This type of system can be designed to use permanent magnets and thereby be totally passive. In addition this passive system can be designed to be insensitive to the high electromagnetic fields generated during the operation of electrothermal guns and railguns. This diagnostic has been used to trigger other electrically sensitive data acquisition equipment including flash x-rays and to determine the velocity of the projectile. This report discusses the results of tests and a comparison of data with a simple model for calculating the expected signal output of such a device.

  15. A NASTRAN investigation of simulated projectile damage effects on a UH-1B tail boom model

    NASA Technical Reports Server (NTRS)

    Futterer, A. T.

    1980-01-01

    A NASTRAN model of a UH-1B tail boom that had been designed for another project was used to investigate the effect on structural integrity of simulated projectile damage. Elements representing skin, and sections of stringers, longerons and bulkheads were systematically deleted to represent projectile damage. The structure was loaded in a manner to represent the flight loads that would be imposed on the tail boom at a 130 knot cruise. The deflection of four points on the rear of the tail boom relative to the position of these points for the unloaded, undamaged condition of the tail boom was used as a measure of the loss of structural rigidity. The same procedure was then used with the material properties of the aluminum alloys replaced with the material properties of T300/5208 high strength graphite/epoxy fibrous composite material, (0, + or - 45, 90)s for the skin and (0, + or - 45)s for the longerons, stringers, and bulk heads.

  16. Onset of cavity deformation upon subsonic motion of a projectile in a fluid complex plasma.

    PubMed

    Zhukhovitskii, D I; Ivlev, A V; Fortov, V E; Morfill, G E

    2013-06-01

    We study the deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles. To solve this problem, we employ the Navier-Stokes equation for a compressible fluid with due regard for friction between dust particles and atoms of neutral gas. The solution shows that due to friction, the pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Measurement of such velocity makes it possible to estimate the static pressure inside the dust cloud.

  17. Angry Birds realized: water balloon launcher for teaching projectile motion with drag

    NASA Astrophysics Data System (ADS)

    Edwards, Boyd F.; Sam, David D.; Christiansen, Michael A.; Booth, William A.; Jessup, Leslie O.

    2014-05-01

    A simple, collapsible design for a large water balloon slingshot launcher features a fully adjustable initial velocity vector and a balanced launch platform. The design facilitates quantitative explorations of the dependence of the balloon range and time of flight on the initial speed, launch angle, and projectile mass, in an environment where quadratic air drag is important. Presented are theory and experiments that characterize this drag, and theory and experiments that characterize the nonlinear elastic energy and hysteresis of the latex tubing used in the slingshot. The experiments can be carried out with inexpensive and readily available tools and materials. The launcher provides an engaging way to teach projectile motion and elastic energy to students of a wide variety of ages.

  18. Comment on 'On the locus formed by the maximum heights of projectile motion with air resistance'

    NASA Astrophysics Data System (ADS)

    Stewart, Seán M.

    2011-03-01

    We show that a remark made by Hernández-Saldaña in 2010 (Eur. J. Phys. 31 1319) concerning the validity of an expression first presented by us in 2006 (Proc. 17th Biennial Congress of the Australian Institute of Physics Paper 27) for the optimal angle of projection for greatest forward skew in the trajectory of a projectile launched in a linear resisting medium is in error. We also draw attention to an earlier treatment (2006 Int. J. Math. Educ. Sci. Technol. 37 411) of the locus of apexes for such a projectile. When expressed in Cartesian form, the locus can be written in terms of the now familiar, though less common, secondary real branch of the Lambert W function.

  19. Evidence of strong projectile-target-core interaction in single ionization of neon by electron impact

    SciTech Connect

    Yan, S.; Zhang, P.; Xu, S.; Ma, X.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Liu, H. P.

    2010-11-15

    The momentum distributions of recoil ions were measured in the single ionization of neon by electron impact at incident energies between 80 and 2300 eV. It was found that there are a noticeable number of recoil ions carrying large momenta, and the relative contributions of these ions becomes more pronounced with the further decrease of incident electron energy. These observed behaviors indicate that there is a strong projectile-target-core interaction in the single-ionization reaction. By comparing our results with those of electron-neon elastic scattering, we concluded that the elastic scattering of the projectile electron on the target core plays an important role at low and intermediate collision energies.

