Sample records for reflection grating array

  1. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Popov, S. M.; Butov, O. V.; Chamorovskiy, Y. K.; Isaev, V. A.; Kolosovskiy, A. O.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.; Mégret, P.; Odnoblyudov, M.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG) inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration.

  2. Grating tuned unstable resonator laser cavity

    DOEpatents

    Johnson, Larry C.

    1982-01-01

    An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.

  3. Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror

    DOEpatents

    Lerner, Scott A.

    2006-01-10

    A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

  4. Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui

    2016-03-01

    We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.

  5. High-mechanical-strength single-pulse draw tower gratings

    NASA Astrophysics Data System (ADS)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  6. Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.

    2006-03-21

    A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.

  7. Single-lens computed tomography imaging spectrometer and method of capturing spatial and spectral information

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.

  8. Fabrication of high edge-definition steel-tape gratings for optical encoders.

    PubMed

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO 2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  9. Fabrication of high edge-definition steel-tape gratings for optical encoders

    NASA Astrophysics Data System (ADS)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  10. Arrays of Regenerated Fiber Bragg Gratings in Non-Hydrogen-Loaded Photosensitive Fibers for High-Temperature Sensor Networks

    PubMed Central

    Lindner, Eric; Chojetztki, Christoph; Brueckner, Sven; Becker, Martin; Rothhardt, Manfred; Vlekken, Johan; Bartelt, Hartmut

    2009-01-01

    We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks. PMID:22408510

  11. Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings.

    PubMed

    Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro

    2014-10-20

    We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

  12. Multi-wavelength VCSEL arrays using high-contrast gratings

    NASA Astrophysics Data System (ADS)

    Haglund, Erik; Gustavsson, Johan S.; Sorin, Wayne V.; Bengtsson, Jörgen; Fattal, David; Haglund, Àsa; Tan, Michael; Larsson, Anders

    2017-02-01

    The use of a high-contrast grating (HCG) as the top mirror in a vertical-cavity surface-emitting laser (VCSEL) allows for setting the resonance wavelength by the grating parameters in a post-epitaxial growth fabrication process. Using this technique, we demonstrate electrically driven multi-wavelength VCSEL arrays at 980 nm wavelength. The VCSELs are GaAs-based and the suspended GaAs HCGs were fabricated using electron-beam lithography, dry etching and selective removal of an InGaP sacrificial layer. The air-coupled cavity design enabled 4-channel arrays with 5 nm wavelength spacing and sub-mA threshold currents thanks to the high HCG reflectance.

  13. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOEpatents

    Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.

    1990-01-01

    A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.

  14. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE PAGES

    Horie, Yu; Arbabi, Amir; Han, Seunghoon; ...

    2015-11-05

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  15. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Han, Seunghoon

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  16. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOEpatents

    Jannson, T.P.; Jannson, J.L.; Yeung, P.C.

    1990-05-15

    A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.

  17. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P [Danville, CA

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  18. Spatial light modulator array with heat minimization and image enhancement features

    DOEpatents

    Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  19. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  20. Application of 1D Array FBG Configuration for Impact Localization on Composite Wing under Simulated Noise

    DTIC Science & Technology

    2016-03-30

    Grating Sensor Fundamentals FBG sensors consists of grating with periodic variation in the refractive index which reflects certain wavelengths of...is the grating’s effective refractive index and  is the grating period. Bragg wavelength is sensitive to any changes in strain or temperature...Conference on Composite Materials. 2007: Kyoto, Japan. 2. Cartz, L., Nondestructive Testing: Radiography, Ultrasonics, Liquid Penetrant, Magnetic Particle

  1. Metal-coated Bragg grating reflecting fibre

    NASA Astrophysics Data System (ADS)

    Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.

    2017-03-01

    High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.

  2. Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array

    NASA Astrophysics Data System (ADS)

    Tan, Zhongwei; Cao, Dandan; Ding, Zhichao

    2018-03-01

    An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.

  3. Skylab program payload integration. TO27 sample array

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.; Westcott, P. A.

    1974-01-01

    The objective of the TO27 sample array was to determine the change in optical properties of various transmissive windows, mirrors, and diffraction gratings caused by the deposition of contaminants found about the orbital assembly. The expected information to be obtained from the total TO27 sample array program is as follows: (1) effect of space contaminants on transmittance, reflectance, grating efficiency, and polarization; (2) variations in deposition of contaminants due to substrate, solar radiation, period of exposure, direction of exposure, and geometry effects; (3) identification of contaminants and source of evolution; (4) time of contaminant evolution and lingering time; and (5) guidelines for a model of spacecraft contamination.

  4. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  5. On-chip broadband spectral filtering using planar double high-contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2015-02-01

    We propose a broadband free-space on-chip spectrometer based on an array of integrated narrowband filters consisting of Fabry-Perot resonators formed by two high-contrast grating (HCG) based reflectors separated by a low-index thin layer with a fixed cavity thickness. Using numerical simulations, broadband tunability of resonance wavelengths was achieved only by changing the in-plane grating parameters such as period or duty cycle of HCGs while the substrate geometry was kept fixed. Experimentally, the HCG reflectors were fabricated on silicon on insulator (SOI) substrates and high reflectivity was measured, fabrication process for the proposed double HCG-based narrowband filter array was developed. The filtering function that can be spanned over a wide range of wavelengths was measured.

  6. Astronomical near-infrared echelle gratings

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Liang, Ming

    2014-07-01

    High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm. Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with custom diamond turned rulings.

  7. Sound reflection by a resonator array in a multimode cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Lapin, A. D.

    2012-09-01

    The paper considers the problem of scattering of the mth symmetric mode by an array of Q rings of identical, closely located Helmholtz resonators joined by necks to the walls of a wide circular pipe. The distance between rings is equal to half the wavelength of this mode at frequency ω, equal or close to the eigen-frequency of the resonator ring with allowance for the connected mass and interaction of neighboring rings via inhomogeneous modes. The coefficient of reflection of the mth mode from this grating array is calculated.

  8. Pushing the Boundaries of X-ray Grating Spectroscopy in a Suborbital Rocket

    NASA Technical Reports Server (NTRS)

    McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen; Cash, Webster

    2013-01-01

    Developments in grating spectroscopy are paramount for meeting the soft X-ray science goals of future NASA X-ray Observatories. While developments in the laboratory setting have verified the technical feasibility of using off-plane reflection gratings to reach this goal, flight heritage is a key step in the development process toward large missions. To this end we have developed a design for a suborbital rocket payload employing an Off-Plane X-ray Grating Spectrometer. This spectrometer utilizes slumped glass Wolter-1 optics, an array of gratings, and a CCD camera. We discuss the unique capabilities of this design, the expected performance, the science return, and the perceived impact to future missions.

  9. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  10. Reflection Grating Array Associated with the Reflection Grating Spectrometer Developed by the Space Research Organization of the Netherlands for the X-ray Multi-Mirror Mission (XMM)

    NASA Technical Reports Server (NTRS)

    Kahn, Steven M.

    2001-01-01

    The University of California, Berkeley (UCB) served as the Principal Investigator institution for the United States participation in the development of the Reflection Grating Spectrometer (RGS) which included the design, development, fabrication, and testing of the Reflection Grating Assembly (RGA). UCB was assisted in this role by the Lawrence Livermore National Laboratory and Columbia University who provided the primary facilities, materials, services and personnel necessary to complete the development. UC Berkeley's Dr. Steven Kahn provided the technical and scientific oversight for the design. development and testing of the RGA units by monitoring the performance of the units at various stages in their development. Dr. Kahn was also the primary contact with the Space Research Organization of the Netherlands (SRON) and represented the RGA development at all SRON and European Space Agency (ESA) reviews of the RGA status. In accordance with the contract, the team designed and developed novel optical technology to meet the unique requirements of the RGS. The ESA XMM-Newton Mission carries two identical Reflection Grating Spectrometers (RGS) behind two of its three nested sets of Wolter I type mirrors. The instrument allows high-resolution measurements in the soft X-ray range (6 to 38 angstroms or 2.1 to 0.3 keV) with a maximum effective area of about 140 sq cm at 15 angstroms. Its design is optimized for the detection of the K-shell transitions of carbon, nitrogen, oxygen, neon, magnesium, and silicon. as well as the L shell transitions of iron. The RGA itself consists of two units. A structure for each unit was designed to hold up to 220 gratings. In its final configuration, one unit holds 182 gratings and the second hold 181 gratings.

  11. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  12. Design and fabrication of an elliptical micro-lens array with grating for laser safety

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Wu, B. Q.; Chan, C. Y.; Lee, W. B.; Dong, L. H.

    2015-10-01

    With the enormous expansion of laser usage in medicine, industry and research, all facilities must formulate and adhere to specific safety methods that appropriately address user protection. The protective ellipticalal microstructure with grating is a novel technology which can provide the principal means of ensuring against ocular injury, and must be worn at all times during laser operation. On the basis of Fresnel's law and the diffractive law, Solidworks and Lighttools software are applied to design the elliptical micro-lens array and correspondent grating. The height of the microstructure is 100um and its period is 3mm. The period of grating is 5um. It is shown that the amount of emergent light of a specific wavelength (1064nm) can reflect more than 40° from the incident light through simulation, while the incident light is perpendicular to the microstructure. The fabrication adopts the ultra-precision single point diamond method and injection molding method. However, it is found in the test that the surface roughness has a serious effect on the angle between the emergent and incident light. As a result, the element can reflect the vertical incidence beam into a tilted emergent beam with a certain angular degree , as well as protecting users from laser damage injures.

  13. Bioinspired broadband antireflection coatings on GaSb

    NASA Astrophysics Data System (ADS)

    Min, Wei-Lun; Betancourt, Amaury P.; Jiang, Peng; Jiang, Bin

    2008-04-01

    We report an inexpensive yet scalable templating technique for fabricating moth-eye antireflection gratings on gallium antimonide substrates. Non-close-packed colloidal monolayers are utilized as etching masks to pattern subwavelength-structured nipple arrays on GaSb. The resulting gratings exhibit superior broadband antireflection properties and thermal stability than conventional multilayer dielectric coatings. The specular reflection of the templated nipple arrays match with the theoretical predictions using a rigorous coupled-wave analysis model. The effect of the nipple shape and size on the antireflection properties has also been investigated by the same model. These biomimetic coatings are of great technological importance in developing efficient thermophotovoltaic cells.

  14. Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.

    PubMed

    Raval, Manan; Poulton, Christopher V; Watts, Michael R

    2017-07-01

    We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.

  15. Inscription of first order fiber Bragg gratings in sapphire fibers by 400 nm femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Elsmann, Tino; Habisreuther, Tobias; Graf, Albrecht; Rothhardt, Manfred; Bartelt, Hartmut

    2013-05-01

    We demonstrate the inscription of fiber Bragg gratings in single crystalline sapphire using the second harmonic of a Ti:Sa-amplified femtosecond laser system. With the laser wavelength of 400 nm first order gratings were fabricated. The interferometric inscription was performed out using the Talbot interferometer. This way, not only single gratings but also multiplexed sensor arrays were realized. For evaluating of the sensor signals an adapted multimodal interrogation setup was build up, because the sapphire fiber is an extreme multimodal air clad fiber. Due to the multimodal reflection spectrum, different peak functions have been tested to evaluate the thermal properties of the grating. The temperature sensors were tested for high temperature applications up to 1200°C with a thermal sensitivity in the order of 25 pm/K which is more than the doubled of that one reached with Bragg gratings in conventional silica fibers.

  16. Fabrication and Testing of Binary-Phase Fourier Gratings for Nonuniform Array Generation

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.; Nelson, Tom R., Jr.; Parker, Jack H.; Beecher, Elizabeth A.

    2004-01-01

    This effort describes the fabrication and testing of binary-phase Fourier gratings designed to generate an incoherent array of output source points with nonuniform user-defined intensities, symmetric about the zeroth order. Like Dammann fanout gratings, these binary-phase Fourier gratings employ only two phase levels to generate a defined output array. Unlike Dammann fanout gratings, these gratings generate an array of nonuniform, user-defined intensities when projected into the far-field regime. The paper describes the process of design, fabrication, and testing for two different version of the binary-phase grating; one designed for a 12 micron wavelength, referred to as the Long-Wavelength Infrared (LWIR) grating, and one designed for a 5 micron wavelength, referred to as the Mid-Wavelength Infrared Grating (MWIR).

  17. Time-dependent variation of POF Bragg grating reflectivity and wavelength submerged in different liquids

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Pospori, A.; Webb, D. J.

    2017-09-01

    In this work, we investigate the time-dependent variation of both the reflectivity and resonance wavelength of microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors embedded in silicone rubber and polyurethane resin diaphragms in contact with water and aircraft fuel, respectively. The array sensors were inscribed using two different phase masks with pitches of 557.5 and 580 nm and the thermal annealing of the inscribed fiber was used to change the Bragg wavelengths. Both the reflection and the resonance wavelength shift were monitored over 90 days submerged in liquid and two studies were investigated. In the first study, in addition to the mPOFBGs coated with the diaphragm, also the rest of the fiber is totally protected between the sensors with the same material used for diaphragms. On the other hand, in the second study, the fiber between sensors is unprotected - in direct contact with liquid. PMMA and TOPAS fibers were used and this study suggests that TOPAS fiber should be a good option for long-term liquid monitoring applications.

  18. Binary-Phase Fourier Gratings for Nonuniform Array Generation

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.

    2003-01-01

    We describe a design method for a binary-phase Fourier grating that generates an array of spots with nonuniform, user-defined intensities symmetric about the zeroth order. Like the Dammann fanout grating approach, the binary-phase Fourier grating uses only two phase levels in its grating surface profile to generate the final spot array. Unlike the Dammann fanout grating approach, this method allows for the generation of nonuniform, user-defined intensities within the final fanout pattern. Restrictions governing the specification and realization of the array's individual spot intensities are discussed. Design methods used to realize the grating employ both simulated annealing and nonlinear optimization approaches to locate optimal solutions to the grating design problem. The end-use application driving this development operates in the near- to mid-infrared spectrum - allowing for higher resolution in grating specification and fabrication with respect to wavelength than may be available in visible spectrum applications. Fabrication of a grating generating a user-defined nine spot pattern is accomplished in GaAs for the near-infrared. Characterization of the grating is provided through the measurement of individual spot intensities, array uniformity, and overall efficiency. Final measurements are compared to calculated values with a discussion of the results.

  19. Field test investigation of high sensitivity fiber optic seismic geophone

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  20. Terrace retro-reflector array for poloidal polarimeter on ITER.

    PubMed

    Imazawa, R; Kawano, Y; Ono, T; Kusama, Y

    2011-02-01

    A new concept of a terrace retro-reflector array (TERRA) as part of the poloidal polarimeter for ITER is proposed in this paper. TERRA reflects a laser light even from a high incident angle in the direction of the incident-light path, while a conventional retro-reflector array cannot. Besides, TERRA can be installed in a smaller space than a corner-cube retro-reflector. In an optical sense, TERRA is equivalent to a Littrow grating, the blaze angle of which varies, depending on the incident angle. The reflected light generates a bright and dark fringe, and the bright fringe is required to travel along the incident-light path to achieve the objects of laser-aided diagnostics. In order to investigate the propagation properties of laser light reflected by TERRA, we have developed a new diffraction formula. Conditions for the propagation of the bright fringe in the direction of the incident light have been obtained using the Littrow grating model and have been confirmed in a simulation applying the new diffraction formula. Finally, we have designed laser transmission optics using TERRA for the ITER poloidal polarimeter and have calculated the light propagation of the system. The optical design obtains a high transmission efficiency, with 88.6% of the incident power returned. These results demonstrate the feasibility of applying TERRA to the ITER poloidal polarimeter.

  1. Optical design for a breadboard high-resolution spectrometer for SIRTF/IRS

    NASA Astrophysics Data System (ADS)

    Brown, Robert J.; Houck, James R.; van Cleve, Jeffrey E.

    1996-11-01

    The optical design of a breadboard high resolution infrared spectrometer for the IRS instrument on the SIRTF mission is discussed. The spectrometer uses a crossed echelle grating configuration to cover the spectral region from 10 to 20 micrometer with a resolving power of approximately equals 600. The all reflective spectrometer forms a nearly diffraction limited image of the two dimensional spectrum on a 128 multiplied by 128 arsenic doped silicon area array with 75 micrometer pixels. The design aspects discussed include, grating numerology, image quality, packaging and alignment philosophy.

  2. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  3. An expandable crosstalk reduction method for inline fiber Fabry-Pérot sensor array based on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ma, Lina; Hu, Zhengliang; Hu, Yongming

    2016-07-01

    The inline time division multiplexing (TDM) fiber Fabry-Pérot (FFP) sensor array based on fiber Bragg gratings (FBGs) is attractive for many applications. But the intrinsic multi-reflection (MR) induced crosstalk limits applications especially those needing high resolution. In this paper we proposed an expandable method for MR-induced crosstalk reduction. The method is based on complexing-exponent synthesis using the phase-generated carrier (PGC) scheme and the special common character of the impulse responses. The method could promote demodulation stability simultaneously with the reduction of MR-induced crosstalk. A polarization-maintaining 3-TDM experimental system with an FBG reflectivity of about 5 % was set up to validate the method. The experimental results showed that crosstalk reduction of 13 dB and 15 dB was achieved for sensor 2 and sensor 3 respectively when a signal was applied to the first sensor and crosstalk reduction of 8 dB was achieved for sensor 3 when a signal was applied to sensor 2. The demodulation stability of the applied signal was promoted as well. The standard deviations of the amplitude distributions of the demodulated signals were reduced from 0.0046 to 0.0021 for sensor 2 and from 0.0114 to 0.0044 for sensor 3. Because of the convenience of the linear operation of the complexing-exponent and according to the common character of the impulse response we found, the method can be effectively extended to the array with more TDM channels if the impulse response of the inline FFP sensor array with more TDM channels is derived. It offers potential to develop a low-crosstalk inline FFP sensor array using the PGC interrogation technique with relatively high reflectivity FBGs which can guarantee enough light power received by the photo-detector.

  4. Writing and applications of fiber Bragg grating arrays

    NASA Astrophysics Data System (ADS)

    LaRochelle, Sophie; Cortes, Pierre-Yves; Fathallah, H.; Rusch, Leslie A.; Jaafar, H. B.

    2000-12-01

    Multiple Bragg gratings are written in a single fibre strand with accurate positioning to achieve predetermined time delays between optical channels. Applications of fibre Bragg grating arrays include encoders/decoders with series of identical gratings for optical code-division multiple access.

  5. Zonal wavefront estimation using an array of hexagonal grating patterns

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2014-10-01

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.

  6. A Highly Sensitive Two-Dimensional Inclinometer Based on Two Etched Chirped-Fiber-Grating Arrays †

    PubMed Central

    Chang, Hung-Ying; Chang, Yu-Chung; Liu, Wen-Fung

    2017-01-01

    We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation. PMID:29244770

  7. Zonal wavefront estimation using an array of hexagonal grating patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit, E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R., E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in

    2014-10-15

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during themore » estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.« less

  8. Phased array antenna matching: Simulation and optimization of a planar phased array of circular waveguide elements

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.

    1972-01-01

    A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.

  9. Imaging spectrometer/camera having convex grating

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2000-01-01

    An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

  10. NASA Astrophysics Data System (ADS)

    Schattenburg, Mark

    Development of a Critical Angle Transmission Grating Spectrometer With APRA and SAT support, MIT has developed a unique blazed soft x-ray diffraction grating called the critical-angle transmission (CAT) grating. This device combines the high diffraction efficiency and resolving power of blazed reflection gratings with the low mass, low power, compact packaging and simple alignment of transmission gratings. We have shown that a spectrometer based on CAT gratings represents a huge leap forward in instrument scientific performance compared to previous missions, leading to much increased collecting area and spectral resolving power, which in turn results in orders-ofmagnitude improvement in figures-of-merit for emission and absorption line spectroscopy. MIT proposes to bring CAT x-ray grating spectrometer (CATXGS) technology to a higher Technology Readiness Level (TRL). We will increase fabrication yield and grating performance, and develop bonding techniques for grating membranes and alignment techniques for grating arrays. We will build and test robust grating arrays for space deployment, and perform thorough environmental testing. We are very close to achieving TRL4 and ready to move on to TRL5, which we can achieve within the period covered by this proposal. Our rapid progress over the last year was made possible by significant prior investments in our infrastructure, but further progress will require further investments. Since 2007 we have - with NASA support - demonstrated the CAT grating principle, and prototypes of increasing quality and size have verified theoretical predictions, putting the technology at a solid TRL3. Recent NASA and MIT investments in fabrication and metrology infrastructure has been justified by our rapid progress during the last year: the fabrication of practically defect-free CAT gratings with record diffraction efficiency, the demonstration of extended bandpass CAT gratings using conformal deposition of thin metal films via atomic layer deposition (ALD), and the demonstration of record-setting resolving power for an XGS on the order of R = 10,000, which exceeds the requirements for all currently proposed mission concepts. Grating fabrication still consumes the lion's share of our efforts and time. In order to maintain momentum and continue progress towards TRL5 in an efficient manner we need to improve our fabrication infrastructure further to accelerate grating fabrication and increase yield, so we can devote more resources to the new work required for reaching TRL5.

  11. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2015-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  12. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  13. Gratings and Random Reflectors for Near-Infrared PIN Diodes

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David

    2007-01-01

    Crossed diffraction gratings and random reflectors have been proposed as means to increase the quantum efficiencies of InGaAs/InP positive/intrinsic/ negative (PIN) diodes designed to operate as near-infrared photodetectors. The proposal is meant especially to apply to focal-plane imaging arrays of such photodetectors to be used for near-infrared imaging. A further increase in quantum efficiency near the short-wavelength limit of the near-infrared spectrum of such a photodetector array could be effected by removing the InP substrate of the array. The use of crossed diffraction gratings and random reflectors as optical devices for increasing the quantum efficiencies of quantum-well infrared photodetectors (QWIPs) was discussed in several prior NASA Tech Briefs articles. While the optical effects of crossed gratings and random reflectors as applied to PIN photodiodes would be similar to those of crossed gratings and random reflectors as applied to QWIPs, the physical mechanisms by which these optical effects would enhance efficiency differ between the PIN-photodiode and QWIP cases: In a QWIP, the multiple-quantum-well layers are typically oriented parallel to the focal plane and therefore perpendicular or nearly perpendicular to the direction of incidence of infrared light. By virtue of the applicable quantum selection rules, light polarized parallel to the focal plane (as normally incident light is) cannot excite charge carriers and, hence, cannot be detected. A pair of crossed gratings or a random reflector scatters normally or nearly normally incident light so that a significant portion of it attains a component of polarization normal to the focal plane and, hence, can excite charge carriers. A pair of crossed gratings or a random reflector on a PIN photodiode would also scatter light into directions away from the perpendicular to the focal plane. However, in this case, the reason for redirecting light away from the perpendicular is to increase the length of the optical path through the detector to increase the probability of absorption of photons and thereby increase the resulting excitation of charge carriers. A pair of crossed gratings or a random reflector according to the proposal would be fabricated as an integral part of photodetector structure on the face opposite the focal plane (see figure). In the presence of crossed gratings, light would make four passes through the device before departing. In the presence of a random reflector, a significant portion of the light would make more than four passes: After each bounce, light would be scattered at a different random angle, and would have a chance to escape only when it was reflected, relative to the normal, at an angle less than the critical angle for total internal reflection. Given the indices of refraction of the photodiode materials, this angle would be about 17 . This amounts to a very narrow cone for escape of trapped light.

  14. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    NASA Astrophysics Data System (ADS)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  15. Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal

    NASA Astrophysics Data System (ADS)

    Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko

    2017-04-01

    In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.

  16. Modeling and Optimization of Sub-Wavelength Grating Nanostructures on Cu(In,Ga)Se2 Solar Cell

    NASA Astrophysics Data System (ADS)

    Kuo, Shou-Yi; Hsieh, Ming-Yang; Lai, Fang-I.; Liao, Yu-Kuang; Kao, Ming-Hsuan; Kuo, Hao-Chung

    2012-10-01

    In this study, an optical simulation of Cu(In,Ga)Se2 (CIGS) solar cells by the rigorous coupled-wave analysis (RCWA) method is carried out to investigate the effects of surface morphology on the light absorption and power conversion efficiencies. Various sub-wavelength grating (SWG) nanostructures of periodic ZnO:Al (AZO) on CIGS solar cells were discussed in detail. SWG nanostructures were used as efficient antireflection layers. From the simulation results, AZO structures with nipple arrays effectively suppress the Fresnel reflection compared with nanorod- and cone-shaped AZO structures. The optimized reflectance decreased from 8.44 to 3.02% and the efficiency increased from 14.92 to 16.11% accordingly. The remarkable enhancement in light harvesting is attributed to the gradient refractive index profile between the AZO nanostructures and air.

  17. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing

    PubMed Central

    Hu, Chenyuan; Bai, Wei

    2018-01-01

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263

  18. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.

    PubMed

    Hu, Chenyuan; Bai, Wei

    2018-02-24

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  19. Electro-Optic Diffraction Grating Tuned Laser.

    DTIC Science & Technology

    The patent concerns an electro - optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro - optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating. An optional angle multiplier may be used between the electro - optic diffraction grating and the reflective grating.

  20. Liquid crystal devices based on photoalignment and photopatterning materials

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir

    2014-02-01

    Liquid crystal (LC) display and photonics devices based on photo-alignment and photo-patterning LC cells are developed. A fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6V/μm. A switchable LC Fresnel zone lens was also developed with the efficiency of ~42% that can be further improved, and the switching time for the 3 μm thick cell is ~6.7 ms which is relatively fast in comparison of existing devices. Thus, because of the photoalignment technology the fabrication of Fresnel lens became considerably simpler than others. A thin high spatial resolution, photo-patterned micropolarizer array for complementary metal-oxide-semiconductor (CMOS) image sensors was implemented for the complete optical visualization of so called "invisible" objects, which are completely transparent (reflective) and colorless. Four Stokes parameters, which fully characterized the reflected light beam can be simultaneously detected using the array of photo-patterned polarizers on CMOS sensor plate. The cheap, high resolution photo-patterned LC matrix sensor was developed to be able successfully compete with the expensive and low reliable wire grid polarizer patterned arrays currently used for the purpose.

  1. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    NASA Astrophysics Data System (ADS)

    Namin, Frank Farhad A.

    Quasicrystalline solids were first observed in nature in 1980s. Their lattice geometry is devoid of translational symmetry; however it possesses long-range order as well as certain orders of rotational symmetry forbidden by translational symmetry. Mathematically, such lattices are related to aperiodic tilings. Since their discovery there has been great interest in utilizing aperiodic geometries for a wide variety of electromagnetic (EM) and optical applications. The first thrust of this dissertation addresses applications of quasicrystalline geometries for wideband antenna arrays and plasmonic nano-spherical arrays. The first application considered is the design of suitable antenna arrays for micro-UAV (unmanned aerial vehicle) swarms based on perturbation of certain types of aperiodic tilings. Due to safety reasons and to avoid possible collision between micro-UAVs it is desirable to keep the minimum separation distance between the elements several wavelengths. As a result typical periodic planar arrays are not suitable, since for periodic arrays increasing the minimum element spacing beyond one wavelength will lead to the appearance of grating lobes in the radiation pattern. It will be shown that using this method antenna arrays with very wide bandwidths and low sidelobe levels can be designed. It will also be shown that in conjunction with a phase compensation method these arrays show a large degree of versatility to positional noise. Next aperiodic aggregates of gold nano-spheres are studied. Since traditional unit cell approaches cannot be used for aperiodic geometries, we start be developing new analytical tools for aperiodic arrays. A modified version of generalized Mie theory (GMT) is developed which defines scattering coefficients for aperiodic spherical arrays. Next two specific properties of quasicrystalline gold nano-spherical arrays are considered. The optical response of these arrays can be explained in terms of the grating response of the array (photonic resonance) and the plasmonic response of the spheres (plasmonic resonance). In particular the couplings between the photonic and plasmonic modes are studied. In periodic arrays this coupling leads to the formation of a so called photonic-plasmonic hybrid mode. The formation of hybrid modes is studied in quasicrystalline arrays. Quasicrystalline structures in essence possess several periodicities which in some cases can lead to the formation of multiple hybrid modes with wider bandwidths. It is also demonstrated that the performance of these arrays can be further enhanced by employing a perturbation method. The second property considered is local field enhancements in quasicrystalline arrays of gold nanospheres. It will be shown that despite a considerably smaller filling factor quasicrystalline arrays generate larger local field enhancements which can be even further enhanced by optimally placing perturbing spheres within the prototiles that comprise the aperiodic arrays. The second thrust of research in this dissertation focuses on designing all-dielectric filters and metamaterial coatings for the optical range. In higher frequencies metals tend to have a high loss and thus they are not suitable for many applications. Hence dielectrics are used for applications in optical frequencies. In particular we focus on designing two types of structures. First a near-perfect optical mirror is designed. The design is based on optimizing a subwavelength periodic dielectric grating to obtain appropriate effective parameters that will satisfy the desired perfect mirror condition. Second, a broadband anti-reflective all-dielectric grating with wide field of view is designed. The second design is based on a new computationally efficient genetic algorithm (GA) optimization method which shapes the sidewalls of the grating based on optimizing the roots of polynomial functions.

  2. Post-exposed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Miller, Gary A.

    This thesis explains the development and characterization of a novel technique to fabricate weak fiber Bragg gratings for highly specific multi-element sensor arrays. This method, termed the "rescan technique," involves re-exposing a local region of a grating to fringeless ultraviolet light to "trim" unwanted portions of the reflection spectrum. The spectral effects that result from a rescan can only be adequately described by inventing the concept of a three-dimensional index growth surface, where induced index is a function of both the writing intensity and the exposure time. Using this information, it is possible to predict the spectral response of a rescanned grating using a numerical model. For our model, we have modified the piecewise-uniform approach to include coefficients within the coupled-mode formulism that imitate the same scattering properties as the actual grating. By taking high accuracy measurements of the refractive index change in germanosilicate fiber, we have created the necessary 3D map of photoinduced index to accurately model gratings and their post-exposure spectra. We will also demonstrate that optical fiber exhibits what we call "exposure history"; the final index change in a region depends on the previous exposures conditions.

  3. Osmium coated diffraction grating in the Space Shuttle environment - Performance

    NASA Technical Reports Server (NTRS)

    Torr, M. R.

    1985-01-01

    Samples coated with osmium were flown on the early Shuttle test flights, and on the return of these samples, the osmium coating was found to have disappeared, evidently due to the oxidation of the material in the atomic oxygen atmosphere. An instrument flown on the Spacelab 1 mission comprised an array of five spectrometers covering the extreme ultraviolet (EUV) to near-IR wavelengths. The EUV spectrometer contained an osmium-coated reflective grating located fairly deep within the instruments. Here, results of an assessment of the reflectivity and stability of the osmium surface over the course of the ten-day mission are reported. It is concluded that the osmium reflective coating remained stable relative to the spectrometer coated with MgF2 over the course of the mission. In addition, the ratio of sensitivity of these two spectrometers did not change in any major way from the time of the laboratory calibration until the time of flight two years later. Any changes are within the 50-percent calibration uncertainty.

  4. Imaging spectrometer wide field catadioptric design

    DOEpatents

    Chrisp,; Michael, P [Danville, CA

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  5. Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.

    2011-09-01

    Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.

  6. THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure.

    PubMed

    Zhang, Yaxin; Zhou, Y; Dong, L

    2013-09-23

    Two electron-beams' interaction in a sandwich structure composed of a bi-grating and a sub-wavelength holes array is suggested to generate THz radiation in this paper. It shows that this system takes advantage of both bi-grating and sub-wavelength holes array structures. The results demonstrate that surface waves on a bi-grating can couple with mimicking surface plasmons of a sub-wavelength holes array so that the wave-coupling is strong and the field intensity is high in this structure. Moreover, compared with the interaction in the bi-grating structure and sub-wavelength holes array structure, respectively, it shows that in this composite system the two electron-beams' interaction is more efficient and the modulation depth and radiation intensity have been enhanced significantly. The modulation depth and efficiency can reach 22% and 4%, respectively, and the starting current density is only 12 A/cm². This radiation system may provide good opportunities for development of multi-electron beam-driven THz radiation sources.

  7. Optical Phased Array Using Guided Resonance with Backside Reflectors

    NASA Technical Reports Server (NTRS)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  8. Development of an Automated Impact Hammer for Modal Analysis of Structures

    DTIC Science & Technology

    2012-02-01

    6 3.5 Integration with FBG interrogation system . . . . . . . . . . . . . . . . . 7 4 Experimental...distributed Fibre Bragg Gratings ( FBGs ) in optical fibres. The modified approach to SIDER has been given the name iSIDER or inverse SIDER to reflect the...response is measured at many locations using a large array of surface mounted FBG strain sensors [2]. FBGs are ideally suited to the roving response approach

  9. Optical phased array using guided resonance with backside reflectors

    DOEpatents

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2016-11-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  10. Optical phased array using guided resonance with backside reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2018-03-13

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  11. Optical Phased Array Using Guided Resonance with Backside Reflectors

    NASA Technical Reports Server (NTRS)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2018-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  12. Highly directional thermal emitter

    DOEpatents

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  13. The cross waveguide grating: proposal, theory and applications.

    PubMed

    Muñoz, Pascual; Pastor, Daniel; Capmany, José

    2005-04-18

    In this paper a novel grating-like integrated optics device is proposed, the Cross Waveguide Grating (XWG). The device is based upon a modified configuration of a traditional Arrayed Waveguide Grating (AWG). The Arrayed Waveguides part is changed, as detailed along this document, giving the device both the ability of multi/demultiplexing and power splitting/coupling. Design examples and transfer function simulations show good agreement with the presented theory. Finally, some of the envisaged applications are outlined.

  14. Fiber facet gratings for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  15. Analysis of a color-matching backlight system using a blazed grating and a lenticular lens array.

