Sample records for reflection coefficient spectroscopy

  1. Hyperspectral photoacoustic spectroscopy of highly-absorbing samples for diagnostic ocular imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-01-01

    Photoacoustic spectroscopy has been used to measure optical absorption coefficient and the application of tens of wavelength bands in photoacoustic spectroscopy was reported. Using optical methods, absorption-related information is, generally, derived from reflectance or transmittance values. Hence measurement accuracy is limited for highly absorbing samples where the reflectance or transmittance is too low to give reasonable signal-to-noise ratio. In this context, this paper proposes and illustrates a hyperspectral photoacoustic spectroscopy system to measure the absorption-related properties of highly absorbing samples directly. The normalized optical absorption coefficient spectrum of the highly absorbing iris is acquired using an optical absorption coefficient standard. The proposed concepts and the feasibility of the developed diagnostic medical imaging system are demonstrated using fluorescent microsphere suspensions and porcine eyes as test samples.

  2. Source Determination of Red Gel Pen Inks using Raman Spectroscopy and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy combined with Pearson's Product Moment Correlation Coefficients and Principal Component Analysis.

    PubMed

    Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee

    2018-01-01

    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.

  3. Near-infrared and Mid-infrared Spectroscopic Techniques for a Fast and Nondestructive Quality Control of Thymi herba.

    PubMed

    Pezzei, Cornelia K; Schönbichler, Stefan A; Hussain, Shah; Kirchler, Christian G; Huck-Pezzei, Verena A; Popp, Michael; Krolitzek, Justine; Bonn, Günther K; Huck, Christian W

    2018-04-01

    In this study, novel near-infrared and attenuated total reflectance mid-infrared spectroscopic methods coupled with multivariate data analysis were established enabling the determination of thymol, rosmarinic acid, and the antioxidant capacity of Thymi herba. A new high-performance liquid chromatography method and UV-Vis spectroscopy were applied as reference methods. Partial least squares regressions were carried out as cross and test set validations. To reduce systematic errors, different data pretreatments, such as multiplicative scatter correction, 1st derivative, or 2nd derivative, were applied on the spectra. The performances of the two infrared spectroscopic techniques were evaluated and compared. In general, attenuated total reflectance mid-infrared spectroscopy demonstrated a slightly better predictive power (thymol: coefficient of determination = 0.93, factors = 3, ratio of performance to deviation = 3.94; rosmarinic acid: coefficient of determination = 0.91, factors = 3, ratio of performance to deviation = 3.35, antioxidant capacity: coefficient of determination = 0.87, factors = 2, ratio of performance to deviation = 2.80; test set validation) than near-infrared spectroscopy (thymol: coefficient of determination = 0.90, factors = 6, ratio of performance to deviation = 3.10; rosmarinic acid: coefficient of determination = 0.92, factors = 6, ratio of performance to deviation = 3.61, antioxidant capacity: coefficient of determination = 0.91, factors = 6, ratio of performance to deviation = 3.42; test set validation). The capability of infrared vibrational spectroscopy as a quick and simple analytical tool to replace conventional time and chemical consuming analyses for the quality control of T. herba could be demonstrated. Georg Thieme Verlag KG Stuttgart · New York.

  4. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.

    PubMed

    Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio

    2012-10-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.

  5. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    PubMed Central

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  6. Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng

    2018-04-01

    We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.

  7. Dual-modality optical biopsy of glioblastomas multiforme with diffuse reflectance and fluorescence: ex vivo retrieval of optical properties

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S.; Nie, Zhaojun; Hayward, Joseph E.; Farrell, Thomas J.; McMillan, William; Zhang, Wenbin; Fang, Qiyin

    2017-02-01

    Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.

  8. Dual-modality optical biopsy of glioblastomas multiforme with diffuse reflectance and fluorescence: ex vivo retrieval of optical properties.

    PubMed

    Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S; Nie, Zhaojun; Hayward, Joseph E; Farrell, Thomas J; McMillan, William; Zhang, Wenbin; Fang, Qiyin

    2017-02-01

    Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.

  9. In-situ analysis of fruit anthocyanins by means of total internal reflectance, continuous wave and time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Zude, Manuela; Spinelli, Lorenzo; Dosche, Carsten; Torricelli, Alessandro

    2009-08-01

    In sweet cherry (Prunus avium), the red pigmentation is correlated with the fruit maturity stage and can be measured by non-invasive spectroscopy. In the present study, the influence of varying fruit scattering coefficients on the fruit remittance spectrum (cw) were corrected with the effective pathlength and refractive index in the fruit tissue obtained with distribution of time-of-flight (DTOF) readings and total internal reflection fluorescence (TIRF) analysis, respectively. The approach was validated on fruits providing variation in the scattering coefficient outside the calibration sample set. In the validation, the measuring uncertainty when non-invasively analyzing fruits with cw method in comparison with combined application of cw, DTOF, and TIRF measurements showed an increase in r2 up to 22.7 % with, however, high errors in all approaches.

  10. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  11. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  12. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  13. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.

    PubMed

    Pogue, B W; Patterson, M S

    1994-07-01

    The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.

  14. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy.

    PubMed

    Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru

    2016-02-22

    The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.

  15. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  16. In vivo measurements of optical properties of human muscles with visible and near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chiao Yi; Yu, Ting Wen; Sung, Kung Bin

    2018-02-01

    Estimating optical properties of tissues is a crucial step to model photon migration in tissue, facilitate the design of the probe geometry, better interpret data measured from tissue and predict photon energy distributions in tissue for various diagnostic and therapeutic applications. Diffuse reflectance spectroscopy (DRS) using visible and near-infrared light is a well-known method for estimating optical properties of tissues. For estimating optical properties of muscles, most existing researches have used integrating spheres for ex-vivo measurements. However, due to inter-subject variability and sitespecific conditions, an in-vivo approach can provide more accurate estimations of muscle absorption and scattering coefficients, which is important for the tomographic reconstruction of changes in the absorption or fluorescence in tissue. In this study, we used DRS with wavelengths between 600 nm and 800 nm and a fiber bundle with source-to-detector separations in the range of 0.18-0.35 cm to quantify wavelength-dependent scattering and absorption coefficients of human muscles in vivo with an inverse Monte Carlo model. Reflectance spectra were measured on the neck and the upper arm of one volunteer. After calibrating spectra with tissue phantoms made of Intralipid and India ink, we estimated scattering and absorption coefficients of muscles. The results are compared to those measured ex vivo in the literature.

  17. Discovery of the linear region of Near Infrared Diffuse Reflectance spectra using the Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng

    2018-05-01

    Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  18. Developing visible and near-infrared reflectance spectroscopy to detect changes of the dermal collagen concentration

    NASA Astrophysics Data System (ADS)

    Wang, Chiao-Yi; Liao, Andy Ying Chi; Sung, Kung Bin

    2018-02-01

    Collagen provides skin structure integrity and its concentration is related to the severity of scars. The objective of this study is to develop a hand-held and relatively inexpensive system to detect changes of the dermal collagen concentration in vivo. Diffuse reflectance spectroscopy and two-layer diffusion model have often been used to quantify the collagen concentration and other optical properties of the skin. However, the influences of fat and muscle, which are just below the dermis, have not been thoroughly investigated. We applied Monte Carlo simulations to find source-detector separations most sensitive to changes in collagen absorption and identify four wavelengths between 650 nm and 1000 nm suitable for separating influences of other chromophores including melanin, oxyhemoglobin and deoxyhemoglobin. Our tissue model consisted of at least three layers including the epidermis, dermis and subcutaneous fat with an optional forth layer representing the muscle. Results showed that the reflectance of the three-layered tissue model differed significantly from that of the two-layered tissue model, and the additional muscle layer might also influence the reflectance depending on the thickness of the fat layer. In addition, whether scattering coefficients of the epidermis and dermis were the same significantly affected the reflectance. Differences in reflectance due to changes in the collagen concentration were distinct from those due to changes in scattering coefficients and other chromophores. Further in-vivo experiments are ongoing to to validate the proposed approach.

  19. [Study on the polarized reflectance-hyperspectral information fusion technology of tomato leaves nutrient diagnoses].

    PubMed

    Zhu, Wen-Jing; Mao, Han-Ping; Li, Qing-Lin; Liu, Hong-Yu; Sun, Jun; Zuo, Zhi-Yu; Chen, Yong

    2014-09-01

    With 25%, 50%, 75%, 100% and 150%, five levels of, nitrogen (N), phosphorus (P) and potassium (K) nutrition stress samples cultivated in Venlo type greenhouse soilless cultivation mode as the research object, polarized reflectance spectra and hyperspectral images of different nutrient deficiency greenhouse tomato leaves were acquired by using polarized reflectance spectroscopy system developed by our own research group and hyperspectral imaging system respectively. The relationship between a certain number of changes in the bump and texture of non-smooth surface of the nutrient stress leaf and the level of polarization reflected radiation was clarified by scanning electron microscopy (SEM). On the one hand, the polarization spectrum was converted into the degree of polarization through Stokes equation, and the four polarization characteristics between the polarization spectroscopy and reference measurement values of N, P and K respectively were extracted. On the other hand, the four characteristic wavelengths of N, P, K hyperspectral image data were determined respectively through the principal component analysis, followed by eight hyperspectral texture features extracted corresponding to the four characteristic wavelengths through correlation analysis. Polarization characteristics and hyperspectral texture features combined with each characteristics of N, P, K were extracted. These 12 characteristic variables were normalized by maximum-minimum value method. N, P, K nutrient levels quantitative diagnostic models were established by SVR. Results of models are as follows: the correlation coefficient of nitrogen r = 0.961 8, root mean square error RMSE= 0.451; correlation coefficient of phosphorus r = 0.916 3, root mean square error RMSE = 0.620; correlation coefficient of potassium r = 0.940 6, root mean square error RMSE = 0.494. The results show that high precision tomato leaves nutrition prediction model could be built by using polarized reflectance spectroscopy combined with high spectral information fusion technology and achieve good diagnoses effect. It has a great significance for the improvement of model accuracy and the development of special instruments. The research provides a new idea for the rapid detection of tomato nutrient content.

  20. Quantify Glucose Level in Freshly Diabetic's Blood by Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Xiaofeng; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhang, Weifeng; Li, Xiao

    2018-04-01

    We demonstrate the capability of terahertz (THz) time-domain spectroscopy (TDS) to quantify glucose level in ex vivo freshly diabetic's blood. By investigating the THz spectra of different human blood, we find out THz absorption coefficients reflect a high sensitivity to the glucose level in blood. With a quantitative analysis of 70 patients, we demonstrate that the THz absorption coefficients and the blood glucose levels perform a linear relationship. A comparative experiment between THz measurement and glucometers is also conducted with another 20 blood samples, and the results confirm that the relative error is as less as 15%. Our ex vivo human blood study indicates that THz technique has great potential application to diagnose blood glucose level in clinical practice.

  1. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime scenes.

  2. Measuring the reduced scattering coefficient and γ with SFR spectroscopy: studying the phase function dependence (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Post, Anouk L.; Zhang, Xu; Bosschaart, Nienke; Van Leeuwen, Ton G.; Sterenborg, Henricus J. C. M.; Faber, Dirk J.

    2016-03-01

    Both Optical Coherence Tomography (OCT) and Single Fiber Reflectance Spectroscopy (SFR) are used to determine various optical properties of tissue. We developed a method combining these two techniques to measure the scattering anisotropy (g1) and γ (=1-g2/1-g1), related to the 1st and 2nd order moments of the phase function. The phase function is intimately associated with the cellular organization and ultrastructure of tissue, physical parameters that may change during disease onset and progression. Quantification of these parameters may therefore allow for improved non-invasive, in vivo discrimination between healthy and diseased tissue. With SFR the reduced scattering coefficient and γ can be extracted from the reflectance spectrum (Kanick et al., Biomedical Optics Express 2(6), 2011). With OCT the scattering coefficient can be extracted from the signal as a function of depth (Faber et al., Optics Express 12(19), 2004). Consequently, by combining SFR and OCT measurements at the same wavelengths, the scattering anisotropy (g) can be resolved using µs'= µs*(1-g). We performed measurements on a suspension of silica spheres as a proof of principle. The SFR model for the reflectance as a function of the reduced scattering coefficient and γ is based on semi-empirical modelling. These models feature Monte-Carlo (MC) based model constants. The validity of these constants - and thus the accuracy of the estimated parameters - depends on the phase function employed in the MC simulations. Since the phase function is not known when measuring in tissue, we will investigate the influence of assuming an incorrect phase function on the accuracy of the derived parameters.

  3. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue

    NASA Astrophysics Data System (ADS)

    Duadi, Hamootal; Fixler, Dror

    2015-05-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.

  4. Phase-resolved reflectance spectroscopy on layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1995-05-01

    In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.

  5. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    DOEpatents

    Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  6. Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao Yongni; He Yong; Mao Jingyuan

    Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) ofmore » 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.« less

  7. Prediction of soil organic carbon with different parent materials development using visible-near infrared spectroscopy.

    PubMed

    Liu, Jinbao; Han, Jichang; Zhang, Yang; Wang, Huanyuan; Kong, Hui; Shi, Lei

    2018-06-05

    The storage of soil organic carbon (SOC) should improve soil fertility. Conventional determination of SOC is expensive and tedious. Visible-near infrared reflectance spectroscopy is a practical and cost-effective approach that has been successfully used SOC concentration. Soil spectral inversion model could quickly and efficiently determine SOC content. This paper presents a study dealing with SOC estimation through the combination of soil spectroscopy and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), principal component regression (PCR). Spectral measurements for 106 soil samples were acquired using an ASD FieldSpec 4 standard-res spectroradiometer (350-2500 nm). Six types of transformations and three regression methods were applied to build for the quantification of different parent materials development soil. The results show that (1)the basaltic volcanic clastics development of SOC spectral response bands located in 500 nm, 800 nm; Trachyte spectral response of the soil quality, and the volcanic clastics development at 405 nm, 465 nm, 575 nm, 1105 nm. (2) Basaltic volcanic debris soil development, first deviation of maximum correlation coefficient is 0.8898; thick surface soil of the development of rocky volcanic debris from bottom reflectivity logarithm of first deviation of maximum correlation coefficient is 0.9029. (3) Soil organic matter content of basaltic volcanic clastics development optimal prediction model based on spectral reflectance inverse logarithms of first deviation of SMLR. Independent variable number is 7, Rv 2  = 0.9720, RMSEP = 2.0590, sig = 0.003. Trachyte qualitative volcanic clastics developed soil organic matter content of the optimal prediction model based on spectral reflectance inverse logarithms of first deviation of PLSR. Model number of the independent variables Pc = 5, Rc = 0.9872, Rc 2  = 0.9745, RMSEC = 0.4821, SEC = 0.4906, forecasts determine coefficient Rv 2  = 0.9702, RMSEP = 0.9563, SEP = 0.9711, Bias = 0.0637. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Origin of the anomalous decrease in the apparent density of polymer gels observed by multi-echo reflection ultrasound spectroscopy.

    PubMed

    Takeda, Kohsuke; Norisuye, Tomohisa; Tran-Cong-Miyata, Qui

    2013-07-01

    Multi-echo reflection ultrasound spectroscopy (MERUS), which enables one to simultaneously evaluate the attenuation coefficient α, the sound velocity v and the density ρ, has been developed for measurements of elastic moduli. In the present study, the technique was further developed to analyze systems undergoing gelation where an unphysical decrease in the apparent density was previously observed after polymerization. The main reason for this problem was that the shrinkage accompanying the gelation led to a small gap between the cell wall and the sample, resulting in the superposition of the reflected signals which were not separable into individual components. By taking into account the multiply reflecting echoes at the interface of the gap, the corrected densities were systematically obtained and compared with the results for the floating test. The present technique opens a new route to simultaneously evaluate the three parameters α, v and ρ and also the sample thickness for solid thin films. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Simultaneous estimation of transcutaneous bilirubin, hemoglobin, and melanin based on diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki

    2018-02-01

    We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.

  10. Cortexin diffusion in human eye sclera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, Elina A; Bashkatov, A N; Tuchin, Valerii V

    2011-05-31

    Investigation of the diffusion of cytamines, a typical representative of which is cortexin, is important for evaluating the drug dose, necessary to provide sufficient concentration of the preparation in the inner tissues of the eye. In the present paper, the cortexin diffusion rate in the eye sclera is measured using the methods of optical coherence tomography (OCT) and reflectance spectroscopy. The technique for determining the diffusion coefficient is based on the registration of temporal dependence of the eye sclera scattering parameters caused by partial replacement of interstitial fluid with the aqueous cortexin solution, which reduces the level of the OCTmore » signal and decreases the reflectance of the sclera. The values of the cortexin diffusion coefficient obtained using two independent optical methods are in good agreement. (optical technologies in biophysics and medicine)« less

  11. The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.

    2017-01-01

    In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.

  12. Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets.

    PubMed

    Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2018-05-01

    Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Spectroscopic method for determination of the absorption coefficient in brain tissue

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  14. Determination of main components and anaerobic rumen digestibility of aquatic plants in vitro using near-infrared-reflectance spectroscopy.

    PubMed

    Yue, Zheng-Bo; Zhang, Meng-Lin; Sheng, Guo-Ping; Liu, Rong-Hua; Long, Ying; Xiang, Bing-Ren; Wang, Jin; Yu, Han-Qing

    2010-04-01

    A near-infrared-reflectance (NIR) spectroscopy-based method is established to determine the main components of aquatic plants as well as their anaerobic rumen biodegradability. The developed method is more rapid and accurate compared to the conventional chemical analysis and biodegradability tests. Moisture, volatile solid, Klason lignin and ash in entire aquatic plants could be accurately predicted using this method with coefficient of determination (r(2)) values of 0.952, 0.916, 0.939 and 0.950, respectively. In addition, the anaerobic rumen biodegradability of aquatic plants, represented as biogas and methane yields, could also be predicted well. The algorithm of continuous wavelet transform for the NIR spectral data pretreatment is able to greatly enhance the robustness and predictive ability of the NIR spectral analysis. These results indicate that NIR spectroscopy could be used to predict the main components of aquatic plants and their anaerobic biodegradability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Electromagnetic Spectroscopy of Normal Breast Tissue Specimens Obtained From Reduction Surgeries: Comparison of Optical and Microwave Properties

    PubMed Central

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M.; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C.

    2009-01-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly-excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r|~0.5–0.6, p<0.01), and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r|~ 0.4–0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=−0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition. PMID:18838370

  16. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.

    PubMed

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C

    2008-10-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.

  17. Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy.

    PubMed

    Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil

    2012-05-01

    Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.

  18. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  19. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde ( p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (A R) against the concentration were linear in the range 50-500 μg mL -1, with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL -1. The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively.

  20. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy.

    PubMed

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (AR) against the concentration were linear in the range 50-500 μg mL(-1), with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL(-1). The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials

    NASA Astrophysics Data System (ADS)

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-01

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection.

  2. Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK)

    NASA Astrophysics Data System (ADS)

    Charamisinau, Ivan; Keymel, Kenneth; Potter, William; Oseroff, Allan R.

    2006-02-01

    Photodynamic therapy is an effective, minimally invasive skin cancer treatment modality with few side effects. Improved therapeutic selectivity and efficacy is expected if treatment is optimized individually for each patient based on detailed measurements prior and during the treatment. The handheld system presented allows measuring optical properties of the skin, the rate of photosensitizer photobleaching during the ALA PDT and oxygen saturation in the tissue. The photobleaching rate is monitored using fluorescence spectroscopy, where protoporphyrin IX in tissue is exited by 410 nm (blue) or 532 nm (green) laser light, and fluorescence in the 580-800 nm range is monitored. The photobleaching rate is calculated by correlating the measured spectrum with known protoporphyrin IX, photoproduct and nonspecific tissue autofluorescence spectra using correlation analysis. Double-wavelength excitation allows a rough estimation of the depth of the fluorescence source due to the significant difference in penetration depth for blue and green light. Blood concentration and oxygenation in the tissue are found from the white light reflectance spectrum in the 460-800 nm range. Known spectra for the oxy- and deoxyhemoglobin, melanin, and tissue baseline absorption and tissue scattering are substituted in nonlinear equations to find the penetration depth and diffuse reflectance coefficient. The nonlinear equation for the diffuse reflectance coefficient is solved for blood and melanin concentrations and blood oxygenation values that provide the best fit to the measured spectrum. The optical properties of the tissue obtained from the reflectance spectroscopy are used to correct the fluorescence data. A noncontact probe with 5 fibers (3 excitation and 2 detection) focused to the same 5 mm diameter spot: 2 excitation lasers, a white light lamp and a two-channel spectrometer are used. A LabView program with custom nonlinear equation solvers written in C++ automatically performs the measurements and calculations, and writes data to a database. The system is currently used in a clinical trial to find the relationship between skin pigmentation, oxygen saturation in blood, photobleaching rate and optimal fluence rate for skin cancer treatment of actinic keratoses.

  3. Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Wen, Xiang; Tuchin, Valery V.; Luo, Qingming; Zhu, Dan

    2011-09-01

    Dehydration induced by optical clearing agents (OCAs) can improve tissue optical transmittance; however, current studies merely gave some qualitative descriptions. We develop a model to quantitatively evaluate water content with partial least-squares method based on the measurements of near-infrared reflectance spectroscopy and weight of porcine skin. Furthermore, a commercial spectrometer with an integrating sphere is used to measure the transmittance and reflectance of skin after treatment with different OCAs, and then the water content and optical properties of sample are calculated, respectively. The results show that both the reduced scattering coefficient and dehydration of skin decrease with prolongation of action of OCAs, but the relative change in former is larger than that in latter after a 60-min treatment. The absorption coefficient at 1450 nm decreases completely coincident with dehydration of skin. Further analysis illustrates that the correlation coefficient between the relative changes in the reduced scattering coefficient and dehydration is ~1 during the 60-min treatment of agents, but there is an extremely significant difference between the two parameters for some OCAs with more hydroxyl groups, especially, glycerol or D-sorbitol, which means that the dehydration is a main mechanism of skin optical clearing, but not the only mechanism.

  4. Parameterization using Fourier series expansion of the diffuse reflectance of human skin to vary the concentration of the melanocytes

    NASA Astrophysics Data System (ADS)

    Narea, J. Freddy; Muñoz, Aarón A.; Castro, Jorge; Muñoz, Rafael A.; Villalba, Caroleny E.; Martinez, María. F.; Bravo, Kelly D.

    2013-11-01

    Human skin has been studied in numerous investigations, given the interest in knowing information about physiology, morphology and chemical composition. These parameters can be determined using non invasively optical techniques in vivo, such as the diffuse reflectance spectroscopy. The human skin color is determined by many factors, but primarily by the amount and distribution of the pigment melanin. The melanin is produced by the melanocytes in the basal layer of the epidermis. This research characterize the spectral response of the human skin using the coefficients of Fourier series expansion. Simulating the radiative transfer equation for the Monte Carlo method to vary the concentration of the melanocytes (fme) in a simplified model of human skin. It fits relating the Fourier series coefficient a0 with fme. Therefore it is possible to recover the skin biophysical parameter.

  5. Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Tseng, Sheng-Hao; Hsu, Chao-Kai; Yu-Yun Lee, Julia; Tzeng, Shih-Yu; Chen, Wan-Rung; Liaw, Yu-Kai

    2012-07-01

    Collagen is a rich component in skin that provides skin structure integrity; however, its contribution to the absorption and scattering properties of various types of skin has not been extensively studied. We considered the contribution of the collagen to the absorption spectrum of in vivo normal skin and keloids of 12 subjects derived from our diffuse reflectance spectroscopy (DRS) system in the wavelength range from 550 to 860 nm. It was found that the collagen concentration, the hemoglobin oxygen saturation, and the reduced scattering coefficient of keloids were remarkably different from that of normal skin. Our results suggest that our DRS system could assist clinicians in understanding the functional and structural condition of keloid scars. In the future, we will evaluate the accuracy of our system in the keloid diagnosis and investigate the applicability of our system for other skin-collagen-related studies.

  6. Fast determination of total ginsenosides content in ginseng powder by near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang

    2006-01-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.

  7. Application of attenuated total reflectance Fourier transform infrared spectroscopy for determination of cefixime in oral pharmaceutical formulations.

    PubMed

    Kandhro, Aftab A; Laghari, Abdul Hafeez; Mahesar, Sarfaraz A; Saleem, Rubina; Nelofar, Aisha; Khan, Salman Tariq; Sherazi, S T H

    2013-11-01

    A quick and reliable analytical method for the quantitative assessment of cefixime in orally administered pharmaceutical formulations is developed by using diamond cell attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy as an easy procedure for quality control laboratories. The standards for calibration were prepared in aqueous medium ranging from 350 to 6000mg/kg. The calibration model was developed based on partial least square (PLS) using finger print region of FT-IR spectrum in the range from 1485 to 887cm(-1). Excellent coefficient of determination (R(2)) was achieved as high as 0.99976 with root mean square error of 44.8 for calibration. The application of diamond cell (smart accessory) ATR FT-IR proves a reliable determination of cefixime in pharmaceutical formulations to assess the quality of the final product. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Determination of uronic acids in isolated hemicelluloses from kenaf using diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) and the curve-fitting deconvolution method.

    PubMed

    Batsoulis, A N; Nacos, M K; Pappas, C S; Tarantilis, P A; Mavromoustakos, T; Polissiou, M G

    2004-02-01

    Hemicellulose samples were isolated from kenaf (Hibiscus cannabinus L.). Hemicellulosic fractions usually contain a variable percentage of uronic acids. The uronic acid content (expressed in polygalacturonic acid) of the isolated hemicelluloses was determined by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and the curve-fitting deconvolution method. A linear relationship between uronic acids content and the sum of the peak areas at 1745, 1715, and 1600 cm(-1) was established with a high correlation coefficient (0.98). The deconvolution analysis using the curve-fitting method allowed the elimination of spectral interferences from other cell wall components. The above method was compared with an established spectrophotometric method and was found equivalent for accuracy and repeatability (t-test, F-test). This method is applicable in analysis of natural or synthetic mixtures and/or crude substances. The proposed method is simple, rapid, and nondestructive for the samples.

  9. Label-free hyperspectral dark-field microscopy for quantitative scatter imaging

    NASA Astrophysics Data System (ADS)

    Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong

    2017-03-01

    A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.

  10. Visualization of hemodynamics and light scattering in exposed brain of rat using multispectral image reconstruction based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-07-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.

  11. Non-contact assessment of COD and turbidity concentrations in water using diffuse reflectance UV-Vis spectroscopy.

    PubMed

    Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca

    2014-08-01

    Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.

  12. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  13. Applicability of a Diffuse Reflectance Infrared Fourier Transform handheld spectrometer to perform in situ analyses on Cultural Heritage materials.

    PubMed

    Arrizabalaga, Iker; Gómez-Laserna, Olivia; Aramendia, Julene; Arana, Gorka; Madariaga, Juan Manuel

    2014-08-14

    This work studies the applicability of a Diffuse Reflectance Infrared Fourier Transform handheld device to perform in situ analyses on Cultural Heritage assets. This portable diffuse reflectance spectrometer has been used to characterise and diagnose the conservation state of (a) building materials of the Guevara Palace (15th century, Segura, Basque Country, Spain) and (b) different 19th century wallpapers manufactured by the Santa Isabel factory (Vitoria-Gasteiz, Basque Country, Spain) and by the well known Dufour and Leroy manufacturers (Paris, France), all of them belonging to the Torre de los Varona Castle (Villanañe, Basque Country, Spain). In all cases, in situ measurements were carried out and also a few samples were collected and measured in the laboratory by diffuse reflectance spectroscopy (DRIFT) in order to validate the information obtained by the handheld instrument. In the analyses performed in situ, distortions in the diffuse reflectance spectra can be observed due to the presence of specular reflection, showing the inverted bands caused by the Reststrahlen effect, in particular on those IR bands with the highest absorption coefficients. This paper concludes that the results obtained in situ by a diffuse reflectance handheld device are comparable to those obtained with laboratory diffuse reflectance spectroscopy equipment and proposes a few guidelines to acquire good spectra in the field, minimising the influence caused by the specular reflection. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Application of near infrared spectroscopy (NIRS) to non-destructive internal quality inspection of tomatoes

    NASA Astrophysics Data System (ADS)

    Tao, Xuemei; He, Yong

    2006-09-01

    The internal quality of tomato such as acidity and sugar content is important to its taste thus influences the market. The objective of this paper was to demonstrate the feasibility of using a near-infrared spectroscopy (NIRS) to investigate the relationship between sugar content and acidity of tomato and absorption spectra. The N1RS reflectance of nondestructive tomatoes was measured with a Visible/NJR spectrophotometer in 325-1075 nm range. The sugar content and acidity of tomato were obtained with a handhold sugar content meter and a PH meter. The reflectance data set was recorded and analyzed with some mathematic methods. The PLS (Partial least squares) calibration method was developed for converting the NIRS reflectance of tomato into the data which determined the acidity value. BP (Back propagation) neural network was used to set up the relationship between the NIRS reflectance of tomato and sugar content. The acidity values were detected with an accuracy of 9O% and the sugar contents determined by the BP network were also very close to the measurements (coefficient of correlation r2=0.8764). NW spectra analysis would be very useful in the nondestructive internal quality inspecting of tomato.

  15. Reflectance and fluorescence spectroscopies in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.

    In vivo fluorescence spectroscopy during photodynamic therapy (PDT) has the potential to provide information on the distribution and degradation of sensitizers, the formation of fluorescent photoproducts and changes in tissue autofluorescence induced by photodynamic treatment. Reflectance spectroscopy allows quantification of light absorption and scattering in tissue. We present the results of several related studies of fluorescence and reflectance spectroscopy and their applications to photodynamic dosimetry. First, we develop and test an empirical method for the correction of the distortions imposed on fluorescence spectra by absorption and scattering in turbid media. We characterize the irradiance dependence of the in vivo photobleaching of three sensitizers, protoporphyrin IX (PpIX), Photofrin and mTHPC, in a rat skin model. The photobleaching and photoproduct formation of PpIX exhibit irradiance dependence consistent with singlet oxygen (1O2)-mediated bleaching. The bleaching of mTHPC occurs in two phases, only one of which is consistent with a 1O 2-mediated mechanism. Photofrin's bleaching is independent of irradiance, although its photoproduct formation is not. This can be explained by a mixed-mechanism bleaching model. Second, we develop an algorithm for the determination of tissue optical properties using diffuse reflectance spectra measured at a single source-detector separation and demonstrate the recovery of the hemoglobin oxygen dissociation curve from tissue-simulating phantoms containing human erythrocytes. This method is then used to investigate the heterogeneity of oxygenation response in murine tumors induced by carbogen inhalation. We find that while the response varies among animals and within each tumor, the majority of tumors exhibit an increase in blood oxygenation during carbogen breathing. We present a forward-adjoint model of fluorescence propagation that uses the optical property information acquired from reflectance spectroscopy to obtain the undistorted fluorescence spectrum over a wide range of optical properties. Finally, we investigate the ability of the forward-adjoint theory to extract undistorted fluorescence and optical property information simultaneously from a single measured fluorescence spectrum. This method can recover the hemoglobin oxygen dissociation curve in tissue-simulating phantoms with an accuracy comparable to that of reflectance-based methods while correcting distortions in the fluorescence over a wide range of absorption and scattering coefficients.

  16. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    NASA Astrophysics Data System (ADS)

    Joseph, C. H.; Sardi, G. M.; Tuca, S. S.; Gramse, G.; Lucibello, A.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2016-12-01

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S11 are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S11 with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  17. In Situ Identification of Pigment Composition and Particle Size on Wall Paintings Using Visible Spectroscopy as a Noninvasive Measurement Method.

    PubMed

    Li, Junfeng; Wan, Xiaoxia; Bu, Yajing; Li, Chan; Liang, Jinxing; Liu, Qiang

    2016-11-01

    Noninvasive examination methods of chemical composition and particle size are presented here based on visible spectroscopy to achieve the identification and recording of mineral pigments used on ancient wall paintings. The normalized spectral curve, slope and curvature extracted from visible spectral reflectance are combined with adjustable weighting coefficients to construct the identification feature space, and Euclid distances between spectral reflectance from wall paintings and a reference database are calculated in the feature space as the discriminant criterion to identify the chemical composition of mineral pigments. A parametric relationship between the integral quantity of spectral reflectance and logarithm of mean particle size is established using a quadratic polynomial to accomplish the noninvasive prediction of mineral pigment particle size used on ancient wall paintings. The feasibility of the proposed methods is validated by the in situ nondestructive identification of the wall paintings in the Mogao Grottoes at Dunhuang. Chinese painting styles and historical evolution are then analyzed according to the identification results of 16 different grottoes constructed from the Sixteen Kingdoms to the Yuan Dynasty. © The Author(s) 2016.

  18. Application of multispectral reflectance for early detection of tomato disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Zhu, Shengpan; Ying, Yibin; Jiang, Huanyu

    2006-10-01

    Automatic diagnosis of plant disease is important for plant management and environmental preservation in the future. The objective of this study is to use multispectral reflectance measurements to make an early discrimination between the healthy and infected plants by the strain of tobacco mosaic virus (TMV-U1) infection. There were reflectance changes in the visible (VIS) and near infrared spectroscopy (NIR) between the healthy and infected plants. Discriminant models were developed using discriminant partial least squares (DPLS) and Mahalanobis distance (MD). The DPLS models had a root mean square error of calibration (RMSEC) of 0.397 and correlation coefficient (r) of 0.59 and the MD model correctly classified 86.7% healthy plants and up to 91.7% infected plants.

  19. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  20. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    PubMed

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  1. Interaction of flavonoids, the naturally occurring antioxidants with different media: A UV-visible spectroscopic study

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Shah, S. W. H.; Hasan, Aurangzeb; Sakhawat Shah, S.

    2010-04-01

    Quantitative parameters for interaction of flavonoids—the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, Kc. Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities.

  2. Invisible Security Printing on Photoresist Polymer Readable by Terahertz Spectroscopy.

    PubMed

    Shin, Hee Jun; Lim, Min-Cheol; Park, Kisang; Kim, Sae-Hyung; Choi, Sung-Wook; Ok, Gyeongsik

    2017-12-06

    We experimentally modulate the refractive index and the absorption coefficient of an SU-8 dry film in the terahertz region by UV light (362 nm) exposure with time dependency. Consequently, the refractive index of SU-8 film is increased by approximately 6% after UV light exposure. Moreover, the absorption coefficient also changes significantly. Using the reflective terahertz imaging technique, in addition, we can read security information printed by UV treatment on an SU-8 film that is transparent in the visible spectrum. From these results, we successfully demonstrate security printing and reading by using photoresist materials and the terahertz technique. This investigation would provide a new insight into anti-counterfeiting applications in fields that need security.

  3. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    NASA Astrophysics Data System (ADS)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  4. Ellipsometry study of optical parameters of AgIn5S8 crystals

    NASA Astrophysics Data System (ADS)

    Isik, Mehmet; Gasanly, Nizami

    2015-12-01

    AgIn5S8 crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.

  5. Evaluation of blood flow in human exercising muscle by diffuse correlation spectroscopy: a phantom model study

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Mikie; Ono, Yumie; Ichinose, Masashi

    2018-02-01

    Diffuse correlation spectroscopy (DCS) has a potential to noninvasively and quantitatively measure the blood flow in the exercising muscle that could contribute to the fields of sports physiology and medicine. However, the blood flow index (BFI) measured from skin surface by DCS reflects hemodynamic signals from both superficial tissue and muscle layer. Thus, an appropriate calibration technology is required to quantify the absolute blood flow in the muscle layer. We therefore fabricated a realistic two-layer phantom model consisted of a static silicon layer imitating superficial tissue and a dynamic flow layer imitating the muscle blood flow and investigated the relationship between the simulated blood flow rate in the muscle layer and the BFI measured from the surface of the phantom. The absorption coefficient and the reduced scattering coefficient of the forearm were measured from 25 healthy young adults using a time-resolved nearinfrared spectroscopy. The depths of the superficial and muscle layers of forearm were also determined by ultrasound tomography images from 25 healthy young adults. The phantoms were fabricated to satisfy these optical coefficients and anatomical constraints. The simulated blood flow rate were set from 0 mL/ min to 68.7 mL/ min in ten steps, which is considered to cover a physiological range of mean blood flow of the forearm between per 100g of muscle tissue at rest to heavy dynamic handgrip exercise. We found a proportional relationship between the flow rates and BFIs with significant correlation coefficient of R = 0.986. Our results suggest that the absolute exercising muscle blood flow could be estimated by DCS with optimal calibration using phantom models.

  6. Study on Hyperspectral Estimation Model of Total Nitrogen Content in Soil of Shaanxi Province

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Dong, Zhenyu; Chen, Xi

    2018-01-01

    The development of hyperspectral remote sensing technology has been widely used in soil nutrient prediction. The soil is the representative soil type in Shaanxi Province. In this study, the soil total nitrogen content in Shaanxi soil was used as the research target, and the soil samples were measured by reflectance spectroscopy using ASD method. Pre-treatment, the first order differential, second order differential and reflectance logarithmic transformation of the reflected spectrum after pre-treatment, and the hyperspectral estimation model is established by using the least squares regression method and the principal component regression method. The results show that the correlation between the reflectance spectrum and the total nitrogen content of the soil is significantly improved. The correlation coefficient between the original reflectance and soil total nitrogen content is in the range of 350 ~ 2500nm. The correlation coefficient of soil total nitrogen content and first deviation of reflectance is more than 0.5 at 142nm, 1963nm, 2204nm and 2307nm, the second deviation has a significant positive correlation at 1114nm, 1470nm, 1967nm, 2372nm and 2402nm, respectively. After the reciprocal logarithmic transformation of the reflectance with the total nitrogen content of the correlation analysis found that the effect is not obvious. Rc2 = 0.7102, RMSEC = 0.0788; Rv2 = 0.8480, RMSEP = 0.0663, which can achieve the rapid prediction of the total nitrogen content in the region. The results show that the principal component regression model is the best.

  7. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Macler, Bruce A.; Plummer, Stephen E.; Peterson, David L.

    1992-01-01

    Remotely sensed plant-canopy data in the visible and near-IR ranges are used to establish relations between the canopy reflectance and the chemical content of the leaves. The mathematical relation is generated by means of stepwise regression based on the derivative reflectance at certain wavelengths. Fourier filtering and sample control are used to minimize instrument noise and spectral overlap respectively, and absorption features are noted that correspond to sugar and protein. The coefficients of determination between estimated and measured concentrations are at least 0.82 for such substances as starch and chlorophyll. It is recommended in the analysis of remotly sensed canopy data that the chemicals with strong spectral overlaps with the chemical of interest be accounted for in order to estimate foliar chemical concentrations accurately.

  8. Application of Multivariable Analysis and FTIR-ATR Spectroscopy to the Prediction of Properties in Campeche Honey

    PubMed Central

    Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.

    2016-01-01

    Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445

  9. A total internal reflection-fluorescence correlation spectroscopy setup with pulsed diode laser excitation

    NASA Astrophysics Data System (ADS)

    Weger, Lukas; Hoffmann-Jacobsen, Kerstin

    2017-09-01

    Fluorescence correlation spectroscopy (FCS) measures fluctuations in a (sub-)femtoliter volume to analyze the diffusive behavior of fluorescent particles. This highly sensitive method has proven to be useful for the analysis of dynamic biological systems as well as in chemistry, physics, and material sciences. It is routinely performed with commercial fluorescence microscopes, which provide a confined observation volume by the confocal technique. The evanescent wave of total internal reflectance (TIR) is used in home-built systems to permit a surface sensitive FCS analysis. We present a combined confocal and TIR-FCS setup which uses economic low-power pulsed diode lasers for excitation. Excitation and detection are coupled to time-correlated photon counting hardware. This allows simultaneous fluorescence lifetime and FCS measurements in a surface-sensitive mode. Moreover, the setup supports fluorescence lifetime correlation spectroscopy at surfaces. The excitation can be easily switched between TIR and epi-illumination to compare the surface properties with those in liquid bulk. The capabilities of the presented setup are demonstrated by measuring the diffusion coefficients of a free dye molecule, a labeled polyethylene glycol, and a fluorescent nanoparticle in confocal as well as in TIR-FCS.

  10. How well do clinical pain assessment tools reflect pain in infants?

    PubMed

    Slater, Rebeccah; Cantarella, Anne; Franck, Linda; Meek, Judith; Fitzgerald, Maria

    2008-06-24

    Pain in infancy is poorly understood, and medical staff often have difficulty assessing whether an infant is in pain. Current pain assessment tools rely on behavioural and physiological measures, such as change in facial expression, which may not accurately reflect pain experience. Our ability to measure cortical pain responses in young infants gives us the first opportunity to evaluate pain assessment tools with respect to the sensory input and establish whether the resultant pain scores reflect cortical pain processing. Cortical haemodynamic activity was measured in infants, aged 25-43 wk postmenstrual, using near-infrared spectroscopy following a clinically required heel lance and compared to the magnitude of the premature infant pain profile (PIPP) score in the same infant to the same stimulus (n = 12, 33 test occasions). Overall, there was good correlation between the PIPP score and the level of cortical activity (regression coefficient = 0.72, 95% confidence interval [CI] limits 0.32-1.11, p = 0.001; correlation coefficient = 0.57). Of the different PIPP components, facial expression correlated best with cortical activity (regression coefficient = 1.26, 95% CI limits 0.84-1.67, p < 0.0001; correlation coefficient = 0.74) (n = 12, 33 test occasions). Cortical pain responses were still recorded in some infants who did not display a change in facial expression. While painful stimulation generally evokes parallel cortical and behavioural responses in infants, pain may be processed at the cortical level without producing detectable behavioural changes. As a result, an infant with a low pain score based on behavioural assessment tools alone may not be pain free.

  11. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  12. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy.

    PubMed

    Fitamo, T; Triolo, J M; Boldrin, A; Scheutz, C

    2017-08-01

    The anaerobic digestibility of various biomass feedstocks in biogas plants is determined with biochemical methane potential (BMP) assays. However, experimental BMP analysis is time-consuming, costly and challenging to optimise stock management and feeding to achieve improved biogas production. The aim of the present study is to develop a fast and reliable model based on near-infrared reflectance spectroscopy (NIRS) for the BMP prediction of urban organic waste (UOW). The model comprised 87 UOW samples. Additionally, 88 plant biomass samples were included, to develop a combined model predicting BMP. The coefficient of determination (R 2 ) and root mean square error in prediction (RMSE P ) of the UOW model were 0.88 and 44 mL CH 4 /g VS, while the combined model was 0.89 and 50 mL CH 4 /g VS. Improved model performance was obtained for the two individual models compared to the combined version. The BMP prediction with NIRS was satisfactory and moderately successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics.

    PubMed

    Reis, Nádia; Franca, Adriana S; Oliveira, Leandro S

    2013-10-15

    The current study presents an application of Diffuse Reflectance Infrared Fourier Transform Spectroscopy for detection and quantification of fraudulent addition of commonly employed adulterants (spent coffee grounds, coffee husks, roasted corn and roasted barley) to roasted and ground coffee. Roasted coffee samples were intentionally blended with the adulterants (pure and mixed), with total adulteration levels ranging from 1% to 66% w/w. Partial Least Squares Regression (PLS) was used to relate the processed spectra to the mass fraction of adulterants and the model obtained provided reliable predictions of adulterations at levels as low as 1% w/w. A robust methodology was implemented that included the detection of outliers. High correlation coefficients (0.99 for calibration; 0.98 for validation) coupled with low degrees of error (1.23% for calibration; 2.67% for validation) confirmed that DRIFTS can be a valuable analytical tool for detection and quantification of adulteration in ground, roasted coffee. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Multi-spectral imaging of oxygen saturation

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  15. Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements

    PubMed Central

    Lim, Liang; Nichols, Brandon; Rajaram, Narasimhan; Tunnell, James W.

    2011-01-01

    Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human skin tissue to study the short-term (<2 s) and long-term (>30 s) effects of probe pressure on diffuse reflectance and fluorescence measurements. Short-term light probe pressure (P0 < 9 mN∕mm2) effects are within 0 ± 10% on all physiological properties extracted from diffuse reflectance and fluorescence measurements, and less than 0 ± 5% for diagnostically significant physiological properties. Absorption decreases with site-specific variations due to blood being compressed out of the sampled volume. Reduced scattering coefficient variation is site specific. Intrinsic fluorescence shows a large standard error, although no specific pressure-related trend is observed. Differences in tissue structure and morphology contribute to site-specific probe pressure effects. Therefore, the effects of pressure can be minimized when the pressure is small and applied for a short amount of time; however, long-term and large pressures induce significant distortions in measured spectra. PMID:21280899

  16. Negative Correlation between the Diffusion Coefficient and Transcriptional Activity of the Glucocorticoid Receptor.

    PubMed

    Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka

    2017-08-25

    The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.

  17. Rapid determination of Swiss cheese composition by Fourier transform infrared/attenuated total reflectance spectroscopy.