  20. Bombardment of planetary rings by meteoroids - General formulation and effects of Oort Cloud projectiles

    SciTech Connect

    Cuzzi, J.N.; Durisen, R.H. Indiana Univ., Bloomington )

    1990-04-01

    A general solution is obtained for the angular distribution of the intensity and velocity of interplanetary projectiles impinging on a planetary ring system. Three significant results emerge from the solution: (1) a variation with orbital longitude is demonstrated in the impact velocity-weighted impact rate of the planetary rings' cometary meteoroids; (2) the angular distribution of ejecta intensity due to the bombardment of a planetary ring by interplanetary meteoroids is determined; and (3) the radial drift velocity due to both simple mass-loading and aberration-induced asymmetry in the impact rate is calculated for a planetary ring of arbitrary optical depth. Attention is given to results for projectiles with Oort Cloud-type orbits. 40 refs.

  1. Bombardment of planetary rings by meteoroids - General formulation and effects of Oort Cloud projectiles

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Durisen, Richard H.

    1990-01-01

    A general solution is obtained for the angular distribution of the intensity and velocity of interplanetary projectiles impinging on a planetary ring system. Three significant results emerge from the solution: (1) a variation with orbital longitude is demonstrated in the impact velocity-weighted impact rate of the planetary rings' cometary meteoroids; (2) the angular distribution of ejecta intensity due to the bombardment of a planetary ring by interplanetary meteoroids is determined; and (3) the radial drift velocity due to both simple mass-loading and aberration-induced asymmetry in the impact rate is calculated for a planetary ring of arbitrary optical depth. Attention is given to results for projectiles with Oort Cloud-type orbits.

  2. Computational fluid dynamics capability for the solid-fuel ramjet projectile

    NASA Astrophysics Data System (ADS)

    Nusca, Michael J.; Chakravarthy, Sukumar R.; Goldberg, Uriel C.

    1990-06-01

    A computational fluid dynamics solution of the Navier-Stokes equations has been applied to the internal and external flow of inert solid-fuel ramjet projectiles. Computational modeling reveals internal flowfield details not attainable by flight or wind tunnel measurements, thus contributing to the current investigation into the flight performance of solid-fuel ramjet projectiles. The present code employs numerical algorithms termed total variational diminishing (TVD). Computational solutions indicate the importance of several special features of the code including the zonal grid framework, the TVD scheme, and a recently developed backflow turbulence model. The solutions are compared with results of internal surface pressure measurements. As demonstrated by these comparisons, the use of a backflow turbulence model distinguishes between satisfactory and poor flowfield predictions.

  3. CHRONICALLY EMBEDDED LEAD PROJECTILES IN WILDLIFE: A CASE SERIES INVESTIGATING THE POTENTIAL FOR LEAD TOXICOSIS.

    PubMed

    LaDouceur, Elise E B; Kagan, Rebecca; Scanlan, Michael; Viner, Tabitha

    2015-06-01

    Research has demonstrated that intramuscularly embedded lead in humans and rats may cause direct plumbism, albeit rarely, and has identified risk factors to this end. To the authors' knowledge, this has not been investigated in wildlife, despite a high incidence of embedded lead in these animals secondary to cynegetic activities. Fourteen wildlife cases submitted to the National Fish and Wildlife Forensics Laboratory for cause-of-death determination had chronically embedded lead projectiles that were unrelated to the cause of death. Tissue lead levels were measured in all cases and revealed clinically significant hepatic lead levels in two cases. The results corroborate comparative literature and suggest that embedded lead fragments carry a low risk for direct plumbism, even in the face of risk factors such as fractures, inflammation, and projectile fragmentation. Wildlife morbidity and mortality from embedded lead is more commonly realized secondary to incidental ingestion and ballistic trauma rather than by direct toxicity.

  4. Research on GNSS receiver for spinning projectile in trajectory correction fuze

    NASA Astrophysics Data System (ADS)

    Xiao, Hongbing; Shen, Qiang; Zhao, Qing; Li, Huquan; Wang, Qin

    2007-11-01

    In trajectory correction fuze of spinning projectiles, the rotating rate experienced by fuze GNSS(Global Navigation Satellite System) receiver causes it positioning inaccurately for the amplitude or phase of signal from them are modulated by rotation. With multi-antenna array, this GNSS Receiver could improve signal-to-noise and anti-interference ability of the system. In addition, the special rotation demodulation loop with three channels helped the GNSS receiver demodulate rotation-modulated signals and thus provided correct position and attitude information. Besides, the quick searching and parallel algorithm realization based on SDR and FPGA were given here. At last, the effect of magnitude and phase modulation and roll rates were simulated, and primary data were obtained. The results show that it can capture and track the rotating projectiles effectively.

