Sample records for reflection equtation algebra

  1. Form in Algebra: Reflecting, with Peacock, on Upper Secondary School Teaching.

    ERIC Educational Resources Information Center

    Menghini, Marta

    1994-01-01

    Discusses algebra teaching by looking back into the history of algebra and the work of George Peacock, who considered algebra from two points of view: symbolic and instrumental. Claims that, to be meaningful, algebra must be linked to real-world problems. (18 references) (MKR)

  2. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  3. Reflection Functor in the Representation Theory of Preprojective Algebras for Quivers and Integrable Systems

    NASA Astrophysics Data System (ADS)

    Silantyev, A. V.

    2018-05-01

    A brief overview of the representation theory of quivers and the associated (deformed) preprojective algebras, as well as of the theories of moduli spaces of these algebras, quiver varieties and a reflection functor, is given. It is proven that a bijection between moduli spaces (in particular, between quiver varieties), which is induced by a reflection function, is the isomorphism of symplectic affine varieties. The Hamiltonian systems on quiver varieties are defined, and the application of a reflection functor to them is described. The review of [1], concerning the case of a cyclic quiver is given, and a role of the reflection functor in this case is clarified. The "spin" integrable generalizations of Calogero-Moser systems and their application to the KP hierarchy generalizations are described.

  4. Covert Channel Analysis of Trusted Systems. A Guide to Understanding

    DTIC Science & Technology

    1993-11-01

    equ-|tions that ca ! s :-0 cff the two-state graph. Each equation is based on the fact that the set of transmissions beginning in a given state consists...in the "ready" queue( s ) can be loaded in available CPUs during the same quantum only if they have the same security level. In this mode, called the...Luckenbaugh86] G. L. Luckenbaugh, V. D. Gligor, L. J. Dotterer, C. S . Chandersekaran, and N. Vasudevan, "Interpretation of the Bell -La Padula Model In Secure

  5. Reflection states in Ding-Iohara-Miki algebra and brane-web for D-type quiver

    NASA Astrophysics Data System (ADS)

    Bourgine, J.-E.; Fukuda, M.; Matsuo, Y.; Zhu, R.-D.

    2017-12-01

    Reflection states are introduced in the vertical and horizontal modules of the Ding-Iohara-Miki (DIM) algebra (quantum toroidal gl_1 ). Webs of DIM representations are in correspondence with ( p, q)-web diagrams of type IIB string theory, under the identification of the algebraic intertwiner of Awata, Feigin and Shiraishi with the refined topological vertex. Extending the correspondence to the vertical reflection states, it is possible to engineer the N=1 quiver gauge theory of D-type (with unitary gauge groups). In this way, the Nekrasov instanton partition function is reproduced from the evaluation of expectation values of intertwiners. This computation leads to the identification of the vertical reflection state with the orientifold plane of string theory. We also provide a translation of this construction in the Iqbal-Kozcaz-Vafa refined topological vertex formalism.

  6. Who Takes College Algebra?

    ERIC Educational Resources Information Center

    Herriott, Scott R.; Dunbar, Steven R.

    2009-01-01

    The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

  7. Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.

    PubMed

    Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O

    1996-10-01

    This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.

  8. NRL (Naval Research Laboratory) Plasma Formulary. Revised.

    DTIC Science & Technology

    1983-01-01

    EQUATIONS Name Rationalized inks Gaussian Faday’s law V xE -- !-s VxE--l1p .aD -l3D 4i" Ampere’slta xH-VxH -- +J VxH -- .- +- J at C at C Poison’s eqution...energy density Froude Fr t V (gL ) 1/2 (Inertial forces/gravitational or VINL buoyancy forces) t/2 Gay- Lussac Ga I/PA T (Relative volume change...112 Alfvin speed a Newton’s- law heat coefficient, k x " aA T aix Volumetric expansion coefficient, dV/ V - )dT r Bulk modulus (units m/it 2 ) AR, A

  9. Finite-dimensional integrable systems: A collection of research problems

    NASA Astrophysics Data System (ADS)

    Bolsinov, A. V.; Izosimov, A. M.; Tsonev, D. M.

    2017-05-01

    This article suggests a series of problems related to various algebraic and geometric aspects of integrability. They reflect some recent developments in the theory of finite-dimensional integrable systems such as bi-Poisson linear algebra, Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay between singularities of Lagrangian fibrations and compatible Poisson brackets, and new techniques in projective geometry.

  10. Asymptotic representations of augmented q-Onsager algebra and boundary K-operators related to Baxter Q-operators

    NASA Astrophysics Data System (ADS)

    Baseilhac, Pascal; Tsuboi, Zengo

    2018-04-01

    We consider intertwining relations of the augmented q-Onsager algebra introduced by Ito and Terwilliger, and obtain generic (diagonal) boundary K-operators in terms of the Cartan element of Uq (sl2). These K-operators solve reflection equations. Taking appropriate limits of these K-operators in Verma modules, we derive K-operators for Baxter Q-operators and corresponding reflection equations.

  11. On boundary fusion and functional relations in the Baxterized affine Hecke algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk

    2014-04-15

    We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.

  12. Journal Writing: Enlivening Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    Meel, David E.

    1999-01-01

    Examines the various issues surrounding the implementation of journal writing in an undergraduate linear algebra course. Identifies the benefits of incorporating journal writing into an undergraduate mathematics course, which are supported with students' comments from their journals and their reflections on the process. Contains 14 references.…

  13. Reflective Properties of a Parabolic Mirror.

    ERIC Educational Resources Information Center

    Ramsey, Gordon P.

    1991-01-01

    An incident light ray parallel to the optical axis of a parabolic mirror will be reflected at the focal point and vice versa. Presents a mathematical proof that uses calculus, algebra, and geometry to prove this reflective property. (MDH)

  14. Reflections on John Monaghan's "Computer Algebra, Instrumentation, and the Anthropological Approach"

    ERIC Educational Resources Information Center

    Blume, Glen

    2007-01-01

    Reactions to John Monaghan's "Computer Algebra, Instrumentation and the Anthropological Approach" focus on a variety of issues related to the ergonomic approach (instrumentation) and anthropological approach to mathematical activity and practice. These include uses of the term technique; several possibilities for integration of the two approaches;…

  15. Quantum deformations of conformal algebras with mass-like deformation parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek

    1998-12-15

    We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2){approx_equal}su(2,2)more » reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices.« less

  16. Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra by quantum separation of variables

    NASA Astrophysics Data System (ADS)

    Pezelier, Baptiste

    2018-02-01

    In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.

  17. Some Unexpected Results Using Computer Algebra Systems.

    ERIC Educational Resources Information Center

    Alonso, Felix; Garcia, Alfonsa; Garcia, Francisco; Hoya, Sara; Rodriguez, Gerardo; de la Villa, Agustin

    2001-01-01

    Shows how teachers can often use unexpected outputs from Computer Algebra Systems (CAS) to reinforce concepts and to show students the importance of thinking about how they use the software and reflecting on their results. Presents different examples where DERIVE, MAPLE, or Mathematica does not work as expected and suggests how to use them as a…

  18. An Interview Reflection on "Intelligent Tutoring Goes to School in the Big City"

    ERIC Educational Resources Information Center

    Koedinger, Kenneth R.; Aleven, Vincent

    2016-01-01

    Our 1997 article in "IJAIED" reported on a study that showed that a new algebra curriculum with an embedded intelligent tutoring system (the Algebra Cognitive Tutor) dramatically enhanced high-school students' learning. The main motivation for the study was to demonstrate that intelligent tutors that have cognitive science research…

  19. The Effect of Using Concept Maps in Elementary Linear Algebra Course on Students’ Learning

    NASA Astrophysics Data System (ADS)

    Syarifuddin, H.

    2018-04-01

    This paper presents the results of a classroom action research that was done in Elementary Linear Algebra course at Universitas Negeri Padang. The focus of the research want to see the effect of using concept maps in the course on students’ learning. Data in this study were collected through classroom observation, students’ reflective journal and concept maps that were created by students. The result of the study was the using of concept maps in Elementary Linera Algebra course gave positive effect on students’ learning.

  20. Algebraic invariants for reflection Mueller polarimetry via uncompensated double pass illumination-collection optics.

    PubMed

    Ossikovski, Razvigor; Vizet, Jérémy

    2016-07-01

    We report on the identification of the two algebraic invariants inherent to Mueller matrix polarimetry measurements performed through double pass illumination-collection optics (e.g., an optical fiber or an objective) of unknown polarimetric response. The practical use of the invariants, potentially applicable to the characterization of nonreciprocal media, is illustrated on experimental examples.

  1. Emphasizing language and visualization in teaching linear algebra

    NASA Astrophysics Data System (ADS)

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2013-06-01

    Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his approach in both lectures and tutorials, and how he employed visualization and an emphasis on language to encourage conceptual thinking. We use Tall's framework of three worlds of mathematical thinking to reflect on the effect of these activities in students' learning. An analysis of students' attitudes to the course and their test and examination results help to answer questions about the value of such an approach, suggesting ways forward in teaching linear algebra.

  2. Hearing Math: Algebra Supported eText for Students With Visual Impairments.

    PubMed

    Bouck, Emily C; Weng, Pei-Lin

    2014-01-01

    Supported eText for students with visual impairments in mathematics has a promising, emerging literature base, although little of the existing research focuses on implementation within a classroom setting. This qualitative study sought to understand the use of supported eText to deliver algebra to students with visual impairments enrolled in algebra mathematics courses. The study also sought to explore supported eText in contrast to students' traditional means of accessing an algebra text. The main results suggest supported eText holds potential in terms of delivering mathematics content; however, more research and more reflection on the field is needed regarding this approach as a sole means of presenting text. Implications for teacher professional development and implementation practices are discussed.

  3. The Co-Emergence of Machine Techniques, Paper-and-Pencil Techniques, and Theoretical Reflection: A Study of CAS Use in Secondary School Algebra

    ERIC Educational Resources Information Center

    Kieran, Carolyn; Drijvers, Paul

    2006-01-01

    This paper addresses the dialectical relation between theoretical thinking and technique, as they co-emerge in a combined computer algebra (CAS) and paper-and-pencil environment. The theoretical framework in this ongoing study consists of the instrumental approach to tool use and an adaptation of Chevallard's anthropological theory. The main aim…

  4. Drinfeld-Sokolov reduction in quantum algebras: canonical form of generating matrices

    NASA Astrophysics Data System (ADS)

    Gurevich, Dimitri; Saponov, Pavel; Talalaev, Dmitry

    2018-04-01

    We define the second canonical forms for the generating matrices of the Reflection Equation algebras and the braided Yangians, associated with all even skew-invertible involutive and Hecke symmetries. By using the Cayley-Hamilton identities for these matrices, we show that they are similar to their canonical forms in the sense of Chervov and Talalaev (J Math Sci (NY) 158:904-911, 2008).

  5. Students' Reflections on Mathematics Homework Feedback

    ERIC Educational Resources Information Center

    Landers, Mara; Reinholz, Daniel

    2015-01-01

    Homework is considered an important aspect of learning mathematics, but little research has considered how students utilize feedback as part of the homework process. This mixed methods, quasi-experimental study examines how community college students in a developmental intermediate algebra course participated in a feedback reflection activity…

  6. The role of difficulty and gender in numbers, algebra, geometry and mathematics achievement

    NASA Astrophysics Data System (ADS)

    Rabab'h, Belal Sadiq Hamed; Veloo, Arsaythamby; Perumal, Selvan

    2015-05-01

    This study aims to identify the role of difficulty and gender in numbers, algebra, geometry and mathematics achievement among secondary schools students in Jordan. The respondent of the study were 337 students from eight public secondary school in Alkoura district by using stratified random sampling. The study comprised of 179 (53%) males and 158 (47%) females students. The mathematics test comprises of 30 items which has eight items for numbers, 14 items for algebra and eight items for geometry. Based on difficulties among male and female students, the findings showed that item 4 (fractions - 0.34) was most difficult for male students and item 6 (square roots - 0.39) for females in numbers. For the algebra, item 11 (inequality - 0.23) was most difficult for male students and item 6 (algebraic expressions - 0.35) for female students. In geometry, item 3 (reflection - 0.34) was most difficult for male students and item 8 (volume - 0.33) for female students. Based on gender differences, female students showed higher achievement in numbers and algebra compare to male students. On the other hand, there was no differences between male and female students achievement in geometry test. This study suggest that teachers need to give more attention on numbers and algebra when teaching mathematics.

  7. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later.

    PubMed

    Hoover, Jerome D; Healy, Alice F

    2017-12-01

    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  8. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  9. Transport synthetic acceleration with opposing reflecting boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zika, M.R.; Adams, M.L.

    2000-02-01

    The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iteratingmore » on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.« less

  10. High School Mathematics Teachers' Levels of Achieving Technology Integration and In-Class Reflections: The Case of Mathematica

    ERIC Educational Resources Information Center

    Ardiç, Mehmet Alper; Isleyen, Tevfik

    2017-01-01

    The purpose of this study is to determine the levels of high school mathematics teachers in achieving mathematics instruction via computer algebra systems and the reflections of these practices in the classroom. Three high school mathematics teachers employed at different types of school participated in the study. In the beginning of this…

  11. Comparing the utility of image algebra operations for characterizing landscape changes: the case of the Mediterranean coast.

    PubMed

    Alphan, Hakan

    2011-11-01

    The aim of this study is to compare various image algebra procedures for their efficiency in locating and identifying different types of landscape changes on the margin of a Mediterranean coastal plain, Cukurova, Turkey. Image differencing and ratioing were applied to the reflective bands of Landsat TM datasets acquired in 1984 and 2006. Normalized Difference Vegetation index (NDVI) and Principal Component Analysis (PCA) differencing were also applied. The resulting images were tested for their capacity to detect nine change phenomena, which were a priori defined in a three-level classification scheme. These change phenomena included agricultural encroachment, sand dune afforestation, coastline changes and removal/expansion of reed beds. The percentage overall accuracies of different algebra products for each phenomenon were calculated and compared. The results showed that some of the changes such as sand dune afforestation and reed bed expansion were detected with accuracies varying between 85 and 97% by the majority of the algebra operations, while some other changes such as logging could only be detected by mid-infrared (MIR) ratioing. For optimizing change detection in similar coastal landscapes, underlying causes of these changes were discussed and the guidelines for selecting band and algebra operations were provided. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Algebraic properties of automata associated to Petri nets and applications to computation in biological systems.

    PubMed

    Egri-Nagy, Attila; Nehaniv, Chrystopher L

    2008-01-01

    Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a formalized graphical modeling language, often used to describe computation occurring within biochemical and genetic regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore, there are several different ways to turn a Petri net into a state-transition automaton. Here, we systematically investigate different conversion methods and describe cases where they may yield radically different algebraic structures. We focus on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries of the computation occurring within the biological system under study. Results are illustrated by applications to the Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich, regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting a reason for the apparent all-pervasiveness of inhibitory connections in living systems.

  13. Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations

    NASA Astrophysics Data System (ADS)

    Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor

    2016-10-01

    R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.

  14. Boundary reflection matrices for nonsimply laced affine Toda field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.D.

    The boundary reflection matrices for nonsimply laced affine Toda field theories defined on a half line with the Neumann boundary condition are investigated. The boundary reflection matrices for some pairs of the models are evaluated up to one loop order by perturbation theory. Then the exact boundary reflection matrices which are consistent with the one loop result are found under the assumption of {open_quote}{open_quote}duality{close_quote}{close_quote} and tested against algebraic consistency such as the boundary bootstrap equation and boundary crossing-unitarity relation. {copyright} {ital 1996 The American Physical Society.}

  15. Canonical gravity, diffeomorphisms and objective histories

    NASA Astrophysics Data System (ADS)

    Samuel, Joseph

    2000-11-01

    This paper discusses the implementation of diffeomorphism invariance in purely Hamiltonian formulations of general relativity. We observe that, if a constrained Hamiltonian formulation derives from a manifestly covariant Lagrangian, the diffeomorphism invariance of the Lagrangian results in the following properties of the constrained Hamiltonian theory: the diffeomorphisms are generated by constraints on the phase space so that: (a) the algebra of the generators reflects the algebra of the diffeomorphism group; (b) the Poisson brackets of the basic fields with the generators reflects the spacetime transformation properties of these basic fields. This suggests that in a purely Hamiltonian approach the requirement of diffeomorphism invariance should be interpreted to include (b) and not just (a) as one might naively suppose. Giving up (b) amounts to giving up objective histories, even at the classical level. This observation has implications for loop quantum gravity which are spelled out in a companion paper. We also describe an analogy between canonical gravity and relativistic particle dynamics to illustrate our main point.

  16. Prospective Secondary Mathematics Teachers' Perspectives and Mathematical Knowledge for Teaching

    ERIC Educational Resources Information Center

    Karagöz-Akar, Gülseren

    2016-01-01

    This study investigated the relationship between prospective secondary mathematics teachers' perspectives and their mathematical knowledge for teaching in action. Data from two prospective teachers' practice-teachings, one in geometry and one in algebra, their lesson plans and self-reflections were analyzed with Teacher Perspectives and Knowledge…

  17. Boundary perimeter Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven

    2017-06-01

    We study the partition function of the six-vertex model in the rational limit on arbitrary Baxter lattices with reflecting boundary. Every such lattice is interpreted as an invariant of the twisted Yangian. This identification allows us to relate the partition function of the vertex model to the Bethe wave function of an open spin chain. We obtain the partition function in terms of creation operators on a reference state from the algebraic Bethe ansatz and as a sum of permutations and reflections from the coordinate Bethe ansatz.

  18. Steps Forward and Back in Adult Numeracy Teacher Professional Development: A Reflection on a Teacher Workshop Experience

    ERIC Educational Resources Information Center

    Saliga, Linda Marie; Daviso, Al; Stuart, Denise; Pachnowski, Lynne

    2015-01-01

    In this project, a university team of teacher education and mathematics professors conducted eight professional development sessions for General Educational Development (GED) teachers in the area of mathematics teaching. Topics included concretely modeling mathematics concepts in algebra, number sense, geometry, and differentiating instruction in…

  19. All Our Students Thinking

    ERIC Educational Resources Information Center

    Noddings, Nel

    2008-01-01

    Critical thinking is the sort of mental activity that uses facts to plan, order, and work toward an end; seeks meaning or an explanation; is self-reflective; and uses reason to question claims and make judgments. Any subject--be it physics, algebra, or auto repair--can promote critical thinking as long as teachers teach the subject matter in…

  20. Student and Teacher Perceptions of Teacher Oral Communication Behavior in Algebra and Geometry Classrooms

    ERIC Educational Resources Information Center

    Assuah, Charles K.

    2010-01-01

    Oral communication in mathematics classroom plays an essential role in the mathematics learning process, because it allows students to share ideas, refine their thoughts, reflect on their methods, and clarify their understanding (NCTM, 2000). Knowledge about teacher oral communication behaviors allows researchers and policy makers to identify and…

  1. Shooting Free Throws, Probability, and the Golden Ratio

    ERIC Educational Resources Information Center

    Goodman, Terry

    2010-01-01

    Part of the power of algebra is that it provides students with tools that they can use to model a variety of problems and applications. Such modeling requires them to understand patterns and choose from a variety of representations--numeric, graphical, symbolic--to construct a model that accurately reflects the relationships found in the original…

  2. Computer Algebra, Virtual Learning Environment and Meaningful Learning: Is It Possible?

    ERIC Educational Resources Information Center

    Abar, Celina A. A. P.; Barbosa, Lisbete Madsen

    2011-01-01

    A major challenge faced by teachers nowadays relates to the usage of proper educational technology to achieve a true and meaningful learning experience involving time for reflection. Teachers constantly seek new ways to improve instruction, but in virtual learning environments they often find themselves in a new role, interacting in a dynamic…

  3. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary: comment.

    PubMed

    Andersen, Torben B

    2016-05-01

    In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.

  4. Molecular symmetry with quaternions.

    PubMed

    Fritzer, H P

    2001-09-01

    A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with both the Cayley-Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given. Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples applied to icosahedral symmetry.

  5. Hypotetical learning trajectory to anticipate mathematics anxiety in algebra learning based on the perspective of didactical situation theory

    NASA Astrophysics Data System (ADS)

    Yuliani, R. E.; Suryadi, D.; Dahlan, J. A.

    2018-05-01

    The objective of this research is to design an alleged teacher learning path or Hypotetical Learning Trajectory (HLT) to anticipate mathematics anxiety of students in learning algebra. HLT loads expected mathematics learning objectives, estimates the level of knowledge and understanding of the students, as well as the selection of mathematical activity in accordance with the learning competencies. This research uses educational design research method. The research steps consist of a preliminary design, experimental and retrospective analysis. Data were gathered from various sources, such as data is written during the research process of test results, documentation, sheet results of students' work, results of interviews, questionnaires, and video recordings. The subjects of the study were 10 junior high school students. Based on the research identified 2 students at the level of high anxiety, 7 people at medium anxiety level and 1 student at low anxiety level. High anxiety levels about 20%, was approximately 70% and approximately 10% lower. These results can be used as an evaluation and reflection for designing materials that can anticipate mathematics anxiety of students learning algebra concepts.

  6. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  7. Shortcomings of Mathematics Education Reform in the Netherlands: A Paradigm Case?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno; Bruin-Muurling, Geeke; Kraemer, Jean-Marie; van Stiphout, Irene

    2016-01-01

    This article offers a reflection on the findings of three PhD studies, in the domains of, respectively, subtraction under 100, fractions, and algebra, which independently of each other showed that Dutch students' proficiency fell short of what might be expected of reform in mathematics education aiming at conceptual understanding. In all three…

  8. A Democratic Structure for School Discipline: Reflections from Two New York City High Schools

    ERIC Educational Resources Information Center

    Hawkes, T. Elijah

    2011-01-01

    Given the way that student, teacher, principal, and school testing and accountability measures are currently leaning, it is understandable why a child's moral development sometimes gets less attention than her aptitude in algebra. Yet even with nearly all major accountability incentives heaped upon the tests in math and English, there are still…

  9. Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model

    NASA Astrophysics Data System (ADS)

    Manojlović, N.; Salom, I.

    2017-10-01

    The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.