    PubMed

    Rodriguez-Saona, L E; Koca, N; Harper, W J; Alvarez, V B

    2006-05-01

    There is a need for rapid and simple techniques that can be used to predict the quality of cheese. The aim of this research was to develop a simple and rapid screening tool for monitoring Swiss cheese composition by using Fourier transform infrared spectroscopy. Twenty Swiss cheese samples from different manufacturers and degree of maturity were evaluated. Direct measurements of Swiss cheese slices (approximately 0.5 g) were made using a MIRacle 3-reflection diamond attenuated total reflectance (ATR) accessory. Reference methods for moisture (vacuum oven), protein content (Kjeldahl), and fat (Babcock) were used. Calibration models were developed based on a cross-validated (leave-one-out approach) partial least squares regression. The information-rich infrared spectral range for Swiss cheese samples was from 3,000 to 2,800 cm(-1) and 1,800 to 900 cm(-1). The performance statistics for cross-validated models gave estimates for standard error of cross-validation of 0.45, 0.25, and 0.21% for moisture, protein, and fat respectively, and correlation coefficients r > 0.96. Furthermore, the ATR infrared protocol allowed for the classification of cheeses according to manufacturer and aging based on unique spectral information, especially of carbonyl groups, probably due to their distinctive lipid composition. Attenuated total reflectance infrared spectroscopy allowed for the rapid (approximately 3-min analysis time) and accurate analysis of the composition of Swiss cheese. This technique could contribute to the development of simple and rapid protocols for monitoring complex biochemical changes, and predicting the final quality of the cheese.

  18. Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio

    2013-02-01

    We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.

  19. Gender variations in the optical properties of skin in murine animal models

    NASA Astrophysics Data System (ADS)

    Calabro, Katherine; Curtis, Allison; Galarneau, Jean-Rene; Krucker, Thomas; Bigio, Irving J.

    2011-01-01

    Gender is identified as a significant source of variation in optical reflectance measurements on mouse skin, with variation in the thickness of the dermal layer being the key explanatory variable. For three different mouse strains, the thickness values of the epidermis, dermis, and hypodermis layers, as measured by histology, are correlated to optical reflectance measurements collected with elastic scattering spectroscopy (ESS). In all three strains, males are found to have up to a 50% increase in dermal thickness, resulting in increases of up to 80% in reflectance values and higher observed scattering coefficients, as compared to females. Collagen in the dermis is identified as the primary source of these differences due to its strong scattering nature; increased dermal thickness leads to a greater photon path length through the collagen, as compared to other layers, resulting in a larger scattering signal. A related increase in the observed absorption coefficient in females is also observed. These results emphasize the importance of considering gender during experimental design in studies that involve photon interaction with mouse skin. The results also elucidate the significant impact that relatively small thickness changes can have on observed optical measurements in layered tissue.

  20. Evolution of wetting layer in InAs/GaAs quantum dot system

    PubMed Central

    Ye, XL; Wang, ZG

    2006-01-01

    For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy- and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indium atoms from the transition energies of heavy- and light-holes. The variation of the InAs amount in the WL and the segregation coefficient are found to rely closely on the growth modes. In addition, the huge dots also exhibits a strong effect on the evolution of the WL. The observed linear dependence of In segregation coefficient upon the InAs amount in the WL demonstrates that the segregation is enhanced by the strain in the WL.

  1. A rapid field test for the measurement of bovine serum immunoglobulin G using attenuated total reflectance infrared spectroscopy.

    PubMed

    Elsohaby, Ibrahim; Hou, Siyuan; McClure, J Trenton; Riley, Christopher B; Shaw, R Anthony; Keefe, Gregory P

    2015-08-20

    Following the recent development of a new approach to quantitative analysis of IgG concentrations in bovine serum using transmission infrared spectroscopy, the potential to measure IgG levels using technology and a device better designed for field use was investigated. A method using attenuated total reflectance infrared (ATR) spectroscopy in combination with partial least squares (PLS) regression was developed to measure bovine serum IgG concentrations. ATR spectroscopy has a distinct ease-of-use advantage that may open the door to routine point-of-care testing. Serum samples were collected from calves and adult cows, tested by a reference RID method, and ATR spectra acquired. The spectra were linked to the RID-IgG concentrations and then randomly split into two sets: calibration and prediction. The calibration set was used to build a calibration model, while the prediction set was used to assess the predictive performance and accuracy of the final model. The procedure was repeated for various spectral data preprocessing approaches. For the prediction set, the Pearson's and concordance correlation coefficients between the IgG measured by RID and predicted by ATR spectroscopy were both 0.93. The Bland Altman plot revealed no obvious systematic bias between the two methods. ATR spectroscopy showed a sensitivity for detection of failure of transfer of passive immunity (FTPI) of 88 %, specificity of 100 % and accuracy of 94 % (with IgG <1000 mg/dL as the FTPI cut-off value). ATR spectroscopy in combination with multivariate data analysis shows potential as an alternative approach for rapid quantification of IgG concentrations in bovine serum and the diagnosis of FTPI in calves.

  2. Interaction of flavonoids, the naturally occurring antioxidants with different media: a UV-visible spectroscopic study.

    PubMed

    Naseem, Bushra; Shah, S W H; Hasan, Aurangzeb; Sakhawat Shah, S

    2010-04-01

    Quantitative parameters for interaction of flavonoids-the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, K(c). Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Quantitative analysis of virgin coconut oil in cream cosmetics preparations using fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Rohman, A; Man, Yb Che; Sismindari

    2009-10-01

    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.

  4. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.

  5. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  6. Estimating soil zinc concentrations using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Weichao; Zhang, Xia

    2017-06-01

    Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg-1, 1.96 and 0.73, which is better than 341.88 mg kg-1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg-1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg-1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.

  7. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.

    PubMed

    Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  8. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode

    NASA Astrophysics Data System (ADS)

    Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  9. Predicting glycogen concentration in the foot muscle of abalone using near infrared reflectance spectroscopy (NIRS).

    PubMed

    Fluckiger, Miriam; Brown, Malcolm R; Ward, Louise R; Moltschaniwskyj, Natalie A

    2011-06-15

    Near infrared reflectance spectroscopy (NIRS) was used to predict glycogen concentrations in the foot muscle of cultured abalone. NIR spectra of live, shucked and freeze-dried abalones were modelled against chemically measured glycogen data (range: 0.77-40.9% of dry weight (DW)) using partial least squares (PLS) regression. The calibration models were then used to predict glycogen concentrations of test abalone samples and model robustness was assessed from coefficient of determination of the validation (R2(val)) and standard error of prediction (SEP) values. The model for freeze-dried abalone gave the best prediction (R2(val) 0.97, SEP=1.71), making it suitable for quantifying glycogen. Models for live and shucked abalones had R2(val) of 0.86 and 0.90, and SEP of 3.46 and 3.07 respectively, making them suitable for producing estimations of glycogen concentration. As glycogen is a taste-active component associated with palatability in abalone, this study demonstrated the potential of NIRS as a rapid method to monitor the factors associated with abalone quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system.

    PubMed

    Zhong, Hua; Redo-Sanchez, Albert; Zhang, X-C

    2006-10-02

    We present terahertz (THz) reflective spectroscopic focal-plane imaging of four explosive and bio-chemical materials (2, 4-DNT, Theophylline, RDX and Glutamic Acid) at a standoff imaging distance of 0.4 m. The 2 dimension (2-D) nature of this technique enables a fast acquisition time and is very close to a camera-like operation, compared to the most commonly used point emission-detection and raster scanning configuration. The samples are identified by their absorption peaks extracted from the negative derivative of the reflection coefficient respect to the frequency (-dr/dv) of each pixel. Classification of the samples is achieved by using minimum distance classifier and neural network methods with a rate of accuracy above 80% and a false alarm rate below 8%. This result supports the future application of THz time-domain spectroscopy (TDS) in standoff distance sensing, imaging, and identification.

  11. Near-infrared spectroscopy of renal tissue in vivo

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Steinkellner, Oliver; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Seeliger, Erdmann

    2013-03-01

    We have developed a method to quantify hemoglobin concentration and oxygen saturation within the renal cortex by near-infrared spectroscopy. A fiber optic probe was used to transmit the radiation of three semiconductor lasers at 690 nm, 800 nm and 830 nm to the tissue, and to collect diffusely remitted light at source-detector separations from 1 mm to 4 mm. To derive tissue hemoglobin concentration and oxygen saturation of hemoglobin the spatial dependence of the measured cw intensities was fitted by a Monte Carlo model. In this model the tissue was assumed to be homogeneous. The scaling factors between measured intensities and simulated photon flux were obtained by applying the same setup to a homogeneous semi-infinite phantom with known optical properties and by performing Monte Carlo simulations for this phantom. To accelerate the fit of the tissue optical properties a look-up table of the simulated reflected intensities was generated for the needed range of absorption and scattering coefficients. The intensities at the three wavelengths were fitted simultaneously using hemoglobin concentration, oxygen saturation, the reduced scattering coefficient at 800 nm and the scatter power coefficient as fit parameters. The method was employed to study the temporal changes of renal hemoglobin concentration and blood oxygenation on an anesthetized rat during a short period of renal ischemia induced by aortic occlusion and during subsequent reperfusion.

  12. Refractive indexes of (Al, Ga, In) as epilayers on InP for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Mondry, M. J.; Babic, D. I.; Bowers, J. E.; Coldren, L. A.

    1992-06-01

    MBE grown bulk and short period superlattices of (Al, Ga, In) As epilayers lattice matched to InP were characterized by double-crystal diffractometry and low-temperature photoluminescence. A reflection spectroscopy technique was used to determine the refractive index of (Al, Ga, In) As films as a function of wavelength. The measured data were fitted to a single-oscillator dispersion model and the model coefficients are given. The resulting expression can be used in the design of wave-guides, modulators, and other optical devices.

  13. In vivo estimation of optical properties of rat liver using single-reflectance fiber probe during ischemia and reperfusion

    NASA Astrophysics Data System (ADS)

    Akter, Sharmin; Tanabe, Tomoki; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2016-04-01

    To quantify the changes in optical properties of in vivo rat liver tissue, we applied diffuse reflectance spectroscopy (DRS) system using single-reflectance fiber probe during ischemia and reperfusion evoked by hepatic portal occlusion (hepatic artery, portal vein and bile duct). Changes in the reduced scattering coefficient μ s', the absorption coefficient μ a, the tissue oxygen saturation StO2, and the oxidation of heme aa3 in cytochrome c oxidase (C cO) OHaa3 of in vivo rat liver (n = 6) were evaluated. Heme aa3 in C cO were significantly reduced (P < 0.05) during ischemia, which indicates a sign of mitochondrial energy failure induced by oxygen insufficiency of liver tissue. We found that OHaa3 obtained from the proposed method was unchanged immediately after the onset of ischemia and started gradually decreasing at 2 min after the onset of ischemia. Difference in the time course between OHaa3 and the conventional ratio metric analysis with μ a(605)/ μ a(620) reported in literature demonstrates that the proposed method is effective in reduction of optical cross talk between hemoglobin and heme aa3. Our results suggest that DRS technique is applicable and useful for assessing in vivo tissue viability and hemodynamics in liver intraoperatively.

  14. [Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model].

    PubMed

    Luo, Xi; Wu, Fang-xi; Xie, Hong-guang; Zhu, Yong-sheng; Zhang, Jian-fu; Xie, Hua-an

    2016-03-01

    A new method based on near-infrared reflectance spectroscopy (NIRS) analysis was explored to determine the content of rice-resistant starch instead of common chemical method which took long time was high-cost. First of all, we collected 62 spectral data which have big differences in terms of resistant starch content of rice, and then the spectral data and detected chemical values are imported chemometrics software. After that a near-infrared spectroscopy calibration model for rice-resistant starch content was constructed with partial least squares (PLS) method. Results are as follows: In respect of internal cross validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+1thD, pretreatment with 1thD+SNV were 0.920 2, 0.967 0 and 0.976 7 respectively. Root mean square error of prediction (RMSEP) were 1.533 7, 1.011 2 and 0.837 1 respectively. In respect of external validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+ 1thD, pretreatment with 1thD+SNV were 0.805, 0.976 and 0.992 respectively. The average absolute error was 1.456, 0.818, 0.515 respectively. There was no significant difference between chemical and predicted values (Turkey multiple comparison), so we think near infrared spectrum analysis is more feasible than chemical measurement. Among the different pretreatment, the first derivation and standard normal variate (1thD+SNV) have higher coefficient of determination (R2) and lower error value whether in internal validation and external validation. In other words, the calibration model has higher precision and less error by pretreatment with 1thD+SNV.

  15. A novel grating-imaging method to measure carrier diffusion coefficient in graphene

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Wang, Yaguo; Akinwande, Deji; Bank, Seth; Lin, Jung-Fu

    Similar to carrier mobility, carrier diffusion coefficient in graphene determines the response rate of future graphene-based electronics. Here we present a simple, sensitive and non-destructive technique integrated with ultrafast pump-probe spectroscopy to measure carrier diffusion in CVD-grown graphene. In the method, the pump and the probe beams pass through the same area of a photomask with metal strips i.e. a transmission amplitude grating, and get diffracted. The diffracted light is collected by an objective lens and focused onto the sample to generate carrier density grating. Relaxation of this carrier density grating is governed by both carrier recombination and carrier diffusion in the sample. Transient transmission change of the probe beams, which reflects this relaxation process, is recorded. The measured diffusion coefficients of multilayer and monolayer CVD-grown graphene are 2000cm2/s and 10000cm2/s, respectively, comparable with the reported values of epitaxial graphene and reduced graphene. This transmission grating technique can be used to measure carrier dynamics in versatile 2D materials.

  16. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    NASA Astrophysics Data System (ADS)

    Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; González-Marcos, Ana

    2015-02-01

    An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiOx and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF2 long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF2 percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θadv = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory stability in humid ambient for twelve months showed a slight decrease of WCA (4.4%) for this sample. The results of this study permit one to realize the effectiveness of using fluorinated precursors to avoid a significant decrease in the WCA when applying a precursor to anti-friction improvement.

  17. [Alfalfa quality evaluation in the field by near-infrared reflectance spectroscopy].

    PubMed

    Xu, Rui-Xuan; Li, Dong-Ning; Yang, Dong-Hai; Lin, Jian-Hai; Xiang, Min; Zhang, Ying-Jun

    2013-11-01

    To explore the feasibility of using near-infrared reflectance spectroscopy (NIRS) to evaluate alfalfa quality rapidly in the field and try to find the appropriate machine and sample preparation method, the representative population of 170 fresh alfalfa samples collected from different regions with different stages and different cuts were scanned by a portable NIRS spectrometer (1 100 - 1 800 nm). This is the first time to build models of fresh alfalfa to rapidly estimate quality in the field for harvesting in time. The calibrations of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were developed through the partial least squares regression (PLS). The determination coefficients of cross-validation (R2((CV)) were 0.831 4, 0.597 9, 0.803 6, 0.786 1 for DM, CP, NDF, ADF, respectively; the root mean standard error of cross-validation (RMSECV) were 1.241 1, 0.261 4, 0.990 3, 0.830 6; The determination coefficients of validation (R2(V)) were 0.815 0, 0.401 1, 0.784 9, 0.752 1 and the root mean standard errors of validation(RMSEP)were 1.06, 0.31, 0.95, 0.80 for DM, CP, NDF, ADF, respectively. For fresh alfalfa ,the calibration of DM, NDF, ADF can do rough quantitative analysis but the CP's calibration is failed. however, as CP in alfalfa hay is enough for animal and the DM, NDF and ADF is the crucial indicator for evaluating havest time, the model of DM, NDF and ADF can be used for evaluating the alfalfa quality rapidly in the field.

  18. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  19. Label-free sensing of the binding state of MUC1 peptide and anti-MUC1 aptamer solution in fluidic chip by terahertz spectroscopy.

    PubMed

    Zhao, Xiang; Zhang, Mingkun; Wei, Dongshan; Wang, Yunxia; Yan, Shihan; Liu, Mengwan; Yang, Xiang; Yang, Ke; Cui, Hong-Liang; Fu, Weiling

    2017-10-01

    The aptamer and target molecule binding reaction has been widely applied for construction of aptasensors, most of which are labeled methods. In contrast, terahertz technology proves to be a label-free sensing tool for biomedical applications. We utilize terahertz absorption spectroscopy and molecular dynamics simulation to investigate the variation of binding-induced collective vibration of hydrogen bond network in a mixed solution of MUC1 peptide and anti-MUC1 aptamer. The results show that binding-induced alterations of hydrogen bond numbers could be sensitively reflected by the variation of terahertz absorption coefficients of the mixed solution in a customized fluidic chip. The minimal detectable concentration is determined as 1 pmol/μL, which is approximately equal to the optimal immobilized concentration of aptasensors.

  20. Reflectance Spectroscopy | Photovoltaic Research | NREL

    Science.gov Websites

    Reflectance Spectroscopy Reflectance Spectroscopy In a fraction of a second, the photovoltaic (PV metallization properties. PV Research Other Measurements pages: Device Performance Analytical Microscopy & directly normal. The reflectance measurement uses a principle of reciprocity Schematic of the PV

  1. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  2. Exploration of attenuated total reflectance mid-infrared spectroscopy and multivariate calibration to measure immunoglobulin G in human sera.

    PubMed

    Hou, Siyuan; Riley, Christopher B; Mitchell, Cynthia A; Shaw, R Anthony; Bryanton, Janet; Bigsby, Kathryn; McClure, J Trenton

    2015-09-01

    Immunoglobulin G (IgG) is crucial for the protection of the host from invasive pathogens. Due to its importance for human health, tools that enable the monitoring of IgG levels are highly desired. Consequently there is a need for methods to determine the IgG concentration that are simple, rapid, and inexpensive. This work explored the potential of attenuated total reflectance (ATR) infrared spectroscopy as a method to determine IgG concentrations in human serum samples. Venous blood samples were collected from adults and children, and from the umbilical cord of newborns. The serum was harvested and tested using ATR infrared spectroscopy. Partial least squares (PLS) regression provided the basis to develop the new analytical methods. Three PLS calibrations were determined: one for the combined set of the venous and umbilical cord serum samples, the second for only the umbilical cord samples, and the third for only the venous samples. The number of PLS factors was chosen by critical evaluation of Monte Carlo-based cross validation results. The predictive performance for each PLS calibration was evaluated using the Pearson correlation coefficient, scatter plot and Bland-Altman plot, and percent deviations for independent prediction sets. The repeatability was evaluated by standard deviation and relative standard deviation. The results showed that ATR infrared spectroscopy is potentially a simple, quick, and inexpensive method to measure IgG concentrations in human serum samples. The results also showed that it is possible to build a united calibration curve for the umbilical cord and the venous samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Using wave intensity analysis to determine local reflection coefficient in flexible tubes.

    PubMed

    Li, Ye; Parker, Kim H; Khir, Ashraf W

    2016-09-06

    It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (R dI and R dI 0.5 ) and wave energy (R I and R I 0.5 ) as well as the measured pressure (R dP ) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, R dP , R dI 0.5 and R I 0.5 are the most reliable parameters to measure the mean reflection coefficient, whilst R dI and R I provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the method and assess its potential clinical use. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Near-infrared optical properties of ex-vivo human skin and subcutaneous tissues using reflectance and transmittance measurements

    NASA Astrophysics Data System (ADS)

    Simpson, Rebecca; Laufer, Jan G.; Kohl-Bareis, Matthias; Essenpreis, Matthias; Cope, Mark

    1997-08-01

    The vast majority of 'non-invasive' measurements of human tissues using near infrared spectroscopy rely on passing light through the dermis and subdermis of the skin. Accurate knowledge of the optical properties of these tissues is essential to put into models of light transport and predict the effects of skin perfusion on measurements of deep tissue. Additionally, the skin could be a useful accessible organ for non-invasively determining the constituents of blood flowing through it. Samples of abdominal human skin (including subdermal tissue) were obtained from either post mortem examinations or plastic surgery. The samples were separated into a dermal layer (epidermis and dermis, 1.5 to 2 mm tick), and a sub-cutaneous layer comprised largely of fat. They were enclosed between two glass coverslips and placed in an integrating sphere to measure their reflectance and transmittance over a range of wavelengths from 600 to 1000 nm. The reflectance and transmittance values were converted into average absorption and reduced scattering coefficients by comparison with a Monte Carlo model of light transport. Improvements to the Monte Carlo model and measurement technique removed some previous uncertainties. The results show excellent separation of reduced scattering and absorption coefficient, with clear absorption peaks of hemoglobin, water and lipid. The effect of tissue storage upon measured optical properties was investigated.

  5. Understanding the power reflection and transmission coefficients of a plane wave at a planar interface

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Jiang, Yikun; Lin, Haoze

    2017-03-01

    In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.

  6. Full scattering profile of tissues with elliptical cross sections

    NASA Astrophysics Data System (ADS)

    Duadi, H.; Feder, I.; Fixler, D.

    2018-02-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. However, since PPG and pulse oximetry are usually measured on tissue such as earlobe, fingertip, lip and pinched tissue, we propose examining the full scattering profile (FSP), which is the angular distribution of exiting photons. The FSP provides more comprehensive information when measuring from a cylindrical tissue. In our work we discovered a unique point, that we named the iso-pathlength (IPL) point, which is not dependent on changes in the reduced scattering coefficient (µs'). This IPL point was observed both in Monte Carlo (MC) simulation and in experimental tissue mimicking phantoms. The angle corresponding to this IPL point depends only on the tissue geometry. In the case of cylindrical tissues this point linearly depends on the tissue diameter. Since the target tissues for clinically physiological measuring are not a perfect cylinder, in this work we will examine how the change in the tissue cross section geometry influences the FSP and the IPL point. We used a MC simulation to compare a circular to an elliptic tissue cross section. The IPL point can serve as a self-calibration point for optical tissue measurements such as NIR spectroscopy, PPG and pulse oximetery.

  7. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  8. Optical properties of armchair (7, 7) single walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharbavi, K.; Badehian, H., E-mail: hojatbadehian@gmail.com

    2015-07-15

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energymore » loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.« less

  9. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determinedmore » and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.« less

  10. Relationships Between Quantitative Pulse-Echo Ultrasound Parameters from the Superficial Zone of the Human Articular Cartilage and Changes in Surface Roughness, Collagen Content or Collagen Orientation Caused by Early Degeneration.

    PubMed

    Kiyan, Wataru; Ito, Akira; Nakagawa, Yasuaki; Mukai, Shogo; Mori, Koji; Arai, Tatsuo; Uchino, Eiichiro; Okuno, Yasushi; Kuroki, Hiroshi

    2017-08-01

    We aimed to quantitatively investigate the relationship between amplitude-based pulse-echo ultrasound parameters and early degeneration of the knee articular cartilage. Twenty samples from six human femoral condyles judged as grade 0 or 1 according to International Cartilage Repair Society grading were assessed using a 15-MHz pulsed-ultrasound 3-D scanning system ex vivo. Surface roughness (R q ), average collagen content (A 1 ) and collagen orientation (A 12 ) in the superficial zone of the cartilage were measured via laser microscopy and Fourier transform infrared imaging spectroscopy. Multiple regression analysis with a linear mixed-effects model (LMM) revealed that a time-domain reflection coefficient at the cartilage surface (R c ) had a significant coefficient of determination with R q and A 12 (R LMMm 2 =0.79); however, R c did not correlate with A 1 . Concerning the collagen characteristic in the superficial zone, R c was found to be a sensitive indicator reflecting collagen disorganization, not collagen content, for the early degeneration samples. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. UHV AFM based colloidal probe studies of adhesive properties of VAlN hard coatings

    NASA Astrophysics Data System (ADS)

    Wiesing, M.; de los Arcos, T.; Grundmeier, G.

    2018-01-01

    The adhesion of polystyrene (PS) on V0.27Al0.29N0.44 and the related influence of the oxidation states of both surfaces was investigated using X-Ray Photoelectron Spectroscopy (XPS) and Colloidal Force Spectroscopy (CFS) in Ultra-High Vacuum (UHV). Complementary, the intimate relation between the adhesion force, the chemical structure and surface polarizability was investigated by XPS valence band spectroscopy and the calculation of non-retarded Hamaker coefficients using Lifshitz theory based on optical data as derived from Reflection Electron Energy Loss Spectroscopy (REELS) spectra. The combined electron and force spectroscopic analysis of the interaction forces disclosed quantitatively the separation of the adhesion force in van der Waals and Lewis acid-base contributions. Further, the surface polarizability of VAlN was shown to be unaffected by oxygen incorporation due to the formation of an only gradually oxidized surface comprising a range of vanadium oxidation states. In contrast, the adhesion force analysis revealed additional Lewis acid-base interactions between the oxidized and non-oxidized VAlN surfaces and carboxyl groups present in the surface of PS after an oxidative oxygen beam treatment.

  12. Analysis of dispersive interactions at polymer/TiAlN interfaces by means of dynamic force spectroscopy.

    PubMed

    Wiesing, M; de Los Arcos, T; Gebhard, M; Devi, A; Grundmeier, G

    2017-12-20

    The structural and electronic origins of the interactions between polycarbonate and sputter deposited TiAlN were analysed using a combined electron and force spectroscopic approach. Interaction forces were measured by means of dynamic force spectroscopy and the surface polarizability was analysed by X-ray photoelectron valence band spectroscopy. It could be shown that the adhesive interactions between polycarbonate and TiAlN are governed by van der Waals forces. Different surface cleansing and oxidizing treatments were investigated and the effect of the surface chemistry on the force interactions was analysed. Intense surface oxidation resulted in a decreased adhesion force by a factor of two due to the formation of a 2 nm thick Ti 0.21 Al 0.45 O surface oxide layer. The origin of the residual adhesion forces caused by the mixed Ti 0.21 Al 0.45 O surface oxide was clarified by considering the non-retarded Hamaker coefficients as calculated by Lifshitz theory, based on optical data from Reflection Electron Energy Loss Spectroscopy. This disclosed increased dispersion forces of Ti 0.21 Al 0.45 O due to the presence of Ti(iv) ions and related Ti 3d band optical transitions.

  13. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal.

    PubMed

    Haughey, Simon A; Graham, Stewart F; Cancouët, Emmanuelle; Elliott, Christopher T

    2013-02-15

    Soya bean products are used widely in the animal feed industry as a protein based feed ingredient and have been found to be adulterated with melamine. This was highlighted in the Chinese scandal of 2008. Dehulled soya (GM and non-GM), soya hulls and toasted soya were contaminated with melamine and spectra were generated using Near Infrared Reflectance Spectroscopy (NIRS). By applying chemometrics to the spectral data, excellent calibration models and prediction statistics were obtained. The coefficients of determination (R(2)) were found to be 0.89-0.99 depending on the mathematical algorithm used, the data pre-processing applied and the sample type used. The corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.276% and 0.134-0.368%, respectively, again depending on the chemometric treatment applied to the data and sample type. In addition, adopting a qualitative approach with the spectral data and applying PCA, it was possible to discriminate between the four samples types and also, by generation of Cooman's plots, possible to distinguish between adulterated and non-adulterated samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin

    2014-11-01

    Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer׳s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  16. Noncontact analysis of the fiber weight per unit area in prepreg by near-infrared spectroscopy.

    PubMed

    Jiang, B; Huang, Y D

    2008-05-26

    The fiber weight per unit area in prepreg is an important factor to ensure the quality of the composite products. Near-infrared spectroscopy (NIRS) technology together with a noncontact reflectance sources has been applied for quality analysis of the fiber weight per unit area. The range of the unit area fiber weight was 13.39-14.14mgcm(-2). The regression method was employed by partial least squares (PLS) and principal components regression (PCR). The calibration model was developed by 55 samples to determine the fiber weight per unit area in prepreg. The determination coefficient (R(2)), root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were 0.82, 0.092, 0.099, respectively. The predicted values of the fiber weight per unit area in prepreg measured by NIRS technology were comparable to the values obtained by the reference method. For this technology, the noncontact reflectance sources focused directly on the sample with neither previous treatment nor manipulation. The results of the paired t-test revealed that there was no significant difference between the NIR method and the reference method. Besides, the prepreg could be analyzed one time within 20s without sample destruction.

  17. A quantitative study for determination of sugar concentration using attenuated total reflectance terahertz (ATR-THz) spectroscopy

    NASA Astrophysics Data System (ADS)

    Suhandy, Diding; Suzuki, Tetsuhito; Ogawa, Yuichi; Kondo, Naoshi; Ishihara, Takeshi; Takemoto, Yuichiro

    2011-06-01

    The objective of our research was to use ATR-THz spectroscopy together with chemometric for quantitative study in food analysis. Glucose, fructose and sucrose are main component of sugar both in fresh and processed fruits. The use of spectroscopic-based method for sugar determination is well reported especially using visible, near infrared (NIR) and middle infrared (MIR) spectroscopy. However, the use of terahertz spectroscopy for sugar determination in fruits has not yet been reported. In this work, a quantitative study for sugars determination using attenuated total reflectance terahertz (ATR-THz) spectroscopy was conducted. Each samples of glucose, fructose and sucrose solution with different concentrations were prepared respectively and their absorbance spectra between wavenumber 20 and 450 cm-1 (between 0.6 THz and 13.5 THz) were acquired using a terahertz-based Fourier Transform spectrometer (FARIS-1S, JASCO Co., Japan). This spectrometer was equipped with a high pressure of mercury lamp as light source and a pyroelectric sensor made from deuterated L-alanine triglycine sulfate (DLTGS) as detector. Each spectrum was acquired using 16 cm-1 of resolution and 200 scans for averaging. The spectra of water and sugar solutions were compared and discussed. The results showed that increasing sugar concentration caused decreasing absorbance. The correlation between sugar concentration and its spectra was investigated using multivariate analysis. Calibration models for glucose, fructose and sucrose determination were developed using partial least squares (PLS) regression. The calibration model was evaluated using some parameters such as coefficient of determination (R2), standard error of calibration (SEC), standard error of prediction (SEP), bias between actual and predicted sugar concentration value and ratio prediction to deviation (RPD) parameter. The cross validation method was used to validate each calibration model. It is showed that the use of ATR-THz spectroscopy combined with appropriate chemometric can be a potential for a rapid determination of sugar concentrations.

  18. Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration

    PubMed Central

    Majchrowicz, Daria; Kosowska, Monika; Struk, Przemysław; Sobaszek, Michał; Jędrzejewska-Szczerska, Małgorzata

    2018-01-01

    In this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. The NDD film was used in the construction of the fiber optic sensor. This sensor is based on the Fabry–Pérot interferometer working in a reflective mode and the NDD film is utilized as a reflective layer of this interferometer. Application of the NDD film allowed us to obtain the sensor of hemoglobin concentration with linear work characteristics with a correlation coefficient (R2) equal to 0.988. PMID:29324715

  19. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    PubMed

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

  20. [Determination of fat, protein and DM in raw milk by portable short-wave near infrared spectrometer].

    PubMed

    Li, Xiao-yun; Wang, Jia-hua; Huang, Ya-wei; Han, Dong-hai

    2011-03-01

    Near infrared diffuse reflectance spectroscopy calibrations of fat, protein and DM in raw milk were studied with partial least-squares (PLS) regression using portable short-wave near infrared spectrometer. The results indicated that good calibrations of fat and DM were found, the correlation coefficients were all 0.98, the RMSEC were 0.187 and 0.217, RMSEP were 0.187 and 0.296, the RPDs were 5.02 and 3.20 respectively; the calibration of protein needed to be improved but can be used for practice, the correlation coefficient was 0.95, RMSEC was 0.105, RMSEP was 0.120, and RPD was 2.60. Furthermore, the measuring accuracy was improved by analyzing the correction relation of fat and DM in raw milk This study will probably provide a new on-site method for nondestructive and rapid measurement of milk.

  1. Gold Nanorods as Plasmonic Sensors for Particle Diffusion.

    PubMed

    Wulf, Verena; Knoch, Fabian; Speck, Thomas; Sönnichsen, Carsten

    2016-12-01

    Plasmonic gold nanoparticles are normally used as sensor to detect analytes permanently bound to their surface. If the interaction between the analyte and the nanosensor surface is negligible, it only diffuses through the sensor's sensing volume, causing a small temporal shift of the plasmon resonance position. By using a very sensitive and fast detection scheme, we are able to detect these small fluctuations in the plasmon resonance. With the help of a theoretical model consistent with our detection geometry, we determine the analyte's diffusion coefficient. The method is verified by observing the trends upon changing diffusor size and medium viscosity, and the diffusion coefficients obtained were found to reflect reduced diffusion close to a solid interface. Our method, which we refer to as NanoPCS (for nanoscale plasmon correlation spectroscopy), is of practical importance for any application involving the diffusion of analytes close to nanoparticles.

  2. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast

    NASA Astrophysics Data System (ADS)

    Sy, Stanley; Huang, Shengyang; Wang, Yi-Xiang J.; Yu, Jun; Ahuja, Anil T.; Zhang, Yuan-ting; Pickwell-MacPherson, Emma

    2010-12-01

    We have previously demonstrated that terahertz pulsed imaging is able to distinguish between rat tissues from different healthy organs. In this paper we report our measurements of healthy and cirrhotic liver tissues using terahertz reflection spectroscopy. The water content of the fresh tissue samples was also measured in order to investigate the correlations between the terahertz properties, water content, structural changes and cirrhosis. Finally, the samples were fixed in formalin to determine whether water was the sole source of image contrast in this study. We found that the cirrhotic tissue had a higher water content and absorption coefficient than the normal tissue and that even after formalin fixing there were significant differences between the normal and cirrhotic tissues' terahertz properties. Our results show that terahertz pulsed imaging can distinguish between healthy and diseased tissue due to differences in absorption originating from both water content and tissue structure.

  3. [New method and instrument to diagnose crop growth status in greenhouse based on spectroscopy].

    PubMed

    Zhang, Xi-Jie; Li, Min-Zan; Cui, Di; Zhao, Peng; Sun, Jian-Ying; Tang, Ning

    2006-05-01

    Spectral reflectance of cucumber leaves in greenhouse was measured using an ASD FieldSpec Pro VNIR spectrometer with natural illumination. Two sensitive wavelengths, 527 nm and 762 nm, were selected to evaluate the nitrogen content of the cucumber leaves. A model was established and validated using normal difference color index(NDCI) with the correlation coefficient of 0.881. Based on the above efforts, a handheld spectral instrument was developed to diagnose the growth status of the crop in greenhouse using fiber optics. The instrument was mainly composed of four parts: reflected light acquisition system, light intensity measurement unit, signal conditioning unit, and data acquisition system. The sunlight reflected by the crop was transmitted by the fiber, and passed through the light filter to obtain light at the sensitive wavelengths. Finally it was transformed into electronic signal by the photoelectric transistor, and was used to diagnose the growth status of the crop according to the evaluation model. The result showed that the developed instrument was practical.

  4. Eight-channel time-resolved tissue oximeter for functional muscle studies

    NASA Astrophysics Data System (ADS)

    Cubeddu, Rinaldo; Biscotti, Giovanni; Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Ferrari, Marco; Quaresima, Valentina

    2003-07-01

    A portable instrument for tissue oximetry based on time-resolved reflectance spectroscopy was developed. The output pulses of 2 laser diodes (683 and 785 nm, 80 MHz pulse repetition rate, 1 mW average power, 100 ps FWHM) are delayed and coupled into a multimode graded-index fiber (50/125 μm and injected into the tissue. The reflectance photons are collected by 8 independent 1 mm fibers and detected by a 16-anode photomultiplier. A time-correlated single photon counting PC board is used for the parallel acquisition of the curves. Simultaneous estimate of the transport scattering and absorption coefficients is achieved by best fitting of time-resolved reflectance curves with a standard model of Diffusion Theory. The performances of the system were tested on phantoms in terms of stability, reproducibility among channels, and accuracy in the determination of the optical properties. Preliminary in vivo measurements were performed on healthy volunteers to monitor spatial changes in calf (medical and lateral gastrocnemius) oxygen hemoglobin saturation and blood volume during dynamic plantar flexion exercise.

  5. Determination of blood oxygenation in the brain by time-resolved reflectance spectroscopy: influence of the skin, skull, and meninges

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong V.; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.

    1994-07-01

    Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.

  6. Phase and Index of Refraction Imaging by Hyperspectral Reflectance Confocal Microscopy.

    PubMed

    Selci, Stefano

    2016-12-16

    A hyperspectral reflectance confocal microscope (HSCM) was realized by CNR-ISC (Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi) a few years ago. The instrument and data have been already presented and discussed. The main activity of this HSCM has been within biology, and reflectance data have shown good matching between spectral signatures and the nature or evolution on many types of cells. Such a relationship has been demonstrated mainly with statistical tools like Principal Component Analysis (PCA), or similar concepts, which represent a very common approach for hyperspectral imaging. However, the point is that reflectance data contains much more useful information and, moreover, there is an obvious interest to go from reflectance, bound to the single experiment, to reflectivity, or other physical quantities, related to the sample alone. To accomplish this aim, we can follow well-established analyses and methods used in reflectance spectroscopy. Therefore, we show methods of calculations for index of refraction n , extinction coefficient k and local thicknesses of frequency starting from phase images by fast Kramers-Kronig (KK) algorithms and the Abeles matrix formalism. Details, limitations and problems of the presented calculations as well as alternative procedures are given for an example of HSCM images of red blood cells (RBC).

  7. Evaluation of light scattering and absorption properties ofin vivorat liver using a single-reflectance fiber probe during preischemia, ischemia-reperfusion, and postmortem

    NASA Astrophysics Data System (ADS)

    Akter, Sharmin; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2015-07-01

    Diffuse reflectance spectroscopy (DRS) has been extensively used for characterization of biological tissues as a noninvasive optical technique to evaluate the optical properties of tissue. We investigated a method for evaluating the reduced scattering coefficient , the absorption coefficient μa, the tissue oxygen saturation StO2, and the reduction of heme aa3 in cytochrome c oxidase CcO of in vivo liver tissue using a single-reflectance fiber probe with two source-collector geometries. We performed in vivo recordings of diffuse reflectance spectra for exposed rat liver during the ischemia-reperfusion induced by the hepatic portal (hepatic artery, portal vein, and bile duct) occlusion. The time courses of μa at 500, 530, 570, and 584 nm indicated the hemodynamic change in liver tissue as well as StO2. Significant increase in μa(605)/μa(620) during ischemia and after euthanasia induced by nitrogen breathing was observed, which indicates the reduction of heme aa3, representing a sign of mitochondrial energy failure. The time courses of at 500, 530, 570, and 584 nm were well correlated with those of μa, which also reflect the scattering by red blood cells. On the other hand, at 700 and 800 nm, a temporary increase in and an irreversible decrease in were observed during ischemia-reperfusion and after euthanasia induced by nitrogen breathing, respectively. The change in in the near-infrared wavelength region during ischemia is indicative of the morphological changes in the cellular and subcellular structures induced by the ischemia, whereas that after euthanasia implies the hepatocyte vacuolation. The results of the present study indicate the potential application of the current DRS system for evaluating the pathophysiological conditions of in vivo liver tissue.

  8. Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative

    PubMed Central

    Tiyip, Tashpolat; Ding, Jianli; Zhang, Dong; Liu, Wei; Wang, Fei; Tashpolat, Nigara

    2017-01-01

    Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative algorithm was applied to the pretreatment and partial least squares regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous Region of China, and used as data sets for calibration and validation. Following laboratory measurements of spectral reflectance and clay content, the raw spectral reflectance and absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0 order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coefficients of calibration (Rc2), root mean square errors of calibration (RMSEC), determinant coefficients of prediction (Rp2), and root mean square errors of prediction (RMSEP) were applied to assess the performance of predicting models. The results showed that models built on the fractional derivative order performed better than when using the classic integer derivative. Comparison of the predictive effects of 22 models for estimating clay content, calibrated by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral reflectance (Rc2 = 0.907, RMSEC = 0.425%, Rp2 = 0.916, RMSEP = 0.364%, and RPD = 2.484 ≥ 2.000) and absorbance (Rc2 = 0.888, RMSEC = 0.446%, Rp2 = 0.918, RMSEP = 0.383% and RPD = 2.511 ≥ 2.000) were most effective. Furthermore, they performed well in quantitative estimations of the clay content of soils in the study area. PMID:28934274

  9. Determination of trans Fat in Selected Fast Food Products and Hydrogenated Fats of India Using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    PubMed

    Khan, Mohd Umar; Hassan, Mohammad Fahimul; Rauf, Abdul

    2017-01-01

    This paper reports the application of a simple and rapid method for the determination of trans fatty acid (TFA) content in some of the selected Indian fast food products and hydrogenated fats using Fourier transform infrared (FTIR) spectroscopy in conjunction with second derivative procedure. FTIR spectroscopy has been successfully applied to trans measurement using the absorbance bands at or near 966 cm -1 in the FTIR spectra. It was found from the analysis that TFA content of fast food product was ranging from 1.57% to 3.83% of the total fat while for hydrogenated fats, comparatively large quantity of TFA was detected in the range of 3.31% to 4.73%. Since GC-FID is most widely used method for the determination of fatty acid (FA) composition, this method was used for the sake of comparison. Value of regression coefficient was found very close to one (0.99503) with standard deviation of 0.10247 showing a good agreement between GC-FID and proposed ATR-FTIR method.

  10. Regional Cerebral Abnormalities Measured by Frequency-Domain Near-Infrared Spectroscopy in Pediatric Patients During Extracorporeal Membrane Oxygenation.

    PubMed

    Tian, Fenghua; Jenks, Christopher; Potter, Donald; Miles, Darryl; Raman, Lakshmi

    Extracorporeal membrane oxygenation (ECMO) is a form of advanced cardiorespiratory support provided to critically ill patients with severe respiratory or cardiovascular failure. While children undergoing ECMO therapy have significant risk for neurological morbidity, currently there is a lack of reliable bedside tool to detect the neurologic events for patients on ECMO. This study assessed the feasibility of frequency-domain near-infrared spectroscopy (NIRS) for detection of intracranial complications during ECMO therapy. The frequency-domain NIRS device measured the absorption coefficient (µa) and reduced scattering coefficient (µs') at six cranial positions from seven pediatric patients (0-16 years) during ECMO support and five healthy controls (2-14 years). Regional abnormalities in both absorption and scattering were identified among ECMO patients. A main finding in this study is that the abnormalities in scattering appear to be associated with lower-than-normal µs' values in regional areas of the brain. Because light scattering originates from the intracellular structures (such as nuclei and mitochondria), a reduction in scattering primarily reflects loss or decreased density of the brain matter. The results from this study indicate a potential to use the frequency-domain NIRS as a safe and complementary technology for detection of intracranial complications during ECMO therapy.

  11. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  12. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration.

    PubMed

    Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia

    2017-06-05

    Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Rapid profiling of Swiss cheese by attenuated total reflectance (ATR) infrared spectroscopy and descriptive sensory analysis.

    PubMed

    Kocaoglu-Vurma, N A; Eliardi, A; Drake, M A; Rodriguez-Saona, L E; Harper, W J

    2009-08-01

    The acceptability of cheese depends largely on the flavor formed during ripening. The flavor profiles of cheeses are complex and region- or manufacturer-specific which have made it challenging to understand the chemistry of flavor development and its correlation with sensory properties. Infrared spectroscopy is an attractive technology for the rapid, sensitive, and high-throughput analysis of foods, providing information related to its composition and conformation of food components from the spectra. Our objectives were to establish infrared spectral profiles to discriminate Swiss cheeses produced by different manufacturers in the United States and to develop predictive models for determination of sensory attributes based on infrared spectra. Fifteen samples from 3 Swiss cheese manufacturers were received and analyzed using attenuated total reflectance infrared spectroscopy (ATR-IR). The spectra were analyzed using soft independent modeling of class analogy (SIMCA) to build a classification model. The cheeses were profiled by a trained sensory panel using descriptive sensory analysis. The relationship between the descriptive sensory scores and ATR-IR spectra was assessed using partial least square regression (PLSR) analysis. SIMCA discriminated the Swiss cheeses based on manufacturer and production region. PLSR analysis generated prediction models with correlation coefficients of validation (rVal) between 0.69 and 0.96 with standard error of cross-validation (SECV) ranging from 0.04 to 0.29. Implementation of rapid infrared analysis by the Swiss cheese industry would help to streamline quality assurance.

  14. Visible spectroscopy calibration transfer model in determining pH of Sala mangoes

    NASA Astrophysics Data System (ADS)

    Yahaya, O. K. M.; MatJafri, M. Z.; Aziz, A. A.; Omar, A. F.