    PubMed

    Son, Chang-Gyun; Gwag, Jin Seok; Lee, Jong Hoon; Kwon, Jin Hyuk

    2012-12-20

    A high efficiency LCD employing a color-matching backlight system that consists of a collimation lenticular lens sheet, a blazed grating, and a focusing lenticular lens array is proposed and analyzed. The RGB lights that are collimated and dispersed from the collimation lenticular lens sheet and the blazed grating are incident on the RGB color filters by the focusing lenticular lens array. The color-matched transmittance was increased 183% and 121% for divergence angles of 2° and 11°, respectively, compared to a conventional backlight that does not use a blazed grating. The design, simulation, and experimental results for the prototype color-matching backlight system are presented.

  16. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

    PubMed

    Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui

    2015-11-10

    In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.

  17. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    PubMed Central

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  18. [Technology Development for X-Ray Reflection for the Constellation-X Reflection Grating Spectrometer (RGS)

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2003-01-01

    This Grant covers MIT support for the technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we successfully developed several nanoimprint grating replication methods that achieved very high fidelity replication of master silicon gratings. Grating geometry on the nano and macro scales were faithfully replicated, demonstrating the viability of the process for manufacturing the thousands of gratings required for the RGS. We also successfully developed an improved metrology truss for holding test grating substrates during metrology. The flatness goal of grating substrates is under 500 nm. In the past, grating holders would cause non-repeatable distortion of >> 500 nm to the substrates due to friction and gravity sag. The new holder has a repeatability of under 50 nm which is adequate for the proposed RGS grating substrates.

  19. Grating array systems having a plurality of gratings operative in a coherently additive mode and methods for making such grating array systems

    DOEpatents

    Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY

    2007-02-13

    A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.

  20. Dynamic high pressure measurements using a Fiber Bragg Grating probe and an arrayed waveguide grating spectrometer

    NASA Astrophysics Data System (ADS)

    Barbarin, Y.; Lefrançois, A.; Magne, S.; Woirin, K.; Sinatti, F.; Osmont, A.; Luc, J.

    2016-08-01

    High pressure shock profiles are monitored using a long Fiber Bragg Grating (FBG). Such thin probe, with a diameter of typically 150 μm, can be inserted directly into targets for shock plate experiments. The shocked FBG's portion is stressed under compression, which increases its optical group index and shortens its grating period. Placed along the 2D symmetrical axis of the cylindrical target, the second effect is stronger and the reflected spectrum shifts towards the shorter wavelengths. The dynamic evolution of FBG spectra is recorded with a customized Arrayed Waveguide Grating (AWG) spectrometer covering the C+L band. The AWG provides 40 channels of 200-GHz spacing with a special flattop design. The output channels are fiber-connected to photoreceivers (bandwidth: DC - 400 MHz or 10 kHz - 2 GHz). The experimental setup was a symmetric impact, completed in a 110-mm diameter single-stage gas gun with Aluminum (6061T6) impactors and targets. The FBG's central wavelength was 1605 nm to cover the pressure range of 0 - 8 GPa. The FBG was 50-mm long as well as the target's thickness. The 20-mm thick impactor maintains a shock within the target over a distance of 30 mm. For the impact at 522 m/s, the sustained pressure of 3.6 GPa, which resulted in a Bragg shift of (26.2 +/- 1.5) nm, is measured and retrieved with respectively thin-film gauges and the hydrodynamic code Ouranos. The shock sensitivity of the FBG is about 7 nm/GPa, but it decreases with the pressure level. The overall spectra evolution is in good agreement with the numerical simulations.

  1. Zonal wavefront sensor with reduced number of rows in the detector array.

    PubMed

    Boruah, Bosanta R; Das, Abhijit

    2011-07-10

    In this paper, we describe a zonal wavefront sensor in which the photodetector array can have a smaller number of rows. The test wavefront is incident on a two-dimensional array of diffraction gratings followed by a single focusing lens. The periodicity and the orientation of the grating rulings of each grating can be chosen such that the +1 order beam from the gratings forms an array of focal spots in the detector plane. We show that by using a square array of zones, it is possible to generate an array of +1 order focal spots having a smaller number of rows, thus reducing the height of the required detector array. The phase profile of the test wavefront can be estimated by measuring the displacements of the +1 order focal spots for the test wavefront relative to the +1 order focal spots for a plane reference wavefront. The narrower width of the photodetector array can offer several advantages, such as a faster frame rate of the wavefront sensor, a reduced amount of cross talk between the nearby detector zones, and a decrease in the maximum thermal noise. We also present experimental results of a proof-of-concept experimental arrangement using the proposed wavefront sensing scheme. © 2011 Optical Society of America

  2. Design and fabrication of sub-wavelength anti-reflection grating

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Li, Chaoming; Chen, Xinrong; Cai, Zhijian; Wu, Jianhong

    2018-01-01

    In the high power laser system, the reflection of optical surface has a strong impact on the efficiency for luminous energy utilization. Fresnel reflection can be effectively suppressed by antireflection film. For that, the anti-reflection film is one of the important optical elements in high power laser system. The common preparation methods of anti-reflection film include monolayer film, multilayer film and sub-wavelength grating. The effectiveness of monolayer is unsatisfactory, and its application spectrum bandwidth is very narrow. The preparation process of multilayer film is complex and it is very expensive. The emerging technology of fabrication anti-reflection film is sub-wavelength grating. The zero order transmission diffraction efficiency depends on the period, etching depth and duty cycle of the grating. The structure parameters of antireflection grating were designed and optimized under small angle incidence of 351nm based on rigorous coupled wave analysis method. The impaction of zero order reflection diffraction and zero order transmission diffraction efficiency on period, duty cycle and etching depth of grating was discussed in detail in this paper. The sub-wavelength anti-reflection grating was fabricated by holographic and ion etching method.

  3. Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization.

    PubMed

    Presi, M; Chiuchiarelli, A; Corsini, R; Choudury, P; Bottoni, F; Giorgi, L; Ciaramella, E

    2012-12-10

    We report enhanced 10 Gb/s operation of directly modulated bandwidth-limited reflective semiconductor optical amplifiers. By using a single suitable arrayed waveguide grating we achieve simultaneously WDM demultiplexing and optical equalization. Compared to previous approaches, the proposed system results significantly more tolerant to seeding wavelength drifts. This removes the need for wavelength lockers, additional electronic equalization or complex digital signal processing. Uniform C-band operations are obtained experimentally with < 2 dB power penalty within a wavelength drift of 10 GHz (which doubles the ITU-T standard recommendations).

  4. A fiber-optic ice detection system for large-scale wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  5. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  6. Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds

    NASA Technical Reports Server (NTRS)

    Pozar, D. M.; Schaubert, D. H.

    1984-01-01

    A solution is presented to the problem of an infinite array of microstrip patches fed by idealized current probes. The input reflection coefficient is calculated versus scan angle in an arbitrary scan plane, and the effects of substrate parameters and grid spacing are considered. It is pointed out that even when a Galerkin method is used the impedance matrix is not symmetric due to phasing through a unit cell, as required for scanning. The mechanism by which scan blindness can occur is discussed. Measurement results are presented for the reflection coefficient magnitude variation with angle for E-plane, H-plane, and D-plane scans, for various substrate parameters. Measured results from waveguide simulators are also presented, and the scan blindness phenomenon is observed and discussed in terms of forced surface waves and a modified grating lobe diagram.

  7. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  8. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  9. Broadband moth-eye antireflection coatings on silicon

    NASA Astrophysics Data System (ADS)

    Sun, Chih-Hung; Jiang, Peng; Jiang, Bin

    2008-02-01

    We report a bioinspired templating technique for fabricating broadband antireflection coatings that mimic antireflective moth eyes. Wafer-scale, subwavelength-structured nipple arrays are directly patterned on silicon using spin-coated silica colloidal monolayers as etching masks. The templated gratings exhibit excellent broadband antireflection properties and the normal-incidence specular reflection matches with the theoretical prediction using a rigorous coupled-wave analysis (RCWA) model. We further demonstrate that two common simulation methods, RCWA and thin-film multilayer models, generate almost identical prediction for the templated nipple arrays. This simple bottom-up technique is compatible with standard microfabrication, promising for reducing the manufacturing cost of crystalline silicon solar cells.

  10. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  11. Laser interrogation techniques for high-sensitivity strain sensing by fiber-Bragg-grating structures

    NASA Astrophysics Data System (ADS)

    Gagliardi, G.; Salza, M.; Ferraro, P.; De Natale, P.

    2017-11-01

    Novel interrogation methods for static and dynamic measurements of mechanical deformations by fiber Bragg-gratings (FBGs) structures are presented. The sensor-reflected radiation gives information on suffered strain, with a sensitivity dependent on the interrogation setup. Different approaches have been carried out, based on laser-frequency modulation techniques and near-IR lasers, to measure strain in single-FBG and in resonant high-reflectivity FBG arrays. In particular, for the fiber resonator, the laser frequency is actively locked to the cavity resonances by the Pound-Drever-Hall technique, thus tracking any frequency change due to deformations. The loop error and correction signals fed back to the laser are used as strain monitor. Sensitivity limits vary between 200 nɛ/√Hz in the quasi-static domain (0.5÷2 Hz), and between 1 and 4 nɛ/√Hz in the 0.4-1 kHz range for the single-FBG scheme, while strain down to 50 pɛ can be detected by using the laser-cavity-locked method.

  12. Zonal wavefront sensing using a grating array printed on a polyester film

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  13. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  14. Development of Ultra-Low Noise, High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR Sensor Systems

    DTIC Science & Technology

    1992-05-01

    Development of Ultra-Low Noise , High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array...February 1 - April 30, 1992 Project Title: Development of low- noise high-detectivity planar metal grating coupled III-V multiquantum-well/superlattice...low- noise and high-detectivity planar metal grating coupled bound-to- miniband (BTM) GaAs/AlGaAs and step-bound-to-miniband (SBTM) InGaAs/AlGaAs /GaAs

  15. Positive focal shift of gallium nitride high contrast grating focusing reflectors

    NASA Astrophysics Data System (ADS)

    He, Shumin; Wang, Zhenhai; Liu, Qifa

    2016-09-01

    We design a type of metasurfaces capable of serving as a visible-light focusing reflector based on gallium nitride (GaN) high contrast gratings (HCGs). The wavefront of the reflected light is precisely manipulated by spatial variation of the grating periods along the subwavelength ridge array to achieve light focusing. Different from conventional negative focal shift effect, a positive focal shift is observed in such focusing reflectors. Detailed investigations of the influence of device size on the focusing performance, especially the focal length, are preformed via a finite element method . The results show that all performance parameters are greatly affected by the reflector size. A more concentrated focal point, or a better focusing capability, can be achieved by larger size. With increasing reflector size, the achieved focal length decreases and gradually approaches to the design, thus the corresponding positive focal shift decreases. Our results are helpful for understanding the visible-light control of the planar HCG-based focusing reflectors.

  16. Operation Manual for the Intensity Based Interrogation of Fibre Bragg Grating Arrays on Vibrating Structures

    DTIC Science & Technology

    2011-01-01

    based demodulation approach for the measurement of strains, induced by structural vibrations, using Fiber Bragg Gratings ( FBG ). This companion...provide the Frequency Response Functions from a series of FBG arrays attached to a vibrating structure. RELEASE LIMITATION Approved for... FBG arrays attached to a vibrating structure. Both this technical note and its companion technical report are formal contributions to an

  17. An update on X-ray reflection gratings developed for future missions

    NASA Astrophysics Data System (ADS)

    Miles, Drew

    2018-01-01

    X-ray reflection gratings are a key technology being studied for future X-ray spectroscopy missions, including the Lynx X-ray mission under consideration for the 2020 Decadal Survey. We present an update on the status of X-ray reflection gratings being developed at Penn State University, including current fabrication techniques and mass-replication processes and the latest diffraction efficiency results and resolving power measurements. Individual off-plane X-ray reflection gratings have exceeded the current Lynx requirements for both effective area and resolving power. Finally, we discuss internal projects that will advance the technology readiness level of these gratings.

  18. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  19. Talbot effect of quasi-periodic grating.

    PubMed

    Zhang, Chong; Zhang, Wei; Li, Furui; Wang, Junhong; Teng, Shuyun

    2013-07-20

    Theoretic and experimental studies of the Talbot effect of quasi-periodic gratings are performed in this paper. The diffractions of periodic and quasi-periodic square aperture arrays in Fresnel fields are analyzed according to the scalar diffraction theory. The expressions of the diffraction intensities of two types of quasi-periodic gratings are deduced. Talbot images of the quasi-periodic gratings are predicted to appear at multiple certain distances. The quasi-periodic square aperture arrays are produced with the aid of a liquid crystal light modulator, and the self-images of the quasi-periodic gratings are measured successfully in the experiment. This study indicates that even a structure in short-range disorder may take on the self-imaging effect in a Fresnel field.

  20. Widely tunable long-period waveguide grating couplers

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Liu, Q.; Lor, K. P.; Chiang, K. S.

    2006-12-01

    We demonstrate experimentally two widely tunable optical couplers formed with parallel long-period polymer waveguide gratings. One of the couplers consists of two parallel gratings and shows a peak coupling efficiency of ~34%. The resonance wavelength of the coupler can be tuned thermally with a sensitivity of 4.7 nm/°C. The experimental results agree well with the coupled-mode analysis. The other coupler consists of an array of ten widely separated gratings. A peak coupling efficiency of ~11% is obtained between the two best matched gratings in the array and the resonance wavelength can be tuned thermally with a sensitivity of -3.8 nm/°C. These couplers have the potential to be further developed into practical broadband add/drop multiplexers and signal dividers.

  1. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    PubMed

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  2. Zonal wavefront sensing using a grating array printed on a polyester film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing framemore » rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.« less

  3. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  4. Security enhancement of optical encryption based on biometric array keys

    NASA Astrophysics Data System (ADS)

    Yan, Aimin; Wei, Yang; Zhang, Jingtao

    2018-07-01

    A novel optical image encryption method is proposed by using Dammann grating and biometric array keys. Dammann grating is utilized to create a 2D finite uniform-intensity spot array. In encryption, a fingerprint array is used as private encryption keys. An original image can be encrypted by a scanning Fresnel zone plate array. Encrypted signals are processed by an optical coherent heterodyne detection system. Biometric array keys and optical scanning cryptography are integrated with each other to enhance information security greatly. Numerical simulations are performed to demonstrate the feasibility and validity of this method. Analyses on key sensitivity and the resistance against to possible attacks are provided.

  5. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, Peter R.

    1994-01-01

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings.

  6. Monolithic integration of an InP-based 4 × 25 GHz photodiode array to an O-band arrayed waveguide grating demultiplexer

    NASA Astrophysics Data System (ADS)

    Ye, Han; Han, Qin; Lv, Qianqian; Pan, Pan; An, Junming; Yang, Xiaohong

    2017-12-01

    We demonstrate the monolithic integration of a uni-traveling carrier photodiode array with a 4 channel, O-band arrayed waveguide grating demultiplexer on the InP platform by the selective area growth technique. An extended coupling layer at the butt-joint is adopted to ensure both good fabrication compatibility and high photodiode quantum efficiency of 77%. The fabricated integrated chip exhibits a uniform bandwidth over 25 GHz for each channel and a crosstalk below -22 dB.

  7. A novel survivable WDM passive optical networks

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaofei; Fang, Qin; Zhang, Yong; Chen, Bin; Lu, Fucai

    2008-11-01

    We propose a novel survivable wavelength-division multiplexed-passive optical network (WDM-PON) based on an N × N cyclic array waveguide grating (AWG) and reflective semiconductor optical amplifiers (RSOAs). ONUs are grouped and connected with extra connection fibres (CFs). Protection resources are provided mutually in ONU pairs. The characteristics of the proposed survivable WDM-PON and wavelength routing scheme are analyzed. Experiments of 10- Gb/s downstream and 1.25-Gb/s upstream transmission experiments are demonstrated to verify our proposed scheme.

  8. Ultrasound therapy transducers with space-filling non-periodic arrays.

    PubMed

    Raju, Balasundar I; Hall, Christopher S; Seip, Ralf

    2011-05-01

    Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.

  9. Polarization sensitivity testing of off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Marlowe, Hannah; McEntaffer, Randal L.; DeRoo, Casey T.; Miles, Drew M.; Tutt, James H.; Laubis, Christian; Soltwisch, Victor

    2015-09-01

    Off-Plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.

  10. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, P.R.

    1994-09-27

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings. 2 figs.

  11. Reflectivity of linear and nonlinear gamma radiated apodized chirped Bragg grating under ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdalla, Taymour A.; Faculty of Science, Tabuk University, Tabuk

    In this paper, the effect Co{sup 60} gamma radiation is investigated on the effective refractive index of apodized chirped Bragg grating. Nine apodization profiles are considered. Comparison between the reflectivity of the gamma radiated and non radiated fiber Bragg grating has been carried out. The electric field of signals propagating through the apodized chirped fiber Bragg grating (ACFBG) is first calculated from which, new values for the refractive index are determined. The nonlinear effects appear on the ACFBG reflectivity. The effect of nonlinearity and undersea temperature and pressure on the grating is also studied.

  12. Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER

    NASA Astrophysics Data System (ADS)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-10-01

    An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  13. Optical and x-ray alignment approaches for off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  14. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong

    2017-04-01

    A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.

  15. Reflectance calibration of focal plane array hyperspectral imaging system for agricultural and food safety applications

    NASA Astrophysics Data System (ADS)

    Lawrence, Kurt C.; Park, Bosoon; Windham, William R.; Mao, Chengye; Poole, Gavin H.

    2003-03-01

    A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the system. Once a FPA correction was applied, single wavelength and distance calibrations were used to describe all points on the FPA. Finally, a percent reflectance calibration, applied on a pixel-by-pixel basis, was used for accurate measurements for the hyperspectral imaging system. The method was demonstrated with a stationary prism-grating-prism, pushbroom hyperspectral imaging system. For the system described, wavelength and distance calibrations were used to reduce the wavelength errors to <0.5 nm and distance errors to <0.01mm (across the entrance slit width). The pixel-by-pixel percent reflectance calibration, which was performed at all wavelengths with dark current and 99% reflectance calibration-panel measurements, was verified with measurements on a certified gradient Spectralon panel with values ranging from about 14% reflectance to 99% reflectance with errors generally less than 5% at the mid-wavelength measurements. Results from the calibration method, indicate the hyperspectral imaging system has a usable range between 420 nm and 840 nm. Outside this range, errors increase significantly.

  16. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.

    PubMed

    Wu, Jun

    2018-03-01

    The polarization-independent enhanced absorption effect of graphene in the near-infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two-dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided-mode resonance with the dielectric square array and the photonic band gap with the two-dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near-unity polarization-independent absorption at resonance with an ultra-narrow spectrum. Moreover, the polarization-independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene-based optoelectronic devices.

  17. Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings

    NASA Astrophysics Data System (ADS)

    Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.

    2017-08-01

    We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.

  18. Modeling and empirical characterization of the polarization response of off-plane reflection gratings.

    PubMed

    Marlowe, Hannah; McEntaffer, Randall L; Tutt, James H; DeRoo, Casey T; Miles, Drew M; Goray, Leonid I; Soltwisch, Victor; Scholze, Frank; Herrero, Analia Fernandez; Laubis, Christian

    2016-07-20

    Off-plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount, which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.

  19. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy.

    PubMed

    Deng, Xuegong; Braun, Gary B; Liu, Sheng; Sciortino, Paul F; Koefer, Bob; Tombler, Thomas; Moskovits, Martin

    2010-05-12

    The surface-enhanced Raman spectroscopy (SERS) activity and the optical reflectance of a subwavelength gold nanograting fabricated entirely using top down technologies on silicon wafers are presented. The grating consists of 120 nm gold cladding on top of parallel silica nanowires constituting the grating's lines, with gaps between nanowires <10 nm wide at their narrowest point. The grating produces inordinately intense SERS and shows very strong polarization dependence. Reflectance measurements for the optimized grating indicate that (when p-polarization is used and at least one of the incident electric field components lies across the grating lines) the reflectance drops to <1% at resonance, indicating that essentially all of the radiant energy falling on the surface is coupled into the grating. The SERS intensity and the reflectance at resonance anticorrelate predicatively, suggesting that reflectance measurements can provide a nondestructive, wafer-level test of SERS efficacy. The SERS performance of the gratings is very uniform and reproducible. Extensive measurements on samples cut from both the same wafer and from different wafers, produce a SERS intensity distribution function that is similar to that obtained for ordinary Raman measurements carried out at multiple locations on a polished (100) silicon wafer.

  20. Corrugated grating on organic multilayer Bragg reflector

    NASA Astrophysics Data System (ADS)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  1. A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides

    NASA Astrophysics Data System (ADS)

    Mizutani, Akio; Eto, Yohei; Kikuta, Hisao

    2017-12-01

    A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.

  2. Performance testing of a novel off-plane reflection grating and silicon pore optic spectrograph at PANTER

    NASA Astrophysics Data System (ADS)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey; Miles, Drew M.; Donovan, Benjamin D.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-05-01

    An X-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  3. Test surfaces useful for calibration of surface profilometers

    DOEpatents

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  4. Entrained-flow gasifier and fluidized-bed combustor temperature monitoring using arrays of fs-IR written fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Grobnic, Dan; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan

    2015-09-01

    Femtosecond written fiber Bragg gratings, have shown great potential for sensing in extreme environments. This paper discusses the fabrication and deployment of several fs-IR written FBG arrays, for monitoring main-spool skin temperatures of an entrained-flow gasifier, as well as the internal temperature gradient of a fluidized bed combustor.

  5. Health monitoring of carbon cantilever using femtosecond laser inscribed FBG array in gradient-index CYTOP polymer fibre

    NASA Astrophysics Data System (ADS)

    Theodosiou, Antreas; Kalli, Kyriacos; Komodromos, Michael

    2017-04-01

    We report on the femtosecond laser inscription of a fibre Bragg grating array in multimode, gradient-index, CYTOP polymer optical fibre and its demonstration as a quasi-distributed sensor for cantilever health monitoring measurements. We exploit the key advantage of polymer optical fibres, having a significantly lower Young's modulus compared with silica fibres, for vibration measurements. We also modify the typical multi-mode Bragg grating spectrum through control of the femtosecond laser inscription process, thereby producing gratings having single peak wavelength spectra. The sensor array is used to recover the time-dependent, wavelength response from each Bragg grating sensor and extract the mode shape of the beam. The mode shapes of the beam were used to observe "damage" introduced to the cantilever by adding masses to its surface; adjusting the level of damage by using different weights and placing them at different point across the beam. We show that health monitoring measurements are feasible with polymer based fibre Bragg gratings. The accurate and rapid detection of damage points on structural beams and the damage level is an important parameter for improved maintenance and servicing of beams under load and for the prevention of long-term damage.

  6. All-silicon nanorod-based Dammann gratings.

    PubMed

    Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong

    2015-09-15

    Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.

  7. Short pulse laser stretcher-compressor using a single common reflective grating

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  8. Comparison between high- and zero-contrast gratings as VCSEL mirrors

    NASA Astrophysics Data System (ADS)

    Liu, Anjin; Zheng, Wanhua; Bimberg, Dieter

    2017-04-01

    This study presents a comparison between high-contrast gratings (HCGs) and zero-contrast gratings (ZCGs) for high-speed vertical-cavity surface-emitting lasers (VCSELs). Both types of gratings exhibit high reflectivities beyond 99.5% due to the destructive interference at the output plane, but the HCG has a broader high reflectivity band. The HCG has a lower reflection delay time and smaller energy penetration length than the ZCG. The HCG has poorer mode selectivity for the VCSEL than the ZCG. The fabrication of the ZCG is less complex but with tight fabrication tolerances.

  9. Reflectance spectra characteristics from an SPR grating fabricated by nano-imprint lithography technique for biochemical nanosensor applications

    NASA Astrophysics Data System (ADS)

    Setiya Pradana, Jalu; Hidayat, Rahmat

    2018-04-01

    In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.

  10. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    PubMed

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  11. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  12. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  13. Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays.

    PubMed

    Molero, Carlos; Rodríguez-Berral, Raúl; Mesa, Francisco; Medina, Francisco; Yakovlev, Alexander B

    2016-01-01

    A wideband equivalent circuit is proposed for the accurate analysis of scattering from a set of stacked slit gratings illuminated by a plane wave with transverse magnetic or electric polarization that impinges normally or obliquely along one of the principal planes of the structure. The slit gratings are printed on dielectric slabs of arbitrary thickness, including the case of closely spaced gratings that interact by higher-order modes. A Π-circuit topology is obtained for a pair of coupled arrays, with fully analytical expressions for all the circuit elements. This equivalent Π circuit is employed as the basis to derive the equivalent circuit of finite stacks with any given number of gratings. Analytical expressions for the Brillouin diagram and the Bloch impedance are also obtained for infinite periodic stacks.

  14. Reflection Properties of Metallic Gratings on ZnO Films over GaAs Substrates

    NASA Technical Reports Server (NTRS)

    Hickernell, Fred S.; Kim, Yoonkee; Hunt, William D.

    1994-01-01

    A potential application for piezoelectric film deposited on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Metallic gratings are basic elements required for the construction of such devices, and analyzing the reflectivity and the velocity change due to metallic gratings is often a critical design parameter. In this article, Datta and Hunsinger technique is extended to the case of a multilayered structure, and the developed technique is applied to analyze shorted and open gratings on ZnO films sputtered over (001)-cut (110)-propagating GaAs substrates. The analysis shows that zero reflectivity of shorted gratings can be obtained by a combination of the ZnO film and the metal thickness and the metalization ratio of the grating. Experiments are performed on shorted and an open gratings (with the center frequency of about 180 MHz) for three different metal thicknesses over ZnO films which are 0.8 and 2.6 micrometers thick. From the experiments, zero reflectivity at the resonant frequency of the grating is observed for a reasonable thickness (h/Alpha = 0.5%) of aluminum metalization. The velocity shift between the shorted and the open grating is also measured to be 0.18 MHz and 0.25 MHz for 0.8 and 1.6 micrometers respectively. The measured data show relatively good agreement with theoretical predictions.

  15. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 < λ (nm) < 550. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  16. The system analysis of light field information collection based on the light field imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Li, Wenhua; Hao, Chenyang

    2016-10-01

    Augmented reality(AR) technology is becoming the study focus, and the AR effect of the light field imaging makes the research of light field camera attractive. The micro array structure was adopted in most light field information acquisition system(LFIAS) since emergence of light field camera, micro lens array(MLA) and micro pinhole array(MPA) system mainly included. It is reviewed in this paper the structure of the LFIAS that the Light field camera commonly used in recent years. LFIAS has been analyzed based on the theory of geometrical optics. Meanwhile, this paper presents a novel LFIAS, plane grating system, we call it "micro aperture array(MAA." And the LFIAS are analyzed based on the knowledge of information optics; This paper proves that there is a little difference in the multiple image produced by the plane grating system. And the plane grating system can collect and record the amplitude and phase information of the field light.

  17. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    PubMed

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  18. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.

  19. Hybrid grating reflectors: Origin of ultrabroad stopband

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-04-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  20. Control over photo-inscription and thermal annealing to obtain high-quality Bragg gratings in doped PMMA optical fibers.

    PubMed

    Hu, Xuehao; Kinet, Damien; Mégret, Patrice; Caucheteur, Christophe

    2016-07-01

    Bragg gratings are photo-inscribed in trans-4-stilbenemethanol doped PMMA fibers using a 325 nm He-Cd laser and a phase mask. Two distinct behaviors are reported depending on the laser power density. In the high-density regime with 637  mW/mm2, the grating reflectivity is stable over time after the writing process, but the reflected spectrum is of limited quality, as the grating length is limited to the laser width (1.2 mm). The beam is then enlarged to 6 mm, decreasing the power density to 127  mW/mm2. In this case, the grating reflectivity strongly decays after the writing process. A fortunate property here results from the recovery of the initial reflectivity using a post-inscription thermal annealing. Both behaviors are attributed to the evolution between trans- and cis-isomers.

  1. Research on pressure tactile sensing technology based on fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Song, Jinxue; Jiang, Qi; Huang, Yuanyang; Li, Yibin; Jia, Yuxi; Rong, Xuewen; Song, Rui; Liu, Hongbin

    2015-09-01

    A pressure tactile sensor based on the fiber Bragg grating (FBG) array is introduced in this paper, and the numerical simulation of its elastic body was implemented by finite element software (ANSYS). On the basis of simulation, fiber Bragg grating strings were implanted in flexible silicone to realize the sensor fabrication process, and a testing system was built. A series of calibration tests were done via the high precision universal press machine. The tactile sensor array perceived external pressure, which is demodulated by the fiber grating demodulation instrument, and three-dimension pictures were programmed to display visually the position and size. At the same time, a dynamic contact experiment of the sensor was conducted for simulating robot encountering other objects in the unknown environment. The experimental results show that the sensor has good linearity, repeatability, and has the good effect of dynamic response, and its pressure sensitivity was 0.03 nm/N. In addition, the sensor also has advantages of anti-electromagnetic interference, good flexibility, simple structure, low cost and so on, which is expected to be used in the wearable artificial skin in the future.

  2. Curved VPH gratings for novel spectrographs

    NASA Astrophysics Data System (ADS)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  3. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; hide

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  4. A Near-Infrared Spectrometer Based on Novel Grating Light Modulators

    PubMed Central

    Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin

    2009-01-01

    A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification. PMID:22574065

  5. A near-infrared spectrometer based on novel grating light modulators.

    PubMed

    Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin

    2009-01-01

    A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification.

  6. Theory of Fiber Optical Bragg Grating: Revisited

    NASA Technical Reports Server (NTRS)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  7. Ultrafast transient grating radiation to optical image converter

    DOEpatents

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  8. [Development of X-ray Reflection Grating Technology for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2005-01-01

    This Grant supports MIT technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we have focused our efforts on extending our Nanoruler grating fabrication tool to enable it to perform variable-period scanning-beam interference lithography (VP-SBIL). This new capability required extensive optical and mechanical improvements to the system. The design phase of this work is largely completed and key components are now on order and assembly has begun. Over the next several months the new VP-SBIL Nanoruler system will be completed and testing begun. We have also demonstrated a new technique for patterning gratings using the Nanoruler called Doppler mode, which will be important for patterning the radial groove gratings for the RGS using the new VP-SBIL system. Flat and thin grating substrates will be critical for the RGS. In the last year we demonstrated a new technique for flattening thin substrates using magneto-rheologic fluid polishing (MRF) and achieved 2 arcsecond flatness with a 0.5 mm-thick substrate-a world's record. This meets the Con X requirement for grating substrate flatness.

  9. The infrared imaging spectrograph (IRIS) for TMT: reflective ruled diffraction grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Meyer, Elliot; Chen, Shaojie; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Simard, Luc; Marie, Jerome; Mieda, Etsuko; Gordon, Jacob

    2014-07-01

    We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). IRIS will operate across the near-infrared encompassing the ZYJHK bands (~0.84 - 2.4μm) with multiple spectral resolutions. We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37μm (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86° and 20.54° respectively. The other two gratings accept a bandpass of 1.51-1.82μm (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86°. The fraction of flux in each diffraction mode was compared to both a pure reflection mirror as well as the sum of the flux measured in all observable modes. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3°. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency predictions. This work will significantly contribute to the selection of the final grating type and vendor for the IRIS optical system, and are also pertinent to current and future near-infrared astronomical spectrographs.

  10. Reannealed Fiber Bragg Gratings Demonstrated High Repeatability in Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.

    2004-01-01

    Fiber Bragg gratings (FBGs) are formed by periodic variations of the refractive index of an optical fiber. These periodic variations allow an FBG to act as an embedded optical filter, passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change the wavelengths that are transmitted and reflected by it. Both thermal and mechanical forces acting on the grating will alter its physical characteristics, allowing the FBG sensor to detect both the temperature variations and the physical stresses and strains placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. To assess the feasibility of using Bragg gratings as temperature sensors for propulsion applications, researchers at the NASA Glenn Research Center evaluated the performance of Bragg gratings at elevated temperatures for up to 300 C. For these purposes, commercially available polyimide-coated high-temperature gratings were used that were annealed by the manufacturer to 300 C. To assure the most thermally stable gratings at the operating temperatures, we reannealed the gratings to 400 C at a very slow rate for 12 to 24 hr until their reflected optical powers were stabilized. The reannealed gratings were then subjected to periodic thermal cycling from room temperature to 300 C, and their peak reflected wavelengths were monitored. The setup shown is used for reannealing and thermal cycling the FBGs. Signals from the photodetectors and the spectrum analyzer were fed into a computer equipped with LabVIEW software. The software synchronously monitored the oven/furnace temperature and the optical spectrum analyzer as well as processed the data. Experimental results presented in the following graph show typical wavelength versus temperature dependence of a reannealed FBG through six thermal cycles (80 hr). The average standard deviation of the temperature-to-wavelength relationship ranged from 1.86 to 2.92 C over the six thermal cycles each grating was subjected to. This is an error of less than 1.0 percent of full scale throughout the entire evaluation temperature range from ambient to 300 C.

  11. Fabry-Perot color filter with antireflective nano-grating surface

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayuan; Zhang, Jie; Dong, Xiaoxuan

    2013-12-01

    In order to improve the color saturation of reflective Fabry-Perot(FP) color filter, we proposed a reflective color filter incorporating FP resonator with a dielectric grating. The FP resonator consists of high reflection metal film, dielectric film and semi-transparent metal film. The dielectric grating, above the semi-transparent metal film, can reduce the reflection from the semi-transparent film in which case high saturation will be achieved. By using Finite Difference Time Domain(FDTD) method, the reflection spectra characteristic is analyzed as a function of duty cycle, period, refractive index and thickness of the dielectric grating. Based on the simulation results, a high performance color filter is proposed by optimizing the structural parameters. The full width at half-maximum (FWHM) reflection spectrum of the filters are reduced from 100 nm to 70 nm and the peak reflection efficiency of the filters are about 90%. The overlap of the tricolor output spectra decreases effectively, which will increase the color saturation of the color filter.

  12. Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings.