  10. Using Verbal Protocol Data to Reflect the Quality of Problem Representation in Solving Algebra Word Problems.

    ERIC Educational Resources Information Center

    Bull, Elizabeth Kay

    The goal of this study was to find a way to quantify three criteria of representational quality, described by Greeno, so that it would be possible to examine statistically the relationship between representational quality and other variables related to problem solution. The sample consisted of 18 college students, 84 percent of whom had…

  11. On the Equivalence of the Summation and Transfer-Matrix Methods in Wave Propagation through Multilayers of Lossless and Lossy Media

    ERIC Educational Resources Information Center

    Pereyra, Pedro; Robledo-Martinez, Arturo

    2009-01-01

    We explicitly show that the well-known transmission and reflection amplitudes of planar slabs, obtained via an algebraic summation of Fresnel amplitudes, are completely equivalent to those obtained from transfer matrices in the scattering approach. This equivalence makes the finite periodic systems theory a powerful alternative to the cumbersome…

  12. Motivation of Latina/o Students in Algebra I: Intertwining Research and Reflections

    ERIC Educational Resources Information Center

    Ruiz, Elsa Cantu

    2011-01-01

    Latinas/os, the largest and fastest growing minority ethnic group in the United States (impels research that focuses on the education of Latinas/os and the need to reduce the achievement gap that persists between Latinas/os and other groups. Such research has gained in popularity; however, it is still very limited. I use my teaching experience…

  13. Vectorial laws of refraction and reflection using the cross product and dot product.

    PubMed

    Tkaczyk, Eric R

    2012-03-01

    We demonstrate that published vectorial laws of reflection and refraction of light based solely on the cross product do not, in general, uniquely determine the direction of the reflected and refracted waves without additional information. This is because the cross product does not have a unique inverse operation, which is explained in this Letter in linear algebra terms. However, a vector is in fact uniquely determined if both the cross product (vector product) and dot product (scalar product) with a known vector are specified, which can be written as a single equation with a left-invertible matrix. It is thus possible to amend the vectorial laws of reflection and refraction to incorporate both the cross and dot products for a complete specification with unique solution. This enables highly efficient, unambiguous computation of reflected and refracted wave vectors from the incident wave and surface normal. © 2012 Optical Society of America

  14. Generalized EMV-Effect Algebras

    NASA Astrophysics Data System (ADS)

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

    2018-04-01

    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  15. Continuum analogues of contragredient Lie algebras (Lie algebras with a Cartan operator and nonlinear dynamical systems)

    NASA Astrophysics Data System (ADS)

    Saveliev, M. V.; Vershik, A. M.

    1989-12-01

    We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.

  16. The Progressive Development of Early Embodied Algebraic Thinking

    NASA Astrophysics Data System (ADS)

    Radford, Luis

    2014-06-01

    In this article I present some results from a 5-year longitudinal investigation with young students about the genesis of embodied, non-symbolic algebraic thinking and its progressive transition to culturally evolved forms of symbolic thinking. The investigation draws on a cultural-historical theory of teaching and learning—the theory of objectification. Within this theory, thinking is conceived of as a form of reflection and action that is simultaneously material and ideal: It includes inner and outer speech, sensuous forms of imagination and visualisation, gestures, rhythm, and their intertwinement with material culture (symbols, artifacts, etc.). The theory articulates a cultural view of development as an unfolding dialectic process between culturally and historically constituted forms of mathematical knowing and semiotically mediated classroom activity. Looking at the experimental data through these theoretical lenses reveals a developmental path where embodied forms of thinking are sublated or subsumed into more sophisticated ones through the mediation of properly designed classroom activity.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niccoli, G.

    The antiperiodic transfer matrices associated to higher spin representations of the rational 6-vertex Yang-Baxter algebra are analyzed by generalizing the approach introduced recently in the framework of Sklyanin's quantum separation of variables (SOV) for cyclic representations, spin-1/2 highest weight representations, and also for spin-1/2 representations of the 6-vertex reflection algebra. Such SOV approach allow us to derive exactly results which represent complicate tasks for more traditional methods based on Bethe ansatz and Baxter Q-operator. In particular, we both prove the completeness of the SOV characterization of the transfer matrix spectrum and its simplicity. Then, the derived characterization of local operatorsmore » by Sklyanin's quantum separate variables and the expression of the scalar products of separate states by determinant formulae allow us to compute the form factors of the local spin operators by one determinant formulae similar to those of the scalar products.« less

  18. The genetic code as a periodic table: algebraic aspects.

    PubMed

    Bashford, J D; Jarvis, P D

    2000-01-01

    The systematics of indices of physico-chemical properties of codons and amino acids across the genetic code are examined. Using a simple numerical labelling scheme for nucleic acid bases, A=(-1,0), C=(0,-1), G=(0,1), U=(1,0), data can be fitted as low order polynomials of the six coordinates in the 64-dimensional codon weight space. The work confirms and extends the recent studies by Siemion et al. (1995. BioSystems 36, 231-238) of the conformational parameters. Fundamental patterns in the data such as codon periodicities, and related harmonics and reflection symmetries, are here associated with the structure of the set of basis monomials chosen for fitting. Results are plotted using the Siemion one-step mutation ring scheme, and variants thereof. The connections between the present work, and recent studies of the genetic code structure using dynamical symmetry algebras, are pointed out.

  19. Reflection symmetry detection using locally affine invariant edge correspondence.

    PubMed

    Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao

    2015-04-01

    Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.

  20. Using Symbolic TI Calculators in Engineering Mathematics: Sample Tasks and Reflections from a Decade of Practice

    ERIC Educational Resources Information Center

    Beaudin, Michel; Picard, Gilles

    2010-01-01

    Starting in September 1999, new students at ETS were required to own the TI-92 Plus or TI-89 symbolic calculator and since September 2002, the Voyage 200. Looking back at these ten years of working with a computer algebra system on every student's desk, one could ask whether the introduction of this hand-held technology has really forced teachers…

  1. Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koibuchi, H.

    1991-10-10

    In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.

  2. Reliability enhancement of Navier-Stokes codes through convergence acceleration

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.; Dulikravich, George S.

    1995-01-01

    Methods for enhancing the reliability of Navier-Stokes computer codes through improving convergence characteristics are presented. The improving of these characteristics decreases the likelihood of code unreliability and user interventions in a design environment. The problem referred to as a 'stiffness' in the governing equations for propulsion-related flowfields is investigated, particularly in regard to common sources of equation stiffness that lead to convergence degradation of CFD algorithms. Von Neumann stability theory is employed as a tool to study the convergence difficulties involved. Based on the stability results, improved algorithms are devised to ensure efficient convergence in different situations. A number of test cases are considered to confirm a correlation between stability theory and numerical convergence. The examples of turbulent and reacting flow are presented, and a generalized form of the preconditioning matrix is derived to handle these problems, i.e., the problems involving additional differential equations for describing the transport of turbulent kinetic energy, dissipation rate and chemical species. Algorithms for unsteady computations are considered. The extension of the preconditioning techniques and algorithms derived for Navier-Stokes computations to three-dimensional flow problems is discussed. New methods to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential equtions are developed, with a special emphasis on the acceleration of convergence on highly clustered grids.

  3. Mathematical Modeling for Inherited Diseases.

    PubMed

    Anis, Saima; Khan, Madad; Khan, Saqib

    2017-01-01

    We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra.

  4. Mathematical Modeling for Inherited Diseases

    PubMed Central

    Khan, Saqib

    2017-01-01

    We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra. PMID:28781606

  5. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  6. A note on derivations of Murray-von Neumann algebras.

    PubMed

    Kadison, Richard V; Liu, Zhe

    2014-02-11

    A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.

  7. Banach Synaptic Algebras

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  8. Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjie; Gao, Xing; Guo, Li

    2016-10-01

    The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.

  9. The Unitality of Quantum B-algebras

    NASA Astrophysics Data System (ADS)

    Han, Shengwei; Xu, Xiaoting; Qin, Feng

    2018-02-01

    Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.

  10. Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces.

    PubMed

    Jiao, Fengyu; Wei, Peijun; Li, Li

    2017-01-01

    Wave propagation through a gradient slab sandwiched by the piezoelectric and the piezomagnetic half spaces are studied in this paper. First, the secular equations in the transverse isotropic piezoelectric/piezomagnetic half spaces are derived from the general dynamic equation. Then, the state vectors at piezoelectric and piezomagnetic half spaces are related to the amplitudes of various possible waves. The state transfer equation of the functionally graded slab is derived from the equations of motion by the reduction of order, and the transfer matrix of the functionally gradient slab is obtained by solving the state transfer equation with the spatial-varying coefficient. Finally, the continuous interface conditions are used to lead to the resultant algebraic equations. The algebraic equations are solved to obtain the amplitude ratios of various waves which are further used to obtain the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and are validated by the energy conservation law. Based on the numerical results on the fives of gradient profiles, the influences of the graded slab on the wave propagation are discussed. It is found that the reflection and transmission coefficients are obviously dependent upon the gradient profile. The various surface waves are more sensitive to the gradient profile than the bulk waves. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra

    NASA Astrophysics Data System (ADS)

    Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio

    2018-03-01

    By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms ofmore » free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.« less

  13. A note on derivations of Murray–von Neumann algebras

    PubMed Central

    Kadison, Richard V.; Liu, Zhe

    2014-01-01

    A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831

  14. A double commutant theorem for Murray–von Neumann algebras

    PubMed Central

    Liu, Zhe

    2012-01-01

    Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165

  15. Assessing Algebraic Solving Ability: A Theoretical Framework

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  16. On the intersection of irreducible components of the space of finite-dimensional Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbatsevich, Vladimir V

    2012-07-31

    The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra ismore » considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.« less

  17. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  18. From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    2012-12-01

    Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.

  19. Investigating Years 7 to 12 students' knowledge of linear relationships through different contexts and representations

    NASA Astrophysics Data System (ADS)

    Wilkie, Karina J.; Ayalon, Michal

    2018-02-01

    A foundational component of developing algebraic thinking for meaningful calculus learning is the idea of "function" that focuses on the relationship between varying quantities. Students have demonstrated widespread difficulties in learning calculus, particularly interpreting and modeling dynamic events, when they have a poor understanding of relationships between variables. Yet, there are differing views on how to develop students' functional thinking over time. In the Australian curriculum context, linear relationships are introduced to lower secondary students with content that reflects a hybrid of traditional and reform algebra pedagogy. This article discusses an investigation into Australian secondary students' understanding of linear functional relationships from Years 7 to 12 (approximately 12 to 18 years old; n = 215) in their approaches to three tasks (finding rate of change, pattern generalisation and interpretation of gradient) involving four different representations (table, geometric growing pattern, equation and graph). From the findings, it appears that these students' knowledge of linear functions remains context-specific rather than becoming connected over time.

  20. Algebra: A Challenge at the Crossroads of Policy and Practice

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.

    2011-01-01

    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  1. Making Algebra Work: Instructional Strategies that Deepen Student Understanding, within and between Algebraic Representations

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2009-01-01

    Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…

  2. Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras

    NASA Astrophysics Data System (ADS)

    Mahanta, Snigdhayan

    2015-12-01

    We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.

  3. The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary

  4. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  5. Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories

    NASA Astrophysics Data System (ADS)

    Cheng, Tao; Huang, Hua-Lin; Yang, Yuping

    2016-01-01

    By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper is to study generalized Clifford algebras in a similar manner and extend the results of Albuquerque, Majid and Bulacu to the generalized setting. In particular, by taking full advantage of the gauge transformations in symmetric linear Gr-categories, we derive the decomposition theorem and provide categorical weak Hopf structures for generalized Clifford algebras in a conceptual and simpler manner.

  6. Beam splitter phase shifts: Wave optics approach

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Degiorgio, Vittorio

    2017-10-01

    We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.

  7. Elastic collisions of classical point particles on a finite frictionless linear track with perfectly reflecting endpoints

    NASA Astrophysics Data System (ADS)

    DeLuca, R.

    2006-03-01

    Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.

  8. Dynamical systems defined on infinite dimensional lie algebras of the ''current algebra'' or ''Kac-Moody'' type

    NASA Astrophysics Data System (ADS)

    Hermann, Robert

    1982-07-01

    Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.

  9. Chern-Simons-Antoniadis-Savvidy forms and standard supergravity

    NASA Astrophysics Data System (ADS)

    Izaurieta, F.; Salgado, P.; Salgado, S.

    2017-04-01

    In the context of the so called the Chern-Simons-Antoniadis-Savvidy (ChSAS) forms, we use the methods for FDA decomposition in 1-forms to construct a four-dimensional ChSAS supergravity action for the Maxwell superalgebra. On the another hand, we use the Extended Cartan Homotopy Formula to find a method that allows the separation of the ChSAS action into bulk and boundary contributions and permits the splitting of the bulk Lagrangian into pieces that reflect the particular subspace structure of the gauge algebra.

  10. The general symmetry algebra structure of the underdetermined equation ux=(vxx)2

    NASA Astrophysics Data System (ADS)

    Kersten, Paul H. M.

    1991-08-01

    In a recent paper, Anderson, Kamran, and Olver [``Interior, exterior, and generalized symmetries,'' preprint (1990)] obtained the first- and second-order generalized symmetry algebra for the system ux=(vxx)2, leading to the noncompact real form of the exceptional Lie algebra G2. Here, the structure of the general higher-order symmetry algebra is obtained. Moreover, the Lie algebra G2 is obtained as ordinary symmetry algebra of the associated first-order system. The general symmetry algebra for ux=f(u,v,vx,...,) is established also.

  11. A calculus based on a q-deformed Heisenberg algebra

    DOE PAGES

    Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...

    1999-04-27

    We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less

  12. Highest-weight representations of Brocherd`s algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slansky, R.

    1997-01-01

    General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.

  13. Identities of Finitely Generated Algebras Over AN Infinite Field

    NASA Astrophysics Data System (ADS)

    Kemer, A. R.

    1991-02-01

    It is proved that for each finitely generated associative PI-algebra U over an infinite field F, there is a finite-dimensional F-algebra C such that the ideals of identities of the algebras U and C coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for T-ideals.

  14. Quantum cluster algebras and quantum nilpotent algebras.

    PubMed

    Goodearl, Kenneth R; Yakimov, Milen T

    2014-07-08

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.

  15. Quantum cluster algebras and quantum nilpotent algebras

    PubMed Central

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  16. The Feigin Tetrahedron

    NASA Astrophysics Data System (ADS)

    Rupel, Dylan

    2015-03-01

    The first goal of this note is to extend the well-known Feigin homomorphisms taking quantum groups to quantum polynomial algebras. More precisely, we define generalized Feigin homomorphisms from a quantum shuffle algebra to quantum polynomial algebras which extend the classical Feigin homomorphisms along the embedding of the quantum group into said quantum shuffle algebra. In a recent work of Berenstein and the author, analogous extensions of Feigin homomorphisms from the dual Hall-Ringel algebra of a valued quiver to quantum polynomial algebras were defined. To relate these constructions, we establish a homomorphism, dubbed the quantum shuffle character, from the dual Hall-Ringel algebra to the quantum shuffle algebra which relates the generalized Feigin homomorphisms. These constructions can be compactly described by a commuting tetrahedron of maps beginning with the quantum group and terminating in a quantum polynomial algebra. The second goal in this project is to better understand the dual canonical basis conjecture for skew-symmetrizable quantum cluster algebras. In the symmetrizable types it is known that dual canonical basis elements need not have positive multiplicative structure constants, while this is still suspected to hold for skew-symmetrizable quantum cluster algebras. We propose an alternate conjecture for the symmetrizable types: the cluster monomials should correspond to irreducible characters of a KLR algebra. Indeed, the main conjecture of this note would establish this ''KLR conjecture'' for acyclic skew-symmetrizable quantum cluster algebras: that is, we conjecture that the images of rigid representations under the quantum shuffle character give irreducible characters for KLR algebras. We sketch a proof in the symmetric case giving an alternative to the proof of Kimura-Qin that all non-initial cluster variables in an acyclic skew-symmetric quantum cluster algebra are contained in the dual canonical basis. With these results in mind we interpret the cluster mutations directly in terms of the representation theory of the KLR algebra.

  17. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  18. Constructing Meanings and Utilities within Algebraic Tasks

    ERIC Educational Resources Information Center

    Ainley, Janet; Bills, Liz; Wilson, Kirsty

    2004-01-01

    The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…

  19. Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds

    NASA Astrophysics Data System (ADS)

    Liu, Chiu-Chu Melissa; Sheshmani, Artan

    2017-07-01

    An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.

  20. Asymptotic aspect of derivations in Banach algebras.

    PubMed

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  1. Lie algebra of conformal Killing-Yano forms

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2016-06-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing-Yano forms. A new Lie bracket for conformal Killing-Yano forms that corresponds to slightly modified Schouten-Nijenhuis bracket of differential forms is proposed. We show that conformal Killing-Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing-Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing-Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.

  2. Generalized Galilean algebras and Newtonian gravity

    NASA Astrophysics Data System (ADS)

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.

    2016-04-01

    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  3. On the structure of quantum L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias

    2017-10-01

    It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.

  4. Profile of male-field dependent (FD) prospective teacher's reflective thinking in solving contextual mathematical problem

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  5. On special Lie algebras having a faithful module with Krull dimension

    NASA Astrophysics Data System (ADS)

    Pikhtilkova, O. A.; Pikhtilkov, S. A.

    2017-02-01

    For special Lie algebras we prove an analogue of Markov's theorem on {PI}-algebras having a faithful module with Krull dimension: the solubility of the prime radical. We give an example of a semiprime Lie algebra that has a faithful module with Krull dimension but cannot be represented as a subdirect product of finitely many prime Lie algebras. We prove a criterion for a semiprime Lie algebra to be representable as such a subdirect product.

  6. Algebra for Everyone.

    ERIC Educational Resources Information Center

    Edwards, Edgar L., Jr., Ed.

    The fundamentals of algebra and algebraic thinking should be a part of the background of all citizens in society. The vast increase in the use of technology requires that school mathematics ensure the teaching of algebraic thinking as well as its use at both the elementary and secondary school levels. Algebra is a universal theme that runs through…

  7. Chinese Algebra: Using Historical Problems to Think about Current Curricula

    ERIC Educational Resources Information Center

    Tillema, Erik

    2005-01-01

    The Chinese used the idea of generating equivalent expressions for solving problems where the problems from a historical Chinese text are studied to understand the ways in which the ideas can lead into algebraic calculations and help students to learn algebra. The texts unify algebraic problem solving through complex algebraic thought and afford…

  8. Conceptualizing Routines of Practice That Support Algebraic Reasoning in Elementary Schools: A Constructivist Grounded Theory

    ERIC Educational Resources Information Center

    Store, Jessie Chitsanzo

    2012-01-01

    There is ample literature documenting that, for many decades, high school students view algebra as difficult and do not demonstrate understanding of algebraic concepts. Algebraic reasoning in elementary school aims at meaningfully introducing algebra to elementary school students in preparation for higher-level mathematics. While there is research…

  9. Derive Workshop Matrix Algebra and Linear Algebra.

    ERIC Educational Resources Information Center

    Townsley Kulich, Lisa; Victor, Barbara

    This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…

  10. Prospective Teachers' Views on the Use of Calculators with Computer Algebra System in Algebra Instruction

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Ash

    2010-01-01

    Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…

  11. A Richer Understanding of Algebra

    ERIC Educational Resources Information Center

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…

  12. A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.

    PubMed

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2016-12-01

    Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Topics in elementary particle physics

    NASA Astrophysics Data System (ADS)

    Jin, Xiang

    The author of this thesis discusses two topics in elementary particle physics: n-ary algebras and their applications to M-theory (Part I), and functional evolution and Renormalization Group flows (Part II). In part I, Lie algebra is extended to four different n-ary algebraic structure: generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor; though there are still many other n-ary algebras. A natural property of Generalized Lie algebras — the Bremner identity, is studied, and proved with a totally different method from its original version. We extend Bremner identity to n-bracket cases, where n is an arbitrary odd integer. Filippov algebras do not focus on associativity, and are defined by the Fundamental identity. We add associativity to Filippov algebras, and give examples of how to construct Filippov algebras from su(2), bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep generating new charges that make the algebra not closed. We also study the Bremner identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only example 3-algebra being used in physics is the BLG model with 3-algebra A4, describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB model, is believed to describe infinite M2-branes condensation. Also, there is another propose for M2-brane interactions, the ABJM model, which is constructed by ordinary Lie algebra. We compare the symmetry properties between them, and discuss the possible approaches to include these three models into a grand unification theory. In Part II, we give an approximate solution for Schroeder's equations, based on series and conjugation methods. We use the logistic map as an example, and demonstrate that this approximate solution converges to known analytical solutions around the fixed point, around which the approximate solution is constructed. Although the closed-form solutions for Schroeder's equations can not always be approached analytically, by fitting the approximation solutions, one can still obtain closed-form solutions sometimes. Based on Schroeder's theory, approximate solutions for trajectories, velocities and potentials can also be constructed. The approximate solution is significantly useful to calculate the beta function in renormalization group trajectory. By "wrapping" the series solutions with the conjugations from different inverse functions, we generate different branches of the trajectory, and construct a counterexample for a folk theorem about limited cycles.

  14. Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-Biao, E-mail: zhanghb017@nenu.edu.cn; Lu, Lu

    2013-12-15

    Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derivedmore » naturally from the polynomial su(1, 1) algebras built by us.« less

  15. Reduction by invariants and projection of linear representations of Lie algebras applied to the construction of nonlinear realizations

    NASA Astrophysics Data System (ADS)

    Campoamor-Stursberg, R.

    2018-03-01

    A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.

  16. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  17. The algebra of supertraces for 2+1 super de Sitter gravity

    NASA Technical Reports Server (NTRS)

    Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.

    1993-01-01

    The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.

  18. a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra

    NASA Astrophysics Data System (ADS)

    Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.

    Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.

  19. Computer algebra and operators

    NASA Technical Reports Server (NTRS)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  20. An Arithmetic-Algebraic Work Space for the Promotion of Arithmetic and Algebraic Thinking: Triangular Numbers

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos

    2016-01-01

    This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…

  1. Spontaneous Meta-Arithmetic as a First Step toward School Algebra

    ERIC Educational Resources Information Center

    Caspi, Shai; Sfard, Anna

    2012-01-01

    Taking as the point of departure the vision of school algebra as a formalized meta-discourse of arithmetic, we have been following five pairs of 7th grade students as they progress in algebraic discourse during 24 months, from their informal algebraic talk to the formal algebraic discourse, as taught in school. Our analysis follows changes that…

  2. Gender differences in algebraic thinking ability to solve mathematics problems

    NASA Astrophysics Data System (ADS)

    Kusumaningsih, W.; Darhim; Herman, T.; Turmudi

    2018-05-01

    This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.