    2015-05-01

    The purpose of this study is to compare the efficiency of calibration transfer procedures between three spectrometers involving two Ocean Optics Inc. spectrometers, namely, QE65000 and Jaz, and also, ASD FieldSpec 3 in measuring the pH of Sala mango by visible reflectance spectroscopy. This study evaluates the ability of these spectrometers in measuring the pH of Sala mango by applying similar calibration algorithms through direct calibration transfer. This visible reflectance spectroscopy technique defines a spectrometer as a master instrument and another spectrometer as a slave. The multiple linear regression (MLR) of calibration model generated using the QE65000 spectrometer is transferred to the Jaz spectrometer and vice versa for Set 1. The same technique is applied for Set 2 with QE65000 spectrometer is transferred to the FieldSpec3 spectrometer and vice versa. For Set 1, the result showed that the QE65000 spectrometer established a calibration model with higher accuracy than that of the Jaz spectrometer. In addition, the calibration model developed on Jaz spectrometer successfully predicted the pH of Sala mango, which was measured using QE65000 spectrometer, with a root means square error of prediction RMSEP = 0.092 pH and coefficients of determination R2 = 0.892. Moreover, the best prediction result is obtained for Set 2 when the calibration model developed on QE65000 spectrometer is successfully transferred to FieldSpec 3 with R2 = 0.839 and RMSEP = 0.16 pH.

  15. Centrifugal ultrafiltration of human serum for improving immunoglobulin A quantification using attenuated total reflectance infrared spectroscopy.

    PubMed

    Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Bryanton, Janet; Bigsby, Kathryn; Shaw, R Anthony

    2018-02-20

    Attenuated total reflectance infrared (ATR-IR) spectroscopy is a simple, rapid and cost-effective method for the analysis of serum. However, the complex nature of serum remains a limiting factor to the reliability of this method. We investigated the benefits of coupling the centrifugal ultrafiltration with ATR-IR spectroscopy for quantification of human serum IgA concentration. Human serum samples (n = 196) were analyzed for IgA using an immunoturbidimetric assay. ATR-IR spectra were acquired for whole serum samples and for the retentate (residue) reconstituted with saline following 300 kDa centrifugal ultrafiltration. IR-based analytical methods were developed for each of the two spectroscopic datasets, and the accuracy of each of the two methods compared. Analytical methods were based upon partial least squares regression (PLSR) calibration models - one with 5-PLS factors (for whole serum) and the second with 9-PLS factors (for the reconstituted retentate). Comparison of the two sets of IR-based analytical results to reference IgA values revealed improvements in the Pearson correlation coefficient (from 0.66 to 0.76), and the root mean squared error of prediction in IR-based IgA concentrations (from 102 to 79 mg/dL) for the ultrafiltration retentate-based method as compared to the method built upon whole serum spectra. Depleting human serum low molecular weight proteins using a 300 kDa centrifugal filter thus enhances the accuracy IgA quantification by ATR-IR spectroscopy. Further evaluation and optimization of this general approach may ultimately lead to routine analysis of a range of high molecular-weight analytical targets that are otherwise unsuitable for IR-based analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Broadband microwave spectroscopy in Corbino geometry at 3He temperatures

    NASA Astrophysics Data System (ADS)

    Steinberg, Katrin; Scheffler, Marc; Dressel, Martin

    2012-02-01

    A broadband microwave spectrometer has been constructed to determine the complex conductivity of thin metal films at frequencies from 45 MHz to 20 GHz working in the temperature range from 0.45 K to 2 K (in a 3He cryostat). The setup follows the Corbino approach: a vector network analyzer measures the complex reflection coefficient of a microwave signal hitting the sample as termination of a coaxial transmission line. As the calibration of the setup limits the achievable resolution, we discuss the sources of error hampering different types of calibration. Test measurements of the complex conductivity of a heavy-fermion material demonstrate the applicability of the calibration procedures.

  17. Light-matter interaction in doped microcavities

    NASA Astrophysics Data System (ADS)

    Averkiev, N. S.; Glazov, M. M.

    2007-07-01

    We discuss theoretically the light-matter coupling in a microcavity containing a quantum well with a two-dimensional electron gas. The high density limit where the bound exciton states are absent is considered. The matrix element of an interband optical absorption demonstrates the Mahan singularity [Phys. Rev. B153, 882 (1967); 163, 612 (1967)] due to strong Coulomb effect between the electrons and a photocreated hole. We extend the nonlocal dielectric response theory to calculate the quantum well reflection and transmission coefficients as well as the microcavity transmission spectra. The new eigenmodes of the system are discussed. Their implications for the steady state and time-resolved spectroscopy experiments are analyzed.

  18. Heat Transfer Analysis of an Optimized, Flexible Holder System for Freeze-Drying in Dual Chamber Cartridges Using Different State-of-the-Art PAT Tools.

    PubMed

    Korpus, Christoph; Pikal, Michael; Friess, Wolfgang

    2016-11-01

    The aim of this study was to determine the heat transfer characteristics of an optimized flexible holder device, using Tunable Diode Laser Absorption Spectroscopy, the Pressure Rise Test, and the gravimetric procedure. Two different controlled nucleation methods were tested, and an improved sublimation process, "preheated plate," was developed. Tunable Diode Laser Absorption Spectroscopy identified an initial sublimation burst phase. Accordingly, steady-state equations were adapted for the gravimetric procedure, to account for this initial non-steady-state period. The heat transfer coefficient, K DCC , describing the transfer from the holder to the DCC, was the only heat transfer coefficient showing a clear pressure dependence with values ranging from 3.81E-04 cal/(g·cm 2 ·K) at 40 mTorr to 7.38E-04 cal/(g·cm 2 ·K) at 200 mTorr. The heat transfer coefficient, K tot , reflecting the overall energy transfer via the holder, increased by around 24% from 40 to 200 mTorr. This resulted in a pressure-independent sublimation rate of around 42 ± 1.06 mg/h over the whole pressure range. Hence, this pressure-dependent increase in energy transfer completely compensated the decrease in driving force of sublimation. The "flexible holder" shows a substantially reduced impact of atypical radiation, improved drying homogeneity, and ultimately a better transferability of the freeze-drying cycle for process optimization. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Reflectance spectroscopy in planetary science: Review and strategy for the future

    NASA Technical Reports Server (NTRS)

    Mccord, Thomas B. (Editor)

    1987-01-01

    Reflectance spectroscopy is a remote sensing technique used to study the surfaces and atmospheres of solar system bodies. It provides first-order information on the presence and amounts of certain ions, molecules, and minerals on a surface or in an atmosphere. Reflectance spectroscopy has become one of the most important investigations conducted on most current and planned NASA Solar System Exploration Program space missions. This book reviews the field of reflectance spectroscopy, including information on the scientific technique, contributions, present conditions, and future directions and needs.

  20. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGES

    Craciun, D.; Socol, G.; Lambers, E.; ...

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH 4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH 4 pressures exhibited slightly higher nanohardness and Young modulus values than filmsmore » deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  1. Application of Fourier transform infrared spectroscopy for monitoring short-chain free fatty acids in Swiss cheese.

    PubMed

    Koca, N; Rodriguez-Saona, L E; Harper, W J; Alvarez, V B

    2007-08-01

    Short-chain free fatty acids (FFA) are important sources of cheese flavor and have been reported to be indicators for assessing quality. The objective of this research was to develop a simple and rapid screening tool for monitoring the short-chain FFA contents in Swiss cheese by using Fourier transform infrared spectroscopy (FTIR). Forty-four Swiss cheese samples were evaluated by using a MIRacle three-reflection diamond attenuated total reflectance (ATR) accessory. Two different sampling techniques were used for FTIR/ATR measurement: direct measurement of Swiss cheese slices (approximately 0.5 g) and measurement of a water-soluble fraction of cheese. The amounts of FFA (propionic, acetic, and butyric acids) in the water-soluble fraction of samples were analyzed by gas chromatography-flame ion-ization detection as a reference method. Calibration models for both direct measurement and the water-soluble fraction of cheese were developed based on a cross-validated (leave-one-out approach) partial least squares regression by using the regions of 3,000 to 2,800, 1,775 to 1,680, and 1,500 to 900 cm(-1) for short-chain FFA in cheese. Promising performance statistics were obtained for the calibration models of both direct measurement and the water-soluble fraction, with improved performance statistics obtained from the water-soluble extract, particularly for propionic acid. Partial least squares models generated from FTIR/ATR spectra by direct measurement of cheeses gave standard errors of cross-validation of 9.7 mg/100 g of cheese for propionic acid, 9.3 mg/100 g of cheese for acetic acid, and 5.5 mg/100 g of cheese for butyric acid, and correlation coefficients >0.9. Standard error of cross-validation values for the water-soluble fraction were 4.4 mg/100 g of cheese for propionic acid, 9.2 mg/100 g of cheese for acetic acid, and 5.2 mg/100 g of cheese for butyric acid with correlation coefficients of 0.98, 0.95, and 0.92, respectively. Infrared spectroscopy and chemometrics accurately and precisely predicted the short-chain FFA content in Swiss cheeses and in the water-soluble fraction of the cheese.

  2. An analytical two-flow model to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance

    NASA Astrophysics Data System (ADS)

    Ma, Wei-Ming

    1997-06-01

    An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and more important the water depth and value of the bottom reflectance. The results of this work indicates little change of subsurface or in-water reflectances, due to variations of wind speed and observation angle. Simulations of the wind effect on the total downwelling irradiance from the two- flow model indicates that the total downwelling irradiance just below a wind-roughened water surface increases to about 1% of the total downwelling irradiance on a calm water surface when the sun is near zenith and increases to about 3% when the sun is near the horizon. This analytically based model, solved or developed utilizing the unique boundary conditions, can be applied to remote sensing of oceanic upper mixed layer dynamics, plant canopies, primary production, and shallow water environments with different bottom type reflectances. Future applications may include determining effects of sediment resuspension of bottom sediments in the bottom boundary layer on remotely sensed data.

  3. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    PubMed

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  4. Sum Frequency Generation of Interfacial Lipid Monolayers Shows Polarization Dependence on Experimental Geometries.

    PubMed

    Li, Bolin; Li, Xu; Ma, Yong-Hao; Han, Xiaofeng; Wu, Fu-Gen; Guo, Zhirui; Chen, Zhan; Lu, Xiaolin

    2016-07-19

    Sum frequency generation (SFG) vibrational spectroscopy has been widely employed to investigate molecular structures of biological surfaces and interfaces including model cell membranes. A variety of lipid monolayers or bilayers serving as model cell membranes and their interactions with many different molecules have been extensively studied using SFG. Here, we conducted an in-depth investigation on polarization-dependent SFG signals collected from interfacial lipid monolayers using different experimental geometries, i.e., the prism geometry (total internal reflection) and the window geometry (external reflection). The different SFG spectral features of interfacial lipid monolayers detected using different experimental geometries are due to the interplay between the varied Fresnel coefficients and second-order nonlinear susceptibility tensor terms of different vibrational modes (i.e., ss and as modes of methyl groups), which were analyzed in detail in this study. Therefore, understanding the interplay between the interfacial Fresnel coefficients and χ((2)) tensors is a prerequisite for correctly understanding the SFG spectral features with respect to different experimental geometries. More importantly, the derived information in this paper should not be limited to the methyl groups with a C3v symmetry; valid extension to interfacial functional groups with different molecular symmetries and even chiral interfaces could be expected.

  5. Optimizing the models for rapid determination of chlorogenic acid, scopoletin and rutin in plant samples by near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Zhiyi; Shan, Ruifeng; Wang, Jiajun; Cai, Wensheng; Shao, Xueguang

    2014-07-01

    Polyphenols in plant samples have been extensively studied because phenolic compounds are ubiquitous in plants and can be used as antioxidants in promoting human health. A method for rapid determination of three phenolic compounds (chlorogenic acid, scopoletin and rutin) in plant samples using near-infrared diffuse reflectance spectroscopy (NIRDRS) is studied in this work. Partial least squares (PLS) regression was used for building the calibration models, and the effects of spectral preprocessing and variable selection on the models are investigated for optimization of the models. The results show that individual spectral preprocessing and variable selection has no or slight influence on the models, but the combination of the techniques can significantly improve the models. The combination of continuous wavelet transform (CWT) for removing the variant background, multiplicative scatter correction (MSC) for correcting the scattering effect and randomization test (RT) for selecting the informative variables was found to be the best way for building the optimal models. For validation of the models, the polyphenol contents in an independent sample set were predicted. The correlation coefficients between the predicted values and the contents determined by high performance liquid chromatography (HPLC) analysis are as high as 0.964, 0.948 and 0.934 for chlorogenic acid, scopoletin and rutin, respectively.

  6. Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix

    NASA Astrophysics Data System (ADS)

    Chang, Vivide Tuan-Chyan; Merisier, Delson; Yu, Bing; Walmer, David K.; Ramanujam, Nirmala

    2011-03-01

    A significant challenge in detecting cervical pre-cancer in low-resource settings is the lack of effective screening facilities and trained personnel to detect the disease before it is advanced. Light based technologies, particularly quantitative optical spectroscopy, have the potential to provide an effective, low cost, and portable solution for cervical pre-cancer screening in these communities. We have developed and characterized a portable USB-powered optical spectroscopic system to quantify total hemoglobin content, hemoglobin saturation, and reduced scattering coefficient of cervical tissue in vivo. The system consists of a high-power LED as light source, a bifurcated fiber optic assembly, and two USB spectrometers for sample and calibration spectra acquisitions. The system was subsequently tested in Leogane, Haiti, where diffuse reflectance spectra from 33 colposcopically normal sites in 21 patients were acquired. Two different calibration methods, i.e., a post-study diffuse reflectance standard measurement and a real time self-calibration channel were studied. Our results suggest that a self-calibration channel enabled more accurate extraction of scattering contrast through simultaneous real-time correction of intensity drifts in the system. A self-calibration system also minimizes operator bias and required training. Hence, future contact spectroscopy or imaging systems should incorporate a selfcalibration channel to reliably extract scattering contrast.

  7. [Pattern recognition of decorative papers with different visual characteristics using visible spectroscopy coupled with principal component analysis (PCA)].

    PubMed

    Zhang, Mao-mao; Yang, Zhong; Lu, Bin; Liu, Ya-na; Sun, Xue-dong

    2015-02-01

    As one of the most important decorative materials for the modern household products, decorative papers impregnated with melamine not only have better decorative performance, but also could greatly improve the surface properties of materials. However, the appearance quality (such as color-difference evaluation and control) of decorative papers, as an important index for the surface quality of decorative paper, has been a puzzle for manufacturers and consumers. Nowadays, human eye is used to discriminate whether there exist color difference in the factory, which is not only of low efficiency but also prone to bring subjective error. Thus, it is of great significance to find an effective method in order to realize the fast recognition and classification of the decorative papers. In the present study, the visible spectroscopy coupled with principal component analysis (PCA) was used for the pattern recognition of decorative papers with different visual characteristics to investigate the feasibility of visible spectroscopy to rapidly recognize the types of decorative papers. The results showed that the correlation between visible spectroscopy and visual characteristics (L*, a* and b*) was significant, and the correlation coefficients wereup to 0.85 and some was even more than 0. 99, which might suggest that the visible spectroscopy reflected some information about visual characteristics on the surface of decorative papers. When using the visible spectroscopy coupled with PCA to recognize the types of decorative papers, the accuracy reached 94%-100%, which might suggest that the visible spectroscopy was a very potential new method for the rapid, objective and accurate recognition of decorative papers with different visual characteristics.

  8. Adsorption and photodecomposition of Mo(CO)[sub 6] on Si(111) 7[times]7: An infrared reflection absorption spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, L.J.; Buntin, S.A.; Chu, P.M.

    1994-02-15

    The adsorption and photodecomposition of Mo(CO)[sub 6] adsorbed on Si(111) 7[times]7 surfaces has been studied with Auger electron spectroscopy, temperature programmed desorption, low energy electron diffraction and infrared reflection absorption spectroscopy in a single external reflection configuration. The external-reflection technique is demonstrated to have adequate sensitivity to characterize submonolayer coverages of photogenerated Mo(CO)[sub [ital x

  9. Comparison of the magnitude and phase of the reflection coefficient from a smooth water/sand interface with elastic and poroelastic models

    NASA Astrophysics Data System (ADS)

    Isakson, Marcia; Camin, H. John; Canepa, Gaetano

    2005-04-01

    The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.

  10. Dynamic Determination of Some Optical and Electrical Properties of Galena Natural Mineral: Potassium Ethyl Xanthate Solution Interface

    NASA Astrophysics Data System (ADS)

    Todoran, D.; Todoran, R.; Anitas, E. M.; Szakacs, Zs.

    2017-12-01

    This paper presents results concerning optical and electrical properties of galena natural mineral and of the interface layer formed between it and the potassium ethyl xanthate solution. The applied experimental method was differential optical reflectance spectroscopy over the UV-Vis/NIR spectral domain. Computations were made using the Kramers-Kronig formalism. Spectral dependencies of the electron loss functions, determined from the reflectance data obtained from the polished mineral surface, display van Hove singularities, leading to the determination of its valence band gap and electron plasma energy. Time dependent measurement of the spectral dispersion of the relative reflectance of the film formed at the interface, using the same computational formalism, leads to the dynamical determination of the spectral variation of its optical and electrical properties. We computed behaviors of the dielectric constant (dielectric permittivity), the dielectric loss function, refractive index and extinction coefficient, effective valence number and of the electron loss functions. The measurements tend to stabilize when the dynamic adsorption-desorption equilibrium is reached at the interface level.

  11. [Study on predicting sugar content and valid acidity of apples by near infrared diffuse reflectance technique].

    PubMed

    Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping

    2005-11-01

    The nondestructive method for quantifying sugar content (SC) and available acid (VA) of intact apples using diffuse near infrared reflectance and optical fiber sensing techniques were explored in the present research. The standard sample sets and prediction models were established by partial least squares analysis (PLS). A total of 120 Shandong Fuji apples were tested in the wave number of 12,500 - 4000 cm(-1) using Fourier transform near infrared spectroscopy. The results of the research indicated that the nondestructive quantification of SC and VA, gave a high correlation coefficient 0.970 and 0.906, a low root mean square error of prediction (RMSEP) 0.272 and 0.056 2, a low root mean square error of calibration (RMSEC) 0.261 and 0.0677, and a small difference between RMSEP and RMSEC 0.011 a nd 0.0115. It was suggested that the diffuse nearinfrared reflectance technique be feasible for nondestructive determination of apple sugar content in the wave number range of 10,341 - 5461 cm(-1) and for available acid in the wave number range of 10,341 - 3818 cm(-1).

  12. The Detection and Quantification of Adulteration in Ground Roasted Asian Palm Civet Coffee Using Near-Infrared Spectroscopy in Tandem with Chemometrics

    NASA Astrophysics Data System (ADS)

    Suhandy, D.; Yulia, M.; Ogawa, Y.; Kondo, N.

    2018-05-01

    In the present research, an evaluation of using near infrared (NIR) spectroscopy in tandem with full spectrum partial least squares (FS-PLS) regression for quantification of degree of adulteration in civet coffee was conducted. A number of 126 ground roasted coffee samples with degree of adulteration 0-51% were prepared. Spectral data were acquired using a NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement in the range of 1300-2500 nm. The samples were divided into two groups calibration sample set (84 samples) and prediction sample set (42 samples). The calibration model was developed on original spectra using FS-PLS regression with full-cross validation method. The calibration model exhibited the determination coefficient R2=0.96 for calibration and R2=0.92 for validation. The prediction resulted in low root mean square error of prediction (RMSEP) (4.67%) and high ratio prediction to deviation (RPD) (3.75). In conclusion, the degree of adulteration in civet coffee have been quantified successfully by using NIR spectroscopy and FS-PLS regression in a non-destructive, economical, precise, and highly sensitive method, which uses very simple sample preparation.

  13. Terahertz time-domain spectroscopy and quantitative analysis of metal gluconates.

    PubMed

    Li, Shaoxian; Yang, Jingqi; Zhao, Hongwei; Yang, Na; Jing, Dandan; Zhang, Jianbing; Li, Qingnuan; Han, Jiaguang

    2015-01-01

    A series of metal gluconates (Na(+), K(+), Mg(2+), Ca(2+), Fe(2+), Cu(2+), and Zn(2+)) were investigated by terahertz (THz) time-domain spectroscopy. The absorption coefficients and refractive indices of the samples were obtained in the frequency range of 0.5-2.6 THz. The gluconates showed distinct THz characteristic fingerprints, and the dissimilarities reflect their different structures, hydrogen-bond networks, and molecular interactions. In addition, some common features were observed among these gluconates, and the similarities probably come from the similar carbohydrate anion group. The X-ray powder diffraction measurements of these metal gluconates were performed, and the copper(II) gluconate was found to be amorphous, corresponding to the monotonic increase feature in the THz absorption spectrum. The results suggest that THz spectroscopy is sensitive to molecular structure and physical form. Binary and ternary mixtures of different gluconates were quantitatively analyzed based on the Beer-Lambert law. A chemical map of a tablet containing calcium D-gluconate monohydrate and α-lactose in the polyethylene host was obtained by THz imaging. The study shows that THz technology is a useful tool in pharmaceutical research and quality control applications.

  14. Study the efficacy of neuroprotective drugs on brain physiological properties during focal head injury using optical spectroscopy data analysis

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shochat, Ariel

    2016-03-01

    We present a comparative evaluation of five different neuroprotective drugs in the early phase following focal traumatic brain injury (TBI) in mouse intact head. The effectiveness of these drugs in terms of changes in brain tissue morphology and hemodynamic properties was experimentally evaluated through analysis of the optical absorption coefficient and spectral reduced scattering parameters in the range of 650-1000 nm. Anesthetized male mice (n=50 and n=10 control) were subjected to weight drop model mimics real life focal head trauma. Monitoring the effect of injury and neuroprotective drugs was obtained by using a diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. Result indicates that administration of minocycline improve hemodynamic and reduced the level of tissue injury at an early phase post-injury while hypertonic saline treatment decrease brain water content. These findings highlight the heterogeneity between neuroprotective drugs and the ongoing controversy among researchers regarding which drug therapy is preferred for treatment of TBI. On the other hand, our results show the capability of optical spectroscopy technique to noninvasively study brain function following injury and drug therapy.

  15. Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol-gel synthesized TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, J.; Pathinettam Padiyan, D.

    2017-09-01

    TiO2 nanoparticles were prepared by a sol-gel method using titanium tetra isopropoxide as a precursor. The structural, optical, morphological and electrical properties were studied by x-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), a high resolution scanning electron microscope (HR-SEM), a transmission electron microscope (TEM), Raman analysis, Photoluminescence (PL) and impedance spectroscopy. The XRD and Raman spectra revealed that the synthesized samples are in pure anatase phase with an average crystallite size of 18 nm. Photocatalytic activity of the TiO2 nanoparticles was investigated for the degradation of 10 ppm methyl orange (MO) and bromophenol blue (BPB) dye using 10 mg of catalyst. Anatase TiO2 exhibited the removal of 67.12% and 85.51% of MO and BPB, respectively, within 240 min. The photocatalytic degradation process is explained using pseudo second order kinetics and fits well with the higher correlation coefficient.

  16. In vitro terahertz spectroscopy of gelatin-embedded human brain tumors: a pilot study

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, N. V.; Gavdush, A. A.; Beshplav, S.-I. T.; Malakhov, K. M.; Kucheryavenko, A. S.; Katyba, G. M.; Dolganova, I. N.; Goryaynov, S. A.; Karasik, V. E.; Spektor, I. E.; Kurlov, V. N.; Yurchenko, S. O.; Komandin, G. A.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have performed the in vitro terahertz (THz) spectroscopy of human brain tumors. In order to fix tissues for the THz measurements, we have applied the gelatin embedding. It allows for preserving tissues from hydration/dehydration and sustaining their THz response similar to that of the freshly-excised tissues for a long time after resection. We have assembled an experimental setup for the reflection-mode measurements of human brain tissues based on the THz pulsed spectrometer. We have used this setup to study in vitro the refractive index and the amplitude absorption coefficient of 2 samples of malignant glioma (grade IV), 1 sample of meningioma (grade I), and samples of intact tissues. We have observed significant differences between the THz responses of normal and pathological tissues of the brain. The results of this paper highlight the potential of the THz technology in the intraoperative neurodiagnosis of tumors relying on the endogenous labels of tumorous tissues.

  17. Simultaneous determination of heavy metal ions in water using near-infrared spectroscopy with preconcentration by nano-hydroxyapatite.

    PubMed

    Ning, Yu; Li, Jihui; Cai, Wensheng; Shao, Xueguang

    2012-10-01

    A method for simultaneous determination of metal ions in river water was developed by using preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). An inorganic biomaterial, nano-hydroxyapatite (HAP) was used as a high-efficient adsorbent for gathering the ions from water samples. After adsorbing the analytes onto the adsorbent, NIRDRS was measured and partial least squares (PLS) models were established for fast and simultaneous quantitative prediction. With the samples prepared by river water, determination of Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Cr(3+) was investigated. The calibration models of Cu(2+), Cr(3+) and total content were proven to be efficient enough for precise prediction. The determination coefficients (R(2)) of the independent validation were found as high as 0.9924, 0.9869 and 0.9273 for Cu(2+), Cr(3+) and total content, respectively. Therefore, the feasibility of NIRDRS for microanalysis of heavy metal ions in waste water was demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Communication: Development of standing evanescent-wave fluorescence correlation spectroscopy and its application to the lateral diffusion of lipids in a supported lipid bilayer

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Yamaguchi, Shoichi

    2017-07-01

    We present standing evanescent-wave fluorescence correlation spectroscopy (SEW-FCS). This technique utilizes the interference of two evanescent waves which generates a standing evanescent-wave. Fringe-pattern illumination created by a standing evanescent-wave enables us to measure the diffusion coefficients of molecules with a super-resolution corresponding to one fringe width. Because the fringe width can be reliably estimated by a simple procedure, utilization of fringes is beneficial to quantitatively analyze the slow diffusion of molecules in a supported lipid bilayer (SLB), a model biomembrane formed on a solid substrate, with the timescale relevant for reliable FCS analysis. Furthermore, comparison of the data between SEW-FCS and conventional total-internal reflection FCS, which can also be performed by the SEW-FCS instrument, effectively eliminates the artifact due to afterpulsing of the photodiode detector. The versatility of SEW-FCS is demonstrated by its application to various SLBs.

  19. The role of the reflection coefficient in precision measurement of ultrasonic attenuation

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1984-01-01

    Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.

  20. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination.

    PubMed

    Bandaru, Varaprasad; Daughtry, Craig S; Codling, Eton E; Hansen, David J; White-Hansen, Susan; Green, Carrie E

    2016-06-18

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L(-1) sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR) wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves) model for various soil moisture conditions and leaf area indices (LAI). Further, sensitivity of various vegetative indices (VIs) to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r²) greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs' performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI) exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI) and TCARI) suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields.

  1. Optical spectroscopy of ancient paper and textiles

    NASA Astrophysics Data System (ADS)

    Missori, M.

    2016-03-01

    Ancient paper and textiles represent a striking example of optically inhomogenous materials whose optical responses are strongly governed by scattering effects. In order to recover the absorption coefficient from non-invasive and non-destructive reflectance measurements a specific approach based on Kubelka-Munk two-flux theory must be applied. In this way quantitative chemical information, such as chromophores concentration, can be obtained, as well as quantitative spectra of additional substances such as pigments or dyes. Results on a folio of the Codex on the Flight of Birds by Leonardo da Vinci and a linen cloth dated back to 1653 and called the Shroud of Arquata, a copy of the Shroud of Turin, will be presented.

  2. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils.

    PubMed

    Zornoza, R; Guerrero, C; Mataix-Solera, J; Scow, K M; Arcenegui, V; Mataix-Beneyto, J

    2008-07-01

    The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r(2)) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r(2)>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81

  3. Diffuse reflectance spectroscopy of pre- and post-treated oral submucous fibrosis: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sivabalan, S.; Ponranjini Vedeswari, C.; Jayachandran, S.; Koteeswaran, D.; Pravda, C.; Aruna, P.; Ganesan, S.

    2010-02-01

    Oral submucous fibrosis (OSF) is a high risk precancerous condition characterized by changes in the connective tissue fibers of the lamina propria and deeper parts leading to stiffness of the mucosa and restricted mouth opening, fibrosis of the lining mucosa of the upper digestive tract involving the oral cavity, oro- and hypo-pharynx and the upper two-thirds of the oesophagus. Optical reflectance measurements have been used to extract diagnostic information from a variety of tissue types, in vivo. We apply diffuse reflectance spectroscopy to quantitatively monitor tumour response to chemotherapy. Twenty patients with submucous fibrosis were diagnosed with diffuse reflectance spectroscopy and treated with the chemotherapy drug, Dexamethasone sodium phosphate and Hyaluronidase injection for seven weeks and after the treatment they were again subjected to the diffuse reflectance spectroscopy. The major observed spectral alterations on pre and post treated submucous fibrosis is an increase in the diffuse reflectance from 450 to 600 nm. Normal mucosa has showed higher reflectance when compared to the pre and post-treated cases. The spectral changes were quantified and correlated to conventional diagnostic results viz., maximum mouth opening, tongue protrusion and burning sensation. The results of this study suggest that the diffuse reflectance spectroscopy may also be considered as complementary optical techniques to monitor oral tissue transformation.

  4. Influence of cost functions and optimization methods on solving the inverse problem in spatially resolved diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Rakotomanga, Prisca; Soussen, Charles; Blondel, Walter C. P. M.

    2017-03-01

    Diffuse reflectance spectroscopy (DRS) has been acknowledged as a valuable optical biopsy tool for in vivo characterizing pathological modifications in epithelial tissues such as cancer. In spatially resolved DRS, accurate and robust estimation of the optical parameters (OP) of biological tissues is a major challenge due to the complexity of the physical models. Solving this inverse problem requires to consider 3 components: the forward model, the cost function, and the optimization algorithm. This paper presents a comparative numerical study of the performances in estimating OP depending on the choice made for each of the latter components. Mono- and bi-layer tissue models are considered. Monowavelength (scalar) absorption and scattering coefficients are estimated. As a forward model, diffusion approximation analytical solutions with and without noise are implemented. Several cost functions are evaluated possibly including normalized data terms. Two local optimization methods, Levenberg-Marquardt and TrustRegion-Reflective, are considered. Because they may be sensitive to the initial setting, a global optimization approach is proposed to improve the estimation accuracy. This algorithm is based on repeated calls to the above-mentioned local methods, with initial parameters randomly sampled. Two global optimization methods, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are also implemented. Estimation performances are evaluated in terms of relative errors between the ground truth and the estimated values for each set of unknown OP. The combination between the number of variables to be estimated, the nature of the forward model, the cost function to be minimized and the optimization method are discussed.

  5. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures: Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, J. B.; Handy, J.

    1991-01-01

    Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it was used as the major method of identifying possible mineral analogs of the Martian surface. A summary of proposed Martian surface compositions from reflectance spectroscopy before 1979 was presented. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite were suggested as Mars soil analog materials.

  6. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular, lack of homogeneity of the meat samples influenced the accuracy of estimation of chemical components. In general the predicting results of intramuscular fat, fatty acid and moisture are best, the predicting results of crude protein and myoglobin are better, while the predicting results of ash and collagen are less accurate.

  7. An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene

    PubMed Central

    Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-01-01

    The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122

  8. [Study of building quantitative analysis model for chlorophyll in winter wheat with reflective spectrum using MSC-ANN algorithm].

    PubMed

    Liang, Xue; Ji, Hai-yan; Wang, Peng-xin; Rao, Zhen-hong; Shen, Bing-hui

    2010-01-01

    Preprocess method of multiplicative scatter correction (MSC) was used to reject noises in the original spectra produced by the environmental physical factor effectively, then the principal components of near-infrared spectroscopy were calculated by nonlinear iterative partial least squares (NIPALS) before building the back propagation artificial neural networks method (BP-ANN), and the numbers of principal components were calculated by the method of cross validation. The calculated principal components were used as the inputs of the artificial neural networks model, and the artificial neural networks model was used to find the relation between chlorophyll in winter wheat and reflective spectrum, which can predict the content of chlorophyll in winter wheat. The correlation coefficient (r) of calibration set was 0.9604, while the standard deviation (SD) and relative standard deviation (RSD) was 0.187 and 5.18% respectively. The correlation coefficient (r) of predicted set was 0.9600, and the standard deviation (SD) and relative standard deviation (RSD) was 0.145 and 4.21% respectively. It means that the MSC-ANN algorithm can reject noises in the original spectra produced by the environmental physical factor effectively and set up an exact model to predict the contents of chlorophyll in living leaves veraciously to replace the classical method and meet the needs of fast analysis of agricultural products.

  9. Electromagnetic Attenuation Characteristics of Microbial Materials in the Infrared Band.

    PubMed

    Wang, Peng; Liu, Hongxia; Zhao, Yizheng; Gu, Youlin; Chen, Wei; Wang, Li; Li, Le; Zhao, Xinying; Lei, Wuhu; Hu, Yihua; Zheng, Zhiming

    2016-09-01

    In this study, seven microbial materials (entomogenous fungi Bb3088 mycelia, entomogenous fungi Bb3088 spores, entomogenous fungi Ma2677 mycelia, entomogenous fungi Ma2677 spores, Bacillus subtilis 8204, Staphylococcus aureus 6725, and Saccharomyces cerevisiae 1025) were used to measure electromagnetic (EM) signal extinction. They were subjected to light absorption and reflection measurements in the range of 4000-400 cm(-1) (2.5-25 µm) using Fourier transform infrared spectroscopy. The specular reflection spectrum method was used to calculate the real (n) and imaginary (k) parts of the complex refractive index. The complex refractive index with real part n and imaginary part k in the infrared band satisfies the following conditions n ≥ 1 and k ≥ 0. The mass extinction coefficient was calculated based on Mie theory. Entomogenous fungi Ma2677 spores and entomogenous fungi Bb3088 spores were selected as EM signal extinction materials in the smoke box test. The transmittances of entomogenous fungi Bb3088 spores and entomogenous fungi Ma2677 spores were 11.63% and 5.42%, and the mass extinction coefficients were 1.8337 m(2)/g and 1.227 m(2)/g. These results showed that entomogenous fungi Bb3088 spores and entomogenous fungi Ma2677 spores have higher extinction characteristics than other microbial materials. © The Author(s) 2016.

  10. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  11. Non-destructive prediction of 'Hass' avocado dry matter via FT-NIR spectroscopy.

    PubMed

    Wedding, Brett B; White, Ronald D; Grauf, Steve; Wright, Carole; Tilse, Bonnie; Hofman, Peter; Gadek, Paul A

    2011-01-30

    The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados. 2010 Society of Chemical Industry.

  12. Characterizing the weathering induced changes in optical performance and properties of poly(ethylene-terephthalate) via MaPd:RTS spectroscopy

    NASA Astrophysics Data System (ADS)

    Gordon, Devin A.; DeNoyer, Lin; Meyer, Corey W.; Sweet, Noah W.; Burns, David M.; Bruckman, Laura S.; French, Roger H.

    2017-08-01

    Poly(ethylene-terephthalate) (PET) film is widely used in photovoltaic module backsheets for its dielectric break- down strength, and in applications requiring high optical clarity for its high transmission in the visible region. However, PET degrades and loses optical clarity under exposure to ultraviolet (UV) irradiance, heat, and moisture. Stabilizers are often included in PET formulation to increase its longevity; however, even these are subject to degradation and further reduce optical clarity. To study the weathering induced changes in the optical properties in PET films, samples of a UV-stabilized grade of PET were exposed to heat, moisture, and UV irradiance as prescribed by ASTM-G154 Cycle 4 for 168 hour time intervals. UV-Vis reflection and transmission spectra were collected via Multi-Angle, Polarization-Dependent, Reflection, Transmission, and Scattering (MaPd:RTS) spectroscopy after each exposure interval. The resulting spectra were used to calculate the complex index of refraction throughout the UV-Vis spectral region via an iterative optimization process based upon the Fresnel equations. The index of refraction and extinction coefficient were found to vary throughout the UV-Vis region with time under exposure. The spectra were also used to investigate changes in light scattering behavior with increasing exposure time. The intensity of scattered light was found to increase at higher angles with time under exposure.

  13. Design and Fabrication of a Real-Time Measurement System for the Capsaicinoid Content of Korean Red Pepper (Capsicum annuum L.) Powder by Visible and Near-Infrared Spectroscopy.

    PubMed

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Kim, Moon S

    2015-10-29

    This research aims to design and fabricate a system to measure the capsaicinoid content of red pepper powder in a non-destructive and rapid method using visible and near infrared spectroscopy (VNIR). The developed system scans a well-leveled powder surface continuously to minimize the influence of the placenta distribution, thus acquiring stable and representative reflectance spectra. The system incorporates flat belts driven by a sample input hopper and stepping motor, a powder surface leveler, charge-coupled device (CCD) image sensor-embedded VNIR spectrometer, fiber optic probe, and tungsten halogen lamp, and an automated reference measuring unit with a reference panel to measure the standard spectrum. The operation program includes device interface, standard reflectivity measurement, and a graphical user interface to measure the capsaicinoid content. A partial least square regression (PLSR) model was developed to predict the capsaicinoid content; 44 red pepper powder samples whose measured capsaicinoid content ranged 13.45-159.48 mg/100 g by per high-performance liquid chromatography (HPLC) and 1242 VNIR absorbance spectra acquired by the pungency measurement system were used. The determination coefficient of validation (RV2) and standard error of prediction (SEP) for the model with the first-order derivative pretreatment method for Korean red pepper powder were 0.8484 and ±13.6388 mg/100 g, respectively.

  14. Quality assessment of tomato landraces and virus-resistant breeding lines: quick estimation by near infrared reflectance spectroscopy.

    PubMed

    García-Martínez, Santiago; Gálvez-Sola, Luis N; Alonso, Arantxa; Agulló, Enrique; Rubio, Fernando; Ruiz, Juan J; Moral, Raúl

    2012-04-01

    Several tomato landraces are very popular in south-eastern Spain for their organoleptic fruit quality, but these cultivars are highly susceptible to several viruses. A breeding programme is being carried out for the introduction of virus resistances into these landraces. In the last steps of our breeding programme a high number of breeding lines must be evaluated for agronomic and organoleptic quality parameters. Near infrared reflectance spectroscopy (NIRS) technology shows considerable promise and is ideally suited to the requirements of breeders. Significant differences between a set of 35 tomato breeding lines, seven landraces and one commercial hybrid were observed for quality and mineral content parameters, suggesting that there are considerable levels of genetic diversity between the cultivar groups studied. Using NIRS on dry samples of tomato constitutes a feasible technique to estimate the content of several minerals (C, N, P, K, Ca, Na, Mn, Mg and Cu) according to the coefficient of determination for calibration (R(2) > 0.90). NIRS estimations of soluble solids content and titratable acidity obtained were considered useful only for general screening purposes. NIRS technology may be a useful tool in the selection of lines coming out of tomato breeding programs, allowing a quick estimation of mineral content. However, the estimation of soluble solids content and titratable acidity by NIRS must be improved. Copyright © 2011 Society of Chemical Industry.

  15. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  16. [Discriminant Analysis of Lavender Essential Oil by Attenuated Total Reflectance Infrared Spectroscopy].

    PubMed

    Tang, Jun; Wang, Qing; Tong, Hong; Liao, Xiang; Zhang, Zheng-fang

    2016-03-01

    This work aimed to use attenuated total reflectance Fourier transform infrared spectroscopy to identify the lavender essential oil by establishing a Lavender variety and quality analysis model. So, 96 samples were tested. For all samples, the raw spectra were pretreated as second derivative, and to determine the 1 750-900 cm(-1) wavelengths for pattern recognition analysis on the basis of the variance calculation. The results showed that principal component analysis (PCA) can basically discriminate lavender oil cultivar and the first three principal components mainly represent the ester, alcohol and terpenoid substances. When the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was established, the 68 samples were used for the calibration set. Determination coefficients of OPLS-DA regression curve were 0.959 2, 0.976 4, and 0.958 8 respectively for three varieties of lavender essential oil. Three varieties of essential oil's the root mean square error of prediction (RMSEP) in validation set were 0.142 9, 0.127 3, and 0.124 9, respectively. The discriminant rate of calibration set and the prediction rate of validation set had reached 100%. The model has the very good recognition capability to detect the variety and quality of lavender essential oil. The result indicated that a model which provides a quick, intuitive and feasible method had been built to discriminate lavender oils.

  17. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  18. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis–NIR Spectroscopy

    PubMed Central

    Xu, Shengxiang; Shi, Xuezheng; Wang, Meiyan; Zhao, Yongcun

    2016-01-01

    Assessment and monitoring of soil organic matter (SOM) quality are important for understanding SOM dynamics and developing management practices that will enhance and maintain the productivity of agricultural soils. Visible and near-infrared (Vis–NIR) diffuse reflectance spectroscopy (350–2500 nm) has received increasing attention over the recent decades as a promising technique for SOM analysis. While heterogeneity of sample sets is one critical factor that complicates the prediction of soil properties from Vis–NIR spectra, a spectral library representing the local soil diversity needs to be constructed. The study area, covering a surface of 927 km2 and located in Yujiang County of Jiangsu Province, is characterized by a hilly area with different soil parent materials (e.g., red sandstone, shale, Quaternary red clay, and river alluvium). In total, 232 topsoil (0–20 cm) samples were collected for SOM analysis and scanned with a Vis–NIR spectrometer in the laboratory. Reflectance data were related to surface SOM content by means of a partial least square regression (PLSR) method and several data pre-processing techniques, such as first and second derivatives with a smoothing filter. The performance of the PLSR model was tested under different combinations of calibration/validation sets (global and local calibrations stratified according to parent materials). The results showed that the models based on the global calibrations can only make approximate predictions for SOM content (RMSE (root mean squared error) = 4.23–4.69 g kg−1; R2 (coefficient of determination) = 0.80–0.84; RPD (ratio of standard deviation to RMSE) = 2.19–2.44; RPIQ (ratio of performance to inter-quartile distance) = 2.88–3.08). Under the local calibrations, the individual PLSR models for each parent material improved SOM predictions (RMSE = 2.55–3.49 g kg−1; R2 = 0.87–0.93; RPD = 2.67–3.12; RPIQ = 3.15–4.02). Among the four different parent materials, the largest R2 and the smallest RMSE were observed for the shale soils, which had the lowest coefficient of variation (CV) values for clay (18.95%), free iron oxides (15.93%), and pH (1.04%). This demonstrates the importance of a practical subsetting strategy for the continued improvement of SOM prediction with Vis–NIR spectroscopy. PMID:26974821

  19. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on sevenmore » HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75 ± 0.26 (mean ± standard error of the mean). The authors’ spectroscopic investigation has shown that HIFU-treated tissues have a greater optical absorption and reduced scattering coefficients than native tissues in the wavelength range of 500–900 nm. In fact, at 720 and 845 nm, the ratio of the optical absorption coefficient of HIFU-treated tissues to that of native tissues was 1.13 and 1.17, respectively; on the other hand, the ratio of the reduced scattering coefficient of HIFU-treated tissues to that of native tissues was 13.22 and 14.67 at 720 and 845 nm, respectively. Consequently, HIFU-treated tissues have a higher effective attenuation coefficient and a lower light penetration depth than native tissues in the wavelength range 500–900 nm. Conclusions: Using a PA approach, HIFU-treated tissues interrogated at 720 and 845 nm optical wavelengths can be differentiated from untreated tissues. Based on the authors’ spectroscopic investigation, the authors conclude that the observed PA contrast between HIFU-induced thermal lesions and untreated tissue is due, in part, to the increase in the optical absorption coefficient, the reduced scattering coefficient and, therefore, the deposited laser energy fluence in HIFU-treated tissues.« less

  20. [Application of near-infrared spectroscopy technology in extraction and concentration process of Reduning injection].

    PubMed

    Zhang, Ya-Fei; Zuo, Xiang-Yun; Bi, Yu-An; Wu, Jian-Xiong; Wang, Zhen-Zhong; L, Ping; Xiao, Wei

    2014-08-01

    To establish a rapid quantitative analysis method for the content of chlorogenic acid and solid content in the extraction liquid concentration process during the production of Reduning injection by using the near-infrared (NIR) spectroscopy, in order to reflect the concentration state in a real-time manner and really realize the quality control of concentrating process of the extraction and concentration process. The samples during the Jinqing extraction liquid concentration process were collected. After the removal of abnormal samples, the spectra pretreatment and the wave band selection, the quantitative calibration model between NIR spectra and chlorogenic acid HPLC analytical value and solid content was established by using PLS algorithm, and unknown samples were predicted. The correlation coefficients between the chlorogenic acid content and the solid content were respectively 0.992 1 and 0.994 0, and the correlation coefficients of the verification model were respectively 0.994 4 and 0.998 4, with the root mean square error of calibration (RMSEC) of 0.814 6 and 2.656 1 and the root mean square error of prediction (RMSEP) of 0.704 6 and 1.876 7 respectively, and the relative standard errors of predictions (RSEP) were 6.01% and 2.93% respectively. The method is simple, rapid, nondestructive, accurate and reliable, thus could be adopted for the fast monitoring of the chlorogenic acid content and the solid content during the concentration process of Reduning injection extraction liquid.

  1. Screening soy hydrolysates for the production of a recombinant therapeutic protein in commercial cell line by combined approach of near-infrared spectroscopy and chemometrics.