    PubMed

    Muñoz, P; Pastor, D; Capmany, J; Martínez, A

    2003-09-22

    In this paper, the procedure to optimize flat-top Arrayed Waveguide Grating (AWG) devices in terms of transmission and dispersion properties is presented. The systematic procedure consists on the stigmatization and minimization of the Light Path Function (LPF) used in classic planar spectrograph theory. The resulting geometry arrangement for the Arrayed Waveguides (AW) and the Output Waveguides (OW) is not the classical Rowland mounting, but an arbitrary geometry arrangement. Simulation using previous published enhanced modeling show how this geometry reduces the passband ripple, asymmetry and dispersion, in a design example.

  13. The effects of transducer geometry on artifacts common to diagnostic bone imaging with conventional medical ultrasound.

    PubMed

    Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A

    2012-06-01

    The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.

  14. Narrow linewidth short cavity Brillouin random laser based on Bragg grating array fiber and dynamical population inversion gratings

    NASA Astrophysics Data System (ADS)

    Popov, S. M.; Butov, O. V.; Chamorovski, Y. K.; Isaev, V. A.; Mégret, P.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    We report on random lasing observed with 100-m-long fiber comprising an array of weak FBGs inscribed in the fiber core and uniformly distributed over the fiber length. Extended fluctuation-free oscilloscope traces highlight power dynamics typical for lasing. An additional piece of Er-doped fiber included into the laser cavity enables a stable laser generation with a linewidth narrower than 10 kHz.

  15. Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

    NASA Astrophysics Data System (ADS)

    LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

    2016-05-01

    Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

  16. Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Longfang; Department of Electrical and Electronic Engineering, The University of Bristol, Bristol, BS8 1TH; López-García, Martin

    2014-11-10

    The capability of manipulating light at subwavelength scale has fostered the applications of flat metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high conductive losses of metals at optical frequencies. This letter investigates the spectral and angular characteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a linearly varying phase response. The far-field response of the metasurface can be decomposed into the response of a single grating element (sub-array) and the grating arrangement response. The analysis also reveals that couplingmore » between resonators has a non-negligible impact on the angular response. Over a wide wavelength range, the simulated and measured angular characteristics of the metasurface provide a definite illustration of how different grating diffraction orders can be selectively suppressed or enhanced through antenna sub-array design.« less

  17. An infrared high resolution silicon immersion grating spectrometer for airborne and space missions

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David

    2014-08-01

    Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.

  18. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOEpatents

    Greenwood, Margaret S [Richland, WA

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  19. Bio-sensing based on plasmon-coupling caused by rotated sub-micrometer gratings in metal-dielectric interfacial layers

    NASA Astrophysics Data System (ADS)

    Csete, M.; Sipos, Á.; Szalai, A.; Mathesz, A.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Kőházi-Kis, A.; Osvay, K.; Marti, O.; Bor, Zs.

    2007-09-01

    Novel plasmonic sensor chips are prepared by generating sub-micrometer periodic patterns in the interfacial layers of bimetal-polymer films via master-grating based interference method. Poly-carbonate films spin-coated onto vacuum evaporated silver-gold bimetallic layers are irradiated by the two interfering UV beams of a Nd:YAG laser. It is proven by pulsed force mode AFM that periodic adhesion pattern corresponds to the surface relief gratings, consisting of sub-micrometer droplet arrays and continuous polymer stripes, induced by p- and s-polarized beams, respectively. The characteristic periods are the same, but more complex and larger amplitude adhesion modulation is detectable on the droplet arrays. The polar and azimuthal angle dependence of the resonance characteristic of plasmons is studied by combining the prism- and grating-coupling methods in a modified Kretschmann arrangement, illuminating the structured metal-polymer interface by a frequency doubled Nd:YAG laser through a semi-cylinder. It is proven that the grating-coupling results in double-peaked plasmon resonance curves on both of the droplet arrays and line gratings, when the grooves are rotated to an appropriate azimuthal angle, and the modulation amplitude of the structure is sufficiently large. Streptavidin seeding is performed to demonstrate that small amount of protein can be detected monitoring the shift of the secondary resonance minima. The available high concentration sensitivity is explained by the promotion of protein adherence in the structure's valleys due to the enhanced adhesion. The line-shaped polymer gratings resulting in narrow resonance peaks are utilized to demonstrate the effect of therapeutic molecules on Amyloid-Β peptide, a pathogenic factor in Alzheimer disease.

  20. Inline microring reflector for photonic applications

    NASA Astrophysics Data System (ADS)

    Kang, Young Mo

    The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation---and show that the prediction agrees very well with the measurement result.

  1. Cylinder and metal grating polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Xu, Suzhi

    2017-08-01

    We propose a novel and compact metal grating polarization beam splitter (PBS) based on its different reflected and transmitted orders. The metal grating exhibits a broadband high reflectivity and polarization dependence. The rigorous coupled wave analysis is used to calculate the reflectivity and the transmitting spectra and optimize the structure parameters to realize the broadband PBS. The finite-element method is used to calculate the field distribution. The characteristics of the broadband high reflectivity, transmitting and the polarization dependence are investigated including wavelength, period, refractive index and the radius of circle grating. When grating period d = 400 nm, incident wavelength λ = 441 nm, incident angle θ = 60° and radius of circle d/5, then the zeroth reflection order R0 = 0.35 and the transmission zeroth order T0 = 0.08 for TE polarization, however, T0 = 0.34 and R0 = 0.01 for TM mode. The simple fabrication method involves only single etch step and good compatibility with complementary metal oxide semiconductor technology. PBS designed here is particularly suited for optical communication and optical information processing.

  2. Material removal rate fiber optic corrosion sensor

    NASA Astrophysics Data System (ADS)

    Trego, Angela; Haugse, Eric D.; Udd, Eric

    1998-09-01

    Fiber Bragg grating sensors generally consist of a single grating written in a low-birefringent optical fiber. The wavelength shift of the peak in the reflected spectrum from these sensors can be used to measure a single component of strain or a change in temperature [Lawrence, 1997]. Fibers are also available with a significant enough birefringence to maintain the polarization state along great lengths and through many turns. This 'polarization maintaining' fiber is commercially available through several companies and in several configurations (including different cladding material and wavelength shift). The grating usually extends approximately 3 mm - 5 m in length. Udd gives a detailed explanation of fiber optics, Bragg gratings and birefringence [Udd, 1991]. As light from an LED is passed through the fiber, only the wavelength consistent with the grating period will be reflected back towards the source. All other wavelengths will pass through. The reflected spectrum will shift as the fiber is strained along its axis at the grating location. Strain or temperature changes at any other location have negligible effect on the wavelength encoded data output. When the Fiber Bragg grating single-axis sensor (termed fiber hereafter) is strained transversely the wavelength will separate into two distinct peaks according to a mathematical relationship defined by Lawrence and Nelson [Lawrence, Nelson et al. 96]. Using these Fiber Bragg grating fibers a corrosion sensor which measures the rate of material was developed. The principle behind this newly developed corrosion sensor is to pre-stress the fiber with a known load. The load is applied by inducing a uniform hoop stress through pressure fitted cylinders around the fiber. This induced stress creates a broadening of the reflected spectrum until the bifurcation of the reflected intensity peaks is distinguishable. As the material from the outer cylinder corrodes away the applied stress will be relieved. Finally, when no load is achieved, the reflected spectrum will have a single peak centered around the nominal Bragg grating wavelength. If a polarizing-maintaining 3-axis grating is used then the sensor would be even more sensitive, having two distinct peaks in each wavelength regime which shift.

  3. Design of a high-speed optical dark-soliton detector using a phase-shifted waveguide Bragg grating in reflection.

    PubMed

    Ngo, Nam Quoc

    2007-12-01

    A theoretical study of a new application of a simple pi-phase-shifted waveguide Bragg grating (PSWBG) in reflection mode as a high-speed optical dark-soliton detector is presented. The PSWBG consists of two concatenated identical uniform waveguide Bragg gratings with a pi phase shift between them. The reflective PSWBG, with grating reflectivities equal to 0.9, a free spectral range of 1.91 THz, and a nonlinear phase response, can convert a 40 Gbit/s noisy dark-soliton signal into a high-quality 40 Gbit/s return-to-zero signal with a peak power level of approximately 17.5 dB greater than that by the existing Mach-Zehnder interferometer with free spectral range of 1.91 THz and a linear phase response.

  4. Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing

    PubMed Central

    Dhawan, Anuj; Canva, Michael; Vo-Dinh, Tuan

    2011-01-01

    We present a novel surface plasmon resonance (SPR) configuration based on narrow groove (sub-15 nm) plasmonic nano-gratings such that normally incident radiation can be coupled into surface plasmons without the use of prism-coupling based total internal reflection, as in the classical Kretschmann configuration. This eliminates the angular dependence requirements of SPR-based sensing and allows development of robust miniaturized SPR sensors. Simulations based on Rigorous Coupled Wave Analysis (RCWA) were carried out to numerically calculate the reflectance - from different gold and silver nano-grating structures - as a function of the localized refractive index of the media around the SPR nano-gratings as well as the incident radiation wavelength and angle of incidence. Our calculations indicate substantially higher differential reflectance signals, on localized change of refractive index in the narrow groove plasmonic gratings, as compared to those obtained from conventional SPR-based sensing systems. Furthermore, these calculations allow determination of the optimal nano-grating geometric parameters - i. e. nanoline periodicity, spacing between the nanolines, as well as the height of the nanolines in the nano-grating - for highest sensitivity to localized change of refractive index, as would occur due to binding of a biomolecule target to a functionalized nano-grating surface. PMID:21263620

  5. Scanning moiré and spatial-offset phase-stepping for surface inspection of structures

    NASA Astrophysics Data System (ADS)

    Yoneyama, S.; Morimoto, Y.; Fujigaki, M.; Ikeda, Y.

    2005-06-01

    In order to develop a high-speed and accurate surface inspection system of structures such as tunnels, a new surface profile measurement method using linear array sensors is studied. The sinusoidal grating is projected on a structure surface. Then, the deformed grating is scanned by linear array sensors that move together with the grating projector. The phase of the grating is analyzed by a spatial offset phase-stepping method to perform accurate measurement. The surface profile measurements of the wall with bricks and the concrete surface of a structure are demonstrated using the proposed method. The change of geometry or fabric of structures and the defects on structure surfaces can be detected by the proposed method. It is expected that the surface profile inspection system of tunnels measuring from a running train can be constructed based on the proposed method.

  6. Hybrid grating reflectors: Origin of ultrabroad stopband

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk

    2016-04-04

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer hasmore » been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.« less

  7. Grating scattering BRDF and imaging performances: A test survey performed in the frame of the flex mission

    NASA Astrophysics Data System (ADS)

    Harnisch, Bernd; Deep, Atul; Vink, Ramon; Coatantiec, Claude

    2017-11-01

    Key components in optical spectrometers are the gratings. Their influence on the overall infield straylight of the spectrometer depends not only on the technology used for grating fabrication but also on the potential existence of ghost images caused by irregularities of the grating constant. For the straylight analysis of spectrometer no general Bidirectional Reflectance Distribution Function (BRDF) model of gratings exist, as it does for optically smooth surfaces. These models are needed for the determination of spectrometer straylight background and for the calculation of spectrometer out of band rejection performances. Within the frame of the Fluorescence Earth Explorer mission (FLEX), gratings manufactured using different technologies have been investigated in terms of straylight background and imaging performance in the used diffraction order. The gratings which have been investigated cover a lithographically written grating, a volume Bragg grating, two holographic gratings and an off-the-shelf ruled grating. In this paper we present a survey of the measured bidirectional reflectance/transmittance distribution function and the determination of an equivalent surface micro-roughness of the gratings, describing the scattering of the grating around the diffraction order. This is specifically needed for the straylight modeling of the spectrometer.

  8. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  9. Polarization Dependence Suppression of Optical Fiber Grating Sensor in a π-Shifted Sagnac Loop Interferometer

    PubMed Central

    Son, Jaebum; Lee, Min-Kyoung; Jeong, Myung Yung; Kim, Chang-Seok

    2010-01-01

    In the sensing applications of optical fiber grating, it is necessary to reduce the transmission-type polarization dependence to isolate the sensing parameter. It is experimentally shown that the polarization-dependent spectrum of acousto-optic long-period fiber grating sensors can be suppressed in the transmission port of a π-shifted Sagnac loop interferometer. General expressions for the transmittance and reflectance are derived for transmission-type, reflection-type, and partially reflecting/transmitting-type polarization-dependent optical devices. The compensation of polarization dependence through the counter propagation in the Sagnac loop interferometer is quantitatively measured for a commercial in-line polarizer and an acousto-optic long-period fiber grating sensor. PMID:22399884

  10. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    NASA Astrophysics Data System (ADS)

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-03-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been investigated and the mechanisms leading to these properties are discussed. A HG reflector sample integrating a III-V cap layer with InGaAlAs quantum wells onto a Si grating has been fabricated and its reflection property has been characterized. The HG-based lasers have a promising prospect for silicon photonics light source or high-speed laser applications.

  11. Diffraction in volume reflection gratings with variable fringe contrast.

    PubMed

    Brotherton-Ratcliffe, David; Bjelkhagen, Hans; Osanlou, Ardeshir; Excell, Peter

    2015-06-01

    The PSM model is used to analyze the process of diffraction occurring in volume reflection gratings in which fringe contrast is an arbitrary function of distance within the grating. General analytic expressions for diffraction efficiency at Bragg resonance are obtained for unslanted panchromatic lossless reflection gratings at oblique incidence. These formulas are then checked for several diverse fringe contrast profiles with numerical solutions of the Helmholtz equation, where exceptionally good agreement is observed. Away from Bragg resonance, the case of the hyperbolically decaying fringe contrast profile is shown to lead to an analytic expression for the diffraction efficiency and this is again compared successfully with numerical solutions of the Helmholtz equation.

  12. Multi-gas sensing with quantum cascade laser array in the mid-infrared region

    NASA Astrophysics Data System (ADS)

    Bizet, Laurent; Vallon, Raphael; Parvitte, Bertrand; Brun, Mickael; Maisons, Gregory; Carras, Mathieu; Zeninari, Virginie

    2017-05-01

    Wide tunable lasers sources are useful for spectroscopy of complex molecules that have broad absorption spectra and for multiple sensing of smaller molecules. A region of interest is the mid-infrared region, where many species have strong ro-vibrational modes. In this paper a novel broad tunable source composed of a QCL DFB array and an arrayed waveguide grating (also called multiplexer) was used to perform multi-species spectroscopy (CO, C2H2, CO2). The array and the multiplexer are associated in a way to obtain a prototype that is non-sensitive to mechanical vibrations. A 2190-2220 cm^{-1} spectral range is covered by the chip. The arrayed waveguide grating combines beams to have a single output. A multi-pass White cell was used to demonstrate the efficiency of the multiplexer.

  13. Real-Time Characterization of Aerospace Structures Using Onboard Strain Measurement Technologies and Inverse Finite Element Method

    DTIC Science & Technology

    2011-09-01

    strain data provided by in-situ strain sensors. The application focus is on the stain data obtained from FBG (Fiber Bragg Grating) sensor arrays...sparsely distributed lines to simulate strain data from FBG (Fiber Bragg Grating) arrays that provide either single-core (axial) or rosette (tri...when the measured strain data are sparse, as it is often the case when FBG sensors are used. For an inverse element without strain-sensor data, the

  14. Real-time gray-scale photolithography for fabrication of continuous microstructure

    NASA Astrophysics Data System (ADS)

    Peng, Qinjun; Guo, Yongkang; Liu, Shijie; Cui, Zheng

    2002-10-01

    A novel real-time gray-scale photolithography technique for the fabrication of continuous microstructures that uses a LCD panel as a real-time gray-scale mask is presented. The principle of design of the technique is explained, and computer simulation results based on partially coherent imaging theory are given for the patterning of a microlens array and a zigzag grating. An experiment is set up, and a microlens array and a zigzag grating on panchromatic silver halide sensitized gelatin with trypsinase etching are obtained.

  15. Highly efficient color filter array using resonant Si3N4 gratings.

    PubMed

    Uddin, Mohammad Jalal; Magnusson, Robert

    2013-05-20

    We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.

  16. LCD real-time mask technique for fabrication of arbitrarily shaped microstructure

    NASA Astrophysics Data System (ADS)

    Peng, Qinjun; Guo, Yongkang; Chen, Bo; Du, Jinglei; Xiang, Jinshan; Cui, Zheng

    2002-04-01

    A new technique to fabricate arbitrarily shaped microstructures by using LCD (liquid crystal display) real- time mask is reported in this paper. Its principle and design method are explained. Based on partial coherent imaging theory, the process to fabricate micro-axicon array and zigzag grating has been simulated. The experiment using a color LCD as real-time mask has been set up. Micro-axicon array and zigzag grating has been fabricated by the LCD real-time mask technique. The 3D surface relief structures were made on pan chromatic silver-halide sensitized gelatin (Kodak-131) with trypsinase etching. The pitch size of zigzag grating is 46.26micrometers . The caliber of axicon is 118.7micrometers , and the etching depth is 1.332micrometers .

  17. Holographic humidity response of slanted gratings in moisture-absorbing acrylamide photopolymer.

    PubMed

    Yu, Dan; Liu, Hongpeng; Mao, Dongyao; Geng, Yaohui; Wang, Weibo; Sun, Liping; Lv, Jiang

    2015-08-01

    Holographic humidity response is characterized in detail using transmission and reflection geometry in moisture-absorbing acrylamide photopolymer. The diffraction spectrum and its temporal evolution at various relative humidity are measured and analyzed. The quantitative relations between relative humidity and holographic properties of slanted gratings are determined. The responsibility of holographic gratings for various relative humidity is observed by the spectrum response of gratings. The extracted humidity constants reflect the applicability of reflection and transmission gratings at different humidity regions. The humidity reversibility experiment is achieved for confirming repeatability of the sensor. These experiments provide a probability for improving the applicability of a holographic humidity sensor. Finally, the extended diffusion model is derived by introducing the expansion coefficient to describe the dynamic swelling process. This work can accelerate development of the holographic sensor and provide a novel strategy for exploring the swelling mechanism of photopolymer.

  18. Comparative study of sub-micrometer polymeric structures: Dot-arrays, linear and crossed gratings generated by UV laser based two-beam interference, as surfaces for SPR and AFM based bio-sensing

    NASA Astrophysics Data System (ADS)

    Csete, M.; Sipos, Á.; Kőházi-Kis, A.; Szalai, A.; Szekeres, G.; Mathesz, A.; Csákó, T.; Osvay, K.; Bor, Zs.; Penke, B.; Deli, M. A.; Veszelka, Sz.; Schmatulla, A.; Marti, O.

    2007-12-01

    Two-dimensional gratings are generated on poly-carbonate films spin-coated onto thin gold-silver bimetallic layers by two-beam interference method. Sub-micrometer periodic polymer dots and stripes are produced illuminating the poly-carbonate surface by p- and s-polarized beams of a frequency quadrupled Nd:YAG laser, and crossed gratings are generated by rotating the substrates between two sequential treatments. It is shown by pulsed force mode atomic force microscopy that the mean value of the adhesion is enhanced on the dot-arrays and on the crossed gratings. The grating-coupling on the two-dimensional structures results in double peaks on the angle dependent resonance curves of the surface plasmons excited by frequency doubled Nd:YAG laser. The comparison of the resonance curves proves that a surface profile ensuring minimal undirected scattering is required to optimize the grating-coupling, in addition to the minimal modulation amplitude, and to the optimal azimuthal orientation. The secondary minima are the narrowest in presence of linear gratings on multi-layers having optimized composition, and on crossed structures consisting of appropriately oriented polymer stripes. The large coupling efficiency and adhesion result in high detection sensitivity on the crossed gratings. Bio-sensing is realized by monitoring the rotated-crossed grating-coupled surface plasmon resonance curves, and detecting the chemical heterogeneity by tapping-mode atomic force microscopy. The interaction of Amyloid-β peptide, a pathogenetic factor in Alzheimer disease, with therapeutical molecules is demonstrated.

  19. Film sensor based on cascaded tilted long-period and tilted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Sang, Jiangang; Gu, Zhengtian; Ling, Qiang; Feng, Wenbin

    2018-06-01

    A film sensor based on a tilted long-period fiber grating (TLPFG) inserted before a tilted fiber Bragg grating (TFBG) is proposed. The sensor is described theoretically using the transfer matrix method. This structure has two reflected peaks in the reflection spectrum. One peak is for the selected recoupled cladding mode of azimuthal order l = 2 and the other one is for the coupled core mode. The tilt angles of the TLPFG and TFBG and the mode order of the l = 2 cladding mode mainly determine the reflected power of the recoupled-(l = 2) cladding-mode peak in the reflection spectrum. By analyzing the relation between the film parameters (film refractive index and film thickness) and reflection spectrum, the characteristics of the film sensor are studied. The results show that this film sensor has a high sensitivity to the film parameters and increases the sensitivity of the film refractive index by two orders of magnitude in comparison with the normal cascaded long-period fiber grating (LPFG) and the fiber Bragg grating (FBG). The resolutions of the refractive index and the thickness of the sensing film are predicted to be 10‑6 and 10‑3 nm.

  20. In Search of Multi-Peaked Reflective Spectrum with Optic Fiber Bragg Grating Sensor for Dynamic Strain Measurement

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2006-01-01

    In a typical optic fiber Bragg grating (FBG) strain measurement, unless in an ideal static laboratory environment, the presence of vibration or often disturbance always exists, which often creates spurious multiple peaks in the reflected spectrum, resulting in a non-unique determination of strain value. In this report we attempt to investigate the origin of this phenomenon by physical arguments and simple numerical simulation. We postulate that the fiber gratings execute small amplitude transverse vibrations changing the optical path in which the reflected light traverses slightly and non-uniformly. Ultimately, this causes the multi-peak reflected spectrum.

  1. More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method.

    PubMed

    Shu, Hong; Mokhov, Sergiy; Zeldovich, Boris Ya; Bass, Michael

    2009-01-01

    A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.

  2. A Low-Voltage and High Uniformity Nano-Electro-Mechanical System Tunable Color Filter Based on Subwavelength Grating

    NASA Astrophysics Data System (ADS)

    Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki

    2012-11-01

    This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.

  3. Off-axis digital holographic microscopy with LED illumination based on polarization filtering.

    PubMed

    Guo, Rongli; Yao, Baoli; Gao, Peng; Min, Junwei; Zhou, Meiling; Han, Jun; Yu, Xun; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan; Ye, Tong

    2013-12-01

    A reflection mode digital holographic microscope with light emitting diode (LED) illumination and off-axis interferometry is proposed. The setup is comprised of a Linnik interferometer and a grating-based 4f imaging unit. Both object and reference waves travel coaxially and are split into multiple diffraction orders in the Fourier plane by the grating. The zeroth and first orders are filtered by a polarizing array to select orthogonally polarized object waves and reference waves. Subsequently, the object and reference waves are combined again in the output plane of the 4f system, and then the hologram with uniform contrast over the entire field of view can be acquired with the aid of a polarizer. The one-shot nature in the off-axis configuration enables an interferometric recording time on a millisecond scale. The validity of the proposed setup is illustrated by imaging nanostructured substrates, and the experimental results demonstrate that the phase noise is reduced drastically by an order of 68% when compared to a He-Ne laser-based result.

  4. Scattered acoustic field above a grating of parallel rectangular cavities

    NASA Astrophysics Data System (ADS)

    Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Skali Lami, S.

    2013-02-01

    The aim of this research project was to predict the sound pressure above a wall facing composed of N parallel rectangular cavities. The diffracted acoustic field is processed by generalizing the Kobayashi Potential (KP) method used for determining the electromagnetic field diffracted by a rectangular cavity set in a thick screen. This model enables the diffracted field to be expressed in modal form. Modal amplitudes are subsequently calculated using matrix equations obtained by enforcing boundary conditions. Solving these equations allows the determination of the total reflected acoustic field above the wall facing. This model was compared with experimental results obtained in a semi-anechoic room for a single cavity, a periodic array of three rectangular cavities and an aperiodic grating of nine rectangular cavities of different size and spacing. These facings were insonified by an incident spherical acoustic field, which was decomposed into plane waves. The validity of this model is supported by the agreement between the numerical and experimental results observed.

  5. Complex apodized Bragg grating filters without circulators in silicon-on-insulator.

    PubMed

    Simard, Alexandre D; LaRochelle, Sophie

    2015-06-29

    Bragg gratings operating in reflection are versatile filters that are an important building block of photonic circuits but, so far, their use has been limited due to the absence of CMOS compatible integrated circulators. In this paper, we propose to introduce two identical Bragg gratings in the arms of a Mach-Zehnder interferometer built with multimode interference 2 x 2 couplers to provide a reflective filter without circulator. We show that this structure has unique properties that significantly reduce phase noise distortions, avoid the need for thermal phase tuning, and make it compatible with complex apodization functions implemented through superposition apodization. We experimentally demonstrate several Bragg grating filters with high quality reflection spectra. For example, we successfully fabricated a 4 nm dispersion-less square-shaped filter having a sidelobe suppression ratio better than 15 dB and an in-band phase response with a group delay standard deviation of 2.0 ps. This result will enable the fabrication of grating based narrowband reflective filters having sharp spectral responses, which represents a major improvement in the filtering capability of the silicon platform.

  6. Recent progress in design and hybridization of planar grating-based transceivers

    NASA Astrophysics Data System (ADS)

    Bidnyk, S.; Pearson, M.; Balakrishnan, A.; Gao, M.

    2007-06-01

    We report on recent progress in simulations, physical layout, fabrication and hybridization of planar grating-based transceivers for passive optical networks (PONs). Until recently, PON transceivers have been manufactured using bulk micro-optical components. Today, advancements in modeling and simulation techniques has made it possible to design complex elements in the same silica-on silicon PLC platform and create an alternative platform for manufacturing of bi-directional transceivers. In our chips we simulated an integrated chip that monolithically combined planar reflective gratings and cascaded Mach-Zehnder interferometers. We used a combination of the finite element method and beam propagation method to model cascaded interferometers with enhanced coupling coefficients. Our simulations show that low-diffraction order planar reflective gratings, designed for small incidence and reflection angles, possess the required dispersion strength to meet the PON specifications. Subsequently, we created structures for passive alignment and hybridized photodetectors and lasers. We believe that advancements in simulation of planar lightwave circuits with embedded planar reflective gratings will result in displacement of the thin-film filters (TFFs) technology in many applications that require a high degree of monolithic and hybrid integration.

  7. Alterable Magnetic Gratings for Fiber Optic Switching.

    DTIC Science & Technology

    1982-12-01

    monotonically decreasing function as X moves into the infrared from the visible. The Faraday rotation of bismuth garnet samples including the new large... photodector giving as fast a response as possible while still providing usable signal levels, measure the detector response * using the electro-optic...icity. Normally a stripe domain array is configured as a linear grating. In-plane magnetic fields can rotate the grating as well as alter the periodicity

  8. The effect of aberrated recording beams on reflecting Bragg gratings

    NASA Astrophysics Data System (ADS)

    SeGall, Marc; Ott, Daniel; Divliansky, Ivan; Glebov, Leonid B.

    2013-03-01

    The effect of aberrations present in the recording beams of a holographic setup is discussed regarding the period and spectral response of a reflecting volume Bragg grating. Imperfect recording beams result in spatially varying resonant wavelengths and the side lobes of the spectrum are washed out. Asymmetrical spectra, spectral broadening, and a reduction in peak diffraction efficiency may also be present, though these effects are less significant for gratings with wider spectral widths. Reflecting Bragg gratings (RBGs) are used as elements in a variety of applications including spectral beam combining1,2, mode locking3,4, longitudinal and transverse mode selection in lasers5,6, and sensing7,8. For applications requiring narrow spectral selectivity9, or large apertures10, these gratings must have a uniform period throughout the length of the recording medium, which may be on the order of millimeters. However, when using typical recording techniques such as two-beam interference for large aperture gratings and phase-mask recording of fiber gratings, aberrations from the optical elements in the system result in an imperfect grating structure11-13. In this paper we consider the effects of aberrations on large aperture gratings recorded in thick media using the two-beam interference technique. Previous works in analyzing the effects of aberrations have considered the effects of aberrations in a single recording plane where the beams perfectly overlap. Such an approach is valid for thin media (on the order of tens of microns), but for thick recording media (on the order of several millimeters) there will be a significant shift in the positions of the beams relative to each other as they traverse the recording medium. Therefore, the fringe pattern produced will not be constant throughout the grating if one or both beams have a non-uniform wavefront. Such non-uniform gratings may have a wider spectral width, a shifted resonant wavelength, or other problems. It is imperative therefore to know what the effects of aberrations will have on the properties of the RBGs. Thus, in this paper we consider the imperfect fringe pattern caused by the recording beams and its effect on the diffraction efficiency and spectral profile of the recorded reflecting volume Bragg gratings.

  9. Laser-Material Interactions

    DTIC Science & Technology

    1989-09-01

    energy polarized in the TE direction is couple ,’ out of the zero-order reflected beam . Careful variations of grating depth and profile must be...the necessary decrease in the ,ero-order reflected and transmitted beams . Yamashita et al. [22] treated the coupling prob~em wli:hin the Rayleigh...OC(koh) 2, increase in the SPW intensity with grating depth for shallow gratings, saturation of the SPW intensity at a coupling efficiency near 100

  10. Study of thermal annealing effect on Bragg gratings photo-inscribed in step-index polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Mégret, P.; Caucheteur, C.

    2016-04-01

    In this paper, both non-annealed and annealed trans-4-stilbenemethanol-doped step-index polymer optical fibers were photo-inscribed using a 325 nm HeCd laser with two different beam power densities reaching the fiber core. In the high density regime where 637 mW/mm2 are used, the grating reflectivity is stable over time after the photo-writing process but the reflected spectrum is of limited quality, as the grating physical length is limited to 1.2 mm. To produce longer gratings exhibiting more interesting spectral features, the beam is enlarged to 6 mm, decreasing the power density to 127 mW/mm2. In this second regime, the grating reflectivity is not stable after the inscription process but tends to decay for both kinds of fibers. A fortunate property in this case results from the possibility to fully recover the initial reflectivity using a post-inscription thermal annealing, where the gratings are annealed at 80 °C during 2 days. The observed evolutions for both regimes are attributed to the behavior of the excited intermediate states between the excited singlet and the ground singlet state of trans- and cis-isomers as well as the temperature-dependent glassy polymer matrix.

  11. Diffraction efficiency of radially-profiled off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.; Tutt, James H.; DeRoo, Casey T.; Marlowe, Hannah; Peterson, Thomas J.; McEntaffer, Randall L.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Laubis, Christian; Scholze, Frank

    2015-09-01

    Future X-ray missions will require gratings with high throughput and high spectral resolution. Blazed off-plane reflection gratings are capable of meeting these demands. A blazed grating profile optimizes grating efficiency, providing higher throughput to one side of zero-order on the arc of diffraction. This paper presents efficiency measurements made in the 0.3 - 1.5 keV energy band at the Physikalisch-Technische Bundesanstalt (PTB) BESSY II facility for three holographically-ruled gratings, two of which are blazed. Each blazed grating was tested in both the Littrow configuration and anti-Littrow configuration in order to test the alignment sensitivity of these gratings with regard to throughput. This paper outlines the procedure of the grating experiment performed at BESSY II and discuss the resulting efficiency measurements across various energies. Experimental results are generally consistent with theory and demonstrate that the blaze does increase throughput to one side of zero-order. However, the total efficiency of the non-blazed, sinusoidal grating is greater than that of the blazed gratings, which suggests that the method of manufacturing these blazed profiles fails to produce facets with the desired level of precision. Finally, evidence of a successful blaze implementation from first diffraction results of prototype blazed gratings produce via a new fabrication technique at the University of Iowa are presented.

  12. 2-Dimensional beamsteering using dispersive deflectors and wavelength tuning.

    PubMed

    Chan, Trevor; Myslivets, Evgeny; Ford, Joseph E

    2008-09-15

    We introduce a 2D beamscanner which is controlled by wavelength tuning. Two passive dispersive devices are aligned orthogonally to deflect the optical beam in two dimensions. We provide a proof of principle demonstration by combining an arrayed waveguide grating with a free space optical grating and using various input sources to characterize the beamscanner. This achieved a discrete 10.3 degrees by 11 degrees output field of view with attainable angles existing on an 8 by 6 grid of directions. The entire range was reached by scanning over a 40 nm wavelength range. We also analyze an improved system combining a virtually imaged phased array with a diffraction grating. This device is much more compact and produces a continuous output scan in one direction while being discrete in the other.

  13. Stimulated Rayleigh-Bragg scattering in two-photon absorbing media

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Lu, Changgui; Zheng, Qingdong; Prasad, Paras N.; Zerom, Petros; Boyd, Robert W.; Samoc, Marek

    2005-06-01

    The origin and mechanism of backward stimulated Rayleigh scattering in two-photon absorbing media are studied theoretically and experimentally. This type of stimulated scattering has the unusual features of no frequency shift and low pump threshold requirement compared to all other known stimulated scattering effects. This frequency-unshifted stimulated Rayleigh scattering effect can be well explained by a two-photon-excitation-enhanced Bragg grating reflection model. The reflection of the forward pump beam from this stationary Bragg grating may substantially enhance the backward Rayleigh scattering beam, providing a positive feedback mechanism without causing any frequency shift. A two-counterpropagating-beam-formed grating experiment in a two-photon absorbing dye solution is conducted. The measured dynamic behavior of Bragg grating formation and reflectivity properties are basically consistent with the predictions from the proposed model.

  14. Beta value coupled wave theory for nonslanted reflection gratings.

    PubMed

    Neipp, Cristian; Francés, Jorge; Gallego, Sergi; Bleda, Sergio; Martínez, Francisco Javier; Pascual, Inmaculada; Beléndez, Augusto

    2014-01-01

    We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik's coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik's coupled wave theory.