  3. Particle-like structure of coaxial Lie algebras

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. M.

    2018-01-01

    This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.

  4. The Growing Importance of Linear Algebra in Undergraduate Mathematics.

    ERIC Educational Resources Information Center

    Tucker, Alan

    1993-01-01

    Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)

  5. Representing k-graphs as Matrix Algebras

    NASA Astrophysics Data System (ADS)

    Rosjanuardi, R.

    2018-05-01

    For any commutative unital ring R and finitely aligned k-graph Λ with |Λ| < ∞ without cycles, we can realise Kumjian-Pask algebra KP R (Λ) as a direct sum of of matrix algebra over some vertices v with properties ν = νΛ, i.e: ⊕ νΛ=ν M |Λv|(R). When there is only a single vertex ν ∈ Λ° such that ν = νΛ, we can realise the Kumjian-Pask algebra as the matrix algebra M |ΛV|(R). Hence the matrix algebra M |vΛ|(R) can be regarded as a representation of the k-graph Λ. In this talk we will figure out the relation between finitely aligned k-graph and matrix algebra.

  6. A description of pseudo-bosons in terms of nilpotent Lie algebras

    NASA Astrophysics Data System (ADS)

    Bagarello, Fabio; Russo, Francesco G.

    2018-02-01

    We show how the one-mode pseudo-bosonic ladder operators provide concrete examples of nilpotent Lie algebras of dimension five. It is the first time that an algebraic-geometric structure of this kind is observed in the context of pseudo-bosonic operators. Indeed we do not find the well known Heisenberg algebras, which are involved in several quantum dynamical systems, but different Lie algebras which may be decomposed into the sum of two abelian Lie algebras in a prescribed way. We introduce the notion of semidirect sum (of Lie algebras) for this scope and find that it describes very well the behavior of pseudo-bosonic operators in many quantum models.

  7. The hopf algebra of vector fields on complex quantum groups

    NASA Astrophysics Data System (ADS)

    Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno

    1992-10-01

    We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.

  8. Algorithms for computations of Loday algebras' invariants

    NASA Astrophysics Data System (ADS)

    Hussain, Sharifah Kartini Said; Rakhimov, I. S.; Basri, W.

    2017-04-01

    The paper is devoted to applications of some computer programs to study structural determination of Loday algebras. We present how these computer programs can be applied in computations of various invariants of Loday algebras and provide several computer programs in Maple to verify Loday algebras' identities, the isomorphisms between the algebras, as a special case, to describe the automorphism groups, centroids and derivations.

  9. Algebra for All: The Effect of Algebra Coursework and Classroom Peer Academic Composition on Low-Achieving Students

    ERIC Educational Resources Information Center

    Nomi, Takako; Raudenbush, Stephen W.

    2014-01-01

    Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…

  10. Rupture or Continuity: The Arithmetico-Algebraic Thinking as an Alternative in a Modelling Process in a Paper and Pencil and Technology Environment

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Zavala, Carlos Cortés

    2017-01-01

    Part of the research community that has followed the Early Algebra paradigm is currently delimiting the differences between arithmetic thinking and algebraic thinking. This trend could prevent new research approaches to the problem of learning algebra, hiding the importance of considering an arithmetico-algebraic thinking, a new approach which…

  11. Derivation in INK-algebras

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, M.; Indhira, K.

    2018-04-01

    In 2017 we introduced a new notion of algebra called IKN-algebra. Motivated by some result on derivations (rightleft)-derivation and (leftright)- derivation in ring. In this paper we introduce derivation in INK-Algebras and investigate some important result.

  12. Contractions and deformations of quasiclassical Lie algebras preserving a nondegenerate quadratic Casimir operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e

    2008-05-15

    By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.

  13. Roughness in Lattice Ordered Effect Algebras

    PubMed Central

    Xin, Xiao Long; Hua, Xiu Juan; Zhu, Xi

    2014-01-01

    Many authors have studied roughness on various algebraic systems. In this paper, we consider a lattice ordered effect algebra and discuss its roughness in this context. Moreover, we introduce the notions of the interior and the closure of a subset and give some of their properties in effect algebras. Finally, we use a Riesz ideal induced congruence and define a function e(a, b) in a lattice ordered effect algebra E and build a relationship between it and congruence classes. Then we study some properties about approximation of lattice ordered effect algebras. PMID:25170523

  14. D{sub {infinity}}-differential E{sub {infinity}}-algebras and spectral sequences of fibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapin, Sergei V

    2007-10-31

    The notion of an E{sub {infinity}}-algebra with a filtration is introduced. The connections are established between E{sub {infinity}}-algebras with filtrations and the theory of D{sub {infinity}}-differential E{sub {infinity}}-algebras over fields. Based on the technique of D{sub {infinity}}-differential E{sub {infinity}}-algebras, the apparatus of spectral sequences is developed for E{sub {infinity}}-algebras with filtrations, and applications of this apparatus to the multiplicative cohomology spectral sequences of fibrations are given. Bibliography: 21 titles.

  15. q-Derivatives, quantization methods and q-algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twarock, Reidun

    1998-12-15

    Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less

  16. Generalized conformal realizations of Kac-Moody algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmkvist, Jakob

    2009-01-15

    We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilizes a new relation between different generalized Jordan triple systems, together with their known connections to Jordan and Lie algebras. Applied to the Jordan algebra of Hermitian 3x3 matrices over the division algebras R, C, H, O, the construction gives the exceptional Lie algebras f{sub 4}, e{sub 6}, e{sub 7}, e{sub 8} for n=2. Moreover, we obtain their infinite-dimensional extensions for n{>=}3. In the casemore » of 2x2 matrices, the resulting Lie algebras are of the form so(p+n,q+n) and the concomitant nonlinear realization generalizes the conformal transformations in a spacetime of signature (p,q)« less

  17. Filiform Lie algebras of order 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, R. M., E-mail: rnavarro@unex.es

    2014-04-15

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de lamore » variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.« less

  18. Labeled trees and the efficient computation of derivations

    NASA Technical Reports Server (NTRS)

    Grossman, Robert; Larson, Richard G.

    1989-01-01

    The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.

  19. Differential calculus and gauge transformations on a deformed space

    NASA Astrophysics Data System (ADS)

    Wess, Julius

    2007-08-01

    We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.

  20. A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time

    NASA Astrophysics Data System (ADS)

    Lang, Holger; Linn, Joachim

    2009-09-01

    We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.

  1. Putting the spark into physical science and algebra

    NASA Astrophysics Data System (ADS)

    Pill, Bruce; Dagenais, Andre

    2007-06-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.

  2. Multi-channel dynamics in high harmonic generation of aligned CO2: ab initio analysis with time-dependent B-spline algebraic diagrammatic construction.

    PubMed

    Ruberti, M; Decleva, P; Averbukh, V

    2018-03-28

    Here we present a fully ab initio study of the high-order harmonic generation (HHG) spectrum of aligned CO 2 molecules. The calculations have been performed by using the molecular time-dependent (TD) B-spline algebraic diagrammatic construction (ADC) method. We quantitatively study how the sub-cycle laser-driven multi-channel dynamics, as reflected in the position of the dynamical minimum in the HHG spectrum, is affected by the full inclusion of both correlation-driven and laser-driven dipole interchannel couplings. We calculate channel-resolved spectral intensities as well as the phase differences between contributions of the different ionization-recombination channels to the total HHG spectrum. Our results show that electron correlation effectively controls the relative contributions of the different channels to the total HHG spectrum, leading to the opening of the new ones (1 2 Π u , 1 2 Σ), previously disregarded for the aligned molecular setup. We conclude that inclusion of many-electron effects into the theoretical interpretation of molecular HHG spectra is essential in order to correctly extract ultrafast electron dynamics using HHG spectroscopy.

  3. Transoptr — A second order beam transport design code with optimization and constraints

    NASA Astrophysics Data System (ADS)

    Heighway, E. A.; Hutcheon, R. M.

    1981-08-01

    This code was written initially to design an achromatic and isochronous reflecting magnet and has been extended to compete in capability (for constrained problems) with TRANSPORT. Its advantage is its flexibility in that the user writes a routine to describe his transport system. The routine allows the definition of general variables from which the system parameters can be derived. Further, the user can write any constraints he requires as algebraic equations relating the parameters. All variables may be used in either a first or second order optimization.

  4. I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…

  5. A Characterization of a Unified Notion of Mathematical Function: The Case of High School Function and Linear Transformation

    ERIC Educational Resources Information Center

    Zandieh, Michelle; Ellis, Jessica; Rasmussen, Chris

    2017-01-01

    As part of a larger study of student understanding of concepts in linear algebra, we interviewed 10 university linear algebra students as to their conceptions of functions from high school algebra and linear transformation from their study of linear algebra. An overarching goal of this study was to examine how linear algebra students see linear…

  6. Simple nuclear C*-algebras not isomorphic to their opposites

    PubMed Central

    Hirshberg, Ilan

    2017-01-01

    We show that it is consistent with Zermelo–Fraenkel set theory with the axiom of choice (ZFC) that there is a simple nuclear nonseparable C∗-algebra, which is not isomorphic to its opposite algebra. We can furthermore guarantee that this example is an inductive limit of unital copies of the Cuntz algebra O2 or of the canonical anticommutation relations (CAR) algebra. PMID:28559339

  7. Implementation of Algebra I in Eighth Grade: An "Ex-Post Facto" Study on Student Achievement

    ERIC Educational Resources Information Center

    Realdine, Dorothy S.

    2010-01-01

    Only recently have school districts across the nation begun to offer Algebra I to all eighth grade students. Currently, most eighth grade Algebra I curriculum does not have a national consistent focus of topics or level of rigor. A key issue of implementing Algebra I in eighth grade is defining national Algebra I concepts and skills that students…

  8. The Xs and Whys of Algebra: Key Ideas and Common Misconceptions

    ERIC Educational Resources Information Center

    Collins, Anne; Dacey, Linda

    2011-01-01

    In many ways, algebra can be as challenging for teachers as it is for students. With so much emphasis placed on procedural knowledge and the manipulations of variables and symbols, it can be easy to lose sight of the key ideas that underlie algebraic thinking and the relevance algebra has to the real world. In the The Xs and Whys of Algebra: Key…

  9. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    PubMed Central

    Yu, Zhang; Zhang, Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092

  10. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    PubMed

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  11. Schwarz maps of algebraic linear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  12. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  13. Difficulties in initial algebra learning in Indonesia

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-12-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.

  14. Algebraic special functions and SO(3,2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-06-15

    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less

  15. Locally Compact Quantum Groups. A von Neumann Algebra Approach

    NASA Astrophysics Data System (ADS)

    Van Daele, Alfons

    2014-08-01

    In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique support projection in the center. All together, we see that there are many advantages when we develop the theory of locally compact quantum groups in the von Neumann algebra framework, rather than in the C^*-algebra framework. It is not only simpler, the theory of weights on von Neumann algebras is better known and one needs very little to go from the C^*-algebras to the von Neumann algebras. Moreover, in many cases when constructing examples, the von Neumann algebra with the coproduct is constructed from the very beginning and the Haar weights are constructed as weights on this von Neumann algebra (using left Hilbert algebra theory). This paper is written in a concise way. In many cases, only indications for the proofs of the results are given. This information should be enough to see that these results are correct. We will give more details in forthcoming paper, which will be expository, aimed at non-specialists. See also [Bull. Kerala Math. Assoc. (2005), 153-177] for an 'expanded' version of the appendix.

  16. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  17. FRT presentation of the Onsager algebras

    NASA Astrophysics Data System (ADS)

    Baseilhac, Pascal; Belliard, Samuel; Crampé, Nicolas

    2018-03-01

    A presentation à la Faddeev-Reshetikhin-Takhtajan (FRT) of the Onsager, augmented Onsager and sl_2 -invariant Onsager algebras is given, using the framework of the nonstandard classical Yang-Baxter algebras. Associated current algebras are identified, and generating functions of mutually commuting quantities are obtained.

  18. The BMS4 algebra at spatial infinity

    NASA Astrophysics Data System (ADS)

    Troessaert, Cédric

    2018-04-01

    We show how a global BMS4 algebra appears as part of the asymptotic symmetry algebra at spatial infinity. Using linearised theory, we then show that this global BMS4 algebra is the one introduced by Strominger as a symmetry of the S-matrix.

  19. Post-Lie algebras and factorization theorems

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans

    2017-09-01

    In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.

  20. Comparison of the Effectiveness of a Traditional Intermediate Algebra Course With That of a Less Rigorous Intermediate Algebra Course in Preparing Students for Success in a Subsequent Mathematics Course

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    2007-01-01

    An experimental two-track intermediate algebra course was offered at Saddleback College, Mission Viejo, CA, between the Fall, 2002 and Fall, 2005 semesters. One track was modeled after the existing traditional California community college intermediate algebra course and the other track was a less rigorous intermediate algebra course in which the…

  1. Hom Gel'fand-Dorfman bialgebras and Hom-Lie conformal algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Lamei, E-mail: lmyuan@hit.edu.cn

    2014-04-15

    The aim of this paper is to introduce the notions of Hom Gel'fand-Dorfman bialgebra and Hom-Lie conformal algebra. In this paper, we give four constructions of Hom Gel'fand-Dorfman bialgebras. Also, we provide a general construction of Hom-Lie conformal algebras from Hom-Lie algebras. Finally, we prove that a Hom Gel'fand-Dorfman bialgebra is equivalent to a Hom-Lie conformal algebra of degree 2.

  2. Internally connected graphs and the Kashiwara-Vergne Lie algebra

    NASA Astrophysics Data System (ADS)

    Felder, Matteo

    2018-06-01

    It is conjectured that the Kashiwara-Vergne Lie algebra \\widehat{krv}_2 is isomorphic to the direct sum of the Grothendieck-Teichmüller Lie algebra grt_1 and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of \\widehat{krv}_2 whose intersection is grt_1, thus giving a way to interpolate between these two Lie algebras.

  3. Discrimination in a General Algebraic Setting

    PubMed Central

    Fine, Benjamin; Lipschutz, Seymour; Spellman, Dennis

    2015-01-01

    Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421

  4. Generalized derivation extensions of 3-Lie algebras and corresponding Nambu-Poisson structures

    NASA Astrophysics Data System (ADS)

    Song, Lina; Jiang, Jun

    2018-01-01

    In this paper, we introduce the notion of a generalized derivation on a 3-Lie algebra. We construct a new 3-Lie algebra using a generalized derivation and call it the generalized derivation extension. We show that the corresponding Leibniz algebra on the space of fundamental objects is the double of a matched pair of Leibniz algebras. We also determine the corresponding Nambu-Poisson structures under some conditions.

  5. Metric 3-Leibniz algebras and M2-branes

    NASA Astrophysics Data System (ADS)

    Méndez-Escobar, Elena

    2010-08-01

    This thesis is concerned with superconformal Chern-Simons theories with matter in 3 dimensions. The interest in these theories is two-fold. On the one hand, it is a new family of theories in which to test the AdS/CFT correspondence and on the other, they are important to study one of the main objects of M-theory (M2-branes). All these theories have something in common: they can be written in terms of 3-Leibniz algebras. Here we study the structure theory of such algebras, paying special attention to a subclass of them that gives rise to maximal supersymmetry and that was the first to appear in this context: 3-Lie algebras. In chapter 2, we review the structure theory of metric Lie algebras and their unitary representations. In chapter 3, we study metric 3-Leibniz algebras and show, by specialising a construction originally due to Faulkner, that they are in one to one correspondence with pairs of real metric Lie algebras and unitary representations of them. We also show a third characterisation for six extreme cases of 3-Leibniz algebras as graded Lie (super)algebras. In chapter 4, we study metric 3-Lie algebras in detail. We prove a structural result and also classify those with a maximally isotropic centre, which is the requirement that ensures unitarity of the corresponding conformal field theory. Finally, in chapter 5, we study the universal structure of superpotentials in this class of superconformal Chern-Simons theories with matter in three dimensions. We provide a uniform formulation for all these theories and establish the connection between the amount of supersymmetry preserved and the gauge Lie algebra and the appropriate unitary representation to be used to write down the Lagrangian. The conditions for supersymmetry enhancement are then expressed equivalently in the language of representation theory of Lie algebras or the language of 3-Leibniz algebras.

  6. On Maximal Subalgebras and the Hypercentre of Lie Algebras.

    ERIC Educational Resources Information Center

    Honda, Masanobu

    1997-01-01

    Derives two sufficient conditions for a finitely generated Lie algebra to have the nilpotent hypercenter. Presents a relatively large class of generalized soluble Lie algebras. Proves that if a finitely generated Lie algebra has a nilpotent maximal subalgebra, the Fitting radical is nilpotent. (DDR)

  7. An algebra of reversible computation.

    PubMed

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  8. On Weak-BCC-Algebras

    PubMed Central

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  9. Macdonald index and chiral algebra

    NASA Astrophysics Data System (ADS)

    Song, Jaewon

    2017-08-01

    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  10. Macdonald index and chiral algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jaewon

    For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less

  11. Macdonald index and chiral algebra

    DOE PAGES

    Song, Jaewon

    2017-08-10

    For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less

  12. Line defect Schur indices, Verlinde algebras and U(1) r fixed points

    NASA Astrophysics Data System (ADS)

    Neitzke, Andrew; Yan, Fei

    2017-11-01

    Given an N=2 superconformal field theory, we reconsider the Schur index ℐ L ( q) in the presence of a half line defect L. Recently Cordova-Gaiotto-Shao found that ℐ L ( q) admits an expansion in terms of characters of the chiral algebra A introduced by Beem et al., with simple coefficients υ L, β ( q). We report a puzzling new feature of this expansion: the q → 1 limit of the coefficients υ L, β ( q) is linearly related to the vacuum expectation values 〈 L〉 in U(1) r -invariant vacua of the theory compactified on S 1. This relation can be expressed algebraically as a commutative diagram involving three algebras: the algebra generated by line defects, the algebra of functions on U(1) r -invariant vacua, and a Verlindelike algebra associated to A . Our evidence is experimental, by direct computation in the Argyres-Douglas theories of type ( A 1, A 2), ( A 1, A 4), ( A 1, A 6), ( A 1, D 3) and ( A 1, D 5). In the latter two theories, which have flavor symmetries, the Verlinde-like algebra which appears is a new deformation of algebras previously considered.

  13. How the twain can meet: Prospect theory and models of heuristics in risky choice.

    PubMed

    Pachur, Thorsten; Suter, Renata S; Hertwig, Ralph

    2017-03-01

    Two influential approaches to modeling choice between risky options are algebraic models (which focus on predicting the overt decisions) and models of heuristics (which are also concerned with capturing the underlying cognitive process). Because they rest on fundamentally different assumptions and algorithms, the two approaches are usually treated as antithetical, or even incommensurable. Drawing on cumulative prospect theory (CPT; Tversky & Kahneman, 1992) as the currently most influential instance of a descriptive algebraic model, we demonstrate how the two modeling traditions can be linked. CPT's algebraic functions characterize choices in terms of psychophysical (diminishing sensitivity to probabilities and outcomes) as well as psychological (risk aversion and loss aversion) constructs. Models of heuristics characterize choices as rooted in simple information-processing principles such as lexicographic and limited search. In computer simulations, we estimated CPT's parameters for choices produced by various heuristics. The resulting CPT parameter profiles portray each of the choice-generating heuristics in psychologically meaningful ways-capturing, for instance, differences in how the heuristics process probability information. Furthermore, CPT parameters can reflect a key property of many heuristics, lexicographic search, and track the environment-dependent behavior of heuristics. Finally, we show, both in an empirical and a model recovery study, how CPT parameter profiles can be used to detect the operation of heuristics. We also address the limits of CPT's ability to capture choices produced by heuristics. Our results highlight an untapped potential of CPT as a measurement tool to characterize the information processing underlying risky choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Constraint-Referenced Analytics of Algebra Learning

    ERIC Educational Resources Information Center

    Sutherland, Scot M.; White, Tobin F.

    2016-01-01

    The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…

  15. Teaching Strategies to Improve Algebra Learning

    ERIC Educational Resources Information Center

    Zbiek, Rose Mary; Larson, Matthew R.

    2015-01-01

    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…

  16. Preparing Elementary Prospective Teachers to Teach Early Algebra

    ERIC Educational Resources Information Center

    Hohensee, Charles

    2017-01-01

    Researchers have argued that integrating early algebra into elementary grades will better prepare students for algebra. However, currently little research exists to guide teacher preparation programs on how to prepare prospective elementary teachers to teach early algebra. This study examines the insights and challenges that prospective teachers…

  17. Difficulties in Initial Algebra Learning in Indonesia

    ERIC Educational Resources Information Center

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-01-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  18. Visual Salience of Algebraic Transformations

    ERIC Educational Resources Information Center

    Kirshner, David; Awtry, Thomas

    2004-01-01

    Information processing researchers have assumed that algebra symbol skills depend on mastery of the abstract rules presented in the curriculum (Matz, 1980; Sleeman, 1986). Thus, students' ubiquitous algebra errors have been taken as indicating the need to embed algebra in rich contextual settings (Kaput, 1995; National Council of Teachers of…

  19. Quantum walled Brauer algebra: commuting families, Baxterization, and representations

    NASA Astrophysics Data System (ADS)

    Semikhatov, A. M.; Tipunin, I. Yu

    2017-02-01

    For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.

  20. Abstract Numeric Relations and the Visual Structure of Algebra

    ERIC Educational Resources Information Center

    Landy, David; Brookes, David; Smout, Ryan

    2014-01-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…

  1. Classical versus Computer Algebra Methods in Elementary Geometry

    ERIC Educational Resources Information Center

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  2. UCSMP Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

  3. Teacher Actions to Facilitate Early Algebraic Reasoning

    ERIC Educational Resources Information Center

    Hunter, Jodie

    2015-01-01

    In recent years there has been an increased emphasis on integrating the teaching of arithmetic and algebra in primary school classrooms. This requires teachers to develop links between arithmetic and algebra and use pedagogical actions that facilitate algebraic reasoning. Drawing on findings from a classroom-based study, this paper provides an…

  4. Abstract Algebra to Secondary School Algebra: Building Bridges

    ERIC Educational Resources Information Center

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  5. A Proposed Algebra Assessment for Use in a Problem-Analysis Framework

    ERIC Educational Resources Information Center

    Walick, Christopher M.; Burns, Matthew K.