  5. Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets

    NASA Astrophysics Data System (ADS)

    Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.

    1996-03-01

    We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.

  6. Penetration Experiments with 6061-T6511 Aluminum Targets and Spherical-Nose Steel Projectiles at Striking Velocities Between 0.5 and 3.0 km/s

    SciTech Connect

    Forrestal, M.J.; Piekutowski, A.J.

    1999-02-04

    We conducted depth of penetration experiments with 7.11-mm-diameter, 74.7-mm-long, spherical-nose, 4340 steel projectiles launched into 250-mm-diameter, 6061-T6511 aluminum targets. To show the effect of projectile strength, we used projectiles that had average Rockwell harnesses of R{sub c} = 36.6, 39.5, and 46.2. A powder gun and two-stage, light-gas guns launched the 0.023 kg projectiles at striking velocities between 0.5 and 3.0 km/s. Post-test radiographs of the targets showed three response regions as striking velocities increased: (1) the projectiles remained visibly undeformed, (2) the projectiles permanently deformed without erosion, and (3) the projectiles eroded and lost mass. To show the effect of projectile strength, we compared depth-of-penetration data as a function of striking velocity for spherical-nose rods with three Rockwell harnesses at striking velocities ranging from 0.5 to 3.0 km/s. To show the effect of nose shape, we compared penetration data for the spherical-nose projectiles with previously published data for ogive-nose projectiles.

  7. Generation of dust projectiles passing over an obstacle in the plasma sheath

    SciTech Connect

    Ticos, Catalin M.; Stoica, Daniel S.; Delzanno, Gian Luca

    2012-08-15

    Dust projectiles were produced in a radio-frequency plasma by increasing 6-fold the radio-frequency power put into the discharge. The initial static dust particles were observed to gain speed while moving away from the confining region and escaped from the inter-electrode space on a ballistic-like trajectory. Single-grain dynamics simulations indicated that the dust particles were accelerated by changes induced in the sheath electric field profile.

  8. Search for projectile fragments with fractional charge in relativistic heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Hoffmann, A.; Brechtmann, C.; Heinrich, W.; Benton, E. V.

    1988-01-01

    We measured the charge of about 35000 projectile fragments with Z > or = 5e produced by 14.5 GeV/nucleon and 200 GeV/nucleon 16O beams in a Pb target using CR39 plastic nuclear track detectors. A minimum track length of 3 mm in the detector without nuclear interaction was required. No evidence for fragments carrying a fractional charge was found.

  9. Range and flight time of quadratic resisted projectile motion using the Lambert W function

    NASA Astrophysics Data System (ADS)

    Belgacem, Chokri Hadj

    2014-09-01

    We study projectile motion with air resistance quadratic in speed. An approximation of a low-angle trajectory is considered where the horizontal velocity, v x , is assumed to be much larger than the vertical velocity, v y . The explicit solutions for the range and flight time are expressed in terms of the secondary branch of the Lambert function, {{W}_{-1}}. In addition to their theoretical importance, the results obtained will be of interest to teachers involved in undergraduate physics courses.

  10. Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress

    DTIC Science & Technology

    2017-03-17

    enhancements to current and future gun systems. A hypervelocity projectile for multiple systems will allow for future technology growth while...fits within the power structure of other existing platforms. “Those are not 600-ton margin ships,” he said [meaning ships with 600 tons of growth ...Research Service 30 has grown exponentially each fiscal year. For example, the fiscal year 2017 budget request is nearly double the request for

  11. Acceleration of Projectiles to Hypervelocities using a Series of Imploded Annular Plasma Discharges,

    DTIC Science & Technology

    2007-11-02

    sufficient to initiate a discharge through flashover in the low density gas along the inner surface of the insulator which separates the electrodes. This...via the snow plow effect, so that the velocity and mass of gas colliding with the projectile surface depends on the initial back- ground gas pressure...8217 flash ’ where a is assumed constant and ɝflash is the small initial conducting layer thickness associated with the initiating surface breakdown

  12. Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control

    DTIC Science & Technology

    2016-04-01

    obtained. Second-order discretization was used for flow variables and turbulent viscosity equations. Two-equation20 k-ε turbulence models were used...projectile, CFD applications , microflaps, optimized control force 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...using a finite volume method: , (1) where W is the vector of conservative variables , F and G are the inviscid and viscous flux vectors, respectively

  13. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    SciTech Connect

    Taylor, Paul A.