    PubMed

    Li, Guiyang; Wen, Zai-Qing

    2013-03-01

    Soy hydrolysates are widely used as the major nutrient sources for cell culture processes for industrial manufacturing of therapeutic recombinant proteins. The primary goal of this study was to develop a spectroscopy based chemometric method, a partial least squares (PLS), to screen soy hydrolysates for better yield of protein production (titers) in cell culture medium. Harvest titer values of 29 soy hydrolysate lots with production yield between 490 and 1,350 mg/L were obtained from shake flask models or from manufacture engineering runs. The soy hydrolysate samples were measured by near-infrared (NIR) in reflectance mode using an infrared fiber optic probe. The fiber optic probe could easily enable in situ measurement of the soy hydrolysates for convenient raw material screening. The best PLS calibration has a determination coefficient of R (2) = 0.887 utilizing no spectral preprocessing, the two spectral ranges of 10,000-5,376 cm(-1) and 4,980-4,484 cm(-1), and a rank of 6 factors. The cross-validation of the model resulted in a determination coefficient of R (2) = 0.741 between the predicted and actual titer values with an average standard deviation of 72 mg/L. Compared with the resource demanding shake flask model, the combination of NIR and chemometric modeling provides a convenient method for soy hydrolysate screening with the advantage of fast speed, low cost and non-destructive.

  2. Application of Visible/Near-Infrared Spectroscopy in the Prediction of Azodicarbonamide in Wheat Flour.

    PubMed

    Che, Wenkai; Sun, Laijun; Zhang, Qian; Zhang, Dan; Ye, Dandan; Tan, Wenyi; Wang, Lekai; Dai, Changjun

    2017-10-01

    Azodicarbonamide is wildly used in flour industry as a flour gluten fortifier in many countries, but it was proved by some researches to be dangerous or unhealthy for people and not suitable to be added in flour. Applying a rapid, convenient, and noninvasive technique in food analytical procedure for the safety inspection has become an urgent need. This paper used Vis/NIR reflectance spectroscopy analysis technology, which is based on the physical property analysis to predict the concentration of azodicarbonamide in flour. Spectral data in range from 400 to 2498 nm were obtained by scanning 101 samples which were prepared using the stepwise dilution method. Furthermore, the combination of leave-one-out cross-validation and Mahalanobis distance method was used to eliminate abnormal spectral data, and correlation coefficient method was used to choose characteristic wavebands. Partial least squares, back propagation neural network, and radial basis function were used to establish prediction model separately. By comparing the prediction results between 3 models, the radial basis function model has the best prediction results whose correlation coefficients (R), root mean square error of prediction (RMSEP), and ratio of performance to deviation (RPD) reached 0.99996, 0.5467, and 116.5858, respectively. Azodicarbonamide has been banned or limited in many countries. This paper proposes a method to predict azodicarbonamide concentrate in wheat flour, which will be used for a rapid, convenient, and noninvasive detection device. © 2017 Institute of Food Technologists®.

  3. Interstitial diffuse radiance spectroscopy of gold nanocages and nanorods in bulk muscle tissues

    PubMed Central

    Grabtchak, Serge; Montgomery, Logan G; Pang, Bo; Wang, Yi; Zhang, Chao; Li, Zhiyuan; Xia, Younan; Whelan, William M

    2015-01-01

    Radiance spectroscopy was applied to the interstitial detection of localized inclusions containing Au nanocages or nanorods with various concentrations embedded in porcine muscle phantoms. The radiance was quantified using a perturbation approach, which enabled the separation of contributions from the porcine phantom and the localized inclusion, with the inclusion serving as a perturbation probe of photon distributions in the turbid medium. Positioning the inclusion at various places in the phantom allowed for tracking of photons that originated from a light source, passed through the inclusion’s location, and reached a detector. The inclusions with high extinction coefficients were able to absorb nearly all photons in the range of 650–900 nm, leading to a spectrally flat radiance signal. This signal could be converted to the relative density of photons incident on the inclusion. Finally, the experimentally measured quantities were expressed via the relative perturbation and arranged into the classical Beer–Lambert law that allowed one to extract the extinction coefficients of various types of Au nanoparticles in both the transmission and back reflection geometries. It was shown that the spatial variation of perturbation could be described as 1/r dependence, where r is the distance between the inclusion and the detector. Due to a larger absorption cross section, Au nanocages produced greater perturbations than Au nanorods of equal particle concentration, indicating a better suitability of Au nanocages as contrast agents for optical measurements in turbid media. Individual measurements from different inclusions were combined into detectability maps. PMID:25709450

  4. Interstitial diffuse radiance spectroscopy of gold nanocages and nanorods in bulk muscle tissues.

    PubMed

    Grabtchak, Serge; Montgomery, Logan G; Pang, Bo; Wang, Yi; Zhang, Chao; Li, Zhiyuan; Xia, Younan; Whelan, William M

    2015-01-01

    Radiance spectroscopy was applied to the interstitial detection of localized inclusions containing Au nanocages or nanorods with various concentrations embedded in porcine muscle phantoms. The radiance was quantified using a perturbation approach, which enabled the separation of contributions from the porcine phantom and the localized inclusion, with the inclusion serving as a perturbation probe of photon distributions in the turbid medium. Positioning the inclusion at various places in the phantom allowed for tracking of photons that originated from a light source, passed through the inclusion's location, and reached a detector. The inclusions with high extinction coefficients were able to absorb nearly all photons in the range of 650-900 nm, leading to a spectrally flat radiance signal. This signal could be converted to the relative density of photons incident on the inclusion. Finally, the experimentally measured quantities were expressed via the relative perturbation and arranged into the classical Beer-Lambert law that allowed one to extract the extinction coefficients of various types of Au nanoparticles in both the transmission and back reflection geometries. It was shown that the spatial variation of perturbation could be described as 1/r dependence, where r is the distance between the inclusion and the detector. Due to a larger absorption cross section, Au nanocages produced greater perturbations than Au nanorods of equal particle concentration, indicating a better suitability of Au nanocages as contrast agents for optical measurements in turbid media. Individual measurements from different inclusions were combined into detectability maps.

  5. Analytical study of the reflection and transmission coefficient of the submarine interface

    NASA Astrophysics Data System (ADS)

    Zhang, Guangli; Hao, Chongtao; Yao, Chen

    2018-05-01

    The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a "segmented" characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.

  6. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

    NASA Astrophysics Data System (ADS)

    Yokokawa, Takumi; Nishidate, Izumi

    2016-04-01

    We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

  7. Application of effective wavelengths and BP neural network for the discrimination of varieties of instant milk tea powders using visible and near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Fei; He, Yong; Wang, Li

    2007-11-01

    In order to implement the fast discrimination of different milk tea powders with different internal qualities, visible and near infrared (Vis/NIR) spectroscopy combined with effective wavelengths (EWs) and BP neural network (BPNN) was investigated as a new approach. Five brands of milk teas were obtained and 225 samples were selected randomly for the calibration set, while 75 samples for the validation set. The EWs were selected according to x-loading weights and regression coefficients by PLS analysis after some preprocessing. A total of 18 EWs (400, 401, 452, 453, 502, 503, 534, 535, 594, 595, 635, 636, 688, 689, 987, 988, 995 and 996 nm) were selected as the inputs of BPNN model. The performance was validated by the calibration and validation sets. The threshold error of prediction was set as +/-0.1 and an excellent precision and recognition ratio of 100% for calibration set and 98.7% for validation set were achieved. The prediction results indicated that the EWs reflected the main characteristics of milk tea of different brands based on Vis/NIR spectroscopy and BPNN model, and the EWs would be useful for the development of portable instrument to discriminate the variety and detect the adulteration of instant milk tea powders.

  8. Study of the oxidation of uranium by external and diffuse reflectance FTIR spectroscopy using remote-sensing and evacuable cell techniques

    NASA Astrophysics Data System (ADS)

    Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan

    1994-01-01

    This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.

  9. Characterizing the reflectivity of handheld display devices.

    PubMed

    Liu, Peter; Badano, Aldo

    2014-08-01

    With increased use of handheld and tablet display devices for viewing medical images, methods for consistently measuring reflectivity of the devices are needed. In this note, the authors report on the characterization of diffuse reflections for handheld display devices including mobile phones and tablets using methods recommended by the American Association of Physicists in Medicine Task Group 18 (TG18). The authors modified the diffuse reflectance coefficient measurement method outlined in the TG18 report. The authors measured seven handheld display devices (two phones and five tablets) and three workstation displays. The device was attached to a black panel with Velcro. To study the effect of the back surface on the diffuse reflectance coefficient, the authors created Styrofoam masks with different size square openings and placed it in front of the device. Overall, for each display device, measurements of illuminance and reflected luminance on the display screen were taken. The authors measured with no mask, with masks of varying size, and with display-size masks, and calculated the corresponding diffuse reflectance coefficient. For all handhelds, the diffuse reflectance coefficient measured with no back panel were lower than measurements performed with a mask. The authors found an overall increase in reflectivity as the size of the mask decreases. For workstations displays, diffuse reflectance coefficients were higher when no back panel was used, and higher than with masks. In all cases, as luminance increased, illuminance increased, but not at the same rate. Since the size of handheld displays is smaller than that of workstation devices, the TG18 method suffers from a dependency on illumination condition. The authors show that the diffuse reflection coefficients can vary depending on the nature of the back surface of the illuminating box. The variability in the diffuse coefficient can be as large as 20% depending on the size of the mask. For all measurements, both luminance and illuminance increased as the size of the display window decreased. The TG18 method does not account for this variability. The authors conclude that the method requires a definitive description of the back panel used in the light source setup. The methods described in the TG18 document may need to be improved to provide consistent comparisons of desktop monitors, phones, and tablets.

  10. Analysis of total oil and fatty acids composition by near infrared reflectance spectroscopy in edible nuts

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya

    2014-10-01

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.

  11. A portable device for detecting fruit quality by diffuse reflectance Vis/NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Peng, Yankun; Li, Peng; Wang, Wenxiu

    2017-05-01

    Soluble solid content (SSC) is a major quality parameter to fruit, which has influence on its flavor or texture. Some researches on the on-line non-invasion detection of fruit quality were published. However, consumers desire portable devices currently. This study aimed to develop a portable device for accurate, real-time and nondestructive determination of quality factors of fruit based on diffuse reflectance Vis/NIR spectroscopy (520-950 nm). The hardware of the device consisted of four units: light source unit, spectral acquisition unit, central processing unit, display unit. Halogen lamp was chosen as light source. When working, its hand-held probe was in contact with the surface of fruit samples thus forming dark environment to shield the interferential light outside. Diffuse reflectance light was collected and measured by spectrometer (USB4000). ARM (Advanced RISC Machines), as central processing unit, controlled all parts in device and analyzed spectral data. Liquid Crystal Display (LCD) touch screen was used to interface with users. To validate its reliability and stability, 63 apples were tested in experiment, 47 of which were chosen as calibration set, while others as prediction set. Their SSC reference values were measured by refractometer. At the same time, samples' spectral data acquired by portable device were processed by standard normalized variables (SNV) and Savitzky-Golay filter (S-G) to eliminate the spectra noise. Then partial least squares regression (PLSR) was applied to build prediction models, and the best predictions results was achieved with correlation coefficient (r) of 0.855 and standard error of 0.6033° Brix. The results demonstrated that this device was feasible to quantitatively analyze soluble solid content of apple.

  12. Rapid Detection of Volatile Oil in Mentha haplocalyx by Near-Infrared Spectroscopy and Chemometrics.

    PubMed

    Yan, Hui; Guo, Cheng; Shao, Yang; Ouyang, Zhen

    2017-01-01

    Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient ( R ) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had of 0.8805, of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm-1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The and were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx . The quality of medicine directly links to clinical efficacy, thus, it is important to control the quality of Mentha haplocalyx . Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . For SVM model, 6 LVs (less than 7 LVs in PLSR model) were adopted in model, and the result was better than PLSR model. It demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in Mentha haplocalyx . Abbreviations used: 1 st der: First-order derivative; 2 nd der: Second-order derivative; LOO: Leave-one-out; LVs: Latent variables; MC: Mean centering, NIR: Near-infrared; NIRS: Near infrared spectroscopy; PCR: Principal component regression, PLSR: Partial least squares regression; RBF: Radial basis function; RMSEC: Root mean square error of cross validation, RMSEC: Root mean square error of calibration; RMSEP: Root mean square error of prediction; SNV: Standard normal variate transformation; SVM: Support vector machine; VIP: Variable Importance in projection.

  13. Dielectric characterization of hot-mix asphalt at the smart road using GPR

    NASA Astrophysics Data System (ADS)

    Al-Qadi, Imad L.; Loulizi, A.; Lahouar, S.

    2000-04-01

    To better interpret collected ground penetrating radar (GPR) data, a project is currently underway at the Virginia Smart Road. Twelve different flexible pavement sections and a continuously reinforced concrete rigid pavement section are incorporated in the road design. Thirty-five copper plates were placed at different layer interfaces throughout the pavement sections. The copper plates serve as a reflecting material and thus allow the determination of layers' dielectric constant over the GPR frequency range. An initial development of a method to calculate the complex dielectric constant of hot-mix asphalt over the frequency range of 750 to 1750 MHz using an air-coupled GPR system is presented. Utilizing GPR data, this method will be used to predict changes of the dielectric properties of the different SuperPaveTM mixes used at the Smart Road over time. The method is based on equating the overall reflection coefficient as obtained from the radar measurements with the calculated reflection coefficient using electromagnetic theory. The measured overall reflection coefficient is obtained by dividing the reflected frequency spectrum over the incident one. The theoretical overall reflection coefficient is obtained using the multiple reflection model. A Gauss-Newton method is then used to solve for the complex dielectric constant.

  14. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications

    PubMed Central

    Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.

    2014-01-01

    The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter. PMID:25173240

  15. Impacts of PM concentrations on visibility impairment

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Wang, Mei-mei; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu

    2016-11-01

    In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) sensor was used to monitor the atmospheric visibility. The CAPS system mainly includes a LED light source, a band-pass filter, an optical resonant cavity (composed of two high mirror, reflectivity is greater than 99.99%), a photoelectric detector and a lock-in amplifier. The 2L/min flow rate, the optical sensor rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. An Allan variance analysis was carried out evaluating the optical system stability (and hence the maximum averaging time for the minimum detection limit) of the CAPS system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. During this period, the extinction coefficient was correlated with PM2.5 mass (0.88), the extinction coefficient was correlated with PM10 mass (0.85). The atmospheric visibility was correlated with PM2.5 mass (0.74). The atmospheric visibility was correlated with PM10 mass (0.66).

  16. Shock Tube and Modeling Study of the H + O2 = OH + O Reaction over a Wide Range of Composition, Pressure, and Temperature

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Rabinowitz, Martin Jay

    1995-01-01

    The rate coefficient of the reaction H + 02 = OH + 0 was determined using OH laser absorption spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range 0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria were employed in the evaluation of k(sub 1). Our recommended expression for k(sub 1) is k(sub 1) = 7.13 x 10(exp 13)exp(-6957 K/T) cm(exp 3)mol(exp -1)s(exp -1) with a statistical uncertainty of 6%. A critical review of recent evaluations of k(sub 1) yields a consensus expression given by k(sub 1) = 7.82 x 10(exp 13)exp(-7105 K/7) cm(exp 3)mol(exp -1)s(exp -1) over the temperature range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence of composition dependence upon the determination of k(sub 1).

  17. Evaluation of chemical parameters in soft mold-ripened cheese during ripening by mid-infrared spectroscopy.

    PubMed

    Martín-del-Campo, S T; Picque, D; Cosío-Ramírez, R; Corrieu, G

    2007-06-01

    The suitability of mid-infrared spectroscopy (MIR) to follow the evolution throughout ripening of specific physicochemical parameters in Camembert-type cheeses was evaluated. The infrared spectra were obtained directly from raw cheese samples deposited on an attenuated total reflectance crystal. Significant correlations were observed between physicochemical data, pH, acid-soluble nitrogen, nonprotein nitrogen, ammonia (NH4+), lactose, and lactic acid. Dry matter showed significant correlation only with lactose and nonprotein nitrogen. Principal components analysis factorial maps of physicochemical data showed a ripening evolution in 2 steps, from d 1 to d 7 and from d 8 to d 27, similar to that observed previously from infrared spectral data. Partial least squares regressions made it possible to obtain good prediction models for dry matter, acid-soluble nitrogen, nonprotein nitrogen, lactose, lactic acid, and NH4+ values from spectral data of raw cheese. The values of 3 statistical parameters (coefficient of determination, root mean square error of cross validation, and ratio prediction deviation) are satisfactory. Less precise models were obtained for pH.

  18. Mapping polycyclic aromatic hydrocarbon and total toxicity equivalent soil concentrations by visible and near-infrared spectroscopy.

    PubMed

    Okparanma, Reuben N; Coulon, Frederic; Mayr, Thomas; Mouazen, Abdul M

    2014-09-01

    In this study, we used data from spectroscopic models based on visible and near-infrared (vis-NIR; 350-2500 nm) diffuse reflectance spectroscopy to develop soil maps of polycyclic aromatic hydrocarbons (PAHs) and total toxicity equivalent concentrations (TTEC) of the PAH mixture. The TTEC maps were then used for hazard assessment of three petroleum release sites in the Niger Delta province of Nigeria (5.317°N, 6.467°E). As the paired t-test revealed, there were non-significant (p > 0.05) differences between soil maps of PAH and TTEC developed with chemically measured and vis-NIR-predicted data. Comparison maps of PAH showed a slight to moderate agreement between measured and predicted data (Kappa coefficient = 0.19-0.56). Using proposed generic assessment criteria, hazard assessment showed that the degree of action for site-specific risk assessment and/or remediation is similar for both measurement methods. This demonstrates that the vis-NIR method may be useful for monitoring hydrocarbon contamination in a petroleum release site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy.

    PubMed

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Zhihua, Li; Jiyong, Shi; Zhai, Xiaodong; Wang, Sheng; Mariod, Abdalbasit Adam

    2017-07-01

    Fourier transform infrared with attenuated total reflectance (FTIR-ATR) and Raman spectroscopy combined with partial least square regression (PLSR) were applied for the prediction of phenolic compounds and antioxidant activity in honey. Standards of catechin, syringic, vanillic, and chlorogenic acids were used for the identification and quantification of the individual phenolic compounds in six honey varieties using HPLC-DAD. Total antioxidant activity (TAC) and ferrous chelating capacity were measured spectrophotometrically. For the establishment of PLSR model, Raman spectra with Savitzky-Golay smoothing in wavenumber region 1500-400cm -1 was used while for FTIR-ATR the wavenumber regions of 1800-700 and 3000-2800cm -1 with multiplicative scattering correction (MSC) and Savitzky-Golay smoothing were used. The determination coefficients (R 2 ) were ranged from 0.9272 to 0.9992 for Raman while from 0.9461 to 0.9988 for FTIT-ART. The FTIR-ATR and Raman demonstrated to be simple, rapid and nondestructive methods to quantify phenolic compounds and antioxidant activities in honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Detection and quantification of anionic detergent (lissapol) in milk using attenuated total reflectance-Fourier Transform Infrared spectroscopy.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Jaspreet; Borah, Anjan

    2017-04-15

    Adulteration of milk to gain economic benefit is rampant. Addition of detergent in milk can cause food poisoning and other complications. Fourier Transform Infrared spectroscopy was evaluated as rapid method for detection and quantification of anionic detergent (lissapol) in milk. Spectra of pure and artificially adulterated milk (0.2-2.0% detergent) samples revealed clear differences in wavenumber range of 4000-500cm -1 . The apparent variations observed in region of 1600-995 and 3040-2851cm -1 corresponds to absorption frequencies of common constituents of detergent (linear alkyl benzene sulphonate). Principal component analysis showed discrete clustering of samples based on level of detergent (p⩽0.05) in milk. The classification efficiency for test samples were recorded to be >93% using Soft Independent Modelling of Class Analogy approach. Maximum coefficient of determination for prediction of detergent was 0.94 for calibration and 0.93 for validation, using partial least square regression in wavenumber combination of 1086-1056, 1343-1333, 1507-1456, 3040-2851cm -1 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Use of near infrared spectroscopy for estimating meat chemical composition, quality traits and fatty acid content from cattle fed sunflower or flaxseed.

    PubMed

    Prieto, N; López-Campos, O; Aalhus, J L; Dugan, M E R; Juárez, M; Uttaro, B

    2014-10-01

    This study tested the ability of near infrared reflectance spectroscopy (NIRS) to predict meat chemical composition, quality traits and fatty acid (FA) composition from 63 steers fed sunflower or flaxseed in combination with high forage diets. NIRS calibrations, tested by cross-validation, were successful for predicting crude protein, moisture and fat content with coefficients of determination (R(2)) (RMSECV, g·100g(-1) wet matter) of 0.85 (0.48), 0.90 (0.60) and 0.86 (1.08), respectively, but were not reliable for meat quality attributes. This technology accurately predicted saturated, monounsaturated and branched FA and conjugated linoleic acid content (R(2): 0.83-0.97; RMSECV: 0.04-1.15mg·g(-1) tissue) and might be suitable for screening purposes in meat based on the content of FAs beneficial to human health such as rumenic and vaccenic acids. Further research applying NIRS to estimate meat quality attributes will require the use on-line of a fibre-optic probe on intact samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. [Analyzing and modeling methods of near infrared spectroscopy for in-situ prediction of oil yield from oil shale].

    PubMed

    Liu, Jie; Zhang, Fu-Dong; Teng, Fei; Li, Jun; Wang, Zhi-Hong

    2014-10-01

    In order to in-situ detect the oil yield of oil shale, based on portable near infrared spectroscopy analytical technology, with 66 rock core samples from No. 2 well drilling of Fuyu oil shale base in Jilin, the modeling and analyzing methods for in-situ detection were researched. By the developed portable spectrometer, 3 data formats (reflectance, absorbance and K-M function) spectra were acquired. With 4 different modeling data optimization methods: principal component-mahalanobis distance (PCA-MD) for eliminating abnormal samples, uninformative variables elimination (UVE) for wavelength selection and their combina- tions: PCA-MD + UVE and UVE + PCA-MD, 2 modeling methods: partial least square (PLS) and back propagation artificial neural network (BPANN), and the same data pre-processing, the modeling and analyzing experiment were performed to determine the optimum analysis model and method. The results show that the data format, modeling data optimization method and modeling method all affect the analysis precision of model. Results show that whether or not using the optimization method, reflectance or K-M function is the proper spectrum format of the modeling database for two modeling methods. Using two different modeling methods and four different data optimization methods, the model precisions of the same modeling database are different. For PLS modeling method, the PCA-MD and UVE + PCA-MD data optimization methods can improve the modeling precision of database using K-M function spectrum data format. For BPANN modeling method, UVE, UVE + PCA-MD and PCA- MD + UVE data optimization methods can improve the modeling precision of database using any of the 3 spectrum data formats. In addition to using the reflectance spectra and PCA-MD data optimization method, modeling precision by BPANN method is better than that by PLS method. And modeling with reflectance spectra, UVE optimization method and BPANN modeling method, the model gets the highest analysis precision, its correlation coefficient (Rp) is 0.92, and its standard error of prediction (SEP) is 0.69%.

  3. [Fast determination of induction period of motor gasoline using Fourier transform attenuated total reflection infrared spectroscopy].

    PubMed

    Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin

    2014-11-01

    A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing fast determination of gasoline induction period, and of a positive meaning in the evaluation of fuel quality.

  4. Application of surface complexation models to anion adsorption by natural materials.

    PubMed

    Goldberg, Sabine

    2014-10-01

    Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.

  5. Laser marking of contrast images for optical read-out systems

    NASA Astrophysics Data System (ADS)

    Yulmetova, O. S.; Tumanova, M. A.

    2017-11-01

    In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.

  6. APPLICATIONS OF LASERS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Determination of reflection coefficients of mirrors using a mode-locked laser and a dissector

    NASA Astrophysics Data System (ADS)

    Apolonskiĭ, A. A.; Vinokurov, Nikolai A.; Zinin, É. I.; Ishchenko, P. I.; Kuklin, A. E.; Popik, V. M.; Sokolov, A. S.; Shchebetov, S. D.

    1992-09-01

    A method is described for determining the reflection coefficients of high-density mirrors, based on the use of a mode-locked laser and a sensitive detector with a fast time resolution. The laser light is transmitted through an optical resonator formed by the investigated mirrors. The measured delay in the decay of a light pulse gives the damping time of the optical resonator. This is related to its Q factor determined by the reflection coefficients of its mirrors.

  7. In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre

    Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.

  8. Anatomy of point-contact Andreev reflection spectroscopy from the experimental point of view

    NASA Astrophysics Data System (ADS)

    Naidyuk, Yu. G.; Gloos, K.

    2018-04-01

    We review applications of point-contact Andreev-reflection spectroscopy to study elemental superconductors, where theoretical conditions for the smallness of the point-contact size with respect to the characteristic lengths in the superconductor can be satisfied. We discuss existing theoretical models and identify new issues that have to be solved, especially when applying this method to investigate more complex superconductors. We will also demonstrate that some aspects of point-contact Andreev-reflection spectroscopy still need to be addressed even when investigating ordinary metals.

  9. High purity silica reflective heat shield development

    NASA Technical Reports Server (NTRS)

    Blome, J. C.; Drennan, D. N.; Schmitt, R. J.

    1974-01-01

    Measurements were made of reflectance in the vacuum ultraviolet down to 0.15 micron. Scattering coefficients (S) and absorption coefficients (K) were also measured. These coefficients express the optical properties and are used directly in a thermodynamic analysis for sizing a heat shield. The effect of the thin silica melt layer formed during entry was also studied from the standpoint of trapped radiant energy.

  10. Statistical Analysis of Bending Rigidity Coefficient Determined Using Fluorescence-Based Flicker-Noise Spectroscopy.

    PubMed

    Doskocz, Joanna; Drabik, Dominik; Chodaczek, Grzegorz; Przybyło, Magdalena; Langner, Marek

    2018-06-01

    Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.

  11. Protein osmotic pressure gradients and microvascular reflection coefficients.

    PubMed

    Drake, R E; Dhother, S; Teague, R A; Gabel, J C

    1997-08-01

    Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.

  12. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves

    NASA Astrophysics Data System (ADS)

    Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.

    2018-06-01

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.

  13. Investigations of ionospheric sporadic Es layer using oblique sounding method

    NASA Astrophysics Data System (ADS)

    Minullin, R.

    The characteristics of Es layer have been studied using oblique sounding at 28 radiolines at the frequencies of 34 -- 73 MHz at the transmission paths 400 -- 1600 km long during 30 years. Reflections from Es layer with a few hours duration were observed. The amplitude of the reflected signal reached 1000 μ V with the registration threshold 0,1 μ V. The borderlines between reflected and scattered signals were observed as sharp curves in 60 -- 100 s range on the distributions of duration of reflected signals for decameter waves. The duration of continuous Es reflections were decreased upon amplification of oblique sounding frequency. The distributions of duration of reflected signals for meter waves showed sharp curves in the range 200 -- 300 s, representing borderlines between signals reflected from meteoric traces and from Es layer. The filling coefficient for the oblique sounding as well as the Es layer emersion probability for the vertical sounding were shown to undergo daily, seasonal and periodic variations. The daily variations of the filling coefficient of Es signals showed clear-cut maximums at 10 -- 12 and 18 -- 20 hours and minimum at 4 -- 6 hours at all paths in summer time and the maximum at 12 -- 14 hours in winter time. The values of the filling coefficient for Es layer declined with the increase of oblique sounding frequency. The minimal values of the filling coefficient were observed in winter and early spring, while the maximal values were observed from May to August. Provided that the averaged filling coefficient is equal to one in summer, it reaches the level 0,25 in equinox and does not exceed the level 0,12 in winter as evident by the of oblique sounding. The filling coefficient relation to the value of the voltage detection threshold was approximated by power-mode law. The filling coefficients for summer period showed exponential relation with equivalent sounding frequencies. The experimental evidence was generalized in an analytical model. Using this model the averaged Es layer filling coefficients for particular season of the year can be forecasted in case of given sounding frequency, path length, and voltage threshold.

  14. Simultaneous characterization of lateral lipid and prothrombin diffusion coefficients by z-scan fluorescence correlation spectroscopy.

    PubMed

    Stefl, Martin; Kułakowska, Anna; Hof, Martin

    2009-08-05

    A new (to our knowledge) robust approach for the determination of lateral diffusion coefficients of weakly bound proteins is applied for the phosphatidylserine specific membrane interaction of bovine prothrombin. It is shown that z-scan fluorescence correlation spectroscopy in combination with pulsed interleaved dual excitation allows simultaneous monitoring of the lateral diffusion of labeled protein and phospholipids. Moreover, from the dependencies of the particle numbers on the axial sample positions at different protein concentrations phosphatidylserine-dependent equilibrium dissociation constants are derived confirming literature values. Increasing the amount of membrane-bound prothrombin retards the lateral protein and lipid diffusion, indicating coupling of both processes. The lateral diffusion coefficients of labeled lipids are considerably larger than the simultaneously determined lateral diffusion coefficients of prothrombin, which contradicts findings reported for the isolated N-terminus of prothrombin.

  15. Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer-Lambert law.

    PubMed

    Terenji, Albert; Willmann, Stefan; Osterholz, Jens; Hering, Peter; Schwarzmaier, Hans-Joachim

    2005-06-01

    During heating, the optical properties of biological tissues change with the coagulation state. In this study, we propose a technique, which uses these changes to monitor the coagulation process during laser-induced interstitial thermotherapy (LITT). Untreated and coagulated (water bath, temperatures between 35 degrees C and 90 degrees C for 20 minutes.) samples of bovine liver tissue were examined using a Nd:YAG (lambda = 1064 nm) frequency-domain reflectance spectrometer. We determined the time integrated intensities (I(DC)) and the phase shifts (Phi) of the photon density waves after migration through the tissue. From these measured quantities, the time of flight (TOF) of the photons and the absorption coefficients of the samples were derived using the modified microscopic Beer-Lambert law. The absorption coefficients of the liver samples decreased significantly with the temperature in the range between 50 degrees C and 70 degrees C. At the same time, the TOF of the investigated photos was found increased indicating an increased scattering. The coagulation dynamics could be well described using the Arrhenius formalism with the activation energy of 106 kJ/mol and the frequency factor of 1.59 x 10(13)/second. Frequency-domain reflectance spectroscopy in combination with the modified microscopic Beer-Lambert (MBL) is suitable to measure heat induced changes in the absorption and scattering properties of bovine liver in vitro. The technique may be used to monitor the coagulation dynamics during local thermo-coagulation in vivo. Copyright 2005 Wiley-Liss, Inc.

  16. Near-infrared reflectance spectroscopy (NIRS) for rapid determination of ginsenoside Rg1 and Re in Chinese patent medicine Naosaitong pill

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qu, Zhengyi; Wang, Yingping; Yao, Chunlin; Bai, Xueyuan; Bian, Shuai; Zhao, Bing

    2015-03-01

    Ginsenosides in plant samples have been extensively studied because protopanaxadiol saponins are ubiquitous in Chinese patent medicines, in which they can be used in promoting human health as the main active ingredients. A method for rapid determination of two ginsenosides (Rg1 and Re) in Naosaitong (NST) samples using near-infrared reflectance spectroscopy (NIRS) is studied to determine the contents of ginsenoside Rg1 and Re in this work. Partial least square (PLS) regression was used for building the calibration models, and the effects of spectral preprocessing and variable selection on the models are investigated for optimization of the models. A total of 93 samples were scanned by NIRS, and also by high performance liquid chromatography coupled to a diode array detector to determine the contents of ginsenoside Rg1 and Re. The calibration models for Rg1 and Re had high values of the coefficient of determination (R2) (0.9766 and 0.9764) and low root mean square error of cross validation (RMSECV) (0.0136 and 0.0104), and the values of the standard error of prediction set (SEP) are 0.00764 and 0.0103, which indicate a good correlation between reference values and NIRS predicted values. The overall results show that NIRS could be applied for the rapid determination of the contents of ginsenosides in Ginseng byproducts for pharmaceuticals that develop high-quality Chinese patent medicines.

  17. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance fourier transform-infrared spectroscopy.

    PubMed

    Pappas, Christos; Kyraleou, Maria; Voskidi, Eleni; Kotseridis, Yorgos; Taranilis, Petros A; Kallithraka, Stamatina

    2015-02-01

    The direct and simultaneous quantitative determination of the mean degree of polymerization (mDP) and the degree of galloylation (%G) in grape seeds were quantified using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares (PLS). The results were compared with those obtained using the conventional analysis employing phloroglucinolysis as pretreatment followed by high performance liquid chromatography-UV and mass spectrometry detection. Infrared spectra were recorded in solid state samples after freeze drying. The 2nd derivative of the 1832 to 1416 and 918 to 739 cm(-1) spectral regions for the quantification of mDP, the 2nd derivative of the 1813 to 607 cm(-1) spectral region for the degree of %G determination and PLS regression were used. The determination coefficients (R(2) ) of mDP and %G were 0.99 and 0.98, respectively. The corresponding values of the root-mean-square error of calibration were found 0.506 and 0.692, the root-mean-square error of cross validation 0.811 and 0.921, and the root-mean-square error of prediction 0.612 and 0.801. The proposed method in comparison with the conventional method is simpler, less time consuming, more economical, and requires reduced quantities of chemical reagents and fewer sample pretreatment steps. It could be a starting point for the design of more specific models according to the requirements of the wineries. © 2015 Institute of Food Technologists®

  18. Near-infrared reflectance spectroscopy calibrations for assessment of oil, phenols, glucosinolates and fatty acid content in the intact seeds of oilseed Brassica species.

    PubMed

    Sen, Rahul; Sharma, Sanjula; Kaur, Gurpreet; Banga, Surinder S

    2018-01-31

    Very few near-infrared reflectance spectroscopy (NIRS) calibration models are available for non-destructive estimation of seed quality traits in Brassica juncea. Those that are available also fail to adequately discern variation for oleic acid (C 18:1 ) , linolenic (C 18:3 ) fatty acids, meal glucosinolates and phenols. We report the development of a new NIRS calibration equation that is expected to fill the gaps in the existing NIRS equations. Calibrations were based on the reference values of important quality traits estimated from a purposely selected germplasm set comprising 240 genotypes of B. juncea and 193 of B. napus. We were able to develop optimal NIRS-based calibration models for oil, phenols, glucosinolates, oleic acid, linoleic acid and erucic acid for B. juncea and B. napus. Correlation coefficients (RSQ) of the external validations appeared greater than 0.7 for the majority of traits, such as oil (0.766, 0.865), phenols (0.821, 0.915), glucosinolates (0.951, 0.986), oleic acid (0.814. 0.810), linoleic acid (0.974, 0.781) and erucic acid (0.963, 0.943) for B. juncea and B. napus, respectively. The results demonstrate the robust predictive power of the developed calibration models for rapid estimation of many quality traits in intact rapeseed-mustard seeds which will assist plant breeders in effective screening and selection of lines in quality improvement breeding programmes. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Energy-absorption spectroscopy of unitary Fermi gases in a uniform potential

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Yu, Zhenhua

    2018-04-01

    We propose to use the energy absorption spectroscopy to measure the kinetic coefficients of unitary Fermi gases in a uniform potential. We show that, in our scheme, the energy absorption spectrum is proportional to the dynamic structure factor of the system. The profile of the spectrum depends on the shear viscosity η , the thermal conductivity κ , and the superfluid bulk viscosity ξ3. We show that extraction of these coefficients from the spectrum is achievable in present experiments.

  20. BOREAS TE-9 In Situ Understory Spectral Reflectance Within the NSA

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Supronowicz, Jan; Edwards, Geoffrey; Viau, Alain; Thomson, Keith

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. Spectral reflection coefficients of the forest understory at the ground level, in three boreal forest sites of Northern Manitoba (56 N latitude and 98 W longitude), were obtained and analyzed in 1994. In particular, angular variation of the reflection coefficients in the old jack pine and young jack pine forests, as well as nadir reflection coefficient in the young aspen forest, were investigated. The complexity of understory composition and the light patterns limited quantitative conclusions; however, a number of interesting trends in the behavior of the measured values can be inferred. In particular, the unique spectral profiles of lichens show very strongly in the old jack pine understory, yet are definitely less conspicuous for young jack pine, and virtually absent in the aspen forest. The angular variation of the reflection coefficient by the young pine understory seems to be significantly toned down by fine-structured branches and their shadows. Our study also indicates how difficult the ground reflection coefficient problem in a forest is, compared to certain previously investigated areas that have a more uniform appearance, such as prairie grassland, bare soil, or agricultural crops. This is due to several factors, generally typical of a forest environment, that may influence the overall understory reflection coefficient, including: (1) a strong diversity of the forest floor due to the presence of dead tree trunks, holes in the ground, patches of different types of vegetation or litter, etc.; (2) pronounced 3-D structures at the ground level, such as shrubs, bushes, and young trees; and (3) an irregular shadow mosaic, which not only varies with the time of the day, causing intensity variations, but likely also effectively modifies the spectrum of the illuminating light and hence the reflection coefficient signal as well The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer

    NASA Astrophysics Data System (ADS)

    Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun

    2015-10-01

    Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.

  2. Stationary spectroscopy of biotissues in vivo: Fluorescent studies of some pathological states

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Medzhidov, R. T.

    2003-11-01

    The stationary spectra of autofluorescence, along with the reflection coefficient at the wavelength of excitation, are measured in vivo for some stomach tissues in the case of different pathological states (dysplasia, superficial gastritis, and cancer) using a nitrogen laser as the source of excitation (λrad=337.1 nm). The fluorescence spectra obtained are decomposed into Gaussian-Lorentzian components. It is found that, in development of dysplasia and tumor processes, at least seven groups of fluorophores can be distinguished that form the entire emission spectrum. The ratio between the fluorescence intensities of flavins and NAD(P)H is determined and the degree of respiratory activity of cells estimated for the states considered. The quantum yields of fluorescence of the biotissues under investigation are estimated.

  3. Optical pathlengths in dental caries lesions

    NASA Astrophysics Data System (ADS)

    Mujat, Claudia; ten Bosch, Jaap J.; Dogariu, Aristide C.

    2001-04-01

    The average pathlength of light inside dental enamel and incipient lesions is measured and compared, in order to quantitatively confirm the prediction that incipient lesions have higher scattering coefficients that sound enamel. The technique used, called optical pathlength spectroscopy provides experimental access to the pathlength distribution of light inside highly scattering samples. This is desirable for complex biological materials, where current theoretical models are very difficult to apply. To minimize the effects of surface reflections the average pathlength is measured in wet sound enamel and white spots. We obtain values of 367 micrometers and 272 micrometers average pathlength for sound enamel and white spots respectively. We also investigate the differences between open and subsurface lesions, by measuring the change in the pathlength distribution of light as they go from dry to wet.

  4. Modeling liquid organic thin films on substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.

    We present the rationale, methods, and results of modeling of thin film organic liquids on various substrates. These liquids may coat surfaces (substrates) either as a result of their production, dispersal via aerosols or spills. Identification of unknown coated surfaces using either reflectance or emittance spectroscopy cannot be accomplished simply through reference to reflectance signature libraries since neither the thickness of the liquid layer nor the substrate type is known beforehand and both contribute to the signature. Liquid spectral libraries offer the complex index of refraction (n,k) as a function of wavelength which by itself is useful only for thickmore » (bulk) liquid layers via computation of reflectance and transmittance coefficients using the Fresnel equations. Thin liquid layers both reflect and refract incident light in combination with reflectance from the substrate. We show modeling of various organic liquids on substrates using commercial thin film design and modeling software, as well as Monte Carlo ray tracing software to demonstrate the variety of potential signatures encountered that depend on the thickness of the liquid layer as well as the characteristics of the substrate (metal or dielectric). These substrates give rise to transflectance behavior, while many dielectric substrates have rich absorption features that provide complex signatures that combine attributes of both the liquid and the substrate. Knowledge of the complex index of refraction of both target liquids and substrates is essential in order to synthesize spectra necessary in the application of target identification algorithms.« less

  5. Ultrasonic measurements of the reflection coefficient at a water/polyurethane foam interface.

    PubMed

    Sagers, Jason D; Haberman, Michael R; Wilson, Preston S

    2013-09-01

    Measured ultrasonic reflection coefficients as a function of normal incidence angle are reported for several samples of polyurethane foam submerged in a water bath. Three reflection coefficient models are employed as needed in this analysis to approximate the measured data: (1) an infinite plane wave impinging on an elastic halfspace, (2) an infinite plane wave impinging on a single fluid layer overlying a fluid halfspace, and (3) a finite acoustic beam impinging on an elastic halfspace. The compressional wave speed in each sample is calculated by minimizing the sum of squared error (SSE) between the measured and modeled data.

  6. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.

    2016-05-01

    Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.

  7. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  8. A study of muscular tissue of animal origin by reflection-spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Plotnikova, L. V.; Nechiporenko, A. P.; Orekhova, S. M.; Plotnikov, P. P.; Ishevskii, A. L.

    2017-06-01

    A comparative analysis of the spectral characteristics of the surface of muscular tissue of animal origin (pork) and its main components has been performed by the methods of diffuse reflection electronic spectroscopy (DRES) and frustrated total internal reflection IR spectroscopy. The experiments have shown that the application of the DRES method makes it possible to detect more pronounced changes in the surface optical characteristics of muscular tissue and obtain electronic spectra containing information about the component composition of its main parts under successive extraction of sarcoplasmic materials, myofibrillar proteins of the actomyosin complex, and stroma mucopolysaccharides.

  9. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise ofmore » an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.« less

  10. Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage.

    PubMed

    Couture, John J; Serbin, Shawn P; Townsend, Philip A

    2013-04-01

    An ecological consequence of plant-herbivore interactions is the phytochemical induction of defenses in response to insect damage. Here, we used reflectance spectroscopy to characterize the foliar induction profile of cardenolides in Asclepias syriaca in response to damage, tracked in vivo changes and examined the influence of multiple plant traits on cardenolide concentrations. Foliar cardenolide concentrations were measured at specific time points following damage to capture their induction profile. Partial least-squares regression (PLSR) modeling was employed to calibrate cardenolide concentrations to reflectance spectroscopy. In addition, subsets of plants were either repeatedly sampled to track in vivo changes or modified to reduce latex flow to damaged areas. Cardenolide concentrations and the induction profile of A. syriaca were well predicted using models derived from reflectance spectroscopy, and this held true for repeatedly sampled plants. Correlations between cardenolides and other foliar-related variables were weak or not significant. Plant modification for latex reduction inhibited an induced cardenolide response. Our findings show that reflectance spectroscopy can characterize rapid phytochemical changes in vivo. We used reflectance spectroscopy to identify the mechanisms behind the production of plant secondary metabolites, simultaneously characterizing multiple foliar constituents. In this case, cardenolide induction appears to be largely driven by enhanced latex delivery to leaves following damage. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Detecting seismic anisotropy across the 410 km discontinuity through polarity and amplitude variations of the underside reflections

    NASA Astrophysics Data System (ADS)

    Saki, Morvarid; Thomas, Christine; Merkel, Sebastien; Wookey, James

    2017-04-01

    We investigate the effect of various types of deformation mechanisms on the reflection coefficients of P and S waves underside reflections off the 410 km discontinuity, to find a diagnostic tool to detect the style of deformation at boundary layers. We calculate the reflection coefficient for P and SH underside reflections depending on the variation in velocity perturbations across the 410 km discontinuity for two deformation scenarios, compression and shear for different azimuths and angles of incidence at the interface. The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint effect of angle of incidence and the strength of imposed deformation, without any polarity reversal and for all deformation styles. For the SH wave underside reflections a more complicated behaviour is visible: In compressional deformation, a polarity reversal occurs at distances depending on the incidence angle and the intensity of applied deformation without any azimuthal dependency. However, for shear geometry the azimuth to the direction of deformation appears as an important factor which strongly affects the incidence angle at which the polarity reversal of the reflected S wave occurs. These differences in amplitude and polarity patterns of reflection coefficients of different deformation geometries, especially for S wave at shorter distances allow to detect the style of deformation mechanisms at a boundary layer.

  12. Using mid-Infrared External Reflectance Spectroscopy to Distinguish Between Different Commercially Produced Poly[Methyl MethAcrylate] (PMMA) Samples - A Null Result

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario; Neel, Christopher; Lacina, David

    2017-06-01

    We report (null) results of experiments testing the hypothesis that mid-infrared (mid-IR) spectroscopy can be used to distinguish samples of poly[methyl methacrylate] (PMMA) obtained from different commercial suppliers. This work was motivated by the desire for a simple non-destructive and non-invasive test for pre-sorting PMMA samples prior to use in shock and high-strain-rate experiments, where PMMA is commonly used as a standard material. We discuss: our choice of mid-IR external reflectance spectroscopy, our approach to recording reflectance spectra at near-normal (θ = 0 + / - 5 degree) incidence and for extracting the wavelength-weighted absorption spectrum from the raw reflectance data via a Kramers-Krönig analysis. We employ extensive signal, which necessitates adopting a special experimental protocol to mitigate the effects of instrumental drift. Finally, we report spectra of three PMMA samples with different commercial pedigrees, and show that they are virtually identical (+ / - 1 % error, 95% confidence); obviating the use of mid-IR reflectance spectroscopy to tell the samples apart.

