NASA Astrophysics Data System (ADS)
Baseilhac, Pascal; Tsuboi, Zengo
2018-04-01
We consider intertwining relations of the augmented q-Onsager algebra introduced by Ito and Terwilliger, and obtain generic (diagonal) boundary K-operators in terms of the Cartan element of Uq (sl2). These K-operators solve reflection equations. Taking appropriate limits of these K-operators in Verma modules, we derive K-operators for Baxter Q-operators and corresponding reflection equations.
On boundary fusion and functional relations in the Baxterized affine Hecke algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk
2014-04-15
We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.
NASA Astrophysics Data System (ADS)
Pezelier, Baptiste
2018-02-01
In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.
Drinfeld-Sokolov reduction in quantum algebras: canonical form of generating matrices
NASA Astrophysics Data System (ADS)
Gurevich, Dimitri; Saponov, Pavel; Talalaev, Dmitry
2018-04-01
We define the second canonical forms for the generating matrices of the Reflection Equation algebras and the braided Yangians, associated with all even skew-invertible involutive and Hecke symmetries. By using the Cayley-Hamilton identities for these matrices, we show that they are similar to their canonical forms in the sense of Chervov and Talalaev (J Math Sci (NY) 158:904-911, 2008).
Transport synthetic acceleration with opposing reflecting boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iteratingmore » on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.« less
Quantum deformations of conformal algebras with mass-like deformation parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek
1998-12-15
We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2){approx_equal}su(2,2)more » reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices.« less
Jiao, Fengyu; Wei, Peijun; Li, Li
2017-01-01
Wave propagation through a gradient slab sandwiched by the piezoelectric and the piezomagnetic half spaces are studied in this paper. First, the secular equations in the transverse isotropic piezoelectric/piezomagnetic half spaces are derived from the general dynamic equation. Then, the state vectors at piezoelectric and piezomagnetic half spaces are related to the amplitudes of various possible waves. The state transfer equation of the functionally graded slab is derived from the equations of motion by the reduction of order, and the transfer matrix of the functionally gradient slab is obtained by solving the state transfer equation with the spatial-varying coefficient. Finally, the continuous interface conditions are used to lead to the resultant algebraic equations. The algebraic equations are solved to obtain the amplitude ratios of various waves which are further used to obtain the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and are validated by the energy conservation law. Based on the numerical results on the fives of gradient profiles, the influences of the graded slab on the wave propagation are discussed. It is found that the reflection and transmission coefficients are obviously dependent upon the gradient profile. The various surface waves are more sensitive to the gradient profile than the bulk waves. Copyright © 2016 Elsevier B.V. All rights reserved.
Schwarz maps of algebraic linear ordinary differential equations
NASA Astrophysics Data System (ADS)
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Solving Absolute Value Equations Algebraically and Geometrically
ERIC Educational Resources Information Center
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Structure of Lie point and variational symmetry algebras for a class of odes
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2018-04-01
It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.
Iterative discrete ordinates solution of the equation for surface-reflected radiance
NASA Astrophysics Data System (ADS)
Radkevich, Alexander
2017-11-01
This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
Boundary reflection matrices for nonsimply laced affine Toda field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.D.
The boundary reflection matrices for nonsimply laced affine Toda field theories defined on a half line with the Neumann boundary condition are investigated. The boundary reflection matrices for some pairs of the models are evaluated up to one loop order by perturbation theory. Then the exact boundary reflection matrices which are consistent with the one loop result are found under the assumption of {open_quote}{open_quote}duality{close_quote}{close_quote} and tested against algebraic consistency such as the boundary bootstrap equation and boundary crossing-unitarity relation. {copyright} {ital 1996 The American Physical Society.}
ERIC Educational Resources Information Center
Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin
2015-01-01
The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
ERIC Educational Resources Information Center
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
Algebraic methods for the solution of some linear matrix equations
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
The impact of fraction magnitude knowledge on algebra performance and learning.
Booth, Julie L; Newton, Kristie J; Twiss-Garrity, Laura K
2014-02-01
Knowledge of fractions is thought to be crucial for success with algebra, but empirical evidence supporting this conjecture is just beginning to emerge. In the current study, Algebra 1 students completed magnitude estimation tasks on three scales (0-1 [fractions], 0-1,000,000, and 0-62,571) just before beginning their unit on equation solving. Results indicated that fraction magnitude knowledge, and not whole number knowledge, was especially related to students' pretest knowledge of equation solving and encoding of equation features. Pretest fraction knowledge was also predictive of students' improvement in equation solving and equation encoding skills. Students' placement of unit fractions (e.g., those with a numerator of 1) was not especially useful for predicting algebra performance and learning in this population. Placement of non-unit fractions was more predictive, suggesting that proportional reasoning skills might be an important link between fraction knowledge and learning algebra. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2014-01-01
Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…
A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2016-12-01
Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.
Algebraic features of some generalizations of the Lotka-Volterra system
NASA Astrophysics Data System (ADS)
Bibik, Yu. V.; Sarancha, D. A.
2010-10-01
For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.
A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time
NASA Astrophysics Data System (ADS)
Lang, Holger; Linn, Joachim
2009-09-01
We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.
Properties of coupled-cluster equations originating in excitation sub-algebras
NASA Astrophysics Data System (ADS)
Kowalski, Karol
2018-03-01
In this paper, we discuss properties of single-reference coupled cluster (CC) equations associated with the existence of sub-algebras of excitations that allow one to represent CC equations in a hybrid fashion where the cluster amplitudes associated with these sub-algebras can be obtained by solving the corresponding eigenvalue problem. For closed-shell formulations analyzed in this paper, the hybrid representation of CC equations provides a natural way for extending active-space and seniority number concepts to provide an accurate description of electron correlation effects. Moreover, a new representation can be utilized to re-define iterative algorithms used to solve CC equations, especially for tough cases defined by the presence of strong static and dynamical correlation effects. We will also explore invariance properties associated with excitation sub-algebras to define a new class of CC approximations referred to in this paper as the sub-algebra-flow-based CC methods. We illustrate the performance of these methods on the example of ground- and excited-state calculations for commonly used small benchmark systems.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
The Existence of the Solution to One Kind of Algebraic Riccati Equation
NASA Astrophysics Data System (ADS)
Liu, Jianming
2018-03-01
The matrix equation ATX + XA + XRX + Q = O is called algebraic Riccati equation, which is very important in the fields of automatic control and other engineering applications. Many researchers have studied the solutions to various algebraic Riccati equations and most of them mainly applied the matrix methods, while few used the functional analysis theories. This paper mainly studies the existence of the solution to the following kind of algebraic Riccati equation from the functional view point: ATX + XA + XRX ‑λX + Q = O Here, X, A, R, Q ∈ n×n , Q is a symmetric matrix, and R is a positive or negative semi-definite matrix, λ is arbitrary constants. This paper uses functional approach such as fixed point theorem and contraction mapping thinking so as to provide two sufficient conditions for the solvability about this kind of Riccati equation and to arrive at some relevant conclusions.
A tensor Banach algebra approach to abstract kinetic equations
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
The study deals with a concrete algebraic construction providing the existence theory for abstract kinetic equation boundary-value problems, when the collision operator A is an accretive finite-rank perturbation of the identity operator in a Hilbert space H. An algebraic generalization of the Bochner-Phillips theorem is utilized to study solvability of the abstract boundary-value problem without any regulatory condition. A Banach algebra in which the convolution kernel acts is obtained explicitly, and this result is used to prove a perturbation theorem for bisemigroups, which then plays a vital role in solving the initial equations.
Ten-Year-Old Students Solving Linear Equations
ERIC Educational Resources Information Center
Brizuela, Barbara; Schliemann, Analucia
2004-01-01
In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…
Yang-Baxter maps, discrete integrable equations and quantum groups
NASA Astrophysics Data System (ADS)
Bazhanov, Vladimir V.; Sergeev, Sergey M.
2018-01-01
For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang-Baxter equation. This map allows one to define an integrable discrete quantum evolution system on quadrilateral lattices, where local degrees of freedom (dynamical variables) take values in a tensor power of the quantized Lie algebra. The corresponding equations of motion admit the zero curvature representation. The commuting Integrals of Motion are defined in the standard way via the Quantum Inverse Problem Method, utilizing Baxter's famous commuting transfer matrix approach. All elements of the above construction have a meaningful quasi-classical limit. As a result one obtains an integrable discrete Hamiltonian evolution system, where the local equation of motion are determined by a classical Yang-Baxter map and the action functional is determined by the quasi-classical asymptotics of the universal R-matrix of the underlying quantum algebra. In this paper we present detailed considerations of the above scheme on the example of the algebra Uq (sl (2)) leading to discrete Liouville equations, however the approach is rather general and can be applied to any quantized Lie algebra.
Maxwell Equations and the Redundant Gauge Degree of Freedom
ERIC Educational Resources Information Center
Wong, Chun Wa
2009-01-01
On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…
Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force
Akbaş, Şeref Doğuşcan
2014-01-01
This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050
Hoover, Jerome D; Healy, Alice F
2017-12-01
The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.
ERIC Educational Resources Information Center
Alibali, Martha W.; Kao, Yvonne S.; Brown, Alayna N.; Nathan, Mitchell J.; Stephens, Ana C.
2009-01-01
This study investigated middle school students' conceptual understanding of algebraic equations. Participants in the study--257 sixth- and seventh-grade students--were asked to solve one set of algebraic equations and to generate story problems corresponding with another set of equations. Structural aspects of the equations, including the number…
NASA Astrophysics Data System (ADS)
Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.
2003-04-01
Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.
Modified non-Abelian Toda field equations and twisted quasigraded Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrypnyk, T.
We construct a new family of quasigraded Lie algebras that admit the Kostant-Adler scheme. They coincide with special quasigraded deformations of twisted subalgebras of the loop algebras. Using them we obtain new hierarchies of integrable equations in partial derivatives which we call 'modified' non-Abelian Toda field hierarchies.
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
Algebraic and geometric structures of analytic partial differential equations
NASA Astrophysics Data System (ADS)
Kaptsov, O. V.
2016-11-01
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
Local algebraic analysis of differential systems
NASA Astrophysics Data System (ADS)
Kaptsov, O. V.
2015-06-01
We propose a new approach for studying the compatibility of partial differential equations. This approach is a synthesis of the Riquier method, Gröbner basis theory, and elements of algebraic geometry. As applications, we consider systems including the wave equation and the sine-Gordon equation.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Chiral higher spin theories and self-duality
NASA Astrophysics Data System (ADS)
Ponomarev, Dmitry
2017-12-01
We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Parametric Equations: Push 'Em Back, Push 'Em Back, Way Back!
ERIC Educational Resources Information Center
Cieply, Joseph F.
1993-01-01
Stresses using the features of graphing calculators to teach parametric equations much earlier in the curriculum than is presently done. Examples using parametric equations to teach slopes and lines in beginning algebra, inverse functions in advanced algebra, the wrapping function, and simulations of physical phenomena are presented. (MAZ)
Learning Activity Package, Algebra 93-94, LAPs 12-22.
ERIC Educational Resources Information Center
Evans, Diane
A set of 11 teacher-prepared Learning Activity Packages (LAPs) in beginning algebra, these units cover sets, properties of operations, operations over real numbers, open expressions, solution sets of equations and inequalities, equations and inequalities with two variables, solution sets of equations with two variables, exponents, factoring and…
The Hom-Yang-Baxter equation and Hom-Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yau, Donald
2011-05-15
Motivated by recent work on Hom-Lie algebras, a twisted version of the Yang-Baxter equation, called the Hom-Yang-Baxter equation (HYBE), was introduced by Yau [J. Phys. A 42, 165202 (2009)]. In this paper, several more classes of solutions of the HYBE are constructed. Some of the solutions of the HYBE are closely related to the quantum enveloping algebra of sl(2), the Jones-Conway polynomial, and Yetter-Drinfel'd modules. Under some invertibility conditions, we construct a new infinite sequence of solutions of the HYBE from a given one.
Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannick, J.
The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
NASA Technical Reports Server (NTRS)
Baumgarten, J.; Ostermeyer, G. P.
1986-01-01
The numerical solution of a system of differential and algebraic equations is difficult, due to the appearance of numerical instabilities. A method is presented here which permits numerical solutions of such a system to be obtained which satisfy the algebraic constraint equations exactly without reducing the order of the differential equations. The method is demonstrated using examples from mechanics.
NASA Astrophysics Data System (ADS)
Man, Yiu-Kwong
2010-10-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.
A representation of solution of stochastic differential equations
NASA Astrophysics Data System (ADS)
Kim, Yoon Tae; Jeon, Jong Woo
2006-03-01
We prove that the logarithm of the formal power series, obtained from a stochastic differential equation, is an element in the closure of the Lie algebra generated by vector fields being coefficients of equations. By using this result, we obtain a representation of the solution of stochastic differential equations in terms of Lie brackets and iterated Stratonovich integrals in the algebra of formal power series.
Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas
2010-01-01
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822
A Mathematics Software Database Update.
ERIC Educational Resources Information Center
Cunningham, R. S.; Smith, David A.
1987-01-01
Contains an update of an earlier listing of software for mathematics instruction at the college level. Topics are: advanced mathematics, algebra, calculus, differential equations, discrete mathematics, equation solving, general mathematics, geometry, linear and matrix algebra, logic, statistics and probability, and trigonometry. (PK)
Rota-Baxter operators on sl (2,C) and solutions of the classical Yang-Baxter equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Jun, E-mail: peitsun@163.com; Bai, Chengming, E-mail: baicm@nankai.edu.cn; Guo, Li, E-mail: liguo@rutgers.edu
2014-02-15
We explicitly determine all Rota-Baxter operators (of weight zero) on sl (2,C) under the Cartan-Weyl basis. For the skew-symmetric operators, we give the corresponding skew-symmetric solutions of the classical Yang-Baxter equation in sl (2,C), confirming the related study by Semenov-Tian-Shansky. In general, these Rota-Baxter operators give a family of solutions of the classical Yang-Baxter equation in the six-dimensional Lie algebra sl (2,C)⋉{sub ad{sup *}} sl (2,C){sup *}. They also give rise to three-dimensional pre-Lie algebras which in turn yield solutions of the classical Yang-Baxter equation in other six-dimensional Lie algebras.
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.
2010-05-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
Algebraic Construction of Exact Difference Equations from Symmetry of Equations
NASA Astrophysics Data System (ADS)
Itoh, Toshiaki
2009-09-01
Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
Algebra for Gifted Third Graders.
ERIC Educational Resources Information Center
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
On the integration of a class of nonlinear systems of ordinary differential equations
NASA Astrophysics Data System (ADS)
Talyshev, Aleksandr A.
2017-11-01
For each associative, commutative, and unitary algebra over the field of real or complex numbers and an integrable nonlinear ordinary differential equation we can to construct integrable systems of ordinary differential equations and integrable systems of partial differential equations. In this paper we consider in some sense the inverse problem. Determine the conditions under which a given system of ordinary differential equations can be represented as a differential equation in some associative, commutative and unitary algebra. It is also shown that associativity is not a necessary condition.
Numerical Problem Solving Using Mathcad in Undergraduate Reaction Engineering
ERIC Educational Resources Information Center
Parulekar, Satish J.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment
ERIC Educational Resources Information Center
Young, Brent R.; van der Lee, James H.; Svrcek, William Y.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dancer, K. A.; Isac, P. S.; Links, J.
2006-10-15
Quantum doubles of finite group algebras form a class of quasitriangular Hopf algebras that algebraically solve the Yang-Baxter equation. Each representation of the quantum double then gives a matrix solution of the Yang-Baxter equation. Such solutions do not depend on a spectral parameter, and to date there has been little investigation into extending these solutions such that they do depend on a spectral parameter. Here we first explicitly construct the matrix elements of the generators for all irreducible representations of quantum doubles of the dihedral groups D{sub n}. These results may be used to determine constant solutions of the Yang-Baxtermore » equation. We then discuss Baxterization ansaetze to obtain solutions of the Yang-Baxter equation with a spectral parameter and give several examples, including a new 21-vertex model. We also describe this approach in terms of minimal-dimensional representations of the quantum doubles of the alternating group A{sub 4} and the symmetric group S{sub 4}.« less
Unification of the general non-linear sigma model and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, J. de; Halpern, M.B.
1997-06-01
The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfymore » the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.« less
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul; ...
2017-12-20
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
Frobenius manifolds and Frobenius algebra-valued integrable systems
NASA Astrophysics Data System (ADS)
Strachan, Ian A. B.; Zuo, Dafeng
2017-06-01
The notion of integrability will often extend from systems with scalar-valued fields to systems with algebra-valued fields. In such extensions the properties of, and structures on, the algebra play a central role in ensuring integrability is preserved. In this paper, a new theory of Frobenius algebra-valued integrable systems is developed. This is achieved for systems derived from Frobenius manifolds by utilizing the theory of tensor products for such manifolds, as developed by Kaufmann (Int Math Res Not 19:929-952, 1996), Kontsevich and Manin (Inv Math 124: 313-339, 1996). By specializing this construction, using a fixed Frobenius algebra A, one can arrive at such a theory. More generally, one can apply the same idea to construct an A-valued topological quantum field theory. The Hamiltonian properties of two classes of integrable evolution equations are then studied: dispersionless and dispersive evolution equations. Application of these ideas are discussed, and as an example, an A-valued modified Camassa-Holm equation is constructed.
NASA Astrophysics Data System (ADS)
Zhang, Liangyin; Chen, Michael Z. Q.; Li, Chanying
2017-07-01
In this paper, two new pairs of dual continuous-time algebraic Riccati equations (CAREs) and dual discrete-time algebraic Riccati equations (DAREs) are proposed. The dual DAREs are first studied with some nonsingularity assumptions on the system matrix and the parameter matrix. Then, in the case of singular matrices, a generalised inverse is introduced to deal with the dual DARE problem. These dual AREs can easily lead us to an iterative procedure for finding the anti-stabilising solutions, especially to DARE, by means of that for the stabilising solutions. Furthermore, we provide the counterpart results on the set of all solutions to DARE inspired by the results for CARE. Two examples are presented to illustrate the theoretical results.
Jiao, Fengyu; Wei, Peijun; Li, Yueqiu
2018-01-01
Reflection and transmission of plane waves through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces are studied in this paper. The secular equations in the flexoelectric piezoelectric material are first derived from the general governing equation. Different from the classical piezoelectric medium, there are five kinds of coupled elastic waves in the piezoelectric material with the microstructure effects taken into consideration. The state vectors are obtained by the summation of contributions from all possible partial waves. The state transfer equation of flexoelectric piezoelectric slab is derived from the motion equation by the reduction of order, and the transfer matrix of flexoelectric piezoelectric slab is obtained by solving the state transfer equation. By using the continuous conditions at the interface and the approach of partition matrix, we get the resultant algebraic equations in term of the transfer matrix from which the reflection and transmission coefficients can be calculated. The amplitude ratios and further the energy flux ratios of various waves are evaluated numerically. The numerical results are shown graphically and are validated by the energy conservation law. Based on these numerical results, the influences of two characteristic lengths of microstructure and the flexoelectric coefficients on the wave propagation are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Continual Lie algebras and noncommutative counterparts of exactly solvable models
NASA Astrophysics Data System (ADS)
Zuevsky, A.
2004-01-01
Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.
Rational solutions of CYBE for simple compact real Lie algebras
NASA Astrophysics Data System (ADS)
Pop, Iulia; Stolin, Alexander
2007-04-01
In [A.A. Stolin, On rational solutions of Yang-Baxter equation for sl(n), Math. Scand. 69 (1991) 57-80; A.A. Stolin, On rational solutions of Yang-Baxter equation. Maximal orders in loop algebra, Comm. Math. Phys. 141 (1991) 533-548; A. Stolin, A geometrical approach to rational solutions of the classical Yang-Baxter equation. Part I, in: Walter de Gruyter & Co. (Ed.), Symposia Gaussiana, Conf. Alg., Berlin, New York, 1995, pp. 347-357] a theory of rational solutions of the classical Yang-Baxter equation for a simple complex Lie algebra g was presented. We discuss this theory for simple compact real Lie algebras g. We prove that up to gauge equivalence all rational solutions have the form X(u,v)={Ω}/{u-v}+t1∧t2+⋯+t∧t2n, where Ω denotes the quadratic Casimir element of g and {ti} are linearly independent elements in a maximal torus t of g. The quantization of these solutions is also emphasized.
UCSMP Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…
Homomorphisms in C*-ternary algebras and JB*-triples
NASA Astrophysics Data System (ADS)
Park, Choonkil; Rassias, Themistocles M.
2008-01-01
In this paper, we investigate homomorphisms between C*-ternary algebras and derivations on C*-ternary algebras, and homomorphisms between JB*-triples and derivations on JB*-triples, associated with the following Apollonius type additive functional equation
Group analysis of dynamics equations of self-gravitating polytropic gas
NASA Astrophysics Data System (ADS)
Klebanov, I.; Panov, A.; Ivanov, S.; Maslova, O.
2018-06-01
The Lie algebras admitted by the dynamics equations of self-gravitating gas for an arbitrary equation of state and a polytropic gas are calculated. A spherically symmetric submodel is constructed for the case of a polytropic gas. The Lie algebras and the optimal system of subalgebras for a spherically symmetric submodel are computed. An invariant solution describing the steady motion is obtained.
Problems Relating Mathematics and Science in the High School.