  15. Beta Value Coupled Wave Theory for Nonslanted Reflection Gratings

    PubMed Central

    Neipp, Cristian; Francés, Jorge; Gallego, Sergi; Bleda, Sergio; Martínez, Francisco Javier; Pascual, Inmaculada; Beléndez, Augusto

    2014-01-01

    We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik's coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik's coupled wave theory. PMID:24723811

  16. Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.; Polanco, J.; Fitzgerald, R. M.

    2016-02-01

    By means of a modal method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders of a perfectly conducting lamellar reflection grating illuminated by p-polarized light. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with diffraction from a metallic grating. The Wood anomalies here are caused by the excitation of the surface electromagnetic waves supported by a periodically corrugated perfectly conducting surface, whose dispersion curves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated.

  17. Development of Ultra-Low Noise, High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR Sensor Systems

    DTIC Science & Technology

    1992-02-01

    Development of Ultra-Low Noise , High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR...dark current at 77 K was 10 times lower than the conventional QWIP reported in the literature. anid the BTM QWIP showed a largely enhanced intersubband...bias voltage in the BTM and SBTM1 QWIPs . The results reveal thiat therinionic emission is dominant current conduction mechianismn at higher temp

  18. Characterization of fiber Bragg grating-based sensor array for high resolution manometry

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Rothhardt, Manfred; Schröder, Kerstin; Voigt, Sebastian; Mehner, Jan; Teubner, Andreas; Lüpke, Thomas; Thieroff, Christoph; Krüger, Matthias; Chojetzki, Christoph; Bartelt, Hartmut

    2012-04-01

    The combination of fiber Bragg grating arrays integrated in a soft plastic tube is promising for high resolution manometry (HRM) where pressure measurements are done with high spatial resolution. The application as a medical device and in vivo experiments have to be anticipated by characterization with a measurement setup that simulates natural conditions. Good results are achieved with a pressure chamber which applies a well-defined pressure with a soft tubular membrane. It is shown that the proposed catheter design reaches accuracies down to 1 mbar and 1 cm.

  19. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Poteomkin, A. K.; Gacheva, E. I.; Andrianov, A. V.; Zelenogorskii, V. V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E. A.

    2016-05-01

    A method for shaping photocathode laser driver pulses into 3D ellipsoidal form has been proposed and implemented. The key idea of the method is to use a chirped Bragg grating recorded within the ellipsoid volume and absent outside it. If a beam with a constant (within the grating reflection band) spectral density and uniform (within the grating aperture) cross-section is incident on such a grating, the reflected beam will be a 3D ellipsoid in space and time. 3D ellipsoidal beams were obtained in experiment for the first time. It is expected that such laser beams will allow the electron bunch emittance to be reduced when applied at R± photo injectors.

  20. 8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.

    PubMed

    Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R

    2017-11-27

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.

  1. Diffraction Efficiency Testing of Sinusoidal and Blazed Off-Plane Reflection Gratings

    NASA Astrophysics Data System (ADS)

    Tutt, James H.; McEntaffer, Randall L.; Marlowe, Hannah; Miles, Drew M.; Peterson, Thomas J.; Deroo, Casey T.; Scholze, Frank; Laubis, Christian

    2016-09-01

    Reflection gratings in the off-plane mount have the potential to enhance the performance of future high resolution soft X-ray spectrometers. Diffraction efficiency can be optimized through the use of blazed grating facets, achieving high-throughput on one side of zero-order. This paper presents the results from a comparison between a grating with a sinusoidally grooved profile and two gratings that have been blazed. The results show that the blaze does increase throughput to one side of zero-order; however, the total throughput of the sinusoidal gratings is greater than the blazed gratings, suggesting the method of manufacturing the blazed gratings does not produce precise facets. The blazed gratings were also tested in their Littrow and anti-Littrow configurations to quantify diffraction efficiency sensitivity to rotations about the grating normal. Only a small difference in the energy at which efficiency is maximized between the Littrow and anti-Littrow configurations is seen with a small shift in peak efficiency towards higher energies in the anti-Littrow case. This is due to a decrease in the effective blaze angle in the anti-Littrow mounting. This is supported by PCGrate-SX V6.1 modeling carried out for each blazed grating which predicts similar response trends in the Littrow and anti-Littrow orientations.

  2. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera)

    PubMed Central

    Seago, Ainsley E.; Brady, Parrish; Vigneron, Jean-Pol; Schultz, Tom D.

    2008-01-01

    Members of the order Coleoptera are sometimes referred to as ‘living jewels’, in allusion to the strikingly diverse array of iridescence mechanisms and optical effects that have arisen in beetles. A number of novel and sophisticated reflectance mechanisms have been discovered in recent years, including three-dimensional photonic crystals and quasi-ordered coherent scattering arrays. However, the literature on beetle structural coloration is often redundant and lacks synthesis, with little interchange between the entomological and optical research communities. Here, an overview is provided for all iridescence mechanisms observed in Coleoptera. Types of iridescence are illustrated and classified into three mechanistic groups: multilayer reflectors, three-dimensional photonic crystals and diffraction gratings. Taxonomic and phylogenetic distributions are provided, along with discussion of the putative functions and evolutionary pathways by which iridescence has repeatedly arisen in beetles. PMID:18957361

  3. Transverse strain measurements using fiber optic grating based sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor)

    1998-01-01

    A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.

  4. WDM/TDM PON experiments using the AWG free spectral range periodicity to transmit unicast and multicast data

    NASA Astrophysics Data System (ADS)

    Bock, Carlos; Prat, Josep

    2005-04-01

    A hybrid WDM/TDM PON architecture implemented by means of two cascaded Arrayed Waveguide Gratings (AWG) is presented. Using the Free Spectral Range (FSR) periodicity of AWGs we transmit unicast and multicast traffic on different wavelengths to each Optical Network Unit (ONU). The OLT is equipped with two laser stacks, a tunable one for unicast transmission and a fixed one for multicast transmission. We propose the ONU to be reflective in order to avoid any light source at the Costumer Premises Equipment (CPE). Optical transmission tests demonstrate correct transmission at 2.5 Gbps up to 30 km.

  5. Spectrometer system for diffuse extreme ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  6. Tunable dual-band nearly perfect absorption based on a compound metallic grating

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan

    2017-02-01

    Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.

  7. Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae

    2006-12-01

    We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.

  8. Phased Array Theory and Technology

    DTIC Science & Technology

    1981-07-01

    Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays

  9. Overview on grating developments at ESA

    NASA Astrophysics Data System (ADS)

    Guldimann, B.; Deep, A.; Vink, R.; Harnisch, B.; Kraft, S.; Sierk, B.; Bazalgette, G.; Bézy, J.-L.

    2017-11-01

    In the frame of recent studies and missions, ESA has been performing various pre-developments of optical gratings for instruments operating at wavelengths from the UV up to the SWIR. The instrument requirements of Sentinel-4, Sentinel-5, CarbonSat and FLEX are driving the need for advanced designs and technologies leading to gratings with high efficiency, high spectral resolution, low stray light and low polarization sensitivities. Typical ESA instruments (e.g. Sciamachy, GOME, MERIS, OLCI, NIRSpec) were and are based on ruled gratings or gratings manufactured with one holographic photoresist mask layer which is transferred to an optical substrate (e.g. glass, glass ceramic) with dry etching methods and subsequently either coated with a reflective coating or used as a mold for replication. These manufacturing methods lead to blazed grating profiles with a metallic reflective surface. The vast majority of spectrometers on ground are still based on such gratings. In general, gratings based on grooved metallic surfaces tend for instance to polarize the incoming light significantly and are therefore not always suitable for ESA's needs of today. Gratings made for space therefore evolved to many other designs and concepts which will be reported in this paper.

  10. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  11. Optimal coupling to high-Q whispering gallery modes with a sub-wavelength metallic grating coupler

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gu, B.; Yu, X.; Luan, F.

    2015-03-01

    Gold grating patterned on the end facet of an optical fiber is able to excite whispering gallery mode (WGM) in a silica microsphere. With a direct pathway of the metal reflection, the coupled WGM is able to superimpose and create an asymmetric Fano resonance. Since multiple resonances are present - the WGM, grating reflection, and a weak Fabry-Perot resonance along the diameter of the sphere - it is difficult to evaluate the power efficiency directly from the measured spectrum. Using temporal coupled-mode theory, a general model is constructed for the end-fire coupling from a grating to a WGM resonator.

  12. Monitoring of non-homogeneous strains in wood glued joints with embedded FBG optical sensors in mode I delamination tests

    NASA Astrophysics Data System (ADS)

    Maciel, R. S.; Frazão, O.; Morais, J. J. L.; Fernandes, J. R. A.

    2013-11-01

    In this work it is presented a study of the reflection spectra yielded by a Fiber Bragg Grating sensor embedded into an epoxy glue line between two wood arms, in a double cantilever beam (DCB) Mode I delamination test. The reflection spectra were obtained using a Spectral Analyzer Fibersensing Bragmeter FS2200SA in regular time intervals, as the stress applied to the laminates is continuously increased until fracture occurs. They initially show a typical Bragg grating reflection spectrum, which gradually changes into more complicated, multiple-peak spectra, resulting from a non-homogenous strain distribution along the board line. Based on these results, a model was derived for the variation of the grating effective index which fits the observed spectra when the irregular strain distribution is observed. This model consists of usual cosine description of Bragg grating effective index with linear phase variation, plus a logarithmic phase change along the fiber length, resulting in the increment of the grating wavelength with increasing distance from the load application point. Moreover, from this model the strain distribution along the grating is found, yielding the expected result.

  13. Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaozhu; Klopf, J. Michael; Wang, Lei

    Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD)more » and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.« less

  14. Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings

    DOE PAGES

    Li, Zhaozhu; Klopf, J. Michael; Wang, Lei; ...

    2017-03-14

    Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD)more » and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.« less

  15. Wideband plasmonic beam steering in metal gratings.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; Scalora, Michael

    2012-01-15

    We demonstrate controllable light deflection in thick metal gratings with periodic subwavelength slits filled with an active material. Under specific illumination conditions, the grating becomes nearly transparent and acts as a uniform optical phased-array antenna where the phase of the radiating elements is controlled by modifying the index of refraction of the material that fills each slit. The beam-steering operational regime occurs in a wide wavelength band, and it is relatively insensitive to the input angle.

  16. Improved arrayed-waveguide-grating layout avoiding systematic phase errors.

    PubMed

    Ismail, Nur; Sun, Fei; Sengo, Gabriel; Wörhoff, Kerstin; Driessen, Alfred; de Ridder, René M; Pollnau, Markus

    2011-04-25

    We present a detailed description of an improved arrayed-waveguide-grating (AWG) layout for both, low and high diffraction orders. The novel layout presents identical bends across the entire array; in this way systematic phase errors arising from different bends that are inherent to conventional AWG designs are completely eliminated. In addition, for high-order AWGs our design results in more than 50% reduction of the occupied area on the wafer. We present an experimental characterization of a low-order device fabricated according to this geometry. The device has a resolution of 5.5 nm, low intrinsic losses (< 2 dB) in the wavelength region of interest for the application, and is polarization insensitive over a wide spectral range of 215 nm.

  17. Optically Tunable Gratings Based on Coherent Population Oscillation.

    PubMed

    Zhang, Xiao-Jun; Wang, Hai-Hua; Wang, Lei; Wu, Jin-Hui

    2018-05-01

    We theoretically study the optically tunable gratings based on a L-type atomic medium using coherent population oscillations from the angle of reflection and transmission of the probe field. Adopting a standing-wave driving field, the refractive index of the medium as well as the absorption are periodically modified. Consequently, the Bragg scattering causes the effective reflection. We show that different intensities of the control field lead to three types of reflection profile which actually correspond to different absorption/amplification features of the medium. We present a detailed analyses about the influence of amplification on the reflection profile as well. The coherent population oscillation is robust to the dephasing effect, and such induced gratings could have promising applications in nonlinear optics and all-optical information processing.

  18. Excitation of surface electromagnetic waves in a graphene-based Bragg grating

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901

  19. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    PubMed

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  20. Study on fabrication technology of silicon-based silica array waveguide grating

    NASA Astrophysics Data System (ADS)

    Sun, Yanjun; Dong, Lianhe; Leng, Yanbing

    2009-05-01

    Array waveguide grating (AWG) is an important plane optical element in dense wavelength division multiplex/demultiplex system. There are many virtue, channel quantity larger,lower loss, lower crosstalk, size smaller and high reliability etc. This article describs AWG fabrication technics utilizing IC(Integrated Circles) techniques, based on sixteen channel Silicon-Based Silica Array Waveguide Grating, put emphasis on discussing doping and deposition of waveguide core film,technics theory and interrelated parameter condition of photoetch and ion etching. Experiment result indicates that it depens on electrode structure, energy of radio-frequency electrode gas component, pressure ,flowing speed and substrate temperature by CVD depositing film .During depositing waveguide film by PE-CVD, the silicon is not reacted, When temperature becomes lower,it is reacted and it is easy to realize the control of film thickness and time with a result of film thickness uniformity reaching about 4% after optimizing deposition parameter and condition. We get the result of high etching speed rate, outline zoom, and side frame smooth by photoresist/Cr multiple mask and optimizing etching technics.

  1. Fabrication of SiC membrane HCG blue reflector using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lai, Ying-Yu; Matsutani, Akihiro; Lu, Tien-Chang; Wang, Shing-Chung; Koyama, Fumio

    2015-02-01

    We designed and fabricated a suspended SiC-based membrane high contrast grating (HCG) reflectors. The rigorous coupled-wave analysis (RCWA) was employed to verify the structural parameters including grating periods, grating height, filling factors and air-gap height. From the optimized simulation results, the designed SiC-based membrane HCG has a wide reflection stopband (reflectivity (R) <90%) of 135 nm for the TE polarization, which centered at 480 nm. The suspended SiC-based membrane HCG reflectors were fabricated by nanoimprint lithography and two-step etching technique. The corresponding reflectivity was measured by using a micro-reflectivity spectrometer. The experimental results show a high reflectivity (R<90%), which is in good agreement with simulation results. This achievement should have an impact on numerous III-N based photonic devices operating in the blue wavelength or even ultraviolet region.

  2. Dynamic Optical Grating Device and Associated Method for Modulating Light

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

  3. Integrated narrowband optical filter based on embedded subwavelength resonant grating structures

    DOEpatents

    Grann, Eric B.; Sitter, Jr., David N.

    2000-01-01

    A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.

  4. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber.

    PubMed

    Hu, Xuehao; Pun, Chi-Fung Jeff; Tam, Hwa-Yaw; Mégret, Patrice; Caucheteur, Christophe

    2014-07-28

    During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10(-6) is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser.

  5. AlGaAs phased array laser for optical communications

    NASA Technical Reports Server (NTRS)

    Carlson, N. W.

    1989-01-01

    Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.

  6. Grating lobe elimination in steerable parametric loudspeaker.

    PubMed

    Shi, Chuang; Gan, Woon-Seng

    2011-02-01

    In the past two decades, the majority of research on the parametric loudspeaker has concentrated on the nonlinear modeling of acoustic propagation and pre-processing techniques to reduce nonlinear distortion in sound reproduction. There are, however, very few studies on directivity control of the parametric loudspeaker. In this paper, we propose an equivalent circular Gaussian source array that approximates the directivity characteristics of the linear ultrasonic transducer array. By using this approximation, the directivity of the sound beam from the parametric loudspeaker can be predicted by the product directivity principle. New theoretical results, which are verified through measurements, are presented to show the effectiveness of the delay-and-sum beamsteering structure for the parametric loudspeaker. Unlike the conventional loudspeaker array, where the spacing between array elements must be less than half the wavelength to avoid spatial aliasing, the parametric loudspeaker can take advantage of grating lobe elimination to extend the spacing of ultrasonic transducer array to more than 1.5 wavelengths in a typical application.

  7. Quantum model of light transmission in array waveguide gratings.

    PubMed

    Capmany, J; Mora, J; Fernández-Pousa, C R; Muñoz, P

    2013-06-17

    We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.

  8. All-optical LAN architectures based on arrayed waveguide grating multiplexers

    NASA Astrophysics Data System (ADS)

    Woesner, Hagen

    1998-10-01

    The paper presents optical LAN topologies which are made possible using an Arrayed Waveguide Grating Multiplexer (AWGM) instead of a passive star coupler to interconnect stations in an all-optical LAN. Due to the collision-free nature of an AWGM it offers the n-fold bandwidth compared to the star coupler. Virtual ring topologies appear (one ring on each wavelength) if the number of stations attached to the AWGM is a prime number. A method to construct larger networks using Cayley graphs is shown. An access protocol to avoid collisions on the proposed network is outlined.

  9. Two-dimensional wavelength routing for transparent optical wireless networking

    NASA Astrophysics Data System (ADS)

    Shi, Haiyan; Liang, Kefei; Sheard, Stephen J.; O'Brien, Dominic C.; Faulkner, Grahame E.

    2005-08-01

    In this article a novel system architecture that uses a combination of wavelength and spatial diversity for indoor infrared wireless communications is presented. This configuration promises to fully exploit the available bandwidth of optics and demonstrate all-optical networking. Electronic processing is restricted to mobile terminals, with base stations potentially remaining passive, without any conversion between optics and electronics. For the downlink, multiple transmitter beams with different wavelengths are steered from the fiber infrastructure through the base station to mobile terminals located in different positions. An optimum combination of diffractive optics and reflective optics (a diffraction grating and an array of mirrors) can flexibly steer each transmitter beam and enable full control over the required coverage pattern. For the uplink, in the transmitter, another grating and an array of mirrors can direct multiple beams upward from different mobile users toward the base station. System simulation shows that the downlink has the potential to approach 10 Gbit/s, while maintaining wide-area coverage (such as in a room of 3m×4m×4m) with the help of fine optical tracking. System modeling indicates that the uplink is more susceptible to power losses than the downlink, but the utilization of dynamic beam steering in the uplink can suppress power losses to a tolerable level (e.g. below 30dB). An array of 16 mirrors has been designed to implement point-to-point beam steering in a room of 3m×1m×1m. Two-dimensional coverage patterns measured at a distance of 0.5 m and 1.5 m coincide with simulation results. Operation at 1 Gbit/s has been demonstrated successfully for tracking in two dimensions.

  10. Fiber Grating Environmental Sensing System

    DOEpatents

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  11. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  12. A passive optical fibre hydrophone array utilising fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.

    2018-02-01

    Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.

  13. An All-reflective Integral Field Spectrograph for Far Ultraviolet Astrophysics

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen; Ebbets, D.; Hardesty, C.; Sembach, K.; Beasley, M.; Woodgate, B.

    2010-01-01

    This paper overviews the supporting optical technologies for an ultraviolet integral field spectrograph (IFS) that will be used for future space astrophysics missions. The new technology is an all-reflective image slicer that directs light to an array of imaging diffraction gratings. Previous UV instruments recorded the spectra of point sources or spatially resolved elements along a long slit. Our IFS has only one reflection more than the Cosmic Origins Spectrograph for Hubble Space Telescope, which is the most sensitive UV spectrograph yet built, but is limited to point sources. An efficient UV IFS enables simultaneous spectroscopy of many spatially resolved elements within a contiguous two dimensional field of view in diagnostically important ultraviolet lines. The output is thus a data cube having one spectral and two spatial coordinates. This is the astrophysical analog to hyperspectral imaging in Earth sciences. The scientific benefits of such an instrument were developed during Vision Missions, Origins Probes, and Astrophysics Strategic Mission Concept Studies between 2004 and 2009. Implementation can be scaled for a small payload such as a sounding rocket or Explorer-class mission, leading to a flight experiment within the next few years. Of particular interest would be the application of this technology for an instrument on a version of the Advanced Technology Large-Aperture Space Telescope (ATLAST) which will have an 8+-m aperture. We will focus on the spectral region near Lyman alpha, but the all-reflective approach is applicable to other spectral regions when matched with wavelength appropriate gratings and detectors. Our project is a collaboration between Ball Aerospace & Technologies Corp., the University of Colorado, NASA Goddard Space Flight Center and the Space Telescope Science Institute, all of which have extensive experience with the science and instrumentation for UV astrophysics.

  14. Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.

    PubMed

    Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto

    2017-02-01

    Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.

  15. Thermally tunable grating using thermo-responsive magnetic fluid

    NASA Astrophysics Data System (ADS)

    Zaibudeen, A. W.; Philip, John

    2017-04-01

    We report a thermally tunable grating prepared using poly(N-isopropylacrylamide) and super paramagnetic iron oxide nanoparticles. The array spacing is reversibly tuned by varying the temperature between 5 and 38 °C. Here, the ability of thermo-responsive polymer brushes to alter their conformation at an interface is exploited to control the grating spacing in nanoscale. The underlying mechanism for the temperature dependent conformational changes are studied by measuring the subtle intermolecular forces between the polymer covered interfaces. It is observed that the interparticle forces are repulsive and exponentially decaying with distance. The thermo-responsive grating is simple to use and offers a wide range of applications.

  16. Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges

    NASA Astrophysics Data System (ADS)

    Tibuleac, Sorin

    In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.

  17. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seunghoon; Horie, Yu; Faraon, Andrei

    An on-chip optical filter having Fabri-Perot resonators and a spectrometer may include a first sub-wavelength grating (SWG) reflecting layer and a second SWG reflecting layer facing each other. A plurality of Fabri-Perot resonators are formed by the first SWG reflecting layer and the second SWG reflecting layer facing each other. Each of the Fabri-Perot resonators may transmit light corresponding to a resonance wavelength of the Fabri-Perot resonator. The resonance wavelengths of the Fabri-Perot resonators may be determined according to duty cycles of grating patterns.

  19. Decoding grating orientation from microelectrode array recordings in monkey cortical area V4.

    PubMed

    Manyakov, Nikolay V; Van Hulle, Marc M

    2010-04-01

    We propose an invasive brain-machine interface (BMI) that decodes the orientation of a visual grating from spike train recordings made with a 96 microelectrodes array chronically implanted into the prelunate gyrus (area V4) of a rhesus monkey. The orientation is decoded irrespective of the grating's spatial frequency. Since pyramidal cells are less prominent in visual areas, compared to (pre)motor areas, the recordings contain spikes with smaller amplitudes, compared to the noise level. Hence, rather than performing spike decoding, feature selection algorithms are applied to extract the required information for the decoder. Two types of feature selection procedures are compared, filter and wrapper. The wrapper is combined with a linear discriminant analysis classifier, and the filter is followed by a radial-basis function support vector machine classifier. In addition, since we have a multiclass classification problen, different methods for combining pairwise classifiers are compared.

  20. Digital micromirror device-based ultrafast pulse shaping for femtosecond laser.

    PubMed

    Gu, Chenglin; Zhang, Dapeng; Chang, Yina; Chen, Shih-Chi

    2015-06-15

    In this Letter, we present a new digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., DUPS. To the best of our knowledge, the DUPS is the first binary pulse shaper that can modulate high repetition rate laser sources at up to a 32 kHz rate (limited by the DMD pattern rate). Since pulse modulation occurs in the frequency domain through reflective two-dimensional micromirror arrays, i.e., DMD, the DUPS is not only compact and low in cost, but also possesses a high damage threshold that is critical for high pulse energy laser applications. In this work, a grating pair was introduced in the DUPS to compensate the DMD induced dispersion. Double pulses were generated to validate the effectiveness of the DUPS and calibrate the system. Subsequently, we demonstrated arbitrary phase shaping capability by continuous tuning of group velocity dispersion (GVD) and modulation of half-spectrum shifted by π. The overall efficiency was measured to be 1.7%, while an efficiency of up to 5% can be expected when high efficiency gratings and properly coated DMDs are used.

  1. Electromagnetic response of the protective pellicle of Euglenoids: influence of the surface profile

    NASA Astrophysics Data System (ADS)

    Inchaussandague, Marina E.; Gigli, Miriam L.; Skigin, Diana C.; Tolivia, Analía.; Conforti, Visitación

    2015-03-01

    In a recent paper we have investigated, from an electromagnetic point of view, the role played by the pellicle of Euglenoids -unicellular aquatic organisms- in the protection of the cell against UV radiation.14 By modelling the pellicle as a diffraction grating, we computed the electromagnetic response of different species that exhibit different behaviors against UV radiation. In this previous study, the pellicle profile was approximated by a sinusoidal grating. However, it has been observed in the transversal cut images that the profiles are not exactly sinusoidal, and also vary from sample to sample. Since the electromagnetic response depends on the geometry of the grating, reflectance calculations that take into account a more accurate representation of the actual profile could provide more insight into this problem. In this paper we investigate the electromagnetic response of the pellicle of Euglenoids for different grating profiles. The diffraction problem is solved by using the Chandezon method, which has demonstrated a successful performance for deep gratings of arbitrary profiles. We analyze the influence of the shape, depth and period of the grating on the UV reflectance. We show that the pellicle characteristics are critical parameters to increase the reflectance, thus reducing the penetration of the UV radiation within the cell and therefore, minimizing the damage and increasing the survival of these organisms.

  2. Performance Evaluation of Fiber Bragg Gratings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Juergens, Jeffrey; Adamovsky, Grigory; Floyd, Bertram

    2004-01-01

    The development of integrated fiber optic sensors for smart propulsion systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor s limits and how it responds under various environmental conditions. The sensor evaluation currently involves examining the performance of fiber Bragg gratings at elevated temperatures. Fiber Bragg gratings (FBG) are periodic variations of the refractive index of an optical fiber. These periodic variations allow the FBG to act as an embedded optical filter passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change what wavelengths are transmitted and what wavelengths are reflected by the grating. Both thermal and mechanical forces acting on the grating will alter its physical characteristics allowing the FBG sensor to detect both temperature variations and physical stresses, strain, placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. This paper reports on test results of the performance of FBGs at elevated temperatures. The gratings looked at thus far have been either embedded in polymer matrix materials or freestanding with the primary focus of this paper being on the freestanding FBGs. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. These parameters include the peak Bragg wavelength, the power of the Bragg wavelength, and total power returned by the FBG. Several test samples were subjected to identical test conditions to allow for statistical analysis of the data. Test procedures, calibrations, and referencing techniques are presented in the paper along with directions for future research.

  3. Diameter measurement of optical nanofiber based on high-order Bragg reflections using a ruled grating.

    PubMed

    Zhu, Ming; Wang, Yao-Ting; Sun, Yi-Zhi; Zhang, Lijian; Ding, Wei

    2018-02-01

    A convenient method using a commercially available ruled grating for precise and overall diameter measurement of optical nanofibers (ONFs) is presented. We form a composite Bragg reflector with a micronscale period by dissolving aluminum coating, slicing the grating along ruling lines, and mounting it on an ONF. The resonant wavelengths of high-order Bragg reflections possess fiber diameter dependence, enabling nondestructive measurement of the ONF diameter profile. This method provides an easy and economic diagnostic tool for wide varieties of ONF-based applications.

  4. Two-dimensional displacement measurement based on two parallel gratings

    NASA Astrophysics Data System (ADS)

    Wei, Peipei; Lu, Xi; Qiao, Decheng; Zou, Limin; Huang, Xiangdong; Tan, Jiubin; Lu, Zhengang

    2018-06-01

    In this paper, a two-dimensional (2-D) planar encoder based on two parallel gratings, which includes a scanning grating and scale grating, is presented. The scanning grating is a combined transmission rectangular grating comprised of a 2-D grating located at the center and two one-dimensional (1-D) gratings located at the sides. The grating lines of the two 1-D gratings are perpendicular to each other and parallel with the 2-D grating lines. The scale grating is a 2-D reflective-type rectangular grating placed in parallel with the scanning grating, and there is an angular difference of 45° between the grating lines of the two 2-D gratings. With the special structural design of the scanning grating, the encoder can measure the 2-D displacement in the grating plane simultaneously, and the measured interference signals in the two directions are uncoupled. Moreover, by utilizing the scanning grating to modulate the phase of the interference signals instead of the prisms, the structure of the encoder is compact. Experiments were implemented, and the results demonstrate the validity of the 2-D planar grating encoder.

  5. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  6. Fibre gratings for high temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Canning, J.; Sommer, K.; Englund, M.

    2001-07-01

    Phosphosilicate fibre gratings can be stabilized at temperatures in excess of 500 °C for sensor applications by optimizing thermal and UV presensitization recipes. Furthermore, the use of 193 nm presensitization prevents the formation of OH absorption bands, extending the use of fibre gratings across the entire wavelength spectrum. Gratings for operation at 700 °C retaining up to 70% reflectivity after 30 min are demonstrated.

  7. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  8. Vega interstage strain measurements: comparison between conventional strain gauges and fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Cheng, Lun; Ahlers, Berit

    2017-11-01

    Europe is developing a new generation launcher, called Vega, a small launcher with a capacity to place satellites into polar and low-Earth orbits, which are used for many scientific and Earth observation missions. Its first launch is scheduled for early 2008. Dutch Space is responsible for the development, qualification and manufacturing of the Vega Interstage 1/2. This all-aluminium conically shaped section is designed as a monocoque structure. This subsystem of Vega has undergone its first qualification tests of force loading combined with an extensive programme of measurements (forces, displacements and strains), at TNO in Delft. In parallel to conventional strain gauges Fibre Optic Sensors (FOS) in the form of Fibre Bragg Grating (FBG) sensor arrays, consisting of five strain sensors and one temperature sensor, have been installed on different locations of the interstage. Direct comparisons of the results with conventional sensors during load tests up to several hundred tons are therefore possible. A self-evident benefit of FBG sensors in an array application is that each sensing FBG can have a different Bragg wavelength to reflect. Thus, Wavelength Division Multiplexing (WDM) can conveniently be used to distinguish the different sensing FBG's at the receiving side. First test results from load measurements performed on the Qualification Model (QM) of the Vega Interstage 1/2 are presented in this paper as well as an outlook to future integration of the FBG in this field.

  9. Laser-induced transient grating setup with continuously tunable period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega-Flick, A.; Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico; Eliason, J. K.

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  10. Physical principles of monolithic high-contrast gratings

    NASA Astrophysics Data System (ADS)

    Dems, Maciej

    2017-02-01

    In this work I present visually the results of a numerical analysis of the transition between classical High-Contrast Gratings (HCGs) and Monolithic High-Contrast Gratings (MHCGs) and I identify the source of the differences between the scatterless reflection peaks and those that either show strong scattering or do not occur in MHCGs. I show that the key property of MHCGs is the independence of the peak reflectivity wavelength on the substrate refractive index, which results from the modal interference inside the grating and the special form of its impedance/admittance matrix. This form of matrix can be obtained for any wavelength and in almost any material system by tuning the geometrical parameters of the grating—its pitch, fill-factor, and height.

  11. Pound--Drever--Hall error signals for the length control of three-port grating coupled cavities

    NASA Astrophysics Data System (ADS)

    Britzger, Michael; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Burmeister, Oliver; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2011-08-01

    Gratings enable light coupling into an optical cavity without transmission through any substrate. This concept reduces light absorption and substrate heating and was suggested for light coupling into the arm cavities of future gravitational wave detectors. One particularly interesting approach is based on all-reflective gratings with low diffraction efficiencies and three diffraction orders (three ports). However, it was discovered that, generally, three-port grating coupled cavities show an asymmetric resonance profile that results in asymmetric and low quality Pound--Drever--Hall error signals for cavity length control. We experimentally demonstrate that this problem is solved by the detection of light at both reflection ports of the cavity and the postprocessing of the two demodulated electronic signals.

  12. Full-mesh T- and O-band wavelength router based on arrayed waveguide gratings.

    PubMed

    Idris, Nazirul A; Yoshizawa, Katsumi; Tomomatsu, Yasunori; Sudo, Makoto; Hajikano, Tadashi; Kubo, Ryogo; Zervas, Georgios; Tsuda, Hiroyuki

    2016-01-11

    We propose an ultra-broadband full-mesh wavelength router supporting the T- and O-bands using 3 stages of cascaded arrayed waveguide gratings (AWGs). The router architecture is based on a combination of waveband and channel routing by coarse and fine AWGs, respectively. We fabricated several T-band-specific silica-based AWGs and quantum dot semiconductor optical ampliers as part of the router, and demonstrated 10 Gbps data transmission for several wavelengths throughout a range of 7.4 THz. The power penalties were below 1 dB. Wavelength routing was also demonstrated, where tuning time within a 9.4-nm-wide waveband was below 400 ms.

  13. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp

    NASA Astrophysics Data System (ADS)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei

    2018-01-01

    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  14. Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Allsop, Thomas; Bhamber, Ranjeet; Lloyd, Glynn; Miller, Martin R.; Dixon, Andrew; Webb, David; Ania Castañón, Juan Diego; Bennion, Ian

    2012-11-01

    An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p<0.01.

  15. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays.

    PubMed

    Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui

    2017-03-15

    Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target's point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment.

  16. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays

    PubMed Central

    Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui

    2017-01-01

    Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996

  17. Wavelength-division and spatial multiplexing using tandem interferometers for Bragg grating sensor networks

    NASA Astrophysics Data System (ADS)

    Kalli, K.; Brady, G. P.; Webb, D. J.; Jackson, D. A.; Zhang, L.; Bennion, I.

    1995-12-01

    We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 n 3 / \\radical Hz \\end-radical at 7 Hz for a wavelength of 1535 nm.

  18. Fiber Bragg Grating Filter High Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  19. Design and characterization of a hybrid-integrated MEMS scanning grating spectrometer

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Schenk, Harald

    2013-03-01

    Grating spectrometer, like the well-established Czerny-Turner, are based on an optical design consisting of several components. Typically at least two slits, two mirrors, the grating stage and a detector are required. There has been much work to reduce this effort, setups using only one mirror (Ebert - Fastie) or the replacement of the entrance slit through the use of thin optical fibers as well as integrated electronic detector arrays instead of a moving grating and an exit slit and single detector device have been applied. Reduced effort comes along with performance limitations: Either the optical resolution or throughput is affected or the use of the system is limited to the availability of detectors arrays with reasonable price. Components in micro opto electro mechanical systems (MOEMS-) technology and spectroscopic systems based thereon have been developed to improve this situation. Miniaturized scanning gratings fabricated on bonded silicon on insulator (BSOI-) wafers were used to design grating spectrometer for the near infrared requiring single detectors only. Discrete components offer flexibility but also need for adjustment of two mirrors, grating stage, fiber mount and the detector with its slit and optionally a second slit in the entrance area. Further development leads towards the integration of the slits into the MOEMS chip, thus less effort for adjustment. Flexibility might be reduced as adjustments of the optical design or grating spacing would require a new chip with own set of masks. Nevertheless if extreme miniaturization is desired this approach seems to be promising. Besides this, high volume production might be able for a comparable low price. A new chip was developed offering grating, two slits and a cavity for the detector chip. The optical design was adjusted to a planar arrangement of grating and slits. A detector buried in a chip cavity required a new mounting strategy. Other optical components were optimized and fabricated then the systems was assembled with electronics and software adjusted to the new design including some new features like integrated position sensors. A first test of systems to grant function of all components is presented. Further work will be aimed at improved performance like higher resolution and lower SNR.