    2015-11-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  14. Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large-Caliber Projectiles

    DTIC Science & Technology

    2015-05-01

    copper rotating band which is reported to use a copper alloy that is nearly 90% copper.3 The target substrate for this application is an aluminum (7075...munition, thereby causing the projectile to spin. Pure copper, copper alloy , and brass rotating bands are typically fabricated to steel munitions using...the weld-overlay process, a radial-pressing process, or a thermal shrink fit. This paper documents the initial development and demonstration of a cold

  15. HIFI: a computer code for projectile fragmentation accompanied by incomplete fusion

    SciTech Connect

    Wu, J.R.

    1980-07-01

    A brief summary of a model proposed to describe projectile fragmentation accompanied by incomplete fusion and the instructions for the use of the computer code HIFI are given. The code HIFI calculates single inclusive spectra, coincident spectra and excitation functions resulting from particle-induced reactions. It is a multipurpose program which can calculate any type of coincident spectra as long as the reaction is assumed to take place in two steps.

  16. Acceleration of an Initially Moving Projectile: Velocity-Injected Railguns and Their Effect on Pulsed Power

    DTIC Science & Technology

    2009-07-01

    26-mm- diameter conventional propellant gun. A plasma armature is assumed for the railgun. The capacitor -based, pulsed power supply (PPS), located...size). This report examines a notional railgun injected by a conventional gun with a projectile having an initial velocity. The capacitor -based...Plastic) is a tough and rubbery polypropylene -based plastic and was used to fabricate the obturator/sabot. The forward section of the sabot was

  17. The solar maximum satellite capture cell: Impact features and orbital debris and micrometeoritic projectile materials

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Rietmeijer, F. J. M.; Schramm, L. S.; Barrett, R. A.; Zook, H. A.; Blanford, G. E.

    1986-01-01

    The physical properties of impact features observed in the Solar Max main electronics box (MEB) thermal blanket generally suggest an origin by hypervelocity impact. The chemistry of micrometeorite material suggests that a wide variety of projectile materials have survived impact with retention of varying degrees of pristinity. Impact features that contain only spacecraft paint particles are on average smaller than impact features caused by micrometeorite impacts. In case both types of materials co-occur, it is belevied that the impact feature, generally a penetration hole, was caused by a micrometeorite projectile. The typically smaller paint particles were able to penetrate though the hole in the first layer and deposit in the spray pattern on the second layer. It is suggested that paint particles have arrived with a wide range of velocities relative to the Solar Max satellite. Orbiting paint particles are an important fraction of materials in the near-Earth environment. In general, the data from the Solar Max studies are a good calibration for the design of capture cells to be flown in space and on board Space Station. The data also suggest that development of multiple layer capture cells in which the projectile may retain a large degree of pristinity is a feasible goal.

  18. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    DOE PAGES

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; ...

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less

  19. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    SciTech Connect

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.

  20. Numerical analysis of the Magnus moment on a spin-stabilized projectile

    NASA Astrophysics Data System (ADS)

    Cremins, Michael; Rodebaugh, Gregory; Verhulst, Claire; Benson, Michael; van Poppel, Bret

    2016-11-01

    The Magnus moment is a result of an uneven pressure distribution that occurs when an object rotates in a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on flight stability. According to one source, most transonic and subsonic flight instabilities are caused by the Magnus moment [Modern Exterior Ballistics, McCoy], and yet simulations often fail to accurately predict the Magnus moment in the subsonic regime. In this study, we present hybrid Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) predictions of the Magnus moment for a spin-stabilized projectile. Velocity, pressure, and Magnus moment predictions are presented for multiple Reynolds numbers and spin rates. We also consider the effect of a sting mount, which is commonly used when conducting flow measurements in a wind tunnel or water channel. Finally, we present the initial designs for a novel Magnetic Resonance Velocimetry (MRV) experiment to measure three-dimensional flow around a spinning projectile. This work was supported by the Department of Defense High Performance Computing Modernization Program (DoD HPCMP).