ERIC Educational Resources Information Center
Morrow, Richard; Beard, Earl
This document contains various science problems which require a mathematical solution. The problems are arranged under two general areas. The first (algebra I) contains biology, chemistry, and physics problems which require solutions related to linear equations, exponentials, and nonlinear equations. The second (algebra II) contains physics…
Now & Then: Roger Whitmore, Police Officer.
ERIC Educational Resources Information Center
Barnes, Sue; Michalowicz, Karen Dee
1995-01-01
Discusses police officers' use of mathematics when reconstructing an accident scene; and the history of algebra, including al-Khwarizmi's works on the theory of equations, the Rhind Papyrus, a Chinese and an Indian manuscript on systems of linear and quadratic equations, and Diophantus'"syncopated algebra." (10 references) (EK)
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
Ermakov's Superintegrable Toy and Nonlocal Symmetries
NASA Astrophysics Data System (ADS)
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Using trees to compute approximate solutions to ordinary differential equations exactly
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.
Teaching Algebraic Equations to Middle School Students with Intellectual Disabilities
ERIC Educational Resources Information Center
Baker, Joshua N.; Rivera, Christopher J.; Morgan, Joseph John; Reese, Noelle
2015-01-01
The purpose of this study was to replicate similar instructional techniques of Jimenez, Browder, and Courtade (2008) using a single-subject multiple-probe across participants design to investigate the effects of task analytic instruction coupled with semi-concrete representations to teach linear algebraic equations to middle school students with…
Elementary Algebra Connections to Precalculus
ERIC Educational Resources Information Center
Lopez-Boada, Roberto; Daire, Sandra Arguelles
2013-01-01
This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…
Alternative Representations for Algebraic Problem Solving: When Are Graphs Better than Equations?
ERIC Educational Resources Information Center
Mielicki, Marta K.; Wiley, Jennifer
2016-01-01
Successful algebraic problem solving entails adaptability of solution methods using different representations. Prior research has suggested that students are more likely to prefer symbolic solution methods (equations) over graphical ones, even when graphical methods should be more efficient. However, this research has not tested how representation…
Sun, Leping
2016-01-01
This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true.
Using Computer Symbolic Algebra to Solve Differential Equations.
ERIC Educational Resources Information Center
Mathews, John H.
1989-01-01
This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)
Titration Calculations with Computer Algebra Software
ERIC Educational Resources Information Center
Lachance, Russ; Biaglow, Andrew
2012-01-01
This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…
1980-06-01
sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426
Vectorial laws of refraction and reflection using the cross product and dot product.
Tkaczyk, Eric R
2012-03-01
We demonstrate that published vectorial laws of reflection and refraction of light based solely on the cross product do not, in general, uniquely determine the direction of the reflected and refracted waves without additional information. This is because the cross product does not have a unique inverse operation, which is explained in this Letter in linear algebra terms. However, a vector is in fact uniquely determined if both the cross product (vector product) and dot product (scalar product) with a known vector are specified, which can be written as a single equation with a left-invertible matrix. It is thus possible to amend the vectorial laws of reflection and refraction to incorporate both the cross and dot products for a complete specification with unique solution. This enables highly efficient, unambiguous computation of reflected and refracted wave vectors from the incident wave and surface normal. © 2012 Optical Society of America
Algebraic Riccati equations in zero-sum differential games
NASA Technical Reports Server (NTRS)
Johnson, T. L.; Chao, A.
1974-01-01
The procedure for finding the closed-loop Nash equilibrium solution of two-player zero-sum linear time-invariant differential games with quadratic performance criteria and classical information pattern may be reduced in most cases to the solution of an algebraic Riccati equation. Based on the results obtained by Willems, necessary and sufficient conditions for existence of solutions to these equations are derived, and explicit conditions for a scalar example are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd, R. K.
2014-02-15
In this paper we derive Hirota equations associated with the simply laced affine Lie algebras g{sup (1)}, where g is one of the simply laced complex Lie algebras a{sub n},d{sub n},e{sub 6},e{sub 7} or e{sub 8}, defined by finite order automorphisms of g which we call Lepowsky automorphisms. In particular, we investigate the Hirota equations for Lepowsky automorphisms of e{sub 6} defined by the cuspidal class E{sub 6} of the Weyl group W(E{sub 6}) of e{sub 6}. We also investigate the relationship between the Lepowsky automorphisms of the simply laced complex Lie algebras g and the conjugate canonical automorphisms definedmore » by Kac. This analysis is applied to identify the canonical automorphisms for the cuspidal class E{sub 6} of e{sub 6}.« less
Generalizations of the classical Yang-Baxter equation and O-operators
NASA Astrophysics Data System (ADS)
Bai, Chengming; Guo, Li; Ni, Xiang
2011-06-01
Tensor solutions (r-matrices) of the classical Yang-Baxter equation (CYBE) in a Lie algebra, obtained as the classical limit of the R-matrix solution of the quantum Yang-Baxter equation, is an important structure appearing in different areas such as integrable systems, symplectic geometry, quantum groups, and quantum field theory. Further study of CYBE led to its interpretation as certain operators, giving rise to the concept of {O}-operators. The O-operators were in turn interpreted as tensor solutions of CYBE by enlarging the Lie algebra [Bai, C., "A unified algebraic approach to the classical Yang-Baxter equation," J. Phys. A: Math. Theor. 40, 11073 (2007)], 10.1088/1751-8113/40/36/007. The purpose of this paper is to extend this study to a more general class of operators that were recently introduced [Bai, C., Guo, L., and Ni, X., "Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras," Commun. Math. Phys. 297, 553 (2010)], 10.1007/s00220-010-0998-7 in the study of Lax pairs in integrable systems. Relations between O-operators, relative differential operators, and Rota-Baxter operators are also discussed.
Lie-Hamilton systems on the plane: Properties, classification and applications
NASA Astrophysics Data System (ADS)
Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.
2015-04-01
We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.
Development of abstract mathematical reasoning: the case of algebra
Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja
2014-01-01
Algebra typically represents the students’ first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students’ ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16–17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15–16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students’ transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition. PMID:25228874
Development of abstract mathematical reasoning: the case of algebra.
Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja
2014-01-01
Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.
The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)
NASA Astrophysics Data System (ADS)
2017-09-01
The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary
The general symmetry algebra structure of the underdetermined equation ux=(vxx)2
NASA Astrophysics Data System (ADS)
Kersten, Paul H. M.
1991-08-01
In a recent paper, Anderson, Kamran, and Olver [``Interior, exterior, and generalized symmetries,'' preprint (1990)] obtained the first- and second-order generalized symmetry algebra for the system ux=(vxx)2, leading to the noncompact real form of the exceptional Lie algebra G2. Here, the structure of the general higher-order symmetry algebra is obtained. Moreover, the Lie algebra G2 is obtained as ordinary symmetry algebra of the associated first-order system. The general symmetry algebra for ux=f(u,v,vx,...,) is established also.
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…
A Brief Historical Introduction to Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Classical Yang-Baxter equations and quantum integrable systems
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1989-06-01
Quantum integrable models associated with nondegenerate solutions of classical Yang-Baxter equations related to the simple Lie algebras are investigated. These models are diagonalized for rational and trigonometric solutions in the cases of sl(N)/gl(N)/, o(N) and sp(N) algebras. The analogy with the quantum inverse scattering method is demonstrated.
ERIC Educational Resources Information Center
Maat, Siti Mistima; Zakaria, Effandi
2011-01-01
Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…
Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving
ERIC Educational Resources Information Center
Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.
2016-01-01
This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…
Mathematical Designs for Teaching and Learning Composition.
ERIC Educational Resources Information Center
Laque, Carol Feiser
Algebraic equations and geometric forms are useful in teaching and learning composition. Algebraic equations can illustrate the modular nature of paragraph structures and can be refined by students to describe types of paragraphs. Discussion of the "slippery" nature of words and their power of transformation can be a lecture topic as the class…
Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors
2010-11-01
primitive Differential-Algebraic Equations (DAEs), used to process and interpret the experimentally measured electrical impedance data (Sun and Morgan...field, and species respectively. A second-order scheme was used to calculate the ionic species distribution. The linearized algebraic equations were...is governed by the Poisson equation 2 0 0 r i i i F z cε ε φ∇ + =∑ where ε0 and εr are, respectively, the electrical permittivity in the vacuum
BMS3 invariant fluid dynamics at null infinity
NASA Astrophysics Data System (ADS)
Penna, Robert F.
2018-02-01
We revisit the boundary dynamics of asymptotically flat, three dimensional gravity. The boundary is governed by a momentum conservation equation and an energy conservation equation, which we interpret as fluid equations, following the membrane paradigm. We reformulate the boundary’s equations of motion as Hamiltonian flow on the dual of an infinite-dimensional, semi-direct product Lie algebra equipped with a Lie–Poisson bracket. This gives the analogue for boundary fluid dynamics of the Marsden–Ratiu–Weinstein formulation of the compressible Euler equations on a manifold, M, as Hamiltonian flow on the dual of the Lie algebra of \
Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Zhang, Yang
2018-03-01
In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.
Form in Algebra: Reflecting, with Peacock, on Upper Secondary School Teaching.
ERIC Educational Resources Information Center
Menghini, Marta
1994-01-01
Discusses algebra teaching by looking back into the history of algebra and the work of George Peacock, who considered algebra from two points of view: symbolic and instrumental. Claims that, to be meaningful, algebra must be linked to real-world problems. (18 references) (MKR)
Modular operads and the quantum open-closed homotopy algebra
NASA Astrophysics Data System (ADS)
Doubek, Martin; Jurčo, Branislav; Münster, Korbinian
2015-12-01
We verify that certain algebras appearing in string field theory are algebras over Feynman transform of modular operads which we describe explicitly. Equivalent description in terms of solutions of generalized BV master equations are explained from the operadic point of view.
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
Classical integrable many-body systems disconnected with semi-simple Lie algebras
NASA Astrophysics Data System (ADS)
Inozemtsev, V. I.
2017-05-01
The review of the results in the theory of integrable many-body systems disconnected with semisimple Lie algebras is done. The one-dimensional systems of light Calogero-Sutherland-Moser particles interacting with one particle of infinite mass located at the origin are described in detail. In some cases the exact solutions of the equations of motion are obtained. The general theory of integration of the equations of motion needs the methods of algebraic geometry. The Lax pairs with spectral parameter are constructed for this purpose. The theory still contains many unsolved problems.
A path model for Whittaker vectors
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Kedem, Rinat; Turmunkh, Bolor
2017-06-01
In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra U_q(slr+1) . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the q-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.
Post-Lie algebras and factorization theorems
NASA Astrophysics Data System (ADS)
Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans
2017-09-01
In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Learning Activity Package, Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation
NASA Technical Reports Server (NTRS)
Mook, D. J.; Lew, Jiann-Shiun
1991-01-01
Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.
Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.
Boyko, Vyacheslav M.; Popovych, Roman O.; Shapoval, Nataliya M.
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach. PMID:23564972
Meta-Representation in an Algebra I Classroom
ERIC Educational Resources Information Center
Izsak, Andrew; Caglayan, Gunhan; Olive, John
2009-01-01
We describe how 1 Algebra I teacher and her 8th-grade students used meta-representational knowledge when generating and evaluating equations to solve word problems. Analyzing data from a sequence of 4 lessons, we found that the teacher and her students used criteria for evaluating equations, in addition to other types of knowledge (e.g., different…
ERIC Educational Resources Information Center
Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou
2018-01-01
This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
ERIC Educational Resources Information Center
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
ERIC Educational Resources Information Center
Gasyna, Zbigniew L.
2008-01-01
Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)
Abstract numeric relations and the visual structure of algebra.
Landy, David; Brookes, David; Smout, Ryan
2014-09-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.
The Structural Algebra Option: A Discussion Paper.
ERIC Educational Resources Information Center
Kirshner, David
The goal of this paper is to renew interest in the structural option to algebra instruction. Concern for the usual secondary school algebra curriculum related to simplifying expressions, solving equations, and rationalizing numerators and denominators is viewed from three pedagogical approaches: (1) structural approach, (2) empirical approach, and…
Comparison of methods for developing the dynamics of rigid-body systems
NASA Technical Reports Server (NTRS)
Ju, M. S.; Mansour, J. M.
1989-01-01
Several approaches for developing the equations of motion for a three-degree-of-freedom PUMA robot were compared on the basis of computational efficiency (i.e., the number of additions, subtractions, multiplications, and divisions). Of particular interest was the investigation of the use of computer algebra as a tool for developing the equations of motion. Three approaches were implemented algebraically: Lagrange's method, Kane's method, and Wittenburg's method. Each formulation was developed in absolute and relative coordinates. These six cases were compared to each other and to a recursive numerical formulation. The results showed that all of the formulations implemented algebraically required fewer calculations than the recursive numerical algorithm. The algebraic formulations required fewer calculations in absolute coordinates than in relative coordinates. Each of the algebraic formulations could be simplified, using patterns from Kane's method, to yield the same number of calculations in a given coordinate system.
Some Applications Of Semigroups And Computer Algebra In Discrete Structures
NASA Astrophysics Data System (ADS)
Bijev, G.
2009-11-01
An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.
Construction of Orthonormal Wavelets Using Symbolic Algebraic Methods
NASA Astrophysics Data System (ADS)
Černá, Dana; Finěk, Václav
2009-09-01
Our contribution is concerned with the solution of nonlinear algebraic equations systems arising from the computation of scaling coefficients of orthonormal wavelets with compact support. Specifically Daubechies wavelets, symmlets, coiflets, and generalized coiflets. These wavelets are defined as a solution of equation systems which are partly linear and partly nonlinear. The idea of presented methods consists in replacing those equations for scaling coefficients by equations for scaling moments. It enables us to eliminate some quadratic conditions in the original system and then simplify it. The simplified system is solved with the aid of the Gröbner basis method. The advantage of our approach is that in some cases, it provides all possible solutions and these solutions can be computed to arbitrary precision. For small systems, we are even able to find explicit solutions. The computation was carried out by symbolic algebra software Maple.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e
2008-05-15
By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.
Transoptr — A second order beam transport design code with optimization and constraints
NASA Astrophysics Data System (ADS)
Heighway, E. A.; Hutcheon, R. M.
1981-08-01
This code was written initially to design an achromatic and isochronous reflecting magnet and has been extended to compete in capability (for constrained problems) with TRANSPORT. Its advantage is its flexibility in that the user writes a routine to describe his transport system. The routine allows the definition of general variables from which the system parameters can be derived. Further, the user can write any constraints he requires as algebraic equations relating the parameters. All variables may be used in either a first or second order optimization.
Mathematical Methods for Physics and Engineering Third Edition Paperback Set
NASA Astrophysics Data System (ADS)
Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.
2006-06-01
Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.
NASA Astrophysics Data System (ADS)
Dumansky, Alexander M.; Tairova, Lyudmila P.
2008-09-01
A method for the construction of hereditary constitutive equation is proposed for the laminate on the basis of hereditary constitutive equations of a layer. The method is developed from the assumption that in the directions of axes of orthotropy the layer follows elastic behavior, and obeys hereditary constitutive equations under shear. The constitutive equations of the laminate are constructed on the basis of classical laminate theory and algebra of resolvent operators. Effective matrix algorithm and relationships of operator algebra are used to derive visco-elastic stiffness and compliance of the laminate. The example of construction of hereditary constitutive equations of cross-ply carbon fiber-reinforced plastic is presented.
Computer programs for the solution of systems of linear algebraic equations
NASA Technical Reports Server (NTRS)
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style
NASA Astrophysics Data System (ADS)
Hillston, Jane; Duguid, Adam
The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.
An Analytic Conception of Equation and Teachers' Views of School Algebra
ERIC Educational Resources Information Center
Chazan, Daniel; Yerushalmy, Michal; Leikin, Roza
2008-01-01
This interview study takes place in the context of a single small district in the United States. In the algebra curriculum of this district, there was a shift in the conception of equation, from a statement about unknown numbers to a question about the comparison of two functions over the domain of the real numbers. Using two of Shulman's…
ERIC Educational Resources Information Center
Tonisson, Eno
2015-01-01
Sometimes Computer Algebra Systems (CAS) offer an answer that is somewhat different from the answer that is probably expected by the student or teacher. These (somewhat unexpected) answers could serve as a catalyst for rich mathematical discussion. In this study, over 120 equations from school mathematics were solved using 8 different CAS. Many…
Solving a System of Nonlinear Algebraic Equations You Only Get Error Messages--What to Do Next?
ERIC Educational Resources Information Center
Shacham, Mordechai; Brauner, Neima
2017-01-01
Chemical engineering problems often involve the solution of systems of nonlinear algebraic equations (NLE). There are several software packages that can be used for solving NLE systems, but they may occasionally fail, especially in cases where the mathematical model contains discontinuities and/or regions where some of the functions are undefined.…
W-algebra for solving problems with fuzzy parameters
NASA Astrophysics Data System (ADS)
Shevlyakov, A. O.; Matveev, M. G.
2018-03-01
A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.
Joao P. Carvalho; Bernard R. Parresol
2005-01-01
This paper presents a growth model for dominant-height and site-quality estimations for Pyrenean oak (Quercus pyrenaica Willd.) stands. The BertalanffyâRichards function is used with the generalized algebraic difference approach to derive a dynamic site equation. This allows dominant-height and site-index estimations in a compatible way, using any...
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
Powell, Sarah R.; Fuchs, Lynn S.
2014-01-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044
Geary, David C.; Hoard, Mary K.; Nugent, Lara; Rouder, Jeffrey N.
2015-01-01
The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 (92 girls) 9th graders, controlling parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation, but not schema memory. Frequency of fact-retrieval errors was related to schema memory but not coordinate plane or expression evaluation accuracy. The results suggest the ANS may contribute to or is influenced by spatial-numerical and numerical only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest different brain and cognitive systems are engaged during the learning of different components of algebraic competence, controlling demographic and domain general abilities. PMID:26255604
Bäcklund transformation of Painlevé III(D 8) τ function
NASA Astrophysics Data System (ADS)
Bershtein, M. A.; Shchechkin, A. I.
2017-03-01
We study the explicit formula (suggested by Gamayun, Iorgov and Lisovyy) for the Painlevé III(D 8) τ function in terms of Virasoro conformal blocks with a central charge of 1. The Painlevé equation has two types of bilinear forms, which we call Toda-like and Okamoto-like. We obtain these equations from the representation theory using an embedding of the direct sum of two Virasoro algebras in a certain superalgebra. These two types of bilinear forms correspond to the Neveu-Schwarz sector and the Ramond sector of this algebra. We also obtain the τ functions of the algebraic solutions of the Painlevé III(D 8) from the special representations of the Virasoro algebra of the highest weight (n + 1/4)2.
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.
2010-01-01
Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.
Capitalizing on Basic Brain Processes in Developmental Algebra--Part 3
ERIC Educational Resources Information Center
Laughbaum, Edward D.
2011-01-01
In Part Three, the author reviews the basic ideas presented in Parts One and Two while arguing why the traditional equation-solving developmental algebra curricula is not a good choice for implementing neural response strategies presented in the first two parts. He continues by showing that the developmental algebra student audience is simply…
Activities for Students: Biology as a Source for Algebra Equations--The Heart
ERIC Educational Resources Information Center
Horak, Virginia M.
2005-01-01
The high school course that integrated first year algebra with an introductory environmental biology/anatomy and physiology course, in order to solve algebra problems is discussed. Lessons and activities for the course were taken by identifying the areas where mathematics and biology content intervenes may help students understand biology concepts…
ERIC Educational Resources Information Center
Buerman, Margaret
2007-01-01
Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…
Balancing the Equation: Do Course Variations in Algebra 1 Provide Equal Student Outcomes?
ERIC Educational Resources Information Center
Kenfield, Danielle M.
2013-01-01
Historically, algebra has served as a gatekeeper that divides students into academic programs with varying opportunities to learn and controls access to higher education and career opportunities. Successful completion of Algebra 1 demonstrates mathematical proficiency and allows access to a sequential and progressive path of advanced study that…
ERIC Educational Resources Information Center
McNeil, Nicole M.; Rittle-Johnson, Bethany; Hattikudur, Shanta; Petersen, Lori A.
2010-01-01
This study examined if solving arithmetic problems hinders undergraduates' accuracy on algebra problems. The hypothesis was that solving arithmetic problems would hinder accuracy because it activates an operational view of equations, even in educated adults who have years of experience with algebra. In three experiments, undergraduates (N = 184)…
ERIC Educational Resources Information Center
Ross, Amanda; Willson, Victor
2012-01-01
This study examined the effects of types of representations, constructivist teaching approaches, and student engagement on middle school algebra students' procedural knowledge and conceptual understanding. Data gathered from 16 video lessons and algebra pretest/posttests were used to run three multilevel structural equation models. Symbolic…
Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution
NASA Astrophysics Data System (ADS)
Baradaran, M.; Panahi, H.
2018-05-01
Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.
ERIC Educational Resources Information Center
Samuel, Koji; Mulenga, H. M.; Angel, Mukuka
2016-01-01
This paper investigates the challenges faced by secondary school teachers and pupils in the teaching and learning of algebraic linear equations. The study involved 80 grade 11 pupils and 15 teachers of mathematics, drawn from 4 selected secondary schools in Mufulira district, Zambia in Central Africa. A descriptive survey method was employed to…
Finding Rational Parametric Curves of Relative Degree One or Two
ERIC Educational Resources Information Center
Boyles, Dave
2010-01-01
A plane algebraic curve, the complete set of solutions to a polynomial equation: f(x, y) = 0, can in many cases be drawn using parametric equations: x = x(t), y = y(t). Using algebra, attempting to parametrize by means of rational functions of t, one discovers quickly that it is not the degree of f but the "relative degree," that describes how…
Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2006-03-01
Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.