  20. Multilayer diffraction grating

    DOEpatents

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  1. Multilayer diffraction grating

    DOEpatents

    Barbee, Jr., Troy W.

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  2. Influence of 4,4’-azobis (4-cyanopentanoic acid) in Transmission and Reflection Gratings Stored in a PVA/AA Photopolymer

    PubMed Central

    Fernandez, Elena; Fuentes, Rosa; Belendez, Augusto; Pascual, Inmaculada

    2016-01-01

    Holographic transmission gratings with a spatial frequency of 2658 lines/mm and reflection gratings with a spatial frequency of 4553 lines/mm were stored in a polyvinyl alcohol (PVA)/acrylamide (AA) based photopolymer. This material can reach diffraction efficiencies close to 100% for spatial frequencies about 1000 lines/mm. However, for higher spatial frequencies, the diffraction efficiency decreases considerably as the spatial frequency increases. To enhance the material response at high spatial frequencies, a chain transfer agent, the 4,4’-azobis (4-cyanopentanoic acid), ACPA, is added to the composition of the material. Different concentrations of ACPA are incorporated into the main composition of the photopolymer to find the concentration value that provides the highest diffraction efficiency. Moreover, the refractive index modulation and the optical thickness of the transmission and reflection gratings were obtained, evaluated and compared to procure more information about the influence of the ACPA on them. PMID:28773322

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmedzhanov, I M; Kibalov, D S; Smirnov, V K

    We report a detailed numerical simulation of the reflection of visible light from a sub-wavelength grating with a rectangular profile on the silicon surface. Simulation is carried out by the effective refractive index method and rigorous coupled-wave analysis. The dependences of the reflectance on the grating depth, fill factor and angle of incidence for TE and TM polarisations are obtained and analysed. Good agreement between the results obtained by the two methods for grating periods of ∼100 nm is found. The possibility of reducing the polarised light reflectance to about 1% by adjusting the depth and the grating fill factormore » is demonstrated. The characteristics of the Brewster effect manifestation (pseudo-Brewster angle) in the system under study are considered. The possibility of the pseudo-Brewster angle existence and its absence for both polarisations of the incident light is shown as a function of the parameters of a rectangular nanostructure on the surface. (laser applications and other topics in quantum electronics)« less

  4. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    PubMed

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.

  5. Using redundancy of round-trip ultrasound signal for non-continuous arrays: Application to gap and blockage compensation.

    PubMed

    Robert, Jean-Luc; Erkamp, Ramon; Korukonda, Sanghamithra; Vignon, François; Radulescu, Emil

    2015-11-01

    In ultrasound imaging, an array of elements is used to image a medium. If part of the array is blocked by an obstacle, or if the array is made from several sub-arrays separated by a gap, grating lobes appear and the image is degraded. The grating lobes are caused by missing spatial frequencies, corresponding to the blocked or non-existing elements. However, in an active imaging system, where elements are used both for transmitting and receiving, the round trip signal is redundant: different pairs of transmit and receive elements carry similar information. It is shown here that, if the gaps are smaller than the active sub-apertures, this redundancy can be used to compensate for the missing signals and recover full resolution. Three algorithms are proposed: one is based on a synthetic aperture method, a second one uses dual-apodization beamforming, and the third one is a radio frequency (RF) data based deconvolution. The algorithms are evaluated on simulated and experimental data sets. An application could be imaging through ribs with a large aperture.

  6. Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. I. Measurements

    NASA Astrophysics Data System (ADS)

    Majkrzak, Charles F.; Metting, Christopher; Maranville, Brian B.; Dura, Joseph A.; Satija, Sushil; Udovic, Terrence; Berk, Norman F.

    2014-03-01

    The primary purpose of this investigation is to determine the effective coherent extent of the neutron wave packet transverse to its mean propagation vector k when it is prepared in a typical instrument used to study the structure of materials in thin film form via specular reflection. There are two principal reasons for doing so. One has to do with the fundamental physical interest in the characteristics of a free neutron as a quantum object, while the other is of a more practical nature, relating to the understanding of how to interpret elastic scattering data when the neutron is employed as a probe of condensed-matter structure on an atomic or nanometer scale. Knowing such a basic physical characteristic as the neutron's effective transverse coherence can dictate how to properly analyze specular reflectivity data obtained for material film structures possessing some amount of in-plane inhomogeneity. In this study we describe a means of measuring the effective transverse coherence length of the neutron wave packet by specular reflection from a series of diffraction gratings of different spacings. Complementary nonspecular measurements of the widths of grating reflections were also performed, which corroborate the specular results. (This paper principally describes measurements interpreted according to the theoretical picture presented in a companion paper.) Each grating was fabricated by lift-off photolithography patterning of a nickel film (approximately 1000 Å thick) formed by physical vapor deposition on a flat silicon crystal surface. The grating periods ranged from 10 μm (5 μm Ni stripe, 5 μm intervening space) to several hundred microns. The transverse coherence length, modeled as the width of the wave packet, was determined from an analysis of the specular reflectivity curves of the set of gratings.

  7. Electro-Optic Modulator.

    DTIC Science & Technology

    An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.

  8. An experimental distribution of analog and digital information in a hybrid wireless visible light communication system based on acousto-optic modulation and sinusoidal gratings

    NASA Astrophysics Data System (ADS)

    Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.

    2016-03-01

    In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.

  9. Universal Network Access System

    DTIC Science & Technology

    2003-11-01

    128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1

  10. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion gratings, including the development of a long-NIR (2-5um) high-resolution (R=80,000) spectrograph with Ge-immersion grating, VINROUGE, which is a prototype for the TMT MIR instrument.

  11. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography.

    PubMed

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent

    2017-09-01

    Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20  dB). A measured coupling efficiency of -2.7  dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.

  12. Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity.

    PubMed

    Zhu, Huan; Zhu, Haiqing; Wang, Fangfang; Chang, Gaolei; Yu, Chenren; Yan, Quan; Chen, Jianxin; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Tang, Zhou; Chen, Pingping; Lu, Wei; Xu, Gangyi; He, Li

    2018-01-22

    A terahertz master-oscillation power-amplifier quantum cascade laser (THz-MOPA-QCL) is demonstrated where a grating coupler is employed to efficiently extract the THz radiation. By maximizing the group velocity and eliminating the scattering of THz wave in the grating coupler, the residue reflectivity is reduced down to the order of 10 -3 . A buried DFB grating and a tapered preamplifier are proposed to improve the seed power and to reduce the gain saturation, respectively. The THz-MOPA-QCL exhibits single-mode emission, a single-lobed beam with a narrow divergence angle of 18° × 16°, and a pulsed output power of 136 mW at 20 K, which is 36 times that of a second-order DFB laser from the same material.

  13. Nanointaglio fabrication of optical lipid multilayer diffraction gratings with applications in biosensing

    NASA Astrophysics Data System (ADS)

    Lowry, Troy Warren

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at microscopic and nanoscopic levels. Exploiting the self-organization and innate biofunctionality of lyotropic liquid crystalline phospholipids, a novel nanofabrication process called "nanointaglio" was invented in order to rapidly and scalably integrate lipid nanopatterns onto the surface. The work presented here focuses on using nanointaglio fabricated lipid diffraction micro- and nanopatterns for the development of new sensing and bioactivity studies. The lipids are patterned as diffraction gratings for sensor functionality. The lipid multilayer gratings operate as nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. To demonstrate the label free detection capabilities, lipid nanopatterns are shown to be suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering, indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. A second main application is demonstrated for the study of membrane binding proteins. Although in vitro methods for assaying the catalytic activity of individual enzymes are well established, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Presented next is a nanointaglio based method for quantitative measurements of lipid-protein interactions and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1. Optical diffraction gratings composed of lipids are printed on surfaces using nanointaglio, resulting in lipid multilayer gratings. Exposure of lipid multilayer gratings to Sar1 results in the inflation of lipid multilayers into unilamellar structures, the kinetics of which can be detected in a label-free manner by monitoring the diffraction of white light through an optical microscope. Local variations in lipid multilayer volume on the surface can be used to vary substrate availability in a microarray format, allowing kinetic and thermodynamic data to be obtained from a single experiment without the need for varying enzyme concentration. A quantitative model is developed and fits to the data allow measurements of both binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1 induced inflation of single bilayers from surface supported multilayers, the semi-cylindrical grating lines are observed to remodel into semi-spherical buds when a critical radius of curvature equal to 300 nm is reached, which is explained in terms of a Rayleigh type instability.

  14. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II

    PubMed Central

    Schäfers, F.; Bischoff, P.; Eggenstein, F.; Erko, A.; Gaupp, A.; Künstner, S.; Mast, M.; Schmidt, J.-S.; Senf, F.; Siewert, F.; Sokolov, A.; Zeschke, Th.

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm−1) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here. PMID:26698047

  15. Multi-directional emission and detection of spin waves propagating in yttrium iron garnet with wavelengths down to about 100 nm

    NASA Astrophysics Data System (ADS)

    Maendl, Stefan; Grundler, Dirk

    2018-05-01

    We performed broadband spin-wave spectroscopy on 200 nm thick yttrium iron garnet containing arrays of partially embedded magnetic nanodisks. Using integrated coplanar waveguides (CPWs), we studied the excitation and transmission of spin waves depending on the presence of nanomagnet arrays of different lateral extensions. By means of the grating coupler effect, we excited spin waves propagating in multiple lateral directions with wavelengths down to 111 nm. They exhibited group velocities of up to 1 km/s. Detection of such short-wavelength spin waves was possible only in symmetrically designed emitter/detector configurations, not with a bare CPW. We report spin waves propagating between grating couplers under oblique angles exhibiting a wave vector component parallel to the CPW. The effective propagation distance amounted to about 80 μm. Such transmission signals were not addressed before and substantiate the versatility of the grating coupler effect for implementing nanomagnonic circuits.

  16. The Off-plane Grating Rocket Experiment

    NASA Astrophysics Data System (ADS)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  17. Highlighting the history of Japanese radio astronomy. 4: early solar research in Osaka

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Nakamura, Tsuko; Ishiguro, Masato

    2016-12-01

    For about two years, from late 1949, Minoru Oda and Tatsuo Takakura carried out solar observations from Osaka, initially with a hand-made horn and later with a small parabolic antenna connected to a 3.3 GHz receiver, but they only published one short paper on this work. At about the same time, Ojio and others at Osaka City University presented the concept of a solar grating array at a meeting of the Japan Physical Society, but this was never built. In this paper, we provide brief biographical accounts of Oda and Takakura before examining their radio telescopes and the observations that they made. We also briefly discuss the proposed Japanese solar grating array.

  18. Packaging and Mounting of In-Fibre Bragg Grating Arrays for Structural Health Monitoring of Large Structures

    DTIC Science & Technology

    2010-10-01

    33 Abbreviations CFRP Carbon Fibre Reinforced Polymer FBG Fibre Bragg Grating FGI Fiberglass International FO... Fibre Optic FOS Fibre Optic Sensor GFRP Glass Fibre Reinforced Polymer HDPE High Density Polyethylene LED Light Emitting Diode MHC Mine Hunter...subsequent paragraphs. An operational loads monitoring system for wind turbine blades was demonstrated [7] using FBGs surface-mounted onto glass fibre

  19. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  20. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  1. Open-cavity fiber laser with distributed feedback based on externally or self-induced dynamic gratings.

    PubMed

    Lobach, Ivan A; Drobyshev, Roman V; Fotiadi, Andrei A; Podivilov, Evgeniy V; Kablukov, Sergey I; Babin, Sergey A

    2017-10-15

    Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50  MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.

  2. Rotary encoding device using polygonal mirror with diffraction gratings on each facet

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror each have a low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  3. Discrete wavelength-locked external cavity laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)

    2005-01-01

    An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.

  4. Coherent gradient sensing method and system for measuring surface curvature

    NASA Technical Reports Server (NTRS)

    Rosakis, Ares J. (Inventor); Moore, Jr., Nicholas R. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor)

    2000-01-01

    A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.

  5. Automatic Topography Using High Precision Digital Moire Methods

    NASA Astrophysics Data System (ADS)

    Yatagai, T.; Idesawa, M.; Saito, S.

    1983-07-01

    Three types of moire topographic methods using digital techniques are proposed. Deformed gratings obtained by projecting a reference grating onto an object under test are subjected to digital analysis. The electronic analysis procedures of deformed gratings described here enable us to distinguish between depression and elevation of the object, so that automatic measurement of 3-D shapes and automatic moire fringe interpolation are performed. Based on the digital moire methods, we have developed a practical measurement system, with a linear photodiode array on a micro-stage as a scanning image sensor. Examples of fringe analysis in medical applications are presented.

  6. Distribution of the 3.1 micron feature in Cepheus A

    NASA Technical Reports Server (NTRS)

    Hodapp, Klaus-Werner; Eiroa, Carlos

    1989-01-01

    Near-IR absorption features produced by core-mantle dust grains are observed in many protostellar objects. The high spatial resolution observations (less or equal to 3 in.) could be helpful to monitor the expected changes of the features. Cep A/IRS 6 is a suitable candidate to carry out such a kind of study. It is located in an active star formation region and consists of a young object associated with an extended reflection nebula. The ice feature was observed in four positions of Cep A/IRS 6 with a 2.7 in. aperture. The observations were carried out at the IRTF using the cooled grating array spectrometer CGAS. The 2.4 to 3.8 micron spectra of two positions are presented.

  7. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  8. Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating

    NASA Astrophysics Data System (ADS)

    Song, Jinlin; Lu, Lu; Cheng, Qiang; Luo, Zixue

    2018-05-01

    The optical absorption of a composite photonic structure, namely monolayer molybdenum disulfide (MoS2)-covered Au grating, is theoretically investigated using a rigorous coupled-wave analysis algorithm. The enhancement of localized electromagnetic field due to surface plasmon polaritons supported by Au grating can be utilized to enhance the absorption of MoS2. The remarkable enhancement of absorption due to exciton transition can also be realized. When the period of grating is 600 nm, the local absorption of the monolayer MoS2 on Au grating is nearly 7 times higher than the intrinsic absorption due to B exciton transition. A further study reveals that the absorption properties of Au grating can be tailored by altering number of MoS2 layers, changing to a MoS2 nanoribbon array, and inserting a hafnium dioxide (HfO2) spacer. This work will contribute to the design of MoS2-based optical and optoelectronic devices.

  9. Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing

    NASA Astrophysics Data System (ADS)

    Dai, Yanqiu; Xu, Huimei; Wang, Haoyu; Lu, Yonghua; Wang, Pei

    2018-06-01

    We experimentally demonstrated a high sensitivity of surface plasmon resonance (SPR) sensor with silver rectangular grating coupling. The reflection spectra of the silver gratings indicated that surface plasmon resonance can be excited by either positive or negative order diffraction of the grating, depending on the period of the gratings. Comparing to prism-coupled SPR sensor, the sensitivities are higher for negative order diffraction coupling in bigger coupling angle, but much smaller for positive order diffraction coupling of the gratings. High sensitivity of 254.13 degree/RIU is experimentally realized by grating-based SPR sensor in the negative diffraction excitation mode. Our work paves the way for compact and sensitive SPR sensor in the applications of biochemical and gas sensing.

  10. X-ray verification of an optically aligned off-plane grating module

    NASA Astrophysics Data System (ADS)

    Donovan, Benjamin D.; McEntaffer, Randall L.; Tutt, James H.; DeRoo, Casey T.; Allured, Ryan; Gaskin, Jessica A.; Kolodziejczak, Jeffery J.

    2018-01-01

    Off-plane x-ray reflection gratings are theoretically capable of achieving high resolution and high diffraction efficiencies over the soft x-ray bandpass, making them an ideal technology to implement on upcoming x-ray spectroscopy missions. To achieve high effective area, these gratings must be aligned into grating modules. X-ray testing was performed on an aligned grating module to assess the current optical alignment methods. Results indicate that the grating module achieved the desired alignment for an upcoming x-ray spectroscopy suborbital rocket payload with modest effective area and resolving power. These tests have also outlined a pathway towards achieving the stricter alignment tolerances of future x-ray spectrometer payloads, which require improvements in alignment metrology, grating fabrication, and testing techniques.

  11. Intracore and extracore examination of fiber gratings with coherent detection

    NASA Astrophysics Data System (ADS)

    Froggatt, Mark Earl

    2001-06-01

    This thesis introduces several new methods of measurement to aid in the production and evaluation of Bragg gratings in optical fiber. Five measurements are described: UV fringe visualization for grating production, weak grating measurement for distributed sensing, strong grating measurement for telecommunication applications, second harmonic grating measurement for grating chirp assessment, and grating visualization using radiation diffraction from strong Bragg gratings. The weak grating measurement for distributed strain sensing is a summary of work published prior to beginning the thesis research, and is provided for background purposes. The UV fringe visualization is accomplished by using a phase mask very close to the plane of the fiber to diffract the incoming beams used to write the Bragg grating into nearly parallel alignment, leading to macroscopic fringes indicative of the phase, frequency, amplitude, and contrast of the microscopic fringes incident on the fiber. The weak grating measurement uses Optical Frequency Domain Reflectometry (OFDR) to measure the spatial distribution of the coupling strength of weak gratings. Included in the description of the OFDR technique are recent advances in the precision monitoring of the emission wavelength of tunable lasers. The precise monitoring of wavelength is critical to the functioning of OFDR. The strong grating measurement is based on a modified form of OFDR and an analysis of the problem in the time and frequency domains to produce accurate measurements of both the reflection and transmission Transfer Functions for Bragg gratings. This measurement technique is also applicable to a wide variety of optical fiber devices, and is shown to be scalable to multiple port devices. The second-harmonic measurement for grating chirp analysis is similar to the weak grating measurement, but it was done at a wavelength resonant with the second- harmonic grating in the fiber-780 nm for 1550 nm reflection gratings. The second-harmonic grating results from nonlinearities in the grating growth process and, due to the great sensitivity of OFDR, is detectable for almost all fiber gratings. The grating visualization also uses half-wavelength (780 nm) illumination of the grating through the core. This technique uses the diffraction of light into the radiation modes to make the grating in the fiber externally visible. By operating near the perpendicular radiation condition, and introducing coherent counter- propagating light, the spatial frequency and the amplitude of the grating as functions of distance along the fiber can be measured. To better understand the radiation from Bragg gratings, a technique known as the Volume Current Method (VCM) was used to derive an expression for the radiation from a Bragg grating for all of the LP fiber modes.

  12. Soft x-ray transmission grating spectrometer for X-ray Surveyor and smaller missions with high resolving power

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.

    2017-01-01

    A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible with the most advanced grating spectrometer instrument designs for future soft x-ray spectroscopy missions. We will review the most recent CAT grating fabrication and x-ray test results.

  13. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  14. Design of a holographic waveguide with L configuration

    NASA Astrophysics Data System (ADS)

    Xiang, Guangxin-Xin; Li, Wen-Qiang

    2016-10-01

    In order to decrease the complexity to design and manufacture the turning grating of the configuration with one reflecting surface, an L-shape two-dimension extended configuration with single plate is given in the paper. This configuration consists of one specular reflecting surface and three holographic gratings two in which periods and the groove orientations are totally same, which makes gratings design and fabrication easier. According to the calculation and analysis to the optical path of configuration, the dimension of the turning grating is no larger than 40mm×30mm. The simulation result demonstrates the display configuration is reasonable and correct and can realize the display effect with 30°×30° field of view and Φ30mm large exit pupil. This configuration can be applied to an Augmented Reality Display (AR) or a Head-Mounted Display (HMD).

  15. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  16. Holographic Reflection Filters in Photorefractive LiNbO3 Channel Waveguides

    NASA Astrophysics Data System (ADS)

    Kip, Detlef; Hukriede, Joerg

    Permanent refractive-index gratings in waveguide devices are of considerable interest for optical communication systems that make use of the high spectral selectivity of holographic filters, e.g. dense wavelength division multiplexing (DWDM) or narrow-bandwidth mirrors for integrated waveguide lasers in LiNbO3. Other possible applications include grating couplers and optical sensors. In this contribution we investigate such holographic wavelength filters in Fe- and Cu-doped LiNbO3 channel waveguides. Permanent refractive-index gratings are generated by thermal fixing of holograms in the waveguides. The samples are fabricated by successive in-diffusion of Ti stripes and thin layers of either Fe or Cu. After high-temperature recording with green light, refractive-index changes up to δ, ~10^-4 for infrared light ( 1.55,m) are obtained, resulting in a reflection efficiency well above 99% for a 15 mm-long grating. Several gratings for different wavelengths can be superimposed in the same sample, which may enable the fabrication of more complex filters, laser mirrors or optical sensors. By changing the sample temperature the reflection wavelength can be tuned by thermal expansion of the grating, and wavelength filters can be switched on and off by applying moderate voltages using the electro-optic effect. Furthermore, we report on a new thermal fixing mechanism that does not need any additional development by homogeneous light illumination and therefore does not suffer from the non-vanishing dark conductivity of the material.

  17. Two-dimensional designed fabrication of subwavelength grating HCG mirror on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Hong, Kuo-Bin; Lu, Tien-Chang; He, Sailing

    2016-03-01

    We designed and fabricated a two dimensional high contrast subwavelength grating (HCG) mirrors. The computer-aided software was employed to verify the structural parameters including grating periods and filling factors. From the optimized simulation results, the designed HCG structure has a wide reflection stopband (reflectivity (R) >90%) of over 200 nm, which centered at telecommunication wavelength. The optimized HCG mirrors were fabricated by electron beam lithography and inductively coupled plasma process technique. The experimental result was almost consistent with calculated data. This achievement should have an impact on numerous photonic devices helpful attribution to the integrated HCG VCSELs in the future.

  18. Polarization-independent high-speed photodetector based on a two-dimensional focusing grating

    NASA Astrophysics Data System (ADS)

    Duan, Xiaofeng; Chen, Hailang; Huang, Yongqing; Liu, Kai; Cai, Shiwei; Ren, Xiaomin

    2018-01-01

    We demonstrate a reflection-enhanced high-speed photodetector, which integrated a mushroom-mesa p-i-n structure on a two-dimensional (2D) nonperiodic focusing grating. Mushroom-mesa p-i-n photodetectors exhibit a high frequency response owing to their low resistance capacity (RC) time constant. 2D nonperiodic focusing gratings not only can increase the external quantum efficiency of the device owing to their reflecting and focusing abilities, but also are not sensitive to the polarization of the incident light. The external quantum efficiency of this device is 44.71% and the measured 3 dB bandwidth is up to 32 GHz.

  19. Sub-wavelength grating mode transformers in silicon slab waveguides.

    PubMed

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  20. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings.

    PubMed

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-30

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  1. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings

    NASA Astrophysics Data System (ADS)

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-01

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  2. Waveguide Grating For Polarization Preprocessing Circuits

    NASA Astrophysics Data System (ADS)

    Voirin, Guy; Gradisnik, F.; Parriaux, Olivier M.; Gale, Michael T.; Kunz, Rino E.; Curtis, B. J.; Lehmann, Hans W.

    1989-12-01

    Periodically corrugated optical waveguides on glass with non-collinear coupling have been investigated both theoretically and experimentally. For a TE or TM polarized guided mode of a planar waveguide obliquely incident on a grating pad, there are four characteristic angles corresponding to the coupling with TE and TM reflected modes fulfilling the Bragg condition. The reflectivity is obtained by solving the coupled mode equations for the non-collinear case. The modelling shows that integrated passive functions such as polarization splitting and interference can be achieved. The polarization interference element uses the property that the coupling coefficients TM-TE and TE-TE are equal at defined incidence angles. Since the angle between the two reflected TE beams is only a few minutes of arc, the two beams can interfere. The waveguides are made by K+ ion exchange in BK7 glass for 3 hours at 380°C. The structure was designed for use at a wavelength of 633 nm and uses a 485 nm period grating which was fabricated by holographic exposure and plasma etching techniques in a 50 nm TiO2 layer e-beam evaporated onto the glass surface. The reflectivity of the grating structure was studied experimentally and compared with theory. The diffraction angles are within 30 " of arc of the predicted angles. The measured reflectivities reached 20 %. The feasibility of realizing an integrated optic preprocessing circuit for polarization interferometry has been demonstrated.

  3. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  4. Deep-etched sinusoidal polarizing beam splitter grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lv, Peng

    2010-04-01

    A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the -1st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient (>95.98%) over the O-band wavelength range (1260-1360 nm) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.

  5. Off-plane x-ray reflection grating fabrication

    NASA Astrophysics Data System (ADS)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  6. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  7. Overview of diffraction gratings technologies for space-flight satellites and astronomy

    NASA Astrophysics Data System (ADS)

    Cotel, Arnaud; Liard, Audrey; Desserouer, Frédéric; Bonnemason, Francis; Pichon, Pierre

    2014-09-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, holographic blazed replica plane grating, high-groove density holographic toroidal and spherical grating and transmission Fused Silica Etched (FSE) grismassembled grating.

  8. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NASA Astrophysics Data System (ADS)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.

  9. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOEpatents

    Greenwood, Margaret S.

    2005-04-12

    A system for determining a property of a fluid based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum including a diffraction order equal to zero exhibits a peak whose location is used to determine speed of sound in the fluid. A separate measurement of the acoustic impedance is combined with the determined speed of sound to yield a measure of fluid density. A system for determining acoustic impedance includes an ultrasonic transducer on a first surface of a solid member, and an opposed second surface of the member is in contact with a fluid to be monitored. A longitudinal ultrasonic pulse is delivered through the solid member, and a multiplicity of pulse echoes caused by reflections of the ultrasonic pulse between the solid-fluid interface and the transducer-solid interface are detected. The decay rate of the detected echo amplitude as a function of echo number is used to determine acoustic impedance.

  10. Reminiscences regarding Professor R.N. Christiansen

    NASA Astrophysics Data System (ADS)

    Swarup, Govind

    2008-11-01

    In this short paper I describe my initiation into the field of radio astronomy fifty years ago, under the guidance of Professor W.N. ('Chris') Christiansen, soon after I joined the C.S.I.R.O.'s Division of Radiophysics (RP) in Sydney, Australia, in 1953 under a 2-year Colombo Plan Fellowship. During the early 1950s Christiansen had developed a remarkable 21 cm interferometric grating array of 32 east-west aligned parabolic dishes and another array of 16 dishes in a north-south direction at Potts Hill. Christiansen and Warburton used these two arrays to scan the Sun strip-wise yielding radio brightness distribution at various position angles. During a three month period I assisted them in making a 2-dimensional map of the Sun by a complex Fourier transform process. In the second year of my Fellowship, Parthasarathy and I converted the 32-antenna east-west grating array to study solar radio emission at 60cm. During this work, I noticed that the procedure adopted by Christiansen for phase adjustment of the grating array was time consuming. Based on this experience, I later developed an innovative technique at Stanford in 1959 for phase adjustment of long transmission lines and paths in space. In a bid to improve on the method used by Christiansen to make a 2-dimensional map of the Sun from strip scans, I suggested to R.N. Bracewell in 1962 a revolutionary method for direct 2-dimensional imaging without Fourier transforms. Bracewell and Riddle developed the method for making a 2-dimensional map of the Moon using strip scans obtained with the 32 element interferometer at Stanford. The method has since revolutionized medical tomography. I describe these developments here to highlight my initial work with Christiansen and to show how new ideas often are developed by necessity and have their origin in prior experience! The 32 Potts Hill solar grating array dishes were eventually donated by the C.S.I.R.0. to India and were set up by me at Kalyan near Mumbai, forming the core of the first radio astronomy group in India. This group went on to construct two of the world's largest radio telescopes, the Ooty Radio Telescope and the Giant Metrewave Radio Telescope. Chris Christiansen was not only my guru but also a mentor and a friend for more than fifty years. I fondly remember his very warm personality.

  11. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  12. SAFARI optical system architecture and design concept

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter

    2016-07-01

    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.

  13. Broadband implementation of coprime linear microphone arrays for direction of arrival estimation.

    PubMed

    Bush, Dane; Xiang, Ning

    2015-07-01

    Coprime arrays represent a form of sparse sensing which can achieve narrow beams using relatively few elements, exceeding the spatial Nyquist sampling limit. The purpose of this paper is to expand on and experimentally validate coprime array theory in an acoustic implementation. Two nested sparse uniform linear subarrays with coprime number of elements ( M and N) each produce grating lobes that overlap with one another completely in just one direction. When the subarray outputs are combined it is possible to retain the shared beam while mostly canceling the other superfluous grating lobes. In this way a small number of microphones ( N+M-1) creates a narrow beam at higher frequencies, comparable to a densely populated uniform linear array of MN microphones. In this work beampatterns are simulated for a range of single frequencies, as well as bands of frequencies. Narrowband experimental beampatterns are shown to correspond with simulated results even at frequencies other than the arrays design frequency. Narrowband side lobe locations are shown to correspond to the theoretical values. Side lobes in the directional pattern are mitigated by increasing bandwidth of analyzed signals. Direction of arrival estimation is also implemented for two simultaneous noise sources in a free field condition.

  14. Holographically Encoded Volume Phase Masks

    DTIC Science & Technology

    2015-07-13

    Lu et al., “Coherent beam combination of fiber laser arrays via multiplexed volume Bragg gratings,” in Conf. on Lasers and Electro- Optics: Science...combining of fiber lasers using multiplexed volume Bragg gratings,” in Conf. on Lasers and Electro- Optics: Science and Innovations, OSA Technical Digest...satisfying the Bragg condition of the hologram. Moreover, this approach enables the capability to encode and multiplex several phase masks into a single

  15. 8-beam local oscillator array at 47 THz generated by a phase grating and a quantum cascade laser

    DOE PAGES

    Mirzaei, B.; Silva, J. R. G.; Hayton, D.; ...

    2017-11-13

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less

  16. Trends in Array Antenna Research,

    DTIC Science & Technology

    1977-06-01

    design, because it is possible to record this single mode parameter and still account for all of the subtleties that occur at the array face. 2.5...waveguide field, but did properly account for the full spatial harmonic series (grating lobe series) in the free space half space. Some earlier...described some approximate procedures to account for coupling in large arrays where the numerical evaluation of all the higher order terms would

  17. Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer.

    PubMed

    Fuentes, Rosa; Fernández, Elena; García, Celia; Beléndez, Augusto; Pascual, Inmaculada

    2009-12-01

    High-spatial-frequency fringes associated with reflection holographic optical elements are difficult to obtain with currently available recording materials. In this work, holographic reflection gratings were stored in a polyvinyl alcohol/acrylamide photopolymer. This material is formed of acrylamide photopolymer, which is considered interesting material for optical storage applications such as holographic memories. The experimental procedure for examining the high-spatial-frequency response of this material is explained, and the experimental results obtained are presented. With the aim of obtaining the best results, the performance of different material compositions is compared.

  18. Sparse aperiodic arrays for optical beam forming and LIDAR.

    PubMed

    Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E

    2017-02-06

    We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.

  19. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    PubMed Central

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-01-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors. PMID:28211506

  20. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    NASA Technical Reports Server (NTRS)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  1. Compact cross-dispersion device based on a prism and a plane transmission grating

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Wang, Weiqiang

    2018-05-01

    This paper presents a cross-dispersion prism-grating device using a plane transmission grating attached directly to a prism, which is different from traditional cross-dispersion grating-prism systems that are based on the reflection grating. Unlike conventional direct-vision grism or constant-dispersion grism in which both the prism and grating have the same dispersion direction, for this device the dispersion directions of the prism and grating are different. The analytical expressions for the cross-dispersion of this device are derived in detail and the formulas of the footprint of the dispersed spectra are given. The numerical results and ray-tracing simulations by ZEMAX are shown. The device provides a compact, small-sized and broadband cross-dispersion device used for the medium resolution spectrometer.

  2. A system definition study for the Advanced Meteorological Temperature Sounder (AMTS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The functional requirements of Exhibit A (11) were used as the baseline for the conceptual design of a fixed grating out of plane multidetector spectrometer for the Space Shuttle application. Because the grating instrument would be large and the 28 element detector array would be difficult to cool radiatively from a free flying spacecraft and because increasing the spectral resolution of the grating instrument would be difficult in an instrument of reasonable size, a parallel study of a Nichelson interferometer spectrometer was undertaken. This type of instrument offers compact size, fewer detectors to cool, and the possibility of increased spectral resolution. The design and performance parameters of both the grating and interferometer approaches are described. The tradeoffs involved in comparing the two systems for sounding applications are discussed.

  3. Vapor-Redissolution Technique for Reduction of POLYMER/Si Arrayed Waveguide Grating Loss

    NASA Astrophysics Data System (ADS)

    Zhang, Haiming; Zhang, Daming; Qin, Zhenkun; Ma, Chunsheng

    An efficient vapor-redissolution technique is used to greatly reduce sidewall scattering loss in the polymer arrayed waveguide grating (AWG) fabricated on a silicon substrate. Smoother sidewalls are achieved and verified by scanning electron microscopy. Reduction of sidewall scattering loss is further measured for the loss measurement of both straight waveguides and AWG devices. The sidewall loss in straight polymer waveguide is decreased by 2.1 dB/cm, the insertion loss of our AWG device is reduced by about 5.5 dB for the central channel and 6.7 dB for the edge channels, the crosstalk is reduced by 2.5 dB, and 3-dB bandwidth is narrowed by 0.05 nm after the vapor-redissoluton treatment.