    2017-01-01

    Algebra is critical to high school graduation and college success, but student achievement in algebra frequently falls significantly below expected proficiency levels. While existing research emphasizes the importance of quality algebra instruction, there is little research about how to conduct problem analysis for struggling secondary students.…

  6. A Relational Algebra Query Language for Programming Relational Databases

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Anderson, Nicole

    2011-01-01

    In this paper, we describe a Relational Algebra Query Language (RAQL) and Relational Algebra Query (RAQ) software product we have developed that allows database instructors to teach relational algebra through programming. Instead of defining query operations using mathematical notation (the approach commonly taken in database textbooks), students…

  7. Assessing Mathematics Automatically Using Computer Algebra and the Internet

    ERIC Educational Resources Information Center

    Sangwin, Chris

    2004-01-01

    This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…

  8. Matematica Para La Escuela Secundaria, Primer Curso de Algebra (Parte 1). Traduccion Preliminar de la Edicion Inglesa Revisada. (Mathematics for High School, First Course in Algebra, Part 1. Preliminary Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    This is the student text for part one of a three-part SMSG algebra course for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include congruence; numbers and variables; operations;…

  9. Matematica Para La Escuela Secundaria, Primer Curso de Algebra (Parte 1), Comentario. Traduccion Preliminar de la Edicion en Ingles Revisada. (Mathematics for High School, First Course in Algebra, Part 1, Teacher's Commentary. Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    This is the teacher's commentary for part one of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include congruence; numbers and variables;…

  10. Matematica Para La Escuela Secundaria, Primer Curso de Algebra (Parte 2). Traduccion Preliminar de la Edicion Inglesa Revisada. (Mathematics for High School, First Course in Algebra, Part 2. Preliminary Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    This is part two of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include addition and multiplication of real numbers, subtraction and division…

  11. Quiver W-algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Pestun, Vasily

    2018-06-01

    For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  12. An Algebraic Formulation of Level One Wess-Zumino Models

    NASA Astrophysics Data System (ADS)

    Böckenhauer, Jens

    The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven.

  13. On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems

    NASA Astrophysics Data System (ADS)

    Shvedov, O. Yu.

    2002-11-01

    The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.

  14. Toward the classification of differential calculi on κ-Minkowski space and related field theories

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel; Štrajn, Rina

    2015-07-01

    Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.

  15. Eighth Grade Algebra Placement Policies: Promoting Equity, Achievement, and Access

    ERIC Educational Resources Information Center

    Wambsgans, Cynthia

    2014-01-01

    This study was an investigation of a standardized 8th grade Algebra I placement policy across multiple educational districts. Researchers have documented benefits of students' 8th grade Algebra I education, while others have detailed the consequences of algebra enrollment without necessary prerequisite skills. The purpose of this study was to…

  16. Designing Virtual Worlds for Use in Mathematics Education: The Example of Experiential Algebra.

    ERIC Educational Resources Information Center

    Winn, William; Bricken, William

    1992-01-01

    Discussion of the use of virtual reality (VR) to help students learn highlights the use of VR with elementary algebra. Learning theory is examined, including knowledge construction; knowledge representation is discussed, including the symbol systems of algebra; and spatial algebra is described and illustrated. (34 references) (LRW)

  17. Meanings Given to Algebraic Symbolism in Problem-Posing

    ERIC Educational Resources Information Center

    Cañadas, María C.; Molina, Marta; del Río, Aurora

    2018-01-01

    Some errors in the learning of algebra suggest that students might have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing to analyze the students' capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process, depending on the characteristics of the algebraic…

  18. Build an Early Foundation for Algebra Success

    ERIC Educational Resources Information Center

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  19. A Balancing Act: Making Sense of Algebra

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  20. Unifying the Algebra for All Movement

    ERIC Educational Resources Information Center

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.

    2015-01-01

    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  1. A Meta-Analysis of Algebra Interventions for Learners with Disabilities and Struggling Learners

    ERIC Educational Resources Information Center

    Hughes, Elizabeth M.; Witzel, Bradley S.; Riccomini, Paul J.; Fries, Karen M.; Kanyongo, Gibbs Y.

    2014-01-01

    The need for global competence in mathematics is apparent. Algebra is considered a gateway course to prepare students for the demands of a competitive global market. Many students demonstrate low performance in algebra; this is especially true for students with disabilities. Effective algebra instruction is essential to increase algebra…

  2. Effectiveness of Cognitive Tutor Algebra I at Scale

    ERIC Educational Resources Information Center

    Pane, John F.; Griffin, Beth Ann; McCaffrey, Daniel F.; Karam, Rita

    2014-01-01

    This article examines the effectiveness of a technology-based algebra curriculum in a wide variety of middle schools and high schools in seven states. Participating schools were matched into similar pairs and randomly assigned to either continue with the current algebra curriculum for 2 years or to adopt Cognitive Tutor Algebra I (CTAI), which…

  3. Using Linguistics in the Teaching of Developmental and Remedial Algebra.

    ERIC Educational Resources Information Center

    Lesnak, Richard J.

    Basic algebra at Robert Morris College (RMC) in Pittsburgh, Pennsylvania, is a remedial course for students with virtually no algebra background, and for students whose previous experiences with algebra have created math blocks and math anxiety. A study was conducted in an effort to measure quantitatively the benefits of using linguistic methods…

  4. How Middle Grade Teachers Think about Algebraic Reasoning

    ERIC Educational Resources Information Center

    Glassmeyer, David; Edwards, Belinda

    2016-01-01

    Algebraic reasoning is an essential habit of mind for building conceptual knowledge in K-12 mathematics, yet little is known about how middle school mathematics teachers think about algebraic reasoning. In this article we describe a research project examining how algebraic reasoning was considered by grades 6, 7, or 8 mathematics teachers in a…

  5. Assessing Elementary Algebra with STACK

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  6. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  7. Asymptotic symmetries of Rindler space at the horizon and null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hyeyoun

    2010-08-15

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler spacemore » at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.« less

  8. The Dixmier Map for Nilpotent Super Lie Algebras

    NASA Astrophysics Data System (ADS)

    Herscovich, Estanislao

    2012-07-01

    In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by {Prim({U}({g}))} the set of (graded) primitive ideals of the enveloping algebra {{U}({g})} of a nilpotent Lie superalgebra {{g}} and {{A}d0} the adjoint group of {{g}0}, we prove that the usual Dixmier map for nilpotent Lie algebras can be naturally extended to the context of nilpotent super Lie algebras, i.e. there exists a bijective map I : {g}0^{*}/{A}d0 rightarrow Prim({U}({g})) defined by sending the equivalence class [ λ] of a functional λ to a primitive ideal I( λ) of {{U}({g})}, and which coincides with the Dixmier map in the case of nilpotent Lie algebras. Moreover, the construction of the previous map is explicit, and more or less parallel to the one for Lie algebras, a major difference with a previous approach ( cf. [18]). One key fact in the construction is the existence of polarizations for super Lie algebras, generalizing the concept defined for Lie algebras. As a corollary of the previous description, we obtain the isomorphism {{U}({g})/I(λ) ˜eq Cliffq(k) ⊗ Ap(k)}, where {(p,q) = (dim({g}0/{g}0^{λ})/2,dim({g}1/{g}1^{λ}))}, we get a direct construction of the maximal ideals of the underlying algebra of {{U}({g})} and also some properties of the stabilizers of the primitive ideals of {{U}({g})}.

  9. Attributions for Success and Failure in Algebra of Samoan Community College Students: A Profile Analysis.

    ERIC Educational Resources Information Center

    Powers, Stephen; And Others

    Sex differences in attributions for success and failure in algebra of Samoan community college students were examined and compared with attributions of a large group of mainland U.S. students. study included the Mathematics Attribution Scale: Algebra Version (MAS), which assessed students' attributions of achievement in algebra to their effort,…

  10. Using CRA to Teach Algebra to Students with Math Difficulties in Inclusive Settings

    ERIC Educational Resources Information Center

    Witzel, Bradley S.

    2005-01-01

    The importance of algebra instruction has increased in the United States in the past few years. Thus, in most states, middle school students are required to take Algebra 1. Middle school students with math difficulties in inclusion algebra settings may require a different instructional approach. The purpose of this research was to compare student…

  11. Learning to Apply Algebra in the Community for Adults with Intellectual Developmental Disabilities

    ERIC Educational Resources Information Center

    Rodriguez, Anthony M.

    2016-01-01

    Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This…

  12. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…

  13. Capitalizing on Basic Brain Processes in Developmental Algebra--Part One

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…

  14. Reinventing Fractions and Division as They Are Used in Algebra: The Power of Preformal Productions

    ERIC Educational Resources Information Center

    Peck, Frederick; Matassa, Michael

    2016-01-01

    In this paper, we explore algebra students' mathematical realities around fractions and division, and the ways in which students reinvented mathematical productions involving fractions and division. We find that algebra students' initial realities do not include the fraction-as-quotient sub-construct. This can be problematic because in algebra,…

  15. The Development of Children's Algebraic Thinking: The Impact of a Comprehensive Early Algebra Intervention in Third Grade

    ERIC Educational Resources Information Center

    Blanton, Maria; Stephens, Ana; Knuth, Eric; Gardiner, Angela Murphy; Isler, Isil; Kim, Jee-Seon

    2015-01-01

    This article reports results from a study investigating the impact of a sustained, comprehensive early algebra intervention in third grade. Participants included 106 students; 39 received the early algebra intervention, and 67 received their district's regularly planned mathematics instruction. We share and discuss students' responses to a written…

  16. Algebra? A Gate! A Barrier! A Mystery!

    ERIC Educational Resources Information Center

    Mathematics Educatio Dialogues, 2000

    2000-01-01

    This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…

  17. Introducing Algebraic Structures through Solving Equations: Vertical Content Knowledge for K-12 Mathematics Teachers

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2014-01-01

    Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…

  18. The State of the Gate: A Description of Instructional Practice in Algebra in Five Urban Districts

    ERIC Educational Resources Information Center

    Litke, Erica G.

    2015-01-01

    Algebra is considered a linchpin for success in secondary mathematics, serving as a gatekeeper to higher-level courses. Access to algebra is also considered an important lever for educational equity. Yet despite its prominence, large-scale examinations of algebra instruction are rare. In my dissertation, I endeavor to better understand what…

  19. Relationships between Classroom Schedule Types and Performance on the Algebra I Criterion-Referenced Test

    ERIC Educational Resources Information Center

    Murray, Gregory V.; Moyer-Packenham, Patricia S.

    2014-01-01

    One option for length of individual mathematics class periods is the schedule type selected for Algebra I classes. This study examined the relationship between student achievement, as indicated by Algebra I Criterion-Referenced Test scores, and the schedule type for Algebra I classes. Data obtained from the Utah State Office of Education included…

  20. Grade 11 Students' Interconnected Use of Conceptual Knowledge, Procedural Skills, and Strategic Competence in Algebra: A Mixed Method Study of Error Analysis

    ERIC Educational Resources Information Center

    Egodawatte, Gunawardena; Stoilescu, Dorian

    2015-01-01

    The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…

  1. The Ideas of Algebra, K-12. 1988 Yearbook.

    ERIC Educational Resources Information Center

    Coxford, Arthur F., Ed.; Shulte, Albert P., Ed.

    This volume is organized into six parts. Chapters 1-5, which make up Part 1, first discuss the forces impinging on algebra in the curriculum and suggest possible directions for change. Chapters 6-8, Part 2, concentrate on concepts and teaching possibilities available prior to the formal introduction of algebra. The notion that algebraic ideas are…

  2. Solving the Unknown with Algebra: Poster/Teaching Guide for Pre-Algebra Students. Expect the Unexpected with Math[R

    ERIC Educational Resources Information Center

    Actuarial Foundation, 2013

    2013-01-01

    "Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…

  3. Developing "Algebraic Thinking": Two Key Ways to Establish Some Early Algebraic Ideas in Primary Classrooms

    ERIC Educational Resources Information Center

    Ormond, Christine

    2012-01-01

    Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…

  4. Investigating Students' Modes of Thinking in Linear Algebra: The Case of Linear Independence

    ERIC Educational Resources Information Center

    Çelik, Derya

    2015-01-01

    Linear algebra is one of the most challenging topics to learn and teach in many countries. To facilitate the teaching and learning of linear algebra, priority should be given to epistemologically analyze the concepts that the undergraduate students have difficulty in conceptualizing and to define their ways of reasoning in linear algebra. After…

  5. Exploring Teacher Noticing of Student Algebraic Thinking in a Video Club

    ERIC Educational Resources Information Center

    Walkoe, Janet

    2015-01-01

    Learning algebra is critical for students in the USA today, yet many students in the USA struggle in algebra classes. Researchers claim that one reason for these difficulties is that algebra classes often focus on symbol manipulation and procedures above, and many times at the expense of, a more conceptual understanding of the content. Teaching…

  6. Algebra and Algebraic Thinking in School Math: 70th YB

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2008

    2008-01-01

    Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…

  7. Matematica Para La Escuela Secundaria, Primer Curso de Algebra (Parte 2), Comentario. Traduccion Preliminar de la Edicion en Ingles Revisada. (Mathematics for High School, First Course in Algebra, Part 2, Teacher's Commentary. Preliminary Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    This is the teacher's commentary for part two of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include addition and multiplication of real…

  8. Quantum superintegrable system with a novel chain structure of quadratic algebras

    NASA Astrophysics Data System (ADS)

    Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong

    2018-06-01

    We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.

  9. Literal algebra for satellite dynamics. [perturbation analysis

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1975-01-01

    A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.

  10. Contractions from grading

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2018-04-01

    We note that large classes of contractions of algebras that arise in physics can be understood purely algebraically via identifying appropriate Zm-gradings (and their generalizations) on the parent algebra. This includes various types of flat space/Carroll limits of finite and infinite dimensional (A)dS algebras, as well as Galilean and Galilean conformal algebras. Our observations can be regarded as providing a natural context for the Grassmann approach of Krishnan et al. [J. High Energy Phys. 2014(3), 36]. We also introduce a related notion, which we call partial grading, that arises naturally in this context.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozrzymas, Marek; Horodecki, Michał; Studziński, Michał

    We consider the structure of algebra of operators, acting in n-fold tensor product space, which are partially transposed on the last term. Using purely algebraical methods we show that this algebra is semi-simple and then, considering its regular representation, we derive basic properties of the algebra. In particular, we describe all irreducible representations of the algebra of partially transposed operators and derive expressions for matrix elements of the representations. It appears that there are two kinds of irreducible representations of the algebra. The first one is strictly connected with the representations of the group S(n − 1) induced by irreduciblemore » representations of the group S(n − 2). The second kind is structurally connected with irreducible representations of the group S(n − 1)« less

  12. Systems with outer constraints. Gupta-Bleuler electromagnetism as an algebraic field theory

    NASA Astrophysics Data System (ADS)

    Grundling, Hendrik

    1988-03-01

    Since there are some important systems which have constraints not contained in their field algebras, we develop here in a C*-context the algebraic structures of these. The constraints are defined as a group G acting as outer automorphisms on the field algebra ℱ, α: G ↦ Aut ℱ, α G ⊄ Inn ℱ, and we find that the selection of G-invariant states on ℱ is the same as the selection of states ω on M( G M(Gmathop × limits_α F) ℱ) by ω( U g)=1∨ g∈ G, where U g ∈ M ( G M(Gmathop × limits_α F) ℱ)/ℱ are the canonical elements implementing α g . These states are taken as the physical states, and this specifies the resulting algebraic structure of the physics in M( G M(Gmathop × limits_α F) ℱ), and in particular the maximal constraint free physical algebra ℛ. A nontriviality condition is given for ℛ to exist, and we extend the notion of a crossed product to deal with a situation where G is not locally compact. This is necessary to deal with the field theoretical aspect of the constraints. Next the C*-algebra of the CCR is employed to define the abstract algebraic structure of Gupta-Bleuler electromagnetism in the present framework. The indefinite inner product representation structure is obtained, and this puts Gupta-Bleuler electromagnetism on a rigorous footing. Finally, as a bonus, we find that the algebraic structures just set up, provide a blueprint for constructive quadratic algebraic field theory.

  13. Developing Meaning for Algebraic Procedures: An Exploration of the Connections Undergraduate Students Make between Algebraic Rational Expressions and Basic Number Properties

    ERIC Educational Resources Information Center

    Yantz, Jennifer

    2013-01-01

    The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting the postsecondary success of students majoring in STEM fields. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. The present study…

  14. Curricula Alignment and Its Impact on End of Course Assessment Scores

    ERIC Educational Resources Information Center

    Burti, Neil, Jr.

    2011-01-01

    The purpose of this mixed methods study was to examine the alignment of the written, enacted, and tested Algebra I curricula in the Cherry Hill (NJ) Public School District. Furthermore, this QUAN-QUAL study sought to determine the impact of course selection (Algebra I, Enriched Algebra) on achievement as measured by the Algebra I End of Course…

  15. The Impact of New State Accountability Standards on Algebra I Students

    ERIC Educational Resources Information Center

    Heath, Kyle G.

    2013-01-01

    The purpose of this quasi-experimental quantitative study was to determine if a new Algebra I curriculum resulted in improved student performance on the state Algebra I exam. The treatment group consisted of 383 9th grade Algebra I students who received the college-ready standards-based (CRSB) curricula. The control group consisted of 338 9th…

  16. From No to Yes: The Impact of an Intervention on The Persistence of Algebraic Misconceptions among Secondary School Algebra Students

    ERIC Educational Resources Information Center

    Zielinski, Susan F.

    2017-01-01

    Many students enter high school with persistent algebraic misconceptions that limit their success in mathematics and, by extension, limit potential educational attainment and future earnings. The purpose of this study was to assess the effectiveness of a warm conceptual change based intervention on remediating algebraic misconceptions held by…

  17. Card Games and Algebra Tic Tacmatics on Achievement of Junior Secondary II Students in Algebraic Expressions

    ERIC Educational Resources Information Center

    Okpube, Nnaemeka Michael; Anugwo, M. N.

    2016-01-01

    This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…

  18. A Study of Improving Eighth Graders' Learning Deficiency in Algebra by Applying a Realistic Context Instructional Design

    ERIC Educational Resources Information Center

    Chang, Yu-Liang; Huang, Yu-I

    2014-01-01

    The intention of this study was to improve the learning deficiency in algebraic learning and to enhance Taiwanese middle students' learning achievement and interest in algebra. By using a grade skipping experimental design, the research team intended to find out an effective way to benefit these students' leaning in abstract algebraic concepts.…

  19. Effects of Comparison and Game-Challenge on Sixth Graders' Algebra Variable Learning Achievement, Learning Attitude, and Meta-Cognitive Awareness

    ERIC Educational Resources Information Center

    Sun Lin, Hong-Zheng; Chiou, Guey-Fa

    2017-01-01

    This study examined the effects of comparison and game-challenge strategies on sixth graders' learning achievement of algebra variable, learning attitude towards algebra variable learning, and meta-cognitive awareness of algebra variable learning. A 2 × 2 factorial design was used, and 86 students were invited to participate in the experimental…

  20. Middle School Math Acceleration and Equitable Access to Eighth-Grade Algebra: Evidence from the Wake County Public School System

    ERIC Educational Resources Information Center

    Dougherty, Shaun M.; Goodman, Joshua S.; Hill, Darryl V.; Litke, Erica G.; Page, Lindsay C.

    2015-01-01

    Taking algebra by eighth grade is considered an important milestone on the pathway to college readiness. We highlight a collaboration to investigate one district's effort to increase middle school algebra course-taking. In 2010, the Wake County Public Schools began assigning middle school students to accelerated math and eighth-grade algebra based…

  1. It's a Wonderful Life: Using Public Domain Cinema Clips To Teach Affective Objectives and Illustrate Real-World Algebra Applications.

    ERIC Educational Resources Information Center

    Palmer, Loretta

    A basic algebra unit was developed at Utah Valley State College to emphasize applications of mathematical concepts in the work world, using video and computer-generated graphics to integrate textual material. The course was implemented in three introductory algebra sections involving 80 students and taught algebraic concepts using such areas as…

  2. Linking Computer Algebra Systems and Paper-and-Pencil Techniques To Support the Teaching of Mathematics.

    ERIC Educational Resources Information Center

    van Herwaarden, Onno A.; Gielen, Joseph L. W.

    2002-01-01

    Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…

  3. Assessing non-uniqueness: An algebraic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, Don W.

    Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

  4. Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students. Educator's Practice Guide. What Works Clearinghouse.™ NCEE 2015-4010

    ERIC Educational Resources Information Center

    Star, Jon R.; Foegen, Anne; Larson, Matthew R.; McCallum, William G.; Porath, Jane; Zbiek, Rose Mary; Caronongan, Pia; Furgeson, Joshua,; Keating, Betsy; Lyskawa, Julia

    2015-01-01

    Mastering algebra is important for future math and postsecondary success. Educators will find practical recommendations for how to improve algebra instruction in the What Works Clearinghouse (WWC) practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students". The methods and examples included in…

  5. Students’ Algebraic Thinking Process in Context of Point and Line Properties

    NASA Astrophysics Data System (ADS)

    Nurrahmi, H.; Suryadi, D.; Fatimah, S.

    2017-09-01

    Learning of schools algebra is limited to symbols and operating procedures, so students are able to work on problems that only require the ability to operate symbols but unable to generalize a pattern as one of part of algebraic thinking. The purpose of this study is to create a didactic design that facilitates students to do algebraic thinking process through the generalization of patterns, especially in the context of the property of point and line. This study used qualitative method and includes Didactical Design Research (DDR). The result is students are able to make factual, contextual, and symbolic generalization. This happen because the generalization arises based on facts on local terms, then the generalization produced an algebraic formula that was described in the context and perspective of each student. After that, the formula uses the algebraic letter symbol from the symbol t hat uses the students’ language. It can be concluded that the design has facilitated students to do algebraic thinking process through the generalization of patterns, especially in the context of property of the point and line. The impact of this study is this design can use as one of material teaching alternative in learning of school algebra.