NASA Astrophysics Data System (ADS)
Silantyev, A. V.
2018-05-01
A brief overview of the representation theory of quivers and the associated (deformed) preprojective algebras, as well as of the theories of moduli spaces of these algebras, quiver varieties and a reflection functor, is given. It is proven that a bijection between moduli spaces (in particular, between quiver varieties), which is induced by a reflection function, is the isomorphism of symplectic affine varieties. The Hamiltonian systems on quiver varieties are defined, and the application of a reflection functor to them is described. The review of [1], concerning the case of a cyclic quiver is given, and a role of the reflection functor in this case is clarified. The "spin" integrable generalizations of Calogero-Moser systems and their application to the KP hierarchy generalizations are described.
FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.
NASA Astrophysics Data System (ADS)
Matone, Marco
2015-11-01
We show that there are {\\it 13 types} of commutator algebras leading to the new closed forms of the Baker-Campbell-Hausdorff (BCH) formula $$\\exp(X)\\exp(Y)\\exp(Z)=\\exp({AX+BZ+CY+DI}) \\ , $$ derived in arXiv:1502.06589, JHEP {\\bf 1505} (2015) 113. This includes, as a particular case, $\\exp(X) \\exp(Z)$, with $[X,Z]$ containing other elements in addition to $X$ and $Z$. The algorithm exploits the associativity of the BCH formula and is based on the decomposition $\\exp(X)\\exp(Y)\\exp(Z)=\\exp(X)\\exp({\\alpha Y}) \\exp({(1-\\alpha) Y}) \\exp(Z)$, with $\\alpha$ fixed in such a way that it reduces to $\\exp({\\tilde X})\\exp({\\tilde Y})$, with $\\tilde X$ and $\\tilde Y$ satisfying the Van-Brunt and Visser condition $[\\tilde X,\\tilde Y]=\\tilde u\\tilde X+\\tilde v\\tilde Y+\\tilde cI$. It turns out that $e^\\alpha$ satisfies, in the generic case, an algebraic equation whose exponents depend on the parameters defining the commutator algebra. In nine {\\it types} of commutator algebras, such an equation leads to rational solutions for $\\alpha$. We find all the equations that characterize the solution of the above decomposition problem by combining it with the Jacobi identity.
A new approach for shaping of dual-reflector antennas
NASA Technical Reports Server (NTRS)
Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.
1987-01-01
The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.
Higher symmetries of the Schrödinger operator in Newton-Cartan geometry
NASA Astrophysics Data System (ADS)
Gundry, James
2017-03-01
We establish several relationships between the non-relativistic conformal symmetries of Newton-Cartan geometry and the Schrödinger equation. In particular we discuss the algebra sch(d) of vector fields conformally-preserving a flat Newton-Cartan spacetime, and we prove that its curved generalisation generates the symmetry group of the covariant Schrödinger equation coupled to a Newtonian potential and generalised Coriolis force. We provide intrinsic Newton-Cartan definitions of Killing tensors and conformal Schrödinger-Killing tensors, and we discuss their respective links to conserved quantities and to the higher symmetries of the Schrödinger equation. Finally we consider the role of conformal symmetries in Newtonian twistor theory, where the infinite-dimensional algebra of holomorphic vector fields on twistor space corresponds to the symmetry algebra cnc(3) on the Newton-Cartan spacetime.
The change of the brain activation patterns as children learn algebra equation solving
NASA Astrophysics Data System (ADS)
Qin, Yulin; Carter, Cameron S.; Silk, Eli M.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Anderson, John R.
2004-04-01
In a brain imaging study of children learning algebra, it is shown that the same regions are active in children solving equations as are active in experienced adults solving equations. As with adults, practice in symbol manipulation produces a reduced activation in prefrontal cortex area. However, unlike adults, practice seems also to produce a decrease in a parietal area that is holding an image of the equation. This finding suggests that adolescents' brain responses are more plastic and change more with practice. These results are integrated in a cognitive model that predicts both the behavioral and brain imaging results.
NASA Astrophysics Data System (ADS)
Links, Jon
2017-03-01
Solutions of the classical Yang-Baxter equation provide a systematic method to construct integrable quantum systems in an algebraic manner. A Lie algebra can be associated with any solution of the classical Yang-Baxter equation, from which commuting transfer matrices may be constructed. This procedure is reviewed, specifically for solutions without skew-symmetry. A particular solution with an exotic symmetry is identified, which is not obtained as a limiting expansion of the usual Yang-Baxter equation. This solution facilitates the construction of commuting transfer matrices which will be used to establish the integrability of a multi-species boson tunnelling model. The model generalises the well-known two-site Bose-Hubbard model, to which it reduces in the one-species limit. Due to the lack of an apparent reference state, application of the algebraic Bethe Ansatz to solve the model is prohibitive. Instead, the Bethe Ansatz solution is obtained by the use of operator identities and tensor product decompositions.
Equations of motion for a spectrum-generating algebra: Lipkin Meshkov Glick model
NASA Astrophysics Data System (ADS)
Rosensteel, G.; Rowe, D. J.; Ho, S. Y.
2008-01-01
For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 106, computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point.
ERIC Educational Resources Information Center
Hillegeist, Eleanor; Epstein, Kenneth
The study examined the relationship between language and mathematics with 11 classes of deaf students taking Algebra 1 or Algebra 2 at the Gallaudet University School of Preparatory Studies. Specifically, the study attempted to predict the difficulty of a variety of relatively simple algebra problems based on the abstractness of the math and the…
Strategies for Solving Fraction Tasks and Their Link to Algebraic Thinking
ERIC Educational Resources Information Center
Pearn, Catherine; Stephens, Max
2015-01-01
Many researchers argue that a deep understanding of fractions is important for a successful transition to algebra. Teaching, especially in the middle years, needs to focus specifically on those areas of fraction knowledge and operations that support subsequent solution processes for algebraic equations. This paper focuses on the results of Year 6…
Algebraic solution for the forward displacement analysis of the general 6-6 stewart mechanism
NASA Astrophysics Data System (ADS)
Wei, Feng; Wei, Shimin; Zhang, Ying; Liao, Qizheng
2016-01-01
The solution for the forward displacement analysis(FDA) of the general 6-6 Stewart mechanism(i.e., the connection points of the moving and fixed platforms are not restricted to lying in a plane) has been extensively studied, but the efficiency of the solution remains to be effectively addressed. To this end, an algebraic elimination method is proposed for the FDA of the general 6-6 Stewart mechanism. The kinematic constraint equations are built using conformal geometric algebra(CGA). The kinematic constraint equations are transformed by a substitution of variables into seven equations with seven unknown variables. According to the characteristic of anti-symmetric matrices, the aforementioned seven equations can be further transformed into seven equations with four unknown variables by a substitution of variables using the Gröbner basis. Its elimination weight is increased through changing the degree of one variable, and sixteen equations with four unknown variables can be obtained using the Gröbner basis. A 40th-degree univariate polynomial equation is derived by constructing a relatively small-sized 9´9 Sylvester resultant matrix. Finally, two numerical examples are employed to verify the proposed method. The results indicate that the proposed method can effectively improve the efficiency of solution and reduce the computational burden because of the small-sized resultant matrix.
Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki
2009-02-01
Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.
Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N
2015-12-01
The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. Copyright © 2015 Elsevier Inc. All rights reserved.
Contextualizing symbol, symbolizing context
NASA Astrophysics Data System (ADS)
Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang
2017-08-01
When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.
NASA Astrophysics Data System (ADS)
Chicurel-Uziel, Enrique
2007-08-01
A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.
Multidimensional integrable systems and deformations of Lie algebra homomorphisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunajski, Maciej; Grant, James D. E.; Strachan, Ian A. B.
We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti-self-dual Yang-Mills equations with a gauge group Diff(S{sup 1})
ERIC Educational Resources Information Center
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Adler-Kostant-Symes scheme for face and Calogero-Moser-Sutherland-type models
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter
1998-07-01
We give the construction of quantum Lax equations for IRF models and the difference version of the Calogero-Moser-Sutherland model introduced by Ruijsenaars. We solve the equations using factorization properties of the underlying face Hopf algebras/elliptic quantum groups. This construction is in the spirit of the Adler-Kostant-Symes method and generalizes our previous work to the case of face Hopf algebras/elliptic quantum groups with dynamical R matrices.
Conical Lens for 5-Inch/54 Gun Launched Missile
1981-06-01
Propagation, Interferenceand Diffraction of Light, 2nd ed. (revised), p. 121-124, Pergamon Press, 1964. 10. Anton , Howard, Elementary Linear Algebra , p. 1-21...equations is nonlinear in x, but is linear in the coefficients. Therefore, the techniques of linear algebra can be used on equation (F-13). The method...This thesis assumes the air to be homogenous, isotropic, linear , time indepen- dent (HILT) and free of shock waves in order to investigate the
Knotted optical vortices in exact solutions to Maxwell's equations
NASA Astrophysics Data System (ADS)
de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk
2017-05-01
We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.
Simplifications for hydronic system models in modelica
Jorissen, F.; Wetter, M.; Helsen, L.
2018-01-12
Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less
Descriptions of Free and Freeware Software in the Mathematics Teaching
NASA Astrophysics Data System (ADS)
Antunes de Macedo, Josue; Neves de Almeida, Samara; Voelzke, Marcos Rincon
2016-05-01
This paper presents the analysis and the cataloging of free and freeware mathematical software available on the internet, a brief explanation of them, and types of licenses for use in teaching and learning. The methodology is based on the qualitative research. Among the different types of software found, it stands out in algebra, the Winmat, that works with linear algebra, matrices and linear systems. In geometry, the GeoGebra, which can be used in the study of functions, plan and spatial geometry, algebra and calculus. For graphing, can quote the Graph and Graphequation. With Graphmatica software, it is possible to build various graphs of mathematical equations on the same screen, representing cartesian equations, inequalities, parametric among other functions. The Winplot allows the user to build graphics in two and three dimensions functions and mathematical equations. Thus, this work aims to present the teachers some free math software able to be used in the classroom.
Spherical Hecke algebra in the Nekrasov-Shatashvili limit
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile
2015-01-01
The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ɛ 2. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.
NASA Astrophysics Data System (ADS)
Finley, Daniel; McIver, John K.
2002-12-01
The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.; Ayalon, Michal
2018-02-01
A foundational component of developing algebraic thinking for meaningful calculus learning is the idea of "function" that focuses on the relationship between varying quantities. Students have demonstrated widespread difficulties in learning calculus, particularly interpreting and modeling dynamic events, when they have a poor understanding of relationships between variables. Yet, there are differing views on how to develop students' functional thinking over time. In the Australian curriculum context, linear relationships are introduced to lower secondary students with content that reflects a hybrid of traditional and reform algebra pedagogy. This article discusses an investigation into Australian secondary students' understanding of linear functional relationships from Years 7 to 12 (approximately 12 to 18 years old; n = 215) in their approaches to three tasks (finding rate of change, pattern generalisation and interpretation of gradient) involving four different representations (table, geometric growing pattern, equation and graph). From the findings, it appears that these students' knowledge of linear functions remains context-specific rather than becoming connected over time.
Polynomial functors and combinatorial Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Kock, Joachim
2017-04-01
We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 1-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structures. Precisely, for any finitary polynomial endofunctor P defined over groupoids, the system of combinatorial Dyson-Schwinger equations X = 1 + P(X) has a universal solution, namely the groupoid of P-trees. The isoclasses of P-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+-operators. The solution to this equation is a series (the Green function), which always enjoys a Faà di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Faà di Bruno bialgebra. Varying P yields different bialgebras, and cartesian natural transformations between various P yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of P-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-Löf type theory (expounded elsewhere).
Generalized Galilean algebras and Newtonian gravity
NASA Astrophysics Data System (ADS)
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
Diagrams benefit symbolic problem-solving.
Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R
2017-06-01
The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.
ERIC Educational Resources Information Center
Benjamin, Carl; And Others
Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…
Effect of partial heating at mid of vertical plate adjacent to porous medium
NASA Astrophysics Data System (ADS)
Mulla, Mohammed Fahimuddin; Pallan, Khalid. M.; Al-Rashed, A. A. A. A.
2018-05-01
Heat and mass transfer in porous medium due to heating of vertical plate at mid-section is analyzed for various physical parameters. The heat and mass transfer in porous medium is modeled with the help of momentum, energy and concentration equations in terms of non-dimensional partial differential equations. The partial differential equations are converted into simpler form of algebraic equations with the help of finite element method. A computer code is developed to assemble the matrix form of algebraic equations into global matrices and then to solve them in an iterative manner to obtain the temperature, concentration and streamline distribution inside the porous medium. It is found that the heat transfer behavior of porous medium heated at middle section is considerably different from other cases.
Quantum groups, Yang-Baxter maps and quasi-determinants
NASA Astrophysics Data System (ADS)
Tsuboi, Zengo
2018-01-01
For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq (gl (n)). Moreover, the map is identified with products of quasi-Plücker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.
Symmetries of the Space of Linear Symplectic Connections
NASA Astrophysics Data System (ADS)
Fox, Daniel J. F.
2017-01-01
There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.
A Study of Students' Achievement in Algebra: Considering the Effect of Gender and Types of Schools
ERIC Educational Resources Information Center
Saleh, Salmiza; Rahman, Muhamad Asyrah Abdul
2016-01-01
Algebra is a branch of mathematics that deals with symbols and also the rules for manipulating those symbols, which are used to represent numbers and quantities in mathematical formulae and equations. It is needed and used in our everyday lives. The purpose of this study was to examine students' performance in algebra related to gender and types…
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 33.
1977-09-27
reduces to an infinite system of linear homogeneous algebraic equations and leads to Mathieu functions of the k-th order. The solution is convergent in...cylinder walls to be infinitesimally thin ideal conductors. The problem is reduced to a system of Fredholm linear algebraic equations of the second...EXPECTED DEVELOPMENTS OF TRANSISTORIZED LOW-NOISE MICROWAVE AMPLIFIERS Prague SDELOVACI TECHNIKA in Czech Vol 25, No 2, Feb 77 pp 47-49 TALLO, ANTON
Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence
NASA Astrophysics Data System (ADS)
Galitski, Victor
2012-02-01
I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.
On the symmetries of integrability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellon, M.; Maillard, J.M.; Viallet, C.
1992-06-01
In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiatemore » the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.« less
Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays
NASA Astrophysics Data System (ADS)
Nguimdo, Romain Modeste
2018-03-01
Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.
Real-time adaptive finite element solution of time-dependent Kohn-Sham equation
NASA Astrophysics Data System (ADS)
Bao, Gang; Hu, Guanghui; Liu, Di
2015-01-01
In our previous paper (Bao et al., 2012 [1]), a general framework of using adaptive finite element methods to solve the Kohn-Sham equation has been presented. This work is concerned with solving the time-dependent Kohn-Sham equations. The numerical methods are studied in the time domain, which can be employed to explain both the linear and the nonlinear effects. A Crank-Nicolson scheme and linear finite element space are employed for the temporal and spatial discretizations, respectively. To resolve the trouble regions in the time-dependent simulations, a heuristic error indicator is introduced for the mesh adaptive methods. An algebraic multigrid solver is developed to efficiently solve the complex-valued system derived from the semi-implicit scheme. A mask function is employed to remove or reduce the boundary reflection of the wavefunction. The effectiveness of our method is verified by numerical simulations for both linear and nonlinear phenomena, in which the effectiveness of the mesh adaptive methods is clearly demonstrated.
Algebraic approach to solve ttbar dilepton equations
NASA Astrophysics Data System (ADS)
Sonnenschein, Lars
2006-01-01
The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.
Universal vertex-IRF transformation for quantum affine algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buffenoir, E.; Roche, Ph.; Terras, V.
2012-10-15
We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to U{sub q}(A{sub r}{sup (1)}). This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of U{sub q}(A{sub 1}{sup (1)}), it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-facesmore » (IRF) height model.« less
NASA Astrophysics Data System (ADS)
Winicour, Jeffrey
2017-08-01
An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.
Reflection states in Ding-Iohara-Miki algebra and brane-web for D-type quiver
NASA Astrophysics Data System (ADS)
Bourgine, J.-E.; Fukuda, M.; Matsuo, Y.; Zhu, R.-D.
2017-12-01
Reflection states are introduced in the vertical and horizontal modules of the Ding-Iohara-Miki (DIM) algebra (quantum toroidal gl_1 ). Webs of DIM representations are in correspondence with ( p, q)-web diagrams of type IIB string theory, under the identification of the algebraic intertwiner of Awata, Feigin and Shiraishi with the refined topological vertex. Extending the correspondence to the vertical reflection states, it is possible to engineer the N=1 quiver gauge theory of D-type (with unitary gauge groups). In this way, the Nekrasov instanton partition function is reproduced from the evaluation of expectation values of intertwiners. This computation leads to the identification of the vertical reflection state with the orientifold plane of string theory. We also provide a translation of this construction in the Iqbal-Kozcaz-Vafa refined topological vertex formalism.
Full thermomechanical coupling in modelling of micropolar thermoelasticity
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Radayev, Y. N.
2018-04-01
The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-09-01
Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
Mathematical Methods for Optical Physics and Engineering
NASA Astrophysics Data System (ADS)
Gbur, Gregory J.
2011-01-01
1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.
Hamiltonian structure of Dubrovin's equation of associativity in 2-d topological field theory
NASA Astrophysics Data System (ADS)
Galvão, C. A. P.; Nutku, Y.
1996-12-01
A third order Monge-Ampère type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac's theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra.
Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras
NASA Astrophysics Data System (ADS)
Grahovski, Georgi G.; Mikhailov, Alexander V.
2013-12-01
Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.
The algebraic criteria for the stability of control systems
NASA Technical Reports Server (NTRS)
Cremer, H.; Effertz, F. H.
1986-01-01
This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.
Solving Differential Equations in R: Package deSolve
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...
ERIC Educational Resources Information Center
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
Topics in elementary particle physics
NASA Astrophysics Data System (ADS)
Jin, Xiang
The author of this thesis discusses two topics in elementary particle physics:
Introduction to quantized LIE groups and algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjin, T.
1992-10-10
In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl[sub 2] is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxtermore » equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl[sub 2] algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.« less
Coherent orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less
Cognitive Load in Algebra: Element Interactivity in Solving Equations
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing
2015-01-01
Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Trifonov, A. Yu.
A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.
Invariant algebraic surfaces for a virus dynamics
NASA Astrophysics Data System (ADS)
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
NASA Astrophysics Data System (ADS)
Kononets, Yu. V.
2016-12-01
The presented enhanced version of Eriksen's theorem defines an universal transform of the Foldy-Wouthuysen type and in any external static electromagnetic field (ESEMF) reveals a discrete symmetry of Dirac's equation (DE), responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism (CIF) obeying the charge-index conservation law (CICL). Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac's quantum mechanics (DQM), which resolves all the riddles of the standard DE theory (SDET). Besides the abstract CIF algebra, the paper discusses: (1) the novel accurate charge-symmetric definition of the electric-current density; (2) DE in the true-particle representation, where electrons and positrons coexist on equal footing; (3) flawless "natural" scheme of second quantization; and (4) new physical grounds for the Fermi-Dirac statistics. As a fundamental quantum law, the CICL originates from the kinetic-energy sign conservation and leads to a novel single-particle physics in strong-field situations. Prohibiting Klein's tunneling (KT) in Klein's zone via the CICL, the precise CIF algebra defines a new class of weakly singular DE solutions, strictly confined in the coordinate space and experiencing the total reflection from the potential barrier.
Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions
NASA Astrophysics Data System (ADS)
Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.
2018-04-01
A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.
Eye Movements Reveal Students' Strategies in Simple Equation Solving
ERIC Educational Resources Information Center
Susac, Ana; Bubic, Andreja; Kaponja, Jurica; Planinic, Maja; Palmovic, Marijan
2014-01-01
Equation rearrangement is an important skill required for problem solving in mathematics and science. Eye movements of 40 university students were recorded while they were rearranging simple algebraic equations. The participants also reported on their strategies during equation solving in a separate questionnaire. The analysis of the behavioral…
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2016-02-01
The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.
Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini
2017-01-01
For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.
Smooth function approximation using neural networks.
Ferrari, Silvia; Stengel, Robert F
2005-01-01
An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.
An Algebraic Approach to Guarantee Harmonic Balance Method Using Gröbner Base
NASA Astrophysics Data System (ADS)
Yagi, Masakazu; Hisakado, Takashi; Okumura, Kohshi
Harmonic balance (HB) method is well known principle for analyzing periodic oscillations on nonlinear networks and systems. Because the HB method has a truncation error, approximated solutions have been guaranteed by error bounds. However, its numerical computation is very time-consuming compared with solving the HB equation. This paper proposes an algebraic representation of the error bound using Gröbner base. The algebraic representation enables to decrease the computational cost of the error bound considerably. Moreover, using singular points of the algebraic representation, we can obtain accurate break points of the error bound by collisions.
NASA Astrophysics Data System (ADS)
Morozov, Oleg I.
2018-06-01
The important unsolved problem in theory of integrable systems is to find conditions guaranteeing existence of a Lax representation for a given PDE. The exotic cohomology of the symmetry algebras opens a way to formulate such conditions in internal terms of the PDE s under the study. In this paper we consider certain examples of infinite-dimensional Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer-Cartan forms of the associated extensions of these Lie algebras generate Lax representations for integrable systems, both known and new ones.