  4. Transition from a spectrum filter to a polarizer in a metallic nano-slit array

    PubMed Central

    Zhou, Jing; Guo, L. Jay

    2014-01-01

    The transition from a spectrum filter (resonant transmission) to a polarizer (broadband transmission) for TM polarized light is observed in a metallic nano-slit array as period is decreased. A theoretical model is developed and shows that the spectrum filter behavior is caused by the coupled slit/grating resonance. With decreasing period, the slit resonance is decoupled from the grating resonance, which then dominates the transmission spectrum and broadens the transmission peak. With further reducing period, the slit resonance diminishes and the peak spectrum transforms to a broadband transmission. This effect is the basis for the operation of wire grid polarizers. The transition is explained by the change of the impedance to the incoming wave. PMID:24402443

  5. Transition from a spectrum filter to a polarizer in a metallic nano-slit array.

    PubMed

    Zhou, Jing; Guo, L Jay

    2014-01-09

    The transition from a spectrum filter (resonant transmission) to a polarizer (broadband transmission) for TM polarized light is observed in a metallic nano-slit array as period is decreased. A theoretical model is developed and shows that the spectrum filter behavior is caused by the coupled slit/grating resonance. With decreasing period, the slit resonance is decoupled from the grating resonance, which then dominates the transmission spectrum and broadens the transmission peak. With further reducing period, the slit resonance diminishes and the peak spectrum transforms to a broadband transmission. This effect is the basis for the operation of wire grid polarizers. The transition is explained by the change of the impedance to the incoming wave.

  6. Transition from a spectrum filter to a polarizer in a metallic nano-slit array

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Guo, L. Jay

    2014-01-01

    The transition from a spectrum filter (resonant transmission) to a polarizer (broadband transmission) for TM polarized light is observed in a metallic nano-slit array as period is decreased. A theoretical model is developed and shows that the spectrum filter behavior is caused by the coupled slit/grating resonance. With decreasing period, the slit resonance is decoupled from the grating resonance, which then dominates the transmission spectrum and broadens the transmission peak. With further reducing period, the slit resonance diminishes and the peak spectrum transforms to a broadband transmission. This effect is the basis for the operation of wire grid polarizers. The transition is explained by the change of the impedance to the incoming wave.

  7. Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolde, Jill A., E-mail: jill.nolde@nrl.navy.mil; Kim, Chul Soo; Jackson, Eric M.

    2015-06-29

    We demonstrate up to 39% resonant enhancement of the quantum efficiency (QE) of a low dark current nBn midwave infrared photodetector with a 0.5 μm InAsSb absorber layer. The enhancement was achieved by using a 1D plasmonic grating to couple incident light into plasmon modes propagating in the plane of the device. The plasmonic grating is composed of stripes of deposited amorphous germanium overlaid with gold. Devices with and without gratings were processed side-by-side for comparison of their QEs and dark currents. The peak external QE for a grating device was 29% compared to 22% for a mirror device when themore » illumination was polarized perpendicularly to the grating lines. Additional experiments determined the grating coupling efficiency by measuring the reflectance of analogous gratings deposited on bare GaSb substrates.« less

  8. Recent developments in the fabrication of infrared fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Florea, Catalin; Shaw, Brandon; Sanghera, Jas; Nguyen, Vinh; Chin, Geoff; Aggarwal, Ishwar

    2012-02-01

    We report on the study of adding metal dopants in chalcogenide glasses to enhance the photosensitivity of the fiber core versus cladding compositions, with goal to enable high reflectivity gratings in infrared-transmitting fibers. Results for the optical and thermal properties of these glasses will be presented, as well as for gratings formation in the glasses using various writing wavelengths for the different doped compositions.

  9. 1×2 demultiplexer for a light waveguide communications system based on a holographic grating

    NASA Astrophysics Data System (ADS)

    Ren, Xuechang; Zhang, Xiangsu; Wang, Canhui; Liu, Shou

    2009-05-01

    2-channel multiplexer/demultiplexer (Muxer/Demuxer) is a key component for bidirectional data traffics applied for optical communication. Up to date various types of Muxer/Demuxer have been proposed and demonstrated. A grating coupler diffracts light into substrates or waveguides, along which light beam propagates by total internal reflection. In addition, one can exploit the dispersive and filtering characteristics of gratings, for dropping or separating one or several wavelengths from one another. When a laser beam containing two wavelengths is striking the surface of the grating with an incident angle within certain range, four diffracted beams will be generated. If two diffracted beams, corresponding to different wavelengths, meet the condition of total internal reflection, they will propagate inside the glass substrate (performs as a waveguide). While the third one cannot meet total reflection condition, and the last one should become the evanescent wave. Therefore it can separate two signals and couple signals to different waveguides. These functions are suited for WDM application and directional couplers. For convenience sake, the visible lights at 458nm and 633nm were used as the incident laser beams. To give a simple sample for 1×2 demultiplexing system, a holographic grating was recorded, with the period around 441nm which was chose discretionally within the certain range. The primary experimental results indicate that the two-wavelength signal can be separated and coupled into the respective waveguide as long as the grating is recorded and operated complying with the certain condition. The average insertion loss and crosstalk of the device were presented in this paper.

  10. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B 4C) coating especially optimized for the LCLS FEL conditions was deposited onmore » all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B 4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  11. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells.

    PubMed

    Lee, Sangjun; In, Sungjun; Mason, Daniel R; Park, Namkyoo

    2013-02-25

    We present investigation and optimization of a newly proposed plasmonic organic solar cell geometry based on the incorporation of nanovoids into conventional rectangular backplane gratings. Hybridization of strongly localized plasmonic modes of the nanovoids with Fabry-Perot cavity modes originating from surface plasmon reflection at the grating elements is shown to significantly boost performance in the long wavelength regime. This constitutes improved broadband operation while maintaining absorption enhancements at short wavelengths derived from conventional rectangular grating. Our calculations predict a figure of merit enhancement of up to 41% compared to when the nanovoid indented grating is absent. This is a significant improvement over the previously considered rectangular grating structures, which is further shown to be maintained over the entire angular range.

  12. Phase-based Bragg intragrating distributed strain sensor

    NASA Astrophysics Data System (ADS)

    Huang, S.; Ohn, M. M.; Measures, R. M.

    1996-03-01

    A strain-distribution sensing technique based on the measurement of the phase spectrum of the reflected light from a fiber-optic Bragg grating is described. When a grating is subject to a strain gradient, the grating will experience a chirp and therefore the resonant wavelength will vary along the grating, causing wavelength-dependent penetration depth. Because the group delay for each wavelength component is related to its penetration depth and the resonant wavelength is determined by strain, a measured phase spectrum can then indicate the local strain as a function of location within the grating. This phase-based Bragg grating sensing technique offers a powerful new means for studying some important effects over a few millimeters or centimeters in smart structures.

  13. Application of holographic sub-wavelength diffraction gratings for monitoring of kinetics of bioprocesses

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Tomas; Šeperys, Rimas; Andrulevičius, Mindaugas; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas; Mikalayeva, Valeryia; Daugelavičius, Rimantas

    2012-09-01

    In this work we present a refractive index (RI) sensor based on a sub-wavelength holographic diffraction grating. The sensor chip was fabricated by dry etching of the finely spaced (d = 428 nm) diffraction grating in SiOx doped diamond like carbon (DLC) film. It is shown that employing a fabricated sensor chip, and using the proposed method of analysis of data, one can inspect kinetics of processes in liquids occurring in the vicinity of the grating surface. The method is based on the spectral composition analysis of polarized polychromatic light reflected from the sub-wavelength diffraction grating. The RI measurement system was tested with different model liquid analytes including 25 wt.%, 50 wt.% sugar water solutions, 10 °C, 50 °C distilled water, also Gram-positive bacteria Bacillus subtilis interaction with ion-permeable channels forming antibiotic gramicidin D and a murolytic enzyme lysozyme. Analysis of the data set of specular reflection spectra enabled us to follow the kinetics of the RI changes in the analyte with millisecond resolution. Detectable changes in the effective RI were not worse than Δn = 10-4.

  14. Research on fiber Bragg grating heart sound sensing and wavelength demodulation method

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang

    2010-11-01

    Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.

  15. Evaluation of complex gonioapparent samples using a bidirectional spectrometer.

    PubMed

    Rogelj, Nina; Penttinen, Niko; Gunde, Marta Klanjšek

    2015-08-24

    Many applications use gonioapparent targets whose appearance depends on irradiation and viewing angles; the strongest effects are provided by light diffraction. These targets, optically variable devices (OVDs), are used in both security and authentication applications. This study introduces a bidirectional spectrometer, which enables to analyze samples with most complex angular and spectral properties. In our work, the spectrometer is evaluated with samples having very different types of reflection, concerning spectral and angular distributions. Furthermore, an OVD containing several different grating patches is evaluated. The device uses automatically adjusting exposure time to provide maximum signal dynamics and is capable of doing steps as small as 0.01°. However, even 2° steps for the detector movement showed that this device is more than capable of characterizing even the most complex reflecting surfaces. This study presents sRGB visualizations, discussion of bidirectional reflection, and accurate grating period calculations for all of the grating samples used.

  16. Isolation of Thermal and Strain Responses in Composites Using Embedded Fiber Bragg Grating Temperature Sensors

    DTIC Science & Technology

    2013-05-10

    13. SUPPLEMENTARY NOTES 14. ABSTRACT In this research, fiber Bragg grating ( FBG ) optical temperature sensors are used for structural health...surface of a composite structure. FBG sensors also respond to axial strain in the optical fiber, thus any structural strain experienced by the composite...features. First, a three-dimensional array of FBG temperature sensors has been embedded in a carbon/epoxy composite structure, consisting of both in

  17. Initial Trial using Embedded Fibre Bragg Gratings for Distributed Strain Monitoring in a Shape Adaptive Composite Foil

    DTIC Science & Technology

    2012-02-01

    available for interrogation. Although commercially available fibre Bragg grating ( FBG ) sensors have emerged in the marketplace over the past decade...the results from a preliminary trial investigating the feasibility of using embedded FBG arrays in a shape adaptive composite foil to characterise...The response from the FBG sensors was also monitored during fabrication of the foil during the resin infusion and curing stages of the process

  18. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile z-pinch environment.

    PubMed

    Williamson, K M; Kantsyrev, V L; Safronova, A S; Wilcox, P G; Cline, W; Batie, S; LeGalloudec, B; Nalajala, V; Astanovitsky, A

    2011-09-01

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < λ < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 μm slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer. © 2011 American Institute of Physics

  19. Selecting Random Distributed Elements for HIFU using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng

    2011-09-01

    As an effective and noninvasive therapeutic modality for tumor treatment, high-intensity focused ultrasound (HIFU) has attracted attention from both physicians and patients. New generations of HIFU systems with the ability to electrically steer the HIFU focus using phased array transducers have been under development. The presence of side and grating lobes may cause undesired thermal accumulation at the interface of the coupling medium (i.e. water) and skin, or in the intervening tissue. Although sparse randomly distributed piston elements could reduce the amplitude of grating lobes, there are theoretically no grating lobes with the use of concave elements in the new phased array HIFU. A new HIFU transmission strategy is proposed in this study, firing a number of but not all elements for a certain period and then changing to another group for the next firing sequence. The advantages are: 1) the asymmetric position of active elements may reduce the side lobes, and 2) each element has some resting time during the entire HIFU ablation (up to several hours for some clinical applications) so that the decreasing efficiency of the transducer due to thermal accumulation is minimized. Genetic algorithm was used for selecting randomly distributed elements in a HIFU array. Amplitudes of the first side lobes at the focal plane were used as the fitness value in the optimization. Overall, it is suggested that the proposed new strategy could reduce the side lobe and the consequent side-effects, and the genetic algorithm is effective in selecting those randomly distributed elements in a HIFU array.

  20. Modified femtosecond laser inscription method for tailored grating sensors in encapsulated silica and low-loss polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Kalli, Kyriacos; Lacraz, Amedee; Theodosiou, Andreas; Kofinas, Marios

    2016-05-01

    There is great interest in the development of flexible wavelength filters and optical fibre sensors, such as Bragg and superstructure gratings, grating arrays and chirped gratings in glass and polymer optical fibres. A major hurdle is the development of an inscription method that should offer flexibility and reliability and be generally applicable to all optical fibre types. With this in mind we have developed a novel femtosecond laser inscription method; plane-by-plane inscription, whereby a 3D-index change of controlled length across the fibre core, width along the fibre axis and depth is written into the optical fibre. We apply this method for the inscription of various grating types in coated silica and low- loss CYTOP polymer optical fibres. The plane-by-plane method allows for multiple and overlapping gratings in the fibre core. Moreover, we demonstrate that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor. The femtosecond laser is operated in the green or the near infra-red, based on the material properties under laser modification.

  1. Physics of near-wavelength high contrast gratings.

    PubMed

    Karagodsky, Vadim; Chang-Hasnain, Connie J

    2012-05-07

    We present a simple theory explaining the extraordinary features of high-contrast optical gratings in the near-wavelength regime, particularly the very broadband high reflectivity (>99%) and the ultra-high quality factor resonances (Q>10(7)). We present, for the first time, an intuitive explanation for both features using a simple phase selection rule, and reveal the anti-crossing and crossing effects between the grating modes. Our analytical results agree well with simulations and the experimental data obtained from vertical cavity surface emitting lasers incorporating a high contrast grating as top reflector.

  2. Using a cover layer to improve the damage resistance of gold-coated gratings induced by a picosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia

    2018-04-01

    The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.

  3. Theoretical investigation and optimization of fiber grating based slow light

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Peng; Du, Chao; Li, Jin; Hu, Haifeng; Zhao, Yong

    2017-07-01

    On the edge of bandgap in a fiber grating, narrow peaks of high transimittivity exist at frequencies where light interferes constructively in the forward direction. In the vicinity of these transmittivity peaks, light reflects back and forth numerous times across the periodic structure and experiences a large group delay. In order to generate the extremely slow light in fiber grating for applications, in this research, the common sense of formation mechanism of slow light in fiber grating was introduced. The means of producing and operating fiber grating was studied to support structural slow light with a group index that can be in principle as high as several thousand. The simulations proceeded by transfer matrix method in the paper were presented to elucidate how the fiber grating parameters effect group refractive index. The main parameters that need to be optimized include grating length, refractive index contrast, grating period, loss coefficient, chirp and apodization functions, those can influence fiber grating characteristics.

  4. A zonal wavefront sensor with multiple detector planes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  5. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    PubMed

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  6. The Water Recovery X-ray Rocket (WRX-R)

    NASA Astrophysics Data System (ADS)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  7. Full colorless transmission of millimeter-wave band gigabit data over WDM-PON using sideband routing

    NASA Astrophysics Data System (ADS)

    Won, Yong-Yuk; Kim, Hyun-Seung; Son, Yong-Hwan; Han, Sang-Kook

    2011-12-01

    A new wavelength division multiplexed-radio over fiber (WDM-RoF) access network scheme supporting the simultaneous transmission of a 1.25-Gb/s wired data as well as a 1.25-Gb/s wireless data is proposed in this paper. An optical carrier suppression effect and sideband routing using the multiplexing of arrayed waveguide grating (AWG) with 50-GHz channel spacing are utilized to generate a millimeter wave band carrier. These techniques make the proposed architecture transmit both a wired data and a wireless one at the same time. A reflective semiconductor optical amplifier (RSOA) is employed at both central office and base station so that this architecture is operated colorlessly. Error free transmissions (BER of 10-9) of both downlink and uplink are achieved simultaneously.

  8. Report on Operations of the Air Force Geophysics Laboratory Infrared Array Spectrometer

    DTIC Science & Technology

    1993-01-25

    AIR FORCE GEOPHYSICS LABORATORY INFRARED ARRAY... LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 93-27655IEEE|EIIE1ENI This technical report has...ACKNOWLEDGMENT We are grateful to the Air Force Office of Scientific Research , especially Henry Radowski. for their financial corn- mitment to this project.

  9. Guided-mode resonance nanophotonics in materially sparse architectures

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Niraula, Manoj; Yoon, Jae W.; Ko, Yeong H.; Lee, Kyu J.

    2016-03-01

    The guided-mode resonance (GMR) concept refers to lateral quasi-guided waveguide modes induced in periodic layers. Whereas these effects have been known for a long time, new attributes and innovations continue to appear. Here, we review some recent progress in this field with emphasis on sparse, or minimal, device embodiments. We discuss properties of wideband resonant reflectors designed with gratings in which the grating ridges are matched to an identical material to eliminate local reflections and phase changes. This critical interface therefore possesses zero refractive-index contrast; hence we call them "zero-contrast gratings." Applying this architecture, we present single-layer, wideband reflectors that are robust under experimentally realistic parametric variations. We introduce a new class of reflectors and polarizers fashioned with dielectric nanowire grids that are mostly empty space. Computed results predict high reflection and attendant polarization extinction for these sparse lattices. Experimental verification with Si nanowire grids yields ~200-nm-wide band of high reflection for one polarization state and free transmission of the orthogonal state. Finally, we present bandpass filters using all-dielectric resonant gratings. We design, fabricate, and test nanostructured single layer filters exhibiting high efficiency and sub-nanometer-wide passbands surrounded by 100-nm-wide stopbands.

  10. Unpolarized resonance grating reflectors with 44% fractional bandwidth.

    PubMed

    Niraula, Manoj; Magnusson, Robert

    2016-06-01

    There is immense scientific interest in the properties of resonant thin films embroidered with periodic nanoscale features. This device class possesses considerable innovation potential. Accordingly, we report unpolarized broadband reflectors enabled by a serial arrangement of a pair of polarized subwavelength gratings. Optimized with numerical methods, our elemental gratings consist of a partially etched crystalline-silicon film on a quartz substrate. The resulting reflectors exhibit extremely wide spectral reflection bands in one polarization. By arranging two such reflectors sequentially with orthogonal periodicities, there results an unpolarized spectral band that exceeds those of the individual polarized bands. In the experiments reported herein, we achieve zero-order reflectance exceeding 97% under unpolarized light incidence over a 500 nm wide wavelength band. This wideband represents a ∼44% fractional band in the near infrared. Moreover, the resonant unpolarized broadband accommodates an ultra-high reflection band spanning ∼85  nm and exceeding 99.9% in efficiency. The elemental polarization-sensitive reflectors based on one-dimensional (1D) resonant gratings have a simple design and robust performance, and are straightforward to fabricate. Hence, this technology is a promising alternative to traditional multilayer thin-film reflectors, especially at longer wavelengths of light where multilayer deposition may be infeasible or impractical.

  11. Dynamic theory of neutron diffraction from a moving grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushuev, V. A., E-mail: vabushuev@yandex.ru; Frank, A. I.; Kulin, G. V.

    2016-01-15

    A multiwave dynamic theory of diffraction of ultracold neutrons from a moving phase grating has been developed in the approximation of coupled slowly varying amplitudes of wavefunctions. The effect of the velocity, period, and height of grooves of the grating, as well as the spectral angular distribution of the intensity of incident neurons, on the discrete energy spectrum and the intensity of diffraction reflections of various orders has been analyzed.

  12. Grism and immersion grating for space telescope

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  13. Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1991-01-01

    A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  14. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  15. Flat field concave holographic grating with broad spectral region and moderately high resolution.

    PubMed

    Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng

    2012-02-01

    In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.

  16. High-resolution compact spectrometer based on a custom-printed varied-line-spacing concave blazed grating.

    PubMed

    Chen, Jianwei; Chen, Wang; Zhang, Guodong; Lin, Hui; Chen, Shih-Chi

    2017-05-29

    We present the modeling, design and characterization of a compact spectrometer, achieving a resolution better than 1.5 nm throughout the visible spectrum (360-825 nm). The key component in the spectrometer is a custom-printed varied-line-space (VLS) concave blazed grating, where the groove density linearly decreases from the center of the grating (530 g/mm) at a rate of 0.58 nm/mm to the edge (528 g/mm). Parametric models have been established to deterministically link the system performance with the VLS grating design parameters, e.g., groove density, line-space varying rate, and to minimize the system footprint. Simulations have been performed in ZEMAX to confirm the results, indicating a 15% enhancement in system resolution versus common constant line-space (CLS) gratings. Next, the VLS concave blazed grating is fabricated via our vacuum nanoimprinting system, where a polydimethylsiloxane (PDMS) stamp is non-uniformly expanded to form the varied-line-spacing pattern from a planar commercial grating master (600 g/mm) for precision imprinting. The concave blazed grating is measured to have an absolute diffraction efficiency of 43%, higher than typical holographic gratings (~30%) used in the commercial compact spectrometers. The completed compact spectrometer contains only one optical component, i.e., the VLS concave grating, as well as an entrance slit and linear photodetector array, achieving a footprint of 11 × 11 × 3 cm 3 , which makes it the most compact and resolving (1.46 nm) spectrometer of its kind.

  17. High Angular Sensitivity, Absolute Rotary Encoding Device with Polygonal Mirror and Stand-Alone Diffraction Gratings

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1996-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror direct the light beam to a stand-alone low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-lo-digital converter.

  18. Demonstration of Compact and Low-Loss Athermal Arrayed-Waveguide Grating Module Based on 2.5%-Δ Silica-Based Waveguides

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Abe, Yukio; Uetsuka, Hisato

    2008-10-01

    We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.

  19. Holographic Gratings for Optical Processing

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nickolai

    2002-01-01

    Investigation of astronomical objects and tracking of man-made space objects lead to generation of huge amount of information for optical processing. Traditional big-size optical elements (such as optical telescopes) have a tendency for increasing aperture size in order to improve sensitivity. This tendency leads to increasing of weight and costs of optical systems and stimulate search for the new, more adequate technologies. One approach to meet these demands is based on developing of holographic optical elements using new polymeric materials. We have investigated possibility to use new material PQ-PMMA (phenantrenequinone-doped PMMA (Polymethyl Methacrylate)) for fabrication of highly selective optical filters and fast spatial-temporal light modulators. This material was originally developed in Russia and later was tested in CalTech as a candidate material for optical storage. Our theoretical investigation predicts the possibility of realization of fast spatial and temporal light modulation, using volume reflection-type spectral filter. We have developed also model of holographic-grating recording in PQ-PMMA material, based on diffusional amplification. This mechanism of recording allow to receive high diffraction efficiency during recording of reflection-type volume holographic grating (holographic mirror). We also investigated recording of dynamic gratings in the photorefractive crystals LiNbO3 (LN) for space-based spectroscopy and for adaptive correction of aberrations in the telescope's mirrors. We have shown, that specific 'photogalvanic' mechanism of holographic grating recording in LN allow to realize recording of blazed gratings for volume and surface gratings. Possible applications of dynamic gratings in LN for amplification of images, transmitted through an imaging fiber guide was also demonstrated.

  20. The TIME-Pilot intensity mapping experiment

    NASA Astrophysics Data System (ADS)

    Crites, A. T.; Bock, J. J.; Bradford, C. M.; Chang, T. C.; Cooray, A. R.; Duband, L.; Gong, Y.; Hailey-Dunsheath, S.; Hunacek, J.; Koch, P. M.; Li, C. T.; O'Brient, R. C.; Prouve, T.; Shirokoff, E.; Silva, M. B.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.

    2014-08-01

    TIME-Pilot is designed to make measurements from the Epoch of Reionization (EoR), when the first stars and galaxies formed and ionized the intergalactic medium. This will be done via measurements of the redshifted 157.7 um line of singly ionized carbon ([CII]). In particular, TIME-Pilot will produce the first detection of [CII] clustering fluctuations, a signal proportional to the integrated [CII] intensity, summed over all EoR galaxies. TIME-Pilot is thus sensitive to the emission from dwarf galaxies, thought to be responsible for the balance of ionizing UV photons, that will be difficult to detect individually with JWST and ALMA. A detection of [CII] clustering fluctuations would validate current theoretical estimates of the [CII] line as a new cosmological observable, opening the door for a new generation of instruments with advanced technology spectroscopic array focal planes that will map [CII] fluctuations to probe the EoR history of star formation, bubble size, and ionization state. Additionally, TIME-Pilot will produce high signal-to-noise measurements of CO clustering fluctuations, which trace the role of molecular gas in star-forming galaxies at redshifts 0 < z < 2. With its unique atmospheric noise mitigation, TIME-Pilot also significantly improves sensitivity for measuring the kinetic Sunyaev-Zel'dovich (kSZ) effect in galaxy clusters. TIME-Pilot will employ a linear array of spectrometers, each consisting of a parallel-plate diffraction grating. The spectrometer bandwidth covers 185-323 GHz to both probe the entire redshift range of interest and to include channels at the edges of the band for atmospheric noise mitigation. We illuminate the telescope with f/3 horns, which balances the desire to both couple to the sky with the best efficiency per beam, and to pack a large number of horns into the fixed field of view. Feedhorns couple radiation to the waveguide spectrometer gratings. Each spectrometer grating has 190 facets and provides resolving power above 100. At this resolution, the longest dimension of the grating is 31 cm, which allows us to stack gratings in two blocks (one for each polarization) of 16 within a single cryostat, providing a 1x16 array of beams in a 14 arcminute field of view. Direct absorber TES sensors sit at the output of the grating on six linear facets over the output arc, allowing us to package and read out the detectors as arrays in a modular manner. The 1840 detectors will be read out with the NIST time-domain-multiplexing (TDM) scheme and cooled to a base temperature of 250 mK with a 3He sorption refrigerator. We present preliminary designs for the TIME-Pilot cryogenics, spectrometers, bolometers, and optics.

  1. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  2. 16-channel arrayed waveguide grating (AWG) demultiplexer design on SOI wafer for application in CWDM-PON

    NASA Astrophysics Data System (ADS)

    Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar; Shaari, Sahbudin

    2015-01-01

    Arrayed Waveguide Grating (AWG) functioning as a demultiplexer is designed on SOI platform with rib waveguide structure to be utilized in coarse wavelength division multiplexing-passive optical network (CWDM-PON) systems. Two design approaches; conventional and tapered configuration of AWG was developed with channel spacing of 20 nm that covers the standard transmission spectrum of CWDM ranging from 1311 nm to 1611 nm. The performance of insertion loss for tapered configuration offered the lowest insertion loss of 0.77 dB but the adjacent crosstalk gave non-significant relation for both designs. With average channel spacing of 20.4 nm, the nominal central wavelength of this design is close to the standard CWDM wavelength grid over 484 nm free spectrum range (FSR).

  3. Femtosecond FBG Written through the Coating for Sensing Applications.

    PubMed

    Habel, Joé; Boilard, Tommy; Frenière, Jean-Simon; Trépanier, François; Bernier, Martin

    2017-11-02

    Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented.

  4. Bandwidth-Tunable Fiber Bragg Gratings Based on UV Glue Technique

    NASA Astrophysics Data System (ADS)

    Fu, Ming-Yue; Liu, Wen-Feng; Chen, Hsin-Tsang; Chuang, Chia-Wei; Bor, Sheau-Shong; Tien, Chuen-Lin

    2007-07-01

    In this study, we have demonstrated that a uniform fiber Bragg grating (FBG) can be transformed into a chirped fiber grating by a simple UV glue adhesive technique without shifting the reflection band with respect to the center wavelength of the FBG. The technique is based on the induced strain of an FBG due to the UV glue adhesive force on the fiber surface that causes a grating period variation and an effective index change. This technique can provide a fast and simple method of obtaining the required chirp value of a grating for applications in the dispersion compensators, gain flattening in erbium-doped fiber amplifiers (EDFAs) or optical filters.

  5. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  6. Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings.

    PubMed

    Zheng, Jiangjun; Zhou, Changhe; Feng, Jijun; Wang, Bo

    2008-07-15

    We investigated the use of a deep-etched fused-silica grating with triangular-shaped grooves as a highly efficient polarizing beam splitter (PBS). A triangular-groove PBS grating is designed at a wavelength of 1550 nm to be used in optical communication. When it is illuminated in Littrow mounting, the transmitted TE- and TM-polarized waves are mainly diffracted in the minus-first and zeroth orders, respectively. The design condition is based on the average differences of the grating mode indices, which is verified by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient over the C+L band range for both TE and TM polarizations (>97.68%). It is shown that such a triangular-groove PBS grating can exhibit a higher diffraction efficiency, a larger extinction ratio, and less reflection loss than the binary-phase fused-silica PBS grating.

  7. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    PubMed

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T < 5%) with a high diffraction efficiency up to 40%, providing reversible diffractive gratings. The diffraction state was maintained in the voltage-off state (V-off) for 40 min, which demonstrated bistable reversible electrochemical grating (BREG) behavior. By carefully combining the BREGs through period matching, dual-color switching was achieved within the full color region, which exhibited three distinct optical switching states between -2.5, 0, and +2.5 V. The wide range of light tenability using the metallic BREGs developed herein enabled IR modulation, NIR light reflection, and on-demand heat transfer.

  8. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitazawa, Takenori; Yamao, Takeshi, E-mail: yamao@kit.ac.jp; Hotta, Shu

    2016-02-01

    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These aremore » detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.« less

  9. Air-suspended TiO2-based HCG reflectors for visible spectral range

    NASA Astrophysics Data System (ADS)

    Hashemi, Ehsan; Bengtsson, Jörgen; Gustavsson, Johan; Carlsson, Stefan; Rossbach, Georg; Haglund, Åsa

    2015-02-01

    For GaN-based microcavity light emitters, such as vertical-cavity surface-emitting lasers (VCSELs) and resonant cavity light emitting diodes (RCLEDs) in the blue-green wavelength regime, achieving a high reflectivity wide bandwidth feedback mirror is truly challenging. The material properties of the III-nitride alloys are hardly compatible with the conventional distributed Bragg reflectors (DBRs) and the newly proposed high-contrast gratings (HCGs). Alternatively, at least for the top outcoupling mirror, dielectric materials offer more suitable material combinations not only for the DBRs but also for the HCGs. HCGs may offer advantages such as transverse mode and polarization control, a broader reflectivity spectrum than epitaxially grown DBRs, and the possibility to set the resonance wavelength after epitaxial growth by the grating parameters. In this work we have realized an air-suspended TiO2 grating with the help of a SiO2 sacrificial layer. The deposition processes for the dielectric layers were fine-tuned to minimize the residual stress. To achieve an accurate control of the grating duty cycle, a newly developed lift-off process, using hydrogen silesquioxan (HSQ) and sacrificial polymethyl-methacrylate (PMMA) resists, was applied to deposit the hard mask, providing sub-10 nm resolution. The finally obtained TiO2/air HCGs were characterized in a micro-reflectance measurement setup. A peak power reflectivity in excess of 95% was achieved for TM polarization at the center wavelength of 435 nm, with a reflectivity stopband width of about 80 nm (FWHM). The measured HCG reflectance spectra were compared to corresponding simulations obtained from rigorous coupled-wave analysis and very good agreement was found.

  10. Gold reflective metallic gratings with high absorption efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaojian; Liang, Linmei; Yang, Junbo

    2017-10-01

    Electromagnetic (EM) wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed and then transformed into ohmic heat or other forms of energy. Especially, EM absorbers based on metallic structures have distinct advantages in comparison with the traditional counterparts. Thus, they have different potential applications at different frequency ranges such as absorbing devices in solar energy harvesting systems. The reflective metallic grating is a kind of metallic EM absorbers and has the fascinating property of efficiently absorbing the incident light due to the excitation of surface plasmon polaritons (SPPs), consequently drawing more and more attention. In this paper, the absorption effect of a reflective metallic grating made of gold is studied by changing grating parameters such as the period, polarization direction of the incident light and so on. We use finite difference time-domain (FDTD) method to design the grating, and simulate the process and detect the absorption spectrum. In our design, the grating has rectangular shaped grooves and has the absorption efficiency 99% for the vertically incident transverse magnetic (TM) light at the wavelength of 818nm with the period of 800 nm, the width of 365 nm and the height of 34 nm. And then we find that the absorption spectrum is blue-shifted about 87 nm with decreasing period from 800 nm to700 nm and red-shifted about 14 nm with increasing the width of the block from 305 nm to 405 nm. The absorption becomes gradually weaker from 98% to almost zero with the polarization angle from 0° to 90°. Finally, we make a theoretical explanation to these phenomena in details. It is believed that the results may provide useful guidance for the design of EM wave absorbers with high absorption efficiency.

  11. Proof of Concept of Impact Detection in Composites Using Fiber Bragg Grating Arrays

    PubMed Central

    Gomez, Javier; Jorge, Iagoba; Durana, Gaizka; Arrue, Jon; Zubia, Joseba; Aranguren, Gerardo; Montero, Ander; López, Ion

    2013-01-01

    Impact detection in aeronautical structures allows predicting their future reliability and performance. An impact can produce microscopic fissures that could evolve into fractures or even the total collapse of the structure, so it is important to know the location and severity of each impact. For this purpose, optical fibers with Bragg gratings are used to analyze each impact and the vibrations generated by them. In this paper it is proven that optical fibers with Bragg gratings can be used to detect impacts, and also that a high-frequency interrogator is necessary to collect valuable information about the impacts. The use of two interrogators constitutes the main novelty of this paper. PMID:24021969

  12. Ultra-broadband and wide-angle perfect absorber based on composite metal-semiconductor grating

    NASA Astrophysics Data System (ADS)

    Li, Xu; Wang, Zongpeng; Hou, Yumin

    2018-01-01

    In this letter, we present an ultra-broadband and wide-angle perfect absorber based on composite Ge-Ni grating. Near perfect absorption above 90% is achieved in a wide frequency range from 150 nm to 4200 nm, which covers almost the full spectrum of solar radiation. The absorption keeps robust in a wide range of incident angle from 0º to 60º. The upper triangle Ge grating works as an antireflection coating. The lower Ni grating works as a reflector and an effective energy trapper. The guided modes inside Ge grating are excited due to reflection of the lower Ni grating surface. In longer wavelength band, gap surface plasmons (GSPs) in the Ni grating are excited and couple with the guided modes inside the Ge grating. The coupled modes extend the perfect absorption band to the near-infrared region (150 nm-4200 nm). This design has potential application in photovoltaic devices and thermal emitters.