  1. Changes in target fragmentation mechanisms with increasing projectile energy in intermediate energy nuclear collisions

    SciTech Connect

    Loveland, W. ); Aleklett, K.; Sihver, L. ); Xu, Z.; Casey, C. ); Morrissey, D.J. ); Liljenzin, J.O. ); de Saint-Simon, M. ); Seaborg, G.T. )

    1990-03-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 16 MeV/nucleon {sup 32}S, 32 MeV/nucleon {sup 40}Ar, and 44 MeV/nucleon {sup 40}Ar with {sup 197}Au. We have deduced the fragment isobaric yield distributions and moving frame angular distributions from these data. The fission cross sections decrease with increasing projectile energy and the heavy residue cross sections (which are much larger than previous counter measurements) increase. There is an unusual change in the fragment isobaric yield distributions in the reactions induced by 32 MeV/nucleon {sup 40}Ar and 44 MeV/nucleon {sup 40}Ar. We have used the symmetry properties of the moving frame distributions to show the relative time scale of the reaction mechanisms involved. The fission fragments associated with the peripheral collision peak in the folding angle distribution originate in a normal, slow fission process in which statistical equilibrium has been established. At the two lowest projectile energies, the fission fragments associated with the central collision peak in the folding angle distribution originate in part in fast, nonequilibrium processes. At the highest projectile energies, there are no fission fragments associated with high-momentum-transfer events. The intermediate mass fragments originate primarily in events in which statistical equilibrium has not been established.

  2. Highly accurate analytic formulae for projectile motion subjected to quadratic drag

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, Mustafa

    2016-05-01

    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  3. Morphology and chemistry of projectile residue in small experimental impact craters

    NASA Technical Reports Server (NTRS)

    Horz, F.; Fechtig, H.; Janicke, J.; Schneider, E.

    1983-01-01

    Small-scale impact craters (5-7 mm in diameter) were produced with a light gas gun in high purity Au and Cu targets using soda lime glass (SL) and man-made basalt glass (BG) as projectiles. Maximum impact velocity was 6.4 km/s resulting in peak pressures of approximately 120-150 GPa. Copious amounts of projectile melts are preserved as thin glass liners draping the entire crater cavity; some of this liner may be lost by spallation, however. SEM investigations reveal complex surface textures including multistage flow phenomena and distinct temporal deposition sequences of small droplets. Inasmuch as some of the melts were generated at peak pressures greater than 120 GPa, these glasses represent the most severely shocked silicates recovered from laboratory experiments to date. Major element analyses reveal partial loss of alkalis; Na2O loss of 10-15 percent is observed, while K2O loss may be as high as 30-50 percent. Although the observed volatile loss in these projectile melts is significant, it still remains uncertain whether target melts produced on planetary surfaces are severely fractionated by selective volatilization processes.

  4. Experimental and Numerical Study of Water-Filled Vessel Impacted by Flat Projectiles

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ren, Peng; Huang, Wei; Gao, Yubo

    2013-06-01

    To understand the failure patterns and impact resistance of watertight vessel, a flat-nosed projectile was accelerated by a two-stage light gas gun against a vessel filled with water which was placed in an air-filled tank. The targets were the 5A06 aluminum which were installed on two opposite sides of the vessel. The penetration process was recorded by a digital high-speed camera. In order to compare, numerical simulations for the vessel with and without water impacted by projectiles were conducted by AUTODYN-3D. The material parameters of targets and projectiles used in the simulation were obtained from several previous studies. The result indicated that experimental and numerical results were in good agreement. Numerical simulations were capable to capture the main physical behavior. It was also found that the impact resistance of targets in the water-filled vessel was lager than that of the empty vessel. Tearing was the main failure models of the water-filled vessel targets which was different from that of the empty vessel where the shear plugging was in dominate. National Natural Science Foundation of China (NO.:11072072).

  5. Penetration of a Small Caliber Projectile into Single and Multi-layered Targets

    NASA Astrophysics Data System (ADS)

    Abdel-Wahed, M. A.; Salem, A. M.; Zidan, A. S.; Riad, A. M.

    2010-06-01

    The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.

  6. Experimental and Numerical Study of Water-Filled Vessel Impacted by Flat Projectiles

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Zhang, Wei; Guo, Zitao; Wei, Gang

    2011-06-01

    To understand the failure patterns and impact resistance of watertight vessel, a flat-nosed projectile was accelerated by a two-stage light gas gun against a vessel filled with water which was placed in an air-filled tank. The targets were the 5A06 aluminum which were installed on two opposite sides of the vessel. The penetration process was recorded by a digital high-speed camera. In order to compare, numerical simulations for the vessel with and without water impacted by projectiles were conducted by AUTODYN-3D. The material parameters of targets and projectiles used in the simulation were obtained from several previous studies. The result indicated that experimental and numerical results were in good agreement. Numerical simulations were capable to capture the main physical behavior. It was also found that the impact resistance of targets in the water-filled vessel was lager than that of the empty vessel. Tearing was the main failure models of the water-filled vessel targets which was different from that of the empty vessel where the shear plugging was in dominate.