Symmetric linear systems - An application of algebraic systems theory
NASA Technical Reports Server (NTRS)
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
Two-spectral Yang-Baxter operators in topological quantum computation
NASA Astrophysics Data System (ADS)
Sanchez, William F.
2011-05-01
One of the current trends in quantum computing is the application of algebraic topological methods in the design of new algorithms and quantum computers, giving rise to topological quantum computing. One of the tools used in it is the Yang-Baxter equation whose solutions are interpreted as universal quantum gates. Lately, more general Yang-Baxter equations have been investigated, making progress as two-spectral equations and Yang-Baxter systems. This paper intends to apply these new findings to the field of topological quantum computation, more specifically, the proposition of the two-spectral Yang-Baxter operators as universal quantum gates for 2 qubits and 2 qutrits systems, obtaining 4x4 and 9x9 matrices respectively, and further elaboration of the corresponding Hamiltonian by the use of computer algebra software Mathematica® and its Qucalc package. In addition, possible physical systems to which the Yang-Baxter operators obtained can be applied are considered. In the present work it is demonstrated the utility of the Yang-Baxter equation to generate universal quantum gates and the power of computer algebra to design them; it is expected that these mathematical studies contribute to the further development of quantum computers
Generalized Knizhnik-Zamolodchikov equation for Ding-Iohara-Miki algebra
NASA Astrophysics Data System (ADS)
Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2017-07-01
We derive the generalization of the Knizhnik-Zamolodchikov equation (KZE) associated with the Ding-Iohara-Miki algebra Uq ,t(gl^ ^ 1) . We demonstrate that certain refined topological string amplitudes satisfy these equations and find that the braiding transformations are performed by the R matrix of Uq ,t(gl^ ^ 1) . The resulting system is the uplifting of the u^1 Wess-Zumino-Witten model. The solutions to the (q ,t ) KZE are identified with the (spectral dual of) building blocks of the Nekrasov partition function for five-dimensional linear quiver gauge theories. We also construct an elliptic version of the KZE and discuss its modular and monodromy properties, the latter being related to a dual version of the KZE.
On genera of curves from high-loop generalized unitarity cuts
NASA Astrophysics Data System (ADS)
Huang, Rijun; Zhang, Yang
2013-04-01
Generalized unitarity cut of a Feynman diagram generates an algebraic system of polynomial equations. At high-loop levels, these equations may define a complex curve or a (hyper-)surface with complicated topology. We study the curve cases, i.e., a 4-dimensional L-loop diagram with (4 L-1) cuts. The topology of a complex curve is classified by its genus. Hence in this paper, we use computational algebraic geometry to calculate the genera of curves from two and three-loop unitarity cuts. The global structure of degenerate on-shell equations under some specific kinematic configurations is also sketched. The genus information can also be used to judge if a unitary cut solution could be rationally parameterized.
Application of the algebraic RNG model for transition simulation. [renormalization group theory
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1990-01-01
The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.
NASA Astrophysics Data System (ADS)
DeBuvitz, William
2014-03-01
I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
NASA Astrophysics Data System (ADS)
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
A finite difference scheme for the equilibrium equations of elastic bodies
NASA Technical Reports Server (NTRS)
Phillips, T. N.; Rose, M. E.
1984-01-01
A compact difference scheme is described for treating the first-order system of partial differential equations which describe the equilibrium equations of an elastic body. An algebraic simplification enables the solution to be obtained by standard direct or iterative techniques.
A Unified Approach to Teaching Quadratic and Cubic Equations.
ERIC Educational Resources Information Center
Ward, A. J. B.
2003-01-01
Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)
Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models
NASA Technical Reports Server (NTRS)
Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.
1996-01-01
An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.
Exploring Algebraic Misconceptions with Technology
ERIC Educational Resources Information Center
Sakow, Matthew; Karaman, Ruveyda
2015-01-01
Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…
Effect of Worked Examples and Cognitive Tutor Training on Constructing Equations
ERIC Educational Resources Information Center
Reed, Stephen K.; Corbett, Albert; Hoffman, Bob; Wagner, Angela; MacLaren, Ben
2013-01-01
Algebra students studied either static-table, static-graphics, or interactive-graphics instructional worked examples that alternated with Algebra Cognitive Tutor practice problems. A control group did not study worked examples but solved both the instructional and practice problems on the Cognitive Tutor (CT). Students in the control group…
Fixing Ganache: Another Real-Life Use for Algebra
ERIC Educational Resources Information Center
Kalman, Adam M.
2011-01-01
This article presents a real-world application of proportional reasoning and equation solving. The author describes how students adjust ingredient amounts in a recipe for chocolate ganache. Using this real-world scenario provided students an opportunity to solve a difficult and nonstandard algebra problem, a lot of practice with fractions, a…
A new application of algebraic geometry to systems theory
NASA Technical Reports Server (NTRS)
Martin, C. F.; Hermann, R.
1976-01-01
Following an introduction to algebraic geometry, the dominant morphism theorem is stated, and the application of this theorem to systems-theoretic problems, such as the feedback problem, is discussed. The Gaussian elimination method used for solving linear equations is shown to be an example of a dominant morphism.
Math 3008--Developmental Mathematics II. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This is designed as the second of a two-semester sequence. Topics include performing operations with radicals and exponents; learning to solve equations;…
Computer Algebra Systems and Theorems on Real Roots of Polynomials
ERIC Educational Resources Information Center
Aidoo, Anthony Y.; Manthey, Joseph L.; Ward, Kim Y.
2010-01-01
A computer algebra system is used to derive a theorem on the existence of roots of a quadratic equation on any bounded real interval. This is extended to a cubic polynomial. We discuss how students could be led to derive and prove these theorems. (Contains 1 figure.)
Successfully Transitioning to Linear Equations
ERIC Educational Resources Information Center
Colton, Connie; Smith, Wendy M.
2014-01-01
The Common Core State Standards for Mathematics (CCSSI 2010) asks students in as early as fourth grade to solve word problems using equations with variables. Equations studied at this level generate a single solution, such as the equation x + 10 = 25. For students in fifth grade, the Common Core standard for algebraic thinking expects them to…
Catmull-Rom Curve Fitting and Interpolation Equations
ERIC Educational Resources Information Center
Jerome, Lawrence
2010-01-01
Computer graphics and animation experts have been using the Catmull-Rom smooth curve interpolation equations since 1974, but the vector and matrix equations can be derived and simplified using basic algebra, resulting in a simple set of linear equations with constant coefficients. A variety of uses of Catmull-Rom interpolation are demonstrated,…
Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models
NASA Astrophysics Data System (ADS)
Alim, Murad
2017-08-01
The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.
Algebro-geometric Solutions for the Derivative Burgers Hierarchy
NASA Astrophysics Data System (ADS)
Hou, Yu; Fan, Engui; Qiao, Zhijun; Wang, Zhong
2015-02-01
Though completely integrable Camassa-Holm (CH) equation and Degasperis-Procesi (DP) equation are cast in the same peakon family, they possess the second- and third-order Lax operators, respectively. From the viewpoint of algebro-geometrical study, this difference lies in hyper-elliptic and non-hyper-elliptic curves. The non-hyperelliptic curves lead to great difficulty in the construction of algebro-geometric solutions of the DP equation. In this paper, we study algebro-geometric solutions for the derivative Burgers (DB) equation, which is derived by Qiao and Li (2004) as a short wave model of the DP equation with the help of functional gradient and a pair of Lenard operators. Based on the characteristic polynomial of a Lax matrix for the DB equation, we introduce a third order algebraic curve with genus , from which the associated Baker-Akhiezer functions, meromorphic function, and Dubrovin-type equations are constructed. Furthermore, the theory of algebraic curve is applied to derive explicit representations of the theta function for the Baker-Akhiezer functions and the meromorphic function. In particular, the algebro-geometric solutions are obtained for all equations in the whole DB hierarchy.
A Brief Historical Introduction to Determinants with Applications
ERIC Educational Resources Information Center
Debnath, L.
2013-01-01
This article deals with a short historical introduction to determinants with applications to the theory of equations, geometry, multiple integrals, differential equations and linear algebra. Included are some properties of determinants with proofs, eigenvalues, eigenvectors and characteristic equations with examples of applications to simple…
Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.
Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O
1996-10-01
This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
A computing method for sound propagation through a nonuniform jet stream
NASA Technical Reports Server (NTRS)
Padula, S. L.; Liu, C. H.
1974-01-01
The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.
NASA Astrophysics Data System (ADS)
Parand, K.; Nikarya, M.
2017-11-01
In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.
Analytical Energy Gradients for Excited-State Coupled-Cluster Methods
NASA Astrophysics Data System (ADS)
Wladyslawski, Mark; Nooijen, Marcel
The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.
Chiral algebras in Landau-Ginzburg models
NASA Astrophysics Data System (ADS)
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
Linear algebraic methods applied to intensity modulated radiation therapy.
Crooks, S M; Xing, L
2001-10-01
Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1980-01-01
It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.
NASA Astrophysics Data System (ADS)
De Sole, Alberto; Kac, Victor G.; Valeri, Daniele
2018-06-01
We prove that any classical affine W-algebra W (g, f), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type equations. This is based on the theories of generalized Adler type operators and of generalized quasideterminants, which we develop in the paper. Moreover, we show that under certain conditions, the product of two generalized Adler type operators is a Lax type operator. We use this fact to construct a large number of integrable Hamiltonian systems, recovering, as a special case, all KdV type hierarchies constructed by Drinfeld and Sokolov.
NASA Astrophysics Data System (ADS)
Chakrabarti, Aloknath; Mohapatra, Smrutiranjan
2013-09-01
Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates, separated by a gap of finite width, floating horizontally on water of finite depth, are investigated in the present work for a two-dimensional time-harmonic case. Within the frame of linear water wave theory, the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions. Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem. In both the problems, the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates. Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations. The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration. The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Finite-dimensional integrable systems: A collection of research problems
NASA Astrophysics Data System (ADS)
Bolsinov, A. V.; Izosimov, A. M.; Tsonev, D. M.
2017-05-01
This article suggests a series of problems related to various algebraic and geometric aspects of integrability. They reflect some recent developments in the theory of finite-dimensional integrable systems such as bi-Poisson linear algebra, Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay between singularities of Lagrangian fibrations and compatible Poisson brackets, and new techniques in projective geometry.
Explicating mathematical thinking in differential equations using a computer algebra system
NASA Astrophysics Data System (ADS)
Zeynivandnezhad, Fereshteh; Bates, Rachel
2018-07-01
The importance of developing students' mathematical thinking is frequently highlighted in literature regarding the teaching and learning of mathematics. Despite this importance, most curricula and instructional activities for undergraduate mathematics fail to bring the learner beyond the mathematics. The purpose of this study was to enhance students' mathematical thinking by implementing a computer algebra system and active learning pedagogical approaches. students' mathematical thinking processes were analyzed while completing specific differential equations tasks based on posed prompts and questions and Instrumental Genesis. Data were collected from 37 engineering students in a public Malaysian university. This study used the descriptive and interpretive qualitative research design to investigate the students' perspectives of emerging mathematical understanding and approaches to learning mathematics in an undergraduate differential equations course. Results of this study concluded that students used a variety of mathematical thinking processes in a non-sequential manner. Additionally, the outcomes provide justification for continued use of technologies such as computer algebra systems in undergraduate mathematics courses and the need for further studies to uncover the various processes students utilize to complete specific mathematical tasks.
NASA Astrophysics Data System (ADS)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
On the modelling of non-reactive and reactive turbulent combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, Mohammad; So, Ronald M. C.
1987-01-01
A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.
Geometric and Algebraic Approaches in the Concept of Complex Numbers
ERIC Educational Resources Information Center
Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.
2006-01-01
This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…
ERIC Educational Resources Information Center
Williams-Candek, Maryellen
2016-01-01
How better to begin the study of linear equations in an algebra class than to determine what students already know about the subject? A seventh-grade algebra class in a suburban school undertook a project early in the school year that was completed before they began studying linear relations and functions. The project, which might have been…
Fractions as a Foundation for Algebra within a Sample of Prospective Teachers
ERIC Educational Resources Information Center
Zientek, Linda Reichwein; Younes, Rayya; Nimon, Kim; Mittag, Kathleen Cage; Taylor, Sharon
2013-01-01
Improving the mathematical skills of the next generation of students will require that elementary and middle school teachers are competent and confident in their abilities to perform fraction operations and to solve algebra equations The present study was conducted to (a) quantify relationships between prospective teachers' abilities to perform…
An Authentic Task That Models Quadratics
ERIC Educational Resources Information Center
Baron, Lorraine M.
2015-01-01
As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…
Stability of Linear Equations--Algebraic Approach
ERIC Educational Resources Information Center
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
Sensitivity calculations for iteratively solved problems
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1985-01-01
The calculation of sensitivity derivatives of solutions of iteratively solved systems of algebraic equations is investigated. A modified finite difference procedure is presented which improves the accuracy of the calculated derivatives. The procedure is demonstrated for a simple algebraic example as well as an element-by-element preconditioned conjugate gradient iterative solution technique applied to truss examples.
Middle school students' reading comprehension of mathematical texts and algebraic equations
NASA Astrophysics Data System (ADS)
Duru, Adem; Koklu, Onder
2011-06-01
In this study, middle school students' abilities to translate mathematical texts into algebraic representations and vice versa were investigated. In addition, students' difficulties in making such translations and the potential sources for these difficulties were also explored. Both qualitative and quantitative methods were used to collect data for this study: questionnaire and clinical interviews. The questionnaire consisted of two general types of items: (1) selected-response (multiple-choice) items for which the respondent selects from multiple options and (2) open-ended items for which the respondent constructs a response. In order to further investigate the students' strategies while they were translating the given mathematical texts to algebraic equations and vice versa, five randomly chosen (n = 5) students were interviewed. Data were collected in the 2007-2008 school year from 185 middle-school students in five teachers' classrooms in three different schools in the city of Adıyaman, Turkey. After the analysis of data, it was found that students who participated in this study had difficulties in translating the mathematical texts into algebraic equations by using symbols. It was also observed that these students had difficulties in translating the symbolic representations into mathematical texts because of their weak reading comprehension. In addition, finding of this research revealed that students' difficulties in translating the given mathematical texts into symbolic representations or vice versa come from different sources.
Using MathCAD to Teach One-Dimensional Graphs
ERIC Educational Resources Information Center
Yushau, B.
2004-01-01
Topics such as linear and nonlinear equations and inequalities, compound inequalities, linear and nonlinear absolute value equations and inequalities, rational equations and inequality are commonly found in college algebra and precalculus textbooks. What is common about these topics is the fact that their solutions and graphs lie in the real line…
Biology As a Source for Algebra Equations: Insects
ERIC Educational Resources Information Center
Horak, Virginia M.
2005-01-01
The activity developed in an integrated high school course that was team-taught by both mathematics and science teachers examines linear equations developed from relationships in biology. These equations provide students with opportunities to see the way mathematics could be used to describe biological relationships, and then apply to solve…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvao, C.A.; Nutku, Y.
1996-12-01
mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}
Algebraic multigrid methods applied to problems in computational structural mechanics
NASA Technical Reports Server (NTRS)
Mccormick, Steve; Ruge, John
1989-01-01
The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.
NASA Astrophysics Data System (ADS)
Lai, Siyan; Xu, Ying; Shao, Bo; Guo, Menghan; Lin, Xiaola
2017-04-01
In this paper we study on Monte Carlo method for solving systems of linear algebraic equations (SLAE) based on shared memory. Former research demostrated that GPU can effectively speed up the computations of this issue. Our purpose is to optimize Monte Carlo method simulation on GPUmemoryachritecture specifically. Random numbers are organized to storein shared memory, which aims to accelerate the parallel algorithm. Bank conflicts can be avoided by our Collaborative Thread Arrays(CTA)scheme. The results of experiments show that the shared memory based strategy can speed up the computaions over than 3X at most.
Implicit Runge-Kutta Methods with Explicit Internal Stages
NASA Astrophysics Data System (ADS)
Skvortsov, L. M.
2018-03-01
The main computational costs of implicit Runge-Kutta methods are caused by solving a system of algebraic equations at every step. By introducing explicit stages, it is possible to increase the stage (or pseudo-stage) order of the method, which makes it possible to increase the accuracy and avoid reducing the order in solving stiff problems, without additional costs of solving algebraic equations. The paper presents implicit methods with an explicit first stage and one or two explicit internal stages. The results of solving test problems are compared with similar methods having no explicit internal stages.
Constitutive relations in optics in terms of geometric algebra
NASA Astrophysics Data System (ADS)
Dargys, A.
2015-11-01
To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be supplemented by constitutive relations. At present the classification of linear constitutive relations is well established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete expressions for constitutive relations which follow from this algebra are presented. They can be applied in calculating the propagation properties of electromagnetic waves in any anisotropic, linear and nondissipative medium.
Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds
NASA Astrophysics Data System (ADS)
Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung
2016-06-01
We describe a Lie Algebra on the moduli space of non-rigid compact Calabi-Yau threefolds enhanced with differential forms and its relation to the Bershadsky-Cecotti-Ooguri-Vafa holomorphic anomaly equation. In particular, we describe algebraic topological string partition functions {{F}g^alg, g ≥ 1}, which encode the polynomial structure of holomorphic and non-holomorphic topological string partition functions. Our approach is based on Grothendieck's algebraic de Rham cohomology and on the algebraic Gauss-Manin connection. In this way, we recover a result of Yamaguchi-Yau and Alim-Länge in an algebraic context. Our proofs use the fact that the special polynomial generators defined using the special geometry of deformation spaces of Calabi-Yau threefolds correspond to coordinates on such a moduli space. We discuss the mirror quintic as an example.
Geometric Approaches to Quadratic Equations from Other Times and Places.
ERIC Educational Resources Information Center
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
RANS modeling of scalar dispersion from localized sources within a simplified urban-area model
NASA Astrophysics Data System (ADS)
Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca
2011-11-01
The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.
A k-omega-multivariate beta PDF for supersonic combustion
NASA Technical Reports Server (NTRS)
Alexopoulos, G. A.; Baurle, R. A.; Hassan, H. A.
1992-01-01
In an attempt to study the interaction between combustion and turbulence in supersonic flows, an assumed PDF has been employed. This makes it possible to calculate the time average of the chemical source terms that appear in the species conservation equations. In order to determine the averages indicated in an equation, two transport equations, one for the temperature (enthalpy) variance and one for Q, are required. Model equations are formulated for such quantities. The turbulent time scale controls the evolution. An algebraic model similar to that used by Eklund et al was used in an attempt to predict the recent measurements of Cheng et al. Predictions were satisfactory before ignition but were less satisfactory after ignition. One of the reasons for this behavior is the inadequacy of the algebraic turbulence model employed. Because of this, the objective of this work is to develop a k-omega model to remedy the situation.
On an example of a system of differential equations that are integrated in Abelian functions
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.
2017-12-01
The short review of the theory of Abelian functions and its applications in mechanics and analytical theory of differential equations is given. We think that Abelian functions are the natural generalization of commonly used functions because if the general solution of the 2nd order differential equation depends algebraically on the constants of integration, then integrating this equation does not lead out of the realm of commonly used functions complemented by the Abelian functions (Painlevé theorem). We present a relatively simple example of a dynamical system that is integrated in Abelian integrals by “pairing” two copies of a hyperelliptic curve. Unfortunately, initially simple formulas unfold into very long ones. Apparently the theory of Abelian functions hasn’t been finished in the last century because without computer algebra systems it was impossible to complete the calculations to the end. All calculations presented in our report are performed in Sage.
Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory
NASA Astrophysics Data System (ADS)
Wang, Liming; Zheng, Shijie
2018-02-01
In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.