  13. Modeling of photon migration in the human lung using a finite volume solver

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew; Furmanczyk, Michal; Przekwas, Andrzej J.

    2006-02-01

    The application of the frequency domain and steady-state diffusive optical spectroscopy (DOS) and steady-state near infrared spectroscopy (NIRS) to diagnosis of the human lung injury challenges many elements of these techniques. These include the DOS/NIRS instrument performance and accurate models of light transport in heterogeneous thorax tissue. The thorax tissue not only consists of different media (e.g. chest wall with ribs, lungs) but its optical properties also vary with time due to respiration and changes in thorax geometry with contusion (e.g. pneumothorax or hemothorax). This paper presents a finite volume solver developed to model photon migration in the diffusion approximation in heterogeneous complex 3D tissues. The code applies boundary conditions that account for Fresnel reflections. We propose an effective diffusion coefficient for the void volumes (pneumothorax) based on the assumption of the Lambertian diffusion of photons entering the pleural cavity and accounting for the local pleural cavity thickness. The code has been validated using the MCML Monte Carlo code as a benchmark. The code environment enables a semi-automatic preparation of 3D computational geometry from medical images and its rapid automatic meshing. We present the application of the code to analysis/optimization of the hybrid DOS/NIRS/ultrasound technique in which ultrasound provides data on the localization of thorax tissue boundaries. The code effectiveness (3D complex case computation takes 1 second) enables its use to quantitatively relate detected light signal to absorption and reduced scattering coefficients that are indicators of the pulmonary physiologic state (hemoglobin concentration and oxygenation).

  14. A Point-of-Care Raman Spectroscopy-Based Device for the Diagnosis of Gout and Pseudogout: Comparison With the Clinical Standard Microscopy.

    PubMed

    Li, Bolan; Singer, Nora G; Yeni, Yener N; Haggins, Donard G; Barnboym, Emma; Oravec, Daniel; Lewis, Steven; Akkus, Ozan

    2016-07-01

    To demonstrate the usefulness of a novel medical device based on Raman spectroscopy for the rapid point-of-care diagnosis of gout and pseudogout. A shoebox-sized point-of-care Raman spectroscopy (POCRS) device was developed for use in the diagnosis of gout and pseudogout. The device included a disposable syringe microfiltration kit to collect arthropathic crystals from synovial fluid and a customized automated Raman spectroscopy system to chemically identify crystal species. Diagnosis according to the findings of POCRS was compared with the clinical standard diagnosis based on compensated polarized light microscopy (CPLM) of synovial fluid aspirates collected from symptomatic patients (n = 174). Kappa coefficients were used to measure the agreement between POCRS and CPLM findings. Overall, POCRS and CPLM results were consistent in 89.7% of samples (156 of 174). For the diagnosis of gout, the kappa coefficient for POCRS and CPLM was 0.84 (95% confidence interval [95% CI] 0.75-0.94). For the diagnosis of pseudogout, the kappa coefficient for POCRS and CPLM was 0.61 (95% CI 0.42-0.81). Kappa coefficients indicated that there was excellent agreement between POCRS and CPLM for the diagnosis of gout, with good agreement for the diagnosis of pseudogout. The POCRS device holds the potential to standardize and expedite the time to clinical diagnosis of gout and pseudogout, especially in settings where certified operators trained for CPLM analysis are not available. © 2016, American College of Rheumatology.

  15. 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.

    PubMed

    Didenko, Tatiana; Boelens, Rolf; Rüdiger, Stefan G D

    2011-01-01

    The translational diffusion coefficient is a sensitive parameter to probe conformational changes in proteins and protein-protein interactions. Pulsed-field gradient NMR spectroscopy allows one to measure the translational diffusion with high accuracy. Two-dimensional (2D) heteronuclear NMR spectroscopy combined with diffusion-ordered spectroscopy (DOSY) provides improved resolution and therefore selectivity when compared with a conventional 1D readout. Here, we show that a combination of selective isotope labelling, 2D ¹H-¹³C methyl-TROSY (transverse relaxation-optimised spectroscopy) and DOSY allows one to study diffusion properties of large protein complexes. We propose that a 3D DOSY-heteronuclear multiple quantum coherence (HMQC) pulse sequence, that uses the TROSY effect of the HMQC sequence for ¹³C methyl-labelled proteins, is highly suitable for measuring the diffusion coefficient of large proteins. We used the 20 kDa co-chaperone p23 as model system to test this 3D DOSY-TROSY technique under various conditions. We determined the diffusion coefficient of p23 in viscous solutions, mimicking large complexes of up to 200 kDa. We found the experimental data to be in excellent agreement with theoretical predictions. To demonstrate the use for complex formation, we applied this technique to record the formation of a complex of p23 with the molecular chaperone Hsp90, which is around 200 kDa. We anticipate that 3D DOSY-TROSY will be a useful tool to study conformational changes in large protein complexes.

  16. Syntheses, characterization and nonlinear optical properties of sodium-scandium carbonate Na5Sc(CO3)4·2H2O

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Luo, Min; Ye, Ning

    2014-10-01

    A novel nonlinear optical (NLO) material Na5Sc(CO3)4·2H2O has been synthesized under a subcritical hydrothermal condition. The structure is determined by single-crystal X-ray diffraction and further characterized by TG analyses and UV-vis-NIR diffuse reflectance spectrum. It crystallizes in the tetragonal space group P-421c, with a = b = 7.4622(6) Å, C = 11.5928(15) Å. The Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that Na5Sc(CO3)4·2H2O was a phase-matchable material, and its measured SHG coefficient was about 1.8 times as large as that of d36 (KDP). The results from the UV-vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges of Na5Sc(CO3)4·2H2O is about 220 nm, suggesting that this crystal is a promising UV nonlinear optical (NLO) materials.

  17. Optical properties of PVA capped nanocrystalline Cd1-xZnxS thin film synthesized by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Gogoi, Lipika; Chaliha, Sumbit; Saikia, Prasanta Kumar

    2018-04-01

    A simple cost effective Chemical Bath Deposition (CBD) technique has been employed for the preparation of nanocrystalline Cd1-xZnxS thin films in an alkaline medium at 333K for 120 minutes in polymer matrix. Optical parameters such as transmittance, optical band gap, reflectance, refractive index and extinction coefficient of the films was made using UV-Visible spectrophotometer. UV-spectroscopy study shows a good transmittance of 80-88% in visible wavelength region for the deposited films. The direct band gap energy (Eg) for the deposited films ranged from 3.5 to 3.7 eV depending on attribution of Zn into CdS. It shows a blue shift with respect to bulk value. A increase in transmittance and band gap is found with the increase of volume of Zn content. Cd1-xZnxS thin films exhibit the least reflectance for all the wavelengths in the visible region. The refractive indices (n) of the Cd1-xZnxS films were found in the range 1.38 to 2.94 in the visible region.

  18. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  19. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.

    PubMed

    Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A

    2014-08-20

    We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.

  20. Environmentally Controlled Infrared Spectroscopy System for Fundamental Studies of Polymer Electrolyte Membranes

    DTIC Science & Technology

    2015-10-15

    to state-of- hydration . Polarization modulated infrared reflection- absorption spectroscopy experiments are enabled by the use of a spin-coater to coat...NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SPEEK, Nafion, Ionomers, state-of- hydration ...enabled correlation of the exchange site structure to state-of- hydration . Polarization modulated infrared reflection-absorption spectroscopy experiments

  1. X-ray photoelectron spectroscopy and friction studies of nickel-zinc and manganese-zinc ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron spectroscopy analysis and sliding friction experiments were conducted with hot-pressed, polycrystalline Ni-Zn and Mn-Zn ferrites in sliding contact with various transition metals at room temperature in a vacuum of 30 nPa. The results indicate that the coefficients of friction for Ni-Zn and Mn-Zn ferrites in contact with metals are related to the relative chemical activity in these metals: the more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites correlate with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite surfaces increases the coefficients of friction for the Ni-Zn and Mn-Zn ferrite-metal interfaces.

  2. Monitoring Cartilage Tissue Engineering Using Magnetic Resonance Spectroscopy, Imaging, and Elastography

    PubMed Central

    Klatt, Dieter; Magin, Richard L.

    2013-01-01

    A key technical challenge in cartilage tissue engineering is the development of a noninvasive method for monitoring the composition, structure, and function of the tissue at different growth stages. Due to its noninvasive, three-dimensional imaging capabilities and the breadth of available contrast mechanisms, magnetic resonance imaging (MRI) techniques can be expected to play a leading role in assessing engineered cartilage. In this review, we describe the new MR-based tools (spectroscopy, imaging, and elastography) that can provide quantitative biomarkers for cartilage tissue development both in vitro and in vivo. Magnetic resonance spectroscopy can identify the changing molecular structure and alternations in the conformation of major macromolecules (collagen and proteoglycans) using parameters such as chemical shift, relaxation rates, and magnetic spin couplings. MRI provides high-resolution images whose contrast reflects developing tissue microstructure and porosity through changes in local relaxation times and the apparent diffusion coefficient. Magnetic resonance elastography uses low-frequency mechanical vibrations in conjunction with MRI to measure soft tissue mechanical properties (shear modulus and viscosity). When combined, these three techniques provide a noninvasive, multiscale window for characterizing cartilage tissue growth at all stages of tissue development, from the initial cell seeding of scaffolds to the development of the extracellular matrix during construct incubation, and finally, to the postimplantation assessment of tissue integration in animals and patients. PMID:23574498

  3. Near infra red spectroscopy as a multivariate process analytical tool for predicting pharmaceutical co-crystal concentration.

    PubMed

    Wood, Clive; Alwati, Abdolati; Halsey, Sheelagh; Gough, Tim; Brown, Elaine; Kelly, Adrian; Paradkar, Anant

    2016-09-10

    The use of near infra red spectroscopy to predict the concentration of two pharmaceutical co-crystals; 1:1 ibuprofen-nicotinamide (IBU-NIC) and 1:1 carbamazepine-nicotinamide (CBZ-NIC) has been evaluated. A partial least squares (PLS) regression model was developed for both co-crystal pairs using sets of standard samples to create calibration and validation data sets with which to build and validate the models. Parameters such as the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and correlation coefficient were used to assess the accuracy and linearity of the models. Accurate PLS regression models were created for both co-crystal pairs which can be used to predict the co-crystal concentration in a powder mixture of the co-crystal and the active pharmaceutical ingredient (API). The IBU-NIC model had smaller errors than the CBZ-NIC model, possibly due to the complex CBZ-NIC spectra which could reflect the different arrangement of hydrogen bonding associated with the co-crystal compared to the IBU-NIC co-crystal. These results suggest that NIR spectroscopy can be used as a PAT tool during a variety of pharmaceutical co-crystal manufacturing methods and the presented data will facilitate future offline and in-line NIR studies involving pharmaceutical co-crystals. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A Phantom Study of Terahertz Spectroscopy and Imaging of Micro- and Nano-diamonds and Nano-onions as Contrast Agents for Breast Cancer.

    PubMed

    Bowman, Tyler; Walter, Alec; Shenderova, Olga; Nunn, Nicholas; McGuire, Gary; El-Shenawee, Magda

    2017-10-01

    THz imaging is effective in distinguishing between cancerous, healthy, and fatty tissues in breast tumors, but a challenge remains in the contrast between cancerous and fibroglandular (healthy) tissues. This work investigates carbon-based nanoparticles as potential contrast agents for terahertz imaging of breast cancer. Microdiamonds, nanodiamonds, and nanometer-scale onion-like carbon are characterized with terahertz transmission spectroscopy in low-absorption backgrounds of polydimethylsiloxane or polyethylene. The refractive index and absorption coefficients are calculated based on the measured electric fields. Nanodiamonds show little effect on the terahertz signal, microdiamonds express resonance-like, size-dependent absorption peaks, and onion-like carbon provides a uniform increase in the optical properties even at low concentration. Due to its strong interaction with terahertz frequencies and ability to be activated for selective binding to cancer cells, onion-like carbon is implemented into engineered three-dimensional breast tumor models composed of phantom tissue mimicking infiltrating ductal carcinoma surrounded by a phantom mimicking healthy fibroglandular tissue. This model is imaged using the terahertz reflection mode to examine the effectiveness of contrast agents for differentiation between the two tissue types. In both spectroscopy and imaging, a 10% concentration of onion-like carbon shows the strongest impact on the terahertz signal and holds promise as a terahertz contrast agent.

  5. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.

  6. Spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-10-01

    Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.

  7. Model for the ultrasound reflection from micro-beads and cells distributed in layers on a uniform surface

    NASA Astrophysics Data System (ADS)

    Couture, O.; Cherin, E.; Foster, F. S.

    2007-07-01

    A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.

  8. A Computer Aided Broad Band Impedance Matching Technique Using a Comparison Reflectometer. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gordy, R. S.

    1972-01-01

    An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.

  9. Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications.

    PubMed

    Anoshkin, Ilya V; Campion, James; Lioubtchenko, Dmitri V; Oberhammer, Joachim

    2018-06-13

    A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 °C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 °C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.

  10. The remote sensing of mental stress from the electromagnetic reflection coefficient of human skin in the sub-THz range.

    PubMed

    Safrai, Eli; Ishai, Paul Ben; Caduff, Andreas; Puzenko, Alexander; Polsman, Alexander; Agranat, Aharon J; Feldman, Yuri

    2012-07-01

    Recent work has demonstrated that the reflection coefficient of human skin in the frequency range from 95 to 110 GHz (W band) mirrors the temporal relaxation of stress induced by physical exercise. In this work, we extend these findings to show that in the event of a subtle trigger to stress, such as mental activity, a similar picture of response emerges. Furthermore, the findings are extended to cover not only the W band (75-110 GHz), but also the frequency band from 110 to 170 GHz (D band). We demonstrate that mental stress, induced by the Stroop effect and recorded by the galvanic skin response (GSR), can be correlated to the reflection coefficient in the aforementioned frequency bands. Intriguingly, a light physical stress caused by repeated hand gripping clearly showed an elevated stress level in the GSR signal, but was largely unnoted in the reflection coefficient in the D band. The implication of this observation requires further validation. Copyright © 2011 Wiley Periodicals, Inc.

  11. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  12. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE PAGES

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; ...

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  13. Techniques for estimating Space Station aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Thomas, Richard E.

    1993-01-01

    A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.

  14. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    PubMed

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  15. Field, coil, and echo-time influence on sensitivity and reproducibility of brain proton MR spectroscopy.

    PubMed

    Inglese, M; Spindler, M; Babb, J S; Sunenshine, P; Law, M; Gonen, O

    2006-03-01

    Clinical MR imaging scanners now offer many choices of hardware configurations that were not available in the first 25 years of their existence. Our goal was to assess the influence of coil technology, magnetic field strength, and echo time (TE) on the sensitivity, reflected by the signal intensity-to-noise-ratio (SNR) and reproducibility of proton MR spectroscopy (1H-MR spectroscopy). The SNR, the intersubject reproducibility, and the intrasubject reproducibility of N-acetylaspartate (NAA), creatine (Cr), and choline (Cho) levels were compared at the common TEs of 30, 144, and 288 ms, by using 1H-MR spectroscopy in 6 volunteers at (1) 3T with a single-element quadrature (SEQ); (2) 1.5T with SEQ; and (3) 1.5T with a 12-channel phased-array (PA) head coil. In terms of sensitivity, the best SNR for all metabolites was obtained at the shortest TE (30 ms). It was comparable between the 3 and 1.5T with the PA, but approximately 35% better than the 1.5T with SEQ. This SNR difference declined <25% at TE of 144 ms and to equity among all imagers at TE of 288 ms. Reproducibility, reflected in the coefficient of variation (CV), was best for NAA at TE of 288 ms, 15%-50% better than at TE of 30 ms in either gray (GM) or white matter (WM). The CV for Cr was best, at TE of 288 ms for GM, but its WM results were independent of TE. Metabolite level reproducibility did not depend on coil technology or magnetic field strength. For the same coil type, the SNR of all major metabolites was approximately 35% better at 3T than at 1.5T. This advantage, however, was offset at 1.5T with a PA coil, making it a cost-effective upgrade for existing scanners. Surprisingly and counterintuitively, despite the lowest SNR, the best reproducibility was obtained at the longest TE (288 ms), regardless of field or coil.

  16. Isobaric Inert Gas Counterdiffusion,

    DTIC Science & Technology

    1982-11-01

    solubility coefficient . Helium is 0.006 and nitrogen is about 0.012. Q. Are those lipid solubilities? A. Those are aqueous . Here is theN 2 into helium...was aqueous rather than fat. We did:’t, worry about solubility coefficients , either -- if they play a part, it will only be to make bubbles come more...reflection coefficient , sometimes interpreted as the fraction of the solute molecules which are reflected upon striking the barrier. Assuming that tissue

  17. Effect of surface deposits on electromagnetic waves propagating in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1990-01-01

    A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  18. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants

    NASA Astrophysics Data System (ADS)

    Shi, Tiezhu; Wang, Junjie; Chen, Yiyun; Wu, Guofeng

    2016-10-01

    Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350-2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg-1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg-1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg-1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and 2290 nm, leaf spectral bands near 700, 890 and 900 nm in PLSR models were important wavelengths for soil arsenic prediction. Moreover, soil arsenic showed significantly positive correlations with soil organic matter (r = 0.62, p < 0.01) and leaf arsenic (r = 0.77, p < 0.01), and a significantly negative correlation with leaf chlorophyll (r = -0.67, p < 0.01). The results showed that the prediction of arsenic contents using soil and leaf spectra may be based on their relationships with soil organic matter and leaf chlorophyll contents, respectively. Although RPD of 1.47 was below the recommended RPD of >2 for soil analysis, arsenic prediction in agricultural soils can be improved by combining the leaf and soil spectra.

  19. [Near infrared reflectance spectroscopy (NIRS): a novel approach to reconstructing historical changes of primary productivity in Antarctic lake].

    PubMed

    Chen, Qian-Qian; Liu, Xiao-Dong; Liu, Wen-Qi; Jiang, Shan

    2011-10-01

    Compared with traditional chemical analysis methods, reflectance spectroscopy has the advantages of speed, minimal or no sample preparation, non-destruction, and low cost. In order to explore the potential application of spectroscopy technology in the paleolimnological study on Antarctic lakes, we took a lake sediment core in Mochou Lake at Zhongshan Station of Antarctic, and analyzed the near infrared reflectance spectroscopy (NIRS) data in the sedimentary samples. The results showed that the factor loadings of principal component analysis (PCA) displayed very similar depth-profile change pattern with the S2 index, a reliable proxy for the change in historical lake primary productivity. The correlation analysis showed that the values of PCA factor loading and S2 were correlated significantly, suggesting that it is feasible to infer paleoproductivity changes recorded in Antarctic lakes using NIRS technology. Compared to the traditional method of the trough area between 650 and 700 nm, the authors found that the PCA statistical approach was more accurate for reconstructing the change in historical lake primary productivity. The results reported here demonstrate that reflectance spectroscopy can provide a rapid method for the reconstruction of lake palaeoenviro nmental change in the remote Antarctic regions.

  20. Measuring the complex optical conductivity of graphene by Fabry-Pérot reflectance spectroscopy [Determination of the optical index for few-layer graphene by reflectivity spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito

    Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less

  1. Measuring the complex optical conductivity of graphene by Fabry-Pérot reflectance spectroscopy [Determination of the optical index for few-layer graphene by reflectivity spectroscopy

    DOE PAGES

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; ...

    2016-09-29

    Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less

  2. Photochemical degradation of polymeric coatings on mirrors as studied in situ using FT-IR reflection-absorbance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, J.D.; Schissel, P.; Czanderna, A.W.

    1981-12-01

    Reflection-absorbance spectroscopy has been used to obtain analytical information on samples of polymer/metal multilayer stacks subjected to degradative factors. The capabilities of the apparatus are summarized and representative data from initial studies are presented. (LEW)

  3. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  4. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  5. Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy.

    PubMed

    Reiss, Stephan; Sperlich, K; Hovakimyan, M; Martius, P; Guthoff, R F; Stolz, H; Stachs, O

    2012-08-01

    Use of Brillouin spectroscopy in ophthalmology enables noninvasive, spatially resolved determination of the rheological properties of crystalline lens tissue. Furthermore, the Brillouin shift correlates with the protein concentration inside the lens. In vitro measurements on extracted porcine lenses demonstrate that results obtained with Brillouin spectroscopy depend strongly on time after death. The intensity of the Brillouin signal decreases significantly as early as 5 h postmortem. Moreover, the fluctuation of the Brillouin frequency shift inside the lens increases with postmortem time. Images of lens tissue taken with a confocal reflectance microscope between measurements reveal a degenerative aging process. These tissue changes correlate with our results from Brillouin spectroscopy. It is concluded that only in vivo measurements appropriately reflect the rheological properties of the eye lens and its protein concentration.

  6. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  7. Seismic Rheological Model and Reflection Coefficients of the Brittle-Ductile Transition

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Poletto, Flavio

    2013-12-01

    It is well established that the upper—cooler—part of the crust is brittle, while deeper zones present ductile behaviour. In some cases, this brittle-ductile transition is a single seismic reflector with an associated reflection coefficient. We first develop a stress-strain relation including the effects of crust anisotropy, seismic attenuation and ductility in which deformation takes place by shear plastic flow. Viscoelastic anisotropy is based on the eigenstrain model and the Zener and Burgers mechanical models are used to model the effects of seismic attenuation, velocity dispersion, and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the reflection and transmission coefficients of a single brittle-ductile interface and of a ductile thin layer. The PP scattering coefficient has a Brewster angle (a sign change) in both cases, and there is substantial PS conversion at intermediate angles. The PP coefficient is sensitive to the layer thickness, unlike the SS coefficient. Thick layers have a well-defined Brewster angle and show higher reflection amplitudes. Finally, we compute synthetic seismograms in a homogeneous medium as a function of temperature.

  8. Performance of a Wideband Cadmium Ferrite Microstrip Patch Antenna in the X-Band Region

    NASA Astrophysics Data System (ADS)

    Bhongale, S. R.; Ingavale, H. R.; Shinde, T. J.; Vasambekar, P. N.

    2018-01-01

    Magnesium-substituted cadmium ferrites with the chemical composition Mg x Cd1- x Fe2O4 ( x = 0, 0.4 and 0.8) were prepared by an oxalate co-precipitation method under microwave sintering technique. The structural properties of ferrites were studied by x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope techniques. The scattering parameters such as reflection coefficient ( S 11) and transmission coefficient ( S 21) at microwave frequencies of palletized ferrites were measured by using a vector network analyzer. The software module 85071E followed by scattering parameters was used to determine the electromagnetic properties of the ferrites. The values determined for electromagnetic parameters such as the real part of permittivity ( ɛ'), permeability ( μ'), dielectric loss tangent (tan δ e) and magnetic loss tangent (tan δ m) of synthesized ferrites were used to design rectangular microstrip patch antennas. The performance of magnesium-substituted Cd ferrites as substrate for microstrip patch antennas was investigated. The antenna parameters such as return loss, bandwidth, voltage standing wave ratio, Smith chart and radiation pattern were studied. It is found that the Cd ferrite has applicability as a substrate for wideband antennas in the X-band region.

  9. A DAQ-Device-Based Continuous Wave Near-Infrared Spectroscopy System for Measuring Human Functional Brain Activity

    PubMed Central

    Li, Xiaoli; Liu, Xiaomin

    2014-01-01

    In the last two decades, functional near-infrared spectroscopy (fNIRS) is getting more and more popular as a neuroimaging technique. The fNIRS instrument can be used to measure local hemodynamic response, which indirectly reflects the functional neural activities in human brain. In this study, an easily implemented way to establish DAQ-device-based fNIRS system was proposed. Basic instrumentation components (light sources driving, signal conditioning, sensors, and optical fiber) of the fNIRS system were described. The digital in-phase and quadrature demodulation method was applied in LabVIEW software to distinguish light sources from different emitters. The effectiveness of the custom-made system was verified by simultaneous measurement with a commercial instrument ETG-4000 during Valsalva maneuver experiment. The light intensity data acquired from two systems were highly correlated for lower wavelength (Pearson's correlation coefficient r = 0.92, P < 0.01) and higher wavelength (r = 0.84, P < 0.01). Further, another mental arithmetic experiment was implemented to detect neural activation in the prefrontal cortex. For 9 participants, significant cerebral activation was detected in 6 subjects (P < 0.05) for oxyhemoglobin and in 8 subjects (P < 0.01) for deoxyhemoglobin. PMID:25180044

  10. Detection of aflatoxin M1 in milk using spectroscopy and multivariate analyses.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Jaspreet; Borah, Anjan; Ramya, H G

    2018-01-01

    Aflatoxin M1 (AFM1), a potentially carcinogenic compound, is found in milk obtained from animals that consume contaminated feed. Spectra of bovine milk, spiked with AFM1 (0, 0.02, 0.04, 0.06, 0.08 and 0.1μg/l) were acquired using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. Spectra revealed significant differences among pure and AFM1 spiked samples in spectral regions 1800-650cm -1 and 3689-3499cm -1 , which may be attributed to complex chemical structure of AFM1. Principal component analysis (PCA) showed clear clustering of samples (p⩽0.05). The models could successfully classify (>86%) and detect even 0.02μg/l AFM1 in milk (p⩽0.05) using SIMCA. AFM1 was best predicted in wavenumber range of 1800-650cm -1 with coefficient of determination (R 2 ) of 0.99 and 0.98, for calibration and validation, respectively, using partial least square (PLS) regression. The study indicated feasibility of ATR-FTIR spectroscopy and chemometrics in rapid detection and quantification of AFM1 in milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3-PbTiO3 electronic system

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.

    2016-06-01

    A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.

  12. [Rapid determination of componential contents and calorific value of selected agricultural biomass feedstocks using spectroscopic technology].

    PubMed

    Sheng, Kui-Chuan; Shen, Ying-Ying; Yang, Hai-Qing; Wang, Wen-Jin; Luo, Wei-Qiang

    2012-10-01

    Rapid determination of biomass feedstock properties is of value for the production of biomass densification briquetting fuel with high quality. In the present study, visible and near-infrared (Vis-NIR) spectroscopy was employed to build prediction models of componential contents, i. e. moisture, ash, volatile matter and fixed-carbon, and calorific value of three selected species of agricultural biomass feedstock, i. e. pine wood, cedar wood, and cotton stalk. The partial least squares (PLS) cross validation results showed that compared with original reflection spectra, PLS regression models developed for first derivative spectra produced higher prediction accuracy with coefficients of determination (R2) of 0.97, 0.94 and 0.90, and residual prediction deviation (RPD) of 6.57, 4.00 and 3.01 for ash, volatile matter and moisture, respectively. Good prediction accuracy was achieved with R2 of 0.85 and RPD of 2.55 for fixed carbon, and R2 of 0.87 and RPD of 2.73 for calorific value. It is concluded that the Vis-NIR spectroscopy is promising as an alternative of traditional proximate analysis for rapid determination of componential contents and calorific value of agricultural biomass feedstock

  13. Unctuous ZrO2 nanoparticles with improved functional attributes as lubricant additives

    NASA Astrophysics Data System (ADS)

    Espina Casado, Jorge; Fernández González, Alfonso; José del Reguero Huerga, Ángel; Rodríguez-Solla, Humberto; Díaz-García, Marta Elena; Badía-Laíño, Rosana

    2017-12-01

    One of the main drawbacks in the application of metal-oxide nanoparticles as lubricant additives is their poor stability in organic media, despite the good anti-wear, friction-reducing and high-load capacity properties described for these materials. In this work, we present a novel procedure to chemically cap the surface of ZrO2 nanoparticles (ZrO2NPs) with long hydrocarbon chains in order to obtain stable dispersions of ZrO2NPs in non-aqueous media without disrupting their attributes as lubricant additives. C-8, C-10 and C-16 saturated flexible chains were attached to the ZrO2NP surface and their physical and chemical characterization was performed by transmission electron microscopy, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and solid-state nuclear magnetic resonance. The dispersion stability of the modified ZrO2NPs in non-aqueous media was studied using static multiple light scattering. Tribological tests demonstrated that dispersions of the long-chain capped ZrO2NPs in base lubricating oils exhibited low friction coefficients and improved the anti-wear properties of the base oil when compared with the raw lubricating oil.

  14. Characterization of Maize Grains with Different Pigmentation Investigated by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rico Molina, R.; Hernández Aguilar, C.; Dominguez Pacheco, A.; Cruz-Orea, A.; López Bonilla, J. L.

    2014-10-01

    A knowledge of grains' optical parameters is of great relevance in the maize grain technology practice. Such parameters provide information about its absorption and reflectance, which in turn is related to its color. In the dough and tortilla industries, it is important to characterize this attribute of the corn kernel, as it is one of the attributes that directly affects the quality of the food product. Thus, it is important to have techniques that contribute to the characterization of this raw material. It is traditionally characterized by conventional methods, which usually destroy the grain and involve a laborious preparation of material plus they are expensive. The objective of this study was to determine the optical absorption coefficient for maize grains ( Zea mays L.) with different pigmentations by means of photoacoustic spectroscopy (PAS). The genotype A had bluish coloration and genotype B had yellowish coloration. In addition, the photoacoustic signal obtained by two methods was analyzed mathematically: the standard deviation and the first derivative; both results were compared (Fig. 1). In combination with mathematical analysis, PAS may be considered as a potential diagnostic tool for the characterization of the grains. [Figure not available: see fulltext.

  15. Probing near-normally propagating bulk acoustic waves using pseudo-reflection geometry Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Parsons, L. C.; Andrews, G. T.

    2012-09-01

    Pseudo-reflection geometry Brillouin spectroscopy can be used to probe acoustic wave dispersion approximately along the surface normal of a material system while avoiding the difficulties associated with specularly reflected light encountered in an ideal reflection configuration. As an example of its application, we show analytically that it can be used to determine both the refractive index and bulk acoustic mode velocities of optically-isotropic non-metallic materials and confirm the utility of the approach via a series of experiments on fused quartz, gallium phosphide, water, and porous silicon films.

  16. Effect of surface deposits on electromagnetic propagation in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1991-01-01

    A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  17. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Kinzer, R. E.; Cataldo, G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinhart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques program utilizes multiple instruments to provide spectral data over a wide range of temperatures and wavelengths. Experimental methods include Vector Network Analyzer and Fourier transform spectroscopy transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5 to 300 K, across the infrared and millimeter portion of the spectrum (from 2.5 to 10,000/micron or 4000 to 1/cm).

  18. Pressure shift coefficient measurements in an RF discharge for Ar 4s[3/2]2—5p[3/2]3 transition with the help of diodelaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. K.; Mikheyev, P. A.; Lunev, N. N.; Azyazov, V. N.

    2018-04-01

    Optically pumped all-rare-gas laser (OPRGL) with unique properties were recently proposed with a possibility to obtain the laser power on the order of hundreds of Watts from a cubic centimeter. To provide high laser efficiency, the pumping radiation has to match the absorption spectrum of the rare gas metastables. To meet this condition a reliable diagnostics of the key parameters of the active medium is required and knowledge of the broadening and shift coefficients for corresponding transitions of rare gases is necessary. In this paper, the diode-laser absorption spectroscopy was employed to determine the pressure shift coefficient for 811.5 nm Ar line. The value of obtained coefficient in pure argon reduced to 300 K is -(2.1 ± 0.1) × 10-10 s-1cm3. In the course of the study the pressure broadening coefficient was also evaluated and found to be (2.4 ± 0.5) × 10-10 s-1cm3.

  19. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  20. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    NASA Astrophysics Data System (ADS)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  1. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  2. Electromagnetic reflection from multi-layered snow models

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Jiracek, G. R.

    1975-01-01

    The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.

  3. Tumor margin assessment in Mohs surgery using reflectance, fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Hieu T. M.; Moy, Austin J.; Zhang, Yao; Feng, Xu; Reichenberg, Jason S.; Fox, Matthew; Tunnell, James W.

    2017-02-01

    Mohs surgery is the current gold standard to treat large, aggressive or high-risk non-melanoma skin cancer (NMSC) cases. While Mohs surgery is an effective treatment, the procedure is time-consuming and expensive for physicians as well as burdensome for patients as they wait for frozen section histology. Our group has recently demonstrated high diagnostic accuracy using a noninvasive "spectral biopsy" (combination of diffuse reflectance (DRS), fluorescence (FS) and Raman spectroscopy (RS)) to classify NMSC vs. normal lesion in a screening setting of intact tissue. Here, we examine the sensitivity of spectral biopsy to pathology in excised Mohs sections. The system is designed with three modalities integrated into one fiber probe, which is utilized to measure DRS, FS, and RS of freshly excised skin from patients with various NMSC pathologies including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), where each measurement location is correlated to histopathology. The spectral biopsy provides complimentary physiological information including the reduced scattering coefficient, hemoglobin content and oxygen saturation from DRS, NADH and collagen contribution from FS and information regarding multiple proteins and lipids from RS. We then apply logistic regression model to the extracted physiological parameters to classify NMSC vs. normal tissue. The results on the excised tissue are generally consistent with in vivo measurements showing decreased scattering within the tumor and reduced fluorescence. Due to the high sensitivity of RS to lipids, subcutaneous fat often dominates the RS signal. This pilot study demonstrates the potential for a spectral biopsy to classify NMSC vs. normal tissue, indicating the opportunity to guide Mohs excisions.

  4. Infrared Reflectance Spectroscopy of Porous Silicas

    NASA Astrophysics Data System (ADS)

    Guiton, Theresa Anne

    Fourier transform infrared (FTIR) specular reflectance spectroscopy was used to examine the fundamental phonon behavior of a series of porous silicas including porous Vycor, xerogels, aerogels, and colloidal solids. The spectra were deconvoluted using Kramers-Kronig analysis techniques, and the corresponding optical constants were determined via the Fresnel equations. The resulting spectra represent the first compilation of such data for low density silicas. The porous silicas revealed unique resonance modes for the imaginary dielectric function and energy loss function. A key distinction amongst the spectra was the change in the band shape of the antisymmetric Si-O-Si stretching modes. For instance, as the porosity level of the particulate systems increased, the peak maxima of the imaginary dielectric functions shifted to higher frequencies while the peak maxima of the associated energy loss function shifted to lower frequencies. In essence, with increasing porosity, the peak maxima of the imaginary dielectric functions and the energy loss functions were converging towards frequencies intermediate to the transverse optical and longitudinal optical modes of fused silica. A similar trend was not observed for the semi-continuous silica matrices. Maxwell Garnett effective medium modeling verified that these modes were a function of the porous microstructure and can be attributed to surface phonon modes. The effect of surface phonon modes was also evident in the absorption coefficient data. However, contrary to the traditional view that changes in the absorption spectra of porous silicas are strictly due to molecular structure, this study has demonstrated that variations can be attributed--both qualitatively and quantitatively--to electrostatic screening effects of finite particles.

  5. Non-invasive cerebral oxygenation reflects mixed venous oxygen saturation during the varying haemodynamic conditions in patients undergoing transapical transcatheter aortic valve implantation.

    PubMed

    Paarmann, Hauke; Heringlake, Matthias; Heinze, Hermann; Hanke, Thorsten; Sier, Holger; Karsten, Jan; Schön, Julika

    2012-03-01

    Transapical transcatheter aortic valve implantation (TA-TAVI) is increasingly used to treat aortic valve stenosis in high-risk patients. Mixed venous oxygen saturation (SvO(2)) is still the 'gold standard' for the determination of the systemic oxygen delivery to consumption ratio in cardiac surgery patients. Recent data suggest that regional cerebral oxygen saturation (rScO(2)) determined by near-infrared spectroscopy is closely related to SvO(2). The present study compares rScO(2) and SvO(2) in patients undergoing TA-TAVI. n = 20 cardiac surgery patients scheduled for TA-TAVI were enrolled in this prospective observational study. SvO(2) and rScO(2) were determined at predefined time points during the procedure. Correlation and Bland-Altman analysis of the complete data set showed a correlation coefficient of r(2 )= 0.7 between rScO(2) and SvO(2) (P < 0.0001), a mean difference (bias) of 5.8 with limits of agreement (1.96 SD) of -6.8 to 18.3% and a percentage error of 17.5%. At all predefined time points correlation was moderate (r(2 )= 0.50) to close (r = 0.84), and the percentage error was <24%. RScO(2) determined by near-infrared spectroscopy is correlated to SvO(2) during varying haemodynamic conditions in patients undergoing TA-TAVI. This suggests that rScO(2) is reflective not only of the cerebral, but also of the systemic oxygen balance.

  6. Nutritional evaluation of commercial dry dog foods by near infrared reflectance spectroscopy.

    PubMed

    Alomar, D; Hodgkinson, S; Abarzúa, D; Fuchslocher, R; Alvarado, C; Rosales, E

    2006-06-01

    Near infrared reflectance spectroscopy (NIRS) was used to predict the nutritional value of dog foods sold in Chile. Fifty-nine dry foods for adult and growing dogs were collected, ground and scanned across the visible/NIR range and subsequently analysed for dry matter (DM), crude protein (CP), crude fibre (CF), total fat, linoleic acid, gross energy (GE), estimated metabolizable energy (ME) and several amino acids and minerals. Calibration equations were developed by modified partial least squares regression, and tested by cross-validation. Standard error of cross validation (SE(CV)) and coefficient of determination of cross validation (SE(CV)) were used to select best equations. Equations with good predicting accuracy were obtained for DM, CF, CP, GE and fat. Corresponding values for and SE(CV) were 0.96 and 1.7 g/kg, 0.91 and 3.1 g/kg, 0.99 and 5.0 g/kg, 0.93 and 0.26 MJ/kg, 0.89 and 12.4 g/kg. Several amino acids were also well predicted, such as arginine, leucine, isoleucine, phenylalanine-tyrosine (combined), threonine and valine, with values for and SE(CV) (g/kg) of 0.89 and 0.9, 0.94 and 1.3, 0.91 and 0.5, 0.95 and 0.9, 0.91 and 0.5, 0.93 and 0.5. Intermediate values, appropriate for ranking purposes, were obtained for ME, histidine, lysine and methionine-cysteine. Tryptophan, minerals or linoleic acid were not acceptably predicted, irrespective of the mathematical treatment applied. It is concluded that NIR can be successfully used to predict important nutritional characteristics of commercial dog foods.

  7. Properties of seismic absorption induced reflections

    NASA Astrophysics Data System (ADS)

    Zhao, Haixia; Gao, Jinghuai; Peng, Jigen

    2018-05-01

    Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.

  8. An efficient high-frequency analysis of modal reflection and transmission coefficients for a class of waveguide discontinuities

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Altintas, A.

    1988-01-01

    A high-frequency analysis of electromagnetic modal reflection and transmission coefficients is presented for waveguide discontinuities formed by joining different waveguide sections. The analysis uses an extended version of the concept of geometrical theory of diffraction based equivalent edge currents in conjunction with the reciprocity theorem to describe interior scattering effects. If the waveguide modes and their associated modal rays can be found explicitly, general two- and three-dimensional waveguide geometries can be analyzed. Expressions are developed for two-dimensional reflection and transmission coefficients. Numerical results are given for a flanged, semi-infinite parallel plate waveguide and for the junction between two linearly tapered waveguides.

  9. Reflection Coefficients.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  10. Optical spectroscopy for quantitative sensing in human pancreatic tissues

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Chandra, Malavika; Lloyd, William; Chen, Leng-Chun; Scheiman, James; Simeone, Diane; McKenna, Barbara; Mycek, Mary-Ann

    2011-07-01

    Pancreatic adenocarcinoma has a five-year survival rate of only 6%, largely because current diagnostic methods cannot reliably detect the disease in its early stages. Reflectance and fluorescence spectroscopies have the potential to provide quantitative, minimally-invasive means of distinguishing pancreatic adenocarcinoma from normal pancreatic tissue and chronic pancreatitis. The first collection of wavelength-resolved reflectance and fluorescence spectra and time-resolved fluorescence decay curves from human pancreatic tissues was acquired with clinically-compatible instrumentation. Mathematical models of reflectance and fluorescence extracted parameters related to tissue morphology and biochemistry that were statistically significant for distinguishing between pancreatic tissue types. These results suggest that optical spectroscopy has the potential to detect pancreatic disease in a clinical setting.

  11. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  12. Reflectance and Thermal Infrared Spectroscopy of Mars: Relationship Between ISM and TES for Compositional Determinations

    NASA Technical Reports Server (NTRS)

    Boyce, Joseph (Technical Monitor); Mustard, John

    2004-01-01

    Reflectance spectroscopy has demonstrated that high albedo surfaces on Mars contain heavily altered materials with some component of hematite, poorly crystalline ferric oxides, and an undefined silicate matrix. The spectral properties of many low albedo regions indicate crystalline basalts containing both low and high calcium pyroxene, a mineralogy consistent with the basaltic SNC meteorites. The Thermal Emission Spectrometer (TES) experiment on the Mars Geochemical Surveyor has acquired critical new data relevant to surface composition and mineralogy, but in a wavelength region that is complementary to reflectance spectroscopy. The essence of the completed research was to analyze TES data in the context of reflectance data obtained by the French ISM imaging spectrometer experiment in 1989. This approach increased our understanding of the complementary nature of these wavelength regions for mineralogic determinations using actual observations of the martian surface. The research effort focused on three regions of scientific importance: Syrtis Major-Isidis Basin, Oxia Palus-Arabia, and Valles Marineris. In each region distinct spatial variations related to reflectance, and in derived mineralogic information and interpreted compositional units were analyzed. In addition, specific science questions related to the composition of volcanics and crustal evolution, soil compositions and pedogenic processes, and the relationship between pristine lithologies and weathering provided an overall science-driven framework for the work. The detailed work plan involved colocation of TES and ISM data, extraction of reflectance and emissivity spectra from areas of known reflectance variability, and quantitative analysis using factor analysis and statistical techniques to determine the degree of correspondence between these different wavelength regions. Identified coherent variations in TES spectroscopy were assessed against known atmospheric effects to validate that the variations are due to surface properties. With this new understanding of reflectance and emission spectroscopy, mineralogic interpretations were derived and applied to the science objectives of the three regions.

  13. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  14. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.

    PubMed

    Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas

    2017-04-01

    The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).

  15. Analysis of Total Oil and Fatty Acids Composition by Near Infrared Reflectance Spectroscopy in Edible Nuts

    USDA-ARS?s Scientific Manuscript database

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edib...

  16. Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.

    1981-01-01

    The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.

  17. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  18. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  19. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    PubMed

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  20. Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode

    NASA Astrophysics Data System (ADS)

    Baek, Sang-In; Kim, Sung-Jo; Kim, Jong-Hyun

    2015-09-01

    Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.

  1. Measurements of the rate constant of HOsub2 + NOsub2 + Nsub2 --> HOsub2NOsub2 + Nsub2 using near-infrared wavelength-modulation spectroscopy and UV-visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Christensen, L. E.; Okumura, M.; Sander, S. P.; Friedl, R. R.; Miller, C. E.; Sloan, J. J.

    2004-01-01

    Rate coefficients for the reaction HO(sub 2)+ NO(sub 2) + N(sub 2) --> HO(sub 2)NO(sub 2) + N(sub 2) (reaction 1) were measured using simultaneous near-IR and UV spectroscopy from 220 to 298 K and from 45 to 200 Torr.

  2. Effects of 160 keV electron irradiation on the optical properties and microstructure of "Panda" type Polarization-Maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He

    2012-11-01

    In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.

  3. Terahertz time-domain spectroscopy of chondroitin sulfate

    PubMed Central

    Shi, Changcheng; Ma, Yuting; Zhang, Jin; Wei, Dongshan; Wang, Huabin; Peng, Xiaoyu; Tang, Mingjie; Yan, Shihan; Zuo, Guokun; Du, Chunlei; Cui, Hongliang

    2018-01-01

    Chondroitin sulfate (CS), derived from cartilage tissues, is an important type of biomacromolecule. In this paper, the terahertz time-domain spectroscopy (THz-TDS) was investigated as a potential method for content detection of CS. With the increase of the CS content, the THz absorption coefficients of the CS/polyethylene mixed samples linearly increase. The refractive indices of the mixed samples also increase when the CS content increases. The extinction coefficient of CS demonstrates the THz frequency dependence to be approximately the power of 1.4, which can be explained by the effects of CS granular solids on THz scattering. PMID:29541526

  4. Modeling the variations of reflection coefficient of Earth's lower ionosphere using very low frequency radio wave data by artificial neural network

    NASA Astrophysics Data System (ADS)

    Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh

    2016-08-01

    The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.

  5. Interpreting spectral unmixing coefficients: From spectral weights to mass fractions

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian

    2018-01-01

    It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.

  6. Optical spectroscopic studies of animal skin used in modeling of human cutaneous tissue

    NASA Astrophysics Data System (ADS)

    Drakaki, E.; Makropoulou, M.; Serafetinides, A. A.; Borisova, E.; Avramov, L.; Sianoudis, J. A.