  7. Numerical simulation of the effect of regular and sub-caliber projectiles on military bunkers

    NASA Astrophysics Data System (ADS)

    Jiricek, Pavel; Foglar, Marek

    2015-09-01

    One of the most demanding topics in blast and impact engineering is the modelling of projectile impact. To introduce this topic, a set of numerical simulations was undertaken. The simulations study the impact of regular and sub-calibre projectile on Czech pre-WW2 military bunkers. The penetrations of the military objects are well documented and can be used for comparison. The numerical model composes of a part from a wall of a military object. The concrete block is subjected to an impact of a regular and sub-calibre projectile. The model is divided into layers to simplify the evaluation of the results. The simulations are processed within ANSYS AUTODYN software. A nonlinear material model of with damage and incorporated strain-rate effect was used. The results of the numerical simulations are evaluated in means of the damage of the concrete block. Progress of the damage is described versus time. The numerical simulation provides good agreement with the documented penetrations.

  8. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  9. Dynamic fracture of inorganic glasses by hard spherical and conical projectiles.

    PubMed

    Chaudhri, M Munawar

    2015-03-28

    In this article, high-speed photographic investigations of the dynamic crack initiation and propagation in several inorganic glasses by the impact of small spherical and conical projectiles are described. These were carried out at speeds of up to approximately 2×10(6) frames s(-1). The glasses were fused silica, 'Pyrex' (a borosilicate glass), soda lime and B(2)O(3). The projectiles were 0.8-2 mm diameter spheres of steel, glass, sapphire and tungsten carbide, and their velocities were up to 340 m s(-1). In fused silica and Pyrex, spherical projectiles' impact produced Hertzian cone cracks travelling at terminal crack velocities, whereas in soda-lime glass fast splinter cracks were generated. No crack bifurcation was observed, which has been explained by the nature of the stress intensity factor of the particle-impact-generated cracks, which leads to a stable crack growth. Crack bifurcation was, however, observed in thermally tempered glass; this bifurcation has been explained by the tensile residual stress and the associated unstable crack growth. A new explanation has been proposed for the decrease of the included angle of the Hertzian cone cracks with increasing impact velocity. B(2)O(3) glass showed dynamic compaction and plasticity owing to impact with steel spheres. Other observations, such as total contact time, crack lengths and response to oblique impacts, have also been explained.

  10. Optical fiber-based system for continuous measurement of in-bore projectile velocity

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  11. Optical fiber-based system for continuous measurement of in-bore projectile velocity.

    PubMed

    Wang, Guohua; Sun, Jinglin; Li, Qiang

    2014-08-01

    This paper reports the design of an optical fiber-based velocity measurement system and its application in measuring the in-bore projectile velocity. The measurement principle of the implemented system is based on Doppler effect and heterodyne detection technique. The analysis of the velocity measurement principle deduces the relationship between the projectile velocity and the instantaneous frequency (IF) of the optical fiber-based system output signal. To extract the IF of the fast-changing signal carrying the velocity information, an IF extraction algorithm based on the continuous wavelet transforms is detailed. Besides, the performance of the algorithm is analyzed by performing corresponding simulation. At last, an in-bore projectile velocity measurement experiment with a sniper rifle having a 720 m/s muzzle velocity is performed to verify the feasibility of the optical fiber-based velocity measurement system. Experiment results show that the measured muzzle velocity is 718.61 m/s, and the relative uncertainty of the measured muzzle velocity is approximately 0.021%.

  12. Performance of solid fuel ramjet guided projectile for USN 5 inch/54 caliber gun system

    NASA Astrophysics Data System (ADS)

    Amichai, O.

    1982-03-01

    This report covers work done on performance analysis of a 5 inch, 54 caliber gun-launched guided projectile with solid fuel ramjet (SFRJ). A computer program (TRAJET) was developed. The program contains ramjet and trajectory analysis. The ramjet part considers conical shock wave losses, inlet boundary layer losses, normal shock losses, subsonic diffuser recovery, expansion into combustor losses, heat losses at the combustor and nozzle losses. A flat earth trajectory with drag and thrust was considered. The various drag coefficients which were considered are: cowl drag coefficient, skin drag coefficient, wing (or fin) wave drag coefficient and wing (or fin) friction drag coefficient. The 5'/54 solid fuel ramjet has a capability to produce fuel specific impulse in the order of 400 - 900 sec. depending mostly on the flight altitude. The thrust coefficient varies in the range of 0.3 + or - 0.1 depending on the internal areas. A range in the order of 50 miles can be achieved with the ramjet operation compared to only 13 miles achieved by the conventional projectile. At low-altitude launch, a range of over 18 miles can be reached in Air-Defense Scenario. The ramjet propelled projectile reaches the ranges mentioned above at high Mach numbers (M0 1.8).