NASA Astrophysics Data System (ADS)
Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel
2009-11-01
The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first meeting with the name `Symmetries and Integrability of Discrete Equations (SIDE)' was held in Estérel, Québec, Canada. This was organized by D Levi, P Winternitz and L Vinet. After the success of the first meeting the scientific community decided to hold bi-annual SIDE meetings. They were held in 1996 at the University of Kent (UK), 1998 in Sabaudia (Italy), 2000 at the University of Tokyo (Japan), 2002 in Giens (France), 2004 in Helsinki (Finland) and in 2006 at the University of Melbourne (Australia). In 2008 the SIDE 8 meeting was again organized near Montreal, in Ste-Adèle, Québec, Canada. The SIDE 8 International Advisory Committee (also the SIDE steering committee) consisted of Frank Nijhoff, Alexander Bobenko, Basil Grammaticos, Jarmo Hietarinta, Nalini Joshi, Decio Levi, Vassilis Papageorgiou, Junkichi Satsuma, Yuri Suris, Claude Vialet and Pavel Winternitz. The local organizing committee consisted of Pavel Winternitz, John Harnad, Véronique Hussin, Decio Levi, Peter Olver and Luc Vinet. Financial support came from the Centre de Recherches Mathématiques in Montreal and the National Science Foundation (through the University of Minnesota). Proceedings of the first three SIDE meetings were published in the LMS Lecture Note series. Since 2000 the emphasis has been on publishing selected refereed articles in response to a general call for papers issued after the conference. This allows for a wider author base, since the call for papers is not restricted to conference participants. The SIDE topics thus are represented in special issues of Journal of Physics A: Mathematical and General 34 (48) and Journal of Physics A: Mathematical and Theoretical, 40 (42) (SIDE 4 and SIDE 7, respectively), Journal of Nonlinear Mathematical Physics 10 (Suppl. 2) and 12 (Suppl. 2) (SIDE 5 and SIDE 6 respectively). The SIDE 8 meeting was organized around several topics and the contributions to this special issue reflect the diversity presented during the meeting. The papers presented at the SIDE 8 meeting were organized into the following special sessions: geometry of discrete and continuous Painlevé equations; continuous symmetries of discrete equations—theory and computational applications; algebraic aspects of discrete equations; singularity confinement, algebraic entropy and Nevanlinna theory; discrete differential geometry; discrete integrable systems and isomonodromy transformations; special functions as solutions of difference and q-difference equations. This special issue of the journal is organized along similar lines. The first three articles are topical review articles appearing in alphabetical order (by first author). The article by Doliwa and Nieszporski describes the Darboux transformations in a discrete setting, namely for the discrete second order linear problem. The article by Grammaticos, Halburd, Ramani and Viallet concentrates on the integrability of the discrete systems, in particular they describe integrability tests for difference equations such as singularity confinement, algebraic entropy (growth and complexity), and analytic and arithmetic approaches. The topical review by Konopelchenko explores the relationship between the discrete integrable systems and deformations of associative algebras. All other articles are presented in alphabetical order (by first author). The contributions were solicited from all participants as well as from the general scientific community. The contributions published in this special issue can be loosely grouped into several overlapping topics, namely: •Geometry of discrete and continuous Painlevé equations (articles by Spicer and Nijhoff and by Lobb and Nijhoff). •Continuous symmetries of discrete equations—theory and applications (articles by Dorodnitsyn and Kozlov; Levi, Petrera and Scimiterna; Scimiterna; Ste-Marie and Tremblay; Levi and Yamilov; Rebelo and Winternitz). •Yang--Baxter maps (article by Xenitidis and Papageorgiou). •Algebraic aspects of discrete equations (articles by Doliwa and Nieszporski; Konopelchenko; Tsarev and Wolf). •Singularity confinement, algebraic entropy and Nevanlinna theory (articles by Grammaticos, Halburd, Ramani and Viallet; Grammaticos, Ramani and Tamizhmani). •Discrete integrable systems and isomonodromy transformations (article by Dzhamay). •Special functions as solutions of difference and q-difference equations (articles by Atakishiyeva, Atakishiyev and Koornwinder; Bertola, Gekhtman and Szmigielski; Vinet and Zhedanov). •Other topics (articles by Atkinson; Grünbaum Nagai, Kametaka and Watanabe; Nagiyev, Guliyeva and Jafarov; Sahadevan and Uma Maheswari; Svinin; Tian and Hu; Yao, Liu and Zeng). This issue is the result of the collaboration of many individuals. We would like to thank the authors who contributed and everyone else involved in the preparation of this special issue.
The use of spectral methods in bidomain studies.
Trayanova, N; Pilkington, T
1992-01-01
A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.
Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.
The Effect of Worked Examples on Student Learning and Error Anticipation in Algebra
ERIC Educational Resources Information Center
Booth, Julie L.; Begolli, Kreshnik N.; McCann, Nicholas
2016-01-01
The present study examines the effectiveness of incorporating worked examples with prompts for self-explanation into a middle school math textbook. Algebra 1 students (N = 75) completed an equation-solving unit with reform textbooks either containing the original practice problems or in which a portion of those problems were converted into…
Student Solution Manual for Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.
ERIC Educational Resources Information Center
Kopp, Jaine; Bergman, Lincoln
This teacher guide helps build a solid foundation in algebra for students in grades 3-5 in which students gain essential understanding of properties of numbers, variables, functions, equations, and formulas. Throughout the problem solving activities, students use computational skills and gain a deeper understanding of the number system. Students…
ERIC Educational Resources Information Center
Chazan, Daniel; Sela, Hagit; Herbst, Patricio
2012-01-01
We illustrate a method, which is modeled on "breaching experiments," for studying tacit norms that govern classroom interaction around particular mathematical content. Specifically, this study explores norms that govern teachers' expectations for the doing of word problems in school algebra. Teacher study groups discussed representations of…
Algebra and Problem-Solving in Down Syndrome: A Study with 15 Teenagers
ERIC Educational Resources Information Center
Martinez, Elisabetta Monari; Pellegrini, Katia
2010-01-01
There is a common opinion that mathematics is difficult for persons with Down syndrome, because of a weakness in numeracy and in abstract thinking. Since 1996, some single case studies have suggested that new opportunities in mathematics are possible for these students: some of them learned algebra and also learned to use equations in…
ERIC Educational Resources Information Center
Wilkie, Karina J.
2016-01-01
Algebra has been explicit in many school curriculum programs from the early years but there are competing views on what content and approaches are appropriate for different levels of schooling. This study investigated 12-13-year-old Australian students' algebraic thinking in a hybrid environment of functional and equation-based approaches to…
Writing to Promote and Assess Conceptual Understanding in College Algebra
ERIC Educational Resources Information Center
Gay, A. Susan; Peterson, Ingrid
2014-01-01
Concept-focused quiz questions required College Algebra students to write about their understanding. The questions can be viewed in three broad categories: a focus on sense-making, a focus on describing a mathematical object such as a graph or an equation, and a focus on understanding vocabulary. Student responses from 10 classes were analyzed.…
Understanding the Equals Sign as a Gateway to Algebraic Thinking
ERIC Educational Resources Information Center
Matthews, Percival G.; Rittle-Johnson, Bethany; Taylor, Roger S.; McEldoon, Katherine L.
2010-01-01
In this study, the authors wanted to examine whether success on items testing basic equivalence knowledge, such as the meaning of the equal sign and ability to solve problems such as 3 + 5 = 4 + _, predicted success on items testing more advanced algebraic thinking (i.e. principles of equality and solving equations that use letter variables). This…
ERIC Educational Resources Information Center
Kurtulus, Aytaç; Ada, Aytaç
2017-01-01
In this study, the teacher candidates who learnt to find the algebraic equation corresponding to geometric structure of the ellipse in analytic geometry classes were requested to find the algebraic representations corresponding to the structures that contained ellipses in different positions. Thus, it would be possible to determine higher order…
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.
Type II superstring field theory: geometric approach and operadic description
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Münster, Korbinian
2013-04-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a {N} = 1 generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
Generalizations of the Toda molecule
NASA Astrophysics Data System (ADS)
Van Velthoven, W. P. G.; Bais, F. A.
1986-12-01
Finite-energy monopole solutions are constructed for the self-dual equations with spherical symmetry in an arbitrary integer graded Lie algebra. The constraint of spherical symmetry in a complex noncoordinate basis leads to a dimensional reduction. The resulting two-dimensional ( r, t) equations are of second order and furnish new generalizations of the Toda molecule equations. These are then solved by a technique which is due to Leznov and Saveliev. For time-independent solutions a further reduction is made, leading to an ansatz for all SU(2) embeddings of the Lie algebra. The regularity condition at the origin for the solutions, needed to ensure finite energy, is also solved for a special class of nonmaximal embeddings. Explicit solutions are given for the groups SU(2), SO(4), Sp(4) and SU(4).
Three-dimensional vibration analysis of a uniform beam with offset inertial masses at the ends
NASA Technical Reports Server (NTRS)
Robertson, D. K.
1985-01-01
Analysis of a flexible beam with displaced end-located inertial masses is presented. The resulting three-dimensional mode shape is shown to consist of two one-plane bending modes and one torsional mode. These three components of the mode shapes are shown to be linear combinations of trigonometric and hyperbolic sine and cosine functions. Boundary conditions are derived to obtain nonlinear algebraic equations through kinematic coupling of the general solutions of the three governing partial differential equations. A method of solution which takes these boundary conditions into account is also presented. A computer program has been written to obtain unique solutions to the resulting nonlinear algebraic equations. This program, which calculates natural frequencies and three-dimensional mode shapes for any number of modes, is presented and discussed.
Iterative methods for elliptic finite element equations on general meshes
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.; Choudhury, Shenaz
1986-01-01
Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.
Algebraic integrability: a survey.
Vanhaecke, Pol
2008-03-28
We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Research issues of geometry-based visual languages and some solutions
NASA Astrophysics Data System (ADS)
Green, Thorn G.
This dissertation addresses the problem of how to design visual language systems that are based upon Geometric Algebra, and provide a visual coupling of algebraic expressions and geometric depictions. This coupling of algebraic expressions and geometric depictions provides a new means for expressing both mathematical and geometric relationships present in mathematics, physics, and Computer-Aided Geometric Design (CAGD). Another significant feature of such a system is that the result of changing a parameter (by dragging the mouse) can be seen immediately in the depiction(s) of all expressions that use that parameter. This greatly aides the cognition of the relationships between variables. Systems for representing such a coupling of algebra and geometry have characteristics of both visual language systems, and systems for scientific visualization. Instead of using a parsing or dataflow paradigm for the visual language representation, the systems instead represent equations as manipulatible constrained diagrams for their visualization. This requires that the design of such a system have (but is not limited to) a means for parsing equations entered by the user, a scheme for producing a visual representation of these equations; techniques for maintaining the coupling between the expressions entered and the diagrams displayed; algorithms for maintaining the consistency of the diagrams; and, indexing capabilities that are efficient enough to allow diagrams to be created, and manipulated in a short enough period of time. The author proposes solutions for how such a design can be realized.
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.
Computer program determines chemical equilibria in complex systems
NASA Technical Reports Server (NTRS)
Gordon, S.; Zeleznik, F. J.
1966-01-01
Computer program numerically solves nonlinear algebraic equations for chemical equilibrium based on iteration equations independent of choice of components. This program calculates theoretical performance for frozen and equilibrium composition during expansion and Chapman-Jouguet flame properties, studies combustion, and designs hardware.
Application of the Group Foliation Method to the Complex Monge-Ampère Equation
NASA Astrophysics Data System (ADS)
Nutku, Y.; Sheftel, M. B.
2001-04-01
We apply the method of group foliation to the complex Monge-Ampère equation ( CMA 2) to establish a regular framework for finding its non-invariant solutions. We employ an infinite symmetry subgroup of CMA 2 to produce a foliation of the solution space into orbits of solutions with respect to this group and a corresponding splitting of CMA 2 into an automorphic system and a resolvent system. We propose a new approach to group foliation which is based on the commutator algebra of operators of invariant differentiation. This algebra together with its Jacobi identities provides the commutator representation of the resolvent system.
Twisted sigma-model solitons on the quantum projective line
NASA Astrophysics Data System (ADS)
Landi, Giovanni
2018-04-01
On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems
NASA Astrophysics Data System (ADS)
Hernández-Bermejo, Benito; Fairén, Víctor
1998-11-01
This work is devoted to the establishment of a Poisson structure for a format of equations known as generalized Lotka-Volterra systems. These equations, which include the classical Lotka-Volterra systems as a particular case, have been deeply studied in the literature. They have been shown to constitute a whole hierarchy of systems, the characterization of which is made in the context of simple algebra. Our main result is to show that this algebraic structure is completely translatable into the Poisson domain. Important Poisson structures features, such as the symplectic foliation and the Darboux canonical representation, rise as a result of rather simple matrix manipulations.
Analysis and synthesis of distributed-lumped-active networks by digital computer
NASA Technical Reports Server (NTRS)
1973-01-01
The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.
Spatial operator algebra framework for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, Abhinandan; Kreutz, K.
1989-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Spatial Operator Algebra for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Analytical solutions for systems of partial differential-algebraic equations.
Benhammouda, Brahim; Vazquez-Leal, Hector
2014-01-01
This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.
ERIC Educational Resources Information Center
Serfaty de Markus, Alicia
2018-01-01
This quasi-treatment study, using a non-equivalent group design, explored how a set of animations related to various concepts in algebra impacted students' ability to learn as measured by changes in quiz and test scores. The concepts that were investigated were addition and subtraction of rational expressions, solving equations involving rational…
ERIC Educational Resources Information Center
Hewitt, Dave
2014-01-01
This article analyzes the use of the software Grid Algebra with a mixed ability class of 21 nine-to-ten-year-old students who worked with complex formal notation involving all four arithmetic operations. Unlike many other models to support learning, Grid Algebra has formal notation ever present and allows students to "look through" that…
The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library
NASA Astrophysics Data System (ADS)
Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid
2018-02-01
SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.
Lewis Jordan; Ray Souter; Bernard Parresol; Richard F. Daniels
2006-01-01
Biomass estimation is critical for looking at ecosystem processes and as a measure of stand yield. The density-integral approach allows for coincident estimation of stem profile and biomass. The algebraic difference approach (ADA) permits the derivation of dynamic or nonstatic functions. In this study we applied the ADA to develop a self-referencing specific gravity...
ERIC Educational Resources Information Center
Pantzare, Anna Lind
2012-01-01
Calculators with computer algebra systems (CAS) are powerful tools when working with equations and algebraic expressions in mathematics. When calculators are allowed to be used during assessments but are not available or provided to every student, they may cause bias. The CAS calculators may also have an impact on the trustworthiness of results.…
NASA Astrophysics Data System (ADS)
Khataybeh, S. N.; Hashim, I.
2018-04-01
In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.
Generalized Flip-Flop Input Equations Based on a Four-Valued Boolean Algebra
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.; Tapia, Moiez A.
1996-01-01
A procedure is developed for obtaining generalized flip-flop input equations, and a concise method is presented for representing these equations. The procedure is based on solving a four-valued characteristic equation of the flip-flop, and can encompass flip-flops that are too complex to approach intuitively. The technique is presented using Karnaugh maps, but could easily be implemented in software.
NASA Astrophysics Data System (ADS)
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
Algebraic Systems and Pushdown Automata
NASA Astrophysics Data System (ADS)
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei
The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of themore » -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.« less
Diophantine Equations as a Context for Technology-Enhanced Training in Conjecturing and Proving
ERIC Educational Resources Information Center
Abramovich, Sergei; Sugden, Stephen J.
2008-01-01
Solving indeterminate algebraic equations in integers is a classic topic in the mathematics curricula across grades. At the undergraduate level, the study of solutions of non-linear equations of this kind can be motivated by the use of technology. This article shows how the unity of geometric contextualization and spreadsheet-based amplification…
Moisture Transport in Composites during Repair Work,
1983-09-01
4 * FINITE DIFFERENCE EQUATIONS. .. . . .. . .. .. .. .. .. 6 INI I A ANBOUNAAYYCONDITIONS................ 7 REASONABLE FIRST...DURING DRYING AND CURING . . . ........ 9 5 CONVERGENCE OF FINITE DIFFERENCE METHOD USING DIFFERENT At . . .. 12 6 CONVERGENCE OF FDA METHOD FOR SAME At...transport we will use a finite difference approach, changing the Fickian equation to a finite number of linear algebraic equations that can be solved by
An electric-analog simulation of elliptic partial differential equations using finite element theory
Franke, O.L.; Pinder, G.F.; Patten, E.P.
1982-01-01
Elliptic partial differential equations can be solved using the Galerkin-finite element method to generate the approximating algebraic equations, and an electrical network to solve the resulting matrices. Some element configurations require the use of networks containing negative resistances which, while physically realizable, are more expensive and time-consuming to construct. ?? 1982.
NASA Astrophysics Data System (ADS)
Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong
2018-04-01
We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.
Journal Writing: Enlivening Elementary Linear Algebra.
ERIC Educational Resources Information Center
Meel, David E.
1999-01-01
Examines the various issues surrounding the implementation of journal writing in an undergraduate linear algebra course. Identifies the benefits of incorporating journal writing into an undergraduate mathematics course, which are supported with students' comments from their journals and their reflections on the process. Contains 14 references.…
Finite Difference Schemes as Algebraic Correspondences between Layers
NASA Astrophysics Data System (ADS)
Malykh, Mikhail; Sevastianov, Leonid
2018-02-01
For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
NASA Astrophysics Data System (ADS)
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
Deformed coset models from gauged WZW actions
NASA Astrophysics Data System (ADS)
Park, Q.-Han
1994-06-01
A general Lagrangian formulation of integrably deformed G/H-coset models is given. We consider the G/H-coset model in terms of the gauged Wess-Zumino-Witten action and obtain an integrable deformation by adding a potential energy term Tr(gTg -1overlineT) , where algebra elements T, overlineT belong to the center of the algebra h associated with the subgroup H. We show that the classical equation of motion of the deformed coset model can be identified with the integrability condition of certain linear equations which makes the use of the inverse scattering method possible. Using the linear equation, we give a systematic way to construct infinitely many conserved currents as well as soliton solutions. In the case of the parafermionic SU(2)/U(1)-coset model, we derive n-solitons and conserved currents explicitly.
Calculation of normal modes of the closed waveguides in general vector case
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.; Tiutiunnik, A. A.
2018-04-01
The article is devoted to the calculation of normal modes of the closed waveguides with an arbitrary filling ɛ, μ in the system of computer algebra Sage. Maxwell equations in the cylinder are reduced to the system of two bounded Helmholtz equations, the notion of weak solution of this system is given and then this system is investigated as a system of ordinary differential equations. The normal modes of this system are an eigenvectors of a matrix pencil. We suggest to calculate the matrix elements approximately and to truncate the matrix by usual way but further to solve the truncated eigenvalue problem exactly in the field of algebraic numbers. This approach allows to keep the symmetry of the initial problem and in particular the multiplicity of the eigenvalues. In the work would be presented some results of calculations.
Chern-Simons, Wess-Zumino and other cocycles from Kashiwara-Vergne and associators
NASA Astrophysics Data System (ADS)
Alekseev, Anton; Naef, Florian; Xu, Xiaomeng; Zhu, Chenchang
2018-03-01
Descent equations play an important role in the theory of characteristic classes and find applications in theoretical physics, e.g., in the Chern-Simons field theory and in the theory of anomalies. The second Chern class (the first Pontrjagin class) is defined as p= < F, F> where F is the curvature 2-form and < \\cdot , \\cdot > is an invariant scalar product on the corresponding Lie algebra g. The descent for p gives rise to an element ω =ω _3+ω _2+ω _1+ω _0 of mixed degree. The 3-form part ω _3 is the Chern-Simons form. The 2-form part ω _2 is known as the Wess-Zumino action in physics. The 1-form component ω _1 is related to the canonical central extension of the loop group LG. In this paper, we give a new interpretation of the low degree components ω _1 and ω _0. Our main tool is the universal differential calculus on free Lie algebras due to Kontsevich. We establish a correspondence between solutions of the first Kashiwara-Vergne equation in Lie theory and universal solutions of the descent equation for the second Chern class p. In more detail, we define a 1-cocycle C which maps automorphisms of the free Lie algebra to one forms. A solution of the Kashiwara-Vergne equation F is mapped to ω _1=C(F). Furthermore, the component ω _0 is related to the associator Φ corresponding to F. It is surprising that while F and Φ satisfy the highly nonlinear twist and pentagon equations, the elements ω _1 and ω _0 solve the linear descent equation.
Method of mechanical quadratures for solving singular integral equations of various types
NASA Astrophysics Data System (ADS)
Sahakyan, A. V.; Amirjanyan, H. A.
2018-04-01
The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.
Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2018-05-01
We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.
1994-01-01
The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.
New Turaev braided group categories and weak (co)quasi-Turaev group coalgebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaohui, E-mail: zxhhhhh@gmail.com; Wang, Shuanhong, E-mail: shuanhwang2002@yahoo.com
In order to construct a class of new braided crossed G-categories with nontrivial associativity and unit constraints, we study the G-graded monoidal category over a family of algebras (H{sub α}){sub α∈G} and introduce the notion of a weak (co)quasi-Turaev G-(co)algebra. Then we prove that the category of (co)representations of (co)quasitriangular weak (co)quasi-Turaev π-(co)algebras is exactly a braided crossed G-category. In fact, this (co)quasitriangular structure provides a solution to a generalized quantum Yang-Baxter type equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, M.L.; Sun, C.P.; Xue, K.
1992-10-20
In this paper, through a general q-boson realization of quantum algebra sl[sub q](2) and its universal R matrix an operator R matrix with many parameters is obtained in terms of q-boson operators. Building finite-dimensional representations of q-boson algebra, the authors construct various colored R matrices associated with nongeneric representations of sl[sub q](2) with dimension-independent parameters. The nonstandard R matrices obtained by Lee-Couture and Murakami are their special examples.
1989-01-01
Signs of Algebraic Numbers T. Sakkalis, New Mexico State University, Las Cruces ................................. 130 Efficient Reduction of Quadratic...equations. These equations are solved for dl,.. , d. and el ’.. e,, and a basis of minimal non-zero simultaneous solutions in which if d1 # 0, then ei = 0 and...and < el ,..,- emm d, dm > need to be considered because of the symmetric nature of the diophantine equations. These equations can be solved using
ERIC Educational Resources Information Center
Foley, Greg
2014-01-01
A problem that illustrates two ways of computing the break-even radius of insulation is outlined. The problem is suitable for students who are taking an introductory module in heat transfer or transport phenomena and who have some previous knowledge of the numerical solution of non- linear algebraic equations. The potential for computer algebra,…
Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing
ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System
ERIC Educational Resources Information Center
Schmidt, Karsten
2008-01-01
In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…
A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation
NASA Astrophysics Data System (ADS)
Oruç, Ömer
2018-04-01
In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L2 and L∞ error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method.
An algebraic equation solution process formulated in anticipation of banded linear equations.
DOT National Transportation Integrated Search
1971-01-01
A general method for the solution of large, sparsely banded, positive-definite, coefficient matrices is presented. The goal in developing the method was to produce an efficient and reliable solution process and to provide the user-programmer with a p...