  6. A Geometric Construction of Cyclic Cocycles on Twisted Convolution Algebras

    NASA Astrophysics Data System (ADS)

    Angel, Eitan

    2010-09-01

    In this thesis we give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. In his seminal book, Connes constructs a map from the equivariant cohomology of a manifold carrying the action of a discrete group into the periodic cyclic cohomology of the associated convolution algebra. Furthermore, for proper étale groupoids, J.-L. Tu and P. Xu provide a map between the periodic cyclic cohomology of a gerbe twisted convolution algebra and twisted cohomology groups. Our focus will be the convolution algebra with a product defined by a gerbe over a discrete translation groupoid. When the action is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial notions related to ideas of J. Dupont to construct a simplicial form representing the Dixmier-Douady class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial Dixmier-Douady form to the mixed bicomplex of certain matrix algebras. Finally, we define a morphism from this complex to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras.

  7. Eighth Grade Algebra Course Placement and Student Motivation for Mathematics

    PubMed Central

    Simzar, Rahila M.; Domina, Thurston; Tran, Cathy

    2016-01-01

    This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics. PMID:26942210

  8. On the homotopy equivalence of simple AI-algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristov, O Yu

    1999-02-28

    Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus{sub i}{sup k}C([0,1],M{sub N{sub i}}). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K{sub 0}A{yields}K{sub 0}B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, whichmore » is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h.« less

  9. On the quantum symmetry of the chiral Ising model

    NASA Astrophysics Data System (ADS)

    Vecsernyés, Peter

    1994-03-01

    We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.

  10. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes

    DOE PAGES

    Günaydin, Murat; Lüst, Dieter; Malek, Emanuel

    2016-11-07

    We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less

  11. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günaydin, Murat; Lüst, Dieter; Malek, Emanuel

    We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less

  12. Eighth Grade Algebra Course Placement and Student Motivation for Mathematics.

    PubMed

    Simzar, Rahila M; Domina, Thurston; Tran, Cathy

    2016-01-01

    This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics.

  13. A natural history of mathematics: George Peacock and the making of English algebra.

    PubMed

    Lambert, Kevin

    2013-06-01

    In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.

  14. Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.

    PubMed

    Sialaros, Michalis; Christianidis, Jean

    2016-06-01

    Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.

  15. Putting the “Spark” into Physical Science and Algebra

    NASA Astrophysics Data System (ADS)

    Dagenais, Andre; Pill, B.

    2006-12-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available. Funded by NSF Research Experience for Teachers(RET #0322633) program under the direction of Dr. Dennis Prather, University of Delaware Electrical Engineering

  16. Visualizing the inner product space ℝm×n in a MATLAB-assisted linear algebra classroom

    NASA Astrophysics Data System (ADS)

    Caglayan, Günhan

    2018-05-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space ? in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools that complement the algebraic approach. As implemented in linear algebra lessons in a university in the Unites States, the article also incorporates algebraic and visual work of students who experienced these activities with MATLAB software. The connection between the Frobenius norm and the Euclidean norm is also emphasized.

  17. Spatial-Operator Algebra For Flexible-Link Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

  18. Graph C ∗-algebras and Z2-quotients of quantum spheres

    NASA Astrophysics Data System (ADS)

    Hajac, Piotr M.; Matthes, Rainer; Szymański, Wojciech

    2003-06-01

    We consider two Z2-actions on the Podleś generic quantum spheres. They yield, as noncommutative quotient spaces, the Klimek-Lesmewski q-disc and the quantum real projective space, respectively. The C ∗-algebas of all these quantum spaces are described as graph C ∗-algebras. The K-groups of the thus presented C ∗-algebras are then easily determined from the general theory of graph C ∗-algebas. For the quantum real projective space, we also recall the classification of the classes of irreducible ∗-representations of its algebra and give a linear basis for this algebra.

  19. Quiver elliptic W-algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Pestun, Vasily

    2018-06-01

    We define elliptic generalization of W-algebras associated with arbitrary quiver using our construction (Kimura and Pestun in Quiver W-algebras, 2015. arXiv:1512.08533 [hep-th]) with six-dimensional gauge theory.

  20. Hurwitz Algebras and the Octonion Algebra

    NASA Astrophysics Data System (ADS)

    Burdik, Čestmir; Catto, Sultan

    2018-02-01

    We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

  1. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  2. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    NASA Astrophysics Data System (ADS)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.

  3. The Great Debate: Should All 8th Graders Take Algebra?

    ERIC Educational Resources Information Center

    McKibben, Sarah

    2009-01-01

    While 8th grade algebra was once reserved as a course for the gifted, today, more U.S. 8th graders take algebra than any other math course. This article discusses a report from the Brookings Institution which chronicles the history of the 8th-grade algebra surge and its impact on today's low-performing students. The report indicates that many of…

  4. Characterizing the Nature of Students' Feature Noticing-and-Using with Respect to Mathematical Symbols across Different Levels of Algebra Exposure

    ERIC Educational Resources Information Center

    Sullivan, Patrick

    2013-01-01

    The purpose of this study is to examine the nature of what students notice about symbols and use as they solve unfamiliar algebra problems based on familiar algebra concepts and involving symbolic inscriptions. The researcher conducted a study of students at three levels of algebra exposure: (a) students enrolled in a high school pre-calculus…

  5. The Effects of Teacher Collective Responsibility on the Mathematics Achievement of Students Who Repeat Algebra

    ERIC Educational Resources Information Center

    Morales-Chicas, Jessica; Agger, Charlotte

    2017-01-01

    In this article, the authors use the national High School Longitudinal Study of 2009 (HSLS:09) dataset to explore (a) if repeating algebra in the eighth grade was associated with overall mathematics grades and course-taking patterns by twelfth grade, (b) if repeating algebra in the eighth grade was associated with students' final grade in algebra,…

  6. Quantum mechanics on periodic and non-periodic lattices and almost unitary Schwinger operators

    NASA Astrophysics Data System (ADS)

    Arik, Metin; Ildes, Medine

    2018-05-01

    In this work, we uncover the mathematical structure of the Schwinger algebra and introduce almost unitary Schwinger operators which are derived by considering translation operators on a finite lattice. We calculate mathematical relations between these algebras and show that the almost unitary Schwinger operators are equivalent to the Schwinger algebra. We introduce new representations for MN(C) in terms of these algebras.

  7. Those Do What? Connecting Eigenvectors and Eigenvalues to the Rest of Linear Algebra: Using Visual Enhancements to Help Students Connect Eigenvectors to the Rest of Linear Algebra

    ERIC Educational Resources Information Center

    Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.

    2010-01-01

    This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…

  8. Change in Peer Ability as a Mediator and Moderator of the Effect of the Algebra-For-All Policy on Ninth Graders' Math Outcomes

    ERIC Educational Resources Information Center

    Hong, Guanglei; Nomi, Takako

    2011-01-01

    A recent report by the Mathematics Advisory Panel referred to algebra as a "gateway" to later achievement (National Mathematics Advisory Panel, 2008). To address the problem of low academic performance in algebra, an increasing number of states and districts have started to implement a policy of requiring algebra for all students in…

  9. The Effect of Scheduling Models for Introductory Algebra on 9th-Grade Students, Test Scores and Grades

    ERIC Educational Resources Information Center

    O'Hanlon, Angela L.

    2011-01-01

    The purpose of the study was to determine the effect of pacing and scheduling of algebra coursework on assigned 9th-grade students who traditionally would qualify for pre-algebra instruction and same course 9th-grade students who traditionally would qualify for standard algebra instruction. Students were selected based on completion of first-year…

  10. Associative Algebraic Approach to Logarithmic CFT in the Bulk: The Continuum Limit of the {gl(1|1)} Periodic Spin Chain, Howe Duality and the Interchiral Algebra

    NASA Astrophysics Data System (ADS)

    Gainutdinov, A. M.; Read, N.; Saleur, H.

    2016-01-01

    We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed {gl(1|1)} spin-chain and its continuum limit—the {c=-2} symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245-288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289-329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones-Temperley-Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than {V}, the product of the left and right Virasoro algebras. This algebra, {S}—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field {S(z,bar{z})≡ S_{αβ} ψ^α(z)bar{ψ}^β(bar{z})}, with a symmetric form {S_{αβ}} and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the {gl(1|1)} spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of {sp_{N-2}}. The semi-simple part of JTL N is represented by {U sp_{N-2}}, providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over {S} are identified with "fundamental" representations of {sp_∞}.

  11. Deformed twistors and higher spin conformal (super-)algebras in four dimensions

    DOE PAGES

    Govil, Karan; Gunaydin, Murat

    2015-03-05

    Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less

  12. Combinatorial Formulas for Characteristic Classes, and Localization of Secondary Topological Invariants.

    NASA Astrophysics Data System (ADS)

    Smirnov, Mikhail

    1995-01-01

    The problems solved in this thesis originated from combinatorial formulas for characteristic classes. This thesis deals with Chern-Simons classes, their generalizations and related algebraic and analytic problems. (1) In this thesis, I describe a new class of algebras whose elements contain Chern and generalized Chern -Simons classes. There is a Poisson bracket in these algebras, similar to the bracket in Kontsevich's noncommutative symplectic geometry (Kon). I prove that the Poisson bracket gives rise to a graded Lie algebra containing differential forms representing Chern and Chern-Simons classes. This is a new result. I describe algebraic analogs of the dilogarithm and higher polylogarithms in the algebra corresponding to Chern-Simons classes. (2) I study the properties of this bracket. It is possible to write the exterior differential and other operations in the algebra using this bracket. The bracket of any two Chern classes is zero and the bracket of a Chern class and a Chern-Simons class is d-closed. The construction developed here easily gives explicit formulas for known secondary classes and makes it possible to construct new ones. (3) I develop an algebraic model for the action of the gauge group and describe how elements of algebra corresponding to the secondary characteristic classes change under this action (see theorem 3 page xi). (4) It is possible give new explicit formulas for cocycles on a gauge group of a bundle and for the corresponding cocycles on the Lie algebra of the gauge group. I use formulas for secondary characteristic classes and an algebraic approach developed in chapter 1. I also use the work of Faddeev, Reiman and Semyonov-Tian-Shanskii (FRS) on cocycles as quantum anomalies. (5) I apply the methods of differential geometry of formal power series to construct universal characteristic and secondary characteristic classes. Given a pair of gauge equivalent connections using local formulas I obtain dilogarithmic and trilogarithmic analogs of Chern-Simons classes.

  13. Algebra for Gifted Third Graders.

    ERIC Educational Resources Information Center

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  14. Using Student Work to Develop Teachers' Knowledge of Algebra

    ERIC Educational Resources Information Center

    Herbel-Eisenmann, Beth A.; Phillips, Elizabeth Difanis

    2005-01-01

    This article describes a set of learning activities that use algebraic problems and written student work to help preservice and in-service teachers understand students' algebraic thinking. (Contains 4 figures.)

  15. Quantum Superalgebras at Roots of Unity and Topological Invariants of Three-manifolds

    NASA Astrophysics Data System (ADS)

    Blumen, Sacha C.

    2006-01-01

    The general method of Reshetikhin and Turaev is followed to develop topological invariants of closed, connected, orientable 3-manifolds from a new class of algebras called pseudo-modular Hopf algebras. Pseudo-modular Hopf algebras are a class of Z_2-graded ribbon Hopf algebras that generalise the concept of a modular Hopf algebra. The quantum superalgebra U_q(osp(1|2n)) over C is considered with q a primitive N^th root of unity for all integers N >= 3. For such a q, a certain left ideal I of U_q(osp(1|2n)) is also a two-sided Hopf ideal, and the quotient algebra U_q^(N)(osp(1|2n)) = U_q(osp(1|2n)) / I is a Z_2-graded ribbon Hopf algebra. For all n and all N >= 3, a finite collection of finite dimensional representations of U_q^(N)(osp(1|2n)) is defined. Each such representation of U_q^(N)(osp(1|2n)) is labelled by an integral dominant weight belonging to the truncated dominant Weyl chamber. Properties of these representations are considered: the quantum superdimension of each representation is calculated, each representation is shown to be self-dual, and more importantly, the decomposition of the tensor product of an arbitrary number of such representations is obtained for even N. It is proved that the quotient algebra U_q^(N)(osp(1|2n)), together with the set of finite dimensional representations discussed above, form a pseudo-modular Hopf algebra when N >= 6 is twice an odd number. Using this pseudo-modular Hopf algebra, we construct a topological invariant of 3-manifolds. This invariant is shown to be different to the topological invariants of 3-manifolds arising from quantum so(2n+1) at roots of unity.

  16. A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Jenčová, Anna; Pulmannová, Sylvia

    2017-10-01

    A generalized Hermitian (GH-) algebra is a generalization of the partially ordered Jordan algebra of all Hermitian operators on a Hilbert space. We introduce the notion of a gh-tribe, which is a commutative GH-algebra of functions on a nonempty set X with pointwise partial order and operations, and we prove that every commutative GH-algebra is the image of a gh-tribe under a surjective GH-morphism. Using this result, we prove that each element a of a GH-algebra A corresponds to a real observable ξa on the σ-orthomodular lattice of projections in A and that ξa determines the spectral resolution of a. Also, if f is a continuous function defined on the spectrum of a, we formulate a definition of f (a), thus obtaining a continuous functional calculus for A.

  17. Symmetries and Invariants of Twisted Quantum Algebras and Associated Poisson Algebras

    NASA Astrophysics Data System (ADS)

    Molev, A. I.; Ragoucy, E.

    We construct an action of the braid group BN on the twisted quantized enveloping algebra U q'( {o}N) where the elements of BN act as automorphisms. In the classical limit q → 1, we recover the action of BN on the polynomial functions on the space of upper triangular matrices with ones on the diagonal. The action preserves the Poisson bracket on the space of polynomials which was introduced by Nelson and Regge in their study of quantum gravity and rediscovered in the mathematical literature. Furthermore, we construct a Poisson bracket on the space of polynomials associated with another twisted quantized enveloping algebra U q'( {sp}2n). We use the Casimir elements of both twisted quantized enveloping algebras to reproduce and construct some well-known and new polynomial invariants of the corresponding Poisson algebras.

  18. Analysis of Secondary School Students’ Algebraic Thinking and Math-Talk Learning Community to Help Students Learn

    NASA Astrophysics Data System (ADS)

    Nurhayati, D. M.; Herman, T.; Suhendra, S.

    2017-09-01

    This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.

  19. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

    PubMed

    Marghetis, Tyler; Landy, David; Goldstone, Robert L

    2016-01-01

    Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

  20. Minimal unitary representation of 5d superconformal algebra F(4) and AdS 6/CFT 5 higher spin (super)-algebras

    DOE PAGES

    Fernando, Sudarshan; Günaydin, Murat

    2014-11-28

    We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less

  1. A Structural Model of Algebra Achievement: Computational Fluency and Spatial Visualisation as Mediators of the Effect of Working Memory on Algebra Achievement

    ERIC Educational Resources Information Center

    Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.

    2009-01-01

    The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…

  2. Students' Perceptions about the Symbols, Letters and Signs in Algebra and How Do These Affect Their Learning of Algebra: A Case Study in a Government Girls Secondary School Karachi

    ERIC Educational Resources Information Center

    Samo, Mashooque Ali

    2009-01-01

    Algebra uses symbols for generalizing arithmetic. These symbols have different meanings and interpretations in different situations. Students have different perceptions about these symbols, letters and signs. Despite the vast research by on the students' difficulties in understanding letters in Algebra, the overall image that emerges from the…

  3. Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities

    PubMed Central

    Yau, Stephen S.-T.

    1983-01-01

    A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401

  4. A differential operator realisation approach for constructing Casimir operators of non-semisimple Lie algebras

    NASA Astrophysics Data System (ADS)

    Alshammari, Fahad; Isaac, Phillip S.; Marquette, Ian

    2018-02-01

    We introduce a search algorithm that utilises differential operator realisations to find polynomial Casimir operators of Lie algebras. To demonstrate the algorithm, we look at two classes of examples: (1) the model filiform Lie algebras and (2) the Schrödinger Lie algebras. We find that an abstract form of dimensional analysis assists us in our algorithm, and greatly reduces the complexity of the problem.

  5. Exceptional quantum geometry and particle physics

    NASA Astrophysics Data System (ADS)

    Dubois-Violette, Michel

    2016-11-01

    Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.

  6. Working memory, worry, and algebraic ability.

    PubMed

    Trezise, Kelly; Reeve, Robert A

    2014-05-01

    Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyadera, Takayuki; Imai, Hideki; Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551

    This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloningmore » on effect algebras and hidden variables.« less

  8. The noncommutative Poisson bracket and the deformation of the family algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhaoting, E-mail: zhaotwei@indiana.edu

    The family algebras are introduced by Kirillov in 2000. In this paper, we study the noncommutative Poisson bracket P on the classical family algebra C{sub τ}(g). We show that P controls the first-order 1-parameter formal deformation from C{sub τ}(g) to Q{sub τ}(g) where the latter is the quantum family algebra. Moreover, we will prove that the noncommutative Poisson bracket is in fact a Hochschild 2-coboundary, and therefore, the deformation is infinitesimally trivial. In the last part of this paper, we discuss the relation between Mackey’s analogue and the quantization problem of the family algebras.

  9. On character amenability of Banach algebras

    NASA Astrophysics Data System (ADS)

    Kaniuth, E.; Lau, A. T.; Pym, J.

    2008-08-01

    We continue our work [E. Kaniuth, A.T. Lau, J. Pym, On [phi]-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008) 85-96] in the study of amenability of a Banach algebra A defined with respect to a character [phi] of A. Various necessary and sufficient conditions of a global and a pointwise nature are found for a Banach algebra to possess a [phi]-mean of norm 1. We also completely determine the size of the set of [phi]-means for a separable weakly sequentially complete Banach algebra A with no [phi]-mean in A itself. A number of illustrative examples are discussed.

  10. Gopakumar-Vafa Invariants Do Not Determine Flops

    NASA Astrophysics Data System (ADS)

    Brown, Gavin; Wemyss, Michael

    2017-11-01

    Two 3-fold flops are exhibited, both of which have precisely one flopping curve. One of the two flops is new and is distinct from all known algebraic D 4-flops. It is shown that the two flops are neither algebraically nor analytically isomorphic, yet their curve-counting Gopakumar-Vafa invariants are the same. We further show that the contraction algebras associated to both are not isomorphic, so the flops are distinguished at this level. This shows that the contraction algebra is a finer invariant than various curve-counting theories, and it also provides more evidence for the proposed analytic classification of 3-fold flops via contraction algebras.

  11. Homomorphisms in C*-ternary algebras and JB*-triples

    NASA Astrophysics Data System (ADS)

    Park, Choonkil; Rassias, Themistocles M.

    2008-01-01

    In this paper, we investigate homomorphisms between C*-ternary algebras and derivations on C*-ternary algebras, and homomorphisms between JB*-triples and derivations on JB*-triples, associated with the following Apollonius type additive functional equation

  12. Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.

    ERIC Educational Resources Information Center

    Leitze, Annette Ricks; Kitt, Nancy A.

    2000-01-01

    Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)

  13. Yang-Baxter algebras, integrable theories and Bethe Ansatz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vega, H.J.

    1990-03-10

    This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approachmore » permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.« less

  14. A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⨁ so(n) ⨁ so(N-n)

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2015-11-01

    We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.

  15. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  16. Algebraic Systems and Pushdown Automata

    NASA Astrophysics Data System (ADS)

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  17. Linear {GLP}-algebras and their elementary theories

    NASA Astrophysics Data System (ADS)

    Pakhomov, F. N.

    2016-12-01

    The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.

  18. Computer Algebra Systems in Undergraduate Instruction.

    ERIC Educational Resources Information Center

    Small, Don; And Others

    1986-01-01

    Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

  19. Operator algebra as an application of logarithmic representation of infinitesimal generators

    NASA Astrophysics Data System (ADS)

    Iwata, Yoritaka

    2018-02-01

    The operator algebra is introduced based on the framework of logarithmic representation of infinitesimal generators. In conclusion a set of generally-unbounded infinitesimal generators is characterized as a module over the Banach algebra.

  20. Quantum teleportation and Birman-Murakami-Wenzl algebra

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Zhang, Yong

    2017-02-01

    In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman-Murakami-Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley-Lieb projector and the Yang-Baxter gate. We describe quantum teleportation using the Temperley-Lieb projector and the Yang-Baxter gate, respectively, and study teleportation-based quantum computation using the Yang-Baxter gate. On the other hand, we exploit the extended Temperley-Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.

  1. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less

  2. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    NASA Astrophysics Data System (ADS)

    Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.

    2005-11-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  3. Algebra for Enterprise Ontology: towards analysis and synthesis of enterprise models

    NASA Astrophysics Data System (ADS)

    Suga, Tetsuya; Iijima, Junichi

    2018-03-01

    Enterprise modeling methodologies have made enterprises more likely to be the object of systems engineering rather than craftsmanship. However, the current state of research in enterprise modeling methodologies lacks investigations of the mathematical background embedded in these methodologies. Abstract algebra, a broad subfield of mathematics, and the study of algebraic structures may provide interesting implications in both theory and practice. Therefore, this research gives an empirical challenge to establish an algebraic structure for one aspect model proposed in Design & Engineering Methodology for Organizations (DEMO), which is a major enterprise modeling methodology in the spotlight as a modeling principle to capture the skeleton of enterprises for developing enterprise information systems. The results show that the aspect model behaves well in the sense of algebraic operations and indeed constructs a Boolean algebra. This article also discusses comparisons with other modeling languages and suggests future work.

  4. Teaching Structure in Algebra

    ERIC Educational Resources Information Center

    Merlin, Ethan M.

    2013-01-01

    This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…

  5. Error-Detecting Identification Codes for Algebra Students.

    ERIC Educational Resources Information Center

    Sutherland, David C.

    1990-01-01

    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  6. Highest weight representation for Sklyanin algebra sl(3)(u) with application to the Gaudin model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdik, C., E-mail: burdik@kmlinux.fjfi.cvut.cz; Navratil, O.

    2011-06-15

    We study the infinite-dimensional Sklyanin algebra sl(3)(u). Specifically we construct the highest weight representation for this algebra in an explicit form. Its application to the Gaudin model is mentioned.

  7. Category-theoretic models of algebraic computer systems

    NASA Astrophysics Data System (ADS)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  8. Elliptic biquaternion algebra

    NASA Astrophysics Data System (ADS)

    Özen, Kahraman Esen; Tosun, Murat

    2018-01-01

    In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.

  9. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  10. Learning to Apply Algebra in the Community for Adults With Intellectual Developmental Disabilities.