  13. Hypervelocity gun. [using both electric and chemical energy for projectile propulsion

    NASA Technical Reports Server (NTRS)

    Ford, F. C.; Biehl, A. J. (Inventor)

    1965-01-01

    A velocity amplifier system which uses both electric and chemical energy for projectile propulsion is provided in a compact hypervelocity gun suitable for laboratory use. A relatively heavy layer of a tamping material such as concrete encloses a loop of an electrically conductive material. An explosive charge at least partially surrounding the loop is adapted to collapse the loop upon detonation of the charge. A source of electricity charges the loop through two leads, and an electric switch which is activated by the charge explosive charge, disconnects the leads from the source of electricity and short circuits them. An opening in the tamping material extends to the loop and forms a barrel. The loop, necked down in the opening, forms the sabot on which the projectile is located. When the loop is electrically charged and the explosive detonated, the loop is short circuited and collapsed thus building up a magnetic field which acts as a sabot catcher. The sabot is detached from the loop and the sabot and projectile are accelerated to hypervelocity.

  14. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  15. The motion of an arbitrarily rotating spherical projectile and its application to ball games

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2013-07-01

    In this paper the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary ‘wind’ are developed. Three forces are assumed to act on the projectile: (i) gravity, (ii) a drag force proportional to the square of the projectile's velocity and in the opposite direction to this velocity and (iii) a lift or ‘Magnus’ force also assumed to be proportional to the square of the projectile's velocity and in a direction perpendicular to both this velocity and the angular velocity vector of the projectile. The problem has been coded in Matlab and some illustrative model trajectories are presented for ‘ball-games’, specifically golf and cricket, although the equations could equally well be applied to other ball-games such as tennis, soccer or baseball. Spin about an arbitrary axis allows for the treatment of situations where, for example, the spin has a component about the direction of travel. In the case of a cricket ball the subtle behaviour of so-called ‘drift’, particularly ‘late drift’, and also ‘dip’, which may be produced by a slow bowler's off or leg-spin, are investigated. It is found that the trajectories obtained are broadly in accord with those observed in practice. We envisage that this paper may be useful in two ways: (i) for its inherent scientific value as, to the best of our knowledge, the fundamental equations derived here have not appeared in the literature and (ii) in cultivating student interest in the numerical solution of differential equations, since so many of them actively participate in ball-games, and they will be able to compare their own practical experience with the overall trends indicated by the numerical results. As the paper presents equations which can be further extended, it may be of interest to research workers. However, since only the most basic principles of fundamental mechanics are employed, it should be well within the grasp of first

  16. Techniques for Surface-Temperature Measurements and Transition Detection on Projectiles at Hypersonic Velocities--Status Report No. 2

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Wilder, M. C.

    2006-01-01

    The latest developments in a research effort to advance techniques for measuring surface temperatures and heat fluxes and determining transition locations on projectiles in hypersonic free flight in a ballistic range are described. Spherical and hemispherical titanium projectiles were launched at muzzle velocities of 4.6-5.8 km/sec into air and nitrogen at pressures of 95-380 Torr. Hemisphere models with diameters of 2.22 cm had maximum pitch and yaw angles of 5.5-8 degrees and 4.7-7 degrees, depending on whether they were launched using an evacuated launch tube or not. Hemisphere models with diameters of 2.86 cm had maximum pitch and yaw angles of 2.0-2.5 degrees. Three intensified-charge-coupled-device (ICCD) cameras with wavelength sensitivity ranges of 480-870 nm (as well as one infrared camera with a wavelength sensitivity range of 3 to 5 microns), were used to obtain images of the projectiles in flight. Helium plumes were used to remove the radiating gas cap around the projectiles at the locations where ICCD camera images were taken. ICCD and infrared (IR) camera images of titanium hemisphere projectiles at velocities of 4.0-4.4 km/sec are presented as well as preliminary temperature data for these projectiles. Comparisons were made of normalized temperature data for shots at approx.190 Torr in air and nitrogen and with and without the launch tube evacuated. Shots into nitrogen had temperatures 6% lower than those into air. Evacuation of the launch tube was also found to lower the projectile temperatures by approx.6%.