    2007-03-01

    Optical spectroscopy and in particular laser-induced autofluorescence spectroscopy (LIAFS) and diffuse reflectance spectroscopy (DRS), provide excellent possibilities for real-time, noninvasive diagnosis of different skin tissue pathologies. However, the introduction of optical spectroscopy in routine medical practice demands a statistically important data collection, independent from the laser sources and detectors used. The scientists collect databases either from patients, in vivo, or they study different animal models to obtain objective information for the optical properties of various types of normal and diseased tissue. In the present work, the optical properties (fluorescence and reflectance) of two animal skin models are investigated. The aim of using animal models in optical spectroscopy investigations is to examine the statistics of the light induced effects firstly on animals, before any extrapolation effort to humans. A nitrogen laser (λ=337.1 nm) was used as an excitation source for the autofluorescence measurements, while a tungsten-halogen lamp was used for the reflectance measurements. Samples of chicken and pig skin were measured in vitro and were compared with results obtained from measurements of normal human skin in vivo. The specific features of the measured reflectance and fluorescence spectra are discussed, while the limits of data extrapolation for each skin type are also depicted.

  7. Estimation of the absorption coefficients of two-layered media by a simple method using spatially and time-resolved reflectances

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.

    2009-08-01

    Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.

  8. Joint time/frequency-domain inversion of reflection data for seabed geoacoustic profiles and uncertainties.

    PubMed

    Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2008-03-01

    This paper develops a joint time/frequency-domain inversion for high-resolution single-bounce reflection data, with the potential to resolve fine-scale profiles of sediment velocity, density, and attenuation over small seafloor footprints (approximately 100 m). The approach utilizes sequential Bayesian inversion of time- and frequency-domain reflection data, employing ray-tracing inversion for reflection travel times and a layer-packet stripping method for spherical-wave reflection-coefficient inversion. Posterior credibility intervals from the travel-time inversion are passed on as prior information to the reflection-coefficient inversion. Within the reflection-coefficient inversion, parameter information is passed from one layer packet inversion to the next in terms of marginal probability distributions rotated into principal components, providing an efficient approach to (partially) account for multi-dimensional parameter correlations with one-dimensional, numerical distributions. Quantitative geoacoustic parameter uncertainties are provided by a nonlinear Gibbs sampling approach employing full data error covariance estimation (including nonstationary effects) and accounting for possible biases in travel-time picks. Posterior examination of data residuals shows the importance of including data covariance estimates in the inversion. The joint inversion is applied to data collected on the Malta Plateau during the SCARAB98 experiment.

  9. Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films

    NASA Astrophysics Data System (ADS)

    Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.

    2018-01-01

    Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.

  10. Methodology for cork plank characterization (Quercus suber L.) by near-infrared spectroscopy and image analysis

    NASA Astrophysics Data System (ADS)

    Prades, Cristina; García-Olmo, Juan; Romero-Prieto, Tomás; García de Ceca, José L.; López-Luque, Rafael

    2010-06-01

    The procedures used today to characterize cork plank for the manufacture of cork bottle stoppers continue to be based on a traditional, manual method that is highly subjective. Furthermore, there is no specific legislation regarding cork classification. The objective of this viability study is to assess the potential of near-infrared spectroscopy (NIRS) technology for characterizing cork plank according to the following variables: aspect or visual quality, porosity, moisture and geographical origin. In order to calculate the porosity coefficient, an image analysis program was specifically developed in Visual Basic language for a desktop scanner. A set comprising 170 samples from two geographical areas of Andalusia (Spain) was classified into eight quality classes by visual inspection. Spectra were obtained in the transverse and tangential sections of the cork planks using an NIRSystems 6500 SY II reflectance spectrophotometer. The quantitative calibrations showed cross-validation coefficients of determination of 0.47 for visual quality, 0.69 for porosity and 0.66 for moisture. The results obtained using NIRS technology are promising considering the heterogeneity and variability of a natural product such as cork in spite of the fact that the standard error of cross validation (SECV) in the quantitative analysis is greater than the standard error of laboratory (SEL) for the three variables. The qualitative analysis regarding geographical origin achieved very satisfactory results. Applying these methods in industry will permit quality control procedures to be automated, as well as establishing correlations between the different classification systems currently used in the sector. These methods can be implemented in the cork chain of custody certification and will also provide a certainly more objective tool for assessing the economic value of the product.

  11. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey Y.

    Ultrafast transient absorption and reflectance spectroscopy are foundational techniques for studying photoexcited carrier recombination mechanisms, lifetimes, and charge transfer rates. Because quantifying photoexcited carrier dynamics is central to the intelligent design and improvement of many solid state devices, these transient optical techniques have been applied to a wide range of semiconductors. However, despite their promise, interpretation of transient absorption and reflectance data is not always straightforward and often relies on assumptions of physical processes, especially with respect to the influence of heating. Studying the material space of perovskite oxides, the careful collection, interpretation, and analysis of ultrafast data is presented here as a guide for future research into novel semiconductors. Perovskite oxides are a class of transition metal oxides with the chemical structure ABO3. Although traditionally studied for their diverse physical, electronic, and magnetic properties, perovskite oxides have gained recent research attention as novel candidates for light harvesting applications. Indeed, strong tunable absorption, unique interfacial properties, and vast chemical flexibility make perovskite oxides a promising photoactive material system. However, there is limited research characterizing dynamic optoelectronic properties, such as recombination lifetimes, which are critical to know in the design of any light-harvesting device. In this thesis, ultrafast transient absorption and reflectance spectroscopy was used to understand these dynamic optoelectronic properties in highquality, thin (<50 nm) perovskite oxide films grown by molecular beam epitaxy. Starting with epitaxial LaFeO3 (LFO) grown on (LaAlO 3)0.3(Sr2AlTaO6)0.7 (LSAT), transient absorption spectroscopy reveals two photoinduced absorption features at the band gap of LFO at 2.4 eV and at the higher energy absorption edge at 3.5 eV. Using a combination of temperature-dependent, variable-angle spectroscopic ellipsometry and time-resolved ultrafast optical spectroscopy on a type I heterostructure, we clarify thermal and electronic contributions to spectral transients in LaFeO3. Upon comparison to thermally-derived static spectra of LaFeO3, we find that thermal contributions dominate the transient absorption and reflectance spectra above the band gap. A transient photoinduced absorption feature below the band gap at 1.9 eV is not reproduced in the thermally derived spectra and has significantly longer decay kinetics from the thermallyinduced features; therefore, this long lived photoinduced absorption is likely derived, at least partially, from photoexcited carriers with lifetimes much longer than 3 nanoseconds. LaFeO3 has a wide band gap of 2.4 eV but its absorption can be decreased with chemical substitution of Sr for Fe to make it more suitable for various applications. This type of A-site substitution is a common route to change static optical absorption in perovskite oxides, but there are no systematic studies looking at how A-site substitution changes dynamic optoelectronic properties. To understand the relationship between composition and static and dynamic optical properties we worked with the model system of La1-xSrxFeO 3-delta epitaxial films grown on LSAT, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy with broadband visible (1.6 eV to 4 eV) and near-infrared (0.9 eV to 1.5 eV) probes. The sign of the reflectance change in the near-infrared region in LSFO is indicative of carrier bandfilling of newly created electronic states by photoexcited carriers. Moreover, we find that similar transient spectral trends can be induced with A-site substitution or through oxygen vacancies, which is a surprising result. Probing the near-infrared region reveals similar nanosecond (1-3 ns) photoexcited carrier lifetimes for oxygen deficient and stoichiometric films. These results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in long lived recombination kinetics. Although this thesis represents one of the first comprehensive studies using broad band transient absorption and reflectance spectroscopy to study dynamic optoelectronic phenomena in perovskite oxides, it can also serve as a guide for the implementation and interpretation of ultrafast spectroscopy in other material systems. Moreover, the ultrafast work on perovskite oxides indicates that these materials have long nanosecond lifetimes required for light harvesting devices and should be investigated further.

  12. Quantitative characterization of turbidity by radiative transfer based reflectance imaging

    PubMed Central

    Tian, Peng; Chen, Cheng; Jin, Jiahong; Hong, Heng; Lu, Jun Q.; Hu, Xin-Hua

    2018-01-01

    A new and noncontact approach of multispectral reflectance imaging has been developed to inversely determine the absorption coefficient of μa, the scattering coefficient of μs and the anisotropy factor g of a turbid target from one measured reflectance image. The incident beam was profiled with a diffuse reflectance standard for deriving both measured and calculated reflectance images. A GPU implemented Monte Carlo code was developed to determine the parameters with a conjugate gradient descent algorithm and the existence of unique solutions was shown. We noninvasively determined embedded region thickness in heterogeneous targets and estimated in vivo optical parameters of nevi from 4 patients between 500 and 950nm for melanoma diagnosis to demonstrate the potentials of quantitative reflectance imaging. PMID:29760971

  13. Time-resolved fluorescence (TRF) and diffuse reflectance spectroscopy (DRS) for margin analysis in breast cancer.

    PubMed

    Shalaby, Nourhan; Al-Ebraheem, Alia; Le, Du; Cornacchi, Sylvie; Fang, Qiyin; Farrell, Thomas; Lovrics, Peter; Gohla, Gabriela; Reid, Susan; Hodgson, Nicole; Farquharson, Michael

    2018-03-01

    One of the major problems in breast cancer surgery is defining surgical margins and establishing complete tumor excision within a single surgical procedure. The goal of this work is to establish instrumentation that can differentiate between tumor and normal breast tissue with the potential to be implemented in vivo during a surgical procedure. A time-resolved fluorescence and reflectance spectroscopy (tr-FRS) system is used to measure fluorescence intensity and lifetime as well as collect diffuse reflectance (DR) of breast tissue, which can subsequently be used to extract optical properties (absorption and reduced scatter coefficient) of the tissue. The tr-FRS data obtained from patients with Invasive Ductal Carcinoma (IDC) whom have undergone lumpectomy and mastectomy surgeries is presented. A preliminary study was conducted to determine the validity of using banked pre-frozen breast tissue samples to study the fluorescence response and optical properties. Once the validity was established, the tr-FRS system was used on a data-set of 40 pre-frozen matched pair cases to differentiate between tumor and normal breast tissue. All measurements have been conducted on excised normal and tumor breast samples post surgery. Our results showed the process of freezing and thawing did not cause any significant differences between fresh and pre-frozen normal or tumor breast tissue. The tr-FRS optical data obtained from 40 banked matched pairs showed significant differences between normal and tumor breast tissue. The work detailed in the main study showed the tr-FRS system has the potential to differentiate malignant from normal breast tissue in women undergoing surgery for known invasive ductal carcinoma. With further work, this successful outcome may result in the development of an accurate intraoperative real-time margin assessment system. Lasers Surg. Med. 50:236-245, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  14. Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy

    NASA Astrophysics Data System (ADS)

    Lo, H. Y.; Chan, C. Y.; Ong, H. C.

    2012-11-01

    We have measured the radiative scattering from two-dimensional metallic arrays by using polarization-resolved reflectivity spectroscopy. We find the reflectivity spectra follow the Fano-like model that can be derived from temporal coupled mode theory and Jones matrix calculus. By orthogonally orienting the incident polarizer and the detection analyzer, reflectivity dips flip into peaks and the radiative scattering efficiency can be determined accordingly. The dependence of total radiative scattering efficiency on wavelength and hole diameter is found to agree well with Rayleigh scattering by single hole.

  15. Hyperspectral diffuse reflectance for determination of the optical properties of milk and fruit and vegetable juices

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Lu, Renfu

    2005-11-01

    Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.

  16. Multilayered models for electromagnetic reflection amplitudes

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1976-01-01

    The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.

  17. Physiological basis for noninvasive skin cancer diagnosis using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Markey, Mia K.; Tunnell, James W.

    2017-02-01

    Diffuse reflectance spectroscopy offers a noninvasive, fast, and low-cost alternative to visual screening and biopsy for skin cancer diagnosis. We have previously acquired reflectance spectra from 137 lesions in 76 patients and determined the capability of spectral diagnosis using principal component analysis (PCA). However, it is not well elucidated why spectral analysis enables tissue classification. To provide the physiological basis, we used the Monte Carlo look-up table (MCLUT) model to extract physiological parameters from those clinical data. The MCLUT model results in the following physiological parameters: oxygen saturation, hemoglobin concentration, melanin concentration, vessel radius, and scattering parameters. Physiological parameters show that cancerous skin tissue has lower scattering and larger vessel radii, compared to normal tissue. These results demonstrate the potential of diffuse reflectance spectroscopy for detection of early precancerous changes in tissue. In the future, a diagnostic algorithm that combines these physiological parameters could be enable non-invasive diagnosis of skin cancer.

  18. BRIEF COMMUNICATIONS: Q switching of a resonator by the metal-semiconductor phase transition

    NASA Astrophysics Data System (ADS)

    Bugaev, A. A.; Zakharchenya, Boris P.; Chudnovskiĭ, F. A.

    1981-12-01

    An experimental study was made of Q switching in a resonator by a mirror with a nonlinear reflection coefficient. This mirror was an interference reflecting structure containing a vanadium oxide film capable of undergoing a metal-semiconductor transition. The nonlinearity of the reflection coefficient was due to initiation of this phase transition by laser radiation. A determination was made of the parameters of a giant radiation pulse obtained using such a passive switch with a vanadium oxide film.

  19. Acoustic parameters inversion and sediment properties in the Yellow River reservoir

    NASA Astrophysics Data System (ADS)

    Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei

    2018-03-01

    The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.

  20. Determination of optical coefficients of biological tissue from a single integrating-sphere

    NASA Astrophysics Data System (ADS)

    Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang

    2012-01-01

    The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.

  1. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    ERIC Educational Resources Information Center

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  2. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    NASA Astrophysics Data System (ADS)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  3. Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong

    2015-03-01

    We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.

  4. Quantification of betaglucans, lipid and protein contents in whole oat groats (Avena sativa L.) using near infrared reflectance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Whole oat has been described as an important healthy food for humans due to its beneficial nutritional components. Near infrared reflectance spectroscopy (NIRS) is a powerful, fast, accurate and non-destructive analytical tool that can be substituted for some traditional chemical analysis. A total o...

  5. Prediction of olive quality using FT-NIR spectroscopy in reflectance and transmittance modes

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to use FT-NIR spectroscopy to predict the firmness, oil content and color of two olive (Olea europaea L) varieties (‘Ayvalik’ and ‘Gemlik’). Spectral measurements were performed on the intact olives for the wavelengths of 780-2500 nm in reflectance and for 800-1725...

  6. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Zhang, Yuying; Yang, Si; Han, Donghai

    2018-05-01

    A new technique to identify the floral resources of honeys is demanded. Terahertz time-domain attenuated total reflection spectroscopy combined with chemometrics methods was applied to discriminate different categorizes (Medlar honey, Vitex honey, and Acacia honey). Principal component analysis (PCA), cluster analysis (CA) and partial least squares-discriminant analysis (PLS-DA) have been used to find information of the botanical origins of honeys. Spectral range also was discussed to increase the precision of PLS-DA model. The accuracy of 88.46% for validation set was obtained, using PLS-DA model in 0.5-1.5 THz. This work indicated terahertz time-domain attenuated total reflection spectroscopy was an available approach to evaluate the quality of honey rapidly.

  7. Improving reflectance reconstruction from tristimulus values by adaptively combining colorimetric and reflectance similarities

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Liao, Ningfang; Li, Yasheng; Cheng, Haobo

    2017-05-01

    The use of spectral reflectance as fundamental color information finds application in diverse fields related to imaging. Many approaches use training sets to train the algorithm used for color classification. In this context, we note that the modification of training sets obviously impacts the accuracy of reflectance reconstruction based on classical reflectance reconstruction methods. Different modifying criteria are not always consistent with each other, since they have different emphases; spectral reflectance similarity focuses on the deviation of reconstructed reflectance, whereas colorimetric similarity emphasizes human perception. We present a method to improve the accuracy of the reconstructed spectral reflectance by adaptively combining colorimetric and spectral reflectance similarities. The different exponential factors of the weighting coefficients were investigated. The spectral reflectance reconstructed by the proposed method exhibits considerable improvements in terms of the root-mean-square error and goodness-of-fit coefficient of the spectral reflectance errors as well as color differences under different illuminants. Our method is applicable to diverse areas such as textiles, printing, art, and other industries.

  8. [Determination of the error of aerosol extinction coefficient measured by DOAS].

    PubMed

    Si, Fu-qi; Liu, Jian-guo; Xie, Pin-hua; Zhang, Yu-jun; Wang, Mian; Liu, Wen-qing; Hiroaki, Kuze; Liu, Cheng; Nobuo, Takeuchi

    2006-10-01

    The method of defining the error of aerosol extinction coefficient measured by differential optical absorption spectroscopy (DOAS) is described. Some factors which could bring errors to result, such as variation of source, integral time, atmospheric turbulence, calibration of system parameter, displacement of system, and back scattering of particles, are analyzed. The error of aerosol extinction coefficient, 0.03 km(-1), is determined by theoretical analysis and practical measurement.

  9. Limitations of quantitative analysis of deep crustal seismic reflection data: Examples from GLIMPCE

    USGS Publications Warehouse

    Lee, Myung W.; Hutchinson, Deborah R.

    1992-01-01

    Amplitude preservation in seismic reflection data can be obtained by a relative true amplitude (RTA) processing technique in which the relative strength of reflection amplitudes is preserved vertically as well as horizontally, after compensating for amplitude distortion by near-surface effects and propagation effects. Quantitative analysis of relative true amplitudes of the Great Lakes International Multidisciplinary Program on Crustal Evolution seismic data is hampered by large uncertainties in estimates of the water bottom reflection coefficient and the vertical amplitude correction and by inadequate noise suppression. Processing techniques such as deconvolution, F-K filtering, and migration significantly change the overall shape of amplitude curves and hence calculation of reflection coefficients and average reflectance. Thus lithological interpretation of deep crustal seismic data based on the absolute value of estimated reflection strength alone is meaningless. The relative strength of individual events, however, is preserved on curves generated at different stages in the processing. We suggest that qualitative comparisons of relative strength, if used carefully, provide a meaningful measure of variations in reflectivity. Simple theoretical models indicate that peg-leg multiples rather than water bottom multiples are the most severe source of noise contamination. These multiples are extremely difficult to remove when the water bottom reflection coefficient is large (>0.6), a condition that exists beneath parts of Lake Superior and most of Lake Huron.

  10. [Spectral reflectance characteristics and modeling of typical Takyr Solonetzs water content].

    PubMed

    Zhang, Jun-hua; Jia, Ke-li

    2015-03-01

    Based on the analysis of the spectral reflectance of the typical Takyr Solonetzs soil in Ningxia, the relationship of soil water content and spectral reflectance was determined, and a quantitative model for the prediction of soil water content was constructed. The results showed that soil spectral reflectance decreased with the increasing soil water content when it was below the water holding capacity but increased with the increasing soil water content when it was higher than the water holding capacity. Soil water content presented significantly negative correlation with original reflectance (r), smooth reflectance (R), logarithm of reflectance (IgR), and positive correlation with the reciprocal of R and logarithm of reciprocal [lg (1/R)]. The correlation coefficient of soil water content and R in the whole wavelength was 0.0013, 0.0397 higher than r and lgR, respectively. Average correlation coefficient of soil water content with 1/R and [lg (1/R)] at the wavelength of 950-1000 nm was 0.2350 higher than that of 400-950 nm. The relationships of soil water content with the first derivate differential (R') , the first derivate differential of logarithm (lgR)' and the first derivate differential of logarithm of reciprocal [lg(1/R)]' were unstable. Base on the coefficients of r, lg(1/R), R' and (lgR)', different regression models were established to predict soil water content, and the coefficients of determination were 0.7610, 0.8184, 0.8524 and 0.8255, respectively. The determination coefficient for power function model of R'. reached 0.9447, while the fitting degree between the predicted value based on this model and on-site measured value was 0.8279. The model of R' had the highest fitted accuracy, while that of r had the lowest one. The results could provide a scientific basis for soil water content prediction and field irrigation in the Takyr Solonetzs region.

  11. Investigating Low-Cost Optical Spectroscopy for Sensing Pressure Ulcers

    NASA Astrophysics Data System (ADS)

    Mirchandani, Smruti Suresh

    Diffuse Reflectance Spectroscopy has been used widely to characterize tissue properties for diagnostic and therapeutic applications. This thesis focuses on the use of spectroscopy for early pressure ulcer detection. The most common early diagnosis technique for pressure ulcers is a blanch test. A major issue with a blanch test is that it is purely visual and cannot be visibly observed on dark skinned individuals. Studies have already proven that spectroscopy can be used to detect blanch response in skin across light and dark skinned individuals. The portable reflectance spectroscopy setup showed that pressure changes to the skin can be detected spectroscopically. Some work on an iPhone based spectrometer was also done to have a low-cost spectroscopy alternative to the usual DRS equipment. This study failed to develop an iPhone based spectrometer but various factors that can be changed to better this research have been mentioned in this thesis.

  12. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Transient coherent anti-Stokes Raman scattering spectroscopy as a tool for measuring the diffusion coefficient and size of gas molecules

    NASA Astrophysics Data System (ADS)

    Nikitin, Sergei Yu

    2009-07-01

    Formulas are derived for evaluating the diffusion coefficient and size of gas molecules from transient coherent anti-Stokes Raman scattering measurements. Numerical estimates are presented for hydrogen.

  13. Liquid crystal 'blue phases' with a wide temperature range.

    PubMed

    Coles, Harry J; Pivnenko, Mikhail N

    2005-08-18

    Liquid crystal 'blue phases' are highly fluid self-assembled three-dimensional cubic defect structures that exist over narrow temperature ranges in highly chiral liquid crystals. The characteristic period of these defects is of the order of the wavelength of visible light, and they give rise to vivid specular reflections that are controllable with external fields. Blue phases may be considered as examples of tuneable photonic crystals with many potential applications. The disadvantage of these materials, as predicted theoretically and proved experimentally, is that they have limited thermal stability: they exist over a small temperature range (0.5-2 degrees C) between isotropic and chiral nematic (N*) thermotropic phases, which limits their practical applicability. Here we report a generic family of liquid crystals that demonstrate an unusually broad body-centred cubic phase (BP I*) from 60 degrees C down to 16 degrees C. We prove this with optical texture analysis, selective reflection spectroscopy, Kössel diagrams and differential scanning calorimetry, and show, using a simple polarizer-free electro-optic cell, that the reflected colour is switched reversibly in applied electric fields over a wide colour range in typically 10 ms. We propose that the unusual behaviour of these blue phase materials is due to their dimeric molecular structure and their very high flexoelectric coefficients. This in turn sets out new theoretical challenges and potentially opens up new photonic applications.

  14. Modeling and measuring extravascular hemoglobin: aging contusions

    NASA Astrophysics Data System (ADS)

    Lines, Collin; Kim, Oleg; Duffy, Susan; Alber, Mark; Crawford, Gregory P.

    2011-07-01

    Medical expertise is frequently elicited to aid in determining the age and the cause of the trauma or injury. Child protection and law enforcement frequently rely on the physical assessment of the trauma which involves delineating intentional from unintentional types of trauma. Recent studies have shown that current methods to assess the age of traumatic injuries are highly inaccurate and do not give reasonable predictions. Hemoglobin is one of the strongest chromophores in human tissues. Transport of hemoglobin and its breakdown products in tissue determines the spectrophotometric characteristics of the skin and its variations in time. Therefore, measurements of diffuse reflective spectra of the skin allow noninvasive screening. This paper reviews potential transmission and diffusive reflection spectroscopy based techniques and predictive and quantitative modeling methods assisting in efficient retrieval of the age of extravascular contusions. This paper then presents a novel Monte Carlo technique for 3D photon tracking and blood transport model. In future studies, clinically obtained spectra will be used to validate the model as well as fine-tune coefficients for absorption. It is the goal of this study to develop a model that would allow a non-invasive, accurate determination of the age of a bruise.

  15. Pancreatic tissue assessment using fluorescence and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandra, Malavika; Heidt, David; Simeone, Diane; McKenna, Barbara; Scheiman, James; Mycek, Mary-Ann

    2007-07-01

    The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue was demonstrated by studying human pancreatic cancer xenografts in mice and freshly excised human pancreatic tumor tissue. Measured optical spectra and fluorescence decays were correlated with tissue morphological and biochemical properties. The measured spectral features and decay times correlated well with expected pathological differences in normal, pancreatitis and adenocarcinoma tissue states. The observed differences between the fluorescence and reflectance properties of normal, pancreatitis and adenocarcinoma tissue indicate a possible application of multi-modal optical spectroscopy to differentiating between the three tissue classifications.

  16. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [acid-base properties of titanium 6-4 surfaces

    NASA Technical Reports Server (NTRS)

    Siriwardane, R.; Wightman, J. P.

    1980-01-01

    The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.

  17. Osmotic water transport in aquaporins: evidence for a stochastic mechanism

    PubMed Central

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna

    2013-01-01

    We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676

  18. Acoustic Reflection and Transmission of 2-Dimensional Rotors and Stators, Including Mode and Frequency Scattering Effects

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1999-01-01

    A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.

  19. Toward optical guidance during endoscopic ultrasound-guided fine needle aspirations of pancreatic masses using single fiber reflectance spectroscopy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Stegehuis, Paulien L.; Boogerd, Leonora S. F.; Inderson, Akin; Veenendaal, Roeland A.; van Gerven, P.; Bonsing, Bert A.; Sven Mieog, J.; Amelink, Arjen; Veselic, Maud; Morreau, Hans; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Robinson, Dominic J.; Vahrmeijer, Alexander L.

    2017-02-01

    Endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) of pancreatic masses suffer from sample errors and low-negative predictive values. Fiber-optic spectroscopy in the visible to near-infrared wavelength spectrum can noninvasively extract physiological parameters from tissue and has the potential to guide the sampling process and reduce sample errors. We assessed the feasibility of single fiber (SF) reflectance spectroscopy measurements during EUS-FNA of pancreatic masses and its ability to distinguish benign from malignant pancreatic tissue. A single optical fiber was placed inside a 19-gauge biopsy needle during EUS-FNA and at least three reflectance measurements were taken prior to FNA. Spectroscopy measurements did not cause any related adverse events and prolonged procedure time with ˜5 min. An accurate correlation between spectroscopy measurements and cytology could be made in nine patients (three benign and six malignant). The oxygen saturation and bilirubin concentration were significantly higher in benign tissue compared with malignant tissue (55% versus 21%, p=0.038; 166 μmol/L versus 17 μmol/L, p=0.039, respectively). To conclude, incorporation of SF spectroscopy during EUS-FNA was feasible, safe, and relatively quick to perform. The optical properties of benign and malignant pancreatic tissue are different, implying that SF spectroscopy can potentially guide the FNA sampling.

  20. Measurement of infrared optical constants with visible photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry; Krivitsky, Leonid

    2018-04-01

    We demonstrate a new scheme for infrared spectroscopy with visible light sources and detectors. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and infrared photons are split into two paths and the infrared photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and infrared. The transmission coefficient and the refractive index of the sample in the infrared range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient infrared detectors and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range.

  1. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, C. R.; Kinzer, R. E.; Cataldo, G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinehart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program utilizes multiple instruments to provide spectral data over a wide range of temperature and wavelengths. Experimental methods include Vector Network Analyzer (VNA) and Fourier Transform Spectroscopy (FTS) transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5-300 K, across the infrared and millimeter portion of the spectrum (from 2.5-10,000 m or 4,000-1 cm(exp-1).

  2. Optical Properties of Iron Silicates in the Infrared to Millimeter as a Function of Wavelength and Temperature

    NASA Technical Reports Server (NTRS)

    Richey, Christina Rae; Kinzer, R. E.; Cataldo, R. E. G.; Wollack, E. J.; Nuth, J. A.; Benford, D. J.; Silverberg, R. F.; Rinehart, S. A.

    2013-01-01

    The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program utilizes multiple instruments to provide spectral data over a wide range of temperature and wavelengths. Experimental methods include Vector Network Analyzer (VNA) and Fourier Transform Spectroscopy (FTS) transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5-300 K, across the infrared and millimeter portion of the spectrum (from 2.5-10,000 µm or 4,000-1 cm(exp -1).

  3. Polaron physics and crossover transition in magnetite probed by pressure-dependent infrared spectroscopy.

    PubMed

    Ebad-Allah, J; Baldassarre, L; Sing, M; Claessen, R; Brabers, V A M; Kuntscher, C A

    2013-01-23

    The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm(-1) and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum, the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.

  4. Fiber-optic miniature sensor for in situ temperature monitoring of curing composite material

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho

    2018-04-01

    This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30-110 °C).

  5. Alteration of architecture of MoO₃ nanostructures on arbitrary substrates: growth kinetics, spectroscopic and gas sensing properties.

    PubMed

    Illyaskutty, Navas; Sreedhar, Sreeja; Sanal Kumar, G; Kohler, Heinz; Schwotzer, Matthias; Natzeck, Carsten; Pillai, V P Mahadevan

    2014-11-21

    MoO3 nanostructures have been grown in thin film form on five different substrates by RF magnetron sputtering and subsequent annealing; non-aligned nanorods, aligned nanorods, bundled nanowires, vertical nanorods and nanoslabs are formed respectively on the glass, quartz, wafer, alumina and sapphire substrates. The nanostructures formed on these substrates are characterized by AFM, SEM, GIXRD, XPS, micro-Raman, diffuse reflectance and photoluminescence spectroscopy. A detailed growth model for morphology alteration with respect to substrates has been discussed by considering various aspects such as surface roughness, lattice parameters and the thermal expansion coefficient, of both substrates and MoO3. The present study developed a strategy for the choice of substrates to materialize different types MoO3 nanostructures for future thin film applications. The gas sensing tests point towards using these MoO3 nanostructures as principal detection elements in gas sensors.

  6. Experimental investigation of the radiation of sound from an unflanged duct and a bellmouth, including the flow effect

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    The radiation of sound from an inlet as a function of flow velocity, frequency, duct mode structure, and inlet geometry was examined by using a spinning mode synthesizer to insure a given space-time structure inside the duct. Measurements of the radiation pattern (amplitude and phase) and of the pressure reflection coefficient were obtained over an azimuthal wave number range of 0 to 6 and a frequency range up to 5000 Hz for an unflanged duct and a bellmouth. The measured radiated field and pressure reflection coefficient without flow for the unflanged duct agree reasonably well with theory. The influence of the inlet contour appears to be very drastic near the cut-on frequency of a mode and reasonable agreement is found between the bellmouth pressure reflection coefficient and a infinite hyperboloidal inlet theory. It is also shown that the flow has a weak effect on the amplitude of the directivity factor but significantly shifts the directivity factor phase. The influence of the flow on the modulus of the pressure reflection coefficient is found to be well described by a theoretical prediction.

  7. A noninvasive assessment of skin carotenoid status through reflection spectroscopy is a feasible and reliable measure of dietary carotenoid consumption in a diverse community sample

    USDA-ARS?s Scientific Manuscript database

    Background: Skin carotenoid status, as assessed by reflection spectroscopy (RS), is a promising means of approximating fruit and vegetable consumption. This study’s purpose was to assess the feasibility, reliability, and validity of RS to assess skin carotenoids in a racially diverse community sampl...

  8. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity

    PubMed Central

    Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2013-01-01

    The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181

  9. Multimodal fiber-probe spectroscopy for the diagnostics and classification of bladder tumors

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Cicchi, Riccardo; Fantechi, Riccardo; Gacci, Mauro; Nesi, Gabriella; Carini, Marco; Pavone, Francesco S.

    2017-02-01

    The gold standard for the detection of bladder cancer is white light cystoscopy, followed by an invasive biopsy and pathological examination. Tissue pathology is time consuming and often prone to sampling errors. Recently, optical spectroscopy techniques have evolved as promising techniques for the detection of neoplasia. The specific goal of this study is to evaluate the application of combined auto-fluorescence (excited using 378 nm and 445 nm wavelengths) and diffuse reflectance spectroscopy to discriminate normal bladder tissue from tumor at different grades. The fluorescence spectrum at both excitation wavelengths showed an increased spectral intensity in tumors with respect to normal tissues. Reflectance data indicated an increased reflectance in the wavelength range 610 nm - 700 nm for different grades of tumors, compared to normal tissues. The spectral data were further analyzed using principal component analysis for evaluating the sensitivity and specificity for diagnosing tumor. The spectral differences observed between various grades of tumors provides a strong genesis for the future evaluation on a larger patient population to achieve statistical significance. This study indicates that a combined spectroscopic strategy, incorporating fluorescence and reflectance spectroscopy, could improve the capability for diagnosing bladder tumor as well as for differentiating tumors in different grades.

  10. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    NASA Astrophysics Data System (ADS)

    Skala, Melissa Caroline

    2007-12-01

    Cancer morbidity and mortality is greatly reduced when the disease is diagnosed and treated early in its development. Tissue biopsies are the gold standard for cancer diagnosis, and an accurate diagnosis requires a biopsy from the malignant portion of an organ. Light, guided through a fiber optic probe, could be used to inspect regions of interest and provide real-time feedback to determine the optimal tissue site for biopsy. This approach could increase the diagnostic accuracy of current biopsy procedures. The studies in this thesis have characterized changes in tissue optical signals with carcinogenesis, increasing our understanding of the sensitivity of optical techniques for cancer detection. All in vivo studies were conducted on the dimethylbenz[alpha]anthracene treated hamster cheek pouch model of epithelial carcinogenesis. Multiphoton microscopy studies in the near infrared wavelength region quantified changes in tissue morphology and fluorescence with carcinogenesis in vivo. Statistically significant morphological changes with precancer included increased epithelial thickness, loss of stratification in the epithelium, and increased nuclear diameter. Fluorescence changes included a statistically significant decrease in the epithelial fluorescence intensity per voxel at 780 nm excitation, a decrease in the fluorescence lifetime of protein-bound nicotinamide adenine dinucleotide (NADH, an electron donor in oxidative phosphorylation), and an increase in the fluorescence lifetime of protein-bound flavin adenine dinucleotide (FAD, an electron acceptor in oxidative phosphorylation) with precancer. The redox ratio (fluorescence intensity of FAD/NADH, a measure of the cellular oxidation-reduction state) did not significantly change with precancer. Cell culture experiments (MCF10A cells) indicated that the decrease in protein-bound NADH with precancer could be due to increased levels of glycolysis. Point measurements of diffuse reflectance and fluorescence spectra in the ultraviolet to visible wavelength range indicated that the most diagnostic optical signals originate from sub-surface tissue layers. Optical properties extracted from these spectroscopy measurements showed a significant decrease in the hemoglobin saturation, absorption coefficient, reduced scattering coefficient and fluorescence intensity (at 400 nm excitation) in neoplastic compared to normal tissues. The results from these studies indicate that multiphoton microscopy and optical spectroscopy can non-invasively provide information on tissue structure and function in vivo that is related to tissue pathology.

  11. Determination of acoustic properties of thin polymer films utilizing the frequency dependence of the reflection coefficient of ultrasound.

    PubMed

    Tohmyoh, Hironori; Sakamoto, Yuhei

    2015-11-01

    This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.

  12. Quantifying Errors in Jet Noise Research Due to Microphone Support Reflection

    NASA Technical Reports Server (NTRS)

    Nallasamy, Nambi; Bridges, James

    2002-01-01

    The reflection coefficient of a microphone support structure used insist noise testing is documented through tests performed in the anechoic AeroAcoustic Propulsion Laboratory. The tests involve the acquisition of acoustic data from a microphone mounted in the support structure while noise is generated from a known broadband source. The ratio of reflected signal amplitude to the original signal amplitude is determined by performing an auto-correlation function on the data. The documentation of the reflection coefficients is one component of the validation of jet noise data acquired using the given microphone support structure. Finally. two forms of acoustic material were applied to the microphone support structure to determine their effectiveness in reducing reflections which give rise to bias errors in the microphone measurements.

  13. Spectral radiative properties of a living human body

    NASA Astrophysics Data System (ADS)

    Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.

    1986-09-01

    Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.

  14. Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2016-07-01

    We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.

  15. Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: a methodological approach.

    PubMed

    Invernizzi, Claudia; Daveri, Alessia; Vagnini, Manuela; Malagodi, Marco

    2017-05-01

    The analysis of historical musical instruments is becoming more relevant and the interest is increasingly moving toward the non-invasive reflection FTIR spectroscopy, especially for the analysis of varnishes. In this work, a specific infrared reflectance spectral library of organic compounds was created with the aim of identifying musical instrument materials in a totally non-invasive way. The analyses were carried out on pure organic compounds, as bulk samples and laboratory wooden models, to evaluate the diagnostic reflection mid-infrared (MIR) bands of proteins, polysaccharides, lipids, and resins by comparing reflection spectra before and after the KK correction. This methodological approach was applied to real case studies represented by four Stradivari violins and a Neapolitan mandolin.

  16. In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates

    NASA Astrophysics Data System (ADS)

    Proehl, Holger; Nitsche, Robert; Dienel, Thomas; Leo, Karl; Fritz, Torsten

    2005-04-01

    We report an investigation of the excitonic properties of thin crystalline films of the archetypal organic semiconductor PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) grown on poly- and single crystalline surfaces. A sensitive setup capable of measuring the optical properties of ultrathin organic molecular crystals via differential reflectance spectroscopy (DRS) is presented. This tool allows to carry out measurements in situ, i.e., during the actual film growth, and over a wide spectral range, even on single crystalline surfaces with high symmetry or metallic surfaces, where widely used techniques like reflection anisotropy spectroscopy (RAS) or fluorescence excitation spectroscopy fail. The spectra obtained by DRS resemble mainly the absorption of the films if transparent substrates are used, which simplifies the analysis. In the case of mono- to multilayer films of PTCDA on single crystalline muscovite mica(0001) and Au(111) substrates, the formation of the solid state absorption from monomer to dimer and further to crystal-like absorption spectra can be monitored.

  17. Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Xiaodong; Hu, Min; Zhou, Jun; Liu, Shenggang

    2017-07-01

    Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.

  18. Measuring the diffusion coefficient of ganglioside on cell membrane by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Shiqing; You, Minghai; Chen, Jianling; Zhou, Jie; Xie, Shusen; Yang, Hongqin

    2017-06-01

    The fluidity of proteins and lipids on cell membrane plays an important role in cell’s physiological functions. Fluorescence correlation spectroscopy (FCS) is an effective technique to detect the rapid dynamic behaviors of proteins and/or lipids in living cells. In this study, we used the rhodamine6G solution to optimize the FCS system. And, cholera toxin B subunit (CT-B) was used to label ganglioside on living Hela cell membranes. The diffusion time and coefficients of ganglioside can be obtained through fitting the autocorrelation curve based on the model of two-dimensional cell membrane. The results showed that the diffusion coefficients of ganglioside distributed within a wide range. It revealed the lateral diffusion of lipids on cell membrane was inhomogeneous, which was due to different microstructures of cytoplasmic membrane. The study provides a helpful method for further studying the dynamic characteristics of proteins and lipids molecules on living cell membrane.

  19. Unveiling the Interplay Between Diffusing CO2 and Ethanol Molecules in Champagne Wines by Classical Molecular Dynamics and (13)C NMR Spectroscopy.

    PubMed

    Bonhommeau, David A; Perret, Alexandre; Nuzillard, Jean-Marc; Cilindre, Clara; Cours, Thibaud; Alijah, Alexander; Liger-Belair, Gérard

    2014-12-18

    The diffusion coefficients of carbon dioxide (CO2) and ethanol (EtOH) in carbonated hydroalcoholic solutions and Champagne wines are evaluated as a function of temperature by classical molecular dynamics (MD) simulations and (13)C NMR spectroscopy measurements. The excellent agreement between theoretical and experimental diffusion coefficients suggest that ethanol is the main molecule, apart from water, responsible for the value of the CO2 diffusion coefficients in typical Champagne wines, a result that could likely be extended to most sparkling wines with alike ethanol concentrations. CO2 and EtOH hydrodynamical radii deduced from viscometry measurements by applying the Stokes-Einstein relationship are found to be mostly constant and in close agreement with MD predictions. The reliability of our approach should be of interest to physical chemists aiming to model transport phenomena in supersaturated aqueous solutions or water/alcohol mixtures.

  20. Rate coefficients for the reaction of formaldehyde with HO2 radicals from fluorescence spectroscopy of HOCH2OO radicals

    NASA Astrophysics Data System (ADS)

    Bunkan, Arne; Amédro, Damien; Crowley, John

    2017-04-01

    The reaction of formaldehyde with HO2 radicals constitutes a minor, but significant sink of formaldehyde in the troposphere as well as a possible interference in other formaldehyde photooxidation experiments. HCHO + HO2 ⇌ HOCH2OO (1) Due to the difficulty of simultaneously monitoring the reactant and product concentrations while preventing interfering secondary chemistry, there is a considerable uncertainty in the literature values for the reaction rate coefficients. We have used two photon, excited fragment spectroscopy (TPEFS), originally developed for monitoring HNO3 formation in kinetic experiments, to monitor the formation of the HOCH2OO radical. Dispersed and single wavelength fluorescence emission following the 193 nm photolysis of HOCH2OO have been recorded and analysed. Characterisation of the method is presented along with rate coefficients for the reaction of HCHO with HO2 radicals at tropospheric temperatures.

  1. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions

    NASA Astrophysics Data System (ADS)

    Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis

    2017-12-01

    We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.

  2. Cavity mode-width spectroscopy with widely tunable ultra narrow laser.

    PubMed

    Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman

    2013-12-02

    We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.

  3. Quantitative determination of additive Chlorantraniliprole in Abamectin preparation: Investigation of bootstrapping soft shrinkage approach by mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Song, Xiangzhong; Tian, Kuangda; Chen, Yilin; Xiong, Yanmei; Min, Shungeng

    2018-02-01

    A novel method, mid-infrared (MIR) spectroscopy, which enables the determination of Chlorantraniliprole in Abamectin within minutes, is proposed. We further evaluate the prediction ability of four wavelength selection methods, including bootstrapping soft shrinkage approach (BOSS), Monte Carlo uninformative variable elimination (MCUVE), genetic algorithm partial least squares (GA-PLS) and competitive adaptive reweighted sampling (CARS) respectively. The results showed that BOSS method obtained the lowest root mean squared error of cross validation (RMSECV) (0.0245) and root mean squared error of prediction (RMSEP) (0.0271), as well as the highest coefficient of determination of cross-validation (Qcv2) (0.9998) and the coefficient of determination of test set (Q2test) (0.9989), which demonstrated that the mid infrared spectroscopy can be used to detect Chlorantraniliprole in Abamectin conveniently. Meanwhile, a suitable wavelength selection method (BOSS) is essential to conducting a component spectral analysis.

  4. FIBER AND INTEGRATED OPTICS: Reflection of electromagnetic radiation from a multilayer waveguide structure with an absorbing metal layer

    NASA Astrophysics Data System (ADS)

    Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.

    1992-10-01

    The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.

  5. Oxidation-Resistant Surfaces For Solar Reflectors

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Egger, Robert A.; Banholzer, William F.

    1988-01-01

    Thin films on silver provide highly-reflective, corrosion-resistant mirrors. Study evaluated variety of oxidation-resistant reflective materials for use in solar dynamic power system, one that generates electricity by focusing Sunlight onto reciever of heat engine. Thin films of platinum and rhodium deposited by ion-beam sputtering on various substrate materials. Solar reflectances measured as function of time of exposure to radio-frequency-generated air plasma. Several protective coating materials deposited on silver-coated substrates and exposed to plasma. Analyzed before and after exposure by electon spectroscopy for chemical analysis and by Auger spectroscopy.

  6. Retrieval of background surface reflectance with BRD components from pre-running BRDF

    NASA Astrophysics Data System (ADS)

    Choi, Sungwon; Lee, Kyeong-Sang; Jin, Donghyun; Lee, Darae; Han, Kyung-Soo

    2016-10-01

    Many countries try to launch satellite to observe the Earth surface. As important of surface remote sensing is increased, the reflectance of surface is a core parameter of the ground climate. But observing the reflectance of surface by satellite have weakness such as temporal resolution and being affected by view or solar angles. The bidirectional effects of the surface reflectance may make many noises to the time series. These noises can lead to make errors when determining surface reflectance. To correct bidirectional error of surface reflectance, using correction model for normalized the sensor data is necessary. A Bidirectional Reflectance Distribution Function (BRDF) is making accuracy higher method to correct scattering (Isotropic scattering, Geometric scattering, Volumetric scattering). To correct bidirectional error of surface reflectance, BRDF was used in this study. To correct bidirectional error of surface reflectance, we apply Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. And we apply 2 steps for retrieving Background Surface Reflectance (BSR). The first step is retrieving Bidirectional Reflectance Distribution (BRD) coefficients. Before retrieving BSR, we did pre-running BRDF to retrieve BRD coefficients to correct scatterings (Isotropic scattering, Geometric scattering, Volumetric scattering). In pre-running BRDF, we apply BRDF with observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get BRD coefficients for calculating scattering. After that, we apply BRDF again in the opposite direction with BRD coefficients and angular data to retrieve BSR as a second step. As a result, BSR has very similar reflectance to one of VGT-S1. And reflectance in BSR is shown adequate. The highest reflectance of BSR is not over 0.4μm in blue channel, 0.45μm in red channel, 0.55μm in NIR channel. And for validation we compare reflectance of clear sky pixel from SPOT/VGT status map data. As a result of comparing BSR with VGT-S1, bias is from 0.0116 to 0.0158 and RMSE is from 0.0459 to 0.0545. They are very reasonable results, so we confirm that BSR is similar to VGT-S1. And weakness of this study is missing pixel in BSR which are observed less time to retrieve BRD components. If missing pixels are filled, BSR is better to retrieve surface products with more accuracy. And we think that after filling the missing pixel and being more accurate, it can be useful data to retrieve surface product which made by surface reflectance like cloud masking and retrieving aerosol.