    PubMed

    Rodriguez, Anthony M

    2016-02-01

    Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This study explores the feasibility of algebra instruction for adults with IDD through an experimental curriculum. Ten individuals with IDD participated in a 6-week course framing mathematics concepts within the context of everyday challenges in handling money. The article explores classroom techniques, discusses student strategies, and proposes possible avenues for future research analyzing mathematics instructional design strategies for individuals with IDD.

  11. Computing Gröbner Bases within Linear Algebra

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira

    In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.

  12. Algebraic Algorithm Design and Local Search

    DTIC Science & Technology

    1996-12-01

    method for performing algorithm design that is more purely algebraic than that of KIDS. This method is then applied to local search. Local search is a...synthesis. Our approach was to follow KIDS in spirit, but to adopt a pure algebraic formalism, supported by Kestrel’s SPECWARE environment (79), that...design was developed that is more purely algebraic than that of KIDS. This method was then applied to local search. A general theory of local search was

  13. Quantum walks, deformed relativity and Hopf algebra symmetries.

    PubMed

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2016-05-28

    We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras. © 2016 The Author(s).

  14. Dynamical Correspondence in a Generalized Quantum Theory

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2015-05-01

    In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.

  15. From rational numbers to algebra: separable contributions of decimal magnitude and relational understanding of fractions.

    PubMed

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2015-05-01

    To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Image Algebra Matlab language version 2.3 for image processing and compression research

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric

    2010-08-01

    Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation of IAM to include polymorphic operations over different point sets, as well as recursive convolution operations and functional composition. We also show how image algebra and IAM can be employed in image processing and compression research, as well as algorithm development and analysis.

  17. An Algebraic Approach to the Eigenstates of the Calogero Model

    NASA Astrophysics Data System (ADS)

    Ujino, Hideaki

    2002-11-01

    An algebraic treatment of the eigenstates of the (AN-1-) Calogero model is presented, which provides an algebraic construction of the nonsymmetric orthogonal eigenvectors, symmetrization, antisymmetrization and calculation of square norms in a unified way.

  18. Solving Our Algebra Problem: Getting All Students through Algebra I to Improve Graduation Rates

    ERIC Educational Resources Information Center

    Schachter, Ron

    2013-01-01

    graduation as well as admission to most colleges. But taking algebra also can turn into a pathway for failure, from which some students never recover. In 2010, a national U.S. Department of Education study…

  19. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    NASA Astrophysics Data System (ADS)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govil, Karan; Gunaydin, Murat

    Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less

  1. Does Early Algebraic Reasoning Differ as a Function of Students’ Difficulty with Calculations versus Word Problems?

    PubMed Central

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044

  2. Analysis of algebraic reasoning ability of cognitive style perspectives on field dependent field independent and gender

    NASA Astrophysics Data System (ADS)

    Rosita, N. T.

    2018-03-01

    The purpose of this study is to analyse algebraic reasoning ability using the SOLO model as a theoretical framework to assess students’ algebraic reasoning abilities of Field Dependent cognitive (FD), Field Independent (FI) and Gender perspectives. The method of this study is a qualitative research. The instrument of this study is the researcher himself assisted with algebraic reasoning tests, the problems have been designed based on NCTM indicators and algebraic reasoning according to SOLO model. While the cognitive style of students is determined using Group Embedded Figure Test (GEFT), as well as interviews on the subject as triangulation. The subjects are 15 female and 15 males of the sixth semester students of mathematics education, STKIP Sebelas April. The results of the qualitative data analysis is that most subjects are at the level of unistructural and multi-structural, subjects at the relational level have difficulty in forming a new linear pattern. While the subjects at the extended abstract level are able to meet all the indicators of algebraic reasoning ability even though some of the answers are not perfect yet. Subjects of FI tend to have higher algebraic reasoning abilities than of the subject of FD.

  3. Massless conformal fields, AdS (d+1)/CFT d higher spin algebras and their deformations

    DOE PAGES

    Fernando, Sudarshan; Gunaydin, Murat

    2016-02-04

    Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less

  4. Individual Differences in Algebraic Cognition: Relation to the Approximate Number and Sematic Memory Systems

    PubMed Central

    Geary, David C.; Hoard, Mary K.; Nugent, Lara; Rouder, Jeffrey N.

    2015-01-01

    The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 (92 girls) 9th graders, controlling parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation, but not schema memory. Frequency of fact-retrieval errors was related to schema memory but not coordinate plane or expression evaluation accuracy. The results suggest the ANS may contribute to or is influenced by spatial-numerical and numerical only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest different brain and cognitive systems are engaged during the learning of different components of algebraic competence, controlling demographic and domain general abilities. PMID:26255604

  5. Modular operads and the quantum open-closed homotopy algebra

    NASA Astrophysics Data System (ADS)

    Doubek, Martin; Jurčo, Branislav; Münster, Korbinian

    2015-12-01

    We verify that certain algebras appearing in string field theory are algebras over Feynman transform of modular operads which we describe explicitly. Equivalent description in terms of solutions of generalized BV master equations are explained from the operadic point of view.

  6. Mathematics in the Real World.

    ERIC Educational Resources Information Center

    Borenstein, Matt

    1997-01-01

    The abstract nature of algebra causes difficulties for many students. Describes "Real-World Data," an algebra course designed for students with low grades in algebra and provides multidisciplinary experiments (linear functions and variations; quadratic, square-root, and inverse relations; and exponential and periodic variation)…

  7. Elementary maps on nest algebras

    NASA Astrophysics Data System (ADS)

    Li, Pengtong

    2006-08-01

    Let , be algebras and let , be maps. An elementary map of is an ordered pair (M,M*) such that for all , . In this paper, the general form of surjective elementary maps on standard subalgebras of nest algebras is described. In particular, such maps are automatically additive.

  8. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    NASA Astrophysics Data System (ADS)

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  9. Towards classical spectrum generating algebras for f-deformations

    NASA Astrophysics Data System (ADS)

    Kullock, Ricardo; Latini, Danilo

    2016-01-01

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.

  10. Selecting Students for Pre-Algebra: Examination of the Relative Utility of the Anchorage Pre-Algebra Screening Tests and the State of Alaska Standards Based Benchmark 2 Mathematics Study. An Examination of Consequential Validity and Recommendation.

    ERIC Educational Resources Information Center

    Fenton, Ray

    This study examined the relative efficacy of the Anchorage (Alaska) Pre-Algebra Test and the State of Alaska Benchmark in 2 Math examination as tools used in the process of recommending grade 6 students for grade 7 Pre-Algebra placement. The consequential validity of the tests is explored in the context of class placements and grades earned. The…

  11. Geometry of quantum state manifolds generated by the Lie algebra operators

    NASA Astrophysics Data System (ADS)

    Kuzmak, A. R.

    2018-03-01

    The Fubini-Study metric of quantum state manifold generated by the operators which satisfy the Heisenberg Lie algebra is calculated. The similar problem is studied for the manifold generated by the so(3) Lie algebra operators. Using these results, we calculate the Fubini-Study metrics of state manifolds generated by the position and momentum operators. Also the metrics of quantum state manifolds generated by some spin systems are obtained. Finally, we generalize this problem for operators of an arbitrary Lie algebra.

  12. On Non-Abelian Extensions of 3-Lie Algebras

    NASA Astrophysics Data System (ADS)

    Song, Li-Na; Makhlouf, Abdenacer; Tang, Rong

    2018-04-01

    In this paper, we study non-abelian extensions of 3-Lie algebras through Maurer-Cartan elements. We show that there is a one-to-one correspondence between isomorphism classes of non-abelian extensions of 3-Lie algebras and equivalence classes of Maurer-Cartan elements in a DGLA. The structure of the Leibniz algebra on the space of fundamental objects is also analyzed. Supported by National Natural Science Foundation of China under Grant No. 11471139 and National Natural Science Foundation of Jilin Province under Grant No. 20170101050JC

  13. A Quantum Groups Primer

    NASA Astrophysics Data System (ADS)

    Majid, Shahn

    2002-05-01

    Here is a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes for the Part III pure mathematics course at Cambridge University, the book is suitable as a primary text for graduate courses in quantum groups or supplementary reading for modern courses in advanced algebra. The material assumes knowledge of basic and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The volume is a primer for mathematicians but it will also be useful for mathematical physicists.

  14. A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

    DTIC Science & Technology

    2014-11-01

    linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010. [19] E. W. Mayr. Membership in polynomial...383–394, 2009. [31] A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951. [32] A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU

  15. Topology-preserving quantum deformation with non-numerical parameter

    NASA Astrophysics Data System (ADS)

    Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina

    2013-11-01

    We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.

  16. A Study to Determine Differences in the Level of Perceived Preparedness in Teaching Algebra to Eighth Graders between Teachers in the United States and Teachers in Lebanon

    ERIC Educational Resources Information Center

    Khajarian, Seta

    2011-01-01

    Algebra is a branch in mathematics and taking Algebra in middle school is often a gateway to advanced courses in high school. The problem is that the United States and Lebanon had low scores in Algebra in the 2007 Trends in Mathematics and Sciences Study (TIMSS), an international assessment administered to 4th and 8th graders every 4 years. On the…

  17. Realization of Uq(sp(2n)) within the Differential Algebra on Quantum Symplectic Space

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Hu, Naihong

    2017-10-01

    We realize the Hopf algebra U_q({sp}_{2n}) as an algebra of quantum differential operators on the quantum symplectic space X(f_s;R) and prove that X(f_s;R) is a U_q({sp}_{2n})-module algebra whose irreducible summands are just its homogeneous subspaces. We give a coherence realization for all the positive root vectors under the actions of Lusztig's braid automorphisms of U_q({sp}_{2n}).

  18. Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory

    NASA Astrophysics Data System (ADS)

    Hoefel, Eduardo; Livernet, Muriel

    2012-08-01

    Open-closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) were introduced by Kajiura and Stasheff in 2004. In an appendix to their paper, Markl observed that an SHLP is equivalent to an algebra over the minimal model of a certain operad, without showing that the operad is Koszul. In the present paper, we show that both OCHA and SHLP are algebras over the minimal model of the zeroth homology of two versions of the Swiss-cheese operad and prove that these two operads are Koszul. As an application, we show that the OCHA operad is non-formal as a 2-colored operad but is formal as an algebra in the category of 2-collections.

  19. Assessment of polytechnic students' understanding of basic algebra

    NASA Astrophysics Data System (ADS)

    Mokmin, Nur Azlina Mohamed; Masood, Mona

    2015-12-01

    It is important for engineering students to excel in algebra. Previous studies show that the algebraic fraction is a subtopic of algebra that was found to be the most challenging for engineering students. This study is done with 191 first semester engineering students who have enrolled in engineering programs in Malaysian polytechnic. The respondents are divided into Group 1 (Distinction) and Group 2 (Credit) based on their Mathematics SPM result. A computer application is developed for this study to assess student information and understanding of the algebraic fraction topic. The result is analyzed using SPSS and Microsoft Excel. The test results show that there are significant differences between Group 1 and Group 2 and that most of the students scored below the minimum requirement.

  20. Structure of Lie point and variational symmetry algebras for a class of odes

    NASA Astrophysics Data System (ADS)

    Ndogmo, J. C.

    2018-04-01

    It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.

  1. An embedding of the universal Askey-Wilson algebra into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2)

    NASA Astrophysics Data System (ADS)

    Huang, Hau-Wen

    2017-09-01

    The Askey-Wilson algebras were used to interpret the algebraic structure hidden in the Racah-Wigner coefficients of the quantum algebra Uq (sl2). In this paper, we display an injection of a universal analog △q of Askey-Wilson algebras into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2) behind the application. Moreover we establish the decomposition rules for 3-fold tensor products of irreducible Verma Uq (sl2)-modules and of finite-dimensional irreducible Uq (sl2)-modules into the direct sums of finite-dimensional irreducible △q-modules. As an application, we derive a formula for the Racah-Wigner coefficients of Uq (sl2).

  2. The Effects of History of Mathematics on Attitudes Toward Mathematics of College Algebra Students

    ERIC Educational Resources Information Center

    McBride, Cecil; Rollins, James H.

    1977-01-01

    Two college algebra classes were exposed to items from mathematics history in their classroom instruction, while two other college algebra classes received no such exposure. Results showed a significant positive attitude change of the mathematics history group. (DT)

  3. A Worked Example for Creating Worked Examples

    ERIC Educational Resources Information Center

    McGinn, Kelly M.; Lange, Karin E.; Booth, Julie L.

    2015-01-01

    Researchers have extensively documented, and math teachers know from experience, that algebra is a "gatekeeper" to more advanced mathematical topics. Students must have a strong understanding of fundamental algebraic concepts to be successful in later mathematics courses. Unfortunately, algebraic misconceptions that students may form or…

  4. Earth Algebra: Real-Life Mathematics in Navajoland.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Srivastava, Ravindra

    1995-01-01

    An algebra class at Navajo Community College (Shiprock, New Mexico) uses traditional algebra topics to study real-life situations, focuses on environmental issues, encourages collaborative learning, uses modern technology, and promotes development of critical thinking and decision-making skills. Students follow principles of Dine educational…

  5. Learning Activity Package, Algebra.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  6. Algebra 1r, Mathematics (Experimental): 5215.13.

    ERIC Educational Resources Information Center

    Strachan, Florence

    This third of six guidebooks on minimum course content for first-year algebra includes work with laws of exponents; multiplication, division, and factoring of polynomials; and fundamental operations with rational algebraic expressions. Course goals are stated, performance objectives listed, a course outline provided, testbook references specified…

  7. Relational Algebra and SQL: Better Together

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart

    2013-01-01

    In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…

  8. Using Students' Interests as Algebraic Models

    ERIC Educational Resources Information Center

    Whaley, Kenneth A.

    2012-01-01

    Fostering algebraic thinking is an important goal for middle-grades mathematics teachers. Developing mathematical reasoning requires that teachers cultivate students' habits of mind. Teachers develop students' understanding of algebra by engaging them in tasks that involve modeling and representation. This study was designed to investigate how…

  9. Oleanna Math Program Materials.

    ERIC Educational Resources Information Center

    Coole, Walter A.

    This document is a collection of course outlines, syllabi, and test materials designed for several high school level and lower division mathematics courses taught in an auto-tutorial learning laboratory at Skagit Valley College (Washington). The courses included are: Pre-Algebra, Basic Algebra, Plan Geometry, Intermediate Algebra, Probability and…

  10. Utilization of variation theory in the classroom: Effect on students' algebraic achievement and motivation

    NASA Astrophysics Data System (ADS)

    Jing, Ting Jing; Tarmizi, Rohani Ahmad; Bakar, Kamariah Abu; Aralas, Dalia

    2017-01-01

    This study investigates the effect of utilizing Variation Theory Based Strategy on students' algebraic achievement and motivation in learning algebra. The study used quasi-experimental non-equivalent control group research design and involved 56 Form Two (Secondary Two) students in two classes (28 in experimental group, 28 in control group) in Malaysia The first class of students went through algebra class taught with Variation Theory Based Strategy (VTBS) while the second class of students experienced conventional teaching strategy. The instruments used for the study were a 24-item Algebra Test and 36-item Instructional Materials Motivation Survey. Result from analysis of Covariance indicated that experimental group students achieved significantly better test scores than control group. Result of Multivariate Analysis of Variance also shows evidences of significant effect of VTBS on experimental students' overall motivation in all the five subscales; attention, relevance, confidence, and satisfaction. These results suggested the utilization of VTBS would improve students' learning in algebra.

  11. Contributions of Domain-General Cognitive Resources and Different Forms of Arithmetic Development to Pre-Algebraic Knowledge

    PubMed Central

    Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Powell, Sarah R.; Schumacher, Robin F.; Hamlett, Carol L.; Vernier, Emily; Namkung, Jessica M.; Vukovic, Rose K.

    2012-01-01

    The purpose of this study was to investigate the contributions of domain-general cognitive resources and different forms of arithmetic development to individual differences in pre-algebraic knowledge. Children (n=279; mean age=7.59 yrs) were assessed on 7 domain-general cognitive resources as well as arithmetic calculations and word problems at start of 2nd grade and on calculations, word problems, and pre-algebraic knowledge at end of 3rd grade. Multilevel path analysis, controlling for instructional effects associated with the sequence of classrooms in which students were nested across grades 2–3, indicated arithmetic calculations and word problems are foundational to pre-algebraic knowledge. Also, results revealed direct contributions of nonverbal reasoning and oral language to pre-algebraic knowledge, beyond indirect effects that are mediated via arithmetic calculations and word problems. By contrast, attentive behavior, phonological processing, and processing speed contributed to pre-algebraic knowledge only indirectly via arithmetic calculations and word problems. PMID:22409764

  12. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  13. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    PubMed

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of themore » -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.« less

  15. Strings on complex multiplication tori and rational conformal field theory with matrix level

    NASA Astrophysics Data System (ADS)

    Nassar, Ali

    Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.

  16. Algebraic Thinking through Koch Snowflake Constructions

    ERIC Educational Resources Information Center

    Ghosh, Jonaki B.

    2016-01-01

    Generalizing is a foundational mathematical practice for the algebra classroom. It entails an act of abstraction and forms the core of algebraic thinking. Kinach (2014) describes two kinds of generalization--by analogy and by extension. This article illustrates how exploration of fractals provides ample opportunity for generalizations of both…

  17. Practicing Algebraic Skills: A Conceptual Approach

    ERIC Educational Resources Information Center

    Friedlander, Alex; Arcavi, Abraham

    2012-01-01

    Traditionally, a considerable part of teaching and learning algebra has focused on routine practice and the application of rules, procedures, and techniques. Although today's computerized environments may have decreased the need to master algebraic skills, procedural competence is still a central component in any mathematical activity. However,…

  18. The Structural Algebra Option: A Discussion Paper.

    ERIC Educational Resources Information Center

    Kirshner, David

    The goal of this paper is to renew interest in the structural option to algebra instruction. Concern for the usual secondary school algebra curriculum related to simplifying expressions, solving equations, and rationalizing numerators and denominators is viewed from three pedagogical approaches: (1) structural approach, (2) empirical approach, and…

  19. Abstract Algebra for Teachers: An Evaluative Case Study

    ERIC Educational Resources Information Center

    Hoffman, Andrew Joseph

    2017-01-01

    This manuscript describes the study of an abstract algebra course for preservice secondary mathematics teachers (PSMTs). Often, courses in abstract algebra have not been viewed as productive, beneficial learning experiences for future teachers, both by researchers and PSMTs themselves. This despite calls for increased content knowledge for…

  20. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  1. Implementing the Curriculum and Evaluation Standards: First-Year Algebra.

    ERIC Educational Resources Information Center

    Kysh, Judith

    1991-01-01

    Described is an alternative first year algebra program developed to bridge the gap between the NCTM's Curriculum and Evaluation Standards and institutional demands of schools. Increased attention is given to graphing as a context for algebra, calculator use, solving "memorable problems," and incorporating geometry concepts, while…

  2. Focus on Fractions to Scaffold Algebra

    ERIC Educational Resources Information Center

    Ooten, Cheryl Thomas

    2013-01-01

    Beginning algebra is a gatekeeper course into the pipeline to higher mathematics courses required for respected professions in engineering, science, statistics, mathematics, education, and technology. Beginning algebra can also be a perfect storm if the necessary foundational skills are not within a student's grasp. What skills ensure beginning…

  3. Statistical Aspects of Coherent States of the Higgs Algebra

    NASA Astrophysics Data System (ADS)

    Shreecharan, T.; Kumar, M. Naveen

    2018-04-01

    We construct and study various aspects of coherent states of a polynomial angular momentum algebra. The coherent states are constructed using a new unitary representation of the nonlinear algebra. The new representation involves a parameter γ that shifts the eigenvalues of the diagonal operator J 0.

  4. Playing Your Cards Right: Integers for Algebra

    ERIC Educational Resources Information Center

    Tillema, Erik; Gatza, Andrew; Ulrich, Catherine

    2017-01-01

    The number and algebra strand of the "Australian Curriculum: Mathematics" (2015) advocates for holding together the study of number and algebra across years K-8--a position that mathematics educators have endorsed in many countries. This recommendation along with the report "Shape of the Australian Curriculum: Mathematics"…

  5. Advanced Algebra and Calculus. High School Mathematics Curricula. Instructor's Guide.

    ERIC Educational Resources Information Center

    Natour, Denise M.

    This manual is an instructor's guide for the utilization of the "CCA High School Mathematics Curricula: Advanced Algebra and Calculus" courseware developed by the Computer-based Education Research Laboratory (CERL). The curriculum comprises 34 algebra lessons within 12 units and 15 calculus lessons that are computer-based and require…

  6. The Algebra of Complex Numbers.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  7. Soft translations and soft extensions of BCI/BCK-algebras.

    PubMed

    Sultana, Nazra; Rani, Nazia; Ali, Muhammad Irfan; Hussain, Azhar

    2014-01-01

    The concept of soft translations of soft subalgebras and soft ideals over BCI/BCK-algebras is introduced and some related properties are studied. Notions of Soft extensions of soft subalgebras and soft ideals over BCI/BCK-algebras are also initiated. Relationships between soft translations and soft extensions are explored.

  8. Funny Face Contest: A Formative Assessment

    ERIC Educational Resources Information Center

    Colen, Yong S.

    2010-01-01

    Many American students begin their high school mathematics study with the algebra 1-geometry-algebra 2 sequence. After algebra 2, then, students with average or below-average mathematical ability face a dilemma in choosing their next mathematics course. For students to succeed in higher mathematics, understanding the concept of functions is…

  9. University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…

  10. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  11. Pre-Algebra Lexicon.

    ERIC Educational Resources Information Center

    Hayden, Dunstan; Cuevas, Gilberto

    The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…

  12. Algebridge. Concept Based Instructional Assessment.

    ERIC Educational Resources Information Center

    College Entrance Examination Board, Princeton, NJ.

    Students who study algebra are more likely to attend college than those who don't. A major hurdle for students in studying algebra is the transition from arithmetic to algebra. In response to overcoming this hurdle, the College Board and Educational Testing Service has developed "Algebridge," a teaching supplement that integrates…

  13. Generalized Quantum Field Theory Based on a Nonlinear Deformed Heisenberg Algebra

    NASA Astrophysics Data System (ADS)

    Ribeiro-Silva, C. I.; Oliveira-Neto, N. M.

    We consider a quantum field theory based on a nonlinear Heisenberg algebra which describes phenomenologically a composite particle. Perturbative computation, considering the λϕ4 interaction was done and we also performed some comparison with a quantum field theory based on the q-oscillator algebra.