  17. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  18. Impact cratering as a major process in planet formation: Projectile identification of meteorite craters

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Kratz, K.

    2009-12-01

    Ancient surfaces of solid planets show that impact cratering is a major process in planet formation. Understanding origin and influence of impactors on the chemical composition of planets (core, mantle and crust) it is important to know the relative abundances of highly siderophile elements (Os, Ir, Ru, Pt, Rh, Pd) in the silicate mantle and crust of planets and meteorites. Refractory highly siderophile elements, such as Os and Ir, are abundant in most meteorites but depleted in crustal rocks (low target/meteorite ratios) and thus the most reliable elements for projectile identification. However, target/meteorite ratios are high if target rocks consist of mantle rocks. In such cases elements are enriched in impactites due to relatively high abundances (ng/g level) in target rocks to make the identification of projectile types difficult (e.g., Gardnos impact structure in Norway). The Ru/Ir ratio is the most reliable key ratio that rules out Earth primitive upper mantle (PUM) derived refractory highly siderophile element components in impactites. The well established Ru/Ir ratio of the Earth mantle of 2.0 ± 0.1 (e.g. Schmidt and Kratz 2004) is significantly above the chondritic ratios varying from 1.4 to 1.6. On Earth Rh/Ir, Ru/Ir, Pd/Ir, and Pt/Os derived from PUM match the ratios of group IV irons with fractionated trace element patterns. The question raise if HSE in mantle rocks are added to the accreting Earth by a late bombardment of pre-differentiated objects or the cores of these objects (magmatic iron meteorites as remnants of the first planetesimals, e.g. Kleine et al. 2009) or some unsampled inner solar system materials from the Mercury-Venus formation region, not sampled through meteorite collections (Schmidt 2009). The PGE and Ni systematics of the upper continental crust (UCC) closely resembles group IIIAB iron meteorites with highly fractionated refractory trace element patterns, pallasites, and the evolved suite of Martian meteorites (representing

  19. Collective motion in a fluid complex plasma induced by interaction with a slow projectile under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Zhukhovitskii, Dmitry; Ivlev, Alexei; Thomas, Hubertus; Fortov, Vladimir; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Naumkin, Vadim

    Subsonic motion of a large particle (projectile) moving through the bulk of a dust crystal formed by negatively charged small particles is investigated using the PK-3 Plus laboratory onboard the International Space Station. Tracing the dust particle trajectories show that the projectile moves almost freely through the bulk of plasma crystal, while dust particles move along characteristic alpha-shaped pathways near the large particle. We develop a theory of nonviscous dust particles motion about a projectile and calculate particle trajectories. The deformation of a cavity around a subsonic projectile in the cloud of small dust particles is investigated with due regard for friction between the dust particles and atoms of neutral gas. The pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Developed theory makes it possible to estimate the static pressure of dust particles in a cloud on the basis of experimental data. A good agreement with experiment validates our approach.

  20. Inner-shell capture and ionization in collisions of H+, He2+, and Li3+ projectiles with neon and carbon

    NASA Astrophysics Data System (ADS)

    Ford, A. L.; Reading, J. F.; Becker, R. L.

    1981-02-01

    Theoretical methods used previously for H+, He2+, and C6+ collisions with neutral argon atoms have been applied to collisions of H+, He2+, and Li3+ projectiles with neon, and to collisions of H+ with carbon targets. The energy range covered by the calculations is 0.4 to 4.0 MeV/amu for the neon target, and 0.2 to 2.0 MeV/amu for carbon. We calculate single-electron amplitudes for target K-shell ionization and target K- and L-shell, to projectile K-shell, charge transfer. These single-electron amplitudes are used, in an independent-particle model that allows for multielectron processes, to compute K-shell vacancy production cross sections σIPMVK, and cross sections σIPMC,VK for producing a charge-transfer state of the projectile in the coincidence with a K-shell vacancy in the target. These cross sections are in reasonable agreement with the recent experiments of Rødbro et al. at Aarhus. In particular, the calculated, as well as the experimental, σC,VK scale with projectile nuclear charge Zp less strongly than the Z5p of the Oppenheimer-Brinkman-Kramers (OBK) approximation. For He2+ and Li3+ projectiles at collision energies below where experimental data are available, our calculated multielectron corrections to the single-electron approximation for σC,VK are large.