  13. High Precision 2-D Grating Groove Density Measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxiao; McEntaffer, Randall; Tedesco, Ross

    2017-08-01

    Our research group at Penn State University is working on producing X-ray reflection gratings with high spectral resolving power and high diffraction efficiency. To estimate our fabrication accuracy, we apply a precise 2-D grating groove density measurement to plot groove density distributions of gratings on 6-inch wafers. In addition to plotting a fixed groove density distribution, this method is also sensitive to measuring the variation of the groove density simultaneously. This system can reach a measuring accuracy (ΔN/N) of 10-3. Here we present this groove density measurement and some applications.

  14. Analysis of higher order harmonics with holographic reflection gratings

    NASA Astrophysics Data System (ADS)

    Mas-Abellan, P.; Madrigal, R.; Fimia, A.

    2017-05-01

    Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.

  15. Design and analysis of resonant cavity enhanced photodetector by using InP-based concentric circular subwavelength grating

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Huang, Yongqing; Duan, Xiaofeng; Shang, Yufeng; Wang, Wei; Ren, Xiaomin

    2011-12-01

    This paper presents the design and analysis of a novel resonant cavity enhanced photodetector which is realized by utilizing concentric circular subwavelength gratings (CC-SWGs) as reflective mirrors. The CC-SWG proposed here can achieve a reflectivity of higher than 99% within a broad wavelength range from 1.37 to 1.63 μm. The calculated peak quantum efficiency of the designed photodetector can achieve 90% at 1.55 μm.

  16. Investigation of hydrogen sulfide gas using Pd/Pt material based fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Bedi, Amna; Rao, Dusari Nageswara; Kumar, Santosh

    2018-02-01

    In this work, Pd/Pt material based fiber Bragg grating (FBG) sensors has been proposed for detection of hydrogen sulfide gas. Here, characteristics of FBG parameters were numerically calculated and simulated. The variation in reflectivity based on refractive index has been shown. The reflectivity of FBG can be varied when refractive index is changed. The proposed sensor works on very low concentration i.e., 0% to 1%, which has the capability to detect in the early stage.

  17. Simultaneous measurement of refractive index and temperature based on intensity demodulation using matching grating method.

    PubMed

    Qi, Liang; Zhao, Chun-Liu; Kang, Juan; Jin, Yongxing; Wang, Jianfeng; Ye, Manping; Jin, Shangzhong

    2013-07-01

    A solution refractive index (SRI) and temperature simultaneous measurement sensor with intensity-demodulation system based on matching grating method were demonstrated. Long period grating written in a photonic crystal fiber (LPG-PCF), provides temperature stable and wavelength dependent optical intensity transmission. The reflective peaks of two fiber Bragg gratings (FBGs), one of which is etched then sensitive to both SRI and temperature, another (FBG2) is only sensitive to temperature, were located in the same linear range of the LPG-PCF's transmission spectrum. An identical FBG with FBG2 was chosen as a matching FBG. When environments (SRI and temperature) change, the wavelength shifts of the FBGs are translated effectively to the reflection intensity changes. By monitoring output lights of unmatching and matching paths, the SRI and temperature were deduced by a signal processing unit. Experimental results show that the simultaneous refractive index and temperature measurement system work well. The proposed sensor system is compact and suitable for in situ applications at lower cost.

  18. Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.

    PubMed

    Tyan, R C; Sun, P C; Scherer, A; Fainman, Y

    1996-05-15

    We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.

  19. Textured micrometer scale templates as light managing fabrication platform for organic solar cells

    DOEpatents

    Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.

    2016-07-26

    A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.

  20. Jammed-array wideband sawtooth filter.

    PubMed

    Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram

    2011-11-21

    We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America

  1. In-situ strain monitoring in liquid containers of LNG transporting carriers

    NASA Astrophysics Data System (ADS)

    Oh, Min-Cheol; Seo, Jun-Kyu; Kim, Kyung-Jo; Lee, Sang-Min; Kim, Myung-Hyun

    2008-08-01

    Liquefied natural gas (LNG) transport carriers are exposed to a risk by the repeated bump in the LNG container during the vessel traveling over the wave in ocean. The liquid inside the container, especially when it was not fully contained, make a strong bump onto the insulation panel of the tank wall. The insulation panel consists of several layers of thick polyurethane foam (PUF) to maintain the LNG below the cryogenic temperature, -162°C. Due to the repeated shock on the PUF, a crack could be developed on the tank wall causing a tremendous disaster for LNG carriers. To prevent the accidental crack on the tank, a continuous monitoring of the strain imposed on the PUF is recommended. In this work, a fiber-optic Bragg grating was imbedded inside the PUF for monitoring the strain parallel to the impact direction. The optical fiber sensor with a small diameter of 125 μm was suitable to be inserted in the PUF through a small hole drilled after the PUF was cured. In-situ monitoring of the strain producing the change of Bragg reflection wavelength, a high speed wavelength interrogation method was employed by using an arrayed waveguide grating. By dropping a heavy mass on the PUF, we measured the strain imposed on the insulation panel.

  2. Optical resonance analysis of reflected long period fiber gratings with metal film overlay

    NASA Astrophysics Data System (ADS)

    Zhang, Guiju; Cao, Bing; Wang, Chinua; Zhao, Minfu

    2008-11-01

    We present the experimental results of a novel single-ended reflecting surface plasma resonance (SPR) based long period fiber grating (LPFG) sensor. A long period fiber grating sensing device is properly designed and fabricated with a pulsed CO2 laser writing system. Different nm-thick thin metal films are deposited on the fiber cladding and the fiber end facet for the excitation of surface plasma waves (SPWs) and the reflection of the transmission spectrum of the LPFG with doubled interaction between metal-dielectric interfaces of the fiber to enhance the SPW of the all-fiber SPR-LPFG sensing system. Different thin metal films with different thicknesses are investigated. The effect of the excited SPW transmission along the fiber cladding-metal interface with silver and aluminum films is observed. It is found that different thicknesses of the metal overlay show different resonant behaviors in terms of resonance peak situation, bandwidth and energy loss. Within a certain range, thinner metal film shows narrower bandwidth and deeper peak loss.

  3. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-11-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from -0.33 to + 0.21 dB/m-1 (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m-1. In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/μɛ.

  4. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    PubMed Central

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  5. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  6. Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays.

    PubMed

    Zhang, Ailing; Li, Changxiu

    2012-10-08

    In this paper, a novel structure of dynamic optical arbitrary waveform generation (O-AWG) with amplitude controlled by interference of two fiber Bragg grating (FBG) arrays is proposed. The FBG array consists of several FBGs and fiber stretchers (FSs). The amplitude is controlled by FSs through interference of two FBG arrays. The phase is controlled by FSs simultaneously. As a result, optical pulse trains with various waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width in each period are obtained via FSs adjustment to change the phase shift of signal in each array.

  7. Generation of light from free electrons.

    PubMed

    Salisbury, W W

    1966-10-21

    Experiments with the interaction of a rectangular cross- section beam of electrons which is brought into contact with a metallic diffraction grat e ng produce light variable in wavelength throughout the visible spectrum. Con tinuous variation of the beam thickness shows that light is produced by electrons hundreds of wavelengths from the grating, if the side of the beam near the grating is in contact with it. The results can be accounted for by periodic accelerations of the electrons passing over the surface of the grating. These accelerations are caused by electrostatic forces which in turn are due to the average spacecharge of sheets of elec trons reflected from the grating surface, so that in their space- charge structure the periodicity of the grating rulings is preserved.

  8. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  9. Aberration-free, all-reflective laser pulse stretcher

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.; Fochs, Scott N.

    1999-09-28

    An all-reflective pulse stretcher for laser systems employing chirped-pulse amplification enables on-axis use of the focusing mirror which results in ease of use, significantly decreased sensitivity to alignment and near aberration-free performance. By using a new type of diffraction grating which contains a mirror incorporated into the grating, the stretcher contains only three elements: 1) the grating, 2) a spherical or parabolic focusing mirror, and 3) a flat mirror. Addition of a fourth component, a retro-reflector, enables multiple passes of the same stretcher resulting in stretching ratios beyond the current state of the art in a simple and compact design. The pulse stretcher has been used to stretch pulses from 20 fsec to over 600 psec (a stretching ratio in excess of 30,000).

  10. Astronomical large Ge immersion grating by Canon

    NASA Astrophysics Data System (ADS)

    Sukegawa, Takashi; Suzuki, Takeshi; Kitamura, Tsuyoshi

    2016-07-01

    Immersion grating is a powerful optical device for thee infrared high-resolution spectroscope. Germanium (GGe) is the best material for a mid-infrared immersion grating because of Ge has very large reflective index (n=4.0). On the other hands, there is no practical Ge immersion grating under 5umm use. It was very difficult for a fragile IR crystal to manufacture a diffraction grating precisely. Our original free-forming machine has accuracy of a few nano-meter in positioning and stability. We already fabricated the large CdZnTe immersion grating. (Sukegawa et al. (2012), Ikeda et al. (2015)) Wee are developing Ge immersion grating that can be a good solution for high-resolution infrared spectroscopy with the large ground-based/space telescopes. We succeeded practical Ge immersion grating with the grooved area off 75mm (ruled direction) x 119mm (grove width) and the blaze angle of 75 degrees. Our astronomical large Ge immersion grating has the grooved area of 155mm (ruled direction) x 41mmm (groove width) and groove pitch off 91.74um. We also report optical performance of astronomical large Ge immersion grating with a metal coating on the diffraction surface.

  11. Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    Hromadka, J.; Korposh, S.; Partridge, M. C.; James, S.; Davis, F.; Crump, D.; Lee, S.-W.; Tatam, R. P.

    2017-04-01

    An array of three long period gratings (LPGs) fabricated in a single optical fibre and multiplexed in the wavelength domain was used to measure simultaneously temperature, relative humidity (RH) and volatile organic compounds (VOCs). Each LPG sensor was designed to optimize its response to a desired measurand. The LPGs were fabricated with periods such that they operated at or near the phase matching turning point. The sensors were calibrated in the laboratory and the simultaneous measurement of the key indoor air quality parameters was undertaken in laboratory and office environments. It was demonstrated successfully that the data produced by the LPG sensor array under real conditions was in a good agreement with that produced by commercially available sensors. Further, the potential application of fibre optic sensors for VOCs detection at high levels has been demonstrated.

  12. Femtosecond FBG Written through the Coating for Sensing Applications

    PubMed Central

    Habel, Joé; Boilard, Tommy; Frenière, Jean-Simon; Bernier, Martin

    2017-01-01

    Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented. PMID:29099077

  13. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    NASA Astrophysics Data System (ADS)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  14. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  15. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    NASA Astrophysics Data System (ADS)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  16. Near perfect light trapping in 2D metal nanotrench gratings and its application for sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guo, Junpeng; Guo, Hong; Li, Zhitong

    2016-09-01

    In this work, a 2D metallic nano-trench array was fabricated on gold metal surface by using an e-beam lithography patterning and etching process. Optical reflectance from the device was measured at oblique angles of incidence for TE and TM polarization. Near perfect light trapping was observed at different wavelengths for TE and TM polarization at oblique angle of incidence. As angle of incidence increases, light trapping wavelength has a red-shift for TM polarization and blue shift for TE polarization. The fabricated nano-trench device was also investigated for chemical sensor application. It was found that by varying the angle of incidence, the sensitivity changes with opposite trends for TE and TM polarization. Sensor sensitivity increases for TM polarization and decreases for TE polarization with increase of the oblique incident angle.

  17. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator.

    PubMed

    Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Coldren, L A; Bowers, J E

    2011-10-24

    We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB. © 2011 Optical Society of America

  18. Invited Article: An active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry

    NASA Astrophysics Data System (ADS)

    Liu, Xudong; Chen, Xuequan; Parrott, Edward P. J.; Han, Chunrui; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2018-05-01

    Active broadband terahertz (THz) polarization manipulation devices are challenging to realize, but also of great demand in broadband terahertz systems. Vanadium dioxide (VO2) shows a promising phase transition for active control of THz waves and provides broadband polarization characteristics when integrated within grating-type structures. We creatively combine a VO2-based grating structure with a total internal reflection (TIR) geometry providing a novel interaction mechanism between the electromagnetic waves and the device, to realize a powerful active broadband THz polarization-controlling device. The device is based on a Si-substrate coated with a VO2 layer and a metal grating structure on top, attached to a prism for generating the TIR condition on the Si-VO2-grating interface. The grating is connected to electrodes for electrically switching the VO2 between its insulating and conducting phases. By properly selecting the incident angle of the THz waves, the grating direction, and the incident polarization state, we first achieved a broadband intensity modulator under a fused silica prism with an average modulation depth of 99.75% in the 0.2-1.1 THz region. Additionally, we realized an active ultra-broadband quarter-wave converter under a Si prism that can be switched between a 45° linear rotator and a quarter wave converter in the 0.8-1.5 THz region. This is the first demonstration of an active quarter-wave converter with ultra-broad bandwidth performance. Our work shows a highly flexible and multifunctional polarization-controlling device for broadband THz applications.

  19. Reconstruction of fiber grating period profiles by use of Wigner-Ville distributions and spectrograms.

    PubMed

    Azaña, J; Muriel, M A

    2000-12-01

    The grating-period profile and length of an arbitrary fiber Bragg grating structure can be reconstructed from the structure's reflection response by use of a time-frequency signal representation based on the well-known Wigner-Ville distribution and spectrogram. We present a detailed description of this synthesis technique. By means of numerical simulations, the technique is tested with several fiber grating structures. In general, our results show good agreement between exact and reconstructed functions. The technique's advantages and limitations are discussed. We propose and demonstrate the application of the proposed synthesis technique to distributed mechanical strain or temperature sensing.

  20. Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing.

    PubMed

    Han, Ming; Wang, Yunjing; Wang, Anbo

    2007-07-15

    We report a novel type of polarization optical time-domain reflectometry (POTDR) for fully distributed fiber-optic sensing, in which the reflected optical signal is from a series of fiber Bragg gratings that are uniformly distributed along the fiber. Compared with a conventional POTDR that uses the Rayleigh backscattering, this grating-assisted POTDR can have a much better signal-to-noise ratio and consequently a better measurement resolution and a larger measurement range of the fiber birefringence. Experimental results have shown that the measurement resolution of the grating-assisted POTDR is almost an order of magnitude better than that of a conventional POTDR.

  1. Prism fingerprint sensor that uses a holographic optical element

    NASA Astrophysics Data System (ADS)

    Bahuguna, R. D.; Corboline, Tom

    1996-09-01

    A prism fingerprint sensor is described that uses a holographic grating glued to a right-angled prism. A light source normally illuminates the hypotenuse side of the prism with the finger pressed against the grating. The ridges and valleys of the finger are sensed on the basis of the principle of total internal reflection. The grating is used essentially to correct the distortion usually present with prism sensors. The quality of the fingerprint is very good: the pores on the ridges can be seen.

  2. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  3. Experimental observation of acoustic sub-harmonic diffraction by a grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu

    2014-06-28

    A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expandsmore » our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.« less

  4. Novel gratings for next-generation instruments of astronomical observations

    NASA Astrophysics Data System (ADS)

    Ebizuka, N.; Okamoto, T.; Takeda, M.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2017-05-01

    We will introduce current status of development of a birefringence volume phase holographic (B-VPH) grating, volume binary (VB) grating and reflector facet transmission (RFT) grating developing as the novel dispersive optical element for astronomical instruments for the 8.2m Subaru Telescope, for next generation 30 m class huge ground-based telescopes and for next generation large space-bone telescopes. We will also introduce a hybrid grism developed for MOIRCS (Multi-Object InfraRed Camera and Spectrograph) of the Subaru Telescope and a quasi-Bragg (QB) immersion grating. Test fabrication of B-VPH gratings with a liquid crystal (LC) of UV curable and normal LCs or a resin of visible light curable are performed. We successfully fabricated VB gratings of silicon as a mold with ridges of a high aspect ratio by means of the cycle etching process, oxidation and removal of silicon oxide. The RFT grating which is a surface-relief (SR) transmission grating with sawtooth shaped ridges of an acute vertex angle. The hybrid grism, as a prototype of the RFT grating, combines a high-index prism and SR transmission grating with sawtooth shape ridges of an acute vertex angle. The mold of the SR grating for the hybrid grism on to a work of Ni-P alloy of non-electrolysic plating successfully fabricated by using our ultra-precision machine and a single-crystal diamond bite. The QB immersion grating was fabricated by a combination of an inclined QB grating, Littrow prism and surface reflection mirror.

  5. Software Development to Assist in the Processing and Analysis of Data Obtained Using Fiber Bragg Grating Interrogation Systems

    NASA Technical Reports Server (NTRS)

    Hicks, Rebecca

    2009-01-01

    A fiber Bragg grating is a portion of a core of a fiber optic strand that has been treated to affect the way light travels through the strand. Light within a certain narrow range of wavelengths will be reflected along the fiber by the grating, while light outside that range will pass through the grating mostly undisturbed. Since the range of wavelengths that can penetrate the grating depends on the grating itself as well as temperature and mechanical strain, fiber Bragg gratings can be used as temperature and strain sensors. This capability, along with the light-weight nature of the fiber optic strands in which the gratings reside, make fiber optic sensors an ideal candidate for flight testing and monitoring in which temperature and wing strain are factors. The purpose of this project is to research the availability of software capable of processing massive amounts of data in both real-time and post-flight settings, and to produce software segments that can be integrated to assist in the task as well.

  6. Excitation of surface waves on one-dimensional solid–fluid phononic crystals and the beam displacement effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseyenko, Rayisa P.; Georgia Institute of Technology, UMI Georgia Tech – CNRS, George W. Woodruff School of Mechanical Engineering, Georgia Tech Lorraine, 2 rue Marconi, 57070 Metz-Technopole; Liu, Jingfei

    The possibility of surface wave generation by diffraction of pressure waves on deeply corrugated one-dimensional phononic crystal gratings is studied both theoretically and experimentally. Generation of leaky surface waves, indeed, is generally invoked in the explanation of the beam displacement effect that can be observed upon reflection on a shallow grating of an acoustic beam of finite width. True surface waves of the grating, however, have a dispersion that lies below the sound cone in water. They thus cannot satisfy the phase-matching condition for diffraction from plane waves of infinite extent incident from water. Diffraction measurements indicate that deeply corrugatedmore » one-dimensional phononic crystal gratings defined in a silicon wafer are very efficient diffraction gratings. They also confirm that all propagating waves detected in water follow the grating law. Numerical simulations however reveal that in the sub-diffraction regime, acoustic energy of a beam of finite extent can be transferred to elastic waves guided at the surface of the grating. Their leakage to the specular direction along the grating surface explains the apparent beam displacement effect.« less

  7. Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. II. Analysis of elastic scattering using energy-gated wave packets with an application to neutron reflection from ruled gratings

    NASA Astrophysics Data System (ADS)

    Berk, N. F.

    2014-03-01

    We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.

  8. PWAS EMIS-ECIS Active Carbon Filter Residual Life Estimation Methodology

    DTIC Science & Technology

    2013-09-23

    change in the EMIS spectrum. This method is similar to the full width at half maximum (FWHM) method implemented in the fiber Bragg grating ( FBG ), where...the intensity of the light reflected by the FBG at the half peak frequency is used to detect the strain change in the FBG . 4 W911NF-11-1-0210...grating ( FBG ), where the intensity of the light reflected by the FBG at the half peak frequency is used to detect the strain change in the FBG . A brief

  9. Distributed strain measurement based on long-gauge FBG and delayed transmission/reflection ratiometric reflectometry for dynamic structural deformation monitoring.

    PubMed

    Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki

    2015-02-10

    In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.

  10. Etched Polymer Fibre Bragg Gratings and Their Biomedical Sensing Applications

    PubMed Central

    Rajan, Ginu; Bhowmik, Kishore; Xi, Jiangtao; Peng, Gang-Ding

    2017-01-01

    Bragg gratings in etched polymer fibres and their unique properties and characteristics are discussed in this paper. Due to the change in material and mechanical properties of the polymer fibre through etching, Bragg gratings inscribed in such fibres show high reflectivity and enhanced intrinsic sensitivity towards strain, temperature, and pressure. The short-term and long-term stability of the gratings and the effect of hysteresis on the dynamic characteristics are also discussed. The unique properties and enhanced intrinsic sensitivity of etched polymer fibre Bragg grating are ideal for the development of high-sensitivity sensors for biomedical applications. To demonstrate their biomedical sensing capabilities, a high-sensitivity pressure transducer that operates in the blood pressure range, and a breathing rate monitoring device are developed and presented. PMID:29027945

  11. Reflective coherent spatial light modulator

    DOEpatents

    Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.

    2003-04-22

    A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.

  12. Enhancement of photovoltaic cell performance using periodic triangular gratings

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Dey, Rajat

    2014-01-01

    The solar energy industry strives to produce more efficient and yet cost effective solar panels each consisting of an array of photovoltaic (PV) cells. The goal of this study was to enhance the performance of PV cells through increasing the cells' optical efficiency defined as a percentage of surface incident light that reaches the PV material. This was achieved through the reduction of waveguide decoupling loss and Fresnel reflection losses by integrating specific nonimaging micro-optical structures on the top surface of existing PV cells. Due to this integration, optical efficiency and performance were increased through the enhancement of light trapping, light guiding, and in-coupling functionalities. Periodic triangular gratings (PTGs) were designed, nonsequentially modeled, optimized, and fabricated in polydimethylsiloxane as proposed micro-optical structures. Then the performance of PV cells with and without integrated PTGs was evaluated and compared. Initial optical simulation results show that an original PV cell (without PTG) exhibits an average optical efficiency of 32.7% over a range of incident light angles between 15 and 90 deg. Integration of the PTG allows the capture of incoming sunlight by total internal reflection (TIR), whence it is reflected back onto the PV cell for multiple consecutive chances for absorption and PV conversion. Geometry of the PTG was optimized with respect to an angle of light incidence of {15, 30, 45, 60, 75, 90} deg. Optical efficiency of the geometrically optimized PTGs was then analyzed under the same set of incident light angles and a maximum optical efficiency of 54.1% was observed for a PV cell with integrated PTG optimized at 90 deg. This is a 53.3% relative improvement in optical performance when compared to an original PV cell. Functional PTG prototypes were then fabricated with optical surface quality (below 10 nm Ra) and integrated with PV cells demonstrating an increase in maximum power by 1.08 mW/cm (7.6% improvement in PV performance) and in short circuit current by 2.39 mA/cm (6.4% improvement).

  13. Optical-Based Sensors for Monitoring Corrosion of Reinforcement Rebar via an Etched Cladding Bragg Grating

    PubMed Central

    Hassan, Muhammad Rosdi Abu; Bakar, Muhammad Hafiz Abu; Dambul, Katrina; Adikan, Faisal Rafiq Mahamd

    2012-01-01

    In this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor. With the presence of corrosion, the etched-FBG reflected spectrum was shifted by 1.0 nm. In addition, with an increase in fringe pattern and continuously, step-like drop in power of the Bragg reflected spectrum was also displayed. PMID:23202233

  14. Coupling mediated by photorefractive phase grating between visible radiation and surface plasmon polaritons in iron-doped LiNbO3 crystal slabs coated with indium-tin oxide

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhao, Hua; Xu, Chao; Li, Liang; Hu, Guangwei; Zhang, Jingwen

    2014-10-01

    Photorefractive (PR) phase gratings were used in coupling energy between visible light and surface plasmon polaritons in indium-tin oxide (ITO)-coated iron-doped lithium niobate (Fe:LN) crystal slabs via electrostatic modification at the ITO/LN interface based on a strong photovoltaic effect. The energy coupling is considered to be responsible for several interesting observations: (1) dynamic reflectivity change from 3.25 to 37.0% of the very first reflection at the entrance slab interface, (2) total light reflectivity as high as 89%, and (3) two-dimensional diffraction patterns without external feedback needed.

  15. High efficiency spectrographs for the EUV and soft X-rays

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.

  16. Spoof four-wave mixing for all-optical wavelength conversion.

    PubMed

    Gong, Yongkang; Huang, Jungang; Li, Kang; Copner, Nigel; Martinez, J J; Wang, Leirang; Duan, Tao; Zhang, Wenfu; Loh, W H

    2012-10-08

    We present for the first time an all-optical wavelength conversion (AOWC) scheme supporting modulation format independency without requiring phase matching. The new scheme is named "spoof" four wave mixing (SFWM) and in contrast to the well-known FWM theory, where the induced dynamic refractive index grating modulates photons to create a wave at a new frequency, the SFWM is different in that the dynamic refractive index grating is generated in a nonlinear Bragg Grating (BG) to excite additional reflective peaks at either side of the original BG bandgap in reflection spectrum. This fundamental difference enable the SFWM to avoid the intrinsic shortcoming of stringent phase matching required in the conventional FWM, and allows AOWC with modulation format transparency and ultrabroad conversion range, which may have great potential applications for next generation of all-optical networks.

  17. [The Research on Optic Fiber FBG Corrosion Sensor Based on the Analysis of the Spectral Characteristics].

    PubMed

    Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying

    2016-03-01

    Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor.

  18. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings

    NASA Astrophysics Data System (ADS)

    Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli

    2000-05-01

    A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.

  19. Non-periodic high-index contrast gratings reflector with large-angle beam forming ability

    NASA Astrophysics Data System (ADS)

    Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Fei, Jiarui; Ren, Xiaomin; Mao, Min

    2016-05-01

    A non-periodic high-index contrast gratings (HCGs) reflector on SOI wafer with large-angle beam forming ability has been proposed and fabricated. The proposed reflector was designed using rigorous coupled-wave analysis (RCWA) and finite-element-method (FEM). A deflection angle of 17.35° and high reflectivity of 92.31% are achieved under transverse magnetic (TM) polarized light in numerical simulation. Experimental results show that the reflected power peaked at 17.2° under a 1550 nm incident light, which is in good accordance with the simulation results. Moreover, the reflected power spectrum was also measured. Under different incident wavelengths around 1550 nm, reflected powers all peaked at 17.2°. The results show that the proposed non-periodic HCGs reflector has a good reflection and beam forming ability in a wavelength range as wide as 40 nm around 1550 nm.

  20. Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength Sample Analysis.

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2000-09-12

    A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.

  1. Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength.

    DOEpatents

    Liu, Changsheng; Li, Qingbo (State College, PA

    1999-12-07

    A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.

  2. Pressure mapping at orthopaedic joint interfaces with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Mohanty, Lipi; Tjin, Swee Chuan

    2006-02-01

    We present the concept of a fiber-optic sensor that can be used for pressure mapping at the prosthetic knee joint, in vitro and in vivo. An embedded array of fiber Bragg gratings is used to measure the load on the tibial spacer. The sensor gives the magnitude and the location of the applied load. The effect of material properties on the sensitivity of each subgrating is presented. The wavelength-shift maps show the malalignment of implants and demonstrate the potential of this sensor for use during total knee arthroplasty.

  3. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  4. Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays

    DTIC Science & Technology

    2015-07-01

    Gratings for Structural Fatigue Testing of Military Aircraft. Claire Davis, Silvia Tejedor, Ivan Grabovac, James Kopczyk, and Travis Nuyens. Photonic...puticarion Reduxtt ~ Techrdogy for opWnum prCICE.ld!ses. It !here is 10 be a delay between lh’! pretreeiJOOnt and boncfiOQ ol alurrinil.l’n, tte ...enable bonding 10 be delsyed lor ~ 102 Meks wi\\ho!.J det.eriora!ion d tte p ecreeted sllface. The carect apPic:stion of ~ 112 shluld no! alter 1he

  5. Fiber optic sensor system for entrance areas monitoring

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Kepak, Stanislav; Cubik, Jakub; Jargus, Jan; Zboril, Ondřej; Martinek, Radek; Vasinek, Vladimir

    2017-10-01

    Authors of this article present the fiber-optic system based on fiber Bragg gratings (FBGs) which are used to secure the entrance areas such as buildings, halls, warehouses, etc. The system uses the specially encapsulated sensory array of fiber Bragg gratings which are implemented into the floor or on the floor and allows for monitoring the area of 1 m2 up to 100 m2 depending on the number of FBG sensors. The sensory array is characterized by immunity to electromagnetic interference (EMI), passivity regarding electrical power supply, the possibility of remote evaluation (up to units of km) and high sensitivity. Proposed sensor system has detection capability greater than 99 % and furthermore, provides information about the weight load to an accuracy of +/- 5 kg. The concept has been tested in a real environment within the test polygon for several weeks. As the reference devices, we used the CCTV (Closed Circuit Television).

  6. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    PubMed Central

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  7. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.

    PubMed

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R

    2016-07-26

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.

  8. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    NASA Astrophysics Data System (ADS)

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-08-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.

  9. Multi-function all optical packet switch by periodic wavelength arrangement in an arrayed waveguide grating and wideband optical filters.

    PubMed

    Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang

    2012-01-16

    By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.

  10. Nanocrystalline silicon thin films and grating structures for solar cells

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil

    2016-03-01

    Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.

  11. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    NASA Astrophysics Data System (ADS)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  12. V-shaped resonators for addition of broad-area laser diode arrays

    DOEpatents

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  13. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Ken; Peralta, E.A.; Byer, R.L.

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a realizable structure. In this paper, we will present a 3-dimensional frequency-domain simulation of both the infinite and the finite grating accelerator structure. Additionally, we will present a new scheme for a focusing structure based on a perturbation of the accelerating structure. We will present simulations of this proposed focusing structure and quantify the quality of the focusing fields.« less

  14. Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu

    2018-01-01

    This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.

  15. In-fiber Fabry-Perot refractometer assisted by a long-period grating.

    PubMed

    Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V

    2010-02-15

    We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5).

  16. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing.

    PubMed

    Kroesen, Sebastian; Horn, Wolfgang; Imbrock, Jörg; Denz, Cornelia

    2014-09-22

    optical tunable Bragg gratings in lithium niobate fabricated by direct femtosecond laser writing. The hybrid design that consists of a circular type-II waveguide and a multiscan type-I Bragg grating exhibits low loss ordinary and extraordinary polarized guiding as well as narrowband reflections in the c-band of optical communications. High bandwidth tunability of more than a peak width and nearly preserved electro-optic coefficients of r(13) = 7.59 pm V(-1) and r(33) = 23.21 pm V(-1) are demonstrated.

  17. Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting.

    PubMed

    Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan

    2017-06-26

    Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

  18. Design and characteristics of refractive index sensor based on thinned and microstructure fiber Bragg grating.

    PubMed

    Huang, Xue-Feng; Chen, Zhe-Min; Shao, Li-Yang; Cen, Ke-Fa; Sheng, De-Ren; Chen, Jun; Zhou, Hao

    2008-02-01

    A refractive index sensor based on the thinned and microstructure fiber Bragg grating (ThMs-FBG) was proposed and realized as a chemical sensing. The numerical simulation for the reflectance spectrum of the ThMs-FBG was calculated and the phase shift down-peak could be observed from the reflectance spectrum. Many factors influencing the reflectance spectrum were considered in detail for simulation, including the etched depth, length, and position. The sandwich-solution etching method was utilized to realize the microstructure of the ThMs-FBG, and the photographs of the microstructure were obtained. Experimental results demonstrated that the reflectance spectrum, phase shift down-peak wavelength, and reflected optical intensity of the ThMs-FBG all depended on the surrounding refractive index. However, only the down-peak wavelength of the ThMs-FBG changed with the surrounding temperature. Under the condition that the length and cladding diameter of the ThMs-FBG microstructure were 800 and 14 mum, respectively, and the position of the microstructure of the ThMs-FBG is in the middle of grating region, the refractive index sensitivity of the ThMs-FBG was 0.79 nm/refractive index unit with the wide range of 1.33-1.457 and a high resolution of 1.2 x 10(-3). The temperature sensitivity was 0.0103 nm/ degrees C, which was approximately equal to that of common FBG.

  19. Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium

    NASA Astrophysics Data System (ADS)

    Dasanayaka, Sahan; Atai, Javid

    2011-08-01

    Interactions between quiescent solitons in Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity are systematically investigated. In a previous work two disjoint families of solitons were identified in this model. One family can be viewed as the generalization of the Bragg grating solitons in Kerr nonlinearity with dispersive reflectivity (Type 1). On the other hand, the quintic nonlinearity is dominant in the other family (Type 2). For weak to moderate dispersive reflectivity, two in-phase solitons will attract and collide. Possible collision outcomes include merger to form a quiescent soliton, formation of three solitons including a quiescent one, separation after passing through each other once, asymmetric separation after several quasielastic collisions, and soliton destruction. Type 2 solitons are always destroyed by collisions. Solitons develop sidelobes when dispersive reflectivity is strong. In this case, it is found that the outcome of the interactions is strongly dependent on the initial separation of solitons. Solitons with sidelobes will collide only if they are in-phase and their initial separation is below a certain critical value. For larger separations, both in-phase and π-out-of-phase Type 1 and Type 2 solitons may either repel each other or form a temporary bound state that subsequently splits into two separating solitons. Additionally, in the case of Type 2 solitons, for certain initial separations, the bound state disintegrates into a single moving soliton.

  20. Free-electron laser from wave-mechanical beats of 2 electron beams

    NASA Technical Reports Server (NTRS)

    Lichtenstein, R. M.

    1982-01-01

    It is possible, though technically difficult, to produce beams of free electrons that exhibit beats of a quantum mechanical nature. (1) the generation of electromagnetic radiation, e.g., light, based on the fact that the beats give rise to alternating charge and current densities; and a frequency shifter, based on the fact that a beam with beats constitutes a moving grating. When such a grating is exposed to external radiation of suitable frequency and direction, the reflected rediation will be shifted in frequency, since the grating is moving. A twofold increase of the frequency is readily attainable. It is shown that it is impossible to generate radiation, because the alternating electromagnetic fields that accompany the beats cannot reform themselves into freely propagating waves. The frequency shifter is useless as a practical device, because its reflectance is extremely low for realizable beams.