  14. Learning Algebra from Worked Examples

    ERIC Educational Resources Information Center

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  15. Some Applications of Algebraic System Solving

    ERIC Educational Resources Information Center

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  16. Cognitive Tutor[R] Algebra I. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The "Cognitive Tutor[R] Algebra I" curriculum, published by Carnegie Learning, is an approach that combines algebra textbooks with interactive software. The software is developed around an artificial intelligence model that identifies strengths and weaknesses in each individual student's mastery of mathematical concepts. It then customizes prompts…

  17. Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.

    ERIC Educational Resources Information Center

    Morris, J. Richard

    This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…

  18. The Zero Product Principle Error.

    ERIC Educational Resources Information Center

    Padula, Janice

    1996-01-01

    Argues that the challenge for teachers of algebra in Australia is to find ways of making the structural aspects of algebra accessible to a greater percentage of students. Uses the zero product principle to provide an example of a common student error grounded in the difficulty of understanding the structure of algebra. (DDR)

  19. Pre-Service Teachers' Perceptions and Beliefs of Technological Pedagogical Content Knowledge on Algebra

    ERIC Educational Resources Information Center

    Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin

    2015-01-01

    The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…

  20. Improving Algebra Preparation: Implications from Research on Student Misconceptions and Difficulties

    ERIC Educational Resources Information Center

    Welder, Rachael M.

    2012-01-01

    Through historical and contemporary research, educators have identified widespread misconceptions and difficulties faced by students in learning algebra. Many of these universal issues stem from content addressed long before students take their first algebra course. Yet elementary and middle school teachers may not understand how the subtleties of…

  1. An Analysis of Content Knowledge and Cognitive Abilities as Factors That Are Associated with Algebra Performance

    ERIC Educational Resources Information Center

    McLean, Tamika Ann

    2017-01-01

    The current study investigated college students' content knowledge and cognitive abilities as factors associated with their algebra performance, and examined how combinations of content knowledge and cognitive abilities related to their algebra performance. Specifically, the investigation examined the content knowledge factors of computational…

  2. Teaching Linear Algebra: Must the Fog Always Roll In?

    ERIC Educational Resources Information Center

    Carlson, David

    1993-01-01

    Proposes methods to teach the more difficult concepts of linear algebra. Examines features of the Linear Algebra Curriculum Study Group Core Syllabus, and presents problems from the core syllabus that utilize the mathematical process skills of making conjectures, proving the results, and communicating the results to colleagues. Presents five…

  3. Math 3013--Developmental Mathematics I and II. Course Outline.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course that requires some previous knowledge of algebra and the ability to work at a rapid pace. Topics include the basic operations with signed integers; fractions; decimals; literal expressions; algebraic fractions; radicals;…

  4. A Learning Progressions Approach to Early Algebra Research and Practice

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Stephens, Ana; Blanton, Maria; Knuth, Eric

    2015-01-01

    We detail a learning progressions approach to early algebra research and how existing work around learning progressions and trajectories in mathematics and science education has informed our development of a four-component theoretical framework consisting of: a curricular progression of learning goals across big algebraic ideas; an instructional…

  5. Ten-Year-Old Students Solving Linear Equations

    ERIC Educational Resources Information Center

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  6. Measuring the Readability of Elementary Algebra Using the Cloze Technique.

    ERIC Educational Resources Information Center

    Kulm, Gerald

    The relationship to readability of ten variables characterizing structural properties of mathematical prose was investigated in elementary algebra textbooks. Readability was measured by algebra student's responses to two forms of cloze tests. Linear and currilinear correlations were calculated between each structural variable and the cloze test.…

  7. Astro Algebra [CD-ROM].

    ERIC Educational Resources Information Center

    1997

    Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…

  8. An Inquiry-Based Linear Algebra Class

    ERIC Educational Resources Information Center

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  9. Numerical Linear Algebra.

    DTIC Science & Technology

    1980-09-08

    February 1979 through 31 March 1980 Title of Research: NUMERICAL LINEAR ALGEBRA Principal Investigators: Gene H. Golub James H. Wilkinson Research...BEFORE COMPLETING FORM 2 OTAgSSION NO. 3. RECIPIENT’S CATALOG NUMBER ITE~ btitle) ~qEE NUMERICAL LINEAR ALGEBRA #I ~ f#7&/8 PER.ORMING ORG. REPORT NUM 27R 7

  10. Three Phase Ranking Framework for Assessing Conceptual Understanding in Algebra Using Multiple Representations

    ERIC Educational Resources Information Center

    Panasuk, Regina M.

    2010-01-01

    Algebra students may often demonstrate a certain degree of proficiency when manipulating algebraic expressions and verbalizing their behaviors. Do these abilities imply conceptual understanding? What is a reliable indicator that would provide educators with a relatively trustworthy and consistent measure to identify whether students learn…

  11. The interplay between group crossed products, semigroup crossed products and toeplitz algebras

    NASA Astrophysics Data System (ADS)

    Yusnitha, I.

    2018-05-01

    Realization of group crossed products constructed by decomposition, as semigroup crossed products. And connected it to Toeplitz algebra of ordered group quotient to get some preliminaries description for the further study on the structure of Toeplitz algebras of ordered group which is finitely generated.

  12. Promoting Quantitative Literacy in an Online College Algebra Course

    ERIC Educational Resources Information Center

    Tunstall, Luke; Bossé, Michael J.

    2016-01-01

    College algebra (a university freshman level algebra course) fulfills the quantitative literacy requirement of many college's general education programs and is a terminal course for most who take it. An online problem-based learning environment provides a unique means of engaging students in quantitative discussions and research. This article…

  13. Changes in Pre-Service Teachers' Algebraic Misconceptions by Using Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Lin, ByCheng-Yao; Ko, Yi-Yin; Kuo, Yu-Chun

    2014-01-01

    In order to carry out current reforms regarding algebra and technology in elementary school mathematics successfully, pre-service elementary mathematics teachers must be equipped with adequate understandings of algebraic concepts and self-confidence in using computers for their future teaching. This paper examines the differences in preservice…

  14. Algebraic Concepts: What's Really New in New Curricula?

    ERIC Educational Resources Information Center

    Star, Jon R.; Herbel-Eisenmann, Beth A.; Smith, John P., III

    2000-01-01

    Examines 8th grade units from the Connected Mathematics Project (CMP). Identifies differences in older and newer conceptions, fundamental objects of study, typical problems, and typical solution methods in algebra. Also discusses where the issue of what is new in algebra is relevant to many other innovative middle school curricula. (KHR)

  15. Seeing through Symbols: The Case of Equivalent Expressions.

    ERIC Educational Resources Information Center

    Kieran, Carolyn; Sfard, Anna

    1999-01-01

    Presents a teaching experiment to turn students from external observers into active participants in a game of algebra learning where students use graphs to build meaning for equivalence of algebraic expressions. Concludes that the graphic-functional approach seems to make the introduction to algebra much more meaningful for the learner. (ASK)

  16. Lattice Virasoro algebra and corner transfer matrices in the Baxter eight-vertex model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoyama, H.; Thacker, H.B.

    1987-04-06

    A lattice Virasoro algebra is constructed for the Baxter eight-vertex model. The operator L/sub 0/ is obtained from the logarithm of the corner transfer matrix and is given by the first moment of the XYZ spin-chain Hamiltonian. The algebra is valid even when the Hamiltonian includes a mass term, in which case it represents lattice coordinate transformations which distinguish between even and odd sublattices. We apply the quantum inverse scattering method to demonstrate that the Virasoro algebra follows from the Yang-Baxter relations.

  17. On the Primitive Ideal spaces of the C(*) -algebras of graphs

    NASA Astrophysics Data System (ADS)

    Bates, Teresa

    2005-11-01

    We characterise the topological spaces which arise as the primitive ideal spaces of the Cuntz-Krieger algebras of graphs satisfying condition (K): directed graphs in which every vertex lying on a loop lies on at least two loops. We deduce that the spaces which arise as Prim;C(*(E)) are precisely the spaces which arise as the primitive ideal spaces of AF-algebras. Finally, we construct a graph wt{E} from E such that C(*(wt{E})) is an AF-algebra and Prim;C(*(E)) and Prim;C(*(wt{E})) are homeomorphic.

  18. Possibility of Engineering Education That Makes Use of Algebraic Calculators by Various Scenes

    NASA Astrophysics Data System (ADS)

    Umeno, Yoshio

    Algebraic calculators are graphing calculators with a feature of computer algebra system. It can be said that we can solve mathematics only by pushing some keys of these calculators in technical colleges or universities. They also possess another feature, so we can make extensive use in engineering education. For example, we can use them for a basic education, a programming education, English education, and creative thinking tools for excellent students. In this paper, we will introduce the summary of algebraic calculators, then, consider how we utilize them in engineer education.

  19. Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space

    NASA Astrophysics Data System (ADS)

    Detournay, Stéphane; Riegler, Max

    2017-02-01

    In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.

  20. Tensor Algebra Library for NVidia Graphics Processing Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakh, Dmitry

    This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less

  1. Semiclassical states on Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsobanjan, Artur, E-mail: artur.tsobanjan@gmail.com

    2015-03-15

    The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following themore » methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.« less

  2. Dolan Grady relations and noncommutative quasi-exactly solvable systems

    NASA Astrophysics Data System (ADS)

    Klishevich, Sergey M.; Plyushchay, Mikhail S.

    2003-11-01

    We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.

  3. Constitutive relations in optics in terms of geometric algebra

    NASA Astrophysics Data System (ADS)

    Dargys, A.

    2015-11-01

    To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be supplemented by constitutive relations. At present the classification of linear constitutive relations is well established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete expressions for constitutive relations which follow from this algebra are presented. They can be applied in calculating the propagation properties of electromagnetic waves in any anisotropic, linear and nondissipative medium.

  4. Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung

    2016-06-01

    We describe a Lie Algebra on the moduli space of non-rigid compact Calabi-Yau threefolds enhanced with differential forms and its relation to the Bershadsky-Cecotti-Ooguri-Vafa holomorphic anomaly equation. In particular, we describe algebraic topological string partition functions {{F}g^alg, g ≥ 1}, which encode the polynomial structure of holomorphic and non-holomorphic topological string partition functions. Our approach is based on Grothendieck's algebraic de Rham cohomology and on the algebraic Gauss-Manin connection. In this way, we recover a result of Yamaguchi-Yau and Alim-Länge in an algebraic context. Our proofs use the fact that the special polynomial generators defined using the special geometry of deformation spaces of Calabi-Yau threefolds correspond to coordinates on such a moduli space. We discuss the mirror quintic as an example.

  5. Asymptotic identity in min-plus algebra: a report on CPNS.

    PubMed

    Li, Ming; Zhao, Wei

    2012-01-01

    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.

  6. Asymptotic Identity in Min-Plus Algebra: A Report on CPNS

    PubMed Central

    Li, Ming; Zhao, Wei

    2012-01-01

    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446

  7. Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems.

    PubMed

    Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N

    2015-12-01

    The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A simplified formalism of the algebra of partially transposed permutation operators with applications

    NASA Astrophysics Data System (ADS)

    Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał

    2018-03-01

    Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.

  9. Contextualizing symbol, symbolizing context

    NASA Astrophysics Data System (ADS)

    Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang

    2017-08-01

    When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.

  10. Hidden role of Maxwell superalgebras in the free differential algebras of D = 4 and D = 11 supergravity

    NASA Astrophysics Data System (ADS)

    Ravera, Lucrezia

    2018-03-01

    The purpose of this paper is to show that the so-called Maxwell superalgebra in four dimensions, which naturally involves the presence of a nilpotent fermionic generator, can be interpreted as a hidden superalgebra underlying N=1, {D}=4 supergravity extended to include a 2-form gauge potential associated to a 2-index antisymmetric tensor. In this scenario, the theory is appropriately discussed in the context of Free Differential Algebras (an extension of the Maurer-Cartan equations to involve higher-degree differential forms). The study is then extended to the Free Differential Algebra describing D = 11 supergravity, showing that, also in this case, there exists a super-Maxwell algebra underlying the theory. The same extra spinors dual to the nilpotent fermionic generators whose presence is crucial for writing a supersymmetric extension of the Maxwell algebras, both in the D = 4 and in the D = 11 case, turn out to be fundamental ingredients also to reproduce the D = 4 and D = 11 Free Differential Algebras on ordinary superspace, whose basis is given by the supervielbein. The analysis of the gauge structure of the supersymmetric Free Differential Algebras is carried on taking into account the gauge transformations from the hidden supergroup-manifold associated with the Maxwell superalgebras.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Sudarshan; Günaydin, Murat

    We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less

  12. A systematic investigation of the link between rational number processing and algebra ability.

    PubMed

    Hurst, Michelle; Cordes, Sara

    2018-02-01

    Recent research suggests that fraction understanding is predictive of algebra ability; however, the relative contributions of various aspects of rational number knowledge are unclear. Furthermore, whether this relationship is notation-dependent or rather relies upon a general understanding of rational numbers (independent of notation) is an open question. In this study, college students completed a rational number magnitude task, procedural arithmetic tasks in fraction and decimal notation, and an algebra assessment. Using these tasks, we measured three different aspects of rational number ability in both fraction and decimal notation: (1) acuity of underlying magnitude representations, (2) fluency with which symbols are mapped to the underlying magnitudes, and (3) fluency with arithmetic procedures. Analyses reveal that when looking at the measures of magnitude understanding, the relationship between adults' rational number magnitude performance and algebra ability is dependent upon notation. However, once performance on arithmetic measures is included in the relationship, individual measures of magnitude understanding are no longer unique predictors of algebra performance. Furthermore, when including all measures simultaneously, results revealed that arithmetic fluency in both fraction and decimal notation each uniquely predicted algebra ability. Findings are the first to demonstrate a relationship between rational number understanding and algebra ability in adults while providing a clearer picture of the nature of this relationship. © 2017 The British Psychological Society.

  13. Connections between Kac-Moody algebras and M-theory

    NASA Astrophysics Data System (ADS)

    Cook, Paul P.

    2007-11-01

    We investigate some of the motivations and consequences of the conjecture that the Kac-Moody algebra E11 is the symmetry algebra of M-theory, and we develop methods to aid the further investigation of this idea. The definitions required to work with abstract root systems of Lie algebras are given in review leading up to the definition of a Kac-Moody algebra. The motivations for the E11 conjecture are presented and the nonlinear realisation of gravity relevant to the conjecture is described. We give a beginner's guide to producing the algebras of E11, relevant to M-theory, and K27, relevant to the bosonic string theory, along with their l1 representations are constructed. Reference tables of low level roots are produced for both the adjoint and l1 representations of these algebras. In addition a particular group element, having a generic form for all G+++ algebras, is shown to encode all the half-BPS brane solutions of the maximally oxidised supergravities. Special analysis is given to the role of space-time signature in the context of this group element and subsequent to this analysis spacelike brane solutions are derived from the same solution generating group element. Finally the appearance of U-duality charge multiplets from E11 is reviewed. General formulae for finding the content of arbitrary brane charge multiplets are given and the content of the particle and string multiplets in dimensions 4,5,6,7 and 8 is shown to be contained in the l1 representation of E11.

  14. Motivating students to read the textbook before class

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel E.

    2016-11-01

    Many faculty in STEM courses assign textbook reading in advance of lecture, yet evidence shows few students actually read the textbook. Those students that do read often do so only after the material has been presented in class. Preparing for class by reading the textbook beforehand improves student learning and is particularly critical for classes that employ active engagement strategies. Here I present strategies I have used to successfully motivate my students to read the textbook before class in physics classes ranging from introductory algebra-based physics to advanced courses for physics majors. In the introductory course, I used pre-class reading quizzes, a common strategy that has been shown effective in previous studies, but one that is somewhat time-consuming to implement. In my more advanced courses I used reading reflections, which required considerably less time. While it was typical for less than 25% of students to read the textbook before I implemented reading quizzes or reflections, after implementing these strategies 70-90% of students reported reading the textbook before class most of the time. Students also report finding both the readings themselves and the quizzes and reflections valuable for their learning.

  15. Experimental Course Report/Grade Nine.

    ERIC Educational Resources Information Center

    Davis, Robert B.

    Described is the development of an approach to the algebra of real numbers which includes three areas of mathematics not commonly found in grade 9--the theory of limits of infinite sequences, a frequent use of Cartesian co-ordinates, and algebra of matrices. Seventy per cent of the course is abstract axiomatic algebra and the remaining portion…

  16. Working Memory and Literacy as Predictors of Performance on Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Swee-Fong; Ng, Ee-Lynn; Lim, Zee-Ying

    2004-01-01

    Previous studies on individual differences in mathematical abilities have shown that working memory contributes to early arithmetic performance. In this study, we extended the investigation to algebraic word problem solving. A total of 151 10-year-olds were administered algebraic word problems and measures of working memory, intelligence quotient…

  17. Soft Translations and Soft Extensions of BCI/BCK-Algebras

    PubMed Central

    Sultana, Nazra; Rani, Nazia; Ali, Muhammad Irfan

    2014-01-01

    The concept of soft translations of soft subalgebras and soft ideals over BCI/BCK-algebras is introduced and some related properties are studied. Notions of Soft extensions of soft subalgebras and soft ideals over BCI/BCK-algebras are also initiated. Relationships between soft translations and soft extensions are explored. PMID:25298968

  18. Designing Virtual Worlds for Use in Mathematics Education.

    ERIC Educational Resources Information Center

    Winn, William; Bricken, William

    Virtual Reality (VR) is a computer generated, multi-dimensional, inclusive environment that can build axioms of algebra into the behavior of the world. This paper discusses the use of VR to represent part of the algebra curriculum in order to improve students' classroom experiences in learning algebra. Students learn to construct their knowledge…

  19. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 3

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    In Part Three, the author reviews the basic ideas presented in Parts One and Two while arguing why the traditional equation-solving developmental algebra curricula is not a good choice for implementing neural response strategies presented in the first two parts. He continues by showing that the developmental algebra student audience is simply…

  20. Activities for Students: Biology as a Source for Algebra Equations--The Heart

    ERIC Educational Resources Information Center

    Horak, Virginia M.

    2005-01-01

    The high school course that integrated first year algebra with an introductory environmental biology/anatomy and physiology course, in order to solve algebra problems is discussed. Lessons and activities for the course were taken by identifying the areas where mathematics and biology content intervenes may help students understand biology concepts…

  1. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  2. Carnegie Learning Curricula and Cognitive Tutor™. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    "Carnegie Learning Curricula and Cognitive Tutor"®, published by Carnegie Learning, is a secondary math curricula that offers textbooks and interactive software to provide individualized, self-paced instruction based on student needs. The program includes pre-Algebra, Algebra I, Algebra II, and Geometry, as well as a three-course series…

  3. Catching Up on Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…

  4. Concreteness Fading of Algebraic Instruction: Effects on Learning

    ERIC Educational Resources Information Center

    Ottmar, Erin; Landy, David

    2017-01-01

    Learning algebra is difficult for many students in part because of an emphasis on the memorization of abstract rules. Algebraic reasoners across expertise levels often rely on perceptual-motor strategies to make these rules meaningful and memorable. However, in many cases, rules are provided as patterns to be memorized verbally, with little overt…

  5. N  =  2 and N  =  4 subalgebras of super vertex operator algebras

    NASA Astrophysics Data System (ADS)

    Mason, Geoffrey; Tuite, Michael; Yamskulna, Gaywalee

    2018-02-01

    We develop criteria to decide if an N  =  2 or N  =  4 superconformal algebra is a subalgebra of a super vertex operator algebra in general, and of a super lattice theory in particular. We give some specific examples.

  6. Inside the Letter

    ERIC Educational Resources Information Center

    Duke, Roger; Graham, Alan

    2007-01-01

    In this article, the authors describe how a Java applet can help to build learners' intuitions about basic ideas of algebra. "Matchbox Algebra" is a Java applet the authors have designed to enable learners to grasp a key idea in learning algebra: that the letter "x" may be thought of as representing an as-yet-unknown number. They describe the…

  7. Symbolic Notations and Students' Achievements in Algebra

    ERIC Educational Resources Information Center

    Peter, Ebiendele E.; Olaoye, Adetunji A.

    2013-01-01

    This study focuses on symbolic notations and its impact on students' achievement in Algebra. The main reason for this study rests on the observation from personal and professional experiences on students' increasing hatred for Algebra. One hundred and fifty (150) Senior Secondary School Students (SSS) from Ojo Local Education District, Ojo, Lagos,…

  8. Analyzing Algebraic Thinking Using "Guess My Number" Problems

    ERIC Educational Resources Information Center

    Patton, Barba; De Los Santos, Estella

    2012-01-01

    The purpose of this study was to assess student knowledge of numeric, visual and algebraic representations. A definite gap between arithmetic and algebra has been documented in the research. The researchers' goal was to identify a link between the two. Using four "Guess My Number" problems, seventh and tenth grade students were asked to write…

  9. Complex quantum enveloping algebras as twisted tensor products

    NASA Astrophysics Data System (ADS)

    Chryssomalakos, Chryssomalis; Engeldinger, Ralf A.; Jurčo, Branislav; Schlieker, Michael; Zumino, Bruno

    1994-12-01

    We introduce a *-structure on the quantum double and its dual in order to make contact with various approaches to the enveloping algebras of complex quantum groups. Furthermore, we introduce a canonical basis in the quantum double, its universal R-matrices and give its relation to subgroups in the dual Hopf algebra.

  10. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    NASA Astrophysics Data System (ADS)

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  11. Calif. Laws Shift Gears on Algebra, Textbooks

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2012-01-01

    New laws in California have set the state on a course for some potentially significant changes to the curriculum, including a measure that revisits the matter of teaching Algebra 1 in 8th grade and another that revamps the state's textbook-adoption process and hands districts greater leeway in choosing instructional materials. The algebra-related…

  12. Digital Tools for Algebra Education: Criteria and Evaluation

    ERIC Educational Resources Information Center

    Bokhove, Christian; Drijvers, Paul

    2010-01-01

    In the Netherlands, as in many other countries, the algebraic expertise of students graduating from secondary education is an issue. The use of digital tools for algebra education is expected to change epistemologies, activity structures and student achievement. Therefore, a study was set up to investigate in what way the use of ICT in upper…

  13. Quantum Observables and Effect Algebras

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    2018-03-01

    We study observables on monotone σ-complete effect algebras. We find conditions when a spectral resolution implies existence of the corresponding observable. We characterize sharp observables of a monotone σ-complete homogeneous effect algebra using its orthoalgebraic skeleton. In addition, we study compatibility in orthoalgebras and we show that every orthoalgebra satisfying RIP is an orthomodular poset.