  7. Measurement of conjugated linoleic acid (CLA) in CLA-rich soy oil by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR).

    PubMed

    Kadamne, Jeta V; Jain, Vishal P; Saleh, Mohammed; Proctor, Andrew

    2009-11-25

    Conjugated linoleic acid (CLA) isomers in oils are currently measured as fatty acid methyl esters by a gas chromatography-flame ionization detector (GC-FID) technique, which requires approximately 2 h to complete the analysis. Hence, we aim to develop a method to rapidly determine CLA isomers in CLA-rich soy oil. Soy oil with 0.38-25.11% total CLA was obtained by photo-isomerization of 96 soy oil samples for 24 h. A sample was withdrawn at 30 min intervals with repeated processing using a second batch of oil. Six replicates of GC-FID fatty acid analysis were conducted for each oil sample. The oil samples were scanned using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the spectrum was collected. Calibration models were developed using partial least-squares (PLS-1) regression using Unscrambler software. Models were validated using a full cross-validation technique and tested using samples that were not included in the calibration sample set. Measured and predicted total CLA, trans,trans CLA isomers, total mono trans CLA isomers, trans-10,cis-12 CLA, trans-9,cis-11 CLA and cis-10,trans-12 CLA, and cis-9,trans-11 CLA had cross-validated coefficients of determinations (R2v) of 0.97, 0.98, 0.97, 0.98, 0.97, and 0.99 and corresponding root-mean-square error of validation (RMSEV) of 1.14, 0.69, 0.27, 0.07, 0.14, and 0.07% CLA, respectively. The ATR-FTIR technique is a rapid and less expensive method for determining CLA isomers in linoleic acid photo-isomerized soy oil than GC-FID.

  8. Application of the laguerre deconvolution method for time-resolved fluorescence spectroscopy to the characterization of atherosclerotic plaques.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2005-01-01

    This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.

  9. Measurement of pressure-broadening and lineshift coefficients at 77 and 296 K of methane lines in the 727 nm band using intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Kuldip; O'Brien, James J.

    1994-01-01

    Pressure-broadening coefficients and pressure-induced lineshifts of several rotational-vibrational lines have been measured in the 727 nm absorption band of methane at temperatures of 77 and 296 K, using nitrogen, hydrogen, and helium as the foreign-gas collision partners. A technique involving intracavity laser spectroscopy is used to record the methane spectra. Average values of the broadening coefficients (/cm/atm) at 77 K are: 0.199, 0.139, 0.055, and 0.29 for collision partners N2, H2, He, and CH4, respectively. Typical average values of the pressure-induced lineshifts (/cm/atm) at 77 K and for the range of foreign gas pressures between 10 and 200 torr are -0.052 for N2, -0.063 for H2, and +0.031 for He. All the values obtained at 296 K are considerably different from the corresponding values at 77 K. This represents the first report of pressure-broadening and shifting coefficients for the methane transitions in a region where the delta nu(sub C-H) = 5 band occurs.

  10. Replacing backscattering with reduced scattering. A better formulation of reflectance function?

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; McKee, David; Freda, Wlodzimierz

    2014-05-01

    Modern reflectance formulas all involve backscattering coefficient divided by absorption coefficient (bb/a). The backscattering (or backward scattering) coefficient describes how much of the incident radiation is scattered at angles between 90 and 180 deg. However, water leaving photons are not necessarily backscattered because it is possible for a variable fraction to exit after multiple forward scattering events. Therefore the whole angular function of scattering probability (phase function) influences the reflectance signal. This is the reason why phase functions of identical backscattering ratio may result in different reflectance values, contrary to the universally used formula. This creates the question whether there may exist a better formula using a parameter better describing phase function shape than backscattering ratio. The asymmetry parameter g (the average scattering cosine) is commonly used to parametrize phase functions. A replacement for backscattering should decrease with increasing g. Therefore, the simplest candidate to replace backscattering has the form of b(1-g), where b is the scattering coefficient. Such a parameter is well known in biomedical optics under the name of reduced scattering (sometimes transport scattering). It has even been used in parametrizing reflectance in (highly turbid) human tissues. However no attempt has been made to check its usefulness in marine optics. We perform Monte Carlo radiative transfer calculations of reflectance for multiple combinations of inherent optical properties, including different phase functions. The results are used to create a new reflectance formula as a function of reduced scattering and absorption and test its robustness to changes in phase function shape compared to the traditional bb/a formula. We discuss its usefulness as well as advantages and disadvantages compared to the traditional formulation.

  11. Improvement of direct determination of trace nickel in environmental samples by diffuse reflection spectroscopy using chromaticity characteristics.

    PubMed

    Ershova, N I; Ivanov, V M

    2000-05-01

    Cellulose and chromaton-N-super as solid supports for direct determination of the immobilized nickel complexes with dimethylglyoxime and benzyldioxime by diffuse reflection spectroscopy were compared. The advantage of chromaton-N-super with use of benzyldioxime is shown. Detection limit is 0.02 microg/mL. The proposed method was applied for the analysis of soil.

  12. A non-invasive assessment of skin carotenoid status through reflection spectroscopy is a feasible, reliable and potentially valid measure of fruit and vegetable consumption in a diverse community sample

    USDA-ARS?s Scientific Manuscript database

    This study assessed the feasibility, reliability and validity of reflection spectroscopy (RS) to assess skin carotenoids in a racially diverse sample. Study 1 was a cross-sectional study of corner store customers (n= 479) in Eastern North Carolina USA who completed the National Cancer Institute Frui...

  13. New methods for time-resolved fluorescence spectroscopy data analysis based on the Laguerre expansion technique--applications in tissue diagnosis.

    PubMed

    Jo, J A; Marcu, L; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J

    2007-01-01

    A new deconvolution method for the analysis of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data is introduced and applied for tissue diagnosis. The intrinsic TR-LIFS decays are expanded on a Laguerre basis, and the computed Laguerre expansion coefficients (LEC) are used to characterize the sample fluorescence emission. The method was applied for the diagnosis of atherosclerotic vulnerable plaques. At a first stage, using a rabbit atherosclerotic model, 73 TR-LIFS in-vivo measurements from the normal and atherosclerotic aorta segments of eight rabbits were taken. The Laguerre deconvolution technique was able to accurately deconvolve the TR-LIFS measurements. More interesting, the LEC reflected the changes in the arterial biochemical composition and provided discrimination of lesions rich in macrophages/foam-cells with high sensitivity (> 85%) and specificity (> 95%). At a second stage, 348 TR-LIFS measurements were obtained from the explanted carotid arteries of 30 patients. Lesions with significant inflammatory cells (macrophages/foam-cells and lymphocytes) were detected with high sensitivity (> 80%) and specificity (> 90%), using LEC-based classifiers. This study has demonstrated the potential of using TR-LIFS information by means of LEC for in vivo tissue diagnosis, and specifically for detecting inflammation in atherosclerotic lesions, a key marker of plaque vulnerability.

  14. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Shahbazmohamadi, Sina; Asadizanjani, Navid

    2018-05-01

    In this paper, a comprehensive set of techniques for quality control and authentication of packaged integrated circuits (IC) using terahertz (THz) time-domain spectroscopy (TDS) is developed. By material characterization, the presence of unexpected materials in counterfeit components is revealed. Blacktopping layers are detected using THz time-of-flight tomography, and thickness of hidden layers is measured. Sanded and contaminated components are detected by THz reflection-mode imaging. Differences between inside structures of counterfeit and authentic components are revealed through developing THz transmission imaging. For enabling accurate measurement of features by THz transmission imaging, a novel resolution enhancement technique (RET) has been developed. This RET is based on deconvolution of the THz image and the THz point spread function (PSF). The THz PSF is mathematically modeled through incorporating the spectrum of the THz imaging system, the axis of propagation of the beam, and the intensity extinction coefficient of the object into a Gaussian beam distribution. As a result of implementing this RET, the accuracy of the measurements on THz images has been improved from 2.4 mm to 0.1 mm and bond wires as small as 550 μm inside the packaging of the ICs are imaged.

  15. Soil profile property estimation with field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  16. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  17. Estimates of diet selection in cattle grazing cornstalk residues by measurement of chemical composition and near infrared reflectance spectroscopy of diet samples collected by ruminal evacuation.

    PubMed

    Petzel, Emily A; Smart, Alexander J; St-Pierre, Benoit; Selman, Susan L; Bailey, Eric A; Beck, Erin E; Walker, Julie A; Wright, Cody L; Held, Jeffrey E; Brake, Derek W

    2018-05-04

    Six ruminally cannulated cows (570 ± 73 kg) fed corn residues were placed in a 6 × 6 Latin square to evaluate predictions of diet composition from ruminally collected diet samples. After complete ruminal evacuation, cows were fed 1-kg meals (dry matter [DM]-basis) containing different combinations of cornstalk and leaf and husk (LH) residues in ratios of 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0. Diet samples from each meal were collected by removal of ruminal contents after 1-h and were either unrinsed, hand-rinsed or machine-rinsed to evaluate effects of endogenous compounds on predictions of diet composition. Diet samples were analyzed for neutral (NDF) and acid (ADF) detergent fiber, acid detergent insoluble ash (ADIA), acid detergent lignin (ADL), crude protein (CP), and near infrared reflectance spectroscopy (NIRS) to calculate diet composition. Rinsing type increased NDF and ADF content and decreased ADIA and CP content of diet samples (P < 0.01). Rinsing tended to increase (P < 0.06) ADL content of diet samples. Differences in concentration between cornstalk and LH residues within each chemical component were standardized by calculating a coefficient of variation (CV). Accuracy and precision of estimates of diet composition were analyzed by regressing predicted diet composition and known diet composition. Predictions of diet composition were improved by increasing differences in concentration of chemical components between cornstalk and LH residues up to a CV of 22.6 ± 5.4%. Predictions of diet composition from unrinsed ADIA and machine-rinsed NIRS had the greatest accuracy (slope = 0.98 and 0.95, respectively) and large coefficients of determination (r2 = 0.86 and 0.74, respectively). Subsequently, a field study (Exp. 2) was performed to evaluate predictions of diet composition in cattle (646 ± 89 kg) grazing corn residue. Five cows were placed in 1 of 10 paddocks and allowed to graze continuously or to strip-graze corn residues. Predictions of diet composition from ADIA, ADL, and NIRS did not differ (P = 0.99), and estimates of cornstalk intake tended to be greater (P = 0.09) in strip-grazed compared to continuously grazed cows. These data indicate that diet composition can be predicted by chemical components or NIRS by ruminal collection of diet samples among cattle grazing corn residues.

  18. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    PubMed

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  19. Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique

    NASA Astrophysics Data System (ADS)

    Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li

    2018-05-01

    Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.

  20. Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy

    PubMed Central

    Vendelin, Marko; Birkedal, Rikke

    2008-01-01

    A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes. PMID:18815224

  1. Observations of the R reflector and sediment interface reflection at the Shallow Water '06 Central Site.

    PubMed

    Choi, Jee Woong; Dahl, Peter H; Goff, John A

    2008-09-01

    Acoustic bottom-interacting measurements from the Shallow Water '06 experiment experiment (frequency range 1-20 kHz) are presented. These are co-located with coring and stratigraphic studies showing a thin (approximately 20 cm) higher sound speed layer overlaying a thicker (approximately 20 m) lower sound speed layer ending at a high-impedance reflector (R reflector). Reflections from the R reflector and analysis of the bottom reflection coefficient magnitude for the upper two sediment layers confirm both these features. Geoacoustic parameters are estimated, dispersion effects addressed, and forward modeling using the parabolic wave equation undertaken. The reflection coefficient measurements suggest a nonlinear attenuation law for the thin layer of sandy sediments.

  2. On Sound Reflection in Superfluid

    NASA Astrophysics Data System (ADS)

    Melnikovsky, L. A.

    2008-02-01

    We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.

  3. Prediction of Ba, Co and Ni for tropical soils using diffuse reflectance spectroscopy and X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica

    2017-04-01

    Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.

  4. Bidirectional reflection functions from surface bump maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabral, B.; Max, N.; Springmeyer, R.

    1987-04-29

    The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less

  5. INTEGRATED AND FIBER OPTICS: Anomalous reflection of light from the surface of an amplifying corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Avrutskiĭ, I. A.; Sychugov, V. A.

    1989-02-01

    The problem of reflection of light from the surface of an amplifying corrugated waveguide is solved. An increase in the waveguide gain increases considerably the reflection coefficient and reduces the spectral width of the reflection peak.

  6. Estimation of soil profile properties using field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  7. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    NASA Astrophysics Data System (ADS)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-03-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.

  8. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  9. Case study: in vivo stress diagnostics by spectroscopic determination of the cutaneous carotenoid antioxidant concentration in midwives depending on shift work

    NASA Astrophysics Data System (ADS)

    Maeter, H.; Briese, V.; Gerber, B.; Darvin, M. E.; Lademann, J.; Olbertz, D. M.

    2013-10-01

    Laser spectroscopic methods, for instance resonance Raman spectroscopy and reflectance spectroscopy, permit us for the first time to investigate the antioxidative status in human skin non-invasively by measurement of carotenoid concentration. The individual antioxidant concentration of the human skin is determined by the nutritional habits, on the one hand, and by stressors, such as shift work, on the other. Due to the disturbance of the circadian rhythm and melatonin secretion, shift work is associated with, inter alia, insomnia and gastrointestinal disorders. The study at hand was the first to determine the cutaneous antioxidant concentration of midwives using reflectance spectroscopy and to relate the results to shift work. Seven midwives took part in the study. An LED-based compact scanner system was used for non-invasive measurements of carotenoids in human skin. The measuring principle is based on reflection spectroscopy. The study at hand suggests that the cutaneous antioxidative status may be adversely affected by shift work. Despite numerous international strategies of programmes available which invite people to eat more healthily, there are only a few measures aiming at stress reduction and management. In this field the use of reflectance spectroscopic investigation methods could play an essential role in the future.

  10. Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada

    NASA Technical Reports Server (NTRS)

    Felzer, Benjamin; Hauff, Phoebe; Goetz, Alexander F. H.

    1994-01-01

    Buddingtonite, an ammonium-bearing feldspar diagnostic of volcanic-hosted alteration, can be identified and, in some cases, quantitatively measured using short-wave infrared (SWIR) reflectance spectroscopy. In this study over 200 samples from Cuprite, Nevada, were evaluated by X ray diffraction, chemical analysis, scanning electron microscopy, and SWIR reflectance spectroscopy with the objective of developing a quantitative remote-sensing technique for rapid determination of the amount of ammonium or buddingtonite present, and its distribution across the site. Based upon the Hapke theory of radiative transfer from particulate surfaces, spectra from quantitative, physical mixtures were compared with computed mixture spectra. We hypothesized that the concentration of ammonium in each sample is related to the size and shape of the ammonium absorption bands and tested this hypothesis for samples of relatively pure buddingtonite. We found that the band depth of the 2.12-micron NH4 feature is linearly related to the NH4 concentration for the Cuprite buddingtonite, and that the relationship is approximately exponential for a larger range of NH4 concentrations. Associated minerals such as smectite and jarosite suppress the depth of the 2.12-micron NH4 absorption band. Quantitative reflectance spectroscopy is possible when the effects of these associated minerals are also considered.

  11. Experimental determination of the viscous flow permeability of porous materials by measuring reflected low frequency acoustic waves

    NASA Astrophysics Data System (ADS)

    Berbiche, A.; Sadouki, M.; Fellah, Z. E. A.; Ogam, E.; Fellah, M.; Mitri, F. G.; Depollier, C.

    2016-01-01

    An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).

  12. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  13. Reflection and interference of electromagnetic waves in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Kyle, H. L.

    1973-01-01

    Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.

  14. Specular Reflection and Diffuse Reflectance Spectroscopy of Soils

    USDA-ARS?s Scientific Manuscript database

    Studies on the occurrence and effects of specular reflection in mid-infrared spectra of soils have shown that distortions due to specular reflection occur for both organic (humic acid) and non-organic fractions (carbonates, silica, ashed fraction of soil). The results demonstrated explain why the s...

  15. Characterization of Carrier Concentration and Mobility in n-type SiC Wafers Using Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Narita, Katsutoshi; Hijikata, Yasuto; Yaguchi, Hiroyuki; Yoshida, Sadafumi; Nakashima, Shinichi

    2004-08-01

    We have estimated the free-carrier concentration and drift mobility in n-type 6H-SiC wafers in the carrier concentration range of 1017-1019 cm-3 from far- and mid-infrared (30-2000 cm-1) reflectance spectra obtained at room temperature. A modified classical dielectric function model was employed for the analysis. We found good agreement between the electrical properties derived from infrared reflectance spectroscopy and those derived from Hall effect measurements. We have demonstrated the spatial mapping of carrier concentration and mobility for commercially produced 2 inch SiC wafers.

  16. In situ temperature measurement of. alpha. -mercuric iodide by reflection spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nason, D.; Burger, A.

    1991-12-30

    Crystal face temperatures of single crystals of {alpha}-HgI{sub 2} growing in transparent ampules by physical vapor transport have been measured, {ital in} {ital situ}, by a novel, noncontact method which may be called reflectance spectroscopy thermometry. The method is based on the temperature dependence of the energy of the free-exciton peak as detected with a low-energy reflected beam. As presently configured, the accuracy is {plus minus}1.5 {degree}C for a slowly varying surface temperature. The method has potential for noncontact temperature measurement in some systems for which pyrometry is unsatisfactory.

  17. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  18. Time-dependent diffuse reflectance spectroscopy for in vivo characterization of pediatric epileptogenic brain lesions

    NASA Astrophysics Data System (ADS)

    Oh, Sanghoon; Ragheb, John; Bhatia, Sanjiv; Sandberg, David; Johnson, Mahlon; Fernald, Bradley; Lin, Wei-Chiang

    2008-02-01

    Optical spectroscopy for in vivo tissue diagnosis is performed traditionally in a static manner; a snap shot of the tissue biochemical and morphological characteristics is captured through the interaction between light and the tissue. This approach does not capture the dynamic nature of a living organ, which is critical to the studies of brain disorders such as epilepsy. Therefore, a time-dependent diffuse reflectance spectroscopy system with a fiber-optic probe was designed and developed. The system was designed to acquire broadband diffuse reflectance spectra (240 ~ 932 nm) at an acquisition rate of 33 Hz. The broadband spectral acquisition feature allows simultaneous monitoring of various physiological characteristics of tissues. The utility of such a system in guiding pediatric epilepsy surgery was tested in a pilot clinical study including 13 epilepsy patients and seven brain tumor patients. The control patients were children undergoing suregery for brain tumors in which measurements were taken from normal brain exposed during the surgery. Diffuse reflectance spectra were acquired for 12 seconds from various parts of the brain of the patients during surgery. Recorded spectra were processed and analyzed in both spectral and time domains to gain insights into the dynamic changes in, for example, hemodynamics of the investigated brain tissue. One finding from this pilot study is that unsynchronized alterations in local blood oxygenation and local blood volume were observed in epileptogenic cortex. These study results suggest the advantage of using a time-dependent diffuse reflectance spectroscopy system to study epileptogenic brain in vivo.

  19. Application of Near Infrared Reflectance Spectroscopy for Rapid and Non-Destructive Discrimination of Hulled Barley, Naked Barley, and Wheat Contaminated with Fusarium

    PubMed Central

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Oh, Kyoungmin; Kim, Geonseob; Ham, Hyeonheui; Kim, Seongmin; Kim, Moon S.

    2018-01-01

    Fusarium is a common fungal disease in grains that reduces the yield of barley and wheat. In this study, a near infrared reflectance spectroscopic technique was used with a statistical prediction model to rapidly and non-destructively discriminate grain samples contaminated with Fusarium. Reflectance spectra were acquired from hulled barley, naked barley, and wheat samples contaminated with Fusarium using near infrared reflectance (NIR) spectroscopy with a wavelength range of 1175–2170 nm. After measurement, the samples were cultured in a medium to discriminate contaminated samples. A partial least square discrimination analysis (PLS-DA) prediction model was developed using the acquired reflectance spectra and the culture results. The correct classification rate (CCR) of Fusarium for the hulled barley, naked barley, and wheat samples developed using raw spectra was 98% or higher. The accuracy of discrimination prediction improved when second and third-order derivative pretreatments were applied. The grains contaminated with Fusarium could be rapidly discriminated using spectroscopy technology and a PLS-DA discrimination model, and the potential of the non-destructive discrimination method could be verified. PMID:29301319

  20. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    PubMed Central

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-01-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Sylvia -Monique; Wilson, Kathryn; Koch-Muller, Monika

    Majoritic garnet, characterized by an excess of silicon (>3 Si per formula unit), is considered one of the major phases of the Earth’s transition zone from 410-660 km depth. Quantifying the H 2O content of nominally anhydrous mantle minerals is necessary to evaluate their water storage capacity from experiments and modeling the Earth’s deep water cycle. We present mineral-specific infrared absorption coefficients for the purpose of quantifying the amount of water incorporated into majorite as hydroxyl point defects. A suite of majoritic garnet samples with varying proportions of Si, Fe, Al, Cr and H 2O was synthesized at conditions ofmore » 18-19 GPa and 1500-1800°C. Single-crystals were characterized using X-ray diffraction, electron microprobe analysis, secondary Ion Mass spectrometry (SIMS), IR, Raman and Mössbauer spectroscopy. We utilize SIMS and Raman spectroscopy in combination with IR spectroscopy to provide IR absorption coefficients for water in majoritic garnets with the general mineral formula (Mg,Fe) 3(Si,Mg,Fe,Al,Cr) 2[SiO4] 3. Furthermore, the IR absorption coefficient for majoritic garnet in the OH stretching region is frequency-dependent and ranges from 10 470 ± 3100 Lmol-1cm-2 to 23 400 ± 2300 Lmol -1cm -2.« less

  2. Quantification of water in majoritic garnet

    DOE PAGES

    Thomas, Sylvia -Monique; Wilson, Kathryn; Koch-Muller, Monika; ...

    2015-05-01

    Majoritic garnet, characterized by an excess of silicon (>3 Si per formula unit), is considered one of the major phases of the Earth’s transition zone from 410-660 km depth. Quantifying the H 2O content of nominally anhydrous mantle minerals is necessary to evaluate their water storage capacity from experiments and modeling the Earth’s deep water cycle. We present mineral-specific infrared absorption coefficients for the purpose of quantifying the amount of water incorporated into majorite as hydroxyl point defects. A suite of majoritic garnet samples with varying proportions of Si, Fe, Al, Cr and H 2O was synthesized at conditions ofmore » 18-19 GPa and 1500-1800°C. Single-crystals were characterized using X-ray diffraction, electron microprobe analysis, secondary Ion Mass spectrometry (SIMS), IR, Raman and Mössbauer spectroscopy. We utilize SIMS and Raman spectroscopy in combination with IR spectroscopy to provide IR absorption coefficients for water in majoritic garnets with the general mineral formula (Mg,Fe) 3(Si,Mg,Fe,Al,Cr) 2[SiO4] 3. Furthermore, the IR absorption coefficient for majoritic garnet in the OH stretching region is frequency-dependent and ranges from 10 470 ± 3100 Lmol-1cm-2 to 23 400 ± 2300 Lmol -1cm -2.« less

  3. Environmental influences on the friction behavior of glasses

    NASA Astrophysics Data System (ADS)

    Rolf, Jacqueline C.

    Two aspects of the friction behavior of glasses were the main focus of this investigation. First, the influence of aqueous inorganic salt solutions on friction and damage on soda-lime-silica, vitreous silica, and an aluminosilicate glass high in alumina content were studied. It was found that the pH of a solution has a higher influence on the friction behavior than the concentration of electrolyte and the size of ions in the solution. A minimum at the i.e.p. (iso-electric point) of the network former of the glass was found, i.e., soda-lime-silica and vitreous silica showed a small minimum in friction at a pH of about 1.8, which corresponds to the i.e.p. of silica. Two small minima were observed for the aluminosilicate in the vicinities of the i.e.p.'s of silica and alumina respectively. The damage created by the frictional contact showed variations with environment. Microindentation experiments on the same glasses were performed in the same environments to compare the responses to the findings of the friction test. For soda-lime-silica and vitreous silica, a maximum in hardness was found at the i.e.p. of the glasses, and for the aluminosilicate, two maxima were found in the vicinity of the i.e.p.'s of silica and alumina respectively, confirming the findings of the friction tests. A data-fitting analysis showed that the major contribution to the observed trends originates from the elastic properties of the surface. A model describing the influence of surface charging on the mechanical properties of the glass surface is suggested. The second major aspect of the study was the influence of temperature on the friction coefficients and resulting surface damage of commercial glasses. Four float glasses were selected, and vitreous silica was tested for comparison. As expected, the coefficients of friction were found to increase, with increasing temperature. Very small differences in composition had an effect on the temperature dependence of the coefficients of friction. Tin and air sides exhibited differences in friction behavior, which were ascribed to chemical differences between the two sides. The float bath seems to have a large effect on friction also, since the air sides showed larger variations in coefficients of friction than the tin sides. A technique for quantitative analysis of surface damage was developed, and coefficients of friction and surface damage were found to correlate very well. Infrared reflection and emission spectroscopy were used to analyze the surface structural changes as a function of temperature. Float B, a glass which exhibited good damage resistance, displayed a very different spectrum than the other float glasses. Contact angle measurements confirmed the results of the IR-spectroscopy work and the friction tests.

  4. A transmission-grating-modulated pump-probe absorption spectroscopy and demonstration of diffusion dynamics of photoexcited carriers in bulk intrinsic GaAs film.

    PubMed

    Chen, Ke; Wang, Wenfang; Chen, Jianming; Wen, Jinhui; Lai, Tianshu

    2012-02-13

    A transmission-grating-modulated time-resolved pump-probe absorption spectroscopy is developed and formularized. The spectroscopy combines normal time-resolved pump-probe absorption spectroscopy with a binary transmission grating, is sensitive to the spatiotemporal evolution of photoinjected carriers, and has extensive applicability in the study of diffusion transport dynamics of photoinjected carriers. This spectroscopy has many advantages over reported optical methods to measure diffusion dynamics, such as simple experimental setup and operation, and high detection sensitivity. The measurement of diffusion dynamics is demonstrated on bulk intrinsic GaAs films. A carrier density dependence of carrier diffusion coefficient is obtained and agrees well with reported results.

  5. Numerical computations on one-dimensional inverse scattering problems

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Hariharan, S. I.

    1983-01-01

    An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.

  6. Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples.

    PubMed

    Borovkova, Mariia; Khodzitsky, Mikhail; Demchenko, Petr; Cherkasova, Olga; Popov, Alexey; Meglinski, Igor

    2018-05-01

    We apply terahertz time-domain spectroscopy for the quantitative non-invasive assessment of the water content in biological samples, such as Carpinus caroliniana tree leaves and pork muscles. The developed experimental terahertz time-domain spectroscopy system operates both in transmission and reflection modes. The Landau-Looyenga-Lifshitz-based model is used for the calculation of the water concentration within the samples. The results of the water concentration measurements are compared with the results of the gravimetric measurements. The obtained results show that the water content in biological samples can be measured non-invasively, with a high accuracy, utilizing terahertz waves in transmission and reflection modes.

  7. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  8. Mathematical modeling of reflectance and intrinsic fluorescence for cancer detection in human pancreatic tissue

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Chandra, Malavika; Scheiman, James; Simeone, Diane; McKenna, Barbara; Purdy, Julianne; Mycek, Mary-Ann

    2009-02-01

    Pancreatic adenocarcinoma has a five-year survival rate of only 4%, largely because an effective procedure for early detection has not been developed. In this study, mathematical modeling of reflectance and fluorescence spectra was utilized to quantitatively characterize differences between normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma. Initial attempts at separating the spectra of different tissue types involved dividing fluorescence by reflectance, and removing absorption artifacts by applying a "reverse Beer-Lambert factor" when the absorption coefficient was modeled as a linear combination of the extinction coefficients of oxy- and deoxy-hemoglobin. These procedures demonstrated the need for a more complete mathematical model to quantitatively describe fluorescence and reflectance for minimally-invasive fiber-based optical diagnostics in the pancreas.

  9. Analytical and numerical solution for wave reflection from a porous wave absorber

    NASA Astrophysics Data System (ADS)

    Magdalena, Ikha; Roque, Marian P.

    2018-03-01

    In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.

  10. TM surface wave diffraction by a truncated dielectric slab recessed in a perfectly conducting surface. [considering flush mounted space shuttle antenna

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Kouyoumjian, R. G.

    1974-01-01

    The diffraction of a TM sub o surface wave by a terminated dielectric slab which is flush mounted in a perfectly conducting surface is studied. The incident surface wave gives rise to waves reflected and diffracted by the termination; these reflected and diffracted fields may be expressed in terms of the geometrical theory of diffraction by introducing surface wave reflection and diffraction coefficients which are associated with the termination. In this investigation, the surface wave reflection and diffraction coefficients have been deduced from a formally exact solution to this canonical problem. The solution is obtained by a combination of the generalized scattering matrix technique and function theoretic methods.

  11. Scattering of three-dimensional plane waves in a self-reinforced half-space lying over a triclinic half-space

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy

    2018-06-01

    The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.

  12. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  13. Finite-floe wave reflection and transmission coefficients from a semi-infinite model

    NASA Astrophysics Data System (ADS)

    Meylan, Michael; Squire, Vernon A.

    1993-07-01

    A model to describe the reflection and transmission of ocean waves by a single ice floe is developed from the semi-infinite model of Fox and Squire (1990, 1991). This is done by considering the coefficients for the transition from ice to water in the semi-infinite case in terms of those from water to ice. Finite-floe reflection and transmission coefficients, R and T, respectively, are then found as the solution of a set of four simple simultaneous equations. The properties of R and T are investigated, and examples of their absolute values are given for several geometries. |R| compares well with the predictions of a precise model in the case of deep water. These results suggest that the analytical model described has applications to defining the sea state within marginal ice zones, given the floe size and ice thickness distributions and the incoming sea wave spectrum.

  14. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  15. Tissue differentiation by diffuse reflectance spectroscopy for automated oral and maxillofacial laser surgery: ex vivo pilot study

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Schmidt, Michael; Douplik, Alexandre

    2010-02-01

    Remote laser surgery lacks of haptic feedback during the laser ablation of tissue. Hence, there is a risk of iatrogenic damage or destruction of anatomical structures like nerves or salivary glands. Diffuse reflectance spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from seven various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the seven tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerves and salivary glands as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating tissues as guidance for oral and maxillofacial laser surgery by means of diffuse reflectance.

  16. Cartilage analysis by reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.

    2015-07-01

    A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.

  17. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism.

    PubMed

    Kino, Saiko; Omori, Suguru; Katagiri, Takashi; Matsuura, Yuji

    2016-02-01

    A mid-infrared attenuated total reflection (ATR) spectroscopy system employing hollow optical fibers and a trapezoidal multi-reflection ATR prism has been developed to measure blood glucose levels. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. An analysis of in vivo measurements of human inner lip mucosa revealed clear signatures of glucose in the difference spectra between ones taken during the fasting state and ones taken after ingestion of glucose solutions. A calibration plot based on the absorption peak at 1155 cm(-1) that originates from the pyranose ring structure of glucose gave measurement errors less than 20%.

  18. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  19. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  20. Porosity dependence of terahertz emission of porous silicon investigated using reflection geometry terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Mabilangan, Arvin I.; Lopez, Lorenzo P.; Faustino, Maria Angela B.; Muldera, Joselito E.; Cabello, Neil Irvin F.; Estacio, Elmer S.; Salvador, Arnel A.; Somintac, Armando S.

    2016-12-01

    Porosity dependent terahertz emission of porous silicon (PSi) was studied. The PSi samples were fabricated via electrochemical etching of boron-doped (100) silicon in a solution containing 48% hydrofluoric acid, deionized water and absolute ethanol in a 1:3:4 volumetric ratio. The porosity was controlled by varying the supplied anodic current for each sample. The samples were then optically characterized via normal incidence reflectance spectroscopy to obtain values for their respective refractive indices and porosities. Absorbance of each sample was also computed using the data from its respective reflectance spectrum. Terahertz emission of each sample was acquired through terahertz - time domain spectroscopy. A decreasing trend in the THz signal power was observed as the porosity of each PSi was increased. This was caused by the decrease in the absorption strength as the silicon crystallite size in the PSi was minimized.

  1. Determination of nutritional parameters of yoghurts by FT Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Czaja, Tomasz; Baranowska, Maria; Mazurek, Sylwester; Szostak, Roman

    2018-05-01

    FT-Raman quantitative analysis of nutritional parameters of yoghurts was performed with the help of partial least squares models. The relative standard errors of prediction for fat, lactose and protein determination in the quantified commercial samples equalled to 3.9, 3.2 and 3.6%, respectively. Models based on attenuated total reflectance spectra of the liquid yoghurt samples and of dried yoghurt films collected with the single reflection diamond accessory showed relative standard errors of prediction values of 1.6-5.0% and 2.7-5.2%, respectively, for the analysed components. Despite a relatively low signal-to-noise ratio in the obtained spectra, Raman spectroscopy, combined with chemometrics, constitutes a fast and powerful tool for macronutrients quantification in yoghurts. Errors received for attenuated total reflectance method were found to be relatively higher than those for Raman spectroscopy due to inhomogeneity of the analysed samples.

  2. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    PubMed

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H.; Troen, Aron M.; Fantini, Sergio

    2012-08-01

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85±6 years) and 19 young adults (mean age, 28±4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10±4 μM, 4±3 μM, 14±5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.

  4. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy.

    PubMed

    Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H; Troen, Aron M; Fantini, Sergio

    2012-08-01

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (μ's). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10 ± 4 μM, 4 ± 3 μM, 14 ± 5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.

  5. Computationally effective solution of the inverse problem in time-of-flight spectroscopy.

    PubMed

    Kamran, Faisal; Abildgaard, Otto H A; Subash, Arman A; Andersen, Peter E; Andersson-Engels, Stefan; Khoptyar, Dmitry

    2015-03-09

    Photon time-of-flight (PTOF) spectroscopy enables the estimation of absorption and reduced scattering coefficients of turbid media by measuring the propagation time of short light pulses through turbid medium. The present investigation provides a comparison of the assessed absorption and reduced scattering coefficients from PTOF measurements of intralipid 20% and India ink-based optical phantoms covering a wide range of optical properties relevant for biological tissues and dairy products. Three different models are used to obtain the optical properties by fitting to measured temporal profiles: the Liemert-Kienle model (LKM), the diffusion model (DM) and a white Monte-Carlo (WMC) simulation-based algorithm. For the infinite space geometry, a very good agreement is found between the LKM and WMC, while the results obtained by the DM differ, indicating that the LKM can provide accurate estimation of the optical parameters beyond the limits of the diffusion approximation in a computational effective and accurate manner. This result increases the potential range of applications for PTOF spectroscopy within industrial and biomedical applications.

  6. Wavelength selection for portable noninvasive blood component measurement system based on spectral difference coefficient and dynamic spectrum

    NASA Astrophysics Data System (ADS)

    Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling

    2018-03-01

    Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.

  7. Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in reaction-diffusion systems: The case of Ca2 + and its dyes

    NASA Astrophysics Data System (ADS)

    Sigaut, Lorena; Villarruel, Cecilia; Ponce, María Laura; Ponce Dawson, Silvina

    2017-06-01

    Many cell signaling pathways involve the diffusion of messengers that bind and unbind to and from intracellular components. Quantifying their net transport rate under different conditions then requires having separate estimates of their free diffusion coefficient and binding or unbinding rates. In this paper, we show how performing sets of fluorescence correlation spectroscopy (FCS) experiments under different conditions, it is possible to quantify free diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practical implementation for the case of the universal second messenger, calcium (Ca2 +) and single-wavelength dyes that increase their fluorescence upon Ca2 + binding. We validate the approach with experiments performed in aqueous solutions containing Ca2 + and Fluo4 dextran (both in its high and low affinity versions). Performing FCS experiments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest.

  8. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  9. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  10. Research studies of aging changes of hyaline cartilage surface by using Raman-scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Dolgushkin, D. A.; Volova, L. T.; Lazarev, V. A.; Tyumchenkova, A. S.; Markova, M. D.

    2017-08-01

    The paper presents the results of a comparative analysis by the method of Raman spectroscopy of the joint hyaline cartilage of adults and children. Differences in the spectral characteristics of the surface of articular cartilage are shown. New optical coefficients have been introduced, which make it possible to evaluate the age-related changes in cartilaginous tissue.

  11. Diffuse reflectance spectroscopy for monitoring diabetic foot ulcer - A pilot study

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Sujatha, N.; Narayanamurthy, V. B.; Seshadri, V.; Poddar, Richa

    2014-02-01

    Foot ulceration due to diabetes mellitus is a major problem affecting 12-25% of diabetic subjects in their lifetime. An untreated ulcer further gets infected which causes necrosis leading to amputation of lower extremities. Early identification of risk factors and treatment for these chronic wounds would reduce health care costs and improve the quality of life for people with diabetes. Recent clinical investigations have shown that a series of factors including reduced oxygen delivery and disturbed metabolism have been observed on patients with foot ulceration due to diabetes. Also, these factors can impair the wound healing process. Optical techniques based on diffuse reflectance spectroscopy provide characteristic spectral finger prints shed light on tissue oxygenation levels and morphological composition of a tissue. This study deals with the application of diffuse reflectance intensity ratios based on oxyhemoglobin bands (R542/R580), ratios of oxy- and deoxy-hemoglobin bands (R580/R555), total hemoglobin concentration and hemoglobin oxygen saturation between normal and diabetic foot ulcer sites. Preliminary results obtained are found to be promising indicating the application of reflectance spectroscopy in the assessment of foot ulcer healing.

  12. Study on fast measurement of sugar content of yogurt using Vis/NIR spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    In order to measuring the sugar content of yogurt rapidly, a fast measurement of sugar content of yogurt using Vis/NIR-spectroscopy techniques was established. 25 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The sugar content of yogurt on positions scanned by spectrum were measured by a sugar content meter. The mathematical model between sugar content and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS). The correlation coefficient of sugar content based on PLS model is more than 0.894, and standard error of calibration (SEC) is 0.356, standard error of prediction (SEP) is 0.389. Through predicting the sugar content quantitatively of 35 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0.934. The results show the good to excellent prediction performance. The Vis/NIR spectroscopy technique had significantly greater accuracy for determining the sugar content. It was concluded that the Vis/NIRS measurement technique seems reliable to assess the fast measurement of sugar content of yogurt, and a new method for the measurement of sugar content of yogurt was established.

  13. Airborne and ground-based remote sensing for the estimation of evapotranspiration and yield of bean, potato, and sugar beet crops

    NASA Astrophysics Data System (ADS)

    Jayanthi, Harikishan

    The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were compared with the actual yields extracted from the ground. The remote sensing-derived yields compared well with the actual yields sampled on the ground. This research has highlighted the importance of the date of spectral emergence, the need to know the duration for which the crops stand on the ground, and the need to identify critical periods of time when multispectral coverages are essential for reliable tuber yield estimation.

  14. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    PubMed

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  15. In vivo spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Nguyen, John Quan M.; Durkin, Anthony J.

    2012-10-01

    Monitoring of tissue blood volume and local oxygen saturation can inform the assessment of tissue health, healing, and dysfunction. These quantities can be estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in skin can be confounded by the strong absorption of melanin in the epidermis and epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. Therefore, a method is desired that decouples the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. A previously developed inverse method based on a neural network forward model was applied to simulated spatial frequency domain reflectance of skin for multiple wavelengths in the near infrared. It is demonstrated that the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis can be determined independently and with minimal coupling. Then, the same inverse method was applied to reflectance measurements from a tissue simulating phantom and in vivo human skin. Oxygen saturation and total hemoglobin concentrations were estimated from the volar forearms of weakly and strongly pigmented subjects using a standard homogeneous model and the present two layer model.

  16. Optical mechanisms for detection of lipid-rich atherosclerotic plaques by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hull, Edward L.; Gardner, Craig M.; Muller, James E.; Muller, Vianna J.; Salvato, Christopher V.; Lisauskas, Jennifer B.; Caplan, Jay D.

    2008-02-01

    InfraReDx has developed a spectroscopic cardiac catheter system capable of acquiring near-infrared (NIR) reflectance spectra from coronary arteries in vivo for identification of lipid-rich plaques of interest (LRP). The spectral data are analyzed with a chemometric model, producing a hyperspectral image (a chemogram) used to identify LRP in the interrogated region. In this paper, we describe a FT-IR microscopy system for measurement of the NIR scattering and absorption properties of healthy and diseased regions of human coronary arteries in small volumes (~10 μl). Scattering and absorption coefficients are obtained from sequential 140 um x 140 um regions of interest across the face of 500-micron thick, saline-irrigated fresh coronary artery sections. A customized FTIR microscope, measurement protocol, and inversion algorithm are used for optical property determination, and the system is calibrated using measurements of tissue-simulating phantoms having well-characterized optical properties. Tissue optical properties are co-registered with brightfield transmission images as well as with stained histologic thin sections (H&E, Movat Pentachrome, and Oil Red O) acquired from an immediately-adjacent section. The ultimate goal of these experiments is to establish a mechanistic link between the multivariate model predictions displayed on the InfraReDx chemogram and the light-tissue interactions that govern the measured NIR reflectance spectra.

  17. Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique

    NASA Astrophysics Data System (ADS)

    Chang, Tianying; Zhang, Xiansheng; Yang, Chuanfa; Sun, Zhonglin; Cui, Hong-Liang

    2017-04-01

    The complex dielectric properties of non-polar solid polymer materials were measured in the terahertz (THz) band by a free-space technique employing a frequency-extended vector network analyzer (VNA), and by THz time-domain spectroscopy (TDS). Mindful of THz wave’s unique characteristics, the free-space method for measurement of material dielectric properties in the microwave band was expanded and improved for application in the THz frequency region. To ascertain the soundness and utility of the proposed method, measurements of the complex dielectric properties of a variety of polymers were carried out, including polytetrafluoroethylene (PTFE, known also by the brand name Teflon), polypropylene (PP), polyethylene (PE), and glass fiber resin (Composite Stone). The free-space method relies on the determination of electromagnetic scattering parameters (S-parameters) of the sample, with the gated-reflect-line (GRL) calibration technique commonly employed using a VNA. Subsequently, based on the S-parameters, the dielectric constant and loss characteristic of the sample were calculated by using a Newtonian iterative algorithm. To verify the calculated results, THz TDS technique, which produced Fresnel parameters such as reflection and transmission coefficients, was also used to independently determine the dielectric properties of these polymer samples, with results satisfactorily corroborating those obtained by the free-space extended microwave technique.

  18. Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra

    NASA Astrophysics Data System (ADS)

    Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae

    2018-07-01

    It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.

  19. NONLINEAR OPTICAL PHENOMENA: Self-reflection in a system of excitons and biexcitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Khadzhi, P. I.; Lyakhomskaya, K. D.

    1999-10-01

    The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.

  20. Asteroid (21) Lutetia: Disk-resolved photometric analysis of Baetica region

    NASA Astrophysics Data System (ADS)

    Hasselmann, P. H.; Barucci, M. A.; Fornasier, S.; Leyrat, C.; Carvano, J. M.; Lazzaro, D.; Sierks, H.

    2016-03-01

    (21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15° to 156.8°. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) of the OSIRIS system on-board Rosetta taken during the fly-by. Then, we photometrically modeled the region using Minnaert disk-function and Akimov phase function to obtain a resolved spectral slope map at phase angles of 5 ° and 20 ° . We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening (- 0.04 ± 0.045 % μm-1deg-1). In the next step, we applied the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm) and we obtained normal albedo maps and Hapke parameter maps for NAC F82+F22. On Baetica, at 649.2 nm, the geometric albedo is 0.205 ± 0.005 , the average single-scattering albedo is 0.181 ± 0.005 , the average asymmetric factor is - 0.342 ± 0.003 , the average shadow-hiding opposition effect amplitude and width are 0.824 ± 0.002 and 0.040 ± 0.0007 , the average roughness slope is 11.45 ° ± 3 ° and the average porosity is 0.85 ± 0.002 . We are unable to confirm the presence of coherent-backscattering mechanism. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation. In addition, we compared the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) and Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy) parameters with laboratory samples and other small Solar System bodies visited by space missions.