  1. Analysis of reflection-peak wavelengths of sampled fiber Bragg gratings with large chirp.

    PubMed

    Zou, Xihua; Pan, Wei; Luo, Bin

    2008-09-10

    The reflection-peak wavelengths (RPWs) in the spectra of sampled fiber Bragg gratings with large chirp (SFBGs-LC) are theoretically investigated. Such RPWs are divided into two parts, the RPWs of equivalent uniform SFBGs (U-SFBGs) and the wavelength shift caused by the large chirp in the grating period (CGP). We propose a quasi-equivalent transform to deal with the CGP. That is, the CGP is transferred into quasi-equivalent phase shifts to directly derive the Fourier transform of the refractive index modulation. Then, in the case of both the direct and the inverse Talbot effect, the wavelength shift is obtained from the Fourier transform. Finally, the RPWs of SFBGs-LC can be achieved by combining the wavelength shift and the RPWs of equivalent U-SFBGs. Several simulations are shown to numerically confirm these predicted RPWs of SFBGs-LC.

  2. The possibility of using platinum foils with a rippled surface as diffraction gratings

    NASA Astrophysics Data System (ADS)

    Korsukov, V. E.; Ankudinov, A. V.; Butenko, P. N.; Knyazev, S. A.; Korsukova, M. M.; Obidov, B. A.; Shcherbakov, I. P.

    2014-09-01

    The atomic structure and surface relief of thin cold-rolled platinum foils upon recrystallization annealing and loading under ultrahigh vacuum conditions have been studied by low energy electron diffraction (LEED), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The surface of samples upon high-temperature annealing and subsequent uniaxial extension of recrystallized Pt foils represents a fractal structure of unidirectional ripples on various spatial scales. The total fractal dimension of this surface is D GW = 2.3, while the fractal dimensions along and across ripples are D ‖ ≈ 1 and D ⊥ ≈ 1.3, respectively. The optical spectra of a halogen lamp and a PRK-2 mercury lamp were recorded using these rippled Pt foils as reflection diffraction gratings. It is shown that Pt foils with this surface relief can be used as reflection diffraction gratings for electromagnetic radiation in a broad spectral range.

  3. High sensitive reflection type long period fiber grating biosensor for real time detection of thyroglobulin, a differentiated thyroid cancer biomarker: the Smart Health project

    NASA Astrophysics Data System (ADS)

    Quero, G.; Severino, R.; Vaiano, P.; Consales, M.; Ruvo, M.; Sandomenico, A.; Borriello, A.; Giordano, M.; Zuppolini, S.; Diodato, L.; Cutolo, A.; Cusano, A.

    2015-09-01

    We report the development of a reflection-type long period fiber grating (LPG) biosensor able to perform the real time detection of thyroid cancer markers in the needle washout of fine-needle aspiration biopsy. A standard LPG is first transformed in a practical probe working in reflection mode, then it is coated by an atactic-polystyrene overlay in order to increase its surrounding refractive index sensitivity and to provide, at the same time, the desired interfacial properties for a stable bioreceptor immobilization. The results provide a clear demonstration of the effectiveness and sensitivity of the developed biosensing platform, allowing the in vitro detection of human Thyroglobulin at sub-nanomolar concentrations.

  4. Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun

    2011-12-01

    We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.

  5. Fourier optics analysis of grating sensors with tilt errors.

    PubMed

    Ferhanoglu, Onur; Toy, M Fatih; Urey, Hakan

    2011-06-15

    Dynamic diffraction gratings can be microfabricated with precision and offer extremely sensitive displacement measurements and light intensity modulation. The effect of pure translation of the moving part of the grating on diffracted order intensities is well known. This study focuses on the parameters that limit the intensity and the contrast of the interference. The effects of grating duty cycle, mirror reflectivities, sensor tilt and detector size are investigated using Fourier optics theory and Gaussian beam optics. Analytical findings reveal that fringe visibility becomes <0.3 when the optical path variation exceeds half the wavelength within the grating interferometer. The fringe visibility can be compensated by monitoring the interfering portion of the diffracted order light only through detector size reduction in the expense of optical power. Experiments were conducted with a grating interferometer that resulted in an eightfold increase in fringe visibility with reduced detector size, which is in agreement with theory. Findings show that diffraction grating readout principle is not limited to translating sensors but also can be used for sensors with tilt or other deflection modes.

  6. Multi-parameter fiber optic sensors based on fiber random grating

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2017-04-01

    Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.

  7. Line spread functions of blazed off-plane gratings operated in the Littrow mounting

    NASA Astrophysics Data System (ADS)

    DeRoo, Casey T.; McEntaffer, Randall L.; Miles, Drew M.; Peterson, Thomas J.; Marlowe, Hannah; Tutt, James H.; Donovan, Benjamin D.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Allured, Ryan; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2016-04-01

    Future soft x-ray (10 to 50 Å) spectroscopy missions require higher effective areas and resolutions to perform critical science that cannot be done by instruments on current missions. An x-ray grating spectrometer employing off-plane reflection gratings would be capable of meeting these performance criteria. Off-plane gratings with blazed groove facets operating in the Littrow mounting can be used to achieve excellent throughput into orders achieving high resolutions. We have fabricated two off-plane gratings with blazed groove profiles via a technique that uses commonly available microfabrication processes, is easily scaled for mass production, and yields gratings customized for a given mission architecture. Both fabricated gratings were tested in the Littrow mounting at the Max Planck Institute for Extraterrestrial Physics (MPE) PANTER x-ray test facility to assess their performance. The line spread functions of diffracted orders were measured, and a maximum resolution of 800±20 is reported. In addition, we also observe evidence of a blaze effect from measurements of relative efficiencies of the diffracted orders.

  8. Narrowband 1.5-{mu}m Bragg filter based on a polymer waveguide with a laser-written refractive-index grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N

    We report the fabrication of narrowband frequency-selective filters for the 1.5-{mu}m telecom window, which include a single-mode polymer waveguide with a submicron Bragg grating inscribed by a helium-cadmium laser. The filters have a reflectance R > 98 % and a nearly rectangular reflection band with a bandwidth {Delta}{lambda}{approx}0.4nm. They can be used as components of optical multiplexers/demultiplexers for combining and separating signals in high-speed dense wavelength-division multiplexed optical fibre communication systems. (laser components)

  9. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    NASA Astrophysics Data System (ADS)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.

  10. Interaction of sound with sound by novel mechanisms: Ultrasonic four-wave mixing mediated by a suspension and ultrasonic three-wave mixing at a free surface

    NASA Astrophysics Data System (ADS)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 micron diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2 to 10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33 degrees on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz 'pump' wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz 'probe' wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially and Doppler shifted foci relative to the main focus.

  11. Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.

    2018-02-01

    Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.

  12. Spectral transmissometer and radiometer - Design and initial results. [of free drifting experiment in Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Payne, Paul R.; Peck, Wayne

    1988-01-01

    A new solid-state spectral transmissometer and radiometer is described. The radiometer measures upwelling radiance, downwelling irradiance, and beam transmittance from 390 to 750 nm with channel widths of 2.35 nm. The spectrometer consists of a 256 element CCD linear array collecting light dispersed by a reflection grating in a modified Littrow configuration. The spectrometer is time and space-shared among the three signal types. The instrument has been deployed as a free-drifting buoy and in the profiling mode, with data stored internally on a magnetic bubble memory or sent up a conducting cable as desired. Power can be supplied either by a detachable external battery pack or through conducting cable. The instrument has been deployed in the oligotrophic North Pacific Central Gyre and in the eutrophic Straits of Juan de Fuca, and preliminary results for each region are discussed.

  13. Integration of GaAs-based VCSEL array on SiN platform with HCG reflectors for WDM applications

    NASA Astrophysics Data System (ADS)

    Kumari, Sulakshna; Gustavsson, Johan S.; Wang, Ruijun; Haglund, Emanuel P.; Westbergh, Petter; Sanchez, Dorian; Haglund, Erik; Haglund, Åsa; Bengtsson, Jörgen; Le Thomas, Nicolas; Roelkens, Gunther; Larsson, Anders; Baets, Roel

    2015-02-01

    We present a GaAs-based VCSEL structure, BCB bonded to a Si3N4 waveguide circuit, where one DBR is substituted by a free-standing Si3N4 high-contrast-grating (HCG) reflector realized in the Si3N4 waveguide layer. This design enables solutions for on-chip spectroscopic sensing, and the dense integration of 850-nm WDM data communication transmitters where individual channel wavelengths are set by varying the HCG parameters. RCWA shows that a 300nm-thick Si3N4 HCG with 800nm period and 40% duty cycle reflects strongly (<99%) over a 75nm wavelength range around 850nm. A design with a standing-optical-field minimum at the III-V/airgap interface maximizes the HCG's influence on the VCSEL wavelength, allowing for a 15-nm-wide wavelength setting range with low threshold gain (<1000 cm-1).

  14. The application of a long period grating sensors to human respiratory plethysmography

    NASA Astrophysics Data System (ADS)

    Allsop, T.; Carroll, K.; Webb, D. J.; Bennion, I.; Miller, Martin

    2007-07-01

    A series of nine in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration for application to Human Respiratory Plethysmography. These results are used to obtain volumetric tidal changes of the human torso which show agreement with data from a spirometer used simultaneously to recorded the inspired and expired volume at the mouth during both rhythmic and transient breathing patterns. The curvature sensors are based upon long period gratings which are written in a progressive three layered fibre to render them insensitive to refractive index changes. The sensor consists of the long period grating laid upon a carbon fibre ribbon, with this then encapsulated in a low temperature curing silicone rubber. The sensing array is multiplexed and interrogated using a derivative spectroscopy based technique to monitor the response of the LPGs' attenuation bands to curvature. The versatility of this scheme is demonstrated by applying the same garment and sensors to various human body types and sizes. It was also found from statistical analysis of the sensing array data, in conjunction with the measurements taken with a spirometer, that 11 to 12 sensors should be required to obtain an absolute volumetric error of 5%.

  15. Highly efficient blazed grating with multilayer coating for tender X-ray energies.

    PubMed

    Senf, F; Bijkerk, F; Eggenstein, F; Gwalt, G; Huang, Q; Kruijs, R; Kutz, O; Lemke, S; Louis, E; Mertin, M; Packe, I; Rudolph, I; Schäfers, F; Siewert, F; Sokolov, A; Sturm, J M; Waberski, Ch; Wang, Z; Wolf, J; Zeschke, T; Erko, A

    2016-06-13

    For photon energies of 1 - 5 keV, blazed gratings with multilayer coating are ideally suited for the suppression of stray and higher orders light in grating monochromators. We developed and characterized a blazed 2000 lines/mm grating coated with a 20 period Cr/C- multilayer. The multilayer d-spacing of 7.3 nm has been adapted to the line distance of 500 nm and the blaze angle of 0.84° in order to provide highest efficiency in the photon energy range between 1.5 keV and 3 keV. Efficiency of the multilayer grating as well as the reflectance of a witness multilayer which were coated simultaneously have been measured. An efficiency of 35% was measured at 2 keV while a maximum efficiency of 55% was achieved at 4 keV. In addition, a strong suppression of higher orders was observed which makes blazed multilayer gratings a favorable dispersing element also for the low X-ray energy range.

  16. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  17. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    PubMed

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  18. Structural and Optical Analysis of the Bio-mineralized Photonic Structures in the Shell of the Blue- Rayed Limpet Ansates Pellucida

    NASA Astrophysics Data System (ADS)

    Kolle, Mathias; Li, Ling; Kolle, Stefan; Weaver, James; Ortiz, Christine; Aizenberg, Joanna

    2013-03-01

    Many terrestrial biological organisms have evolved a variety of micro- and nanostructures that provide unique optical signatures including distinctive, dynamic coloration, high reflectivity or superior whiteness. Recently, photonic structures have also been found in the shells or spines of marine animals. Life under water imposes very distinct constraints on organisms relying on visual communication and on the designs and the materials involved in aquatic photonic structures. Here, we present a bio-mineralized calcium carbonate - based crystalline photonic system buried in the shell of the blue-rayed limpet Ansates pellucida. The structure consists of a layered stack of calcite lamellae with uniform thickness and inter-lamella spacing. This arrangement lies at the origin of the blue-green iridescence of the organism's characteristic stripes, which is caused by multilayer interference. The multilayer is supported by a disordered array of spherical particles with an average diameter of 300nm, likely serving to enhance the contrast of the blue stripes. We present a full structural and optical characterization of this bio-mineralised marine photonic system, supported by optical FDTD modeling. The authors gratefully acknowledge financial support by the Air Force Office of Scientific Research under Award No. FA9550-09-1-0669-DOD35CAP. M. Kolle is grateful for support from the Alexander von Humboldt - Foundation.

  19. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  20. Fabrication and characterization of W/B4C lamellar multilayer grating and NbC/Si multilayer phase-shift reflector

    NASA Astrophysics Data System (ADS)

    Pradhan, P. C.; Bhartiya, S.; Singh, A.; Majhi, A.; Gome, A.; Dhawan, R.; Nayak, M.; Sahoo, P. K.; Rai, S. K.; Reddy, V. R.

    2017-08-01

    We present fabrication and structural analysis of two different multilayer grating structures. W/B4C based lamellar multilayer grating (LMG) was studied for high resolution monochomator application near soft x-ray region ( 1.5 keV). Whereas NbC/Si based multilayer phase-shift reflector (MPR) was studied for high reflection at normal incidence near Si L-edge ( 99 eV) and simultaneously to suppress the unwanted vacuum ultraviolet / infrared radiation. The grating patterns of different periods down to D = 10 micron were fabricated on Si substrates by using photolithography, and multilayers (MLs) of different periodicity (d = 10 to 2 nm) and number of layer pairs (15 to 100) were coated using sputtering techniques by optimizing the process parameters. The LMG and MPR samples are characterized by x-ray reflectivity (XRR) and atomic force microscopy (AFM) measurements. XRR results show successive higher order Bragg peaks that reveal a well-defined vertical periodic structure in LMG, MPR and ML structures. The lateral periodicity of the grating and depth of the rectangular groves were analyzed using AFM. The AFM results show good quality of lateral periodic structures in terms of groove profile. The effect of the process parameters on the microstructure (both on vertical and lateral patterns) of ML, LMG and MPR were analyzed.

  1. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one of the best-performing commercial contact force sensors in catheterization applications. The proposed sensor features extremely high sensitivity up to 1.37-mN, miniature size (2.4-mm) that meets standard specification, excellent linearity, low hysteresis, and magnetic resonance imaging compatibility.

  2. Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors

    NASA Technical Reports Server (NTRS)

    Puccio, Derek (Inventor); Malocha, Donald (Inventor)

    2011-01-01

    Weighted surface acoustic wave reflector gratings for coding identification tags and sensors to enable unique sensor operation and identification for a multi-sensor environment. In an embodiment, the weighted reflectors are variable while in another embodiment the reflector gratings are apodized. The weighting technique allows the designer to decrease reflectively and allows for more chips to be implemented in a device and, consequently, more coding diversity. As a result, more tags and sensors can be implemented using a given bandwidth when compared with uniform reflectors. Use of weighted reflector gratings with OFC makes various phase shifting schemes possible, such as in-phase and quadrature implementations of coded waveforms resulting in reduced device size and increased coding.

  3. A simultaneous pressure and temperature sensor based on a superstructure fiber grating

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Min; Liu, Wen-Fung; Fu, Ming-Yue; Sheng, Hao-Jan; Bor, Sheau-Shung; Tien, Chuen-Lin

    2004-12-01

    We demonstrated that a high-sensitivity fiber sensor based on a superstructure fiber grating (SFG) can simultaneously measure the pressure and temperature by encapsulating the grating in a polymer-half-filled metal cylinder, in which there are two openings on opposite sides of the wall filled with the polymer to sense the pressure. The mechanism of sensing pressure is to transfer the pressure into the axial extended-strain. According to the optical characteristics of an SFG composed of a fiber Bragg grating (FBG) and long period grating (LPG), the various pressure and temperature will cause the variation of the center-wavelength and reflection simultaneously. Thus, the sensor can be used for the measurement both of the pressure and temperature. The pressure sensitivity of 2.28×10-2MPa-1 and the temperature sensitivity both of 0.015nm/°C and -0.143dB/°C are obtained.

  4. Nanoslit cavity plasmonic modes and built-in fields enhance the CW THz radiation in an unbiased antennaless photomixers array.

    PubMed

    Mohammad-Zamani, Mohammad Javad; Neshat, Mohammad; Moravvej-Farshi, Mohammad Kazem

    2016-01-15

    A new generation unbiased antennaless CW terahertz (THz) photomixer emitters array made of asymmetric metal-semiconductor-metal (MSM) gratings with a subwavelength pitch, operating in the optical near-field regime, is proposed. We take advantage of size effects in near-field optics and electrostatics to demonstrate the possibility of enhancing the THz power by 4 orders of magnitude, compared to a similar unbiased antennaless array of the same size that operates in the far-field regime. We show that, with the appropriate choice of grating parameters in such THz sources, the first plasmonic resonant cavity mode in the nanoslit between two adjacent MSMs can enhance the optical near-field absorption and, hence, the generation of photocarriers under the slit in the active medium. These photocarriers, on the other hand, are accelerated by the large built-in electric field sustained under the nanoslits by two dissimilar Schottky barriers to create the desired large THz power that is mainly radiated downward. The proposed structure can be tuned in a broadband frequency range of 0.1-3 THz, with output power increasing with frequency.

  5. Monolithically Integrated Fiber Optic Coupler

    DTIC Science & Technology

    2013-01-14

    tilted Bragg gratings 24 are thermoelectric coolers (TECs) 30 that can modify the pitch of the tilted Bragg gratings 24, thereby changing their...reflective properties at specific wavelengths to provide tunability. Heating or cooling by thermoelectric coolers 30 causes expansion or contraction of...of a different wavelength of light. While thermoelectric coolers are preferred, devices 30 can be any reversible cooling/heating device that is

  6. On the use of a chirped Bragg grating as a cavity mirror of a picosecond Nd : YAG laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubko, A E; Shashkov, E V; Smirnov, A V

    2016-02-28

    The first experimental evidence is presented that the use of a chirped volume Bragg grating (CVBG) as a cavity mirror of a Q-switched picosecond Nd : YAG laser with self-mode-locking leads to significant changes in the temporal parameters of the laser output. Measurements have been performed at two positions of the CVBG: with the grating placed so that shorter wavelengths reflected from its front part lead longer wavelengths or with the grating rotated through 180°, so that longer wavelengths are reflected first. In the former case, the duration of individual pulses in a train increased from ∼35 to ∼300 ps,more » whereas the pulse train shape and duration remained the same as in the case of a conventional laser with a mirror cavity. In the latter case, the full width at half maximum of pulse trains increased from ∼70 ns (Nd : YAG laser with a mirror cavity) to ∼1 ms, and the duration of individual pulses increased from 35 ps to ∼1.2 ns, respectively, which is more typical of free-running laser operation. (laser crystals and braggg ratings)« less

  7. Experimental demonstration of monolithically integrated 16 channel DFB laser array fabricated by nanoimprint lithography with AWG multiplexer and SOA for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-03-01

    A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.

  8. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  9. Compact silicon diffractive sensor: design, fabrication, and prototype.

    PubMed

    Maikisch, Jonathan S; Gaylord, Thomas K

    2012-07-01

    An in-plane constant-efficiency variable-diffraction-angle grating and an in-plane high-angular-selectivity grating are combined to enable a new compact silicon diffractive sensor. This sensor is fabricated in silicon-on-insulator and uses telecommunications wavelengths. A single sensor element has a micron-scale device size and uses intensity-based (as opposed to spectral-based) detection for increased integrability. In-plane diffraction gratings provide an intrinsic splitting mechanism to enable a two-dimensional sensor array. Detection of the relative values of diffracted and transmitted intensities is independent of attenuation and is thus robust. The sensor prototype measures refractive index changes of 10(-4). Simulations indicate that this sensor configuration may be capable of measuring refractive index changes three or four orders of magnitude smaller. The characteristics of this sensor type make it promising for lab-on-a-chip applications.

  10. Modeling and simulation of blazed grating based on MEMS scanning micro-mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie

    2015-11-01

    Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.

  11. Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial.

    PubMed

    Al Mohtar, Abeer; Kazan, Michel; Taliercio, Thierry; Cerutti, Laurent; Blaize, Sylvain; Bruyant, Aurélien

    2017-03-24

    We have investigated the effective dielectric response of a subwavelength grating made of highly doped semiconductors (HDS) excited in reflection, using numerical simulations and spectroscopic measurement. The studied system can exhibit strong localized surface resonances and has, therefore, a great potential for surface-enhanced infrared absorption (SEIRA) spectroscopy application. It consists of a highly doped InAsSb grating deposited on lattice-matched GaSb. The numerical analysis demonstrated that the resonance frequencies can be inferred from the dielectric function of an equivalent homogeneous slab by accounting for the complex reflectivity of the composite layer. Fourier transform infrared reflectivity (FTIR) measurements, analyzed with the Kramers-Kronig conversion technique, were used to deduce the effective response in reflection of the investigated system. From the knowledge of this phenomenological dielectric function, transversal and longitudinal energy-loss functions were extracted and attributed to transverse and longitudinal resonance modes frequencies.

  12. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  13. High-contrast grating hollow-core waveguide splitter applied to optical phased array

    NASA Astrophysics Data System (ADS)

    Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei

    2014-11-01

    A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.

  14. Design and analysis of photonic optical switches with improved wavelength selectivity

    NASA Astrophysics Data System (ADS)

    Wielichowski, Marcin; Patela, Sergiusz

    2005-09-01

    Efficient optical modulators and switches are the key elements of the future all-optical fiber networks. Aside from numerous advantages, the integrated optical devices suffer from excessive longitudinal dimensions. The dimensions may be significantly reduced with help of periodic structures, such as Bragg gratings, arrayed waveguides or multilayer structures. In this paper we describe methods of analysis and example of analytical results of a photonic switch with properties modified by the application of periodic change of effective refractive index. The switch is composed of a strip-waveguide directional coupler and a transversal Bragg grating.

  15. Self-pumped Gaussian beam-coupling and stimulated backscatter due to reflection gratings in a photorefractive material

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammad Abu

    2007-05-01

    When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.

  16. Fiber optic wavelength division multiplexing: Principles and applications in telecommunications and spectroscopy

    NASA Technical Reports Server (NTRS)

    Erdmann, R. K.; Walton, B. D.

    1988-01-01

    Design and fabrication tradeoffs of wavelength division multiplexers are discussed and performance parameters are given. The same multiplexer construction based on prism gratings has been used in spectroscopic applications, in the wavelength region from 450 to 1600 nm. For shorter wavelengths down to 200 nm, a similar instrument based on longer fibers (500 to 1000 micrometer) has been constructed and tested with both a fiber array and a photodiode detector array at the output.

  17. Low-power grating detection system chip for high-speed low-cost length and angle precision measurement

    NASA Astrophysics Data System (ADS)

    Hou, Ligang; Luo, Rengui; Wu, Wuchen

    2006-11-01

    This paper forwards a low power grating detection chip (EYAS) on length and angle precision measurement. Traditional grating detection method, such as resister chain divide or phase locked divide circuit are difficult to design and tune. The need of an additional CPU for control and display makes these methods' implementation more complex and costly. Traditional methods also suffer low sampling speed for the complex divide circuit scheme and CPU software compensation. EYAS is an application specific integrated circuit (ASIC). It integrates micro controller unit (MCU), power management unit (PMU), LCD controller, Keyboard interface, grating detection unit and other peripherals. Working at 10MHz, EYAS can afford 5MHz internal sampling rate and can handle 1.25MHz orthogonal signal from grating sensor. With a simple control interface by keyboard, sensor parameter, data processing and system working mode can be configured. Two LCD controllers can adapt to dot array LCD or segment bit LCD, which comprised output interface. PMU alters system between working and standby mode by clock gating technique to save power. EYAS in test mode (system action are more frequently than real world use) consumes 0.9mw, while 0.2mw in real world use. EYAS achieved the whole grating detection system function, high-speed orthogonal signal handling in a single chip with very low power consumption.

  18. Bringing mirrors to rest: grating concepts for ultra-precise interferometry

    NASA Astrophysics Data System (ADS)

    Kroker, Stefanie; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2015-02-01

    Experiments in the field of high precision metrology such as the detection of gravitational waves are crucially limited by the thermal fluctuations of the optical components. In this contribution we present the current state of knowledge of high contrast gratings (HCGs) as low-noise elements for gravitational wave interferometers. We discuss how the properties of HCGs can be tailored such that beside highly reflective mirrors also diffractive beam splitters can be realized. Further, we show the impact of such gratings on the sensitivity of future gravitational wave detectors which can pave the way for the new field of gravitational wave astronomy.

  19. Fiber Bragg grating cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjay; Mizunami, Toru; Yamao, Takashi; Shimomura, Teruo

    1996-09-01

    Temperature sensing to as low as 80 K was demonstrated with 1.55- mu m fiber Bragg gratings. The gratings were bonded on substrates to increase sensitivity, and a shift of the reflection wavelength was measured. The temperature sensitivity was 0.02 nm/K at 100 K when an aluminum substrate was used and 0.04 nm/K at 100 K when a poly(methyl methacrylate) substrate was used. These values are smaller than those at room temperature because of the nonlinearity of both the thermal expansion and the thermo-optic effect. Extension to the liquid helium temperature is also discussed.

  20. Recording polarization gratings with a standing spiral wave

    NASA Astrophysics Data System (ADS)

    Vernon, Jonathan P.; Serak, Svetlana V.; Hakobyan, Rafik S.; Aleksanyan, Artur K.; Tondiglia, Vincent P.; White, Timothy J.; Bunning, Timothy J.; Tabiryan, Nelson V.

    2013-11-01

    A scalable and robust methodology for writing cycloidal modulation patterns of optical axis orientation in photosensitive surface alignment layers is demonstrated. Counterpropagating circularly polarized beams, generated by reflection of the input beam from a cholesteric liquid crystal, direct local surface orientation in a photosensitive surface. Purposely introducing a slight angle between the input beam and the photosensitive surface normal introduces a grating period/orientation that is readily controlled and templated. The resulting cycloidal diffractive waveplates offer utility in technologies requiring diffraction over a broad range of angles/wavelengths. This simple methodology of forming polarization gratings offers advantages over conventional fabrication techniques.

  1. Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser.

    PubMed

    Shi, Jiawei; Li, Yuhua; Liu, Shuhui; Wang, Haiyan; Liu, Ningliang; Lu, Peixiang

    2011-01-31

    Bragg gratings with the bandwidth(FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.

  2. Effect of temperature on the spectrum of fiber Bragg grating sensors embedded in polymer composite

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Shipunov, G. S.; Voronkov, A. A.; Shardakov, I. N.

    2017-12-01

    This work presents the experimental results on the effect of temperature on the spectrum of fiber Bragg grating (FBG) sensors embedded in a polymer composite material manufactured by the prepreg method. The tests are carried out for flat bar specimens made of fiberglass with five embedded FBG sensors. For measuring the reflected wave power, the ASTRO X322 Interrogator is used. It is shown that embedding leads to the occurrence of an additional power peak and decreases the reflection spectrum signal by 10-12 dB. This is due to the effect of transverse compression force and the anisotropic character of the thermal expansion coefficient of the material. In heating, the reflected spectrum is close to the initial state of the material, but it has a less power.

  3. Analysis and design of arrayed waveguide gratings with MMI couplers.

    PubMed

    Munoz, P; Pastor, D; Capmany, J

    2001-09-24

    We present an extension of the AWG model and design procedure described in [1] to incorporate multimode interference, MMI, couplers. For the first time to our knowledge, a closed formula for the passing bands bandwidth and crosstalk estimation plots are derived.

  4. Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.

    PubMed

    Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala

    2014-10-20

    Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth.

  5. High performance Si immersion gratings patterned with electron beam lithography

    NASA Astrophysics Data System (ADS)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error by a factor of 5. (3) The serial write process for typical gratings yields write times of about 24 hours- this makes prototyping costly. We discuss work with negative e-beam resist to reduce the fill factor of exposure, and therefore limit the exposure time. We also discuss the tradeoffs of long write-time serial write processes like e-beam with UV photomask lithography. We show the results of experiments on small pattern size prototypes on silicon wafers. Current prototypes now exceed 30 dB of suppression on spectral and spatial dimension ghosts compared to monochromatic spectral purity measurements of the backside of Si echelle gratings in reflection at 632 nm. We perform interferometry at 632 nm in reflection with a 25 mm circular beam on a grating with a blaze angle of 71.6°. The measured wavefront error is 0.09 waves peak to valley.

  6. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.

    PubMed

    Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-11-03

    Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

  7. Effects of thermal loading and hydrostatic pressure on reflecting wavelengths of double-coated fiber Bragg grating with different coating-layer thickness

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Toutian, Golnoush

    2017-10-01

    Fiber Bragg grating (FBG) of different configurations used as sensing devices are vulnerable to environmental factors, such as static pressures and thermal loading, which cause their characteristic Bragg reflecting wavelengths to up/down-shift. In this paper, by considering double-coated FBG with different primary and secondary coating materials, the effects of thermal loading and hydrostatic pressure on FBG with different coating-layer thicknesses are analyzed to find design criteria for controlling the Bragg wavelength shift. The obtained results of the analysis may be employed as criteria to design pressure and temperature sensors when using double-coated FBGs.

  8. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  9. Switching terahertz wave with grating-coupled Kretschmann configuration.

    PubMed

    Jiu-Sheng, Li

    2017-08-07

    We present a terahertz wave switch utilizing Kretschmann configuration which consists of high-refractive-index prism-liquid crystal-periodically grooved metal grating. The switching mechanism of the terahertz switch is based on spoof surface plasmon polariton (SSPP) excitation in the attenuated total reflection regime by changing the liquid crystal refractive index. The results highlighted the fact that the feasibility to "tune" the attenuated total reflection terahertz wave intensity by using the external applied bias voltage. The extinction ratio of the terahertz switch reaches 31.48dB. The terahertz switch has good control ability and flexibility, and can be used in potential terahertz free space device systems.

  10. Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves.

    PubMed

    Antman, Yair; Levanon, Nadav; Zadok, Avi

    2012-12-15

    A method for long variable all-optical delay is proposed and simulated, based on reflections from localized and stationary dynamic Brillouin gratings (DBGs). Inspired by radar methods, the DBGs are inscribed by two pumps that are comodulated by perfect Golomb codes, which reduce the off-peak reflectivity. Compared with random bit sequence coding, Golomb codes improve the optical signal-to-noise ratio (OSNR) of delayed waveforms by an order of magnitude. Simulations suggest a delay of 5  Gb/s data by 9 ns, or 45 bit durations, with an OSNR of 13 dB.

  11. Interaction of surface plasmon polaritons in heavily doped GaN microstructures with terahertz radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melentev, G. A., E-mail: gamelen@spbstu.ru; Shalygin, V. A.; Vorobjev, L. E.

    2016-03-07

    We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2–20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of themore » reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.« less

  12. Single resonance monolithic Fabry-Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors

    NASA Astrophysics Data System (ADS)

    Lumeau, Julien; Koc, Cihan; Mokhun, Oleksiy; Smirnov, Vadim; Lequime, Michel; Glebov, Leonid B.

    2012-02-01

    High efficiency reflecting volume Bragg gratings (VBGs) recorded in PTR glass plates have shown un-preceded performances that make them very good candidates for narrowband spectral filtering with sub-nanometer spectral widths. However, decreasing the bandwidth to value below 30-50 pm is very challenging as it requires increasing the thickness of the RBG to more than 15-20 mm. To overcome this limitation, we propose a new approach which is a monolithic Fabry-Perot cavity which consists from a reflecting VBG with a multilayer dielectric mirror (MDM) deposited on its surface. A VBG with a grating vector perpendicular to its surface and a MDM produce a Fabry-Perot resonator with a single transmission band inside of the reflection spectrum of the VBG. We present a theoretical description of this new class of filters that allow achieving a single ultra-narrowband resonance associated with several hundred nanometers rejection band. Then we show the methods for designing and fabricating such filter. Finally, we present the steps that we followed in order to fabricate a first prototype for 852 nm and 1062 nm region that demonstrates a 30 pm bandwidth, 90+% transmission at resonance and a good agreement with theoretical simulation.

  13. Arrayed Micro-Ring Spectrometer System and Method of Use

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    A spectrometer system includes an array of micro-zone plates (MZP) each having coaxially-aligned ring gratings, a sample plate for supporting and illuminating a sample, and an array of photon detectors for measuring a spectral characteristic of the predetermined wavelength. The sample plate emits an evanescent wave in response to incident light, which excites molecules of the sample to thereby cause an emission of secondary photons. A method of detecting the intensity of a selected wavelength of incident light includes directing the incident light onto an array of MZP, diffracting a selected wavelength of the incident light onto a target focal point using the array of MZP, and detecting the intensity of the selected portion using an array of photon detectors. An electro-optic layer positioned adjacent to the array of MZP may be excited via an applied voltage to select the wavelength of the incident light.

  14. X-ray verification of an optically-aligned off-plane grating module

    NASA Astrophysics Data System (ADS)

    Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

    2017-08-01

    The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

  15. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1999-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using micro-lithographic techniques and used ir spectral imaging applications will be presented.

  16. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1998-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using microlithographic techniques and used in spectral imaging applications will be presented.

  17. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness.

    PubMed

    Spering, Miriam; Carrasco, Marisa

    2012-05-30

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.

  18. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model

    NASA Astrophysics Data System (ADS)

    Sutherland, Richard L.

    2002-12-01

    Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.

  19. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming

    2016-01-01

    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  20. Reflection holograms using peristrophic multiplexing

    NASA Astrophysics Data System (ADS)

    Sayeh, Mohammed R.; Jeong, Y.

    2000-07-01

    In this paper, we consider a peristrophic multiplexing for reflection holograms. This type of multiplexing the rotation of either the material or the reference beam causes the grating vector to be off the plane of the reference and image beams. In the case of reflection hologram, we developed a relationship for the angular selectivity which is verified experimentally.

Top