  14. THE RADICAL OF A JORDAN ALGEBRA

    PubMed Central

    McCrimmon, Kevin

    1969-01-01

    In this paper we define a Jacobson radical for Jordan algebras analogous to that for associative algebras and show that it enjoys many of the properties of the associative radical. We then relate the corresponding notion of “semisimplicity” to the previously defined notion of “nondegeneracy” (Jacobson, N., these Proceedings, 55, 243-251 (1966)). PMID:16591736

  15. The Algebra of the Arches

    ERIC Educational Resources Information Center

    Buerman, Margaret

    2007-01-01

    Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…

  16. Success after Failure: Academic Effects and Psychological Implications of Early Universal Algebra Policies

    ERIC Educational Resources Information Center

    Howard, Keith A.; Scott, Allison; Romero, Martin; Saddler, Derrick

    2015-01-01

    In this article, the authors use the High School Longitudinal Study 2009 (HSLS:09) national database to analyze the relationships between algebra failure, subsequent performance, motivation, and college readiness. Students who failed eighth-grade Algebra I did not differ significantly in mathematics proficiency from those who passed lower-level…

  17. A Comparison of Web-Based and Paper-and-Pencil Homework on Student Performance in College Algebra

    ERIC Educational Resources Information Center

    Hauk, Shandy; Powers, Robert A.; Segalla, Angelo

    2015-01-01

    College algebra fulfills general education requirements at many colleges in the United States. The study reported here investigated differences in mathematics achievement between undergraduates in college algebra classes using one of two homework methods: "WeBWorK," an open-source system for web-based homework, or traditional…

  18. Ready, Set, Algebra?

    ERIC Educational Resources Information Center

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  19. Deriving the Regression Line with Algebra

    ERIC Educational Resources Information Center

    Quintanilla, John A.

    2017-01-01

    Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…

  20. Just Say Yes to Early Algebra!

    ERIC Educational Resources Information Center

    Stephens, Ana; Blanton, Maria; Knuth, Eric; Isler, Isil; Gardiner, Angela Murphy

    2015-01-01

    Mathematics educators have argued for some time that elementary school students are capable of engaging in algebraic thinking and should be provided with rich opportunities to do so. Recent initiatives like the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) have taken up this call by reiterating the place of early algebra in…

  1. An Emoji Is Worth a Thousand Variables

    ERIC Educational Resources Information Center

    McCaffrey, Tony; Matthews, Percival G.

    2017-01-01

    In this article, the authors discuss the potential of the icon-based mathematical games, emoji math and mobile math, to promote student engagement with and understanding of algebra. They describe how these games serve as accessible entry points for algebraic thinking and that, in contrast to traditional symbolic algebra, the use of these…

  2. Parabolas: Connection between Algebraic and Geometrical Representations

    ERIC Educational Resources Information Center

    Shriki, Atara

    2011-01-01

    A parabola is an interesting curve. What makes it interesting at the secondary school level is the fact that this curve is presented in both its contexts: algebraic and geometric. Being one of Apollonius' conic sections, the parabola is basically a geometric entity. It is, however, typically known for its algebraic characteristics, in particular…

  3. Connected Representations of Knowledge: Do Undergraduate Students Relate Algebraic Rational Expressions to Rational Numbers?

    ERIC Educational Resources Information Center

    Yantz. Jennifer

    2013-01-01

    The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting students' postsecondary success as STEM majors. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. In the present study, the connections…

  4. Just-in-Time Algebra: A Problem Solving Approach Including Multimedia and Animation.

    ERIC Educational Resources Information Center

    Hofmann, Roseanne S.; Hunter, Walter R.

    2003-01-01

    Describes a beginning algebra course that places stronger emphasis on learning to solve problems and introduces topics using real world applications. Students learn estimating, graphing, and algebraic algorithms for the purpose of solving problems. Indicates that applications motivate students by appearing to be a more relevant topic as well as…

  5. Foundations of Algebra: 2009-10. Implementation Insights. E&R Report No. 10.28

    ERIC Educational Resources Information Center

    Paeplow, Colleen

    2010-01-01

    This report examined the implementation of Foundations of Algebra, a course designed to provide high school students with low mathematics performance an extra opportunity to review and study foundational mathematics concepts prior to enrolling in Introductory Mathematics and subsequently Algebra I. In the fall of 2009, 877 high school students…

  6. Using the Internet To Investigate Algebra.

    ERIC Educational Resources Information Center

    Sherwood, Walter

    The lesson plans in this book engage students by using a tool they enjoy--the Internet--to explore key concepts in algebra. Working either individually or in groups, students learn to approach algebra from a problem solving perspective. Each lesson shows learners how to use the Internet as a resource for gathering facts, data, and other…

  7. Exact Baker-Campbell-Hausdorff formula for the contact Heisenberg algebra

    NASA Astrophysics Data System (ADS)

    Bravetti, Alessandro; Garcia-Chung, Angel; Tapias, Diego

    2017-03-01

    In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker-Campbell-Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.

  8. The operator algebra approach to quantum groups

    PubMed Central

    Kustermans, Johan; Vaes, Stefaan

    2000-01-01

    A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory. PMID:10639116

  9. Algebraic Generalization Strategies Used by Kuwaiti Pre-Service Teachers

    ERIC Educational Resources Information Center

    Alajmi, Amal Hussain

    2016-01-01

    This study reports on the algebraic generalization strategies used by elementary and middle/high school pre-service mathematics teachers in Kuwait. They were presented with 9 tasks that involved linear, exponential, and quadratic situations. The results showed that these pre-service teachers had difficulty in generalizing algebraic rules in all 3…

  10. Commentary on A General Curriculum in Mathematics for Colleges.

    ERIC Educational Resources Information Center

    Committee on the Undergraduate Program in Mathematics, Berkeley, CA.

    This document constitutes a complete revision of the report of the same name first published in 1965. A new list of basic courses is described, consisting of Calculus I, Calculus II, Elementary Linear Algebra, Multivariable Calculus I, Linear Algebra, and Introductory Modern Algebra. Commentaries outline the content and spirit of these courses in…

  11. Resources for Teaching Linear Algebra. MAA Notes Volume 42.

    ERIC Educational Resources Information Center

    Carlson, David, Ed.; And Others

    This book takes the position that the teaching of elementary linear algebra can be made more effective by emphasizing applications, exposition, and pedagogy. It includes the recommendations of the Linear Algebra Curriculum Study Group with their core syllabus for the first course, and the thoughts of mathematics faculty who have taught linear…

  12. Introduction to Matrix Algebra, Student's Text, Unit 23.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…

  13. The Algebra Initiative Colloquium. Volume 2: Working Group Papers.

    ERIC Educational Resources Information Center

    Lacampagne, Carole B., Ed.; And Others

    This volume presents recommendations from four working groups at a conference on reform in algebra held in Leesburg, Virginia, December 9-12, 1993. Working Group 1: Creating an Appropriate Algebra Experience for All Grades K-12 Students produced the following papers: (1) "Report" (A. H. Schoenfeld); (2) "Five Questions About Algebra…

  14. Comparing the Effectiveness of Collaborative Instructional Practices in Algebra

    ERIC Educational Resources Information Center

    Triaga, Russell D.

    2014-01-01

    The use of multiple forms of collaborative instruction to teach integrated algebra makes it difficult for teachers to determine which collaborative form is best suited for the curriculum. An inconsistent approach to integrated algebra instruction at the study school needed to be addressed for the benefit of teacher effectiveness and student…

  15. Emphasizing Language and Visualization in Teaching Linear Algebra

    ERIC Educational Resources Information Center

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2013-01-01

    Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his…

  16. Teaching the "Diagonalization Concept" in Linear Algebra with Technology: A Case Study at Galatasaray University

    ERIC Educational Resources Information Center

    Yildiz Ulus, Aysegul

    2013-01-01

    This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…

  17. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    ERIC Educational Resources Information Center

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  18. Application of Algebra Curriculum-Based Measurements for Decision Making in Middle and High School

    ERIC Educational Resources Information Center

    Johnson, Evelyn S.; Galow, Patricia A.; Allenger, Robert

    2013-01-01

    This article reports the results of a study examining the utility of curriculum-based measurement (CBM) in algebra for predicting performance on a state math assessment and informing instructional placement decisions for students in seventh, eighth, and tenth grades. Students completed six Basic Skills algebra probes across different time…

  19. Early Integration of Tutorial Support in Beginning Algebra

    ERIC Educational Resources Information Center

    Copus, Colleen; McKinney, Betsy

    2016-01-01

    Anecdotal observations reveal that most students with strong arithmetic skills will succeed in the Beginning Algebra course even if they have no previous experience with algebra. In trying to quantify this with an initial teacher-created survey of arithmetic skills, it was observed, for three consecutive semesters, that students who scored in the…

  20. Balancing the Equation: Do Course Variations in Algebra 1 Provide Equal Student Outcomes?

    ERIC Educational Resources Information Center

    Kenfield, Danielle M.

    2013-01-01

    Historically, algebra has served as a gatekeeper that divides students into academic programs with varying opportunities to learn and controls access to higher education and career opportunities. Successful completion of Algebra 1 demonstrates mathematical proficiency and allows access to a sequential and progressive path of advanced study that…

  1. Examining Heterogeneity in the Effect of Taking Algebra in Eighth Grade

    ERIC Educational Resources Information Center

    Rickles, Jordan H.

    2013-01-01

    Increased access to algebra was a focal point of the National Mathematics Advisory Panel's 2008 report on improving mathematics learning in the United States. Past research found positive effects for early access to algebra, but the focus on average effects may mask important variation across student subgroups. The author addresses whether these…

  2. Kac determinant and singular vector of the level N representation of Ding-Iohara-Miki algebra

    NASA Astrophysics Data System (ADS)

    Ohkubo, Yusuke

    2018-05-01

    In this paper, we obtain the formula for the Kac determinant of the algebra arising from the level N representation of the Ding-Iohara-Miki algebra. It is also discovered that its singular vectors correspond to generalized Macdonald functions (the q-deformed version of the AFLT basis).

  3. Continuity in Representation between Children and Adults: Arithmetic Knowledge Hinders Undergraduates' Algebraic Problem Solving

    ERIC Educational Resources Information Center

    McNeil, Nicole M.; Rittle-Johnson, Bethany; Hattikudur, Shanta; Petersen, Lori A.

    2010-01-01

    This study examined if solving arithmetic problems hinders undergraduates' accuracy on algebra problems. The hypothesis was that solving arithmetic problems would hinder accuracy because it activates an operational view of equations, even in educated adults who have years of experience with algebra. In three experiments, undergraduates (N = 184)…

  4. Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function

    ERIC Educational Resources Information Center

    Tuluk, Güler

    2014-01-01

    Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…

  5. Building Students' Reasoning Skills by Promoting Student-Led Discussions in an Algebra II Class

    ERIC Educational Resources Information Center

    DeJarnette, Anna F.; González, Gloriana

    2013-01-01

    Current research and professional organizations call for greater emphasis on reasoning and sense making in algebra (Chazan, 2000; Cuoco, Goldenberg, & Mark, 1996; Harel & Sowder, 2005; National Council of Teachers of Mathematics [NCTM], 2009, 2010). This paper illustrates how students in an Algebra II class had opportunities to develop…

  6. Modified non-Abelian Toda field equations and twisted quasigraded Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrypnyk, T.

    We construct a new family of quasigraded Lie algebras that admit the Kostant-Adler scheme. They coincide with special quasigraded deformations of twisted subalgebras of the loop algebras. Using them we obtain new hierarchies of integrable equations in partial derivatives which we call 'modified' non-Abelian Toda field hierarchies.

  7. Capitalising on Inherent Ambiguities in Symbolic Expressions of Generality

    ERIC Educational Resources Information Center

    Samson, Duncan

    2011-01-01

    The exploration of number patterns as a pedagogical approach to introducing algebra has been advocated by many mathematics educators. French (2002) comments that the introduction of algebra through what is potentially a wide range of pattern generalisation activities may be effective in assisting pupils to see algebra as both meaningful and…

  8. Designing Spreadsheet-Based Tasks for Purposeful Algebra

    ERIC Educational Resources Information Center

    Ainley, Janet; Bills, Liz; Wilson, Kirsty

    2005-01-01

    We describe the design of a sequence of spreadsheet-based pedagogic tasks for the introduction of algebra in the early years of secondary schooling within the Purposeful Algebraic Activity project. This design combines two relatively novel features to bring a different perspective to research in the use of spreadsheets for the learning and…

  9. The Effects of Representations, Constructivist Approaches, and Engagement on Middle School Students' Algebraic Procedure and Conceptual Understanding

    ERIC Educational Resources Information Center

    Ross, Amanda; Willson, Victor

    2012-01-01

    This study examined the effects of types of representations, constructivist teaching approaches, and student engagement on middle school algebra students' procedural knowledge and conceptual understanding. Data gathered from 16 video lessons and algebra pretest/posttests were used to run three multilevel structural equation models. Symbolic…

  10. Real-Time Algebraic Derivative Estimations Using a Novel Low-Cost Architecture Based on Reconfigurable Logic

    PubMed Central

    Morales, Rafael; Rincón, Fernando; Gazzano, Julio Dondo; López, Juan Carlos

    2014-01-01

    Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB. PMID:24859033

  11. Bootstrapping non-commutative gauge theories from L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  12. Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.

    PubMed

    Popa, Călin-Adrian

    2018-06-08

    This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.

  14. Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation

    NASA Astrophysics Data System (ADS)

    Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.

    2010-05-01

    The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.

  15. Linear maps preserving maximal deviation and the Jordan structure of quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamhalter, Jan

    2012-12-15

    In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less

  16. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Sudarshan; Gunaydin, Murat

    Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlichenmaier, M

    Recently, Lax operator algebras appeared as a new class of higher genus current-type algebras. Introduced by Krichever and Sheinman, they were based on Krichever's theory of Lax operators on algebraic curves. These algebras are almost-graded Lie algebras of currents on Riemann surfaces with marked points (in-points, out-points and Tyurin points). In a previous joint article with Sheinman, the author classified the local cocycles and associated almost-graded central extensions in the case of one in-point and one out-point. It was shown that the almost-graded extension is essentially unique. In this article the general case of Lax operator algebras corresponding to several in- andmore » out-points is considered. As a first step they are shown to be almost-graded. The grading is given by splitting the marked points which are non-Tyurin points into in- and out-points. Next, classification results both for local and bounded cocycles are proved. The uniqueness theorem for almost-graded central extensions follows. To obtain this generalization additional techniques are needed which are presented in this article. Bibliography: 30 titles.« less

  19. Classical affine W-algebras associated to Lie superalgebras

    NASA Astrophysics Data System (ADS)

    Suh, Uhi Rinn

    2016-02-01

    In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalization of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.

  20. Conformal field algebras with quantum symmetry from the theory of superselection sectors

    NASA Astrophysics Data System (ADS)

    Mack, Gerhard; Schomerus, Volker

    1990-11-01

    According to the theory of superselection sectors of Doplicher, Haag, and Roberts, field operators which make transitions between different superselection sectors—i.e. different irreducible representations of the observable algebra—are to be constructed by adjoining localized endomorphisms to the algebra of local observables. We find the relevant endomorphisms of the chiral algebra of observables in the minimal conformal model with central charge c=1/2 (Ising model). We show by explicit and elementary construction how they determine a representation of the braid group B ∞ which is associated with a Temperley-Lieb-Jones algebra. We recover fusion rules, and compute the quantum dimensions of the superselection sectors. We exhibit a field algebra which is quantum group covariant and acts in the Hilbert space of physical states. It obeys local braid relations in an appropriate weak sense.

  1. On explicit algebraic stress models for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Speziale, C. G.

    1992-01-01

    Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

  2. Algebraic integrability: a survey.

    PubMed

    Vanhaecke, Pol

    2008-03-28

    We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems.

  3. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  4. Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force

    PubMed Central

    Akbaş, Şeref Doğuşcan

    2014-01-01

    This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050

  5. An Algebraic Approach to Guarantee Harmonic Balance Method Using Gröbner Base

    NASA Astrophysics Data System (ADS)

    Yagi, Masakazu; Hisakado, Takashi; Okumura, Kohshi

    Harmonic balance (HB) method is well known principle for analyzing periodic oscillations on nonlinear networks and systems. Because the HB method has a truncation error, approximated solutions have been guaranteed by error bounds. However, its numerical computation is very time-consuming compared with solving the HB equation. This paper proposes an algebraic representation of the error bound using Gröbner base. The algebraic representation enables to decrease the computational cost of the error bound considerably. Moreover, using singular points of the algebraic representation, we can obtain accurate break points of the error bound by collisions.

  6. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    PubMed

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  7. Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg I.

    2018-06-01

    The important unsolved problem in theory of integrable systems is to find conditions guaranteeing existence of a Lax representation for a given PDE. The exotic cohomology of the symmetry algebras opens a way to formulate such conditions in internal terms of the PDE s under the study. In this paper we consider certain examples of infinite-dimensional Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer-Cartan forms of the associated extensions of these Lie algebras generate Lax representations for integrable systems, both known and new ones.

  8. A tensor Banach algebra approach to abstract kinetic equations

    NASA Astrophysics Data System (ADS)

    Greenberg, W.; van der Mee, C. V. M.

    The study deals with a concrete algebraic construction providing the existence theory for abstract kinetic equation boundary-value problems, when the collision operator A is an accretive finite-rank perturbation of the identity operator in a Hilbert space H. An algebraic generalization of the Bochner-Phillips theorem is utilized to study solvability of the abstract boundary-value problem without any regulatory condition. A Banach algebra in which the convolution kernel acts is obtained explicitly, and this result is used to prove a perturbation theorem for bisemigroups, which then plays a vital role in solving the initial equations.

  9. The Pontryagin class for pre-Courant algebroids

    NASA Astrophysics Data System (ADS)

    Liu, Zhangju; Sheng, Yunhe; Xu, Xiaomeng

    2016-06-01

    In this paper, we show that the Jacobiator J of a pre-Courant algebroid is closed naturally. The corresponding equivalence class [J♭ ] is defined as the Pontryagin class, which is the obstruction of a pre-Courant algebroid to be deformed into a Courant algebroid. We construct a Leibniz 2-algebra and a Lie 2-algebra associated to a pre-Courant algebroid and prove that these algebraic structures are isomorphic under deformations. Finally, we introduce the twisted action of a Lie algebra on a manifold to give more examples of pre-Courant algebroids, which include the Cartan geometry.

  10. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    PubMed

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  11. Symmetric linear systems - An application of algebraic systems theory

    NASA Technical Reports Server (NTRS)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  12. Capelli bitableaux and Z-forms of general linear Lie superalgebras.

    PubMed Central

    Brini, A; Teolis, A G

    1990-01-01

    The combinatorics of the enveloping algebra UQ(pl(L)) of the general linear Lie superalgebra of a finite dimensional Z2-graded Q-vector space is studied. Three non-equivalent Z-forms of UQ(pl(L)) are introduced: one of these Z-forms is a version of the Kostant Z-form and the others are Lie algebra analogs of Rota and Stein's straightening formulae for the supersymmetric algebra Super[L P] and for its dual Super[L* P*]. The method is based on an extension of Capelli's technique of variabili ausiliarie to algebras containing positively and negatively signed elements. PMID:11607048

  13. Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn

    We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.

  14. Extended gauge theory and gauged free differential algebras

    NASA Astrophysics Data System (ADS)

    Salgado, P.; Salgado, S.

    2018-01-01

    Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p ≥ 2, can be obtained by gauging free differential algebras.

  15. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    PubMed

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  16. Dienes AEM as an alternative mathematics teaching aid to enhance Indonesian students’ understanding of algebra concept

    NASA Astrophysics Data System (ADS)

    Soro, S.; Maarif, S.; Kurniawan, Y.; Raditya, A.

    2018-01-01

    The aim of this study is to find out the effect of Dienes AEM (Algebra Experience Materials) on the ability of understanding concept of algebra on the senior high school student in Indonesia. This research is an experimental research with subject of all high school students in Indonesia. The samples taken were high school students in three provinces namely DKI Jakarta Province, West Java Province and Banten Province. From each province was taken senior high school namely SMA N 9 Bekasi West Java, SMA N 94 Jakarta and SMA N 5 Tangerang, Banten. The number of samples in this study was 114 high school students of tenth grade as experimental class and 115 high school students of tenth grade as control class. Learning algebra concept is needed in learning mathematics, besides it is needed especially to educate students to be able to think logically, systematically, critically, analytically, creatively, and cooperation. Therefore in this research will be developed an effective algebra learning by using Dienes AEM. The result of this research is that there is a significant influence on the students’ concept comprehension ability taught by using Dienes AEM learning as an alternative to instill the concept of algebra compared to the students taught by conventional learning. Besides, the students’ learning motivation increases because students can construct the concept of algebra with props.

  17. A grid generation system for multi-disciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Samareh-Abolhassani, Jamshid

    1995-01-01

    A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.

  18. Basic exploration geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, E.S.

    1988-01-01

    An introduction to geophysical methods used to explore for natural resources and to survey earth's geology is presented in this volume. It is suitable for second-and third-year undergraduate students majoring in geology or engineering and for professional engineering and for professional engineers and earth scientists without formal instruction in geophysics. The author assumes the reader is familiar with geometry, algebra, and trigonometry. Geophysical exploration includes seismic refraction and reflection surveying, electrical resistivity and electromagnetic field surveying, and geophysical well logging. Surveying operations are described in step-by-step procedures and are illustrated by practical examples. Computer-based methods of processing and interpreting datamore » as well as geographical methods are introduced.« less

  19. Principles of Stagewise Separation Process Calculations: A Simple Algebraic Approach Using Solvent Extraction.

    ERIC Educational Resources Information Center

    Crittenden, Barry D.

    1991-01-01

    A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…

  20. Fostering Middle School Students' Relational Thinking of the Equal Sign Using GeoGebra

    ERIC Educational Resources Information Center

    Ko, Yi-Yin; Karadag, Zekeriya

    2013-01-01

    Current reforms in mathematics education have called for a stronger emphasis on the teaching and learning of algebra for all students at all grade levels. Succeeding in algebra can prepare students to learn and understand more advanced mathematics in the future. One topic in algebra--the equal sign--has received considerable attention in middle…

Top