  1. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    PubMed

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.

  2. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part I--Fundamentals and Examples

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. Several examples of the use of FTIR-ATR spectroscopy in different undergraduate chemistry laboratory courses are presented here. These…

  3. Determination of organic compounds in water using ultraviolet LED

    NASA Astrophysics Data System (ADS)

    Kim, Chihoon; Ji, Taeksoo; Eom, Joo Beom

    2018-04-01

    This paper describes a method of detecting organic compounds in water using an ultraviolet LED (280 nm) spectroscopy system and a photodetector. The LED spectroscopy system showed a high correlation between the concentration of the prepared potassium hydrogen phthalate and that calculated by multiple linear regression, indicating an adjusted coefficient of determination ranging from 0.953-0.993. In addition, a comparison between the performance of the spectroscopy system and the total organic carbon analyzer indicated that the difference in concentration was small. Based on the close correlation between the spectroscopy and photodetector absorbance values, organic measurement with a photodetector could be configured for monitoring.

  4. Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Däubler, Jürgen; Thonke, Klaus; Sauer, Rolf; Schley, Pascal; Goldhahn, Rüdiger

    2008-06-01

    Unintentionally degenerately doped n -type hexagonal wurtzite InN samples were studied by using Fourier-transform photoluminescence spectroscopy and reflectivity measurements. We found in luminescence overlapping band acceptor (e,A0) transitions related to two different acceptors with a strong enhancement of their intensities close to the Fermi energy of the electrons recombining with the localized holes. Our explanation is in terms of a Fermi-edge singularity of the electrons due to strongly increased electron-hole scattering. Electron-hole pairs with such resonantly enhanced oscillator strengths have been referred to as Mahan excitons. Temperature-dependent reflectivity measurements confirm this interpretation.

  5. The numerical simulation of Lamb wave propagation in laser welding of stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang

    2017-12-01

    In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,

  6. Application of Diffuse Reflectance FT-IR Spectroscopy for the Surface Study of Kevlar Fibers

    NASA Astrophysics Data System (ADS)

    Chatzi, E. G.; Ishida, H.; Koenig, J. L.

    1985-12-01

    The surfaces of Kevlar-49 aramid fibers, being used in high-performance composite materials, have been characterized by diffuse reflectance Fourier transform infrared (FT-IR) spectroscopy. Enhancement of the surface selectivity of the technique has been achieved using KBr overlayers. The water absorbed by both the skin and the core of the fibers has been characterized by using this technique and the accessibility of the fiber functional groups has been evaluated.

  7. Diagnosis of Breast Cancer Using Fluorescence and Reflectance Spectroscopy

    DTIC Science & Technology

    2004-09-01

    S. C. Harvey, R. L. Christian , A. Richardson and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical...34 Medical Laser Application 18, 233-248 (2003). 5. Y. Yuanlong, E. J. Celmer, M. Zurawska Szczepaniak and R. R. Alfano , "Excitation spectrum of...Koutcher and R. R. Alfano , "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J Clin Laser Med Surg 19, 35-39 (2001

  8. Multispectral detection of cutaneous lesions using spectroscopy and microscopy approaches

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Genova-Hristova, Ts.; Troyanova, P.; Pavlova, E.; Terziev, I.; Semyachkina-Glushkovskaya, O.; Lomova, M.; Genina, E.; Stanciu, G.; Tranca, D.; Avramov, L.

    2018-02-01

    Autofluorescence, diffuse-reflectance and transmission spectral, and microscopic measurements were made on different cutaneous neoplastic lesions, namely basal cell carcinoma, squamous cell carcinoma, malignant melanoma, and dysplastic and benign lesions related. Spectroscopic measurements were made on ex vivo tissue samples, and confocal microscopy investigations were made on thin tissue slices. Fluorescence spectra obtained reveal statistically significant differences between the different benign, dysplastic and malignant lesions by the level of emission intensity, as well by spectral shape, which are fingerprints applicable for differentiation algorithms. In reflectance mode the most significant differences are related to the influence of skin pigments - melanin and hemoglobin. Transmission spectroscopy mode gave complementary optical properties information about the tissue samples investigated to that one of reflectance and absorption spectroscopy. Using autofluorescence detection of skin lesions we obtain very good diagnostic performance for distinguishing of nonmelanoma lesions. Using diffuse reflectance and transmission spectroscopy we obtain significant tool for pigmented pathologies differentiation, but it is a tool with moderate sensitivity for non-melanoma lesions detection. One could rapidly increase the diagnostic accuracy of the received combined "optical biopsy" method when several spectral detection techniques are applied in common algorithm for lesions' differentiation. Specific spectral features observed in each type of lesion investigated on micro and macro level would be presented and discussed. Correlation between the spectral data received and the microscopic features observed would be discussed in the report.

  9. Prediction of erodibility in Oxisols using iron oxides, soil color and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques, José, Jr.

    2015-04-01

    The prediction of erodibility using indirect methods such as diffuse reflectance spectroscopy could facilitate the characterization of the spatial variability in large areas and optimize implementation of conservation practices. The aim of this study was to evaluate the prediction of interrill erodibility (Ki) and rill erodibility (Kr) by means of iron oxides content and soil color using multiple linear regression and diffuse reflectance spectroscopy (DRS) using regression analysis by least squares partial (PLSR). The soils were collected from three geomorphic surfaces and analyzed for chemical, physical and mineralogical properties, plus scanned in the spectral range from the visible and infrared. Maps of spatial distribution of Ki and Kr were built with the values calculated by the calibrated models that obtained the best accuracy using geostatistics. Interrill-rill erodibility presented negative correlation with iron extracted by dithionite-citrate-bicarbonate, hematite, and chroma, confirming the influence of iron oxides in soil structural stability. Hematite and hue were the attributes that most contributed in calibration models by multiple linear regression for the prediction of Ki (R2 = 0.55) and Kr (R2 = 0.53). The diffuse reflectance spectroscopy via PLSR allowed to predict Interrill-rill erodibility with high accuracy (R2adj = 0.76, 0.81 respectively and RPD> 2.0) in the range of the visible spectrum (380-800 nm) and the characterization of the spatial variability of these attributes by geostatistics.

  10. Stagnation point properties for non-continuum gaseous jet impinging at a flat plate surface from a planar exit

    NASA Astrophysics Data System (ADS)

    Cai, Chunpei

    2013-10-01

    In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.

  11. Study of normal, fibrous and calcified aortic valve tissue by Raman and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Kátia Calligaris; Munin, Egberto; Alves, Leandro P.; Silveira, Fabrício L.; Junior, Landulfo S.; De Lima, Carlos J.; Lázzaro, João C.; De Souza, Genivaldo C.; Piotto, José A. B.; Pacheco, Marcos T. T.; Zângaro, Renato A.

    2007-02-01

    Several studies have identified the degree of aortic valve calcification as a strong predictor both for the progression and outcome of aortic stenosis. In industrialized countries, aortic valve stenosis is most frequently caused by progressive calcification and degeneration of aortic cusps. However, there are no accurate methods to quantify the extent of aortic valve calcification. To provide a non-invasive alternative to biopsy, a range of optical methods have been investigated, including Raman and reflectance spectroscopy. A Raman spectrum can be used to access the molecular constitution of a particular tissue and classify it. Raman spectroscopy is largely used in the quantification and evaluation of human atherosclerosis, being a powerful technique for performing biochemical analysis without tissue removal. Nevertheless, increased thickness and disorganization of the collagen fibre network and extracellular matrix are known to affect the diffuse spectral reflectance of the tissue. A catheter with the "6 around 1" configuration, the central fiber transmit laser radiation to the sample and the scattered light is collected by the other six surrounding fibers, was used both for Raman and reflectance spectroscopy. A white light (krypton lamp, flashtube Model FX 1160 Perkin Elmer, USA) excitation was used for reflectance measurements. A Ti-sapphire (785nm, Spectra Physics, model 3900S, USA) laser, pumped by an argon laser (Spectra Physics, model Stabilite 2017, USA) was used as the near infrared Raman set up. Several ex-vivo spectra of aortic valve samples were analyzed. The results show a promising way to differentiate normal, fibrous and calcified tissue in aortic valve.

  12. Estimation of soil clay and organic matter using two quantitative methods (PLSR and MARS) based on reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nawar, Said; Buddenbaum, Henning; Hill, Joachim

    2014-05-01

    A rapid and inexpensive soil analytical technique is needed for soil quality assessment and accurate mapping. This study investigated a method for improved estimation of soil clay (SC) and organic matter (OM) using reflectance spectroscopy. Seventy soil samples were collected from Sinai peninsula in Egypt to estimate the soil clay and organic matter relative to the soil spectra. Soil samples were scanned with an Analytical Spectral Devices (ASD) spectrometer (350-2500 nm). Three spectral formats were used in the calibration models derived from the spectra and the soil properties: (1) original reflectance spectra (OR), (2) first-derivative spectra smoothened using the Savitzky-Golay technique (FD-SG) and (3) continuum-removed reflectance (CR). Partial least-squares regression (PLSR) models using the CR of the 400-2500 nm spectral region resulted in R2 = 0.76 and 0.57, and RPD = 2.1 and 1.5 for estimating SC and OM, respectively, indicating better performance than that obtained using OR and SG. The multivariate adaptive regression splines (MARS) calibration model with the CR spectra resulted in an improved performance (R2 = 0.89 and 0.83, RPD = 3.1 and 2.4) for estimating SC and OM, respectively. The results show that the MARS models have a great potential for estimating SC and OM compared with PLSR models. The results obtained in this study have potential value in the field of soil spectroscopy because they can be applied directly to the mapping of soil properties using remote sensing imagery in arid environment conditions. Key Words: soil clay, organic matter, PLSR, MARS, reflectance spectroscopy.

  13. A comprehensive analysis of surface acoustic wave reflections

    NASA Astrophysics Data System (ADS)

    Robinson, H.; Hahn, Y.; Gau, J. N.

    1989-06-01

    A thorough study of the perturbative and variational approaches is carried out for the surface acoustic wave reflection problem. We have shown that the perturbation treatment by Datta and Hunsinger and potentially powerful variational formulation by Chen and Haus [IEEE Trans. Sonics Ultrason. SU-32, 395 (1985)] are mutually consistent. In their common region of validity, these two approaches yield nearly identical results for the reflection coefficients and velocity shifts due to metal finger and groove overlays. Term-by-term comparison of the mass- and stress-loading effects, and also the electric shorting effect, is carried out to provide a coherent picture of the reflection phenomena. The on- and off-resonance behavior of the reflection coefficient can be described correctly using either one of these theories, with proper inclusion of the overlay shape dependence. A new term for electric shorting is derived for groove overlays.

  14. Measurement of thermal neutrons reflection coefficients for two-layer reflectors.

    PubMed

    Azimkhani, S; Zolfagharpour, F; Ziaie, F

    2018-05-01

    In this research, thermal neutrons albedo coefficients and relative number of excess counts have been measured experimentally for different thicknesses of two-layer reflectors by using 241 Am-Be neutron source (5.2Ci) and BF 3 detector. Our used reflectors consist of two-layer which are combinations of water, graphite, polyethylene, and lead materials. Experimental results reveal that thermal neutron reflection coefficients slightly increased by addition of the second layer. The maximum value of growth for thermal neutrons albedo is obtained for lead-polyethylene compound (0.72 ± 0.01). Also, there is suitable agreement between the experimental values and simulation results by using MCNPX code. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.

    PubMed

    Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P

    2016-09-01

    Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.

  16. Enhanced absorption of TM waves in conductive nanoparticles structure

    NASA Astrophysics Data System (ADS)

    Mousa, H. M.; Shabat, M. M.; Ouda, A. K.; Schaadt, D. M.

    2018-05-01

    This paper tackles anti-reflection coating structure for silicon solar cell where conductive nanoparticle (CNP) film is sandwiched between a semi-infinite glass cover and a semi-infinite silicon substrate. The transmission and reflection coefficients are derived by the transfer matrix method and simulated for values of unit cell sizes, gab widths in visible and near-infrared radiation. We also illustrated the dependence of the absorption, transmission and reflection coefficients on several angles of incidence of the transverse magnetic polarized (TM) waves. We found out that reflection decreases by the increase of incident angle to 50∘. If nanoparticles are suitably located and sized at gab width of 3.5 nm, unit cell of 250 nm and CNP layer thickness of 150 nm, the absorptivity of the structure achieves 100%.

  17. Quantification of hemoglobin and its derivatives in oral cancer diagnosis by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaniyappan, Udayakumar; Gnanatheepam, Einstein; Aruna, Prakasarao; Dornadula, Koteeswaran; Ganesan, Singaravelu

    2017-02-01

    Cancer is one of the most common threat to human beings and it increases at an alarming level around the globe. In recent years, due to the advancements in opto-electronic technology, various optical spectroscopy techniques have emerged to assess the photophysicochemical and morphological conditions of normal and malignant tissues in micro as well as in macroscopic scale. In this regard, diffuse reflectance spectroscopy is considered to be the simplest, cost effective and rapid technique in diagnosis of cancerous tissues. In the present study, the hemoglobin concentration in normal and cancerous oral tissues was quantified and subsequent statistical analysis has been carried out to verify the diagnostic potentiality of the technique.

  18. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  19. Transmission versus reflectance spectroscopy for quantitation

    NASA Astrophysics Data System (ADS)

    Gardner, Craig M.

    2018-01-01

    The objective of this work was to compare the accuracy of analyte concentration estimation when using transmission versus diffuse reflectance spectroscopy of a scattering medium. Monte Carlo ray tracing of light through the medium was used in conjunction with pure component absorption spectra and Beer-Lambert absorption along each ray's pathlength to generate matched sets of pseudoabsorbance spectra, containing water and six analytes present in skin. PLS regression models revealed an improvement in accuracy when using transmission compared to reflectance for a range of medium thicknesses and instrument noise levels. An analytical expression revealed the source of the accuracy degradation with reflectance was due both to the reduced collection efficiency for a fixed instrument etendue and to the broad pathlength distribution that detected light travels in the medium before exiting from the incident side.

  20. Optogalvanic spectroscopy of lanthanum hyperfine structure

    NASA Astrophysics Data System (ADS)

    Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven

    2017-04-01

    Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  1. Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Peng, Suping

    2016-01-01

    This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.

  2. The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries [Bouncing alkaline batteries: A basic solution

    DOE PAGES

    Bhadra, S.; Hertzberg, B. J.; Croft, M.; ...

    2015-03-13

    The coefficient of restitution of alkaline batteries had been shown to increase as a function of depth of discharge. In this work, using non-destructive mechanical testing, the change in coefficient of restitution is compared to in situ energy-dispersive x-ray diffraction data to determine the cause of the macroscopic change in coefficient of restitution. The increase in coefficient of restitution correlates to the formation of a percolation pathway of ZnO within the anode of the cell, and that the coefficient of restitution saturates at a value of 0.63 ± .05 at 50% state if charge when the anode has densified intomore » porous ZnO solid. Of note is the sensitivity of coefficient of restitution to the amount of ZnO formation that rivals the sensitivity on in situ energy-dispersive x-ray diffraction spectroscopy.« less

  3. [Possibilities of ultrasonic spectroscopy of the blood in the diagnosis of early postoperative inflammatory complications in patients with stomach cancer].

    PubMed

    Moskalenko, O V

    1998-01-01

    The indexes of ultrasound wave absorption in the blood serum of patients with gastric cancer were studied using ultrasound spectroscopy method. The coefficient of absorption (CA) changes were registered 1-2 days before the first clinical signs occurrence. While inflammatory complications presence CA had lowered, the daily gradient of lowering had raised.

  4. On the possibility of spectroscopic cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Khairullina, Alphiya Y.; Oleinik, Tatiana V.; Korolevich, Alexander N.; Sevkovsky, Yacob I.

    1993-07-01

    The diffuse reflection and transmission coefficients, other optical parameters of normal and cancer tissues have been investigated in visible and infrared spectra. The optimal spectral range for distinguishing the cancer is found. The spectral absorption coefficients and size of cells parameter determined using our approach are analyzed to be different for normal and pathological tissues. The method is proposed for calculating the diffuse reflectance and transmittance of multiple tissue layers. The investigations have shown that cancer may be distinguished under the layers of skin and normal tissue.

  5. VizieR Online Data Catalog: Absolute Refletivity of Jupiter and Saturn (Mendikoa+ 2017)

    NASA Astrophysics Data System (ADS)

    Mendikoa, I.; Sanchez-Lavega, A.; Perez-Hoyos, S.; Hueso, R.; Rojas, J. F.; Lopez-Santiago, J.

    2017-08-01

    Overall mean absolute reflectivity I/F of Jupiter and Saturn. Scans at central meridian are given versus latitude from observations at Calar Alto observatory between 2012 and 2016. In addition, Minnaert coefficients (I/F)0 and k are given, determining the I/F variation with the cosines of the incidence and emission angles, where (I/F)0 represents the absolute reflectivity in absence of darkening effects at nadir viewing and k is the limb-darkening coefficient. (12 data files).

  6. Theoretical calculations of the self-reflection coefficients for some species of ions

    NASA Astrophysics Data System (ADS)

    Luo, Z. M.; Gou, C.; Hou, Q.

    2002-06-01

    The bipartition model of ion transport has been applied to study the self-reflection coefficients of some species of ion beams which are normally incident to a surface. The computational results has been compared with the results taken from Eckstein and Biersack and the compilation data given by Thomas, Janev and Smith. It was found that there are in reasonable agreement between the results given by the bipartition model and the results given by Monte Carlo method.

  7. Revisiting the Plane Electromagnetic Wave Transmission and Reflection Coefficients for the Layer with AN Alternating-Sign Disturbance of Relative Dielectric Permittivity

    NASA Astrophysics Data System (ADS)

    Milov, V. R.; Kogan, L. P.; Gorev, P. V.; Kuzmichev, P. N.; Egorova, P. A.

    2017-01-01

    In this paper, we consider the question of the plane electromagnetic wave incidence at the inhomogeneity with an arbitrary profile of the relative permittivity disturbance. Module estimation of Neumann series remainder is carried out for the field of the wave passing through the nonhomogeneous section. Based on that, the number of summands in the series, required to calculate with a given accuracy, the transmission and reflection coefficients have been determined.

  8. Differential Frequency Hopping (DFH) Modulation for Underwater Acoustic Communications and Networking

    DTIC Science & Technology

    2009-10-09

    trains the coefficients c of a finite impulse response (FIR) filter by gradient descent. The coefficients at iteration k + 1 are computed with the update... absorption . Figure 9 shows the reflection loss as a function of grazing angle for this bottom model. Note that below 30◦ this bottom model predicts...less than 1 dB loss per ray bounce. 11 Figure 9: Jackson bottom reflection loss for sand at 15 kHz Absorption Loss The absorption loss in the medium was

  9. Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Liu, H.

    2007-10-01

    Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb) and total haemoglobin (Hbtotal) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hbtotal]. The error calculation has shown that even a small variation (0.01 cm-1 mM-1) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO2], Δ[Hb] and Δ[Hbtotal]. We have also observed that the error of Δ[Hbtotal] is not always larger than those of Δ[HbO2] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO2], Δ[Hb] and Δ[Hbtotal] from in vivo tissue measurements.

  10. Electrochemical impedance spectroscopy of lithium-titanium disulfide rechargeable cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Shen, D. H.; Surampudi, S.; Attia, A. I.; Halpert, G.

    1993-01-01

    The two-terminal alternating current impedance of Li/TiS2 rechargeable cells was studied as a function of frequency, state-of-charge, and extended cycling. Analysis based on a plausible equivalent circuit model for the Li/TiS2 cell leads to evaluation of kinetic parameters for the various physicochemical processes occurring at the electrode/electrolyte interfaces. To investigate the causes of cell degradation during extended cycling, the parameters evaluated for cells cycled 5 times were compared with the parameters of cells cycled over 600 times. The findings are that the combined ohmic resistance of the electrolyte and electrodes suffers a tenfold increase after extended cycling, while the charge-transfer resistance and diffusional impedance at the TiS2/electrolyte interface are not significantIy affected. The results reflect the morphological change and increase in area of the anode due to cycling. The study also shows that overdischarge of a cathode-limited cell causes a decrease in the diffusion coefficient of the lithium ion in the cathode.

  11. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure.

    PubMed

    Yang, Chan-Shan; Chang, Chia-Hua; Lin, Mao-Hsiang; Yu, Peichen; Wada, Osamu; Pan, Ci-Ling

    2012-07-02

    Indium-tin-oxide (ITO) nanowhiskers with attractive electrical and anti-reflection properties were prepared by the glancing-angle electron-beam evaporation technique. Structural and crystalline properties of such nanostructures were examined by scanning transmission electron microscopy and X-ray diffraction. Their frequency-dependent complex conductivities, refractive indices and absorption coefficients have been characterized with terahertz time-domain spectroscopy (THz-TDS), in which the nanowhiskers were considered as a graded-refractive-index (GRIN) structure instead of the usual thin film model. The electrical properties of ITO GRIN structures are analyzed and fitted well with Drude-Smith model in the 0.2~2.0 THz band. Our results indicate that the ITO nanowhiskers and its bottom layer atop the substrate exhibit longer carrier scattering times than ITO thin films. This signifies that ITO nanowhiskers have an excellent crystallinity with large grain size, consistent with X-ray data. Besides, we show a strong backscattering effect and fully carrier localization in the ITO nanowhiskers.

  12. Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods.

    PubMed

    Miaw, Carolina Sheng Whei; Assis, Camila; Silva, Alessandro Rangel Carolino Sales; Cunha, Maria Luísa; Sena, Marcelo Martins; de Souza, Scheilla Vitorino Carvalho

    2018-07-15

    Grape, orange, peach and passion fruit nectars were formulated and adulterated by dilution with syrup, apple and cashew juices at 10 levels for each adulterant. Attenuated total reflectance Fourier transform mid infrared (ATR-FTIR) spectra were obtained. Partial least squares (PLS) multivariate calibration models allied to different variable selection methods, such as interval partial least squares (iPLS), ordered predictors selection (OPS) and genetic algorithm (GA), were used to quantify the main fruits. PLS improved by iPLS-OPS variable selection showed the highest predictive capacity to quantify the main fruit contents. The selected variables in the final models varied from 72 to 100; the root mean square errors of prediction were estimated from 0.5 to 2.6%; the correlation coefficients of prediction ranged from 0.948 to 0.990; and, the mean relative errors of prediction varied from 3.0 to 6.7%. All of the developed models were validated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Usefulness of charge-transfer complexation for the assessment of sympathomimetic drugs: Spectroscopic properties of drug ephedrine hydrochloride complexed with some π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ibrahim, Omar B.; Saad, Hosam A.; Adam, Abdel Majid A.

    2014-05-01

    Recently, ephedrine (Eph) assessment in food products, pharmaceutical formulations, human fluids of athletes and detection of drug toxicity and abuse, has gained a growing interest. To provide basic data that can be used to assessment of Eph quantitatively based on charge-transfer (CT) complexation, the CT complexes of Eph with 7‧,8,8‧-tetracyanoquinodimethane (TCNQ), dichlorodicyanobenzoquinone (DDQ), 1,3-dinitrobenzene (DNB) or tetrabromothiophene (TBT) were synthesized and spectroscopically investigated. The newly synthesized complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. The formation constant (KCT), molar extinction coefficient (εCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermal decomposition behavior of these complexes was also studied, and their kinetic thermodynamic parameters were calculated with Coats-Redfern and Horowitz-Metzger equations.

  14. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content.more » The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.« less

  15. Fast and simultaneous prediction of animal feed nutritive values using near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Samadi; Wajizah, S.; Munawar, A. A.

    2018-02-01

    Feed plays an important factor in animal production. The purpose of this study is to apply NIRS method in determining feed values. NIRS spectra data were acquired for feed samples in wavelength range of 1000 - 2500 nm with 32 scans and 0.2 nm wavelength. Spectral data were corrected by de-trending (DT) and standard normal variate (SNV) methods. Prediction of in vitro dry matter digestibility (IVDMD) and in vitro organic matter digestibility (IVOMD) were established as model by using principal component regression (PCR) and validated using leave one out cross validation (LOOCV). Prediction performance was quantified using coefficient correlation (r) and residual predictive deviation (RPD) index. The results showed that IVDMD and IVOMD can be predicted by using SNV spectra data with r and RPD index: 0.93 and 2.78 for IVDMD ; 0.90 and 2.35 for IVOMD respectively. In conclusion, NIRS technique appears feasible to predict animal feed nutritive values.

  16. Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies.

    PubMed

    Samuel, Melvin S; Shah, Sk Sheriff; Bhattacharya, Jayanta; Subramaniam, Kalidass; Pradeep Singh, N D

    2018-05-02

    This study involves the adsorption of lead using magnetic chitosan/graphene oxide (MCGO) composite material in batch mode. The MCGO composite material was synthesized via modified Hummers method. The MCGO composite material was characterized by powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Tunnelling electron microscopy (TEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) and UV-vis diffusive reflectance spectra. The adsorption mechanism of MCGO composite material was well described by Langmuir isotherm and pseudo second order kinetic model, with a high regression coefficient (<0.99). The MCGO composite material was applied for the removal of lead metal from aqueous solution. We have also evaluated toxicity of synthesized MCGO composite material by examining on A549 cells. The results have shown that MCGO material showed viable cell percentage of 53.7% at 50 μg and 44.8% at 100 μg. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. [Application of wavelet transform-radial basis function neural network in NIRS for determination of rifampicin and isoniazide tablets].

    PubMed

    Lu, Jia-hui; Zhang, Yi-bo; Zhang, Zhuo-yong; Meng, Qing-fan; Guo, Wei-liang; Teng, Li-rong

    2008-06-01

    A calibration model (WT-RBFNN) combination of wavelet transform (WT) and radial basis function neural network (RBFNN) was proposed for synchronous and rapid determination of rifampicin and isoniazide in Rifampicin and Isoniazide tablets by near infrared reflectance spectroscopy (NIRS). The approximation coefficients were used for input data in RBFNN. The network parameters including the number of hidden layer neurons and spread constant (SC) were investigated. WT-RBFNN model which compressed the original spectra data, removed the noise and the interference of background, and reduced the randomness, the capabilities of prediction were well optimized. The root mean square errors of prediction (RMSEP) for the determination of rifampicin and isoniazide obtained from the optimum WT-RBFNN model are 0.00639 and 0.00587, and the root mean square errors of cross-calibration (RMSECV) for them are 0.00604 and 0.00457, respectively which are superior to those obtained by the optimum RBFNN and PLS models. Regression coefficient (R) between NIRS predicted values and RP-HPLC values for rifampicin and isoniazide are 0.99522 and 0.99392, respectively and the relative error is lower than 2.300%. It was verified that WT-RBFNN model is a suitable approach to dealing with NIRS. The proposed WT-RBFNN model is convenient, and rapid and with no pollution for the determination of rifampicin and isoniazide tablets.

  18. AVIRIS data calibration information: Wasatch Mountains and Park City region, Utah

    USGS Publications Warehouse

    Rockwell, Barnaby W.; Clark, Roger N.; Livo, K. Eric; McDougal, Robert R.; Kokaly, Raymond F.

    2002-01-01

    This report contains information regarding the reflectance calibration of spectroscopic imagery acquired over the Wasatch Mountains and Park City region, Utah, by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor on August 5, 1998. This information was used by the USGS Spectroscopy Laboratory to calibrate the Park City AVIRIS imagery to unitless reflectance prior to spectral analysis.  The Utah AVIRIS data were analyzed as a part of the USEPA-USGS Utah Abandoned Mine Lands Imaging Spectroscopy Project.

  19. Results of an analytical study of spacecraft deposition contamination by internal reflection spectroscopy. [(haze on spacecraft windows from space debris)

    NASA Technical Reports Server (NTRS)

    Mookherji, T.

    1976-01-01

    Outgassing, deposition, and desorption kinetics of silicone compounds, are examined as examples of optical surface contaminants of spacecraft windows. Their behavior in a space environment after exposure to ultraviolet radiation is also examined. The use of internal reflection spectroscopy is shown to provide a viable means of real-time, in-situ identification of contaminants of orbiting spacecraft. The instrumental techniques are proposed as the basis of further investigations and the development of flight hardware.

  20. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy

    PubMed Central

    González-Martín, M. Inmaculada; Escuredo, Olga; Revilla, Isabel; Vivar-Quintana, Ana M.; Coello, M. Carmen; Palacios Riocerezo, Carlos; Wells Moncada, Guillermo

    2015-01-01

    The potential of near infrared spectroscopy (NIR) with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region) and Spain (Castilla-León and Galicia regions). The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS) regression method was used to develop the NIR calibration model. The determination coefficient (R2) and root mean square error of prediction (RMSEP) obtained for aluminum (0.79, 53), calcium (0.83, 94), iron (0.69, 134) potassium (0.95, 117), magnesium (0.70, 99), phosphorus (0.94, 24) zinc (0.87, 10) chromium (0.48, 0.6) nickel (0.52, 0.7) copper (0.64, 0.9) and lead (0.70, 2) in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption. PMID:26540058

  1. Interactions of satellite-speed helium atoms with satellite surfaces. 3: Drag coefficients from spatial and energy distributions of reflected helium atoms

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Knuth, E. L.

    1977-01-01

    Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included.

  2. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  3. A new fifth parameter for transverse isotropy III: reflection and transmission coefficients

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi

    2018-04-01

    The effect of the newly defined fifth parameter, ηκ, of transverse anisotropy to the reflection and transmission coefficients, especially for P-to-S and S-to-P conversion coefficients, is examined. While ηκ systematically affects the P-to-S and S-to-P conversions, in the incidence angle range of the practical interest of receiver function studies, the effect may be asymmetric in a sense that P-wave receiver function is affected more than S-receiver function in terms of amplitude. This asymmetry may help resolving ηκ via extensive receiver function analysis. It is also found that P-wave anisotropy significantly influences P-to-S and S-to-P conversion coefficients that complicates the interpretation of receiver functions, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes but not to P-wave changes.

  4. Hyperspectral absorption and backscattering coefficients of bulk water retrieved from a combination of remote-sensing reflectance and attenuation coefficient.

    PubMed

    Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan

    2018-01-22

    Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.

  5. Laser absorption spectroscopy applied to monitoring of short-lived climate pollutants (SLCPs)

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxuan; Shen, Fengjiao; Yi, Hongming; Hubert, Patrice; Deguine, Alexandre; Petitprez, Denis; Maamary, Rabih; Augustin, Patrick; Fourmentin, Marc; Fertein, Eric; Sigrist, Markus W.; Ba, Tong-Nguyen; Chen, Weidong

    2018-06-01

    Enhanced mitigation of short-lived climate pollutants (SLCPs) has been recently paid more attention in order to provide more sizeable short-term reductions of global warming effects over the next several decades. We overview in this article our recent progress in the development of spectroscopic instruments for optical monitoring of major SLCPs based on laser absorption spectroscopy. Methane (CH4) and black carbon (BC) are the most important SLCPs contributing to the human enhancement of the global greenhouse effect after CO2. We present optical sensing of these two climate-change related atmospheric species to illustrate how "classical" spectroscopy can help to address today's challenging issues: (1) Photoacoustic measurements of BC optical absorption coefficient in order to determine its radiative-forcing related optical parameters (such as mass absorption coefficient, absorption Ångström coefficient) with higher precision (∼7.4% compared to 12-30% for filter-based methods routinely used nowadays). The 1σ (SNR = 1) minimum measurable volumetric mass density of 21 ng/m3 (in 60 s) for black carbon. (2) Direct absorption spectroscopy-based monitoring of methane (CH4) in field campaign to identify pollution source in conjunction with air mass back-trajectory modeling. Using a White-type multipass cell (an effective path-length of 175 m), a 1σ detection limit of 33.3 ppb in 218 s was achieved with a relative measurement precision of 1.1% and an overall measurement uncertainty of about 5.1%. Performance of the custom, lab-based instruments (in terms of detection limits, measurement precision, temporal response, etc.), spectroscopic measurement aspects, experimental details, spectral data processing, analysis and modeling of the observed environmental episode will be presented and discussed.

  6. Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Della Ventura, Giancarlo; Radica, Francesco; Bellatreccia, Fabio; Cavallo, Andrea; Capitelli, Francesco; Harley, Simon

    2012-11-01

    We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ɛ = 5,200 ± 700 l mol-1 cm-2 and [II]ɛ = 13,000 ± 3,000 l mol-1 cm-2, respectively. For CO2 the integrated coefficient is \\varepsilon_{{{{CO}}_{ 2} }} = 19,000 ± 2,000 l mol-1 cm-2.

  7. Material For Self-Q-Switching Mirrors For Solid State Laser (MSMSSL)

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Walocha, J.; Drobnik, A.

    1983-09-01

    Vanadium dioxide (V02) film exhibits semiconductor-to-metal transition at temperature, Tt near 340 K. The transition is accompanied by changes in optical transmission and relection. In this paper the reflected light spectra were experimentally determined at the two temperatures below and above Tt (300 and 360 K) using film thickness as the parameter. Then we calculated the ratio, Kλ , of reflection coefficient, Rm, in metallic phase to reflection coefficient, Rsc, in semiconductor phase. The film for which the maximum Kλ was observed at λ =1.06μm applied as a mirror in Nd:glass laser. The laser generated giant pulse with duration time at about 50 ns.

  8. Reflection and transmission coefficients for guided waves reflected by defects in viscoelastic material plates.

    PubMed

    Hosten, Bernard; Moreau, Ludovic; Castaings, Michel

    2007-06-01

    The paper presents a Fourier transform-based signal processing procedure for quantifying the reflection and transmission coefficients and mode conversion of guided waves diffracted by defects in plates made of viscoelastic materials. The case of the S(0) Lamb wave mode incident on a notch in a Perspex plate is considered. The procedure is applied to numerical data produced by a finite element code that simulates the propagation of attenuated guided modes and their diffraction by the notch, including mode conversion. Its validity and precision are checked by the way of the energy balance computation and by comparison with results obtained using an orthogonality relation-based processing method.

  9. Spectroscopic Analysis of Perfluoropolyether Lubricant Degradation During Boundary Lubrication

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Shogrin, Bradley A.; Jones, William R., Jr.

    1996-01-01

    The degradation of a branched perfluoropolyether (PFPE) under boundary lubrication conditions was studied using mu-FTIR and mu-Raman spectroscopies. Stainless steel (440C) discs coated with thin (600A), uniform films of the PFPE were tested in a ball-on-disc apparatus until various levels of friction coefficient were attained. Discs were then examined using the above techniques. When the friction coefficient surpassed the value obtained with an un-lubricated control, the lubricant film had either been physically displaced or partially transformed in to a 'friction polymer'. Infrared analysis of this 'friction polymer' indicated the presence of a polymeric fluorinated acid species (R(sub f)COOH). Raman spectroscopy indicated the presence of amorphous carbon in the wear track and in the friction polymer. Some reaction mechanisms are suggested to explain the results.

  10. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    PubMed

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  11. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.; ,

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  12. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  13. Development of an 83.2 MHz, 3.2 kW solid-state RF amplifier using Wilkinson power divider and combiner for a 10 MeV cyclotron

    NASA Astrophysics Data System (ADS)

    Song, Ho Seung; Ghergherehchi, Mitra; Oh, Seyoung; Chai, Jong Seo

    2017-03-01

    We design a stripline-type Wilkinson power divider and combiner for a 3.2 kW solid-state radio frequency (RF) amplifier module and optimize this setup. A Teflon-based printed circuit board is used in the power combiner to transmit high RF power efficiently in the limited space. The reflection coefficient (S11) and insertion loss (S21) related to impedance matching are characterized to determine the optimization process. The resulting two-way divider reflection coefficient and insertion loss were -48.00 dB and -3.22 dB, respectively. The two-way power combiner reflection coefficient and insertion loss were -20 dB and -3.3 dB, respectively. Moreover, the 3.2 kW solid-state RF power test results demonstrate that the proposed power divider and combiner exhibit a maximum efficiency value of 71.3% (combiner loss 5%) at 48 V supply voltage.

  14. In vivo assessment of liver fibrosis using diffuse reflectance and fluorescence spectroscopy: a proof of concept.

    PubMed

    Fabila, Diego; de la Rosa, José Manuel; Stolik, Suren; Moreno, Edgard; Suárez-Álvarez, Karina; López-Navarrete, Giuliana; Guzmán, Carolina; Aguirre-García, Jesús; Acevedo-García, Christian; Kershenobich, David; Escobedo, Galileo

    2012-12-01

    A novel application of diffuse reflectance and fluorescence spectroscopy in the assessment of liver fibrosis is here reported. To induce different stages of liver fibrosis, a sufficient number of male Wistar rats were differentially exposed to chronic administration with carbon tetrachloride. Then, diffuse reflectance and fluorescence spectra were in vivo measured from the liver surface of each animal by a minimal invasive laparoscopic procedure. The liver fibrosis degree was conventionally determined by means of histological examination using the Mason's Trichrome stain, accompanied by hepatic expression of α-sma, and evaluation of the ALT/AST serum levels. The liver from rats exhibiting higher grades of fibrosis showed a significant increase in diffuse reflectance and fluorescence intensity when compared with control animals. At 365 nm, the diffuse reflectance spectrum exhibited an increase of 4 and 3-fold in mild and advanced fibrotic rats, respectively, when compared to the control group. Similarly, the fluorescence emission at 493 nm was 2-fold higher in fibrotic animals than in controls. By using fluorescence intensity, discrimination algorithms indicated 73% sensitivity and 94% specificity for recognition of hepatic fibrosis, while for diffuse reflectance, these values increased up to 85% and 100%, respectively. Taking into consideration there is a special need for developing new diagnostic approaches focused on detecting different stages of liver fibrosis with minimal invasiveness, these results suggest that diffuse reflectance and fluorescence spectroscopy could be worthy of further exploration in patients with liver disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Disposable attenuated total reflection-infrared crystals from silicon wafer: a versatile approach to surface infrared spectroscopy.

    PubMed

    Karabudak, Engin; Kas, Recep; Ogieglo, Wojciech; Rafieian, Damon; Schlautmann, Stefan; Lammertink, R G H; Gardeniers, Han J G E; Mul, Guido

    2013-01-02

    Attenuated total reflection-infrared (ATR-IR) spectroscopy is increasingly used to characterize solids and liquids as well as (catalytic) chemical conversion. Here we demonstrate that a piece of silicon wafer cut by a dicing machine or cleaved manually can be used as disposable internal reflection element (IRE) without the need for polishing and laborious edge preparation. Technical aspects, fundamental differences, and pros and cons of these novel disposable IREs and commercial IREs are discussed. The use of a crystal (the Si wafer) in a disposable manner enables simultaneous preparation and analysis of substrates and application of ATR spectroscopy in high temperature processes that may lead to irreversible interaction between the crystal and the substrate. As representative application examples, the disposable IREs were used to study high temperature thermal decomposition and chemical changes of polyvinyl alcohol (PVA) in a titania (TiO(2)) matrix and assemblies of 65-450 nm thick polystyrene (PS) films.

  16. Use of polyurethane foam and 3-hydroxy-7,8-benzo-1,2,3,4-tetrahydroquinoline for determination of nitrite by diffuse reflectance spectroscopy and colorimetry.

    PubMed

    Apyari, V V; Dmitrienko, S G; Ostrovskaya, V M; Anaev, E K; Zolotov, Y A

    2008-07-01

    Polyurethane foam (PUF) has been suggested as a solid polymeric reagent for determination of nitrite. The determination is based on the diazotization of end toluidine groups of PUF with nitrite in acidic medium followed by coupling of polymeric diazonium cation with 3-hydroxy-7,8-benzo-1,2,3,4-tetrahydroquinoline. The intensely colored polymeric azodye formed in this reaction can be used as a convenient analytic form for the determination of nitrite by diffuse reflectance spectroscopy (c (min) = 0.7 ng mL(-1)). The possibility of using a desktop scanner, digital camera, and computer data processing for the numerical evaluation of the color intensity of the polymeric azodye has been investigated. A scanner and digital camera can be used for determination of nitrite with the same sensitivity and reproducibility as with diffuse reflectance spectroscopy. The approach developed was applied for determination of nitrite in river water and human exhaled breath condensate.

  17. Optical spectroscopy for differentiation of liver tissue under distinct stages of fibrosis: an ex vivo study

    NASA Astrophysics Data System (ADS)

    Fabila, D. A.; Hernández, L. F.; de la Rosa, J.; Stolik, S.; Arroyo-Camarena, U. D.; López-Vancell, M. D.; Escobedo, G.

    2013-11-01

    Liver fibrosis is the decisive step towards the development of cirrhosis; its early detection affects crucially the diagnosis of liver disease, its prognosis and therapeutic decision making. Nowadays, several techniques are employed to this task. However, they have the limitation in estimating different stages of the pathology. In this paper we present a preliminary study to evaluate if optical spectroscopy can be employed as an auxiliary tool of diagnosis of biopsies of human liver tissue to differentiate the fibrosis stages. Ex vivo fluorescence and diffuse reflectance spectra were acquired from biopsies using a portable fiber-optic system. Empirical discrimination algorithms based on fluorescence intensity ratio at 500 nm and 680 nm as well as diffuse reflectance intensity at 650 nm were developed. Sensitivity and specificity of around 80% and 85% were respectively achieved. The obtained results show that combined use of fluorescence and diffuse reflectance spectroscopy could represent a novel and useful tool in the early evaluation of liver fibrosis.

  18. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org; Li, R.X., E-mail: rxli@mail.xidian.edu.cn; Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topologicalmore » charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.« less

  19. Evaluation of treatment-induced cerebral white matter injury by using diffusion-tensor MR imaging: initial experience.

    PubMed

    Kitahara, Sawako; Nakasu, Satoshi; Murata, Kiyoshi; Sho, Keizen; Ito, Ryuta

    2005-10-01

    Treatment with chemotherapy and radiation therapy for brain tumors can cause white matter (WM) injury. Conventional MR imaging, however, cannot always depict treatment-induced transient WM abnormalities. We investigated the ability of diffusion-tensor (DT) MR imaging and proton MR spectroscopy to detect the treatment-induced transient changes within normal-appearing WM. DT MR imaging and proton MR spectroscopy were performed in 8 patients treated with a combination of surgery, chemotherapy, and radiation therapy for brain tumors (17 examinations) and 11 age-matched controls. Apparent diffusion coefficient (ADC) value, fractional anisotropy (FA) value, and N-acetylaspartate (NAA)/creatine (Cr) ratio were obtained from 27 hemispheres with normal-appearing WM in the patients. We divided the datasets of isotropic ADC, FA, and NAA/Cr, on the basis of the time period after completion of radiation therapy, into 4 groups: group 1 (0-2 months; n = 10), group 2 (3-5 months; n = 5), group 3 (6-9 months; n = 7), and group 4 (10-12 months; n = 5). We compared averages of mean isotropic ADC, mean FA, and NAA/Cr of each patient group with those of the control group by using a t test. In the group 2, averages of mean FA and NAA/Cr decreased and average of mean isotopic ADC increased in comparison with those of the control group (P = .004, .04, and .0085, respectively). There were no significant differences in the averages between the control group and patient groups 1, 3, and 4. DT MR imaging and proton MR spectroscopy can provide quantitative indices that may reflect treatment-induced transient derangement of normal-appearing WM.

  20. [Evaluation of Sugar Content of Huanghua Pear on Trees by Visible/Near Infrared Spectroscopy].

    PubMed

    Liu, Hui-jun; Ying, Yi-bin

    2015-11-01

    A method of ambient light correction was proposed to evaluate the sugar content of Huanghua pears on tree by visible/near infrared diffuse reflectance spectroscopy (Vis/NIRS). Due to strong interference of ambient light, it was difficult to collect the efficient spectral of pears on tree. In the field, covering the fruits with a bag blocking ambient light can get better results, but the efficiency is fairly low, the instrument corrections of dark and reference spectra may help to reduce the error of the model, however, the interference of the ambient light cannot be eliminated effectively. In order to reduce the effect of ambient light, a shutter was attached to the front of probe. When opening shutter, the spot spectrum were obtained, on which instrument light and ambient light acted at the same time. While closing shutter, background spectra were obtained, on which only ambient light acted, then the ambient light spectra was subtracted from spot spectra. Prediction models were built using data on tree (before and after ambient light correction) and after harvesting by partial least square (PLS). The results of the correlation coefficient (R) are 0.1, 0.69, 0.924; the root mean square error of prediction (SEP) are 0. 89°Brix, 0.42°Brix, 0.27°Brix; ratio of standard deviation (SD) to SEP (RPD) are 0.79, 1.69, 2.58, respectively. The results indicate that, method of background correction used in the experiment can reduce the effect of ambient lighting on spectral acquisition of Huanghua pears in field, efficiently. This method can be used to collect the visible/near infrared spectrum of fruits in field, and may give full play to visible/near-infrared spectroscopy in preharvest management and maturity testing of fruits in the field.

Top