GROUNDWATER MASS TRANSPORT AND EQUILIBRIUM CHEMISTRY MODEL FOR MULTICOMPONENT SYSTEMS
A mass transport model, TRANQL, for a multicomponent solution system has been developed. The equilibrium interaction chemistry is posed independently of the mass transport equations which leads to a set of algebraic equations for the chemistry coupled to a set of differential equ...
New method to generate the solutions of the reduced Einstein equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou Bo-Yu; Li Wei
In this paper, we present a new transformation in the solution space of the Ernst equation and investigate the relationship between the solutions of the Ernst equation and our transformation. We show that the Ernst equation is invariant under such a transformation; i.e., our transformation can be used to generate the new solutions of the Ernst equation from the old ones. Finally, we discuss the relationship between the Virasoro algebra and this transformation.
A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1988-01-01
A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
M2- and M5-branes in E11 current algebra formulation of M-theory
NASA Astrophysics Data System (ADS)
Shiba, Shotaro; Sugawara, Hirotaka
2018-03-01
Equations of motion for M2- and M5-branes are written down in the E11 current algebra formulation of M-theory. These branes correspond to currents of the second and the fifth rank antisymmetric tensors in the E11 representation, whereas the electric and magnetic fields (coupled to M2- and M5-branes) correspond to currents of the third and the sixth rank antisymmetric tensors, respectively. We show that these equations of motion have solutions in terms of the coordinates on M2- and M5-branes. We also discuss the geometric equations, and show that there are static solutions when M2- or M5-brane exists alone and also when M5-brane wraps around M2-brane. This situation is realized because our Einstein-like equation contains an extra term which can be interpreted as gravitational energy contributing to the curvature, thus avoiding the usual intersection rule.
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
NASA Astrophysics Data System (ADS)
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
Reflective Properties of a Parabolic Mirror.
ERIC Educational Resources Information Center
Ramsey, Gordon P.
1991-01-01
An incident light ray parallel to the optical axis of a parabolic mirror will be reflected at the focal point and vice versa. Presents a mathematical proof that uses calculus, algebra, and geometry to prove this reflective property. (MDH)
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1988-01-01
A one-equation turbulence model based on the turbulent kinetic energy equation is presented. The model is motivated by the success of the Johnson-King model and incorporates a number of features uncovered by Simpson's experiments on separated flows. Based on the results obtained, the model duplicates the success of algebraic models in attached flow regions and outperforms the two-equation models in detached flow regions.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Du, Dianlou
2010-08-01
The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.
NASA Astrophysics Data System (ADS)
Degasperis, A.; Lebedev, D.; Olshanetsky, M.; Pakuliak, S.; Perelomov, A.; Santini, P. M.
1992-11-01
The simplest generalization of the intermediate long-wave hierarchy (ILW) is considered to show how to extend the Zakharov-Shabat dressing method to nonlocal, i.e., integro-partial differential, equations. The purpose is to give a procedure of constructing the zero-curvature representation of this class of equations. This result obtains by combining the Drinfeld-Sokolov formalism together with the introduction of an operator-valued spectral parameter, namely, a spectral parameter that does not commute with the space variable x. This extension provides a connection between the ILWk hierarchy and the Saveliev-Vershik continuum graded Lie algebras. In the case of ILW2 the Fairlie-Zachos sinh-algebra was found.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy
NASA Astrophysics Data System (ADS)
Matsushima, Masatomo; Ohmiya, Mayumi
2009-09-01
The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.
Reflections on John Monaghan's "Computer Algebra, Instrumentation, and the Anthropological Approach"
ERIC Educational Resources Information Center
Blume, Glen
2007-01-01
Reactions to John Monaghan's "Computer Algebra, Instrumentation and the Anthropological Approach" focus on a variety of issues related to the ergonomic approach (instrumentation) and anthropological approach to mathematical activity and practice. These include uses of the term technique; several possibilities for integration of the two approaches;…
TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE
NASA Technical Reports Server (NTRS)
Vu, B. T.
1994-01-01
TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
Danker, Jared F; Anderson, John R
2007-04-15
In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.
Partial Fractions via Calculus
ERIC Educational Resources Information Center
Bauldry, William C.
2018-01-01
The standard technique taught in calculus courses for partial fraction expansions uses undetermined coefficients to generate a system of linear equations; we present a derivative-based technique that calculus and differential equations instructors can use to reinforce connections to calculus. Simple algebra shows that we can use the derivative to…
Remote Symbolic Computation of Loci
ERIC Educational Resources Information Center
Abanades, Miguel A.; Escribano, Jesus; Botana, Francisco
2010-01-01
This article presents a web-based tool designed to compute certified equations and graphs of geometric loci specified using standard Dynamic Geometry Systems (DGS). Complementing the graphing abilities of the considered DGS, the equations of the loci produced by the application are remotely computed using symbolic algebraic techniques from the…
Biological Applications in the Mathematics Curriculum
ERIC Educational Resources Information Center
Marland, Eric; Palmer, Katrina M.; Salinas, Rene A.
2008-01-01
In this article we provide two detailed examples of how we incorporate biological examples into two mathematics courses: Linear Algebra and Ordinary Differential Equations. We use Leslie matrix models to demonstrate the biological properties of eigenvalues and eigenvectors. For Ordinary Differential Equations, we show how using a logistic growth…
Renormalization group flows and continual Lie algebras
NASA Astrophysics Data System (ADS)
Bakas, Ioannis
2003-08-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.
Integrable systems with BMS3 Poisson structure and the dynamics of locally flat spacetimes
NASA Astrophysics Data System (ADS)
Fuentealba, Oscar; Matulich, Javier; Pérez, Alfredo; Pino, Miguel; Rodríguez, Pablo; Tempo, David; Troncoso, Ricardo
2018-01-01
We construct a hierarchy of integrable systems whose Poisson structure corresponds to the BMS3 algebra, and then discuss its description in terms of the Riemannian geometry of locally flat spacetimes in three dimensions. The analysis is performed in terms of two-dimensional gauge fields for isl(2,R) , being isomorphic to the Poincaré algebra in 3D. Although the algebra is not semisimple, the formulation can still be carried out à la Drinfeld-Sokolov because it admits a nondegenerate invariant bilinear metric. The hierarchy turns out to be bi-Hamiltonian, labeled by a nonnegative integer k, and defined through a suitable generalization of the Gelfand-Dikii polynomials. The symmetries of the hierarchy are explicitly found. For k ≥ 1, the corresponding conserved charges span an infinite-dimensional Abelian algebra without central extensions, so that they are in involution; while in the case of k = 0, they generate the BMS3 algebra. In the special case of k = 1, by virtue of a suitable field redefinition and time scaling, the field equations are shown to be equivalent to the ones of a specific type of the Hirota-Satsuma coupled KdV systems. For k ≥ 1, the hierarchy also includes the so-called perturbed KdV equations as a particular case. A wide class of analytic solutions is also explicitly constructed for a generic value of k. Remarkably, the dynamics can be fully geometrized so as to describe the evolution of spacelike surfaces embedded in locally flat spacetimes. Indeed, General Relativity in 3D can be endowed with a suitable set of boundary conditions, so that the Einstein equations precisely reduce to the ones of the hierarchy aforementioned. The symmetries of the integrable systems then arise as diffeomorphisms that preserve the asymptotic form of the spacetime metric, and therefore, they become Noetherian. The infinite set of conserved charges is then recovered from the corresponding surface integrals in the canonical approach.
On superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2018-02-01
Superintegrable systems with monopole interactions in flat and curved spaces have attracted much attention. For example, models in spaces with a Taub-NUT metric are well-known to admit the Kepler-type symmetries and provide non-trivial generalizations of the usual Kepler problems. In this paper, we overview new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We present their higher-order, algebraically independent integrals of motion via the direct and constructive approaches which prove the superintegrability of the models. The integrals form symmetry polynomial algebras of the systems with structure constants involving Casimir operators of certain Lie algebras. Such algebraic approaches provide a deeper understanding to the degeneracies of the energy spectra and connection between wave functions and differential equations and geometry.
On multisoliton solutions of the constant astigmatism equation
NASA Astrophysics Data System (ADS)
Hlaváč, Adam
2015-09-01
We introduce an algebraic formula producing infinitely many exact solutions of the constant astigmatism equation {z}{yy}+{(1/z)}{xx}+2=0 from a given seed. A construction of corresponding surfaces of constant astigmatism is then a matter of routine. As a special case, we consider multisoliton solutions of the constant astigmatism equation defined as counterparts of famous multisoliton solutions of the sine-Gordon equation. A few particular examples are surveyed as well.
Robust Controller for Turbulent and Convective Boundary Layers
2006-08-01
filter and an optimal regulator. The Kalman filter equation and the optimal regulator equation corresponding to the state-space equations, (2.20), are...separate steady-state algebraic Riccati equations. The Kalman filter is used here as a state observer rather than as an estimator since no noises are...2001) which will not be repeated here. For robustness, in the design, the Kalman filter input matrix G has been set equal to the control input
On the spring and mass of the Dirac oscillator
NASA Technical Reports Server (NTRS)
Crawford, James P.
1993-01-01
The Dirac oscillator is a relativistic generalization of the quantum harmonic oscillator. In particular, the square of the Hamiltonian for the Dirac oscillator yields the Klein-Gordon equation with a potential of the form: (ar(sub 2) + b(L x S)), where a and b are constants. To obtain the Dirac oscillator, a 'minimal substitution' is made in the Dirac equation, where the ordinary derivative is replaced with a covariant derivative. However, an unusual feature of the covariant derivative in this case is that the potential is a non-trivial element of the Clifford algebra. A theory which naturally gives rise to gage potentials which are non-trivial elements of the Clifford algebra is that based on local automorphism invariance. An exact solution of the automorphism gage field equations which reproduces both the potential term and the mass term of the Dirac oscillator is presented.
Contractions of AdS brane algebra and superGalileon Lagrangians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamimura, Kiyoshi; Onda, Seiji
2013-06-15
We examine AdS Galileon Lagrangians using the method of nonlinear realization. By contractions (1) flat curvature limit, (2) non-relativistic brane algebra limit, and (3) (1) + (2) limits we obtain DBI, Newton-Hoock, and Galilean Galileons, respectively. We make clear how these Lagrangians appear as invariant 4-forms and/or pseudo-invariant Wess-Zumino (WZ) terms using Maurer-Cartan (MC) equations on the coset G/SO(3, 1). We show the equations of motion are written in terms of the MC forms only and explain why the inverse Higgs condition is obtained as the equation of motion for all cases. The supersymmetric extension is also examined using amore » supercoset SU(2, 2 Double-Vertical-Line 1)/(SO(3, 1) Multiplication-Sign U(1)) and five WZ forms are constructed. They are reduced to the corresponding five Galileon WZ forms in the bosonic limit and are candidates for supersymmetric Galileon action.« less
NASA Astrophysics Data System (ADS)
Walicka, A.
2018-02-01
In this paper, a porous medium is modelled by a network of converging-diverging capillaries which may be considered as fissures or tubes. This model makes it necessary to consider flows through capillary fissures or tubes. Therefore an analytical method for deriving the relationships between pressure drops, volumetric flow rates and velocities for the following fluids: Newtonian, polar, power-law, pseudoplastic (DeHaven and Sisko types) and Shulmanian, was developed. Next, considerations on the models of pore network for Newtonian and non-Newtonian fluids were presented. The models, similar to the schemes of central finite differences may provide a good basis for transforming the governing equations of a flow through the porous medium into a set of linear or quasi-linear algebraic equations. It was shown that the some coefficients in these algebraic equations depend on the kind of the capillary convergence.
The non-autonomous YdKN equation and generalized symmetries of Boll equations
NASA Astrophysics Data System (ADS)
Gubbiotti, G.; Scimiterna, C.; Levi, D.
2017-05-01
In this paper, we study the integrability of a class of nonlinear non-autonomous quad graph equations compatible around the cube introduced by Boll in the framework of the generalized Adler, Bobenko, and Suris (ABS) classification. We show that all these equations possess three-point generalized symmetries which are subcases of either the Yamilov discretization of the Krichever-Novikov equation or of its non-autonomous extension. We also prove that all those symmetries are integrable as they pass the algebraic entropy test.
Systems of nonlinear algebraic equations with positive solutions.
Ciurte, Anca; Nedevschi, Sergiu; Rasa, Ioan
2017-01-01
We are concerned with the positive solutions of an algebraic system depending on a parameter [Formula: see text] and arising in economics. For [Formula: see text] we prove that the system has at least a solution. For [Formula: see text] we give three proofs of the existence and a proof of the uniqueness of the solution. Brouwer's theorem and inequalities involving convex functions are essential tools in our proofs.
The Matrix Pencil and its Applications to Speech Processing
2007-03-01
Elementary Linear Algebra ” 8th edition, pp. 278, 2000 John Wiley & Sons, Inc., New York [37] Wai C. Chu, “Speech Coding Algorithms”, New Jeresy: John...Ben; Daniel, James W.; “Applied Linear Algebra ”, pp. 342-345, 1988 Prentice Hall, Englewood Cliffs, NJ [35] Haykin, Simon “Applied Linear Adaptive...ABSTRACT Matrix Pencils facilitate the study of differential equations resulting from oscillating systems. Certain problems in linear ordinary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Paul T.; Shadid, John N.; Sala, Marzio
In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system ismore » obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.« less
Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum
ERIC Educational Resources Information Center
Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan
2010-01-01
Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…
Discovering Linear Equations in Explicit Tables
ERIC Educational Resources Information Center
Burton, Lauren
2017-01-01
When teaching algebra concepts to middle school students, the author often hears questions that echo her own past confusion as a young student learning to write linear equations using data tables that show only input and output values. Students, expected to synthesize the relationship between these values in symbolic representation, grow…
Exploring the Phase Space of a System of Differential Equations: Different Mathematical Registers
ERIC Educational Resources Information Center
Dana-Picard, Thierry; Kidron, Ivy
2008-01-01
We describe and analyze a situation involving symbolic representation and graphical visualization of the solution of a system of two linear differential equations, using a computer algebra system. Symbolic solution and graphical representation complement each other. Graphical representation helps to understand the behavior of the symbolic…
The Factorability of Quadratics: Motivation for More Techniques
ERIC Educational Resources Information Center
Bosse, Michael J.; Nandakumar, N. R.
2005-01-01
Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…
Thickenings and conformal gravity
NASA Astrophysics Data System (ADS)
Lebrun, Claude
1991-07-01
A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M].
A Unified Introduction to Ordinary Differential Equations
ERIC Educational Resources Information Center
Lutzer, Carl V.
2006-01-01
This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)
NASA Astrophysics Data System (ADS)
Dayi, Ömer F.
The recently proposed generalized field method for solving the master equation of Batalin and Vilkovisky is applied to a gauge theory of quadratic Lie algebras in two dimensions. The charge corresponding to BRST symmetry derived from this solution in terms of the phase space variables by using the Noether procedure, and the one found due to the BFV-method are compared and found to coincide. W3-algebra, formulated in terms of a continuous variable is exploit in the mentioned gauge theory to construct a W3 topological gravity. Moreover, its gauge fixing is briefly discussed.
Bootstrapping non-commutative gauge theories from L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter
2018-05-01
Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.
The method of Ritz applied to the equation of Hamilton. [for pendulum systems
NASA Technical Reports Server (NTRS)
Bailey, C. D.
1976-01-01
Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.
On the Poincare noninvariance of a recent alternative to the Dirac equation.
NASA Technical Reports Server (NTRS)
Madan, R. N.
1972-01-01
Explicit construction of the infinitesimal generators of the Poincare group, demonstrating that the algebra of commutators closes only for the case of zero mass. Hence, the so-called Stigma equation proposed by Biedenharn et al. (1971) as an alternative to the Dirac equation (1928) for spin one-half, finite mass particles is not Poincare invariant except when the leptonic mass is zero.
Discovery and Optimization of Low-Storage Runge-Kutta Methods
2015-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DISCOVERY AND OPTIMIZATION OF LOW-STORAGE RUNGE-KUTTA METHODS by Matthew T. Fletcher June 2015... methods are an important family of iterative methods for approximating the solutions of ordinary differential equations (ODEs) and differential...algebraic equations (DAEs). It is common to use an RK method to discretize in time when solving time dependent partial differential equations (PDEs) with a
Some Unexpected Results Using Computer Algebra Systems.
ERIC Educational Resources Information Center
Alonso, Felix; Garcia, Alfonsa; Garcia, Francisco; Hoya, Sara; Rodriguez, Gerardo; de la Villa, Agustin
2001-01-01
Shows how teachers can often use unexpected outputs from Computer Algebra Systems (CAS) to reinforce concepts and to show students the importance of thinking about how they use the software and reflecting on their results. Presents different examples where DERIVE, MAPLE, or Mathematica does not work as expected and suggests how to use them as a…
An Interview Reflection on "Intelligent Tutoring Goes to School in the Big City"
ERIC Educational Resources Information Center
Koedinger, Kenneth R.; Aleven, Vincent
2016-01-01
Our 1997 article in "IJAIED" reported on a study that showed that a new algebra curriculum with an embedded intelligent tutoring system (the Algebra Cognitive Tutor) dramatically enhanced high-school students' learning. The main motivation for the study was to demonstrate that intelligent tutors that have cognitive science research…
Analytic algorithms for determining radiative transfer optical properties of ocean waters.
Kaskas, Ayse; Güleçyüz, Mustafa C; Tezcan, Cevdet; McCormick, Norman J
2006-10-10
A synthetic model for the scattering phase function is used to develop simple algebraic equations, valid for any water type, for evaluating the ratio of the backscattering to absorption coefficients of spatially uniform, very deep waters with data from upward and downward planar irradiances and the remotely sensed reflectance. The phase function is a variable combination of a forward-directed Dirac delta function plus isotropic scattering, which is an elementary model for strongly forward scattering such as that encountered in oceanic optics applications. The incident illumination at the surface is taken to be diffuse plus a collimated beam. The algorithms are compared with other analytic correlations that were previously derived from extensive numerical simulations, and they are also numerically tested with forward problem results computed with a modified FN method.
NASA Astrophysics Data System (ADS)
Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin
2008-07-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.
An Integrity Framework for Image-Based Navigation Systems
2010-06-01
Anton H. and Rorres C. Elementary Linear Algebra . New York, NY: John Wiley & Sons, Inc., 2000. 4. Arthur T. “The Disparity of Parity, Determining...107. Spilker , James J.J. Digital Communications by Satellite. Englewood Cliffs NJ: Prentice Hall, 1977. 108. Strang G. Linear Algebra and its...2.3 The Linearized and Extended Kalman Filters . . . . . . 22 2.3.1 State and Measurement Model Equations . . . 23 2.3.2 The Linearized Kalman Filter
Study-simulation of space station dynamics
NASA Technical Reports Server (NTRS)
Gaitens, M. J.
1971-01-01
Matrix algebra translator and executor /MATE/ takes equations describing structural control system environmental interaction problem for flexible spacecraft components and loads them into self programming computer.
Teaching materials of algebraic equation
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi
2017-12-01
The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.
A New Reynolds Stress Algebraic Equation Model
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.
1994-01-01
A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.
NASA Astrophysics Data System (ADS)
Singh, Harendra
2018-04-01
The key purpose of this article is to introduce an efficient computational method for the approximate solution of the homogeneous as well as non-homogeneous nonlinear Lane-Emden type equations. Using proposed computational method given nonlinear equation is converted into a set of nonlinear algebraic equations whose solution gives the approximate solution to the Lane-Emden type equation. Various nonlinear cases of Lane-Emden type equations like standard Lane-Emden equation, the isothermal gas spheres equation and white-dwarf equation are discussed. Results are compared with some well-known numerical methods and it is observed that our results are more accurate.
Balance point characterization of interstitial fluid volume regulation.
Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M
2009-07-01
The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.
The Identities Hidden in the Matching Laws, and Their Uses
ERIC Educational Resources Information Center
Thorne, David R.
2010-01-01
Various theoretical equations have been proposed to predict response rate as a function of the rate of reinforcement. If both the rate and probability of reinforcement are considered, a simple identity, defining equation, or "law" holds. This identity places algebraic constraints on the allowable forms of our mathematical models and can help…
The Multifaceted Variable Approach: Selection of Method in Solving Simple Linear Equations
ERIC Educational Resources Information Center
Tahir, Salma; Cavanagh, Michael
2010-01-01
This paper presents a comparison of the solution strategies used by two groups of Year 8 students as they solved linear equations. The experimental group studied algebra following a multifaceted variable approach, while the comparison group used a traditional approach. Students in the experimental group employed different solution strategies,…
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
Three Interpretations of the Matrix Equation Ax = b
ERIC Educational Resources Information Center
Larson, Christine; Zandieh, Michelle
2013-01-01
Many of the central ideas in an introductory undergraduate linear algebra course are closely tied to a set of interpretations of the matrix equation Ax = b (A is a matrix, x and b are vectors): linear combination interpretations, systems interpretations, and transformation interpretations. We consider graphic and symbolic representations for each,…
ERIC Educational Resources Information Center
McCartney, Mark; Gibson, Sharon
2006-01-01
A model for car following on a closed loop is defined. The stability of the solutions of the model is investigated by considering the evolution of the roots of the corresponding characteristic equation in the complex plane. The solution provides a motivation for investigating the behaviour of the roots of a simple class of algebraic equation.…
Synthesizing Strategies Creatively: Solving Linear Equations
ERIC Educational Resources Information Center
Ponce, Gregorio A.; Tuba, Imre
2015-01-01
New strategies can ignite teachers' imagination to create new lessons or adapt lessons created by others. In this article, the authors present the experience of an algebra teacher and his students solving linear and literal equations and explain how the use of ideas found in past NCTM journals helped bring this lesson to life. The…
The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems
ERIC Educational Resources Information Center
Decker, Robert
2011-01-01
Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…
The Effect of Using Concept Maps in Elementary Linear Algebra Course on Students’ Learning
NASA Astrophysics Data System (ADS)
Syarifuddin, H.
2018-04-01
This paper presents the results of a classroom action research that was done in Elementary Linear Algebra course at Universitas Negeri Padang. The focus of the research want to see the effect of using concept maps in the course on students’ learning. Data in this study were collected through classroom observation, students’ reflective journal and concept maps that were created by students. The result of the study was the using of concept maps in Elementary Linera Algebra course gave positive effect on students’ learning.
NASA Astrophysics Data System (ADS)
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
A Computing Method for Sound Propagation Through a Nonuniform Jet Stream
NASA Technical Reports Server (NTRS)
Padula, S. L.; Liu, C. H.
1974-01-01
Understanding the principles of jet noise propagation is an essential ingredient of systematic noise reduction research. High speed computer methods offer a unique potential for dealing with complex real life physical systems whereas analytical solutions are restricted to sophisticated idealized models. The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions and a more suitable approach was needed. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.
A nodal domain theorem for integrable billiards in two dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samajdar, Rhine; Jain, Sudhir R., E-mail: srjain@barc.gov.in
Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a familymore » are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.« less
Upon Generating (2+1)-dimensional Dynamical Systems
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Bai, Yang; Wu, Lixin
2016-06-01
Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.
Ossikovski, Razvigor; Vizet, Jérémy
2016-07-01
We report on the identification of the two algebraic invariants inherent to Mueller matrix polarimetry measurements performed through double pass illumination-collection optics (e.g., an optical fiber or an objective) of unknown polarimetric response. The practical use of the invariants, potentially applicable to the characterization of nonreciprocal media, is illustrated on experimental examples.
NASA Astrophysics Data System (ADS)
Iwao, Shinsuke; Nagai, Hidetomo
2018-04-01
This paper presents a study of the discrete Toda equation that was introduced in 1977. In this paper, it is proved that the determinantal solution of the discrete Toda equation, obtained via the Lax formalism, is naturally related to the dual Grothendieck polynomials, a K-theoretic generalization of the Schur polynomials. A tropical permanent solution to the ultradiscrete Toda equation is also derived. The proposed method gives a tropical algebraic representation of the static solitons. Lastly, a new cellular automaton realization of the ultradiscrete Toda equation is proposed.
NASA Technical Reports Server (NTRS)
Dunham, R. S.
1976-01-01
FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.
NASA Astrophysics Data System (ADS)
Barsan, Victor
2018-05-01
Several classes of transcendental equations, mainly eigenvalue equations associated to non-relativistic quantum mechanical problems, are analyzed. Siewert's systematic approach of such equations is discussed from the perspective of the new results recently obtained in the theory of generalized Lambert functions and of algebraic approximations of various special or elementary functions. Combining exact and approximate analytical methods, quite precise analytical outputs are obtained for apparently untractable problems. The results can be applied in quantum and classical mechanics, magnetism, elasticity, solar energy conversion, etc.
NASA Astrophysics Data System (ADS)
Nurhayati, D. M.; Herman, T.; Suhendra, S.
2017-09-01
This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.
Mastering algebra retrains the visual system to perceive hierarchical structure in equations.
Marghetis, Tyler; Landy, David; Goldstone, Robert L
2016-01-01
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
Grid generation for the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Erlebacher, Gordon
1989-01-01
A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.
Bifurcations in two-image photometric stereo for orthogonal illuminations
NASA Astrophysics Data System (ADS)
Kozera, R.; Prokopenya, A.; Noakes, L.; Śluzek, A.
2017-07-01
This paper discusses the ambiguous shape recovery in two-image photometric stereo for a Lambertian surface. The current uniqueness analysis refers to linearly independent light-source directions p = (0, 0, -1) and q arbitrary. For this case necessary and sufficient condition determining ambiguous reconstruction is governed by a second-order linear partial differential equation with constant coefficients. In contrast, a general position of both non-colinear illumination directions p and q leads to a highly non-linear PDE which raises a number of technical difficulties. As recently shown, the latter can also be handled for another family of orthogonal illuminations parallel to the OXZ-plane. For the special case of p = (0, 0, -1) a potential ambiguity stems also from the possible bifurcations of sub-local solutions glued together along a curve defined by an algebraic equation in terms of the data. This paper discusses the occurrence of similar bifurcations for such configurations of orthogonal light-source directions. The discussion to follow is supplemented with examples based on continuous reflectance map model and generated synthetic images.
On the electromagnetic scattering from infinite rectangular conducting grids
NASA Technical Reports Server (NTRS)
Christodoulou, C.
1985-01-01
The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.
Grid generation for the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Erlebacher, Gordon
1987-01-01
A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.
Solving nonlinear equilibrium equations of deformable systems by method of embedded polygons
NASA Astrophysics Data System (ADS)
Razdolsky, A. G.
2017-09-01
Solving of nonlinear algebraic equations is an obligatory stage of studying the equilibrium paths of nonlinear deformable systems. The iterative method for solving a system of nonlinear algebraic equations stated in an explicit or implicit form is developed in the present work. The method consists of constructing a sequence of polygons in Euclidean space that converge into a single point that displays the solution of the system. Polygon vertices are determined on the assumption that individual equations of the system are independent from each other and each of them is a function of only one variable. Initial positions of vertices for each subsequent polygon are specified at the midpoints of certain straight segments determined at the previous iteration. The present algorithm is applied for analytical investigation of the behavior of biaxially compressed nonlinear-elastic beam-column with an open thin-walled cross-section. Numerical examples are made for the I-beam-column on the assumption that its material follows a bilinear stress-strain diagram. A computer program based on the shooting method is developed for solving the problem. The method is reduced to numerical integration of a system of differential equations and to the solution of a system of nonlinear algebraic equations between the boundary values of displacements at the ends of the beam-column. A stress distribution at the beam-column cross-sections is determined by subdividing the cross-section area into many small cells. The equilibrium path for the twisting angle and the lateral displacements tend to the stationary point when the load is increased. Configuration of the path curves reveals that the ultimate load is reached shortly once the maximal normal stresses at the beam-column fall outside the limit of the elastic region. The beam-column has a unique equilibrium state for each value of the load, that is, there are no equilibrium states once the maximum load is reached.
NASA Astrophysics Data System (ADS)
Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał
2018-03-01
Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.
NASA Astrophysics Data System (ADS)
Ravera, Lucrezia
2018-03-01
The purpose of this paper is to show that the so-called Maxwell superalgebra in four dimensions, which naturally involves the presence of a nilpotent fermionic generator, can be interpreted as a hidden superalgebra underlying N=1, {D}=4 supergravity extended to include a 2-form gauge potential associated to a 2-index antisymmetric tensor. In this scenario, the theory is appropriately discussed in the context of Free Differential Algebras (an extension of the Maurer-Cartan equations to involve higher-degree differential forms). The study is then extended to the Free Differential Algebra describing D = 11 supergravity, showing that, also in this case, there exists a super-Maxwell algebra underlying the theory. The same extra spinors dual to the nilpotent fermionic generators whose presence is crucial for writing a supersymmetric extension of the Maxwell algebras, both in the D = 4 and in the D = 11 case, turn out to be fundamental ingredients also to reproduce the D = 4 and D = 11 Free Differential Algebras on ordinary superspace, whose basis is given by the supervielbein. The analysis of the gauge structure of the supersymmetric Free Differential Algebras is carried on taking into account the gauge transformations from the hidden supergroup-manifold associated with the Maxwell superalgebras.
NASA Astrophysics Data System (ADS)
Lakshmi Devaraj, Shanmuga
2018-04-01
The recent trend in learning Mathematics is through android apps like Byju’s. The clock problems asked in aptitude tests could be learnt using such computer applications. The Clock problems are of four categories namely: 1. What is the angle between the hands of a clock at a particular time 2. When the hands of a clock will meet after a particular time 3. When the hands of a clock will be at right angle after a particular time 4. When the hands of a clock will be in a straight line but not together after a particular time The aim of this article is to convert the clock problems which were solved using the traditional approach to algebraic equations and solve them. Shortcuts are arrived which help in solving the questions in just a few seconds. Any aptitude problem could be converted to an algebraic equation by tracing the way the problem proceeds by applying our analytical skills. Solving of equations would be the easiest part in coming up with the solution. Also a computer application could be developed by using the equations that were arrived at in the analysis part. The computer application aims at solving the four different problems in Clocks. The application helps the learners of aptitude for CAT and other competitive exams to know the approach of the problem. Learning Mathematics with a gaming tool like this would be interesting to the learners. This paper provides a path to creating gaming apps to learn Mathematics.
Matrix De Rham Complex and Quantum A-infinity algebras
NASA Astrophysics Data System (ADS)
Barannikov, S.
2014-04-01
I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.
Laplace-Runge-Lenz vector for arbitrary spin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, A. G.
2013-12-15
A countable set of superintegrable quantum mechanical systems is presented which admit the dynamical symmetry with respect to algebra so(4). This algebra is generated by the Laplace-Runge-Lenz vector generalized to the case of arbitrary spin. The presented systems describe neutral particles with non-trivial multipole momenta. Their spectra can be found algebraically like in the case of hydrogen atom. Solutions for the systems with spins 1/2 and 1 are presented explicitly, solutions for spin 3/2 can be expressed via solutions of an ordinary differential equation of first order. A more extended version of this paper including detailed calculations is published asmore » an e-print arXiv:1308.4279.« less
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1988-01-01
An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.
Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations
NASA Astrophysics Data System (ADS)
Guo, Xiu-Rong
2016-06-01
We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58
Secret Sharing Schemes and Advanced Encryption Standard
2015-09-01
commutative . Definition 1.2.2. [3, pp. 167] The most general algebraic structure, ring < R,+, · >, is a set R together with two binary operations + and...Abstract Algebra, 7th ed. Pearson Education India , 2003. [4] A. Herschfeld, “The equation 2x− 3y = d,” Bulletin of the American Mathematical Society, vol...R.Balasubramaniam and R. Thangadurai, Eds. India : Ra- manujan Mathematical Society, pp. xxii–xlvii, 2009. [6] R. Stroeker and R. Tijdeman, “Diophantine
Kleene Monads: Handling Iteration in a Framework of Generic Effects
NASA Astrophysics Data System (ADS)
Goncharov, Sergey; Schröder, Lutz; Mossakowski, Till
Monads are a well-established tool for modelling various computational effects. They form the semantic basis of Moggi’s computational metalanguage, the metalanguage of effects for short, which made its way into modern functional programming in the shape of Haskell’s do-notation. Standard computational idioms call for specific classes of monads that support additional control operations. Here, we introduce Kleene monads, which additionally feature nondeterministic choice and Kleene star, i.e. nondeterministic iteration, and we provide a metalanguage and a sound calculus for Kleene monads, the metalanguage of control and effects, which is the natural joint extension of Kleene algebra and the metalanguage of effects. This provides a framework for studying abstract program equality focussing on iteration and effects. These aspects are known to have decidable equational theories when studied in isolation. However, it is well known that decidability breaks easily; e.g. the Horn theory of continuous Kleene algebras fails to be recursively enumerable. Here, we prove several negative results for the metalanguage of control and effects; in particular, already the equational theory of the unrestricted metalanguage of control and effects over continuous Kleene monads fails to be recursively enumerable. We proceed to identify a fragment of this language which still contains both Kleene algebra and the metalanguage of effects and for which the natural axiomatisation is complete, and indeed the equational theory is decidable.
ERIC Educational Resources Information Center
Schultz, James E.; Waters, Michael S.
2000-01-01
Discusses representations in the context of solving a system of linear equations. Views representations (concrete, tables, graphs, algebraic, matrices) from perspectives of understanding, technology, generalization, exact versus approximate solution, and learning style. (KHR)
McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron
2011-03-01
Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2018-01-01
We apply the new fall of conditions presented in the paper [1] on asymptotically flat spacetime solutions of Chern-Simons-like theories of gravity. We show that the considered fall of conditions asymptotically solve equations of motion of generalized minimal massive gravity. We demonstrate that there exist two type of solutions, one of those is trivial and the others are non-trivial. By looking at non-trivial solutions, for asymptotically flat spacetimes in the generalized minimal massive gravity, in contrast to Einstein gravity, cosmological parameter can be non-zero. We obtain the conserved charges of the asymptotically flat spacetimes in generalized minimal massive gravity, and by introducing Fourier modes we show that the asymptotic symmetry algebra is a semidirect product of a BMS3 algebra and two U (1) current algebras. Also we verify that the BMS3 algebra can be obtained by a contraction of the AdS3 asymptotic symmetry algebra when the AdS3 radius tends to infinity in the flat-space limit. Finally we find energy, angular momentum and entropy for a particular case and deduce that these quantities satisfy the first law of flat space cosmologies.
Emphasizing language and visualization in teaching linear algebra
NASA Astrophysics Data System (ADS)
Hannah, John; Stewart, Sepideh; Thomas, Mike
2013-06-01
Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his approach in both lectures and tutorials, and how he employed visualization and an emphasis on language to encourage conceptual thinking. We use Tall's framework of three worlds of mathematical thinking to reflect on the effect of these activities in students' learning. An analysis of students' attitudes to the course and their test and examination results help to answer questions about the value of such an approach, suggesting ways forward in teaching linear algebra.
Hearing Math: Algebra Supported eText for Students With Visual Impairments.
Bouck, Emily C; Weng, Pei-Lin
2014-01-01
Supported eText for students with visual impairments in mathematics has a promising, emerging literature base, although little of the existing research focuses on implementation within a classroom setting. This qualitative study sought to understand the use of supported eText to deliver algebra to students with visual impairments enrolled in algebra mathematics courses. The study also sought to explore supported eText in contrast to students' traditional means of accessing an algebra text. The main results suggest supported eText holds potential in terms of delivering mathematics content; however, more research and more reflection on the field is needed regarding this approach as a sole means of presenting text. Implications for teacher professional development and implementation practices are discussed.
NASA Technical Reports Server (NTRS)
Ito, K.
1984-01-01
The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A charactristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.
A hierarchy of generalized Jaulent-Miodek equations and their explicit solutions
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Guan, Liang; Xue, Bo
A hierarchy of generalized Jaulent-Miodek (JM) equations related to a new spectral problem with energy-dependent potentials is proposed. Depending on the Lax matrix and elliptic variables, the generalized JM hierarchy is decomposed into two systems of solvable ordinary differential equations. Explicit theta function representations of the meromorphic function and the Baker-Akhiezer function are constructed, the solutions of the hierarchy are obtained based on the theory of algebraic curves.
A brief survey of symmetry in mathematics
Mostow, G. D.
1996-01-01
This paper presents a brief survey of the idea of symmetry in mathematics, as exemplified by some particular developments in algebra, differential equations, topology, and number theory. PMID:11607716
NASA Astrophysics Data System (ADS)
Bossard, Guillaume; Kleinschmidt, Axel; Palmkvist, Jakob; Pope, Christopher N.; Sezgin, Ergin
2017-05-01
We study the non-linear realisation of E 11 originally proposed by West with particular emphasis on the issue of linearised gauge invariance. Our analysis shows even at low levels that the conjectured equations can only be invariant under local gauge transformations if a certain section condition that has appeared in a different context in the E 11 literature is satisfied. This section condition also generalises the one known from exceptional field theory. Even with the section condition, the E 11 duality equation for gravity is known to miss the trace component of the spin connection. We propose an extended scheme based on an infinite-dimensional Lie superalgebra, called the tensor hierarchy algebra, that incorporates the section condition and resolves the above issue. The tensor hierarchy algebra defines a generalised differential complex, which provides a systematic description of gauge invariance and Bianchi identities. It furthermore provides an E 11 representation for the field strengths, for which we define a twisted first order self-duality equation underlying the dynamics.
NASA Astrophysics Data System (ADS)
Gao, Longfei; Ketcheson, David; Keyes, David
2018-02-01
We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.
Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide
2008-01-01
We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752
NASA Astrophysics Data System (ADS)
Levkovich-Maslyuk, Fedor
2016-08-01
We give a pedagogical introduction to the Bethe ansatz techniques in integrable QFTs and spin chains. We first discuss and motivate the general framework of asymptotic Bethe ansatz for the spectrum of integrable QFTs in large volume, based on the exact S-matrix. Then we illustrate this method in several concrete theories. The first case we study is the SU(2) chiral Gross-Neveu model. We derive the Bethe equations via algebraic Bethe ansatz, solving in the process the Heisenberg XXX spin chain. We discuss this famous spin chain model in some detail, covering in particular the coordinate Bethe ansatz, some properties of Bethe states, and the classical scaling limit leading to finite-gap equations. Then we proceed to the more involved SU(3) chiral Gross-Neveu model and derive the Bethe equations using nested algebraic Bethe ansatz to solve the arising SU(3) spin chain. Finally we show how a method similar to the Bethe ansatz works in a completely different setting, namely for the 1D oscillator in quantum mechanics.
Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide
2008-02-15
We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.
A new exact method for line radiative transfer
NASA Astrophysics Data System (ADS)
Elitzur, Moshe; Asensio Ramos, Andrés
2006-01-01
We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations, and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the `effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins. The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the CII 158-μm line but not by the 3P lines of OI.
Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity
NASA Astrophysics Data System (ADS)
Alal Hosen, Md.; Chowdhury, M. S. H.; Yeakub Ali, Mohammad; Faris Ismail, Ahmad
2017-12-01
A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.
Scalar field collapse in gauge theory gravity
NASA Astrophysics Data System (ADS)
Harke, Richard Eugene
A brief introduction to gravitational collapse in General Relativity is given. Then critical phenomena in the collapse of a massless scalar field as discovered by Choptuik are described. My own work in this area is described and some results are presented. Gauge Theory Gravity and its mathematical formalism, geometric algebra are introduced. Because geometric algebra is not widely known, a detailed and rigorous introduction to it is provided. The basic principles of Gauge Theory Gravity (GTG) are described and a derivation of the field equations is presented. An appropriate Lagrangian for the scalar field in GTG is introduced and the energy tensor is derived by the usual variational process. The equations of motion for the scalar field are derived for a spherically symmetric space. Finite difference approximations to these equations are constructed and simulations of gravitational collapse are run on a computer. Graphical results are presented. An unexpected phenomenon is found in which the passage of the scalar field leaves a persistent change in the gravitational gauge field.
Applications of computer algebra to distributed parameter systems
NASA Technical Reports Server (NTRS)
Storch, Joel A.
1993-01-01
In the analysis of vibrations of continuous elastic systems, one often encounters complicated transcendental equations with roots directly related to the system's natural frequencies. Typically, these equations contain system parameters whose values must be specified before a numerical solution can be obtained. The present paper presents a method whereby the fundamental frequency can be obtained in analytical form to any desired degree of accuracy. The method is based upon truncation of rapidly converging series involving inverse powers of the system natural frequencies. A straightforward method to developing these series and summing them in closed form is presented. It is demonstrated how Computer Algebra can be exploited to perform the intricate analytical procedures which otherwise would render the technique difficult to apply in practice. We illustrate the method by developing two analytical approximations to the fundamental frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to the numerical solution of the exact (transcendental) frequency equation over a range of system parameters.
Polarization ellipse and Stokes parameters in geometric algebra.
Santos, Adler G; Sugon, Quirino M; McNamara, Daniel J
2012-01-01
In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.
New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation
NASA Astrophysics Data System (ADS)
Liu, Jianzhou; Wang, Li; Zhang, Juan
2017-11-01
The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Concerning an application of the method of least squares with a variable weight matrix
NASA Technical Reports Server (NTRS)
Sukhanov, A. A.
1979-01-01
An estimate of a state vector for a physical system when the weight matrix in the method of least squares is a function of this vector is considered. An iterative procedure is proposed for calculating the desired estimate. Conditions for the existence and uniqueness of the limit of this procedure are obtained, and a domain is found which contains the limit estimate. A second method for calculating the desired estimate which reduces to the solution of a system of algebraic equations is proposed. The question of applying Newton's method of tangents to solving the given system of algebraic equations is considered and conditions for the convergence of the modified Newton's method are obtained. Certain properties of the estimate obtained are presented together with an example.
The topological structure of supergravity: an application to supersymmetric localization
NASA Astrophysics Data System (ADS)
Imbimbo, Camillo; Rosa, Dario
2018-05-01
The BRST algebra of supergravity is characterized by two different bilinears of the commuting supersymmetry ghosts: a vector γ μ and a scalar ϕ, the latter valued in the Yang-Mills Lie algebra. We observe that under BRST transformations γ and ϕ transform as the superghosts of, respectively, topological gravity and topological Yang-Mills coupled to topological gravity. This topological structure sitting inside any supergravity leads to universal equivariant cohomological equations for the curvatures 2-forms which hold on supersymmetric bosonic backgrounds. Additional equivariant cohomological equations can be derived for supersymmetric backgrounds of supergravities for which certain gauge invariant scalar bilinears of the commuting ghosts exist. Among those, N = (2 , 2) in d = 2, which we discuss in detail in this paper, and N = 2 in d = 4.
Consistency of a counterexample to Naimark's problem
Akemann, Charles; Weaver, Nik
2004-01-01
We construct a C*-algebra that has only one irreducible representation up to unitary equivalence but is not isomorphic to the algebra of compact operators on any Hilbert space. This answers an old question of Naimark. Our construction uses a combinatorial statement called the diamond principle, which is known to be consistent with but not provable from the standard axioms of set theory (assuming that these axioms are consistent). We prove that the statement “there exists a counterexample to Naimark's problem which is generated by \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\aleph}_{1}\\end{equation*}\\end{document} elements” is undecidable in standard set theory. PMID:15131270
From integrability to conformal symmetry: Bosonic superconformal Toda theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo-Yu Hou; Liu Chao
In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result showsmore » that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability.« less
Algebraic Manipulation as Motion within a Landscape
ERIC Educational Resources Information Center
Wittmann, Michael C.; Flood, Virginia J.; Black, Katrina E.
2013-01-01
We show that students rearranging the terms of a mathematical equation in order to separate variables prior to integration use gestures and speech to manipulate the mathematical terms on the page. They treat the terms of the equation as physical objects in a landscape, capable of being moved around. We analyze our results within the tradition of…
ERIC Educational Resources Information Center
Beddard, Godfrey S.
2011-01-01
A method of solving the Schrodinger equation using a basis set expansion is described and used to calculate energy levels and wavefunctions of the hindered rotation of ethane and the ring puckering of cyclopentene. The calculations were performed using a computer algebra package and the calculations are straightforward enough for undergraduates to…
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2013-01-01
Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…
Insights into the School Mathematics Tradition from Solving Linear Equations
ERIC Educational Resources Information Center
Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth
2015-01-01
In this article, we explore how the solving of linear equations is represented in English-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…
ERIC Educational Resources Information Center
Camporesi, Roberto
2011-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…
Sibling Curves 3: Imaginary Siblings and Tracing Complex Roots
ERIC Educational Resources Information Center
Harding, Ansie; Engelbrecht, Johann
2009-01-01
Visualizing complex roots of a quadratic equation has been a quest since the inception of the Argand plane in the 1800s. Many algebraic and numerical methods exist for calculating complex roots of an equation, but few visual methods exist. Following on from papers by Harding and Engelbrecht (A. Harding and J. Engelbrecht, "Sibling curves and…
Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations
ERIC Educational Resources Information Center
Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln
2007-01-01
A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…
A whole stand basal area projection model for Appalachian hardwoods
John R. Brooks; Lichun Jiang; Matthew Perkowski; Benktesh Sharma
2008-01-01
Two whole-stand basal area projection models were developed for Appalachian hardwood stands. The proposed equations are an algebraic difference projection form based on existing basal area and the change in age, trees per acre, and/or dominant height. Average equation error was less than 10 square feet per acre and residuals exhibited no irregular trends.
Algebraic Bethe ansatz for the two species ASEP with different hopping rates
NASA Astrophysics Data System (ADS)
Cantini, Luigi
2008-03-01
An ASEP with two species of particles and different hopping rates is considered on a ring. Its integrability is proved, and the nested algebraic Bethe ansatz is used to derive the Bethe equations for states with arbitrary numbers of particles of each type, generalizing the results of Derrida and Evans [10]. We also present formulae for the total velocity of particles of a given type and their limit given the large size of the system and the finite densities of the particles.
The algebraic theory of latent projectors in lambda matrices
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.
1981-01-01
Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.
Solving Multi-variate Polynomial Equations in a Finite Field
2013-06-01
Algebraic Background In this section, some algebraic definitions and basics are discussed as they pertain to this re- search. For a more detailed...definitions and basics are discussed as they pertain to this research. For a more detailed treatment, consult a graph theory text such as [10]. A graph G...graph if V(G) can be partitioned into k subsets V1,V2, ...,Vk such that uv is only an edge of G if u and v belong to different partite sets. If, in
NASA Astrophysics Data System (ADS)
Fu, Yuchen; Shelley-Abrahamson, Seth
2016-06-01
We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.
Turbulence Model Predictions of Strongly Curved Flow in a U-Duct
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Morrison, Joseph H.
2000-01-01
The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
First-Order System Least-Squares for the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Bochev, P.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F.
1996-01-01
This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that the resulting system is well-posed, and that an associated least-squares principle yields optimal discretization error estimates in the H(sup 1) norm in each variable (including the velocity flux) and optimal multigrid convergence estimates for the resulting algebraic system.
Exact solutions in 3D new massive gravity.
Ahmedov, Haji; Aliev, Alikram N
2011-01-14
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the "square root" of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
Exact Solutions in 3D New Massive Gravity
NASA Astrophysics Data System (ADS)
Ahmedov, Haji; Aliev, Alikram N.
2011-01-01
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
Higher symmetries and exact solutions of linear and nonlinear Schr{umlt o}dinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fushchych, W.I.; Nikitin, A.G.
1997-11-01
A new approach for the analysis of partial differential equations is developed which is characterized by a simultaneous use of higher and conditional symmetries. Higher symmetries of the Schr{umlt o}dinger equation with an arbitrary potential are investigated. Nonlinear determining equations for potentials are solved using reductions to Weierstrass, Painlev{acute e}, and Riccati forms. Algebraic properties of higher order symmetry operators are analyzed. Combinations of higher and conditional symmetries are used to generate families of exact solutions of linear and nonlinear Schr{umlt o}dinger equations. {copyright} {ital 1997 American Institute of Physics.}
Analytical solution of tt¯ dilepton equations
NASA Astrophysics Data System (ADS)
Sonnenschein, Lars
2006-03-01
The top quark antiquark production system in the dilepton decay channel is described by a set of equations which is nonlinear in the unknown neutrino momenta. Its most precise and least time consuming solution is of major importance for measurements of top quark properties like the top quark mass and tt¯ spin correlations. The initial system of equations can be transformed into two polynomial equations with two unknowns by means of elementary algebraic operations. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation is solved analytically.
Simple derivation of the Lindblad equation
NASA Astrophysics Data System (ADS)
Pearle, Philip
2012-07-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is ‘simple’ in that all it uses is the expression of a Hermitian matrix in terms of its orthonormal eigenvectors and real eigenvalues. Thus, it is appropriate for students who have learned the algebra of quantum theory. Where helpful, arguments are first given in a two-dimensional Hilbert space.
An efficient numerical scheme for the study of equal width equation
NASA Astrophysics Data System (ADS)
Ghafoor, Abdul; Haq, Sirajul
2018-06-01
In this work a new numerical scheme is proposed in which Haar wavelet method is coupled with finite difference scheme for the solution of a nonlinear partial differential equation. The scheme transforms the partial differential equation to a system of algebraic equations which can be solved easily. The technique is applied to equal width equation in order to study the behaviour of one, two, three solitary waves, undular bore and soliton collision. For efficiency and accuracy of the scheme, L2 and L∞ norms and invariants are computed. The results obtained are compared with already existing results in literature.
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
NASA Astrophysics Data System (ADS)
Bogolubov, Nikolai N.; Soldatov, Andrey V.
2017-12-01
Exact and approximate master equations were derived by the projection operator method for the reduced statistical operator of a multi-level quantum system with finite number N of quantum eigenstates interacting with arbitrary external classical fields and dissipative environment simultaneously. It was shown that the structure of these equations can be simplified significantly if the free Hamiltonian driven dynamics of an arbitrary quantum multi-level system under the influence of the external driving fields as well as its Markovian and non-Markovian evolution, stipulated by the interaction with the environment, are described in terms of the SU(N) algebra representation. As a consequence, efficient numerical methods can be developed and employed to analyze these master equations for real problems in various fields of theoretical and applied physics. It was also shown that literally the same master equations hold not only for the reduced density operator but also for arbitrary nonequilibrium multi-time correlation functions as well under the only assumption that the system and the environment are uncorrelated at some initial moment of time. A calculational scheme was proposed to account for these lost correlations in a regular perturbative way, thus providing additional computable terms to the correspondent master equations for the correlation functions.
The algebraic decoding of the (41, 21, 9) quadratic residue code
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei
1992-01-01
A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.
Mashayekhi, S; Razzaghi, M; Tripak, O
2014-01-01
A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Mashayekhi, S.; Razzaghi, M.; Tripak, O.
2014-01-01
A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. PMID:24523638
NASA Astrophysics Data System (ADS)
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
NASA Astrophysics Data System (ADS)
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
The Use of DNS in Turbulence Modeling
NASA Technical Reports Server (NTRS)
Mansour, Nagi N.; Merriam, Marshal (Technical Monitor)
1997-01-01
The use of Direct numerical simulations (DNS) data in developing and testing turbulence models is reviewed. The data is used to test turbulence models at all levels: algebraic, one-equation, two-equation and full Reynolds stress models were tested. Particular examples on the development of models for the dissipation rate equation are presented. Homogeneous flows are used to test new scaling arguments for the various terms in the dissipation rate equation. The channel flow data is used to develop modifications to the equation model that take into account near-wall effects. DNS of compressible flows under mean compression are used in testing new compressible modifications to the two-equation models.
ERIC Educational Resources Information Center
Kieran, Carolyn; Drijvers, Paul
2006-01-01
This paper addresses the dialectical relation between theoretical thinking and technique, as they co-emerge in a combined computer algebra (CAS) and paper-and-pencil environment. The theoretical framework in this ongoing study consists of the instrumental approach to tool use and an adaptation of Chevallard's anthropological theory. The main aim…
ERIC Educational Resources Information Center
Onega, Ronald J.
1969-01-01
Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)
Close Encounters of a Sparse Kind.
ERIC Educational Resources Information Center
Westerberg, Arthur W.
1980-01-01
By providing an example problem in solving sets of nonlinear algebraic equations, the advantages and disadvantages of two methods for its solution, the tearing approach v the Newton-Raphson approach, are elucidated. (CS)
Predicting Eight Grade Students' Equation Solving Performances via Concepts of Variable and Equality
ERIC Educational Resources Information Center
Ertekin, Erhan
2017-01-01
This study focused on how two algebraic concepts- equality and variable- predicted 8th grade students' equation solving performance. In this study, predictive design as a correlational research design was used. Randomly selected 407 eight-grade students who were from the central districts of a city in the central region of Turkey participated in…
ERIC Educational Resources Information Center
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
NASA Astrophysics Data System (ADS)
Shoukat, Sobia; Naqvi, Qaisar A.
2016-12-01
In this manuscript, scattering from a perfect electric conducting strip located at planar interface of topological insulator (TI)-chiral medium is investigated using the Kobayashi Potential method. Longitudinal components of electric and magnetic vector potential in terms of unknown weighting function are considered. Use of related set of boundary conditions yields two algebraic equations and four dual integral equations (DIEs). Integrand of two DIEs are expanded in terms of the characteristic functions with expansion coefficients which must satisfy, simultaneously, the discontinuous property of the Weber-Schafheitlin integrals, required edge and boundary conditions. The resulting expressions are then combined with algebraic equations to express the weighting function in terms of expansion coefficients, these expansion coefficients are then substituted in remaining DIEs. The projection is applied using the Jacobi polynomials. This treatment yields matrix equation for expansion coefficients which is solved numerically. These unknown expansion coefficients are used to find the scattered field. The far zone scattering width is investigated with respect to different parameters of the geometry, i.e, chirality of chiral medium, angle of incidence, size of the strip. Significant effects of different parameters including TI parameter on the scattering width are noted.
The rational parameterization theorem for multisite post-translational modification systems.
Thomson, Matthew; Gunawardena, Jeremy
2009-12-21
Post-translational modification of proteins plays a central role in cellular regulation but its study has been hampered by the exponential increase in substrate modification forms ("modforms") with increasing numbers of sites. We consider here biochemical networks arising from post-translational modification under mass-action kinetics, allowing for multiple substrates, having different types of modification (phosphorylation, methylation, acetylation, etc.) on multiple sites, acted upon by multiple forward and reverse enzymes (in total number L), using general enzymatic mechanisms. These assumptions are substantially more general than in previous studies. We show that the steady-state modform concentrations constitute an algebraic variety that can be parameterized by rational functions of the L free enzyme concentrations, with coefficients which are rational functions of the rate constants. The parameterization allows steady states to be calculated by solving L algebraic equations, a dramatic reduction compared to simulating an exponentially large number of differential equations. This complexity collapse enables analysis in contexts that were previously intractable and leads to biological predictions that we review. Our results lay a foundation for the systems biology of post-translational modification and suggest deeper connections between biochemical networks and algebraic geometry.
Fu, Zhongtao; Yang, Wenyu; Yang, Zhen
2013-08-01
In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.
NASA Astrophysics Data System (ADS)
Nordtvedt, Kenneth
2018-01-01
In the author's previous publications, a recursive linear algebraic method was introduced for obtaining (without gravitational radiation) the full potential expansions for the gravitational metric field components and the Lagrangian for a general N-body system. Two apparent properties of gravity— Exterior Effacement and Interior Effacement—were defined and fully enforced to obtain the recursive algebra, especially for the motion-independent potential expansions of the general N-body situation. The linear algebraic equations of this method determine the potential coefficients at any order n of the expansions in terms of the lower-order coefficients. Then, enforcing Exterior and Interior Effacement on a selecedt few potential series of the full motion-independent potential expansions, the complete exterior metric field for a single, spherically-symmetric mass source was obtained, producing the Schwarzschild metric field of general relativity. In this fourth paper of this series, the complete spatial metric's motion-independent potentials for N bodies are obtained using enforcement of Interior Effacement and knowledge of the Schwarzschild potentials. From the full spatial metric, the complete set of temporal metric potentials and Lagrangian potentials in the motion-independent case can then be found by transfer equations among the coefficients κ( n, α) → λ( n, ɛ) → ξ( n, α) with κ( n, α), λ( n, ɛ), ξ( n, α) being the numerical coefficients in the spatial metric, the Lagrangian, and the temporal metric potential expansions, respectively.
On Hilbert-Schmidt norm convergence of Galerkin approximation for operator Riccati equations
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An abstract approximation framework for the solution of operator algebraic Riccati equations is developed. The approach taken is based on a formulation of the Riccati equation as an abstract nonlinear operator equation on the space of Hilbert-Schmidt operators. Hilbert-Schmidt norm convergence of solutions to generic finite dimensional Galerkin approximations to the Riccati equation to the solution of the original infinite dimensional problem is argued. The application of the general theory is illustrated via an operator Riccati equation arising in the linear-quadratic design of an optimal feedback control law for a 1-D heat/diffusion equation. Numerical results demonstrating the convergence of the associated Hilbert-Schmidt kernels are included.
A generalization of Lie H-pseudobialgebras
NASA Astrophysics Data System (ADS)
Sun, Qinxiu; Li, Fang
2017-07-01
We investigate Hom-Lie H-pseudobialgebras. We present some examples and a theorem that allows constructing these new algebraic structures. We consider coboundary Hom-Lie H-pseudobialgebras and the corresponding classical Hom-Yang-Baxter equations.
Computers and the Rational-Root Theorem--Another View.
ERIC Educational Resources Information Center
Waits, Bert K.; Demana, Franklin
1989-01-01
An approach to finding the rational roots of polynomial equations based on computer graphing is given. It integrates graphing with the purely algebraic approach. Either computers or graphing calculators can be used. (MNS)
1989-03-03
address global parameter space mapping issues for first order differential equations. The rigorous criteria for the existence of exact lumping by linear projective transformations was also established.
Eisenstein type series for Calabi-Yau varieties
NASA Astrophysics Data System (ADS)
Movasati, Hossein
2011-06-01
In this article we introduce an ordinary differential equation associated to the one parameter family of Calabi-Yau varieties which is mirror dual to the universal family of smooth quintic three folds. It is satisfied by seven functions written in the q-expansion form and the Yukawa coupling turns out to be rational in these functions. We prove that these functions are algebraically independent over the field of complex numbers, and hence, the algebra generated by such functions can be interpreted as the theory of (quasi) modular forms attached to the one parameter family of Calabi-Yau varieties. Our result is a reformulation and realization of a problem of Griffiths around seventies on the existence of automorphic functions for the moduli of polarized Hodge structures. It is a generalization of the Ramanujan differential equation satisfied by three Eisenstein series.
Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow
NASA Technical Reports Server (NTRS)
Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.
1981-01-01
Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.
A structural equation modeling analysis of students' understanding in basic mathematics
NASA Astrophysics Data System (ADS)
Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus
2017-11-01
This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.
A computational exploration of the McCoy-Tracy-Wu solutions of the third Painlevé equation
NASA Astrophysics Data System (ADS)
Fasondini, Marco; Fornberg, Bengt; Weideman, J. A. C.
2018-01-01
The method recently developed by the authors for the computation of the multivalued Painlevé transcendents on their Riemann surfaces (Fasondini et al., 2017) is used to explore families of solutions to the third Painlevé equation that were identified by McCoy et al. (1977) and which contain a pole-free sector. Limiting cases, in which the solutions are singular functions of the parameters, are also investigated and it is shown that a particular set of limiting solutions is expressible in terms of special functions. Solutions that are single-valued, logarithmically (infinitely) branched and algebraically branched, with any number of distinct sheets, are encountered. The algebraically branched solutions have multiple pole-free sectors on their Riemann surfaces that are accounted for by using asymptotic formulae and Bäcklund transformations.
Short Round Sub-Linear Zero-Knowledge Argument for Linear Algebraic Relations
NASA Astrophysics Data System (ADS)
Seo, Jae Hong
Zero-knowledge arguments allows one party to prove that a statement is true, without leaking any other information than the truth of the statement. In many applications such as verifiable shuffle (as a practical application) and circuit satisfiability (as a theoretical application), zero-knowledge arguments for mathematical statements related to linear algebra are essentially used. Groth proposed (at CRYPTO 2009) an elegant methodology for zero-knowledge arguments for linear algebraic relations over finite fields. He obtained zero-knowledge arguments of the sub-linear size for linear algebra using reductions from linear algebraic relations to equations of the form z = x *' y, where x, y ∈ Fnp are committed vectors, z ∈ Fp is a committed element, and *' : Fnp × Fnp → Fp is a bilinear map. These reductions impose additional rounds on zero-knowledge arguments of the sub-linear size. The round complexity of interactive zero-knowledge arguments is an important measure along with communication and computational complexities. We focus on minimizing the round complexity of sub-linear zero-knowledge arguments for linear algebra. To reduce round complexity, we propose a general transformation from a t-round zero-knowledge argument, satisfying mild conditions, to a (t - 2)-round zero-knowledge argument; this transformation is of independent interest.
NASA Astrophysics Data System (ADS)
Wang, Changda; Chen, Xuejun; Wei, Peijun; Li, Yueqiu
2017-12-01
The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.
Structure and Stability of Finite Dimensional Approximations for Functional Differential Equations.
1983-10-01
approximating the solution of the algebraic Riccati equation associated with a retarded system. However, there remained one open problem in the...theory much more elegant and efficient (see e.g. BERNIER- MANITIUS ( 3 ], MANITIUS (14], DELFOUR-MANITIUS (71). They have led to a number of new results...characteristic function of the interval I. It is well known that equation (2.1) admits a unique solution2 n 12 x() e L 2o-h,-;iUn I W [0,_: 3 n ] for every
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Hsin-Fu; Tu, Ming-Hsien
2011-03-15
We derive the bilinear equations of the constrained BKP hierarchy from the calculus of pseudodifferential operators. The full hierarchy equations can be expressed in Hirota's bilinear form characterized by the functions {rho}, {sigma}, and {tau}. Besides, we also give a modification of the original Orlov-Schulman additional symmetry to preserve the constrained form of the Lax operator for this hierarchy. The vector fields associated with the modified additional symmetry turn out to satisfy a truncated centerless Virasoro algebra.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
Diffraction of Electromagnetic Waves on a Waveguide Joint
NASA Astrophysics Data System (ADS)
Malykh, Mikhail; Sevastianov, Leonid; Tyutyunnik, Anastasiya; Nikolaev, Nikolai
2018-02-01
In general, the investigation of the electromagnetic field in an inhomogeneous waveguide doesn't reduce to the study of two independent boundary value problems for the Helmholtz equation. We show how to rewrite the Helmholtz equations in the "Hamiltonian form" to express the connection between these two problems explicitly. The problem of finding monochromatic waves in an arbitrary waveguide is reduced to an infinite system of ordinary differential equations in a properly constructed Hilbert space. The calculations are performed in the computer algebra system Sage.
Shear free, twisting Einstein-Maxwell metrics in the Newman-Penrose formalism
NASA Technical Reports Server (NTRS)
Lind, R. W.
1972-01-01
The problem of finding algebraically special solutions to the vacuum Einstein-Maxwell equations was investigated using a spin coefficient formalism. The general case in which the degenerate null vectors are not hypersurface orthogonal is reduced to a problem of solving five coupled differential equations that are no longer dependent on the affine parameter along the degenerate null directions. It is shown that the most general regular, shear-free, nonradiating solution to these equations is the Kerr-Newman metric.
The ATOMFT integrator - Using Taylor series to solve ordinary differential equations
NASA Technical Reports Server (NTRS)
Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.
1988-01-01
This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.
Time domain convergence properties of Lyapunov stable penalty methods
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Sunkel, John
1991-01-01
Linear hyperbolic partial differential equations are analyzed using standard techniques to show that a sequence of solutions generated by the Liapunov stable penalty equations approaches the solution of the differential-algebraic equations governing the dynamics of multibody problems arising in linear vibrations. The analysis does not require that the system be conservative and does not impose any specific integration scheme. Variational statements are derived which bound the error in approximation by the norm of the constraint violation obtained in the approximate solutions.